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PROCEDURES FOR DETERMINING MATMOD-4V
MATERIAL CONSTANTS

Terry C. Lowe
Los Alamos Naticnal Laboratory
MST-5, MS G730
Los Alamos, NM 87545

Abstract

The MATMOD-4V constitutive relations were developed from the original MATMOD model to
extend the range of nonelastic deformation behaviors represented to include transient phenomena
such as strain softening. The improvements that evolved in MATMOD-4V increased the number of
independent material constants and the difficulty in determining their values. Though the constitu-
tive relations are conceptually simple, their form and the procedures for obtaining their constants
can be complex. This paper reviews in detail the experiments, numerical procedures, and assump-
tions that have been used to determine a complete set of MATMOD-4V constants for high purity
aluminum.

INTRODUCTION

The MATMOD-4V constitutive relations were evolved by Lowe and Miller [1,2] from the
MATMOD constitutive relations developed by Miller [3]. MATMOD-4V contains numerous
enhancements beyond MATMOD, particularly for representing transient deformation behaviors.
The MATMOD-4V equations are derived in [1] and applied for high purity aluminum in [2]. The
purpose of this paper is to docur:ent the procedures by which the model constants can be derived
for a specific material. For simplicity, only the scalar version of MATMOD-4V will be treated.
Review of [1] is recommended at this point since space limitations prohibit any explanation of
MATMOD-4V and the significance of its four internal state variables Ry, Rp, Fypr, o, Fgpr, 5. Note
that the internal state variables will also be referred to as structure variables since t%ey are associ-
ated with spe ific types of microstructural features that evolve during deformation. External vari-
ables includ¢ the temperature 7, the stress &, and the nonelastic strain rate €. Subscripts are used to
indicate spec.al values of any variable.

GENERAL STRATEGY

The application of any constitutive theory requires the determination of model parameters that
are specific for the material of interest. The difficulty of obtaining material constants has long been
a key factor limiting the widespread application of sophisticated constitutive models such as MAT-
MOD-4V. Values must be determined for the twenty-one constants that exist in the scalar form of
the MATMOD-4V equations, given in figure 1. Though the equations appear to be somewhat com-
plex, the procedures for obtaining the constants can be readily understood by first grouping thei.: in
the following five categories:

1. Strain rate equation constants,

A, B,n,p, (0", T);
2. Steady state level constants for each structure variable,
Ay Ay Ay A
3. Structure evolution equation hardening coefficients,
H, H,,H,, Hg;
4. Structure variable interaction exponents, and

P2 P3, P4 Pss
5. Dynamic/thermal recovery constants for each structure variable.
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FIGURE 1. Scalar form of MATMOD-4V equations.

The procedures for determining constants within each category are often similar or rely upon a
single type of experimental data. Most of the MATMOD-4V constants can be determined directly
from mechanical test data. A few constants must be obtained indirectly by relying on assumptions.
MATMOD-4V is designed so that its constants remain valid throughout the entire range of temper-
ature and strain rate for which the model is valid. No constant lookup tables [4] or constant adjust-
ment schemes [5] are needed to modify the equations for particular thermal-mechanical
deformation conditions.

Procedures for determining each constant value will be briefly outlined following the same
sequence that they would be executed to obtain a complete set of values for any metal. The order is
important since some procedures rely upon assumed or computed values of other constants. The
number of assumptions is minimized by the strategy that is outlined in this paper for obtaining con-
stants for high purity aluminum. In cases where ad hoc assumptions must be used, alternative meth-
ods to check assumed constant values are given. Usually, these methods cannot be applied until
initial values for all constants have been determined. This restriction affects the degree of effort
needed to compute reliable constant values since assumptions made early in the computation strat-




egy may influence subsequent calculations. If there are substantial differences between initially

. assumed and subsequently determined values, the calculation procedures must be repeated with

" revised assumptions beginning at the point of the first faulty assumption. Depending upon the qual-
ity of assumptions and the desired degree of precision, several iterations may be needed to obtain
satisfactory constant values.

The presence of experimental error in mechanical test data makes the determination of material
constants imprecise, even for those constants derived directly from simple experiments. In most
cases, data analysis serves only to establish upper and lower bounds for a given constant. The
choice of a value within these bounds may in some cases involve subjective judgement. Mid-range
values are usually chosen initially. Final constant values are obtained by optimization using simple
numerical analysis techniques and trial-and-error comparisons of experimental data with model pre-

dictions.

STRAIN RATE EQUATION CONSTANTS

Constants for the nonelastic strain rate equation, A4,B,n,Q and T, are determined using steady
state creep data obtained in the power law and power breakdown regimes, as outlined below. For
steady state deformation, the MATMOD-4V nonelastic strain rate equation reduces to:

6 n
€, = Be'[sinh (A~Ei—‘)} , 0
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FIGURE 2. Temperature dependence of activation energies for creep of high purity
aluminum (data of Sherby, Lytton, and Dorn [6]).

where the effect of temperature upon deformation is represented by a reaction rate relationship 6' as
advocated by Dorn and coworkers [7]:

0 = fl:exp(%f } @

Q is an activation energy for creep, and k is the gas constant. E in equation 1 is Young’s modulus.
The subscript ss appearing on variables in equation 1 refers to the specific value of a variable during
steady state deformation. Activation energies for creep can be determined using temperature-
change tests described in detail by Sherby, Lytton, and Dorn [6]. These investigators found that Q
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for aluminum changes with temperature as shown in figure 2. Miller [3] derived a simple mathe-
. matical form to approximate this data:

o - { exp{[—z%}[ln( Y+ 1]}’ reT

exp{-kgT}, T>T,

3)

where T, is a transition temperature above which Q is independent of temperature. More recent
work by Luthy, Miller, and Sherby [8], showed a different temperature dependence of the activation
energy for aluminum at low temperatures. They obtained good agreement between activation ener-
gies for self diffusion and those for creep. Sherby, Orr, and Dorn [9] demonstrated the correspon-
dence between activation energies for creep and diffusion for a range of materials. Reasonable
descriptions of the temperature dependence of Q can be obtained from diffusion data alone. How-
ever, it is preferable to use Q as determined from mechanical testing. For aluminum, 8' is repre-
sented by equation 3 where Q and T, are estimated from the data in figure 2. The only other
temperature dependence in MATMOD-4V is that of the elastic modulus E. This data can be easily
obtained directly from modulus measurements [10] or from values reported in the literature. The
temperature dependence of the modulus of aluminum is represented in MATMOD-4V by fitting a
linear equation to the data of Fine [10].

Constants A, B and n may be obtained by a least squares error minimization technique or by the
graphical method illustrated in figure 3 where steady creep data [6, 12,13,14] is plotted as
log (€/8") versus log [sinh (Ao, /E)]. The value of A is varied to obtain the best stralght line
through the data. The slope of the line is n, and its intercept at sinh (Ac, /E) = 1.0 is B.
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FIGURE 3. Determination of A, B, and n from steady creep data for pure aluminum (data
of Sherby, Lytton, and Dorn [6], Ferreira and Stang [12], Servi and Grant [13],
and Gibeling [14]).

The same constants B, n, Q and T, that appear in equation 1 for steady state, also apply to the
general form of the MATMOD-4YV strain rate equation:
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One additional constant, p, must be determined for equation 4. Two different methods have
been used to compute p. For high purity aluminum one can compute p from room temperature yield
strength data for material that has been previously warm worked to steady state at various stresses.
When the room temperature yield strength is plotted versus the warm working stress on log-log
axes, one observes a power law relationship, as shown in figure 4 [15]. Assuming that the internal
stresses introduced by warm working are small, the reciprocal of the power exponent correlating
room temperature yield strength with the warm working stress may be taken as p [15].

It is also possible to estimate p from the constant structure creep exponent N. MATMOD-4V
predicts that for constant structure (R, Rp, Fy,, , and F,, , all constant):

N = pn. &)

Unfortunately, reported values of N vary over a wide range, making this method of estimating p
unreliable. For aluminum, N values between 6.8 and 10 have been reported [16].
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FIGURE 4, Calculation of p from room temperature yield strength data for high purity
aluminum warm-worked to various steady state stresses (after Miller and

Sherby [15]).

STEADY STATE LEVEL CONSTANTS FOR STRUCTURE VARIABLES A,

The magnitude of each structure variable during steady state deformation is constant and is
determined by the A; constants through the relations:

C
RA. 55 A—Z (6)
C
RB, 5§ X; @)
14
2(p-1) C

Fdef. pss = ;{' (8)
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Experimental measurements of R, . and Ry  [17] may be used to determine A, and A,
directly. However, Fge, o, 5s and F def, A, ss Cannot be measured separately by mechanical tests. The
relative magnitudes of F,, , . and Fy  ; must be assumed initially. Based upon the experimen-
tal work of Kassner [18], strengthening from heterogeneous dislocation substructures (attributed to
F,r 2 ) constitutes a small portion of the isotropic strength, about 10% in 304 stainless steel. Sim-
ilar experiments have not yet been performed for aluminum, but the same proportionality will be
assumed for aluminum:

2(p-1)
CyN » 2(p-1)
F A A p
( "e“’”) = |2 = (5H = 0.10. an
Fdef. (VK] E AS
A,
The total isotropic hardening,
Fap = Fa o+ Faepn (12)
can be measured and used to compute A, as defined by:
p
2p-n _ C
s =3 (13)
def, 55 A6
Combining equations 8,9, 11, 12, and 13, one obtains:
P
2(p-1)2(p-1
A, p
As

and,

P
2(p-1)7-1_ 2(1-p)

A p
As = Ag|1- 1+(Zi‘ (15)
5

2(p-1)

The experimentally determined value of A4 and an assumed ratio (A,/A5) 7  may then
be used to compute A4 and As. Directional strain softening data [9] may later be used to check the
assumed ratio of Fy, 3/F,, ,. This procedure is described in a latter section since it depends upon
the interaction exponents p;.

HARDENING COEFFICIENTS H,

Values for the hardening coefficients can be calculated directly from experimental data by
using mechanical test techniques that distinguish the structure variables. The relative rates of evo-
lution of each variable are in order of decreasing rate: Ry, Fa, p, Rp, Fger, 2. So in a tensile test, the
initial slope of the stress nonelastic strain curve corresponds to changes in R, while the approach to
steady state at large strains is governed by Faer,». However, distinctions between small strain
(microplastic) behavior used to compute H, in the R, equation and large strain behavior used to
compute H, in the F,,, equation may be material dependent. These distinctions follow from the
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microstructural significance of each structure variable and must be carefully considered when
. applied to obtain constants for different metals. The methods used to measure R, Ry and F,, for
the purpose of determining constants for aluminum are discussed in detail in [17].

H, can be estimated from the rapid microplastic stress-strain transient during the Bauschinger
effect. The slope of the stress-nonelastic strain curve immediately following a strain rate reversal
can be related to changes in R, if it is assumed that the other structure variables are approximately
constant. However, this slope changes continuously with R, since the dynamic recovery rate of R,
depends upon R, (as seen in the R, equation in figure 1). Thus, it is necessary to measure the slope
at the point where R, and therefore the dynamic recovery rate of R, are both equal to zero. The
slope of the stress-nonelastic strain curve at this point is proportional to H,:

do dR
= 7(:& = H,(1+C,)E. (16)
R, =0 Ry=0

C, is unknown, but is typically less than 0.1 and can be neglected. The point where R, equals zero
can be determined from stress-strain hysteresis loops for cyclically saturated deformation. At any
strain amplitude, R, changes through a range approximately equal to twice its saturated peak value
R, sar within a nonelastic strain €, after each strain rate reversal (shown schematically in figure 5).
By symmetry, R, must equal zero at a stress ©,, midway between the initial reverse yield stress o,
and the second reverse yield stress O,, at the large offset strain Erz. Thus, equation 16 can be used to
compute H, (neglecting C,) in terms of easily measured quantities:

__1dc
T Edel|

H, 1)

A
€r2 -
Or2
1
HoE | /O
L

FIGURE 5. Schematic illustrating the calculation of #, from cyclic stress.strain data.

0]

@y

H, may be computed by graphical analysis as shown in fig 2 - Note that H, will depend upon the
definitions of O, and O, . For aluminum o, and 0, have . = defined by offsct strains of 2x107°
and 2x1073, respectively. ‘ ’

H, and H, are both computed from direct measurements of R, and F,,, at small to intermedi-
ate strains (€, <€<10€,) in an initially annealed matenial. The initial increases in Ry and Fay, o
during monotonic deformation depend exclusively upon the hardening coefficients. Ry and F,,,
may be measured directly during monotonic straining by Bauschinger effect back stress probes
[17]. At small to intermediate strains, Fa = Fue, p since Fuey  is generally larger than F,,, 5 and
also increases more rapidly. Thus, H, and H, may be determined from the slope of linear least
squares fits to Ry _, and F,,._ data, respectively:




Hy(1+Cy) = 51;5 (18)
H,(1+C,) = dggel. (19)
Since C, and C, are small (less than 0.1):
H;= %, (20)
H, = dggef , @1

H; cannot be computed directly, and depends upon the values of other constants. The rate of
increase of F,,, , depends upon the product HsC's during initial straining of an annealed material.
Since Fag,a cannot be readily measured experimentally by mechanical tests, Hs must be computed
1nd1rectly An upper bound for the product H;Cj is provided by the constraint that F,,. , initially
increase more slowly than F,,, |

H{Cs<H,. (22)
A temporary value of H is computed using this upper bound after Cj is determined. After all other
constants have been given initial values, Hy can be estimated from the amount of primary strain to
reach steady state during constant stress creep. Since F gy, is the most slowly changing state vari-
able, it will control the amount of strain required to reach steady state. H is adjusted by trial-and-
error simulations to match the primary creep strain data. Even though data for only one temperature

and stress were used here to obtain Hs, predictions of primary creep by Lowe and Miller [2] show
good agreement with data over a wide range of temperature and stress.

INTERACTION EXPONENTS p,

Low temperature cyclic saturation data is used to determine p,, p,, p4, and ps. Functional
relationships between pairs of structure variables at saturation are fit to experimentally measured
values of Ry sars Rp sar  and F g, sar where the subscript SAT refers to the peak value of the ref-
erenced variable during cyclically saturated deformation.

Small strain amplitude data is used to determine p; first. Since Cj is small, at cyclic saturation
F 5 and Ry are related by the expression:

Ps
P

AsFily 2 ARyl 23

i
sinh'l{(—l%;) '} sinh’{ Iliel' }

In[ (1+KRp sa7) (1 -KRp sa7) ]

AVE T T X ln[(uKRB,S,,T)}
(1 —KRB,SAT)

where,

Rl

and



1y
€]

n
oyl
A,4| sinh (————Be,)

- p ]
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The expression for |Ry| ,yr, obtained by analytically integrating and then averaging the Rp
equation over a complete strain cycle, includes the constant p,, which is still unknown. However, at
small cyclic strain amplitudes, |Rp| ,, is nearly unaffected by the value of p, and an intermediate
value of 0.5 is assigned initially. Experimentally determined values of F,; 5 47 and Rp g,7 can be
substituted into equation 23 to solve for ps. Since F,, 5 54 cannot be measured directly, it is nec-
essary (o assume that £, sar and F.r o 54 have nearly the same relative magnitude as F.r, 5
and defsprss SO that g def 1, saT Y be computed as:

2(p-1)-!

nl A4
Funsar = Fagpsar |1 = 1+ (X; . (24)

After computing ps, equations 23 and 24 may be employed in computing p, using values of R s47
and F,, sor measured at large cyclic strain amplitudes (e.g. +- 0.10). Trial-and-error values of p,
are used to match the equation to experimental data.

Small strain amplitude cyclic saturation data is used to compute p,. A relation between R, 547
and F o sar may be derived by analytically integrating the R, equation:

r

2(-D \
Fidasar(1+Cy) H,K'e,
Ry sar = 7d l-exp| —-— (25)

2(p-1)
def, p, SAT

where,

1 -1
NG

K = A sinh ™! (5
Ag’ Bo'

Given experimentally determined values of €, Fy,. ; s4r andR, s47, only C, and p, are
unknown in equation 25. However, C, is typically very small and can be neglected. Assuming that

Fdef, p, SAT Fdef, P ss

Fdef,l,SAT Fdef, A, ss’
Fgef, o, sar mMay be computed from experimental data as:

Fdef SAT
Fdef,p,SAT = 2([7—1)_ (26)

Ay, p
/Ts)

1+ (

and substituted into equation 25 with R, ¢, and € to compute p,.
A relation similar to equations 23 and 25 exists between F def,p, SAT and F def, », sat from which
p4 can, in principle, be determined. Unfortunately, no means has been developed by which to



experimentally quantity #der,p and £ 4 o simultancously. However, an indirect methad, using

. directional strain softening data, may be used aftee all other constants have been given initial values,
Since p, will have a value between 0 (no interaction between £, qand F, o0 and 1 (total con-
pling of F 5 and Fyp o), anintermediate value of 0.5 can be assumed nmmlly

RECOVERY RATE CONSTANTS ¢,

Data from two types of reccovery experiments is needed to compute C,, Cy, Cy and Cy. C,
and C, can be computed directly from a back stress recovery experiment [20]. In this experiment, a
sample is first cycled to saturation at an clevated temperature to establish a repeatable initial defor-
mation state, Cycling is stopped at zero stress, and the material is allowed to stat:cally recover for a
time . At the end of the recovery period the sample is reloaded in the forward sitaining direction
and a forward yield stress ¢, is measured. The sample is cycled again to saturation, after which
another recovery period of équal duration is initiated. At the end of the recovery period the sample
is loaded in the reverse direction as though an interrupted Bauschinger test were being performed. A
reverse yield stress o, is measured. The stresses O, and O, are used as in a Bauschinger effect test
to compute the back stress and the isotropic strength. The back stress recovery test procedure, sche-
matically illustrated in figure 6, is repeated for several recovery periods. Because of the likelihood
of errors in back stresses measured in this way, a large strain offset, as used to measure R, is used
to define ©, and ©,. Thus, only recovery of R, may be estimated by this technique. In fact, it is
desirable that R, completely recover during the recovery period, so that any remaining directional
effect may be associated with R. For this reason, data for longer recovery times is preferred for
determining the recovery kinctics of Ry, Minimal values of R, at longer times also ensure that
recovery is nearly static.

A€
= HOLD 0& HOLD
T * ’
£
t y !
oy e
2 ~ 2| O O

Q-»
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Os Os 2
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R
R R

(a) (b)

FIGURE 6. Schematic illustration of the method for estimating the recovery of the long
range internal stress variable Ry during zero-stress annealing periods. The
reverse yield stress O, after a period of recovery Is measured as shown In (a)
and the forward flow stress o Is shown in (b).

C, may now be determined by numerical analysis. First, a least squares polynomial (or other
suitable function) is fit to the R — ¢ recovery data to define R,, = f, (Ry) . This function may then



be compared with the MATMOD-4V R, recovery function which also expresses R as a function
cof Ry:

Rl), recovery = "'C3H3B [e' sinh (AgRB) ] " 27
C, is the only unknown constant in equation 27 and may be calculated for a given value of R as:
R
c, f1 (Rp) %)

= H,B[0'sinh (A;R,y) |

The same procedure is used to compute C,. Since F,,, , = F,,c experimental measurements of
recovery of isotropic strength are interpreted in terms of recovery of F,, ;. A function is fit to the
data to describe the rate of recovery of Fy,p.

Fdef,p = f (Fdef,p) .

This function is compared with the MATMOD-4V expression for static recovery of F,;, , and C, is
computed as:

F
C, = fillwy 29)

p n
H,B [e' sinh (AJi}f’; b ﬂ

for any F .. The effects of scatter in the experimental data or possible disagreement between
f1(Fay,0) and the MATMOD-4V recovery function may be minimized by computing C, for sev-
eral values of F,,, ; and calculating an average.

The remaining recovery constants, C, and C, are determined by comparing data from stress
drop experiments with MATMOD-4V simulations. A stress drop experiment involves creeping a
sample at constant temperature and constant stress and then instantaneously reducing the stress to
some fraction of the initial stress (21, 22]. There is ar immediate decrease in the creep rate which
depends upon the magnitude of the stress drop. For large stress drops the creep rate may become
negative before forward straining at the reduced stress is resumed. The creep rate transients that
occur between the instant of the stress drop and the time that a steady state creep condition is
reached at the reduced stress are determined by the changes in the structure variables. The relative
contributions of strain-activated and thermal recovery greatly influence the time before forward
creep is resumed after a large stress drop and the time to reach a new steady state at the reduced
stress, These two times are indicated as ¢, and t,, respectively, in figure 7.

In MATMOD-4V simulations of stress drops, the time to resumption of forward creep, ¢,, is
almost exclusively dependent upon C,. Simulations using an assumed value of Cy and various val-
ues of C, can be compared with experimental data to select an appropriate C, value. In practice, it
is difficult to measure a forward strain rate less than 10~%sec™, so that ¢, must be redefined as the
time to reach an experimentally measurable strain rate. Times to resume forward creep in stress
drop experiments using aluminum have been reported by Gibeling [14].

The time t, to reach a new steady-state creep rate at a reduced stress is influenced by
C, Cy, C,,and Cs. But at this point Cs is the only variable which remains undefined. Thus Cs can
be selected to match experimental measurements of ¢, with MATMOD-4V simulations of the same
experiments. Though all four C; constants influence t,, it is most appropriate to use Cs to fit the
MATMOD-4V predictions to the data since Foy,» is the most slowly changing structure variable.
Furthermore, Ferreira and Stang [12] have found a direct correlation between changes in subgrain
size (corresponding to F, ;) and the approach to steady state following a stress drop.
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FIGURE 7. Transients in the strain rate following a large stress recauction during creep. The
times required to resume forward creep (¢,) and to reach steady state at the
new stress (¢,) are indicated (data of Ferreira and Stang [12]).

ITERATION TO OBTAIN FINAL CONSTANT VALUES

After initial values have been assigned to all constants, simulations of a wide range of experi-
mental behaviors may be performed to test the choice of constant values and guide refinements to
obtain final values. The initially assumed values of A,, A5 and p, can be refined using strain soften-
ing data. Directional strain softening data [19] offers a unique means of determining the relative
strength contributions of Fer, o and Fae, .

In simulations of directional strain softening, F,, , and Fy, , exhibit different sorts of behav-
ior when uncoupled; F,,, , always increases toward a saturated value while Fg, ) may decrease
following a strain rate reversal due to an interaction with Ry, as seen in figure 8. This decrease is the
essence of directional strain softening. Thus, decreases in isotropic strength during directional strain
softening may be directly attributed to the reduction of F 4,5 in the absence of any coupling with
F 4, o One could estimate the relative magnitudes of F,, , and F, , from the magnitude of direc-
tional strain softening, thereby allowing a direct means to compute A, and A,. However, if F,p is
closely coupled to F 4y, (large p,) then both Fyy,p and Fagr, will decrease during directional
strain softening. Additional information is then needed to simultaneously distinguish F,  from
F 4,5 and thereby determine A,, Ag and p,.

The strain amplitude dependence of directional softening during cyclic deformation allows the
reduction in isotiopic strength to be attributed to either a close coupling of Fy,, , with F; , ora
large relative magnitude of F . ,. If F,,. , and F . , are totally coupled (p, = 1), then directional
softening, observed as inversion in hysteresis loop curvature, would be predicted at almost all strain
amplitudes. If instead Foe, » and Fyy, o are decoupled (p, = 0) then directional softening would be
possible only at larger strain amplitudes where the decreases in Fq during cyclic deformation are
large.

Thus A,, A5 and p, may be uniquely defined by concurrently using experimental data on: 1)
the magnitude of the F,; (, 2) the loss of isotropic strength during directional strain softening, and
3) the strain amplitude d{apendence of directional strai.: softening during cyclic deformation. These
constants are adjusted by trail-and-error until simulations of directional strain softening correspond
to the experimental data.
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FIGURE 8. MATMOD-4V simulation of a strain direction reversal showing the reduction
of F 4,¢ 7, which results from the interaction between Rp and F 5 inthe
Fdef, A equation.

If substantial changes in A, and A are indicated by the iteration to define A 4/As and p,, then
Py P3, Ps» C, C4 and Cs must all be recomputed using the new A,/A; ratio. Then the iteration to
check p, and A,/A5 must also be repeated. If further changes in A, and A, are warranted, then this
cycle is continued until satisfactory values of all constants are found. For high purity aluminum,
only one iteration cycle was required to obtain satisfactory constant values.

SUMMARY OF EXPERIMENTAL REQUIREMENTS TO OBTAIN CONSTANTS

All MATMOD-4V constants can be derived from mechanical test data. However, the number
of different tests and precision of measurement required makes the constant derivation process
lengthy. The apparatus and tests for determining a complete set of MATMOD-4V constants are
summarized in Table 1. Two types of test apparatus are needed, a constant stress creep machine with
provisions for rapid load and temperature changes and a low-backlash reverse torsion machine with
microprocessor control. Both machines should be equipped with high strain resolution measure-
ment devices. Digital data acquisition is desirable, particularly if strain measurement is limited by
system resolution or electrical noise.

Most of the test techniques used in determining constants are fairly standard and easily exe-
cuted. Only the back stress recovery experiment and the high strain resolution Bauschinger effect
measurements are unusual. Bauschinger effect back stress measurements and data analysis are dis-
cussed in [20]. The final constant values determined for pure aluminum are listed in Table 2.




Experiment Constants
Apparatus Test Measure
Creep Constant stress creep at -Primary creep strain Hg
machine various temperatures and .

stresses - Egs B,n
Temperature change during | &
creep € Q Ty
Stress drop during creep £ Cy, Cs

Reverse torsion | Constant strain rate test to Ry, Ry, Fgeras a Hj, Hy

machine steady state with periodic .
: function of €

Bauschinger effect back R R F A As A
stress probes A ss? TNB,ss? 1 defiss 2y 43, g
Low temperature cyclic
saturation at: c H,
small strain ampitude R, Rp, Fger D2, Ps
large strain amplitude R4, Rp, Fyer D3
Back stress recovery Ry, F
experiment B: * def C3 C4
Large strain amplitude cyc.ic
deformation with mid-cycle | R, R.. F
Bauschinger effect back A> B T def P4> Ags As
stress probes

TABLE 1. Summary of Equipment and Experiments Needed to Determine MATMOD-

4V Constants
Constant Value Constant Value
Q* 33,500 cal/mole Hy 1.0x 107
Tt oI Hs 1.0x 107
s 7310 sec C, 2.0x 107
p 2.0 Cs 20x 1073
A; 7630 Cq 20x10°8
Az 20x 10° Cs 2.0x 1078
A4 1.154 x 10% P2 0.25
As 1.000 x 108 P3 0.10
H, 0.3 P4 0.10
Hj 1.5x10™ Ps 0.50

TABLE 2. MATMOD-4V Constants for High Purity Aluminum



SUMMARY

The procedures for obtaining equation constants for MATMOD-4V have been outlined and
applied to obtain constants for high purity aluminum. Predictions of deformation resnonse and
comparisons with experimental data using these constants have been shown by Lowe and Miller
[2]. The amount of time and effort required to obtain constants will vary, depending primarily
upon the availability of the experimental data summarized in Table 2. Assuming all required
data is available, a complete set of constants can be determined by a skilled numerical analyst in
approximately one month, or less. The most difficult pait of obtaining a reliable set of constants
is performing trial simulations to evaluate the impact of assumptions made early in the deriva-
tion process and to assess parameter sensitivity.
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