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PROCEDURES FOR DETERMINING MATMOD.4V
, MATERIAL CONSTANTS

Terry C. Lowe
Los Alamos National Laboratory

MST.5, MS G730
Los Alamos, NM 87545

Abstract

The MATMOD-4V constitutive relations were developed from the original MATMOD model to
extend the range of nonelastic deformation behaviors represented to include transient phenomena
such as strain softening. The improvements that evolved in MATMOD-4V increased the number of
independent material constants and the difficulty in determining their values. Though the constitu-
tive ,elations are conceptually simple, their form and the procedures for obtaining their constants
can be complex. This paper reviews in detail the experiments, numerical procedures, and assump-
tions that have been used to determine a complete set of MATMOD-4V constants for high purity
aluminum.

INTRODUCTION

The MATMOD-4V constitutive relations were evolved by Lowe and Miller [1,2] from the
MATMOD constitutive relations developed by Miller [3]. MATMOD-4V contains numerous
enhancements beyond MATMOD, particularly for representing transient deformation behaviors.
The MATMOD-4V equations are derived in [1] and applied for high purity aluminum in [2]. The
purpose of this paper is to docun:ent the procedures by which the model constants can be derived
for a specific material. For simplicity, only the scalar version of MATMOD-4V will be treated.
Review of [1] is recommended at this point since space limitations prohibit any explanation of

MATMOD-4V and the significance, of its four internal state variables .RA' RB,. Fde,'f p_,Fde'f,X" Note
that the internal state variables will also be referred to as structure variables since they are associ-
ated with spe_:ific types of microstructural features that evolve during deformation. External vari-
ables includ_ the temperature T, the stress _, and the nonelastic strain rate e. Subscripts are used to
indicate spec,al values of any variable.

GENERAL STRATEGY

The application of any constitutive theory requires the determination of model parameters that
are specific for the material of interest. The difficulty of obtaining material constants has long been
a key factor limiting the widespread application of sophisticated constitutive models such as MAT-
MOD-4V. Values must be determined for the twenty-one constants that exist in the scalar form of
the MATMOD-4V equations, given in figure 1. Though the equations appear to be somewhat com-
plex, the procedures for obtaining the constants can be readily understood by first grouping theh_ in
the following five categories:

1. Strain rate equation constants,

A,B,n,p, (Q*, Tt);

2. Steady state level constants for each structure variable,

A2,As, A4, As;

3. Structure evolution equation hardening coefficients,

H2, H3,//4, Hs;

4. Structure variable interaction exponents, and

P2,P3, P4,Ps;

5. Dynamic/thermal recovery constants for each structure variable.
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FIGURE 1. Scalar form ofMATMOD-4V equations.

The procedures for determining constants within each category are often similar or rely upon a
single type of experimental data. Most of the MATMOD-4V constants can be determined directly
from mechanical test data. A few constants must be obtained indirectly by relying on assumptions.
MATMOD-4V is designed so that its constants remain valid throughout the entire range of temper-
ature and strain rate for which the model is valid. No constant lookup tables [4] or constant adjust-
ment schemes [5] are needed to modify the equations for particular thermal-mechanical
deformation conditions.

Procedures for determining each constant value will be briefly outlined following the same
sequence that they would be executed to obtain a complete set of values for any metal. The order is
important since some procedures rely upon assumed or computed values of other constants. The
number of assumptions is minimized by the strategy that is outlined in this paper for obt_fining con-
stants for high purity aluminum. In cases where ad hoc assumptions must be used, alternative meth-
ods to check assumed constant values are given. Usually, these methods cannot be applied until
initial values for all constants have been determined. This restriction affects the degree of effort
needed to compute reliable constant values since assumptions made early in the computation strat-



egy may influence subsequent calculations. If there are substantial differences between initially
, assumed and subsequently determined values, the calculation procedures must be repeated with

revised assumptions beginning at the point of the first faulty assumption. Depending upon the qual-
' ity of assumptions and the desired degree of precision, severn iterations may be needed to obtain

satisfactory constant values.
The presence of experimental error in mechanical test data makes the determination of material

constants imprecise, even for those constants derived directly from simple experiments. In most
cases, data analysis serves only to establish upper and lower bounds for a given constant. The
choice of a value within these bounds may in some cases involve subjective judgement. Mid-range
values are usually chosen initially. Final constant values are obtained by optimization using simple
numerical analysis techniques and trial-and-error comparisons of experimental data with model pre-
dictions.

STRAIN RATE EQUATION CONSTANTS

Constants for the nonelastic strain rate equation, A,B,n, Q and T, are determined using steady
state creep data obtained in the power law and power breakdown regimes, as outlined below. For
steady state deformation, the MATMOD-4V nonelastic strain rate equation reduces to:

es,_= B0' sinh(A ) , (1)
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FIGURE2. Temperaturedependenceofactivationenergiesforcreepof highpurity
aluminum(dataof Sherby,Lytton,andDorn[6]).

where the effect of temperature upon deformation is represented by a reaction rate relationship 0' as
advocated by Dorn and coworkers [7]:

O' = flexp (_T) l, (2)

Q is an activation energy for creep, and k is the gas constant. E in equation 1 is Young's modulus.
The subscript ss appearing on variables in equation 1 refers to the specific value of a variable during
steady state deformation. Activation energies for creep can be determined using temperature-
change tests described in detail by Sherby, Lytton, and Dorn [6]. These investigators found that Q



for aluminunl changes with temperature as shown in figure 2. Miller [3] derived a simple mathe-
, matical form to approximate this data:

f exp{ - in(-_) + 1 }, r_<r,
O' = I (3)

Lexp{_O}, r> r,
where Tt is a transition temperature above which Q is independent of temperature. More recent
work by Luthy, Miller, and Sherby [8], showed a different temperature dependence of the activation
energy for aluminum at low temperatures. They obtained good agreement between activation ener-
gies for self diffusion and those for creep. Sherby, Orr, and Dorn [9] demonstrated the correspon-
dence between activation energies for creep and diffusion for a range of materials. Reasonable
descriptions of the temperature dependence of Q can be obtained from diffusion data alone. How-
ever, it is preferable to use Q as determined from mechanical testing. For aluminum, 0' is repre-
sented by equation 3 where Q and T t are estimated from the data in figure 2. The only other
temperature dependence in MATMOD-4V is that of the elastic modulus E. This data can be easily
obtained directly from modulus measurements [10] or from values reported in the literature. The
temperature dependence of the modulus of aluminum is represented in MATMOD-4V by fitting a
linear equation to the data of Fine [10].

Constants A, B and n may be obtained by a least squares error minimization technique or by the
graphical method illustrated in figure 3 where steady creep data [6,12,13,14] is plotted as

log (g/0') versus log [sinh (AosslE) ]. The value of A is varied to obtain the best straight line
through the data. The slope of the line is n, and its intercept at sinh (A_JE) = 1.0 is B.

'' '"'1 ' ' ' '""1 ' '...."
: HIGH PURITY ALUMINUM

1020 m 41,DATA OF SERVI & GRANT
.. x DATA OF FERREIRA & STANG
- + DATA OF GIBELING

_ O DATA OF SHERBY, LYTTON & DORN .

_ --- MATMOD-4V SIMULATION _,¢',I_"
1015 _ ¢,,, --".J

" n=5.0 4, _"

o_ " B=7x1010 . y "

- o #2" --
1010 x m

105

i" , ,i,,,I , , ,iii,,,,,I , , ,,
0.05 0.1 0.5 1 5

SINH(AO'ss/E)

FIGURE 3. Determination of A, B, and n from steady creep data for pure aluminum (data
of Sherby, Lytton, and Dorn [6],Ferreira and Slang [12], Servi and Grant [13l,
and Gibeling [14]).

The same constants B, n, Q and T t that appear in equation 1 for steady state, also apply to the
general form of the MATMOD-4V strain rate equation:



KIo I]'nE
, _ - (R A + Rn)

, g = B0' sinh jFdef, 9 + Fdef,k sgn _- (R a + Rn) . (4)

One additional constant, p, must be determined for equation 4. Two different methods have
been used to compute p. For high purity aluminum one can compute p from room temperature yield
strength data for material that has been previously warm worked to steady state at various stresses.
When the room temperature yield strength is plotted versus the warm working stress on log-log
axes, one observes a power law relationship, as shown in figure 4 [15]. Assuming that the internal
stresses introduced by warm working are small, the reciprocal of the power exponent correlating
room temperature yield strength with the warm working stress may be taken as p [15].

It is also possible to estimate p from the constant structure creep exponent N. MATMOD-4V
predicts that for constant structure (R A,RB,Fdef.p and Fdef,x all constant):

N = pn. (5)

Unfortunately, reported values of N vary over a wide range, making this method of estimating p
unreliable. For aluminum, N values between 6.8 and 10 have been reported [16].
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FIGURE 4. Calculation ofp from room temperature yield strength data for high purity
aluminum warm.worked to various steady state stresses (after Miller and
Sherby [15]).

STEADY STATE LEVEL CONSTANTS FOR STRUCTURE VARIABLES A t

The magnitude of each structure variable during steady state deformation is constant and is
determined by the Ai constants through the relations:

C

RA, ss = A---_a (6)

C

R&ss = A--_3 (7)
p

F2(p-1)_ C

def,O,ss -- An (8)
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P
.-,2(p-t) _ C

' Paler,_.,_s - A---_5 (9)
1

C = sinh-l( Es, ) . (10)

Experimental measurements of RA,_ and RB.s_ [17] may be used to determine ,42 and ,43
directly. However, Fde/,o,ss and Fde/,x,ss cannot be measured separately by mechanical tests. The
relative magnitudes of Fee:,,,,ss and Fdef _. ss must be assumed initially. Based upon the experimen-
tal work of Kassner [18], ;ir_engthening _rom heterogeneous dislocation substructures (attributed to
Fd_ x ) constitutes a small portion of the isotropic strength, about 10% in 304 stainless steel. Sim-f, •

ilar experiments have not yet been performed for aluminum, but the same proportionality will be
assumed for aluminum:

2(p-1)

= = ) = 0.10. (1l)
\Fdef,P,ss I

\A4

The totalisotropichardening,

Faef = Fdef,0 + Fdef,Z (12)

can be measured and used to compute A 6 as defined by:
p

F2(p-1) _ C
def , ss

A6 (13)

Combining equations 8, 9, 11, 12, and 13, one obtains:
P

2 (p-1.._...___)] 2 (p- 1)

A 4 p

A 4 =A 6 1+(_) , (14)

and,

P

IA 5 =A 6 1- 1+(_) (15)
2(p-l)

The experimentally determined value of A 6 and an assumed ratio (A4/As) P may then
be used to compute A 4 and As. Directional strain softening data [9] may later be used to check the
assumed ratio of Fa,I,x/Fee/, o" This procedure is described in a latter section since it depends upon
the interaction exponents Pi.

HARDENING COEFFICIENTS H i

Values for the hardening coefficients can be calculated directly from experimental data by
using mechanical test techniques that distinguish the structure variables. The relative rates of evo-
lution of each variable are in order of decreasing rate:/_A, Feey,o, t_n,/_a_/,x. So in a tensile test, the
initial slope of the stress nonelastic strain cu.rve corresponds to changes in Ra while the approach to
steady state at large strains is governed by Faef,_,. However, distinctions between small strain
(microplastic) behavior used to compute H2 in the/_A equation and large strain behavior used to
compute H 5 in the _'ae/equation may be material dependent. These distinctions follow from the



microstructural significance of each structure variable and must be carefully considered when
, applied to obtain constants for different metals• The methods used to measure RA, R,_ and Fd_f for

" the purpose of determining constants for aluminum are discussed in detail in [17].
• H 2 can be estimated from the rapid microplastic stress-strain transient during the Bauschinger

effect. The slope of the stress-nonelastic strain curve immediately following a strain rate reversal
can be related to changes in Ra if it is assumed that the other structure variables are approximately
constant. However, this slope changes continuously with Ra since the dynamic recovery rate of RA
depends upon RA (as seen in the RA equation in figure 1).Thus, it is necessary to measure the slope
at the point where Ra, and therefore the dynamic recovery rate of Ra are both equal to zero. The
slope of the stress-nonelastic strain curve at this point is proportional to H2'

d¢_I dRA I = H 2 (1 + C2)E. (16)d---ehA=0 = E---_- RA=0

C2 is unknown, but is typically less than 0.1 and can be neglected. The point where RAequals zero
can be determined from stress-strain hysteresis loops for cyclically saturated deformation. At any
strain amplitude, RA changes through a range approximately equal to twice its saturated peak value
RA.SArwithin a nonelastic strain er, after each strain rate reversal (shown schematically in figure 5).
By symmetry, Ra must equal zero at a stress ¢,, midway between the initial reverse yield stress o"r
and the second reverse yield stress _r, at the large offset strain Er_.Thus, equation 16 can be used td
compute H2 (neglecting C2) in terms of easily measured quantities:

1 d_[H2 -- E de ' (17)
tYm

i

Er2

Gr2
1

H2E

'O'rl

FIGURE 5. Schematic illustrating the calculation of/it: f_ cyclk stre_.s.strain data.

H 2 may be computed by graphical analysis as shown _r_i_ _e , N_te that tt, will depend upon the
definitions of 6r and (Yr ' For aluminum a,, and _, b_'_: _ :a defined by offset strains of 2×10 -53 1 2 _ "
and 2x 10- , respectively.

H 3 and H4 are both computed from direct measurements, o! Rs and Fad at small to intermedi-
ate strains (er, < e < 10Er,) in an initially annealed material. "ltk- initial increases in RB and Fd#, o
during monotonic deformation depend exclusively upon the hardening coefficients. R_ and Fd,y
may be measured directly during monotonic straining by Bauschinger effect back stress probes
[17]. At small to intermediate strains, Fdey= Fd,I, o since Fd,/.0 is generally larger than Fd,y _ and
also increases more rapidly. Thus, H 3 and H 4 may be determined from the slope of linear least
squares fits to Rn_ Eand Fdey__.data, respectively:



dRl,
H 3(1 +C3) = t-_' (i8)

, dFde f

H4 ( 1 + C4) = dE ' (19)

Since C3 and C4 are small (less than 0.1):

dR B
Hs = --d-_-' (20)

H 4 - dFdeyde ' (21)

H 5 cannot be computed directly, and depends upon the values of other constants, The rate of
increase of Fdef,_. depends upon the product HsC 5 during initial straining of an annealed material,
Since FdeLz cannot be readily measured experimentally by mechanical tests, H 5 must be computed
indirectly. An upper bound for the product HsC 5 is provided by the constraint that Fdef,_.initially
increase more slowly than Fdef, p

HsC 5 < H4. (22)

A temporary value of Hs is computed using this upper bound after C5 is determined. After all other
constants have been given initial values, H5 can be estimated from the amount of primary strain to
reach steady state during constant stress creep. Since Fa_y,z is the most slowly changing state vari-
able, it will control the amount of strain required to reach steady state. H s is adjusted by trial-and-
error simulations to match the primary creep strain data. Even though data for only one temperature
and stress were used here to obtain H5, predictions of primary creep by Lowe and Miller [2] show
good agreement with data over a wide range of temperature and stress.

INTERACTION EXPONENTS Pl

Low temperature cyclic saturation data is used to determine P2,P3, P4, and Ps. Functional
relationships between pairs of structure variables at saturation are fit to experimentally measured
values of I_A, SAD RB, SAT, and Frier, SaT where the subscript SAT refers to the peak value of the ref-
erenced variable during cyclically saturated deformation.

Small strain amplitude data is used to determine P5 first. Since C s is small, at cyclic saturation
Fdey,Xand RB are related by the expression:

Ps

. ,_:(_- I) '

t"15.__._rdef, K,S__.__.AT_ Aa]RB a VE

_sinh-' (B[_,) ! sinh-' (BI_,)

where,

In [ ( 1 + KRB, sAr) ( 1 - KRB, sAr) ]
[RBIAVe -

Kln[ (l+KRB'sar)](1 -KRn, sar) "

and



As sinh-1 ( )

K 2-'2- .
Ps

A5Pdef, k, T

The expression for R_ AVS,obtained by analytically integrating and then averaging the/_n
equation over a complete strain cycle, includes the constant P3, which is still unknown. However, at
small cyclic strain amplitudes, [RB[AVEis nearly unaffected by the value of P3 and an intermediate
value of 0.5 is assigned initially. Experimentally determined values of Fdef _.SATand Ra SATcan be
substituted into equation 23 to solve for Ps. Since Fact.' X,SATcannot be measured directly, it is nec-
essary to assume that Fdq.' _.,SATand Fee/,p,SAThave nearly the same relative magnitude as Fdef,x,s,_

so that may be computed as:and Fde/,o,ss Fae/,_.,sa r

2(p- 1) -1

A4 p

Fdef, k, SA T -- Fdef,SAr 1- 1 + (_5) . (24)

After computing Ps, equations 23 and 24 may be employed in computing P3 using values of RB, SAT

and Fdey,sar measured at large cyclic strain amplitudes (e.g. +- 0.10). Trial-and-error values of Ps
are used to match the equation to experimental data.

Small strain amplitude cyclic saturation data is used to compute p:. A relation between RA,sar
and Fd,f.p.sAr may be derived by analytically integrating the R a equation:

p

,a,,/,p, sAr (1 + C2) H2K
(25)

R A' SAT = I_ 1- exP l 2_T__iS
krdef, p, SAT / J

where,

_ A2 [_l , ;

K' Ap2 sinh -1 (_) .

Given experimentally determined values of e, Fd¢ o SATandR,4 SAT,only C2 and P2 are
unknown in equation 25. However, C: is typieallyavery s_all and can be neglected. Assuming that

Fdef, p,SAT Fdef, p,ss
9

Fde/, _, SAT Fdey, _, ss

Faef.o,sar may be computed from experimental data as:

Fdey,SAr (26)

and substituted into equation 25 with RA, SAT and co to compute P2.
A relation similar to equations 23 and 25 exists between Faey,p,sar and Fd¢,X.SAr from which

P4 can, in principle, be determined. Unfortunately, no means has been developed by which to



expcrinlentallyquantityra,.r,pand l',t,.r._.siluult,,,,_¢ui_Iv.Ihv,vever,anitalic'eelineth_d,usirlg
.directionalstrain,_oi'teningdata,may beu.,,edafte¢:ill_therc_111,_lanlsilavebt:?n_,ivellinitialvalu¢_.

Since P4 will have a value between (}(no interacti(_n I_elwt-t'tl1",i,,¢>arid /",t,t'e )' and J (l,)la] t'oti _
piing of t.',¢,/._,and Ya,,/.p), art intermeciiate value _,ft).5 can be ass'umed initJi_lly.

RECOVERY RATE CONST_,NTS U_

" " 6' and¢'s ¢72Data fi'om two types of rccovery experiments is needed tc_compute (2, t s, ._
and C4 can be computed directly from a back stress recovery experiment [20]. In this experiment, a

Ssample is first cycled to saturation at an elevated tenlperature to e_tabltsh a rel_'atable initial tlefor_
marion state. Cycling is stopped at zero stress, and the material is allowed to slat tally rec_wcr fl_ra
time t. At the end of the recovery period the sample is reloaded in the forward s_taining ttirecti_m
and a forward yield stress _. is measured. The sample is cycled again to saturatit,n, after which
another recovery period of equal duratton is initiated. At the end of the recovery l,eriod the sample
is loaded in the reverse direction as though an interrupted Bauschinger test were being perftwmed. A
reverse yield stress orr is measured. The stresses o! and o, are used as in a Baust.llinger effecl test
to compute the back stress and the isotropic strength. The back stress recovery lest prt_edure, sche_
maticaily illustrated in figure 6, is repeated for several recovery periods. Because of the likelihtw_d
of errors in back stresses measured in this way, a large strain offset, as used to measure RIj, is used
to define er and o'f Thus, only recovery of R/_ may be estimated by this technique. In fact, it is
desirable that RAcompletely recover during the recovery period, so that any remaining directional
effect may be associated with Rn. For this reason, data for longer recovery times is preferred for
determining the recovery kinetics of Rtj. Minimal values of RAat longer times also ensure that
recovery is nearly static.

Act Aet
HOLD _ HOLD

E

AEt AEtwo

- _-t t

fir

(a) (b)

FIGURE6. SchematicIllustrationof themethodforestimatingtherecoveryof the long
rangeinternalstressvariableRI_duringzero.stressannealingperiods.The
reverseyieldstresscLaftera nerlodof recoveryis measuredasshownIn(a)r r

and the forward flow stress of Is shown In (b).

C3 may now be determined by numerical analysis. First, a least squares polynomial (or other
suitable function) is fit to the Rn - t recovery data to define/_t_ = f_ (Rn). This function may then



coral ared witl, ttle MATMOD-4V Rn recovery function which also expresses Rs as a function

. Rn.,,co,,,,r = -CsHsB [0'sinh (AsRs) ]n. (27)

C_ is the only unknown constant in equation 27 and may be calculated for a given value of Rs as:

A(Rs)
C3 = HsB[0,sinh(AsRm)]n' (28)

The same pr_edure is used to compute C 4. Since Fdt:,. _ Fde:experimental measurements of• _P ,2

_covery of isotropic strength are interpreted In terms of recovery of Fdef,p. A function is fit to the
data to tlescri_ the rate of recovery of Pde/.p'

/:#,/,p= f2(Fa,/,p)'

ThisfunctioniscomparedwiththeMATMOD-4V expressionforstaticrecoveryofFd_/,pandC4is
computedas:

f2(Fa,/,p)
C 4 : , (29)

H4 B O,sinh _A4Fdey, p 11

for _gYF,t,:,_' The effects of scatter in the experimental data or possible disagreement between
f2 {/_#,,/.p)and the MATMOD-4V recovery function may be minimized by computing Ca for sev-
eral values of Fde/.p and calculating an average.

The remaining recovery constants, C2 and C5 are determined by comparing data from stress
drop ex_riments with MATMOD-4V simulations. A stress drop experiment involves creeping a
sample at constant temperature and constant stress and then instantaneously reducing the stress to
some fraction of the initial stress [21, 22]. There is at, immediate decrease in the creep rate which
de_nds upon the magnitude of the stress drop. For large stress drops the creep rate may become
negative before forward straining at the reduced stress is resumed. The creep rate transients that
occur between the instant of the stress drop and the time that a steady state creep condition is
reached at the reduced stress are determined by the changes in the structure variables. The relative
contributions of strain-activated and thermal recovery greatly influence the time before forward
creep is resumed after a large stress drop and the time to reach a new steady state at the reduced
stress. These two times are indicated as t_ and t2, respectively, in figure 7.

In MATMOD-4V simulations of stress drops, the time to resumption of forward creep, t_, is
'Valmost exclum ely dependent upon C2. Simulations using an assumed value of C5 and various val-

ues of C2 can be compared with experimental data to select an appropriate C2 value. In practice, it
is difficult to measure a forward strain rate less than 10-asec -_ , so that t_ must be redefined as the
time to reach an experimentally measurable strain rate. Times to resume forward creep in stress
drop experiments using aluminum have been reported by Gibeling [14].

The t_rne t2 to reach a new steady-state creep rate at a reduced stress is influenced by
C2, C_, C4, and C5. But at this point C5 is the only variable which remains undefined. Thus C 5 can
be selected to match experimental measurements of t2 with MATMOD-4V simulations of the same
experiments. Though all four C_constants influence t2, it is most appropriate to use C5 to fit the
MATMOD-4V predictions to the data since Fd_:,_ is the most slowly changing structure variable.
Furthermore, Ferreira and Stang [12] have found a direct correlation between changes in subgrain

size (corresponding to Fdt/, X) and the approach to steady state following a stress drop.

........ ,,,, I I IIII I II II
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FIGURE 7. Transients in the strain rate following a large stress rec_uction during creep. The
times required to resume forward creep (t2) and to reach steady state at the
new stress (t2) are indicated (data of Ferreira and Stang [12]).

ITERATION TO OBTAIN FINAL CONSTANT VALUES

After initial values have been assigned to all constants, simulations of a wide range of experi-
mental behaviors may be performed to test the choice of constant values and guide refinements to
obtain final values. The initially assumed values of A4,A 5 and P4 can be refined using strain soften-
ing data. Directional strain softening data [19] offers a unique means of determining the relative
strength contributions of Fdef, p and Fdef'Z..

In simulations of directional strain softening, Frier,,, and Fder,_.exhibit different sorts of behav-
ior when uncoupled; Fde/,p always increases toward a"s_tturated {,alue while Fdef,Xmay decrease
following a strain rate reversal due to an interaction with RB as seen in figure 8. This decrease is the
essence of directional strain softening. Thus, decreases in isotropic strength during directional strain
softening may be directly attributed to the reduction of Fdef,_.in the absence of any coupling with
Fd, ' One could estimate the relative magnitudes of Fd, f, c,and Fdg ' _ from the magnitude of direc-

'f ' -" " Ftion_ strain softening, thereby allowing a direct means to compute AAand A 5. However, if ,uf,p is
closely coupled to Fdef,x (large P4) then both Fdef,p and Fdef,x will decrease during directional
strain softening. Additional information is then needed to simultaneously distinguish Frier,pfrom
Fd#,X and thereby determine A4,A 5 and P4"

The strain amplitude dependence of directional softening during cyclic deformation allows the
reduction in isot_opic strength to be attributed to either a close coupling of Fder,p with Frier,f, or a
large relative,magnitude, of Fde" ,f p..If Fde,,./.p.and Fde,,ypare totally coupled (P4. -- 1 ), then directional.
softemng, observed as mvers_on m hysteresis loop curvature, would be predicted at almost all straan
amplitudes. If instead Fd_y,xand Frier,r,are decoupled (P4 = 0) then directional softening would be
possible only at larger strain amplitudes where the decreases in Frier,x during cyclic deformation are
large.

Thus A4, A 5 and P4 may be uniquely defined by concurrently using experimental data on: 1)
the magnitude of the Fdef,,s, 2) the loss of isotropic strength during directional strain softening, and
3) the strain amplitude dependence of directional straJ:.:softening during cyclic deformation. These
constants are adjusted by trail-and-error until simulations of directional strain softening correspond
to the experimental data.
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Fdef,_ equation.

If substantial changes in A 4 and A 5 are indicated by the iteration to define A4/A 5 and P4, then
P2,P3,Ps, C2, C4 and C5 must all be recomputed using the new A4/A 5 ratio. Then the iteration to
check P4 and A41A 5 must also be repeated. If further changes in A 4 and As are warranted, then this
cycle is continued until satisfactory values of all constants are found. For high purity aluminum,
only one iteration cycle was required to obtain satisfactory constant values.

SUMMARY OF EXPERIMENTAL REQUIREMENTS TO OBTAIN CONSTANTS

All MATMOD-4V constants can be derived from mechanical test data. However, the number
of different tests and precision of measurement required makes the constant derivation process
lengthy. The apparatus and tests for determining a complete set of MATMOD-4V constants are
summarized in Table 1. Two types of test apparatus are needed, a constant stress creep machine with
provisions for rapid load and temperature changes and a low-backlash reverse torsion machine with
microprocessor control. Both machines should be equipped with high strain resolution measure-
ment devices. Digital data acquisition is desirable, particularly if strain measurement is limited by
system resolution or electrical noise.

Most of the test techniques used in determining constants are fairly standard and easily exe-
cuted. Only the back stress recovery experiment and the high strain resolution Bauschinger effect
measurements are unusual. Bauschinger effect back stress measurements and data analysis are dis-
cussed in [20]. The final constant values determined for pure aluminum are listed in Table 2.



• 1_' Experiment Constants
,.,.,

Apparatus Test Measure

Creep Constant stress creep at -Primary creep strain H5
machine various temperatures and

stresses - dss B,n

Temperature change during d Q, T4
creep

Stress drop during creep _ C2, C5

Reverse torsion Constant strain rate test to -RA, RB, Fdef as a H3, H4
machine steady state with periodic function of e

Bauschinger effect back
stress probes -RA,ss, RB,ss' Fdef, ss A2' A3' A6

Low temperature cyclic
saturation at: c H2
small strain ampitude RA, RB, Fdef P2, P5

large strain amplitude RA' RB' Fdef P3

Back stress recovery RB' Fdef C3 ' C4experiment
i , i

Large strain amplitude cyc,ic

deformation with mid-cycle RA' RB' Fdef P4, A4, A5Bauschinger effect back
stress probes

TABLE1.Summaryof EquipmentandExperimentsNeededtoDetermineMATMOD.
4V Constants

Constant Value Constant Value

Q* 33,500 cal/mole H4 1.0 x 10-7

Tt 461K H5 1.0 x 10-6

B 7 x 1010 sec-1 C2 2.0 x 10-3
n 5.0

p 2.0 C3 2.0 x 10-3
A2 7630 C4 2.0 x 10-8

A3 2.0 x 105 C5 2.0 x 10-8

A4 1.154 x 108 P2 0.25

A5 1.000 x 108 P3 0.10

H2 0.3 P4 0.10

H3 1.5 x 10-4 P5 0.50

TABLE2. MATMOD-4VConstantsforHighPurityAluminum



SUMMARY
#

' i

0 The procedures for obtaining equation constants for MATMOD-4V have been outlined and
applied to obtain constants for high purity aluminum. Predictions of deformation response and
comparisons with experimental data using these constants have been shown by Lowe and Miller
[2]. The amount of time and effort required to obtain constants will vary, depending primarily
upon the availability of the experimental data summarized in Table 2. Assuming all required
data is available, a complete set of constants can be determined by a skilled numerical analyst in
approximately one month, or less. The most difficult part of obtaining a reliable set of constants
is performing trial simulations to evaluate the impact of assumptions made early in the deriva-
tion process and to assess parameter sensitivity.
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