ORNL/TM-12774

ELIPGRID-PC: A PC PROGRAM FOR CALCULATING
HOT SPOT PROBABILITIES

J.R. Davidson

Date Published: October 1994

Prepared by
Oak Ridge National Laboratory
Health Sciences Research Division
Environmental Technology Section
Grand Junction, Colorado
managed by
Martin Marietta Energy Systems, Inc.
for the
United States Department of Energy

under contract DE-AC05-840R21400 M AS-I- ER

IR T IS N LI S N

CONTENTS

FIGURES e v
TABLES e vii
ACKNOWLEDGEMENTS e ix
ABSTRACT xi
1. INTRODUCTION ... e e e 1
2. PREVIOUS WORK ittt e e e e 1
3. PROGRAM ASSUMPTIONS s 3
4, PROGRAM DESCRIPTIONS i 6

4,1 ELIPGRID-1 e e e 6

42 ELIPGRID-2 e 6

43 ELIPGRID-PC i it e e 7

INSTALLATIONEXAMPLE it 10
6. SUMMARY ... e e e 11
REFERENCES it et e e e 12

APPENDIX A DEMONSTRATION OF NONEQUIVALENCE OF ELIPGRID
FORTRAN CODE AND SINGER AND WICKMAN'S EQUATION

APPENDIXB TESTING PROCEDURE

APPENDIXC TRIANGULAR GRID DISCONTINUITY

APPENDIXD ELIPGRID-2 SOURCE CODE

APPENDIXE ELIPGRID-PC SOURCE CODE

APPENDIXF EGGRAPH SOURCE CODE

iii

FIGURES

1. Hypothetical subsurface pocket of contamination
2. Grid configuration for finding hotspots
3. Probability of hit vs total sample cost fora squaregrid

C.1 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 15° angle

..

C.2 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,
andO°angle

C.3 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,
and 30° angle

..

C.4 Probability of missing hot spot vs L/G ratio, triangular grid, 0.90 shape,

and 15° angle
C.5 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,

and 15° angle e
C.6 Probability of missing hot spot vs L/G ratio, triangular grid, 1.00 shape,

and 15° angle
C.7 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 15° angle e
C.8 Probability of missing hot spot vs L/G ratio, triangular grid, 0.90 shape,

...

C.9 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,
and 15° angle
C. 10 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,
and 15° angle

C.11 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,

...

and 15° angle

...

B.1
B.2
B.3
B4
B.5S
B.6
B.7

TABLES

Corrected scquential order of Singer'stables B-1
Input file listing afier styleused in ELIPGRID B-3
ELIPGRID-1 output filelisting ivun.. B-6
ELIPGRID-2 output filelisting B-8
ELIPGRID-PC output file listing ovoen... B-11

ELIPGRID-PC SIF-style input file listing B-13
ELIPGRID-PC SIF-style output file listing

ACKNOWLEDGEMENTS

The author would like to recognize two individuals outside of Oak Ridge National
Laboratory (ORNL) and three individuals of ORNL Grand Junction for significant help in
the development of ELIPGRID-PC:

Donald A. Singer for his helpful advice relating to ELIPGRID, a program he
developed more than twenty years ago in a much tougher computer environment than is
present today.

Richard O. Gilbert for his encouragement to resolve the problems that developed in
adapting ELIPGRID to the personal computer.

Gloria H. Stevens, Project Manager for the ORNL Independent Verification
Contract on the Grand Junction Project Office Remedial Action Project, for strong
support of the development of ELIPGRID-PC.

Phil V. Egidi for his help with graphics in general and for tremendous help with the
development of a poster session relating to ELIPGRID-PC

John E. Wilson for his excellent help with debugging code. His help was vital in the

tedious task of tracking down subtle coding errors.

ABSTRACT

ELIPGRID-PC, a new personal computer program, has been developed to provide
easy access to Singer's 1972 ELIPGRID algorithm for hot-spot detection probabilities.
Three features of the program are the ability to determine: 1) the grid size required for
specified conditions, 2) the smallest hot spot that can be sampled with a given probability,
and 3) the approximate grid size resulting from specified conditions and sampling cost.
ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-
sheets or graphics software. The program has been successfully tested using Singer's
published ELIPGRID results. An apparent error in the original ELIPGRID code has been

uncovered and an appropriate modification incorporated into the new program.

1. INTRODUCTION

The standard approach for calculating the probability of detecting small, highly
contaminated areas called hot spots is based on a punch-card-era computer program
developed over 20 years ago. This program, ELIPGRID (Singer 1972), is the foundation
for three programs developed by Oak Ridge National Laboratory (ORNL) for the IBM®
personal computer (PC). ELIPGRID-1, a PC version of ELIPGRID; ELIPGRID-2, a
rodified PC version, and ELIPGRID-PC, a user-friendly PC version containing several
new options not found in ELIPGRID.

ELIPGRID-1 is a direct translation of ELIPGRID to the PC and retains a coding
error found in ELIPGRID's rectangular grid routine. ELIPGRID-2 is similar to
ELIPGRID-1 but corrects the rectangular grid eztor. ELIPGRID-PC, though based on
ELIPGRID's algorithms, is a new program that simplifies input file selection, data entry,
and file output.

ELIPGRID-1 and ELIPGRID-2 can be viewed as transitional programs used to
work out technical problems involved in adapting ELIPGRID to the PC. They are
documented here to provide a record of this transition. ELIPGRID-PC, however, is
intended as a full replacement for the ELIPGRID program.

2. PREVIOUS WORK

In 1969, Singer and Wickman published a mathematical procedure for determining
the probability of locating elliptical geological deposits (Singer and Wickman 1969).
Using this procedure, five computer programs were written to calculate values published
as probability tables for various target shapes, grid types, and grid sizes. These programs
were run on an IBM® System 370/67 computer.

2

In 1972, Singer published ELIPGRID, a FORTRAN IV program based on Singer
and Wickman's mathematical procedure (Singer 1972). This program calculated the pro-
bability of success in locating elliptical targets with square, rectangular, and hexagonal
(triangular) grids. The data input and code were designed for the then-standard punch-
card computer.

Zirschky and Gilbert developed a nomographic procedure based on ELIPGRID to
assist with the detection of highly contaminated areas at chemical- or nuclear-waste dispo-
sal sites (Zirschky and Gilbert 1984). Gilbert used these nomographs as the basis for the
chapter "Locating Hot Spots" in his widely referenced book on environmental statistical
methods (Gilbert 1987). These nomographs were subsequently used by the U.S. Environ-
mental Protection Agency (EPA) to develop tables for calculating the probability of
missing various hot-spot shapes using triangular and square sampling grids (U.S.EPA
1989).

Gilbert's nomographs and the EPA tables have some inherent limitations not in the
original ELIPGRID program. Three limitations are:

(1) Probabilities for only one rectangular sampling grid are given in Gilbert's nomo-
graphs; no data for rectangular grids are given in the EPA tables.

(2) Specific orientation angles for suspected hot spots are not allowed. For example, if
the probability of detecting a given target with a given grid for a specific orientation
angle is desired, the tables and nomographs do not provide this information.

(3) Data extracted from a graph are less likely to be accurate than output from a com-
puter program given the same input information.

ELIPGRID-PC removes these limitations by: 1) allowing a large number of rectan-
gular grids, 2) allowing orientation angles for suspected hot spots to be specified, and
3) calculating the results with a computer algorithm.

3. PROGRAM ASSUMPTIONS

The following assumptions underlie both the original ELIPGRID and ELIPGRID-
PC:

1. The target (hot spot) is assumed to be circular or elliptical. See Fig. 1 for an
illustration of an elliptical subsurface pocket of contamination.

2. Samples or measurements are taken on a square, rectangular, or triangular grid.
Figure 2 illustrates the various grid configurations.

3. The distance between grid points is much larger than the size of the sample being
measured or cored at grid points; that is, a very small portion of the area being
studied can actually be measured.

4, The definition of a hot spot is clear and unambiguous.

S. There are no measurement misclassification errors; that is, no errors are made in

deciding when a hot spot has been detected.

Projection to Ground Surface /\/f’
y\\‘ B Y ¥

R AN L DT —
O F NP ?
~RRk e Y Wi
- - '

& -\ S o

AN

Subsurface Contamination

Fig. 1. Hypothetical subsurface pocket of contamination.

Square

/

7 7
.

PRPR
s, 7
.

N

Rectangular
«— Long Axis of Grid —»

o
|

PRI
S s) ,{
S S S
el e

/
ya

Samples are collected at grid nodes

Triangular

/\

/60

\/

AVAVA

Fig. 2. Grid configuration for finding hot spots.

4. PROGRAM DESCRIPTIONS

4.1 ELIPGRID-1

ELIPGRID-1 is a PC program, writen in Lahey FORTRAN, that closely conforms to
the original ELTPGRID FORTRAN code structure. It was written to demonstrate that
ELIPGRID code could work on a PC. The format for data input is the same as the origi-
nal ELIPGRID punch-card format. The program does not provide any user-interface
features other than a simple help screen and various messages relating to data input file
€errors.

ELIPGRID-1 contains the original algorithm used by the RECT subroutine in the pub-
lished version of ELIPGRID. However, the output from ELIPGRID-1 does not match the
published output for a number of rectangular grid cases (Singer 1972). These discrepan-
cies revealed the need to modify the RECT subroutine that resulted in the ELIPGRID-2
program. See Appendix A for a demonstration of the nonequivalence of the original
ELIPGRID FORTRAN code and Singer and Wickman's mathematical development.

Hardware requirements for the program include an IBM® PC (or compatible) with an
Intel® 385™ i486™, or Pentium™ central processing unit, with a minimum of 512 kilo-
bytes (KB) free random access memory (RAM) recommended. Additionally, a math co-

processor is required and a fixed hard disk drive is recommended.

4.2 ELIPGRID-2

ELIPGRID-2 is essentially the same program as ELIPGRID-1, with the key differ-
ence being the modified RECT subroutine. With this modification in place, ELIPGRID-2
is able to reproduce the results of the published data (Singer 1972). See Appendix B for

comparisons of ELIPGRID-1, ELIPGRID-2, and ELIPGRID-PC output against Singer's
published data. The source code for ELIPGRID-2 is found in Appendix D.
The hardware requirements for ELIPGRID-2 are the same as those for ELIPGRID-1.

4.3 ELIPGRID-PC

ELIPGRID-PC is a new program incorporating the corrected version of the ELIP-
GRID algorithm found in ELIPGRID-2. Although the algorithm was recoded into CA-
Clipper® for ELIPGRID-PC, no changes were made to the underlying mathematical algo-
rithm (Appendix C documents an algorithmic substitution required for a small portion of
ELIPGRID's triangular grid computations). The source code for ELIPGRID-PC is found
in Appendix E. Source code for a simple graphics program to display and print the output
from the "Write Cost-Based Graph Data" option is found in Appendix F.

ELIPGRID-PC provides some output features not directly available in ELIPGRID:

* ELIPGRID-PC calculates a grid size, given the desired probability of detecting a
specified hot spot.

e ELIPGRID-PC calculates an approximate grid size, given desired cost and hot-
spot specifications. Note that this is an approximate grid size since the underlying
EPA formula for determining the number of samples for a given area is itself
approximate (U.S.EPA 1989).

e ELIPGRID-PC calculates the smallest hot spot that can be detected with a given
probability and grid size.

« ELIPGRID-PC provides the capability for graphing with sp-=adsheets or graphics
software the probability of detection versus cost. Figure 3 is an example of this

for a square grid.

Designed to be user-friendly, ELIPGRID-PC includes the following features:

A simplified input format (SIF) file option. SIF files provide an easier-to-use
input file structure than the ELTPGRID format input files.

e Screen input and output in either meters or feet.

» Conversion from acres to m? or to ft2 using the F10 key. The program also calcu-

lates the length of the hot spot semi-major axis from the area of the hot spot.

e Change of the basic unit of length from meters to feet as a command-line option
using the letter F. Command-line option M will force a monochrome screen, and
command-line option H provides usage information.

e Input and output files located on any drive and subdirectory.

e Temporary exit to DOS. DOS commands or other programs may then be

executed,

4

PROBABILITY OF HIT,

PROBABILITY OF HIT vs COST
100 P B B

Moo a0 2w 20 20 280 300 30 340 30 30
COST, $K

Input File: C:\CLIPPER2\EDITOR\EGPC\Graph.Dat
Print Date: 08/26/94
Print Time: 1:17:54 pm

Grid type chosen........c.cse...5 Square
Shape of the elliptical hot spot: 0.80
Length of semi-major aXis,......: 3.15 m
Angle of orientation to grid....: 0.0°
Total area to sample............ : 8093.0 m?
Individual sample coSt.cceeeess $: 700.00

Fig. 3. Probability of hit vs total sample cost for a square grid.

10
S. INSTALLATION EXAMPLE

This example is for the ELIPGRID-PC program being copied to a C: fixed hard

drive. ELIPGRID-2 would be installed in a similar manner.

(1) Make z new subdirectory on the hard drive, for example:
C;>MD ELIPGRID

(2) Change to the new subdirectory:
C:>CD ELIPGRID

(3) Copy all files from the source floppy disk in A: or B: drive:
C:\ELIPGRID>COPY A:*.* or COPYB:**

(4) Run the ELIPGRID program. EGPC is the executable file name used in these
examples:

Using defaults of a color screen and meters for basic unit of length,
C:\ELIPGRID>EGPC

With the basic unit set to feet,
C\ELIPGRID>EGPCF

To display a command-line parameter help screen,
C:\ELIPGRID>EGPCH .

11

6. SUMMARY

Singer and Wickman's (1969) ELIPGRID algorithm for calculating hot-spot
sampling probabilities has been successfully made available to the PC environment.
ELIPGRID-PC provides the algorithm in CA-Clipper®-compatible format. The program
additionally calculates the grid size required for specified conditions, the smallest hot spot
that can be sampled with a given probability, and the approximate grid size resulting from
specified conditions and sampling cost. ELIPGRID-PC also provides probability of detec-
tion versus cost data for graphing with spreadsheets or graphics sottware.

ELIPGRID-PC has been successfully tested using Singer's published ELIPGRID
results and includes corrections to the rectangular and triangular grid routines of the
original ELIPGRID.

12

REFERENCES

Gilbert, R. O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van
Nostrand Reinhold, New York.

Singer, D. A. 1972. ELIPGRID, a FORTRAN IV program for calculating the probability
of success in locating elliptical targets with square, rectangular, and hexagonal grids.

Ceocom Programs, 4:1-16.

Singer, D. A. 1994, Letter to J. R. Davidson, Oak Ridge National Laboratory, Grand
Junction, Colorado, from U.S. Geological Survey, Menlo Park, California,
March 11, 1994,

Singer, D. A, and F. E. Wickman. 1969. Probability Tables for Locating Elliptical
Targets with Square, Rectangular and Hexagonal Point Nets. Pennsylvania State
University, University Park, Pennsylvania.

U S.EPA. 1989. Methods for Evaluating the Attainment of Cleanup Standards.
Volume 1. Soils and Solid Media. EPA/230/02-85/042. U. S. Environmental
Protection Agency.

Zirschky, J., and R. O. Gilbert. 1984. Detecting hot spots at hazardous-waste sites.
Chemical Engineering, 91:97-100.

APPENDIX A

DEMONSTRATION OF NONEQUIVALENCE OF ELIPGRID FORTRAN CODE
AND SINGER AND WICKMAN'S EQUATION

DEMONSTRATION OF NONEQUIVALENCE OF ELIPGRID FORTRAN CODE
AND SINGER AND WICKMAN'S EQUATION

For this demonstration, assume that the ELIPGRID FORTRAN code equation is
equivalent to the mathematical equation it is based on. By deriving a logical contradiction,
it is demonstrated that the ELIPGRID code is not equivalent to the mathematical equa-
tion.

The RECT subroutine in ELIPGRID transforms a rectangular grid and elliptical
target to a square grid and transformed elliptical target using an affine transformation
described in detail by Singer and Wickman (1969). The angle of the transformed elliptical
target to the transformed grid is found from Singer and Wickman's Eq. (35),

2q(1 - &) tan «)

mzy- H
1 - k% -@* -t tan’ea

where

vy = the angle of the transformed target to the transformed grid, iftan 2 y 2 0; if
tan 2 y <0 the angle is90° - |y|;

a = the angle of the original target to the original grid,

q = the shape of the rectangular grid (long side divided by short side);

k= the shape of the original elliptical target (semi-minor axis of the target divided

by semi-major axis).

The relevant ELIPGRID FORTRAN code is found on lines RECT 175 and
RECT 185 (Singer 1972):

REVANG = (ATAN (2.0 * O * (1.0 - SOK) * TAN (ALPHA) /
({40 - SOK) * TAN (ALPHA)**2 * TIS - 1.0)) / 2.0) * 57.295779,

where

REVANG = v inEq. (1);

AQ = (?and Q is the shape of the rectangular grid (long side divided by the
short side), ¢ in Eq. (1),

SQK = Shape’® and Shape is the semi-minor axis of the target divided by the
semi-major axis, k in Eq. (1);

718 = AQ * SOK or F¢? in Eq. (1),

ALPHA = the angle of orientation of the original target to the original grid, « in
Eq. (1);

57.295779 = the conversion factor for radians to degrees.

Replace ELIPGRID's symbols with the equivalent symbols used in Eq. (1), remove the
radians-to-degrees conversion factor, and solve for tan 2 y, so that the ELIPGRID code in

mathematical form becomes

2¢(1 - k) tan «

tan 2y =
(- kD) tam?a + k%% -1

()

A-3
A comparison of Eq. (2) with Eq. (1) reveals two differences. First, the numerator of
the ELIPGRID equation has the term (1 - &%), while Eq. (1) has the term (1 - k). Second,
the denominators have their terms in different orders with different signs. It is possible
that Eq. (2) is an equivalent form of Eq. (1). Assume they are equivalent and derive a
logical contradiction.
First, to simplify both equations, make the following substitutions:

A=(1 -k):
B=1.-Fg,
C=(F-Ptan’ o .

Equation (1) becomes

Equation (2) becomes

2q(1 - k%) tan & .

tan 2y =
C -8B

However, (1 - £) = (1 +k)(1 - k) = (1 + k)A, so Eq. (2) can be written as

2¢g(1 + B4 tan «
C-B '

tan 2y =

A4

Now assume both equations are equivalent, as they should be if the ELIPGRID code
matches Eq. (1):

2thma_2q(l+k)Aun¢
3-C C -B '

The term 294 tan « is common to both fractions. Divide both sides by this term if it is not
equal to zero. Forg > 0, # > 0, and A > 0, this term will be greater than zero. Note

that 4 = 1 - &, Therefore, if ¥ < 1, then4 > 0. Dividing both sides by (2¢4 tan a)
results in

1 _(+®
B-¢c C-B

Cross-multiply to yield

C-B=(1 +bB-0 .

Perform the indicated multiplication on the right:

C-B=~B+Bk-C-C .

Add (B - C) to both sides to give

0 =2B + Bk -2C - Ck .

Factor the right hand side to yield

0=B2 +k -C2+¥b .

Ifk > O, as it must be for any actual elliptical target, then 2 + k > 0. Therefore, divide
both sides by (2 + k) to give

0=8-~-C.

Swapping both sides by the symmetry axiom of algebra yields

B-C=0.

Replacing B and C by their original values gives

1 -k -(g*-kHtm*a =0 .

However, the left hand side above is the denominator in Eq. (1) and cannot be 0 for the
large number of legitimate cases where g > 0, « > 0,and 0 < k < 1. Therefore, the

premise of equivalence is false.

An example case would be g =2, # =45°, and £=0.7. This is the case of a rectan-
gular grid with shape 2, target orientation angle of 45°, and target elliptical shape of 0.7.
Many other such cases could be found.

Dr. Donald A. Singer, author of the ELIPGRID program, agrees with the above

conclusion. His repiies to the following questions appear below (Singer 1994).

1) It appears that the term (1 - &) in the numerator of Eq. (1) [Eq. (35), Singer
and Wickman 1969] should be (1 - #%). This term is given as (1.0 - SQK) in the
code on line RECT 175 (Singer 1972). SQK is Shape?, and Shape is the
ELIPGRID code variable for ¥. Question 1: could the blank space after k in
the Singer and Wickman paper imply a superscript 2 was left out by accident?

2) The denominator of Eq. (1) differs from the code in the order in which the
terms are listed and in their signs. Question 2: could the code denominator be

in error?

Question 1. "I agree with you that the blank space after & in Equation 35 in
Singer and Wickman (1969) is clearly meant for a missing
superscript 2. This is consistent with all other equations in Singer
and Wickman and with published computer code in Singer (1972)."

Question 2. "Yes, the computer code for Equation 35 that you have used in
HOTSPOT and ELIPGRID? is consistent with the output in Singer
(1972) and (based on spot checks) with the tables in Singer and
Wickman."

APPENDIX B

TESTING PROCEDURE

B-1

TESTING PROCEDURE

B.1 Singer's Tables

The goal of the ELIPGRID-2 and ELIPGRID-PC programs is to duplicate for a PC
the ELIPGRID program. Once the PC program was written, Singer's Table 1, input data,
and Table 2, output data (Singer 1972), were used as the basis for testing the program.

A comparison of the 100 input cases in Table 1 with the 100 output cases in Table 2
reveals some obvious problems in the sequential arrangement of the data in the tables.
Apparently, the original computer printouts were accidentally disordered in the paste-up
process. Fortunately, a careful comparison of Table 1 to Table 2 provides a key to the

correct sequential order.

Table B.1 Corrected sequential order of Singer’s tabies

Table 1 Table 2 "
Rows 1-33 1-33 "
Rows 34-51 65-82 “
Rows 52-82 34-64
Rows 83-100 83-100

Dr. Donald A. Singer, author of the paper containing the tables in question, agrees
with this conclusion. "Yes, the entries of the output table in Singer (1972) are in a differ-
ent order than in the input table. Fortunately, the output table provides the input values so
that the match can be made correctly as you have done" (Singer 1994).

All 100 of Singer’s cases were tested using the corrected sequential order listed in
Table B.1.

B-2

B.2 ELIPGRID-1 RESULTS

Table B.2 is a listing of the input file, TEST100.IN, used to duplicate Singer's
Table 1. Table B.3 is a listing of the output file, TEST100.EG1, produced from running
ELIPGRID-1 on TEST100.IN.

All ELIPGRID-1 square and triangular grid output values matched Singers's Table 2
output values. A match is defined as two output values that differ by no more than
+0.0001. This corresponds to a difference in the probability of not hitting the target
of +0.01%.

The ELIPGRID-1 output from 10 rectangular grid cases, out of 30 total, did not
match the published output in Singer's Table 2. The inability of the program to match
rectangular grid cases led to a review of the RECT subroutine in the published ELIPGRID
code. See Appendix A for a demonstration of the nonequivalence of the published ELIP-
GRID code and Singer and Wickman's original mathematical development. Since the
original ELIPGRID code could not reproduce the published results, a modified RECT
subroutine was developed. ELIPGRID-2 is essentially ELIPGRID-1 with the exception of
the modified RECT subroutine.

B.3 ELIPGRID-2 RESULTS

File TEST100.IN was used for input data to ELIPGRID-2. Table B.4 is a listing of
the output file, TEST100.EG2, produced from running ELIPGRID-2 on TEST100.IN.
All square, triangular, and rectangular grid output values from ELIPGRID-2 matched
Singers's Table 2 output values.

B-3

Table B.2. Input file listing after style used in ELIPGRID

File: C:\CLIPPER2\EDITOR\HOTSPOT\VALID100\TEST100.IN Print Date: 08/10/94

Test100.1n input test file for ELIPGRDY, 2, M, and HOTSPOT, 02/03/94.

1000.0 0.38 22,0 800.0 1 o#261
1250.0 0.30 6.0 800.0 1 OM87
1250.0 0.50 38.0 800.0 1 O0#190
300.0 0.25 24.0 800.0 1 O#147
625.0 0.50 35.0 800.0 1 0#10
875.0 0.3 7.0 800.0 1 oM9
625.0 0.20 18.0 800.0 1 oO#26
125.0 0.50 24.0 800.0 1 0#30
1625.0 0.15 11.0 800.0 1 OM49
1250.0 0.50 0.0 800.0 1 O#104
1000.0 0.38 22.0 1000.0 1 o#261
1250.0 0.30 6.0 1000.0 1 Ow187
1250.0 0.50 38.0 1000.0 1 O0#190
300.0 0.25 24.0 1000.0 1 OM47
625.0 0.50 35.0 1000.0 1 0#10
875.0 0.31 7.0 1000.0 1 OM9
625.0 0.20 18.0 1000.0 1 O#26
125.0 0.50 24.0 1000.0 1 O#30
1625.0 0.15 11.0 1000.0 1 O#49
1250.0 0.50 0.0 1000.0 1 O#04
1000.0 0.38 22.0 1500.0 1 o0#2561
1250.0 0.30 6.0 1500.0 1 om87
1250.0 0.50 38.0 1500.0 1 O#190
300.0 0.25 24.0 1500.0 1 O#147
625.0 0.50 35.0 1500.0 1 0#0
875.0 0.31 7.0 1500.0 1 OM9
625.0 0.20 18.0 1500.0 1 O#26
125.0 0.50 24.0 1500.0 1 0#30
1625.0 0.15 11.0 1500.0 1 O#49
1250.0 0.50 0.0 1500.0 1 OA104
1000.0 0.38 22.0 859.66 2 Om261
1250.0 0.30 6.0 859.66 2 O0me7
1250.0 0.50 22.0 859.66 2 O#190
625.0 0.50 35.0 565.69 3 0#10
2.0
875.0 0.31 7.0 565.69 3 O0m9
2.0
625.0 0.20 18.0 565.69 3 0#26
2.0
125.0 0.50 24.0 565.69 3 0#30
2.0
1625.0 0.15 11.0 565.69 3 049
2.0
1250.0 0.50 0.0 565.69 3 0#104
2.0
1000.0 0.38 22.0 707.11 3 o#261
2.0
1250.0 0.30 6.0 707.11 3 ow87
2.0
1250.0 0.50 38.0 707.11 3 0#190
2.0
300.0 0.25 66.0 707.11 3 O#147
2.0
625.0 0.50 35.0 707.11 3 o#10
2.0
875.0 0.31 7.0 707.11 3 0#19
2.0
625.0 0.20 18.0 707.11 3 0#26
2.0
125.0 0.50 24.0 707.11 3 0#30
2.0
1625.0 0.15 11.0 707.11 3 O#49
2.0

Page: 1

B-4

Table B.2. (cont.)

File: C:\CLIPPER2\EDITOR\HOTSPOT\VALID100O\TEST100.IN

1250.0
2.0
1000.0
2.0
1250.0
2.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
1000.0
1250.0
1250.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
1000.0
1250.0
1250.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
1000.0
2.0

-
n
v
o

125

W
o
.

-
W n
o v
NiiNoONONONON
RN

o
N

o
N

=]
dr
. . .
0000000000000 OO0ODOOO0OOOOO

-
N

- -
[V] o
v (V]
ooNOMNVINVIDVIN
)

1000.

1250.

1250.0
300.0
625.0
875.0

625.0

0.50
0.38

o
.

w
o

20uVoo®ovooOo-—s0Oow

Q0000000000000 OO0OOOOOOOOO
e o 8 8 3 s 8 8 8 € ®u e ® ® v . « e v w 4
SWNLWUUVNVWWWR UM NDUUVANUNUWUWN a2V WNN

o
i
o

VoOO-20VIOODOWVIO

o
w
o

0.30
0.50
0.25
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50

0.31
0.20

0.0
22.0
6.0

[\']
Vi~

N AN -
« ¢ e o 8 & @

[\

n
CONO2a_DONVOEONONO 2D~V

Y X
e .

N

.
bOOOQbOOOOOOOOOOOOQOOOOQOOOO

N
»

n
NO=2fBNUVON

~N —_N -
[
- P
o

38.0

707.11
1060.66
1060.66

859.66
859.66
859.66
859.66
859.66
859.66
859.66
1074.57
1074 .57
1074 .57
1074.57
1074.57
1074.57
1074 .57
1074.57
1074.57
1074 .57
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
565.69

565.69
565.69
565.69
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1000.0
1000.0
1000.0
1000.0
1000.0

1000.0
1000.0

3

W w

(F] w w w w (V] w w w w w LGNNIV ONNONVNNDDONDVMONNNDNND

P N e N

0#104
0#261
0#187

o#167
0#10
o#19
0#26
0#30
049
0#104
0#261
o#187
0#190
o#147
o#10
o9
on26
0430
0#49
0#104
0#261
0#187
0#190
o147
0#¥10
ox19
o#26
0#30
0#49
0¥104
0#261

o#187
0#190
ona7
0190
o147
o#10

o#19

Print Date: 03/10/94

Page: 2

B-5

Table B.2. (cont.)

File: C:\CLIPPER2\EDITOR\HOTSPOT\VALID100\TEST100.IN Print Date: 08/10/94

125.0 0.50 24.0 1000.0 1 1430
1625.0 0.15 11.0 1000.0 1 1449
1250.0 0.50 0.0 1000.0 1 #4104

9.9 9.9 9.9 9.9 9 9 EOF

Page: 3

B-6

Table B. 3. ELIPGRID-1 output file listing

ELJPGRDY Output File

Data from: Test100.In input test file for ELIPGRDY, 2, H, and HOTSPOT, 02/03/94.

TARGEY GRID TYPE SEMINAJOR AXIS GRIDSPACE SHAPE ANGLE PRGB(1) PROB(»1) PROB(0)
IN RELATIVE UNITS IN ORIG UNITS

#261 SDUARE 1,25 800.00 0.38 22.0 9.0000 9.0000 0.0000 ewes
#187 SQUARE 1.56 800.00 0.30 6.0 0.1241 0.8448 0.0%11

#190 SQUARE 1,56 800.00 0.50 38.0 9.0000 9.0000 0.0000 ewee
#147 SOUARE 0.38 800.00 0.25 24.0 0.1104 0.0000 0.8896

#10 SQUARE 0.78 800.00 0.50 35.0 0.8600 0,0494 0.0906

19 SQUARE 1,09 800.00 0.31 7.0 0.2283 0.4658 0.3059

#26 SQUARE 0.78 800.00 0.20 18.0 0.3835 0.0000 0.4165

30 SQUARE 0.16 800.00 0.50 24.0 0.0383 0.0000 0.9817

#49 SQUARE 2.03 800.00 0.15 1.0 0.1775 0.7755 0.0470

#104 SQUARE 1,56 800.00 0.50 0.1 9.0000 9.0000 0.0000 ewee
#261 SQUARE 1.00 1000.00 0.38 22.0 0.6825 0.2557 0.0619

#187 SQUARE 1.25 1000.00 0.30 6.0 0.1672 0.5990 0.2%37

%190 SQUARE 1.25 1000.00 0.50 38.0 9.0000 9.0000 0.0000 ewer
#147 SQUARE 0.30 100D. 00 0.25 24.0 0.0707 0.0000 0,923

£10 SQUARE 0.63 1000.00 0.50 35.0 0.6136 0.0000 0.3864

9 SQUARE 0.88 1000.00 0.3 7.0 0.3362 0.2047 0.4591

#26 SQUARE 0.63 1000.00 a.20 18.0 0.2454 0.0000 0.7546

#30 SGUARE 0.13 1000.00 0.50 24.0 0.0245 0.0000 0.9755

#49 SQUARE 1.63 1000.00 0.15 n.0 0.2576 0.4925 0.2499

#1046 SQUARE 1.25 1000.00 0.50 0.1 9.0000 9.0000 0.0000 ewee
#261 SOUARE 0.67 1500.00 0.38 22.0 0.5306 0.0000 0.469¢

#187 SOUARE 0.83 1500.00 0.30 6.0 0.3241 0.1652 0.5107

#190 SQUARE 0.83 1500.00 0.50 38.0 0.8560 0,174 0.0266

#147 SOUARE 0.20 1500.00 0.28 2.0 0.0314 0.0000 0.9485

#10 SQUARE 0.42 1500.00 0.50 35.0 0.2727 0.0000 0.7273

#19 SQUARE 0.58 1500.00 0.31 7.0 0.3119 0.0097 0.6783

#26 SOUARE D.42 1500.00 0.20 18.0 0.109 0,0000 0.8909

#30 SQUARE 0.08 1500.00 0.50 24.0 0.0109 0.0000 0.9891

.9 SQUARE 1.08 1500.00 0.15 11.0 0.3856 0.0837 0.5307

#104 SOUARE 0.83 1500.00 0.50 0.1 0.4696 0.3106 0.2198

#261 HEXAGONAL 1.16 859.66 0.38 22.0 2.0000 9.0000 0.0000 wwes
187 HEXAGONAL 1.45 859.66 0.30 6.0 9.0000 9.0000 0.0000 wwee
#£190 HEXAGONAL 1.45 859.66 0.50 22.0 9.0000 9.0000 0.0000 #wee
#10 RECTANGULAR X AXIS OF GRID= 2.0 Y AXlS 1.10 565.69 0.50 35.0 0.8367 0.0610 0.1023

#15 RECTANGULAR X AX1S OF GRID= 2.0 Y AXIS 1.55 565.69 0.3 7.0 0.6256 0.2697 0.1047

#2¢ RECTANGULAR X AX]S OF GRID= 2.0 Y AXIS 1.4 565.69 0.20 18.0 0.3835 0.0000 0.6165

#32 RECTANGULAR X AXIS OF GRID= 2.9 Y AXIS c.22 565.69 0.50 2.0 0,0383 0.0000 0.9617

=5 RECTANGULAR X XIS OF GRIDz 2,0 Y AX!S 2.87 545.69 0.15 1.0 9.0000 9.0000 0.0000 wwer
210~ RECTANGULAR X AXIS OF GRID= 2.0 Y AxIS z.2t 565.69 0.56 0.0 9.0000 9.0000 0.0000 wwes
#Z&1 RECTANGULAR X AXIS OF GRID= 2.0 Y axIs Tt 707. 11 0,38 22.0 0.76%98 0.2120 0.0182

#:87 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS [ard 767.31 €.39 6.0 0.5132 0.4797 0.0071

#£190 RECTANGULAR X AXIS OF GRID= 2.0 Y AX}S 1,77 707. 11 0.50 38.0 ©.0900 9.0000 0.0000 wes=s
#1647 RECTANGULAR X AX1S OF GRIO= 2,0 Y AXIS 7.2 707.11 £.25 86.0 0.0707 0.0000 0.9293

#10 RECTANGULAR X AX1S OF GRIDa 2.0 Y AxIS 0.88 707.11 0.50 35.0 0.6136 0.0000 0.3864

#19 RECTANGULAR X AXIS OF GRID= 2,0 Y AX)S 1.24 707. 11 0.31 7.0 0.65095 0.0681 0.3224

#26 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.88 707.11 0.20 18.0 0.2454 0.0000 0.7546

#30 RECTANGULAR X AXIS OF GRID= 2.0 Y AX1S 0.18 707.11 0.50 26.0 0.0245 0.0000 0.97%5

RECTANGULAR X AX1S OF GRID= 2,0 Y AX{S 2.30 707.11 0.15 11.0 0.6090 0.3177 0.0733

#104 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.77 707.11 0.50 0.0 9.0000 9.0000 0.0000 wess
%261 RECTANGULAR X AXIS OF GRID= 2.0 Y aXiS 0.9 1060.66 0.38 22.0 0.5306 0.0000 0.4694

#187 RECTANGULAR X AX1S OF GRID= 2.0 Y AXIS 1.18 1060. 66 0.30 6.0 0.5723 0.0411 0.3866

2t.7 HEXAGONAL 0.35 859.66 0.25 6.0 0.1104 0.0000 0.88%6

=2 HEXAGONAL 0.73 859.66 0.50 25.0 0.8187 0.0700 0.1133

B-7

Table B.3. (cont.)

219 HEXAGORAL 1.02 859.68 0.3
#26 HEXAGONAL 859.66 0.20
#30 HEXAGONAL 859.66 0.50
e HEXAGONAL 859.66 0.15
#1064 HEXAGONAL 859.66 0.50
#261 HEXAGONAL 1074.57 0.38
W187 HEXAGONAL 1074.57 0.30
#190 HEXAGONAL 1074.57 0.50
#147 HEXAGONAL 1074.57 0.25
#10 HEXAGONAL 1074.57 0.50
(414 HEXAGONAL 1074.57 0.3t
#2b HEXAGONAL 1074.57 0.20
¥30 HEXAGONAL 1074.57 0.50
#49 HEXAGONAL 1074.57 0.15
#104 HEXAGONAL 1074.57 0.50
#261 HEXAGONWAL 1611.86 0.38
#187 HEXAGONAL 1611.85 0.30
#190 HEXAGONAL 1611.84 0.50
#147 HEXAGONAL 1611.86 0.25

0.3162 0.4244 0.25%4
0.3835 0.0000 0.6165
0.,0383 0.0000 0.9617
0.1836 0.8141 0.0023
9.0000 9.0000 0.0000 oven
0.7795 0.2072 0.0134
0.2162 0.6030 0.1807
9.0000 9.0000 0.0000 veer
0.0707 0.0000 0.9203
0.6136 0.0000 0.3864
0.4030 G.1713 0.4257
0.2454 0.0000 0.7546
0.0245 0.0000 8.9755
0.3561 0.4441 0.1998
9.0000 9.0000 0.0000 b
0.5306 0.0000 0.46%94
0.3834 0.1355 0.4810
0.7738 0.1585 0.0677
0.0314 0.0000 0.5686

~ —_ A -

~n

n
M ~NWVMOCOO>EONO—=& 0 JWVOCNOGNO =~ WVOENOENO -~~~
00000 D000 - 00D0DO00O0DO0D0DO0—"000000000-—-0000

- ~N

- N

n

#10 HEXAGONAL 1611.86 0.50 25, Q.2727 0.0000 0.7273
#19 HEXAGONAL 1611.8¢6 0.31 . 0.3297 0.0009 0.6695
#26 HEXAGONAL 1611.88 0.20 1 0.1091 0.0000 0.8909
#30 HEXAGONAL 1611.86 0.50 26, 0.0109 0.0000 0.9891
#49 HEXAGONAL 1611.86 0.15 11, 0.4353 0.0589 0.5058
#1064 HEXAGONAL 1611.86 0.50 . 0.5669 0.2620 0.1712
#261 RECTANGULAR X AXIS OF GRID= 2.0 Y AXlS 565.69 0.38 22, 9.0000 9.0000 0.0000 anee
#187 RECTANGULAR X AXIS OF GRID= 2.0 Y AXiS 565.69 0.30 . 9.0000 9.0000 0.6000 eene
#190 RECTANGULAR X AXIS OF GRID= 2.0 Y AX[S 565.69 0.50 38. 9.0000 9.0000 0.0000 eene
#1647 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 565.69 0.25 -8 0.1104 0.0000 0.8896
#190 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1060.66 0.50 38. 0.7882 0.1513 0.0605
#1647 RECTANGULAR X AXIS OF GRID= 2.0 Y AXiS 1060.66 0.25 66. 0.0314 0.0000 0.9686
#10 RECTANGULAR X AXIS OF GRID= 2.0 Y AX1S 1060.66 0.50 3s. 0.2727 0.0000 0.7273
#19 RECTANGULAR X AXI5S OF GRID= 2.0 Y AXIS 1060.66 0.31 . 0.3314 0.0000 0.6686
#26 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1060.66 0.20 18. 0.1091 0.0000 0.8%09
#30 RECTANGULAR X AX!S OF GRID= 2.0 Y AXlS 1060.66 0.50 24.0 0.0109 0.0000 0.9891
#.9 RECTANGULAR X AXIS OF GRID= 2.0 Y AX]S 1060.66 0.15 11.0 0.5356 0.0087 0.4557
#1024 RECTANGULAR X AX1S OF GRID= 2.0 Y AXIS 1060.66 0.50 0.0 0.7892 0.1508 0.0600

#261 SQUARE
#187 SQUARE
£190 SQUARE
#147 SQUARE
#10 SQUARE
£19 SQUARE
26 SQUARE
#30 SOUARE
A SOQUARE
#1046 SQUARE

1000.00 0.3e RANDOM 0.5789 0.3075 0.1137
1000.00 0.30 RANDOM 3.3562 3.4839 0.0730 weee
1000.00 0.50 RANDOM 9.0000 9.000D 0.0000 hbbdd
1000.00 0.25 RANDOM 0.0707 0.0000 0.9293
1000.00 0.50 RANDOM 0.5719 0.0208 0.4072
1000.00 0.31% RANDOM 0.5597 0.093D 0.3474
1000.00 e.20 RANDOM 0.2393 0.0031 0.7577
1000.00 C.5C RANDOM 0.0245 0.0000 0.9755
1000.00 e RANDOM 0.4427 0.3738 0.1835
1000.00 C.E2 RANDOM 9.0000 9.0000 0.0000 wewe

END OF RUN (OR ERROR IN SHAPE)

*#** INDICATES THAT THE PROBABILITY OF MISSING 1S 2ERD FOR AT LEAST ONE
ORIENTATION AND PROB1 AND PROB>1 SHOULD NOT BE USED FOR THIS TARGET

B-8

Table B.4. ELIPGRID-2 output file listing

ELIPGRDZ Output File

Data from: Test100.!n input test file for ELIPGRDY, 2, M, and HOTSPOT, 02/03/94.

TARGET GRID TYPE SEMIMAJOR AX1S GRIDSPACE SHAPE ANGLE PROB(1) PROB(>1) PROB(O)
IN RELATIVE UNITS 1IN ORIG UNITS

#1261 SQUARE 1.25 800.00 0.38 22.0 9.0000 9.0000 0.0000 weve
#187 SQUARE 1.56 800.00 0.30 6.0 0.1241 0.8448 0.0311

#190 SQUARE 1.%6 800.00 0.50 38.0 9.0000 9.0000 0.0000 wene
#147 SQUARE 0.38 800.00 0.25 24.0 0. 1104 0.0000 0.8896

#10 SQUARE 0.78 800.00 0.50 35.0 0.8600 0.0494 0.0906

#19 SQUARE 1.09 800.00 0.3 7.0 0.2283 0.4658 0.3059

#26 SQUARE 0.78 800.00 0.20 18.0 0.3835 0.0000 0.6165

#30 SQUARE 0.16 800.00 0.50 2.0 0.0383 0.0000 0.9617

e SQUARE 2.03 800.00 0.15 1.0 0.1775 0.7755 0.0470

#1064 SQUARE 1.56 800.00 0.50 0.1 9.0000 9.0000 0.0000 b
#2461 SOUARE 1.00 1000.00 0.38 22.0 0.6825 0.2557 0.0619

#187 SQUARE 1.25 1000.00 0.30 6.0 0.1672 0.59%0 0.2337

#190 SQUARE 1.25 1000.00 0.50 38.0 9.0000 9.0000 0.0000 e
#147 SQUARE 0.30 1000.00 0.25 24.0 0.0707 0.0000 0.9293

#10 SQUARE 0.63 1000.00 0.50 35.0 0.6136 0.0000 0.3864

"9 SQUARE 0.88 1000.00 0.2 7.0 0.3362 0.2047 0.4591

#26 SQUARE 0.63 1000.00 0.20 18.0 0.2454 0.0000 0.7546

#30 SQUARE 0.13 1000.00 0.50 24.0 0.0245 0.0000 0.9755

49 SQUARE 1.63 1000.00 0.15 11.0 0.2576 0.4925 0.2499

#1064 SQUARE 1.25 1000.00 0.50 0.1 9.0000 9.0000 0.0000 bk
#261 SOUARE 0.67 1500.00 0.38 22.0 0.5306 0.0000 0.4694

#187 SQUARE Q.83 1500.00 .30 6.0 0.3241 0.1652 0.5107

#190 SQUARE 0.83 1500.00 0.50 38.0 0.8560 0.1174 0.0266

#147 SQUARE 0.20 1500.00 0.25 24.0 0.0314 0.0000 D.9686

#10 SQUARE 0.42 1500.00 0.50 35.0 0.2727 0.0000 0.7273

"9 SQUARE 0.58 1500.00 0.31 7.0 0.3119 0.0097 0.6783

#26 SQUARE 0.42 1500.00 0.20 18.0 0.1091 0.0000 0.8909

30 SQUARE a.08 1500.00 0.50 2.0 0.0109 0.0600 0.9891

2.9 SQUARE 1.08 1500.00 0.15 1.0 0.385¢ 0.0837 0.5307

#1064 SQUARE 0.83 1500.00 0.50 0.1 0.4694 0.3106 0.2198

#261 HEXAGONAL 1.16 859.66 0.38 22.0 9.0000 9.0000 0.0000 hadabded
#187 NEXAGONAL 1.45 859.66 0.30 6.0 9.0000 9.0000 0.0000 vese
#190 HEXAGONAL 1,45 859.66 0.50 22.0 9.0000 9.0000 0.0000 weee
#10 RECTANGULAR X AXIS OF GRID= 2.0 ¥ AXIS t.10 565.69 0.50 35.0 0.7376 0.1105 0.1518
®19 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.55 565.69 0.31 7.0 0.7058 0.2296 0.0646
26 RECTANGULAR X AXIS DF GRID= 2.0 Y AXIS 1.10 565.69 0.29 18.0 0.3835 0.0000 0.6145
#30 RECTANGULAR X AXIS OF GRID= 2.0 Y AX}S 0.22 565.59 0.59 24.0 0.0383 0.0000 0.9617
B9 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 2.e7 565.69 [11.0 9.0000 9.0000 0.0000 it
#1064 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS .28 565.69 0.50 c.0 9.0000 9.0000 0.0000 swee
#2517 RECTANGULAR X AKIS OF GRID= 2.0 Y AX]S Tt 707.11 0,22 22.0 0.8018 0.1960 0.0022
%187 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.77 707.11 0.33 €.0 $.0000 9.0000 0.0000 hdedd
#190 RECTANGULAR X AXIS DF GRID= 2.0 Y AX]S 1,77 767.11 .50 38.0 9.0000 9.0000 0.0000 haddd
#147 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.42 707.%1 €.25 66.0 0.0707 0.0000 0,.5293
#10 RECTANGULAR X AX1S OF GR1D= 2.0 Y AXIS 0.88 707.11 0.50 35.0 0.6100 0.0018 0.3882
®19 RECTANGULAR X AXIS OF GRIDs 2.0 Y AX|S 1.2 707.1 0.31 7.0 0.6565 0.0446 0.2989
¥z RECTANGULAR X AKIS OF GRID=z 2.0 Y AXIS 0.88 707.11 0.20 18.0 0.2454 0.0000 0.7546
#30 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.18 707.11 0.50 24.0 0.0245 0.0000 0.9755
w9 RECTANGULAR X AX1S OF GRID= 2.0 Y AXIS 2.30 707.11 0.15 1.0 0.7376 0.2534 0.00%90
8104 RECTANGULAR X AXIS OF GRIDx 2.0 Y AXIS 1.77 707.11 0.50 0.0 9.0000 $.0000 0.0000 b
#8261 RECTANGULAR X AXIS OF GRIDx 2.0 Y AX]S 0.94 1060.66 0.38 22.0 0.5306 0.0000 0.469%
#187 RECTANGULAR X AXIS OF GRID® 2.0 Y AXIS 1.18 1060.66 0.30 6.0 0.6013 0.0286 0.3721
#147 HEXAGONAL 0.35 859.66 6.25 6.0 0.1104 0.0000 0.8896

210 HEXAGONAL 0.7 859.66 0.50 25.0 0.8187 0.0700 0.1113

B-9

Table B.4. (cont.)

#19 HEXAGONAL 1.02 859.66 0.3 7.0 0.3162 0,4244 0.2594
#26 HEXAGOKAL 0.73 859.66 0.20 18.0 0.3835 0.0000 0.6165
#30 HEXAGONAL 0.15 859.66 0.50 26.0 0.0383 0.0000 0.9617
#9 HEXAGONAL 1.89 859.66 0.4 11.0 0.183¢ 0.8141 0.0023
#1046 HEXAGONAL 1.45 BSD.66 0.50 0.1 $.0000 9.0000 0.0000 wwwe
%261 HEXAGONAL 0.93 1076.57 0.38 22,0 0.7795 0.2072 0.0134
#187 HEXAGONAL 1.16 1074.57 0.30 6.0 0.2162 0.6030 0.1807
#1090 HEXAGONAL 1.16 1074.57 0.50 22.0 9.0000 9.0000 00,0000 e
#1467 HEXAGONAL 0.28 1074.57 0.25 6.0 0.0707 0.0000 0.9293
#£10 HEXAGONAL 0.58 1074.57 0.50 25.0 0.6136 0.0000 0.3864
9 HEXAGONAL 0.81 1074.57 0.3% 7.0 0.4030 0.1713 0,4257
#26 HEXAGONAL 0.58 1074.57 0.20 18.0 0.2454 0.0000 0.7546
¥30 HEXAGONAL 0.12 1074.57 0.50 24.0 0.0245 0.0000 0.9755
#.9 HEXAGORAL 1.51 1074.57 0.15 11.0 0.3561 0.4441 0,1998
#104 HEXAGOWAL 1.1% 1074.57 0.50 0.1 $.0000 9.0000 0.0000 wwee
#2617 HEXAGONAL 0.62 1611.86 0.38 22.0 0.5306 0.0000 0.4694
#187 HEXAGONAL 0.78 1611.86 0.30 6.0 0.3834 0.1355 0.4810
#190 HEXAGONAL 0.78 1611.86 0.50 22.0 0.7738 0.1585 0.0677
#147 HEXAGONAL 0.1% 1611.86 0.25 6.0 0.0314 0.0000 0.9685
#10 HEXAGONAL 0.3% 1611.86 0.50 25.0 0.2727 0.0000 0.7273
#19 HEXAGONAL 0.54 1591.86 0.1 7.0 0.3297 0.000% 0.6695
#26 HEXAGONAL 0.39 1611.86 0.20 18,0 0.1091 0.0000 0.8709
30 HEXAGONAL 0.08 1611.86 0.50 24.0 0.0109 0.0000 0.9891
#49 HEXAGONAL 1.01 1611.86 0.5 1.0 0.4353 0.0589 0.5058
#104 HEXAGONAL 0.78 1611.86 0.50 0.1 0.5569 0.2620 0.1712
#261 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.77 565.69 0.38 22.0 9.0000 9.0000 0.0000 w*e*
#187 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 2.2% 565 .69 0.30 6.0 9.0000 9.0000 0,0000 o
#190 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 2.24 565.69 0.50 38.0 9.0000 9.0000 0,0000 wewe
#147 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.53 565,49 0.25 66.0 0.1104 08,0000 0.8896
#190 RECTANGULAR X AX]S OF GRID= 2.0 Y AXIS 1.18 1060,66 0.50 38.0 0.7154 0.1877 0.0969
#147 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.28 1060.66 0.25 6.0 0.03%% 0,0000 0.9686
#10 RECTANGULAR X AXIS OF GRIDE 2.0 Y AXIS 0.59 1060.66 0.50 35.0 0.2727 0.0000 0.7273
L34 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.82 1060.66 0.31 7.0 0.331% 0.0000 0.6686
#26 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 0.5¢ 1060.66 0.20 18.0 0.109 0.0000 0.,8909
#30 RECTANGULAR X AXIS OF GRID= 2.0 Y AX{S g.12 1060.66 0.50 26.0 0.0109 0.0000 0.9891
849 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.53 1060.66 0.15 1.0 0.5531 0.0000 0.4469
#1046 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 1.18 1060.66 0.50 0.0 0.7892 0.1508 0,0600
#261 SOUARE 1.00 1000.00 0.38 RANDOM 0.5789 0,3075 0.1137
#187 SQUARE 1.2% 1000.00 0.32 RANDOM 3.3562 3.4839 0.0730 e
#2190 SQUARE 1.25 1000,00 0.50 RANDOM %.0000 9.0000 0.0000 kel
#147 SQUARE 0.30 1000,00 0.25 RANDOM 0.0707 0.0000 0.9293
210 SGQUARE 0.63 1000.00 0.50 RANDOM 0.5719 0.0208 0.4072
219 SQUARE 0.88 1090.00 .3 RANDOM 0.5597 0.0930 0.3474
#2% SQUARE 0.63 1090.00 €.29 RANDOM 0.2393 0.0031 0.7577
#30 SOUARE 0.13 020,02 .50 RANDOM 0.0245 0.00cC0 0.9755
549 SOUARE 1.43 160,00 0. RANDOM 0.4627 0.3738 0.1835
#104 SOUARE 1.28 1222,30 c.32 RANDOM $.0000 9.0000 0.0000 -

END OF RUN (OR ERROR IN SHAPE)

***® INDICATES THAT THE PROBABILITY OF MISSING 1S ZERO FOR LT LEAST ONE
ORITENTATION AND PROB1 AND PROB>1 SHOULD NOT BE USED FOR THIS TARGET

B.4 ELIPGRID-PC RESULTS

File TEST100.IN was used for input data to ELIPGRID-PC. Table B.5 is a listing of
the output file, TEST100.HSE, produced from running ELIPGRID-PC on TEST100.IN,
All square, triangular, and rectangular grid output values from ELIPGRID-PC matched
Singers's Table 2 output values.

ELIPGRID-PC can also take input data from an SIF file. Table B.6 is a listing of the
input file, TEST100.SIF, used to test this option. Table B.7 is a listing of the output file,
TEST100.HSS, produced from running ELIPGRID-PC on TEST100.SIF. All square, tri-
angular, and rectangular grid output values produced from the SIF file matched Singers's
Table 2 output values.

B.S CONCLUSION

ELIPGRID-1, essentially a duplicate of the published version of ELIPGRID, cannot
reproduce Singer's published output for rectangular grids. ELIPGRID-2 and ELIPGRID-
PC, utilizing modified RECT subroutines, can, however, reproduce Singer's published
output. Therefore, the published output must have been produced by a slightly different
program than the code published in the appendix of Singer's document (1972). Since
ELIPGRID-2 and ELIPGRID-PC have successfully matched the published output in 100
out of 100 cases, they can be considered equivalent to the ELIPGRID code that produced
the output published in Singer's Table 2 (Singer 1972).

B-11

Table B.S. ELIPGRID-PC output file listing

File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSE

Output from ORNL/GJ ELIPGRID-PC Program Version: 08/11/94

File Name.: C:\CLIPPERZ2\EDITOR\EGPC\VALID100\TEST100.HSE

Created on: 08/11/94
Input file:

Target Grid Type
#261 Square

#187 Square

#190 Square

#147 Square

#10 Square

#19 Square

#26 Square

#30 Square

#49 Square

#104 Square

#261 Square

#187 Square

#190 Square

#147 Square

#10 Square

#19 Square

#26 Square

#30 Square

#49 Square

#104 Square

#261 Square

#187 Square

#190 Square

#147 Square

#10 Square

#19 Square

#26 Square

#30 Square

#49 Square

#104 Square

#261 Triangular
#187 Triangular
#190 Triangular
#10 Rectangular,
#19 Rectangular,
#26 Rectangular,
#30 Rectangular,
#49 Rectangular,
#104 Rectangular,
#261 Rectangular,
#187 Rectangular,
#190 Rectangular,
#1467 Rectangular,
#10 Rectangular,
#19 Rectangular,
#26 Rectangular,
#30 Rectangular,
#49 Rectangular,
#104 Rectangular,
#261 Rectangular,
#187 Rectangular,
#47 Triangular
#10 Triangular
#19 Triangular
#H26 Triangular
#30 Triangular

Semimajor Axis
in Relative Units

2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/71
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1

1.2500
1.5€25
1.5625
0.3750
0.7813
1.0938
0.7813
0.1563
2.0313
1.5625
1.0000
1.2500
1.2500
0.3000
0.6250
0.8750
0.6250
0.1250
1.6250
1.2500
0.6667
0.8333
0.8333
0.2000
0.4167
0.5833
0.4167
0.0833
1.0833
0.8333
1.1633
1.4541
1.4541
1.1048
1.5468
1.1048
0.2210
2.8726
2.2097
1.4142
1.7678
1.7678
0.4243
0.8839
1.2374
0.8839
0.1768
2.2981
1.7678
0.9428
1.1785
0.3490
0.7270
1.0178
0.7270
0.1454

TEST100.14 using ELIPGRID format.
Title line: Test100.In input test file for ELIPGRD1, 2, M, and HOTSPOT, 02/03/94.

Gridspace
in Orig uUnits
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1500.00
1500.00
1500.00
1500.00
1500.00
1500.00
1500.00
1500.00
1500.00
1500.00
859.66
859.66
859.66
565.69
565.69
565.69
565.69
565.69
565.69
707.11
707.11
707.11
707.11
707.11
707.1
707.11
707.11
707.11
707.11
1060.66
1060.66
859.66
859.66
859.66
859.66
859.66

Shape

0.38
0.30
0.50
0.25
0.50
0.3}
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.3
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.3
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.25
0.50
0.3
0.20
0.50

Angle

22.0

6.0
38.0
24.0

(]
wn
.

o

-) —
DA

n

LN W
S22 ,PODNNSTPOOONO=2,00N
.

- \) =a

Wrw N
. « o 8 e o

OOOOODOOOOO‘OC’OOOOOOQOOOOOOOQOOQ

- N =
.

N =N = [V RS
* e s 2 4 e »

n
OONOS;OYVINONO= BNV SDOND
. .

W

&

w
[X-E-K-K=K-E=-X-N-NoN-N-N-N- - NN~ NN

CONO 22~

N =N -
» 8 v e s ¢ @

n
)

[
S ONVNO

Print Date: 08/11/94

Prob(0)

0.0000
0.0311
0.0000
0.8896
0.0906
0.3059
0.6165
0.9617
0.0470
0.0000
0.0619
0.2337
0.0000
0.9293
0.3864
0.4591
0.7246
0.9755
0.2499
0.0000
0.4694
0.5107
0.0266
0.9686
0.7273
0.6783
0.8909
0.9891
0.5307
0.2198
0.0000
0.0000
0.0000
0.1518
0.0646
0.6165
0.9617
0.0000
0.0000
0.0022
0.0000
0.0000
0.9293
0.3882
0.2989
0.7546
0.9755
0.0090
0.0000
0.4694
0.3721
0.8896
0.1113
0.2594
0.6165
0.9617

Page: 1

B-12

Table B.5. (cont.)

File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSE

#49 Triangular
#104 Triangular
#261 Triangular
#187 Triangular
#190 Triangular
#147 Triangular
#10 Triangular
#19 Triangular
#26 Triangular
#30 Triangular
#49 Triangular
#104 Triangular
#261 Triangutar
#187 Triangular
#190 Triangular
#147 Triangular
#10 Triangular
#19 Triangutar
#26 Triangular
#30 Triangular
#49 Triangular
#104 Triangular
#261 Rectangular,
#187 Rectangular,
#190 Rectangular,
#147 Rectangular,
#190 Rectangular,
#147 Rectangular,
#10 Rectangular,
#19 Rectangular,
#26 Rectangular,
#30 Rectangular,
#49 Rectangular,
#104 Rectangular,
#261 Square

#187 Square

#190 Square

#147 Square

#10 Square

#19 Square

#26 Square

#30 Square

#49 Square

#104 Square

END OF RUN

2.0/1
2.0/
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1

1.8903
1.4541
0.9306
1.1633
1.1633
0.2792
0.5816
0.8143
0.5816
0.1163
1.5122
1.1633
0.6204
0.7755
0.7755
0.1861
0.3878
0.5429
0.3878
0.0776
1.0082
0.7755
1.7678
2.2097
2.2097
0.5303
1.1785
0.2828
0.5893
0.8250
0.5893
0.1179
1.5321
1.1785
1.0000
1.2500
1.2500
0.3000
0.6250
0.8750
0.6250
0.1250
1.6250
1.2500

859.66

859.66
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1611.86
1611.86
1611.86
1611.86
16i1.86
1611.86
1611.86
1611.86
1611.86
1611.86

565.69

565.69

565.69

565.69
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00

(OR ERROR IN SHAPE OR L/G RATIO > 3.0)

Print Date:

0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.3
0.20
0.50
0.15
0.50

08/11/94

N == NN N NN -
5 s s s s s e 8 8 s s & o o &

N

OONO=IE~NVNONOANO=SSTONVIOONOANO -
s e e e u

W

N WO
o:bmﬂmmmg
SR ARTIEI

OOOOOOOOOOOOOOO0.0000QOOOOOOOQOOQOQ

id
58

Random
Random
Random
Random
Random
Random
Random
Random

0.0023
0.0000
0.0134
0.1807
0.0000
0.9293
0.3864
0.4257
0.7546
0.9755
0.1998
0.0000
0.4694
0.4810
0.0677
0.9686
0.7273
0.6695
0.8909
0.9891
0.5058
0.1712
0.0000
0.0000
0.0000
0.8896
0.0969
0.9686
0.7273
0.6686
0.8909
0.9891
0.4469
0.0600
0.1137
0.0730
0.0000
0.9293
0.4072
0.3474
0.7577
0.9755
0.1835
0.0000

Page: 2

B-13

Table B.6. ELIPGRID-PC SIF-style input file listing

File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.S1f Print Date: 08/10/94

Test100.S1F, an SIF format input test file for HOTSPOT, 02/06/94.

* *F F % B R % XS E R E RS

L 4

Thi
(@b

@)

3
4)

s sample SIF (Simplified Input Format) file illustrates the format specs:
The 1st line in the file is always the title line,

just as in an ELIPGRID formated input file.

Any line can be commented by using an asterisk, ¥,

as the 1st nonblank character.

The data values must be separated by 1 or more spaces.

They must come in the order shown below, but the 2nd, 3rd, & 4th data
rows below illustrate that between-column spacing does not matter.

(5) No worries with column specing is what makes this format "simple" in

6)

contrast to ELIPGRID's rigid FORTRAN style column format.
Note that for rectangular grids, the long/short side ratio follows the
data line as in ELIPGRID. However, it need not be in columns 1-10.

(7) End of File can now be either Shape > 1, as in ELIPGRID's format, or

simply no more data lines in the file.

Semimajor Shape Angle GridSize Type Orient. TargetlD

1

000.0 0.38 22.0 800.0 1 O #261

Note how next 3 lines do not match ELIPGRID's column format.
1250.0 0.30 6.0 800.0 1 0 #187

1250.0 0.50 38.0 800.0 1 0 #190

300.0 0.25 24.0 B00.0 1 0 #147

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

- d =

625.0 0.50 35.0 800.0 1 O #10
875.0 0.31 7.0 800.0 1 0 #9
625.0 0.20 18.0 800.0 1 O #26
125.0 0.50 24.0 800.0 1 0O #30
625.0 0.15 11.0 800.0 1 0 #49
250.0 0.50 0.0 800.0 1 0O #104
000.0 0.38 22.0 1000.0 1 O #261
250.0 0.30 6.0 1000.0 1 0 #187
250.0 0.50 38.0 1000.0 1 0 #190
300.0 0.25 24.0 1000.0 1 O #147
625.0 0.50 35.0 1000.0 1 0 #10
875.0 0.31 7.0 1000.0 1 O "9
625.0 0.20 18.0 1000.0 1 0 #26
125.0 0.50 24.0 1000.0 1 0 #30
625.0 0.15 11.0 1000.0 1 O #49
250.0 0.50 0.0 1000.0 1 O #104
000.0 0.38 22.0 1500.0 1 O #261
250.0 6.30 6.0 1500.0 1 0 #187
250.0 0.50 38.0 1500.0 1 0 #190
300.0 0.25 24.0 1500.0 1 0 #147
625.0 0.50 35.0 1500.0 1 © #10
875.0 0.31 7.0 1500.0 1 O "o
625.0 0.20 18.0 1500.0 1 0 #26
125.0 0.50 24.0 1500.0 1 © #30
625.0 0.15 11.0 1500.0 1 O #49
250.0 0.50 0.0 1500.0 1 0O #104
000.0 0.38 22.0 859.66 2 0 #261
250.0 0.30 6.0 859.66 2 0 #187
250.0 0.50 22.0 859.66 2 O #190
625.0 0.50 35.0 565.69 3 0 #10
2.0
875.0 0.3 7.0 565.69 3 0 #19
2.0
625.0 0.20 18.0 565.69 3 0 #26
2.0
125.0 0.50 24.0 565.69 3 O #30
2.0
625.0 0.15 11.0 565.69 3 0 #49
2.0
250.0 0.50 0.0 565.69 3 0 #1046
2.0
000.0 0.38 22.0 707.11 3 0 #261

Page: 1

Table B.6. (cont.)

B-14

File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.SIF

2.0
1250.0
2.0

-
[\
wn
o

o W

N (=]

wmhonon
.

R 3
dr

- -
[\ o
un n
ONONONON:-HNU‘NU‘N
.

-
[=
[=

-
N
w

» .
CO000O0O0DO0OO000O0O0O0DO0OO0OOOO0OO

1000.0
1250.0
1250.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
1000.0
1250.0
1250.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
1000.0

Y
n
wn

nNoN

)

o

-
N
un
.
COD00OOOO0OO0O0OOD

0.30
0.50
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38
0.30
0.25
0.50
0.31
0.20
0.50
0.15
0.50
0.38

0.30
0.50

o
DRI
n

- O\

CO00O0O0O0OODODOO0OOO0OODOO
.

[V RV,]

ovVvoo-_O0WVoOoOoO®OWVO

0.30
0.50
0.25
0.50
0.25
0.50

6.0
38.0
66.0
35.0

7.0
18.0
24.0
1.0

0.0

NN N SN
a e 8 8 » @ @ & 8 = ®

n -) =2 n n n - P\ b
“ a8 8 e s e @ .
0CO0OO00O0OO0OOOOOOOOODOOOODOOOOOOOO

o
b
o

38.0
66.0
38.0
66.0

35.0

707.11
707.11
707.11
707.11
707.11
707.11
707.11
707.11
707.11
1060.66
1060.66

859.66
859.66
859.66
859.66
859.66
859.66
859.66
1074 .57
1074 .57
1074 .57
1074.57
1074.57
1074 .57
1074.57
1074 .57
1074.57
1074.57
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.85
565.69

565.69
565.69
565.69
1060.66
1060.66
1060.66

w w w w w w WNNNNNNNNNNNNNNNNNNNNNNNNNNNDNN N W w w w w w w w w w w

o

o 0000000000000 O00O0O0OODOOOO0O0OO0CO

Print Date: 08/10/94

#187
#190
#147
#10
#19
#26

#104
#261
#187
#190
#1147
#10
#19
#26
#30
#49
#104
#261
#1387
#190
#47
#10
#19
#26
#30
#49
#104
#261

#187
#190
#147
#190
#147
#10

Page: 2

Table B.6. (cont.)

B-15

File: C:\CLIPPERZ\EDITOR\EGPC\VALIDTOG\TEST100.5IF

875.0

o

n
N
(=]

-
N

-
n
w1

s -
(=] o
[« N
onvoONNVINVIRWV
[=N=-NeN-N=Noi--]-]

1250.0
1250.0
300.0
625.0
875.0
625.0
125.0
1625.0
1250.0
9.9

0.3
0.20
0.50
0.15
0.50

0.38
0.30
0.50
0.25
0.50
0.3
0.20
0.50
0.15
0.50

9.9

7.0
18.0
24.0
11.0

0.0

1060.66
1060.66
1060.66
1060.66
1060.66

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

9.9

3

W W W w

[T YT S QP S S PO G QY

0
0

o

L o B R O N S N

Print Date: 0B8/10/94
#19
#26
#30
#49
#104

#261
#187
#190
#147
#10
#19
#26
#30
#49
#104
EOF

Page: 3

B-16

Table B.7. ELIPGRID-PC SIF-style output file listing

File: C:\CLIPPERZ\EDITOR\EGPC\VALID10O\TEST100.HSS Print Date: 08/11/,. Page: 1

Output from ORNL/GJ ELIPGRID-PC Program Version: 08/11/94

File Name.: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSS

Created on: 08/11/94

Input file: TEST100.SI1F using SIF format.

Title line: Test100.SIF, an SIF format input test file for HOTSPOT, 02/06/94.

Target Grid Type Semimajor Axis Gridspace shape Angle Prob(0)
in Relative Units in Oriy Units
#261 Square 1.2500 800.00 0.38 22.0 0.0000
#187 Square 1.5625 800.00 0.30 6.¢ 0.0311
#190 Square 1.5625 800.00 0.50 350 0.0000
#147 Square 0.3750 800.00 n.25 24.0 0.8894
#10 Square 0.7813 800.00 0.50 35.0 0.0906
#19 Squar»s 1.0938 800.00 0.31 7.0 0.3059
#26 Square 0.7813 800.00 0.20 18.0 0.6165
#30 Square 0.1563 800.00 0.50 24.0 0.9617
#49 Square 2.0313 800.00 0.15 11.0 0.0470
#104 Square 1.5625 800.00 0.50 0.0 0.0000
#261 Square 1.0000 1000.00 0.38 22.0 0.0619
#187 Square 1.2500 1000.00 0.30 6.0 0.2337
#190 Square 1.2500 1000.00 0.50 38.0 0.0000
#147 Square 0.3000 1000.00 0.25 24.0 0.9293
#10 Square 0.6250 1000.00 0.50 35.0 0.3864
#19 Square 0.8750 1000.00 0.31 7.0 0.4591
#26 Square 0.6250 1000.00 0.20 18.0 0.7546
#30 Square 0.1250 1000.00 0.50 24.0 0.9755
#49 Square 1.6250 1000.00 0.15 11.0 0.2499
#104 Square 1.2500 1300.00 0.50 0.0 0.0000
#261 Square 0.6667 1500.00 0.38 22.0 0.46%4
#187 Square 0.8333 1500.00 0.30 6.0 0.5107
#190 Square 0.8333 1500.00 0.50 38.0 0.0266
#1147 Square 0.2000 1500.00 0.25 24.0 0.9686
#0 Square 0.4167 1500.00 0.50 35.0 0.7273
9 Square 0.5833 1500.00 0.31 7.0 0.6783
#26 Square 0.4167 1500.00 0.20 18.0 0.8909
#30 Square 0.0833 1500.00 0.50 24.0 0.9891
#49 Square 1.0833 1500.900 0.1 11.0 0.5307
#104 Square 0.8333 1500.00 0.50 0.0 0.2198
#261 Triangular 1.1633 859.66 0.38 22.0 0.0000
#187 Triangular 1.4541 859.66 0.30 6.0 0.0000
#190 Triangular 1.4541 859.66 .00 22.0 0.0000
#10 Rectangular, 2.0/1 1.1048 565.69 0.50 35.0 0.1518
19 Rectangular, 2.0/1 1.54468 565.69 0.3 7.0 0.0646
#26 Rectangular, 2.0/1 1.1048 5:55.69 0.20 18.0 0.6165
#30 Rectanguiar, 2.0/1 0.2210 565.69 0.50 24.0 0.9617
#49 Rectangular, 2.0/1 2.8726 565.69 0.15 11.0 0.0000
#104 Rectangular, 2.0/1 2.2097 565.69 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 1.4142 707.11 0.38 22.0 0.0022
#187 Rectangular, 2.0/1 1.7478 707.11 0.30 6.0 0.0000
#190 Rectangular, 2.0/1 1.7678 707.11 0.50 38.0 0.0000
#147 Rectangular, 2.0/1 0.4243 707.11 0.25 66.0 0.9293
#10 Rectangular, 2.0/1 0.8839 707.11 0.50 35.0 0.3882
#19 Rectangular, 2.0/1 1.2374 707.11 0.31% 7.0 0.2989
#26 Rectangular, 2.0/1 0.8839% 707.11 0.20 18.0 0.7546
#30 Rectangular, 2.0/1 0.1768 707.11 0.50 24.0 0.9755
#49 Rectangular, 2.0/1 2.2981 707.11 0.15 1.0 0.0090
#104 Rectangular, 2.0/1 1.7678 707.11 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 0.9428 1060.66 0.38 22.0 0.4694
#187 Rectangular, 2.0/1 1.1785 1060.66 0.30 6.0 0.3721
#1147 Triangular 0.3490 859.66 0.25 6.0 0.8896
#10 Triangular 0.7270 859.66 0.50 25.0 0.1113
#19 Triangular 1.0178 859.66 0.31 7.0 0.2594
#26 Triangular 0.7270 859.66 0.20 18.0 0.6165
#30 Triangular 0.1454 859.66 0.50 24.0 0.9617

B-17

Table B.7. (cont.)

File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSS

#49
#104
#261
#187
#190
a7
#10
#19
#26
#30
#49
#104
#261
#187
#190
#1147
#10
#e
#26
#20
#49
#104
#261
#187
#190
#47
#190
w147
#10
#19
#26
#30
49
#104
#261
ez
#190
#ay
#10
"9
#26
#30
#49
#104

Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Triangular
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Rectangular,
Square
Square
Square
Square
Square
Square
Square
Square
Square
Square

2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1
2.0/1

1.8903
1.4541
0.9306
1.1633
1.1633
0.2792
0.5816
0.8143
0.5816
0.1163
1.5122
1.1633
0.6204
0.7755
0.7755
0.1861
0.3878
0.5429
0.3878
0.0776
1.0082
0.7755
1.7678
2.2097
2.2097
0.5303
1.1785
0.2828
0.5893
0.8250
0.5893
0.1179
1.5321
1.1785
1.0000
1.2500
1.2500
0.3000
0.6250
0.8750
0.6250
0.1250
1.6250
1.2500

859.66

859.66
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1074.57
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86
1611.86

565.69

565.69

565.69

565.69
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1060.66
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1600.00
1000.00
1000.00

END OF RUN (OR ERROR 1IN SHAPE OR L/G RATIO > 3)

Print Date: 08/11/%94

0.15
0.50
0.38
0.30
0.50
0.25
0.50
0.3
0.20
0.50
0.15
.50
.38
.30
.50
.25
.50
.31
.20
.50
15

[=]

: SPPPo
VI R LU U U bW U1 =2 TR W W R
OGO 2O MOOMOMOC ~OoWo W

0000000000000 O0O0DO0O0ODO000O00O00ODOOOO
. . PR « o . .

- N = n n n -
O=abbDNYUVMONOANO=

[\ n
OO

NN N
« » b e 8 e

[\

OO ONOa~mWU

WOWOW
.

¢ : or ...
P00 D0000000000DDO0000OOO000O0 OO0

SNV

F] - PN =
g2

do

3

Random
Random
Random
Random
Random
Random
Random
Random
Random

0.0023
0.0000
0.0134
0.1807
0.0000
0.9293
0.3864
0.4257
0.7546
0.9755
0.1998
0.0000
0.4694
0.4810
0.0677
0.9686
0.7273
0.6695
0.8909
0.9891
0.5058
0.1712
0.0000
0.0000
0.0000
0.8896
0.0969
0.9686
0.7273
0.6686
0.8909
0.9891
0.4469
0.0600
0.1137
0.0730
0.0000
0.9293
0.4072
0.3474
0.7577
0.9755
0.1835
0.0000

Page; 2

APPENDIX C

TRIANGULAR GRID DISCONTINUITY

C-1
TRIANGULAR GRID DISCONTINUITY

C.1 Introduction

A modification to the ELIPGRID triangular grid code was required to correct for a
discontinuity in ELIPGRID results for a small number of triangular grid cases. This
appendix documents the discontinuity and explains the modification made to the original
code.

The graph of the probability of missing a hot spot versus a range of increasing hot
spot sizes is a good indicator of any discontinuities in the ELIPGRID algorithm. Fig. C.1
is a graph of the probability of missing a hot spot versus the semi-major axis length to grid
size (L/G) ratio for a triangular grid. The orientation of the angle and the assumed hot-
spot shape (the ratio of minor axis to major axis) are 15° and 0.99. As the L/G ratio
increases along the x axis, the probability of missing should smoothly decrease to zero.
This is obvious from the fact that larger L/G ratios imply larger hot spots and, hence, a
smaller probability of missing. When the hot-spot size is such that it will always be
sampled at some sampling node, then the probability of missing must be zero.

Fig. C.1 clearly reveals a discontinuity in the ELIPGRID algorithm between L/G
ratios of 0.5 and 0.6. The probability of missing falls below zero at an L/G ratio of about
0.54, then jumps back to zero near an L/G ratio of 0.58. By definition, a probability less
than zero is in error. In addition, the large jump in probability makes the ELIPGRID
algorithm suspect for this set of parameters.

C.2 Effect on Discontinuity of the Orientation Angle

In order to determine if the discontinuity is related to hot-spot orientation angle,

two additional graphs were produced with the same parameters as Fig. C.1 except for
different hot-spot orientation angles of 0° and 30° (Figs. C.2 and C3). Due to symmetry

C-2

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.99, Angle = 15.0°

50.0

°\° L
. 400F
o -
c o
.u—, -
2 .
S 300}
- :
o :
> C
= 200F
L C
© F
o -
o -
& 100F
0.0 F

_10'Otlllllllllllllllll ||||||||| PP N S G T S U
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C.1. Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape, and
15° angle.

C-3

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.99, Angle = 0.0°

50.0 ¢

R :

. 40.0F

o C
£ g

7 :
2 F
S 30.0F
- :

© :

> o
£ 200F
e o

© -
e o
o -
& 100¢
0.0 f JP——
~10.0 Bt A I DU S .
0.3 0.4 0.5 0.6 0.7
L/G Ratio

Semi-major Axis to Grid Size

Fig. C.2. Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape, and
0° angle.

C4

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.99, Angle = 30.0°

50.0
R r
o F
£ .
7 r
R .
S 300F
- -
(@)
> o
= 20.0
L0 C
©
a o
o 3
a 10.0 E
0.0 L
_10_0: --------------------------- R
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C.3. Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape, and
30° angle.

C-5

considerations, 30° is the largest angle necessary for triangular grids (Singer and Wickman
1969). Note that the three graphs are virtually identical, although the orientation angles
differ widely. These graphs illustrate that the orientation angle is of no material signifi-

cance to the triangular grid discontinuity problem.
C.3 Effect on Discontinuity of the Hot-Spot Shape

To determine the effect of the hot-spot shape on the discontinuity problem, the graph
in Fig. C.4 was produced unchanged from that in Fig. C.1 except that the hot-spot shape
was decreased from 0.99 to 0.90. Note the large decrease in the part of the graph below a
probability of zero. Fig. C.5 has an even smaller assumed hot-spot shape of 0.85. Note
that the discontinuity problem has now disappeared. Also, examination of the results from
the largest shape possible, 1.0, reveals no discontinuity problems (Fig. C.6). Thus, this
problem can be confined to hot-spot shapes of less than 1.0 and greater than approximately
0.85.

C.4 Resolution of the Discontinuity by a 4th Order Polynomial Regression
Linear regression was used to provide a smooth curve for the triangular grid cases
listed above. The solid lines in Figs. C.7, C.8, and C.9 are the 4th order polynomial

regression lines calculated after the values near the discontinuity have been removed.

The regression equation used is

P(0) = B, + B,x + Bx?r Bx?+ B x*

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.90, Angle = 15.0°

60.0
o :
& 50.0¢F
o C
£ :
@& 40.0E
P .
u— E
© 200t
> E
= C
® 200F
2 .
o -
| = -
o C

10.0 E

0.0 E

_“0.0:.x lllllll S S S W VNN G N S S S S S S SN SO O B Y | IS S N S S N T B
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C.4. Probability of missing hot spot vs L/G ratio, triangular grid, 0.90 shape, and
15° angle.

C-7

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.85, Angle = 15.0°

60.0 .

o -
S 500 F
g |
@ 400
= :
“= -
© 300¢
> E
X E
D r
© 20.0 E
Nel E
o r
| - {
Q. r
10.0 F

3

0.0

"‘10.0:""""' """"" PR SRS SR S ST ST SN WU TS JAUN A S YT WL VAN OO0 WS W
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C.5. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape, and
15° angle.

C-8

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 1.00, Angle = 15.0°

50.0
X -
- 40.0 ¢
(@) L
= .
75} o
2 .
S 30.0¢F
“— .
o -
- "
= 200¢
L0 o
© -
o L
o)
a 10.0¢F
0.0
_‘]O.O:J-:n411:: ::::: PR T V N RV WY NS N WA G S NN N A SN TN S N T N T
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C.6. Probability of missing hot spot vs L/G ratio, triangular gird, 1.00 shape, and
15° angle.

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.95, Angle = 15.0°

50.0
2 :
- 40.0 E
o -
c F
E7] £
R .
b 30.0 E
“— E
o -
> r
= 20.0F
L0 r
© C
0 +
[} E
n‘: 10.0 E
0.0 f
_‘|OO :J_L lllllllllllllll YN S HS NN N0 A U S AN ST T S ST SN S S
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C.7. Probability of missing hot spot vs L/G ratio, triangular gird, 0.99 shape, and
15° angle.

C-10

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.90, Angle = 15.0°

60.0 ¢ —

50.0 F

40.0

30.0 £

20.0

RN RS ERAREAREE!

Probability of Missing, %

10.0

0.0 E

_‘]O‘O:lullllt RS VOSSN SO0 ST SN TOUS SN0 T SO T T N SN SN N SN S SN ST SN SN B PN
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C.8. Probability of missing hot spot vs L/G ratio, triangular gird, 0.90 shape, and
15° angle.

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.85, Angle = 15.0°

60.0:
.
o 50.0 f
o :
£ :
@ 400 F
E -
e :
© 300¢
> r
x c
] :
© 20.0¢F
Eeo] -
o :
o -
10.0 E \
0.0 F *
_]0.0:lllllllllIlllllllL‘lllllllll]llllLL
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C.9. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape, and
15° angle.

where
P(0) = probability of missing the hot spot,
B, = oneofthen=0 to4 regression parameters,
X = the L/G ratio.

The regression parameters were determined using SigmaPlot® 5.01 on data sets with
the values near the discontinuity removed. Since the regression changes with the shape,
(Sect. C.3), parameters for seven sets of shapes were determined. The actual parameter
values determined may be found in the code in function Prob0_Regr() listed in file
EGPCFORT.PRG in Appendix E.

Figures C.10 and C.11 are the graphs for shapes equal to 0.99 and 0.85 after ELIP-
GRID-PC was modified with the regression equation substituted for the ELIPGRID
algorithm in the L/G range greater than 0.5 and less than 0.6. These graphs demonstrate
that the ELIPGRID-PC regression modification smooths out the discontinuity and removes
the negative probability problem (the small negative values that still remain when the shape
is near 0.99 are rounded up to zero).

The cause of the discontinuity seems to be related to the mathematical problem of
dealing with the tangent of 90°. Singer and Wickman's mathematical derivation for the
triangular grid case states, "It can be seen from (45) that acute angles can only occur if
k < 1//3 ~ 0.577. The function tan t has a discontinuity at © = 90°; therefore it is
practical to use (47) to determine where T is acute or obtuse" (Singer and Wickman 1969).
Note their reference to the well-known mathematical discontinuity at the tangent of 90°.

It is also interesting to note that the constant referred to above, 14/3, is in the range of L/G
ratios where the discontinuity occurs.

Further study of their algorithm could possibly reveal a more fundamental solution to
this problem than the regression method used here. However, the regression method

adopted should be satisfactory in most, if not all, practical cases.

C-13

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.99, Angle = 15.0°

50.0

g
X .
- 40.0 F
o) N
c
‘»
R .
S 300F
u :
(@] L
> 5
= 200
o] o
© -
¥= :
e -
£ 100f

0.0 F
E
_‘]O‘OF||||||||1L11¢1|11||111n||||||||||11
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

Plot of ELIPGRID-PC results after modification.
The modification uses 4th order polynomial
regression for L/G values near the discontinuity.

Fig. C.10. Probability of missing hot spot vs L/G ratio, triangular gird, 0.99 shape,
and 15° angle.

C-14

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0.85, Angle = 15.0°

60.0
:
(=] L
& s00f
c‘, o
R 3
@ 400
E L
“ 5
© 3po0¢
> E
= E
el 2
(] 20.0 E
Q A
o F
Yo -
Q. g
10.0 :
:
0.0 f
_‘IOO: """""""""" PUSE SN TN WA RN N YO NN N N SN TN T NN A S N |
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

Plot of ELIPGRID-PC results after modification.
The modification uses 4th order polynomial
regression for L/G values near the discontinuity.

Fig. C.11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,
and 15° angle.

APPENDIX D

ELIPGRID-2 SOURCE CODE

APPENDIX D
ELIPGRID-2 SOURCE CODE

The first page of this appendix is an example make file for the Lahey F77L®-EM32 com-
piler version 5.10. The remaining pages contain all the main code and subroutines in one
file.

D-2

Example make file for ELIPGRID-2 using an E: RAM drive with C: drive.

FC = E:\f771l3

LINKER = E:\386link

PROGRAM = C:ELIPGRD2

DEST = C:

EXTHDRS =

FFLAGS =

HDRS =

LDFLAGS = -STUB RUNB

LOMAP = nul

LIBS = E:\F7713.lib, E:\UTIL3.LIB
MAKEFILE = Makefile

08JS = ELIPGRD2.0bj

SRCS = ELIPGRDZ2.for

$(PROGRAM) : $(0BJS) $(LIBS)

S(LINKER) $(0BJS) -EXE $2 -MAP $(LDMAP) -LIB $(LIBS) S(LDFLAGS)

clean:; adel -f $(0BJS)

depend:; @mkmf -f $(MAKEFILE) PROGRAM=$(PROGRAM) DEST=$(DEST)

install: $(PROGRAM)

decho Installing $(PROGRAM) in $(DEST)
Aif not S$(DEST)x==.x copy $(PROGRAM) $(DEST)

Code File:

ELIPGRD2 For

* Purpose,:
* Note....:

* Usage...:

ELIPGR2 is a modification of ELIPGRID for hot spot location.

This code modifies ELIPGRID.For by Singer as little as

possible. The goal is to provide a PC version of ELIPGRID.

The calcualtion algurithms were not changed; one exception follows.
The RECT() subroutine appears toc be in error in the original.

The formuala for the transformed angle, REVANG, was chenged to
essentially match the Eq. (35) in (Singer and Wickman 1969, p. 16).
Note that the term (1 - k) in Eq. (35) is probably a typo for

(1 - k?). ELIPGRID's (1.0 - SQK) is reteined here.

The constat Pl was left at 3.141492 instead of being changed to the
more correct 3.141593. This should be of no practical consequence.
Some input/output format changes were made.

Note that ELIPGRD2 adds explicit declaration of all variables.
ELIPGRD2 ([<InputFileName> or <Help>)

The InputFileName may include a path. The output file will be
written to the input path.

* Input file format:

* Orig. by:
* Mods by.:
* Started.:
* Last mod:
* Compiler:
* Options:

* Linker..:

* Options:

* Notes...:

Line 1 = Title: (A80)
Line n = data.: (4F10.2,214,A4)
F10.4, F10.4, F10.4, F10.4, 14, 14, A4

Data Variables: A, SHAPE, ANGLE, GDSPAC,NET, MET,TARGET
Example, Sg...: 1250.0 0.30 6.0 800.0 1 Omas?
Example, Rec..: 1250.0 0.50 38.0 1060.66 3 O#190
2.0 <--- 2nd data line for rect.= Long/short
Example, Hex..: 1250.0 0.50 0.0 1611.86 2 O#104

Line EOF......: Use ALL valid values EXCEPT SHAPE is > 1.0.

Output is to file <InputFileName>.Out.

When no imput file passed, ELIPGRD2.In will be default file name.
D.A Singer

Jim Davidson

11712793

02/06/94

Lahey Fortran F77L-EM/32 Ver. 5.10

/n0/n2/4/nT/nA2/nB/nC/nC1/mD /nF/nH/nl/nk/nL/n0O/P/na1/nQ2/nA3
/R/NS/NT/nV/M/nX/21 from current F77L3.FIG file.

Phar Lap 386Link 4.1L

Use LDFLAGS = -STUB RUNB to bind in the RUN386 loader.

LIBS = Es\F77L3.LIB, E:\UTIL3.LIB

UTIL3.LIB is the Lahey Spindrift Utility Lib. EM/32 Ver. 2.01.
Original code lines are commented out with a * in the left colum.
The replacement Line is usually just beneath the original line.
The line numbers and ID numbers on the right side were left alone.

D-4

Code File: ELIPGRD?2 . For

All variables are explicitly declared in this version.

The original ELIPGRID code documentation header starts below:

O 000 0000060 oOao0o0oo0o0oa0o0oo0o0o0aao0oo0o0o0

PROGRAM ELIPGRID GRID

GRID

PROGRAM TO DETERMINE THE PROBABLITY OF LOCATING AN ELLIPTIC OR GRID
CIRCULAR TARGET WITH A SQUARE, HEXAGONAL OR RECTANGULAR GRID GRID
GRID

GRID

DESCRIPTION OF PARAMETERS GRID
GRID

TARGET= ANY IDENTIFICATION OF TARGET (READ IN “A"™ FORMAT) GRID
A= LENGTH OF SEMIMAJOR AX1S5 OF TARGET GRID
SHAPE= SHAPE OF TARGET - SEMIMINGR AXIS DIVIDED BY THE SEMIMAJORGRID
ANGLE= POSITIVE ANGLE BETWEEN LONG AXIS OF TARGET AND GRID GRID

DIRECTION - FOR A SQUARE GRID ANGLE CAN BE ANY ABGLE FROMGRID
0 TO 45 DEGRESS, FOR A HEXAGONAL GRID ANGLE CAN BE ANY GRID
ANGLE FROM O TO 30 DEGREES INCLUSIVE, FOR + RECTANGULAR GRID
GRID ANGLE CAN BE ANY ANGLE FROM O TO 90 DEGREES GRID
INCLUSIVE AND IS MEASURED FROM THE X AXIS OF THE GRID GRID

GDSPAC= DISTANCE BETWEEN POINTS ON THE GRID (IN THE SAME UNITS ASGRID
WA") - FOR A RECTANGULAR GRID GDSPAC 1S THE DISTANCE GRID
BETWEEN POINTS ALONG THE Y AXIS OF THE GRID GRID
NET= GRID TYPE - SQUARE GRID=1,HEXAGONAL GRID=2, RECTANGULAR GRID
GRID=3 GRID
MET= SPECIFIC OR RANDOM ORIENTATION - IF MET>0 - RANDOM GRID
Q= SHAPE OF RECTANGULAR GRID - LONG(X) AXIS DIVIDED BY THE GRID
SHORT(Y) AXIS GRID
GRID
program ELIPGRD2
implicit none | Force all varibles to be declared
character*8 cvV_DATE ! Version date

parameter(cV_DATE = '02/06/94')

! FMT var. replaced by herdcoded format.

DIMENSION TITLE(20),FMT(20) GRID
character*80 TITLE ! First line of input file
character*s TARGET ! Four char. ID for each data record
character*64 cinfile ! Input file

character*64 cOutFile ! output file

character*4 cUpParam

integer 1

integer I1BLANK

265

| Upcase of 1st 4 letters of passed param

D-5
Code File: ELIPGRD2 For

integer iDotPos t 0.» position in input filename

integer IPRIN 1 outfile unit number

integer IREAD ! Infile unit number

integer 1ROY 1 45, 30, or 90 angles to test if random

integer 1WARN

integer 1ZONK

integer M

integer MEY ! Target orientation, > O=random
integer MROY Current random angle

integer NET t 1=square, 2=hex, 3=rectangle

real A
real ALPHA
real ANGLE
real ANP
real AQUAR
real AREA1
real AREA2
real AREA3
real AREA4
real AREAS
real AREA6
real AREA7
real AREA8
real AREA9
real AREA10
real ASQ
real AVPRO
real AVPR1
real AVPRZ2
real 8
real BALLS
real BSQU
real C
real CAROL
real CIM
real CNM
real D
real DJO
real DJ1
real DMO
real DM1
real EOU
real FIN

Length of semimajor axis

Code File: ELIPGRD2.For

real
real
real
real
real
real
real
reatl
real
real
reat
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
~eal
real
real
real
real

FORN
GAME
GDSPAC
GRO
HAI
HALFC
HALFD
HALFJO
HALFJ1
HAL FMO
HALFM1
HORR
PET

Pl

POT
PROBO
PROB1
PROB2
Q

RO
RDW
REVA
REVANG
REVK
SER
SHAPE
SLING
SNGLE
SUMO
SUM1
SuM2

T

TIR
TiZ
WIRE
XHAPE
X1

Y1
Yl

YAN

ZAP

Grid spacing

c/2
D/e
4072
etc.

Constant pi, 3.141592 in ELIPGRID

Prob. of no hits
Prob. of 1 hit

For rect, grid, Q=longside/shortside
For rect, grid, transformed A
For rect, grid, transformed angle

For rect. grid, transformed SHAPE

Major/minor axis

D-7
Code File: ELIPGRD2.For

| External functions.
real ARCO ! Function in this code
logical fexist | Lahey Spindrift Utility Lib

print *,'Program..: ORNL/GJ ELIPGRD2 RECTY '//

& ‘subroutine modified in this code.*

print *,'Version..: '//cV_DATE

print *,'Note.....: Program is an ORNL/GJ modification of '//
& 'ELIPGRID by Singer.'

DATA IBLANK/4H /, IWARN/GH*#**/ GRID 275
IREAD=5 GRID 285
IPRIN=6 GRID 295

* READ (IREAD,5) TITLE replaced by below GRID 305

! Get input file name.
call GetInFile(cInFile)
call upc(clnFile,cupParam)

! Check for HELP parameter or missing file error.
if (cUpParam(1:4)=='HELP') then
call HelpScreen()
stop
elseif (.not. fexist(cInFile)) then
call tone(220,18) { From the Lshey Spindrift Utility Lib.
print *,'ERROR 1..: Input file not found.'
print *,'File Name: ‘'//charnb(cInfile)
print *,'Usage....: ELIPGRD2 [<InputFileName> or <HELP>]'
stop
endi f

{ Make cOutfile name from cinfile.
iDotPos = index(cInfile,". ")
if (iDotPos == Q) then

cOuUtFile = charnb(cInFile)//*.0UT®
else

cOutfile = cInFile(1:iDotPos)// ' QUT’
endif

1 Open input and output files.

open (IREAD, file=cInFile,status="OLD")
open (IPRIN, file=cOutFile)

print * 'Input....: '//charnb(cinfile)
print *, 'Output...: '//charnb(cOutFile)

D-8
Code File: ELIPGRD2.For

print ¥,

| Begin to read and write files.
read (IREAD, fmt=*(A80)!') TITLE

READS FORMAT FOR DATA (replaced by hardcoded format)

t 0O 00

READ (IREAD,5) FMT

FORMAT (20A4)

* WRITE (IPRIN,10) TITLE

* 10 FORMAT (1H1,25X,20A4//)

write (IPRIN, fmt='C1H ,10X,A/)') 'ELIPGRD2 Output File'
write (IPRIN, fmt='(1H ,10X,A//)') 'Data from: '//TITLE
P1=3.141592

WRITE (IPRIN,15)

*
w

GRID
GRID
GRID
GRID
GRID
GRID
GRID

GRID
GRID

* 15 FORMAT (1HO,6HTARGET,4X,9HGRID TYPE,29%,14HSEMIMAJOR AXIS,4X,9PHGRIGRID

15 FORMAT (1H ,6HTARGET,4X,9HGRID TYPE,29X, 14HSEMIMAJOR AXIS,4X,9HGRI

AREA2=0.0

1DSPACE, 4X, SHSHAPE , 4X, SHANGLE ,4X, PHPROB(1), 4X, BHPROB(>1) ,4X , PHPROBCGRID
* 10)/46X,17HIN RELATIVE UNITS,3X, 13HIN ORIG UNITS//) GRID
10)/46X, 17HIN RELATIVE UNITS,3X,13HIN ORIG UNITS)
112=0.50000 GRID
RDW=SQRT(3.0)*0.5 GRID
20 MET=0 GRID
t GRID
c READ DATA GRID
(3 GRID
. READ (IREAD,FMT) A,SHAPE,ANGLE,GDSPAC,NET,MET, TARGET GRID
READ (IREAD,'(4F10.2,214,A4)') A,SHAPE,ANGLE,GDSPAC,NET,MET, TARGET
120MK=1BLANK GRID
A=A/GDSPAC GRID
SLING=A GRID
XHAPE=SHAPE GRID
SNGLE=ANGLE GRID
SUM1=0.0 GRID
SUM2=0.0 GRID
SUM0=0.0 GRID
MROT=0 GRID
IF (NET) 35,35,30 GRID
30 ANGLE=MROT GRID
(3 GRID
c AREAS 1 TO 10 ARE RELATIVE AREAS OF OVERLAP IN THE TRANSFORMED NETGRID
c GRID
35 AREA120.0 GRID

GRID

315
325
335
345
355
365
37

385
395
405

415
425

435
445
455
465
475
485
495

505
515
525
535
545
555
565
575
585
595
605
615
625
635
645
655

Code File: ELIPGRD2.For

AREA3=0.0
AREA4=0.0
AREAS5=0.0
AREA6=0,0
AREA7=0,0
AREA8=0.0
AREA9=0.0
AREA10=0.0

o 0O o o0 o0

PROBO=0.0
PROB1=0.0
PROB2=0,0

DETERMINES THE GRID TYPE

GO TO (65,40,45),NET

(2]

HEXAGONAL NET

40 FIN=ROW
IROT=30
2AP=6.0
BALLS=0.57735
GO TO 75

(2]

RECTARGULAR NET

45 IF (MROT) 50,50,60

READ SHAPE OF RECTANGULAR GRID

50 READ (IREAD,55) Q
55 FORMAT (F10.5)

* 60 CALL RECT(SLING,XHAPE,ANGLE,Q,REVK,REVA, REVANG)
* Argument SLING is never used by subroutine RECT().

60 CALL RECT(XHAPE ,ANGLE,Q,REVK,REVA,REVANG)
SHAPE=REVK
A=REVA*SLING
ANGLE=REVANG
IROT=90

PROBO 1S THE PROBABILITY OF MISSING THE TARGEY
PROB1 1S THE PROBABILITY OF LOCATING THE TARGET ONCE
PR0OB2 IS THE PROBABILITY OF LOCATING THE TARGET TWO OR MORE TIMES

GRID 665
GRID 675
GRID 685
GRID 695
GRID 705
GRID 715
GRID 725
GRID 735
GRID 745
GRID 755
GRID 765
GRID 775
GRID 785
GRID 795
GRID 805
GRID 815
GRID 825
GRID 835
GRID 845
GRID 855
GRID Bé&S
GRID 875
GRID 885
GRID 895
GRID 905
GRID 915
GRID 925
GRID 935
GRID 945
GRID 955
GRID 965
GRID 975
GRID 985
GRID 995
GRID1005
GRID1015
GR1D1025
GR1D1035

GRID1045
GR1D1055
GRID1065
GR1D1075

Code File: ELIPGRD2.For

GO TO 70

SQUARE NET

0o 0O o0 n

65 IROT=45
70 FIN=1.000
ZAP=4.0
BALLS=0.707107
75 IF (SHAPE-0.05) 80,95,95
80 IF (A-2.0) 95,95,85
85 WRITE (IPRIN,90) TARGET

GR1D1085
GRID1095
GRID1105
GRID1115
GR1D1125
GRID1135
GRID1145
GRID1155
GRID1165
GRID1175
GRID1185
GRID1195

* 90 FORMAT (1HO,6HTARGET,A4,45H 1S TOO NEEDLE-LIKE AND LONG FOR THIS PGRID1205
90 FORMAT (1H ,6HTARGET,A4 45H 1S TOO NEEDLE-LIKE AND LONG FOR THIS P

1ROGRAM)
GO TO 20
95 If (SHAPE-1.0) 140,115,100

RUN IS TERMINATED WHEN A SHAPE 1S GREATER THAN ONE

a o a0

100 WRITE (IPRIN,105)
* 105 FORMAT (1H0,////,50X,31HEND OF RUN (OR ERROR IN SHAPE))
105 FORMAT (1H ,//,' END OF RUN (OR ERROR IN SHAPE)')
WRITE (IPRIN,110)

GRID1215
GRID1225
GRID1235
GRID1245
GRID1255
GRID1265
GRID1275
GRID1285

GRID1295

* 110 FORMAT (1HO,25K,93H**** [NDICATES THAT THE PROBABILITY OF MISSING GRID1305
- 11S 2ERO FOR AT LEAST ONE ORIENTATION AND PROB1,/,25X,45HAND PROB>1GRID1315

bt 1 SHOULD NOT BE USED FOR THIS TARGET)

110 FORMAT (/,! **** INDICATES THAT THE PROBABILITY OF MISSING',

&' 1S 2ERD FOR AT LEAST ONE',/,' ORIENTATION AND PROBY °,
&'AND PROB>1 SHOULD NOT BE USED FOR THIS TARGET')

GO TO 525
C
C CIRCLE
C
115 ASQ=A**2

IF (A-TIZ) 120,120,125

120 PROB2=0.0
PROB1=P1*ASQ/FIN
PROBO=1.0-PRO81
GO TO 425

125 1F (A-BALLS) 130,135,135

130 CIMSARCO(TIZ,A)
PROB2=ZAP*(ASU*CIM-TIZ*SART(ASQ-0.25))/FIN
PROB1=P1*ASQ/FIN-2.0*PROB2

GR1D1325

GRID1335
GRID1345
GRID1355
GRID1365
GRID1375
GR1D1385
GRID1395
GR1D1405
GRID1415
GRID1425
GRID1435
GRID1445
GRID1455
GR1D1465

D-11

Code File; ELIPGRD2.For

0O o 0O 00

0o o0 o0

135

140

145

150

155
160

PROBO=1.0-PROB1-PROB2
GO TO 425

GR1D1475
GR1D1485
GR1D1495

IF THE RADIUS OF THE CIRCLE IS GREATER THAN 0.7071 THE PROBABILITYGR]D1505

OF MISSING IS 2ERO AND PROB1 AND PR0B2 ARE SET EQUAL TO 9. AS

FLAGS

PROB1=9.0
PROBZ2=9.0
PROB0=0.0
GO TC 425

ELLIPSE

B=A*SHAPE

B IS THE RADIUS OF THE CIRCLE IN THE TRANSFORMED NET

IF (A-TIZ) 145,145,150
PROB1=PI*A*B/FIN
PROB2=0.0

PROBO=1.0-PROB1

GO TO 425

IF(ANGLE-D.1) 155,155,160

ALPHA IS THE ANGLE IN RADIANS
ANGLE=ANGLE+0.1

ALPHA=ANGLE/57.295779
ChNM=1.0-SHAPE**2

c,0,DJ1,0J0,0M1,DM0 ARE DISTANCES BETWEEN CIRCLES IN THE

TRANSFORMED NET

C=SQRT(1.0- CNM*COS(ALPHA)**2)
G0 TO (170,165,170),NET

GRID1515
GRID1525
GR1D1535
GRID1545
GRID1555
GRID1565
GRID1575
GRID1585
GRID1595
GRID1605
GRID1615
GR1D1625
GR1D1635
GRID1645
GR1D1655
GR1D1665
GRID1675
GRID1685
GRID1695
GRID1705
GRID1715
GRID1725
GRID1735
GRID1745
GRID1755
GRID1765
GRID1775
GRID178B5
GRID1795
GRID1805
GRID1815
GRID1825

165 Y1=3.+SHAPE**2-2. *CNM*SINCALPHA)**2-CNM*4 . *FIN*SIN(ALPHA)*COS(ALPHGRID 1835

170
175

1A)

D=SQRT(Y1)*0.5000

Go To 175
D=SQRT(1.0-CNM*SIN(ALPHA)**2)
BSQU=B**2

FORN=C*C

HORN=D*D

GRID1845
GRID1855
GRID1865
GRID1875
GRID1885
GRID1895
GRID1905

Code File: ELIPGRD2.For

180

185
190
195

200
205
210

215
220
225

230

235

240

245

250
255

WINE=F IN*SHAPE

HALFC=C*0.50

HALFD=D*0.50

IF (B-HALFC) 185,185,180
EOU=ARCO(HALFC,B)

AREA1=2. 0" (BSQU*EOU-HALFC*SQRT(BSQU-HALFC**2))
GO TOo 190

AREA1=0.0

1F (B-HALFD) 200,200,195
HAT=ARCO(CHALFD,B)
AREA2=2.0*(BSQU*HAT -HAL FD*SQRT (BSQU-HALFD**2))
GO TO 205

AREA2=0.0

IF CA-BALLS) 210,210,215
PROB2=(AREA1+AREA2) /WINE
PROB1=P | *BSQU/WINE-2.0*PROB2
PROBO=1,0-PROB1-PROB2

GO TO 425

IF (ANGLE) 220,220,225
C=C+0.05

CAROL=C*D
T=ARSIN(WINE/CAROL)
T=ASIN(WINE/CAROL)

IF (ANGLE) 235,230,235
DJ1=SQRT(FORN+HORN)

DJ0=5.0

GRID1915
GRID1925
GRID1935
GRID1945
GRID 1955
GR1D 1965
GRID1975
GR1D 1985
GRID1995
GRID2005
GRID2015
GRID2025
GRID2035
GRID2045
GRID2055
GRID2065
GRID2075
GRID2085
GRID2095
GRID2105
GRID2115
GRID2125

GRID2135
GR1D2145
GRID2155
GRID2165

RO IS THE RADIUS NECESSARY FOR THE TARGET TO BE HIT WITH CERTAINTYGRID2175

RO=DJ1/2.0

60 TO 250

1=1.0+(D*COS(T)/C)

IF (1-1) 240,240,245

DJ1=SQRT (CFORN+HORN) -2 . 0*CAROL*COSCT))
DJ0=5.0

RO=DJ1/(2.0%SINCT))

60 TO 250

Xl=]

Yi=]-1
DJ1=SQRT(XI**2*FORN+HORN- 2. 0*X I*CAROL*COS(T))
DJO=SQRT(YI**2*FORN+HORN- 2. 0*Y I*CAROL*COS(T))
RO=DJ1*DJO/(2.0*D*SINCT))

IF (B-RO) 260,255,255

PROB1=9.0

GRID2185
GRID2195
GRID2205
GRID2215
GR1D2225
GRID2235
GR1D2245
GRID2255
GRID2265
GRID2275
GR1D2285
GRID2295
GR1D2305
GRID2315
GR1D2325
GRID2335

D-13

Code File; ELIPGRD2 For

260

265

270
275
280

285
290

295

300

305

310
315
320
325

330
335

340
345
350

355
360

PROB2=9.0

PROBO=0 .0

GO TO 425

HALFJ1=DJ1%0.50

HALFJ0=DJ0*0.50

IF (B-HALFJ1) 270,270,265

GRO=ARCO(HALF J1,B)
AREA3=2.0%(BSQU¥GRO-HAL FJ1%SQRT (BSQU-HALFJ1**2))
60 TO 275

AREA3=0.0

IF (B-HALFJO) 285,285,280

PET=ARCO(HALFJO,B)
AREAG4=2.0%(BSQU*PET- HAL FJO*SQRT (BSQU- HALF J0**2))
GO TO 290

AREA4=0.0

M=1.0+(2.0*D*COS(T)/C)

YM=M-1

XM=M

IF (M-1) 295,295,300

DM1=SQRT (FORN+HORN*4.0-4 . O¥CAROL*COS(T))
DM0=5.0

GO TO 305

DM1=SQRT (XM**2*FORN+4 . OYHORN- 4 . 0*CAROL*COS(1))
DMO=SQRT (YM**2*FORN+4 . O*HORN-4 . O*CAROL*COS(T))
HALFM1=DM1*0.50

HAL FMO=DMO*0 . 50

IF (HALFM1-DJ1) 310,325,310

IF (HALFM1-DJO) 315,325,315

IF (HALFMD-DJ1) 320,325,320
IF (HALFMO-DJ0) 330,325,330
AREA5=0.0

AREA6=0.0

GO TO 360

{F (B-HALFM1) 340,340,335

YAM=ARCOCHAL FM1,8)

AREA5=2, 0% (BSQU*YAM-HALFM1*SQRT (BSQU-HAL FM1*%2))
G0 TO 345

AREAS=0.0

IF (B-HALFMO) 355,355,350

GAME=ARCO(HALFMO,B)

AREA6=2., 0* (BSQU*GAME - HAL FMO*SQRT (BSQU-HALFMD**2))
60 TO 360

AREAS=0.0

IF ¢8-DJ1) 370,370,365

GRID2345
GR1D2355
GR1D2365
GRID2375
GR1D2385
GRID2395
GR1D2405
GRID2415
GR1D2425
GR1D2435
GRID2445
GR1D2455
GRID2465
GR1D2475
GR1D2485
GR1D2495
GR1D2505
GRID2515
GR1D2525
GRID2535
GRID2545
GRID2555
GR1D2565
GR1D2575
GR1D2585
GR1D2595
GR1D2605
GRID2615
GRID2625
GRID2635
GRID2645
GRID2655
GRID2665
GRID2675
GRID2685
GRID2695
GR1D2705
GR1D2715
GR1D2725
GRID2735
GRID2745
GRID2755
GR1D2765
GRID27T5

D-14
Code File: EL.TPGRD2 For

355 SER=ARCO(DJ?,B) GR1D2785
AREA7=2.0*(BSQU*SER-DJ1*SART(BSAU-DJ1#+2)) GRID2795
GO TO 375 GR1D2B05
370 AREA7=0.0 GR1D2815
375 IF (B-DJ0) 385,385,380 GRID2825
380 AQUARZARCO(DJO,B) GRID2835
AREAB=2. 0* (BSQU*AGUAR-DJO*SORT(BSQU-DJO**2)) GRID2845
GO TO 390 GRID2855
385 AREAB=0.0 GR1D2865
390 1F (B-C) 400,400,395 GRID2875
395 POT=ARCO(C,B) GRID2885
AREA9=2. 0* (BSQU*PQT-C*SQRT (BSQU- FORN)) GRID2895
GO TO 405 GRID2905
400 AREA9=0.0 GRID2915
405 IF C(B-D) 415,415,410 GRID2925
410 TIN=ARCO(D,B) GRID2935
AREA10=2.0*(BSQU*TIN-D*SQRT(BSQL-HORN)) GR1D2945
GO TO 420 GRID2955
415 AREA10=0.0 GRID2955
420 PROB2=(AREA1+AREA2+AREA3+AREA4+AREAS+AREAG-AREA7-AREAB-AREAS-AREA1GRID2975
10)/WINE GRID2985
PROB1=P 1 *BSQU/WINE - 2. 0*PROB2- (AREA7+AREAB+AREA9+AREA10) /WINE GRID2995
PROBO=1.0-PROB1-PROB2 GRID3005
425 IF (MET) 480,480,430 GRID3015
430 MROT=HROT+1 GRID3025
IF CPROB1-1.0) 440,440,435 GRID3035
435 120NK=1WARN GRID3045
440 SUM1=PROB1+SUN1 GR1D3055
SUM2=PROB2+SUM2 GRID3065
SUMO=PROBO+SUMO GRID3075
IF CIROT-MROT) 445,30,30 GR1D3085
445 ANP=MROT GR1D3095
AVPR1=SUM1/ANP GRID3105
AVPRZ=SUM2/ANP GRID3115
AVPRO=SUMO/ANP GRID3125
GO TO (450,460,470),NET GRID3135
450 WRITE (IPRIN,455) TARGET,SLING,GDSPAC,SHAPE,AVPR1,AVPR2,AVPRO, ZONGRID3145
1K GRID3155

* 455 FORMAT C1HO,A4,3X,11HSQUARE ,34X,F5.2,7X,F9.2,5X,F4.2,5X, 6HRANGRID3 165
455 FORMAT C1H ,A4,3X,11HSQUARE , 34X, F5.2,74,F9.2,5%,F4.2,5X, 6HRAN

1D0M,5X,3(F6.4,4X) ,Ab) GRID3175

GO TO 20 GRID3185

460 WRITE CIPRIN,465) TARGET,SLING,GDSPAC,SHAPE,AVPR1,AVPR2,AVPRO, 1ZONGRID3195

%K GRID3205

D-15

Code File: ELIPGRD2 For

[4

0o 0 o0 o0 n

465 FORMAT (1HO,A4,3X, 1THHEXAGOMAL ,34X,F5.2,7X,F9.2,5X,F4.2,5X, 6HRANGRID3215
465 FORMAT (1H ,A4,3X, 11HHEXAGONAL ,34X,F5.2,7X,F9.2,5X,F4.2,5X,6HRAN

100M,5X ,3(F6.4,4X) ,AL) GRID3225
GO TO 20 GR1D3235
470 WRITE (IPRIN,475) TARGET,Q,SLING,GDSPAC,XHAPE,AVPR1,AVPR2,AVPRO, [ZGRID3245
TONK GRID3255

475 FORMAT (1HD,A%,3X, 11HRECTANGULAR,1BH X AXIS OF GRID= ,F3.1,8H Y AGRID3265
475 FORMAT (1H ,A4,3X,11HRECTANGULAR,18H X AXIS OF GRID= ,F3.1,8H Y A

XIS ,5X,F5.2,7X,F9.2,5X,F4.2,5X, GHRANDOM, 5X,3(F6.4,4X) ,AG) GRID3275
GO TO 20 GRID3285
480 1F (PROB1-1.0) 490,490,485 GRID3295
4B5 1ZONK=IWARN GRID3305
490 GO TO (495,505,515),NET GRID3315
495 WRITE (IPRIN,500) TARGET,SLING,GDSPAC,SHAPE,ANGLE,PROB1,PROB2,PROBGRID3325
10, 120NK GRID3335
500 FORMAT (1HO,A&,3X, 11HSQUARE ,36X,F5.2,7X,F9.2,5X,F4.2,3X, 4X, F4GRID3345
500 FORMAT (1H ,A4,3X,11HSQUARE ,34X,F5.2,7K,F9.2,5X,F4.2,3X,4X, Fb
1.1,5X,3(F6.4,4X),Ab) GRID3355
60 TO 20 GRID3365
505 WRITE CIPRIN,510) TARGET,SLING,GDSPAC,SHAPE,ANGLE,PROB1,PROB2,PROBGRID337S
10, 120K GRID3385

510 FORMAT (1HO,A4,3X,11HHEXAGONAL ,34X,FS5.2,7X,F9.2,5X,F4.2,3X,4X, F4GRID339S
510 FORMAT (1H ,A4,3X, 11HHEXAGONAL ,34X,F5.2,7X,F9.2,5X,F4.2,3X,4X, Fb

1.1,5%,3CF6.4,4X) ,Ab) GRID3405
60 TO 20 GRID3415
515 WRITE CIPRIN,520) TARGET,Q,SLING,GDSPAC,XHAPE,SNGLE ,PROB1,PROBZ, PRGRID3425
1080, 1ZONK GRID3435

520 FORMAT (1HO,A4,3X,11HRECTANGULAR,18H X AXIS OF GRID= ,F3.1,8H Y AGRID3445
520 FORMAT (1H ,A4,3X,TTHRECTANGULAR,18H X AXIS OF GRID= ,F3.1,8H Y A

i1X1s ,5X,F5.2,7X,F9.2,5X,F4.2,3X,4X,F4.1,5%,3(F6.4,4X) ,AG) GRID3455
GO TO 20 GRID3465
525 STOP GRID3475
525 print *,'End of run: ORKL/GJ ELIPGRD2.'
STOP GRID3475
END GR1D3485
FUNCTION ARCO(CYB,ERN) ARCO 5
real FUNCTION ARCO(CYB,ERN)
ARCO 15
ARCOSINE FUNCTION ARCO 25
ARCO 35
NOTE THIS FUNCTION IS AVAILABLE AT SOME COMPUTER FACILITIES ARCO 45

AND MIGHT THEREFORE REPLACE THIS SECTION OF THE PROGRAM ARCO 55

D-16

Code File: ELIPGRD?2 For

o T o o o0

10
15

20

implicit none

t Arguments:

real CYB

real ERN

! Local variables:
real 2Ep

real PEP

real HOPE

real 20P

real ATP

2EP=0.0

PEP=3.141592
HOPE=CYB/ERN
ZOP=ABS(HOPE)

IF (HOPE) 5,15,10
2EP=3.141592

1F (z20P-0.5) 15,15,20
ARCO=ABS(2EP-(PEP/2.0-asin(20P))) ! changed ARSIN to asin
RETURN

ATP=SQRT((1.0-20P)/2.0)

ARCO=ABS(ZEP-2.0*asin(ATP)) 1 changed ARSIN to asin
RETURN

END

SUBROUTINE RECT(A,SHAPE ANGLE,Q,REVK,REVA,REVANG)
(Note: Argument A is never used by ELIPGRID algorithm.)
SUBROUTINE RECT(SHAPE ,ANGLE,Q,REVK,REVA,REVANG)

THIS SUBROUTINE REDUCES THE RECTANGULAR POINT NET TO A SQUARE
POINT NET WITH AN AFFINE TRANSFORMATION

implicit none

! Arguments:

real SHAPE,ANGLE,Q,REVK,REVA,REVANG
| Local variables:

real AQ

real SQK

real TIS

real ALPHA

real COAL

real SIAL

ARCO 65

ARCO 75
ARCO 85
ARCO 95
ARCO 105
ARCO 115
ARCO 125
ARCO 135
ARCO 145
ARCO 155
ARCO 165
ARCO 175
ARCO 185
ARCO 195

RECT 5

RECT 15
RECT 25
RECT 35
RECT 45
RECT 55

D-17
Code File: ELIPGRD2.For

real T
AQ=Q*Q RECT 65
SQK=SHAPE**2 RECT 75
TIS=AQ*SQK RECT 85
IF (ANGLE-0.1) 5,5,10 RECT 95
5 ANGLE=ANGLE+0.1 RECT 105
10 ALPHA=ANGLE/57.295779 RECT 115
COAL=COS(ALPHA)**2 RECT 125
STAL=SINCALPHA)**2 RECT 135
T=SQRTC(C(1.0-TIS)*COAL- (AQ-SAK)*SIAL)**2+4.0*AQ*(1,0-SQK)**2*SIAL*RECT 145
1COAL) RECT 155
REVK=((1.0+T1S)*COAL+(AQ+SQK)*SIAL-T)/(2.0*Q*SHAPE) RECT 165

| Below appears to be an error in the original code.
! See (Singer and Wickman 1969, p. 16) for the original math formula.
* REVANG=(ATAN(2.0*Q*(1.0-SQKI*TANCALPHAY/ ((AQ-SQK)*TANCALPHA)**24TIRECT 175
* 15-1.0))/2.0)*57.295779 RECT 185
! Next line is corrected formula.
REVANG=(ATAN(2.0%Q*(1.0-SQK)*TANCALPHA)/(1.0-TIS-(AQ-SQK)*
& TANCALPHA)Y**2))/2.0)*57.295779
REVA=SQRT (SHAPE/(Q*REVK)) RECT 195
REVANG=ABS (REVANG) RECT 205
* The following optional code matches (Singer and Wickman 1969, 16)
* and can be used in place of Line RECT 205 above. However, no differences
in output values were seen when testing Singer's 30 rect. grid examples after
* this code was substituted for line RECT 205.
* if (tan(2.0 * REVANG) >= 0.0) then
* REVANG = abs(REVANG)

* else

hd REVANG = 90.0 - abs(REVANG)

* endif
RETURN RECT 215
END RECT 225

1
Subroutine GetInFile(cInFile)

t Purpose: Checks for command line file name parameter.

' Defaults to ELIPGRD2.In.

! Input..: cInFile passed in as blank char*64 variable.

t Output.: cinfFile is updated.

! Errors.: Warns if no param. passed, then uses ELIPGRD1.In.
implicit none

! Arguments

character*(*) clInFile

Code File: ELIPGRD2.For

t Local vars
character*64 cCmndLine
call getcl¢(cCmndlLine)
if (nblenk(cCmndLine) == 0) then
I No file name passed.
print ¥, 'Warning..: No file name passed!'
print *, ‘Default..: Will default to ELIPGRDZ.In for input.'’
print *, ‘Usage....: ELIPGRD2 {<InputFileName> or <Help>]'
print ¥,
cinFile = 'ELIPGRD2.In!
else
clnFile = charnb(cCmndLine)
endif
return
end
1*** End of Sub: GetInFile()

Subroutine HelpScreen

! Purpose: Displays help screen.
1 Input..: None.

! Output.: None.

! Errors.: None

implicit none

print *,'ELIPGRID I1 Help Screen'

print *,! '

print *, 'Usage: ELIPGRD2 <InputFileName> or'
print * ¢ ELIPGRD2 <Help> or!
print * ¢ ELIPGRD2 '/
& 'ELIPGRD2.In is input default file.'

print *,

print *,'Format of input file is:!®
print *,iLine 1 = Title: (ABO)*
print *,'Line n = data.: (4F70.2,214,A4)'

print * ¢ F10.4, F10.4, F10.4, F10.4, 14, 14, AG?
print *,' SEMIMAJOR, SHAPE, ANGLE, GDSPAC,NET, MET,TARGET'
print * ¢ 1250.0 0.30 6.0 800.0 1 O#187'//
& ' <--Sqr. grid data.'

print *,! 1250.0 0.50 38.0 1060.66 3 ON190'//
& ' <--Rec. grid data.'

print *,! 2.0 <--- 2nd data line for rectangular grid = '//
& 'long/short sides.'

print *,* 1250.0 0.50 0.0 1611.86 2 O#104'//

& ' <--Hex. (triangle) data.’

D-19
Code File: ELIPGRD2.For

print * ¢ 9.9 9.9 9.9 9.9 9 9 EOF'//
& ' <--End of file data line.'

print * ‘'tine EOF,.,.,...: Use ALL valid vaiues '//
& YEXCEPT SHAPE is > 1.0.'

print *,

print *,'0utput is to file <InputFileName>.0ut.’

print *, 'ELIPGRD2.In is default file name when none passed.'
return

end
t*s* End of Sub: HelpScreen()

|w** End of File: ELIPGRD2.For

APPENDIX E

ELIPGRID-PC SOURCE CODE

E-1

APPENDIX E
ELIPGRID-PC SOURCF CODE

The first page of this appendix is an index of all user-defined functions in the program.
The source code file name is listed for each function. The next two pages are example
make and link files. Next are listed two ORNL-developed CA-Clipper® language header
files. These have a .CH extension and are listed in alphabetic order. Following these are
all the CA-Clipper® source code files. These files have a .PRG extension and are listed in
alphabetic order after the main file named EGPCMAIN.PRG.

Program execution begins with function "Main". Execution can be traced from func-

tion to function from that point.

E-2

Index of all user-defined functions in the ELIPGRID-PC program.

All filenames have a .PRG extension.

Function Name File Name
AlertBox EGPCFILE
BIErrc50 EGPCBEPR
BoxCenter EGPCMAIN
ChangeDrive EGPCMAIN
ChangeDrOrSub EGPCMAIN
ChangeSubdir EGPCMAIN
ChooseGrid EGPCMAIN
Chooselnput EGPCMAIN
DispTitle EGPCMAIN
DOS_Prompt EGPCMAIN
ElipGrid EGPCFORT
ErrMsgBox EGPCMAIN
ErrorUDF EGPCMAIN
ExtrctPath EGPCFILE
FileInput EGPCFILE
F10_Key EGPCMAIN
GetCostGrd EGPCMAIN
GetFileBox EGPCFILE
GetFilOutFile EGPCFILE
GetGridSiz EGPCMAIN
GetProbHit EGPCMAIN
GetScnOutFile EGPCFILE
GetSmallestArea EGPCMAIN
Help EGPCHELP
HelpSenN EGPCHELP
InputFromFile EGPCMAIN
Main EGPCMAIN
MenuBox EGPCMAIN
MenuCenter EGPCMAIN
NotReadyYet EGPCMAIN
NumTrim EGPCMAIN
PastDemoDate EGPCBERR
ParamHelp EGPCMAIN
Prob0_Regr EGPCFILE
Rect EGPCFORT
SayCenter EGPCMAIN
SIF_Filelnput EGPCFILE
Subdir EGPCFILE
WriteData EGPCMAIN
YN_MsgBox EGPCMAIN

1/
1
"
"
"
'
1/
/!
//
4
1/
'
l/

E-3

File....: EGPC.rmk

Purpose.: Make file for EGPC program, ELIPGRID-PC.
Compiler: Clipper 5.2

Author..: Jim Davidson

Started.: 08/09/94 from Hotspot.rmk

Last Mod: 08/09/9

Compiler Switches below:

/A = Automatic declaration of publics/privates as memvers.

/B = Include debugging info., delete this switch for final exe.

/N = No asutomatic main proc., must be used for file-wide var declarations.
/Q = Quiet, suppress line number display.

/M = Warn of ambiguous var refarences.

/V = Treat all ambiguous var references as dynamic vars, not as fields.
\EGPCMain.DBJ": “C:\CLIPPERZ\EDITOR\EGPC\EGPCMain.PRG"

e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCMain /A/N/Q/V/W /0e:\ /Te:\ /le:\

\EGPCFile.0BJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCFile.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCFile /A/N/Q/V/W /0e:\ /Te:\ /le:\

\EGPCFort.0BJ": “C:\CLIPPERZ\EDITOR\EGPC\EGPCFort.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCFort /A/N/Q/V/MW /Oe:\ /Te:\ /le:\

\EGPCHelp.0BJ": “C:\CLIPPER2\EDITOR\EGPC\EGPCHelp.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCHelp /A/N/Q/N/t /De:\ /Te:\ /le:\

\EGPCBErr.0BJ*: "C:\CLIPPERZ\EDITOR\EGPC\EGPCBErr.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCBETr /A/N/Q/V/W /0e:\ /Te:\ /le:\

\EGPCScrn.0BJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCScrn.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCScrn /A/N/Q/N/M /0e:\ /Te:\ /le:\

\EGPCGrph.0BJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCGrph.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCGrph /A/N/Q/V/M /Oe:\ /[Te:\ /le:\

\EGPC.EXE": "“e:\EGPCMain.OBJ" “e:\EGPCFort.OBJ" “e:\EGPCHelp.08J" \
\EGPCFile.0BJ" “e:\EGPCBErr.OBJ" "a2:EGPCScrn.0BJY "e:EGPCGrph.0BJ"
e:\biirker @C:\CLIPPER2\ED]TOR\EGPC\EGPC.LNK

E-4

File....: EGPC.Lnk
Purpose.: Blinker 3.0 response file for EGPC program, ELIPGRID-PC.
Compiler: Clipper 5.2
Author..: Jim Davidson
Started.: 08/09/94 from Hotspot.lnk.
Last Mod: 09/06/94
remove comment character below on lLast link to force full link, smaller exe
blinker incremental off
blinker incremental pad 256 # 128 is default pad size, Manual p. 9-39.
blinker incremental file e:\EGPC.bif
blinker message noblink
blinker demonstration date 1995/06/30
output e:\EGPC
file e:\EGPCMain
Start of dynamic overlay area for Clipper code.
beginarea
file e:\EGPCFile
file e:\EGPCFort
file e:\EGPCHelp
file e:\EGPCScrn
file e:\EGPCGrph

erclarea
Blinker error handler below should not be in overlay area, hanuv: . 7-7.
file e:\EGPCBErr # Blinker error handier for HOTSPOT

Lib e:\clipper
Blinker 3.0 Manual p. 7-20 says "some non-CA-Clipper code must be
overlaid for demo features to take effect, for fnstance EXTEND.LIB."
This link file is similar to Blinker's minimel overlay scheme, CL520Min.Lnk.
beginarea
lib e:\extend
endarea
lib e:\terminal
lib e:\dbfntx
lib e:\ct # Clipper Tools library

E-5

// =

// File....: Colors.Ch

// Purpose.: Provides color definitions for Clipper 5.x programs
// By......: Jim Davidson

// Started.: 07/24/91

// Last Mod: 04/28/94

// Example.: #include "Colors.Ch"

// setcolor{ C_WhtBlk)

//

/*** Below is example use in a program ***

public C_Normal := C_WhtBlu // Normal screen colors
public C_HighLght := C_CynBlu // Color Data highlight
public C_Help := C_CynBrn // Help screens
public C_Error := C_WhtRed // Error screens

// \ater...
C_Normal := C_WhtBlLk // etc. for rest of colors

tﬁﬁt/

#define C_BLK_WHT “n/u,w+/n,, ,W/n" // Black on white

#define C_W_BLK "w/nh // ¥hite on black

#define C_WHT_BLK “w+/n,n/w" // Bright white on black

#define C_W_BLU "u/b,w+/n,,,gre/n" // Mhite on blue

#define C_WHT_BLU 'wt/b,w+/n,, ,gre/nt // Bright swhite on blue

¥define C_WHT_BLKB T/, n/wY // Bright blinking white on black
¥:Jefine C_WHT_RED “w+/r,w+/b,, ,gre/n" // Bright white on red

wdefine C_WHT_MAG 'wt/rb,gr+/n,,,bg+/n" // Bright white on magenta
#define C_CYN_BLK “bg+/n" // Bright cysn on black

#define C_CYN_BLU “bg+/b,gr+/n,, ,bgt/n* // Bright cyan on blue

#define C_CYN_BRN "bg+/gr" // Bright cyan on brown

#define C_CYN_MAG “bg+/rb,gr+/n,,,bg+/n* // Bright cyan on magenta
#define C_YEL_BLK “gr+/n,gr+/n" // Bright yellow on black
#define C_YEL_BLNK "gr+*/no // Bright blinking yellow on black
#define C_YEL_BLU “gr+/b,w+/n,, ,bg+/nt // Bright yellow on blue

#define C_YEL_MAG “gr+/rb" // Bright yellow on magenta
#define C_RED_BLK re/n,wE/nt /7 Bright red on black

#define C_GRN_BLK “g+/n,wt+/n,, , bg+/n" // Bright green on black

* Colors for Flipper grf_colors() *
* D refers to #define origin

* LIGHT COLORS *
Wdefine DBLACK
#define DBLUE
#define DGREEN
#define DCYAN
#define DRED
#define DMAGENTA
#define DYELLOW
#define DWHITE

* DARK COLORS
#define DLGRAY
#cefine DLBLUE
#define DLGREEN 10
tdefine DLCYAN 1"
#define DLRED 12
#define DLMAGENTA 13
#define DLYELLOW 14
#define DLWHITE 15

0 ~NowuMphULIN=O

E-6

/7

// File: EGPCMax.Ch

// For: ELIPGRID-PC, EGPC.Exe.

// Purpose: Provides maximum value #defined constants.

// Author: Jim Davidson

// Prog Started: 10/03/93

// Last Mod: 08/09/94 changed name from HotSMax.Ch to EGPC.Ch.
/7

* Max semimajor axis.
#define cMAX_SemiMajor "9, 999,991

* Max grid cell side, short side for rec. grid.
#define cMAX_GSize "9,999.99m

* Max hot spot area.
#define cMAX_HotSArea 19999 . 99"

* Max total sample ares.
#define nMAX_SampleArea 99999999.9
#define cMAX_SampleArea 199 ,999,999.9n

* Max sample cost.
#define cMAX_SampleCost 199,999.99v

* Max number of samples.
#define cMAX_Samples 1999, 999"

* Max total cost.
#define cMAX_TotalCost "999, 999,999 .99

* Max rec ratio.
#define cMAX_RecRatio nog on

* Max ori~ntation angle.
#define LAAX_Angle "o9 on

* Max L to G ratio, semimajor axis/grid size.
#define cMAX_LtoG 19990, on

* Max elliptical shape ratio.
#define cMAX_Shape ng.oom

* Max prob of a hit.
#define cMAX_ProbHit 999 . 9990m

* Maximum acres.
#define cMAX_Acres "9999 ., g9n

* Desired probability.
#define cDESIRD_PROB “999_gn

* pesired cost.
#define cDESIRD_COST "99,999,990m

*** End of File: EGPC.Ch

Code File: EGPCMain.Prg

: EGPCMain.Prg

// Program..: EGPC.Exe
// Purpose..: Main program file for ELIPGRID-PC program.

Program provides interface to ELIPGRID (Singer 1972) algorithm.
Adds features utilizing Singer's original algorithm.

// Author...: Jim Davidson
// Started..: 10/03/93 as HotSMain.prg.
// Last Mod.: 09/06/94

1/

// Files....: EGPCMain.Prg This file, main module

// EGPCBErr.Prg Blinker 3.0 related error handler

1/ EGPCFile.Prg File input code

1/ EGPCFort.Prg Code translated from ELIPGRID FORTRAN
1/ EGPCGrph.Prg Code to write cost-based graph date
/7 EGPCHelp.Prg Help screen code

// EGPCScrn.Prg Screen input/output related code

//

1/ functions are arranged in the files in alphabetical order,
1/ although main() is the first function in this file.

/7

// Notes....: Compiler = CA-Clipper 5.2

// Linker = BLINKER 3.0

1/ Uses CA-Clipper Tools 3.0 library
/

yA

Modification history:

03/30/94
03/31/94
04/04/94
04/06/94
04/07/94
04/12/94
04/13/%4
04/15/94
04/17/94
04/22/94
04/28/94
04/28/94
05/08/94
05/09/94
05/16/94
05/17/94
05/17/94
06/14/94
08/09/%
08/11/94
08/26/94
09/02/94
09/06/94
*/
1/

On file input, trap rectangular grids with a 1/1 ratio and

use sq. grid instead. Screen input does not allow 1/1 rect. grids.
Restriced desired X prob.s to 99.9% on input screens. Changed error
criteria to a slightly smaller value. Worked better near 100X.
Modified triangular grid routine. See EGPCFort.Prg code.
Correction levels finished to level 3.

Added checks for negative P(0) cases. See EGPCFort.Prg ccae,
Upgraded from Blinker 2.10 to 3.0.

Modified Blinker error file, EGPCBErr.Prg, added for demo exp. date
use. DOS_Prompt() function now uses Blinker swap function.

AlL shapes are now restricted to >= 0.05. L/G ratios must be <= 3,
See EGPCFort.Prg comment.

90° angles now trapped in RECT subroutine. See EGPCFort.Prg.
Search techniques updated. See EGPCScrn.Prg.

Write cost-based graph data option added. See EGPCGrph.Prg.
Validation against Singer's 100 cases, OK.

Only minor (cosmetic) changes mades since validetion.

This is beta version given at DOE TIE conf. in Kennewick, WA,
Corrected error in "Smellest Hot Spot Hit, Given Grid."

See EGPCScrn.Prg.

Validated screen input for &7 cases as documented in Scn_Test.Sqr,
Scn_Test.Tri, and Scn_Test.Rec files in Valid100 subdir.

Upgraded Clipper to version 5.2d. Validation against Singer's 100
cases, OK.

Upgraded Blinker from 3.0 to 3.01. Validation against Singer's 100
cases, OK. Input = Test100.1n & .SIF; OQutput = .HSE & .HSS files.
Changed name to ELIPGRID-PC, EGPC.Exe, from Hotspot.

Other minor changes.

Forced correction level flag to 3, full correction, see EGPCFort.prg.
Validation against Singer's 100 cases, OK.

Changed all semiminor/semimajor text to semi-minor/semi-major,
Other minor editorial changes.

Changed formula for the number of samples for a triangular grid.
See EGPCScrn.Prg and EGPCGrph.Prg files.

Added "Number Samples' colum to graphics output data file.

// Version Info

Code File: EGPCMain.Prg

#define VER_DATE "09/06/94"

// Include files.
// Clipper supplied include files,

#include "Directry.Ch® // File info definitions
#include "Inkey.Ch® // Xey definitions
#include "Set.Ch" // set() definitions
#include *Setcurs.Ch" // setcursor() related
#include “Box.Ch® // Box drawing constants

// ORNL developed include files.
#include "Colors.Ch" // Color definitions

// User-defined command
#xcommand DEFAULT <TheParam> TO <pefaultval> z> ;
1F (<TheParam> == NIL); <TheParam>:=<DefaultVal>; ENDIF

. | Main Modute |
Function Main()

* Main module of program.

* Initialize local variables.

tocat nth =1 // Main menu choice

local nLCol =0 // Left col chosen by MenuCenter()
local nTRow = 8 // Main Menu top screen row

local ¢DOSScreen := savescreen(0,0,24,79)

local nDOSRow 1= rowl()

local iDone := .F. // Main Menu loop flag

local cDOSCmdLine H UL // DOS command line params

* program wide publics.

public cBasicUnit = UMY // M = meters, F = feet
* The ELipGrid correction levels beiow provide ability to test oid algorithms.
publ ic nElpGrdCor =3 // ElipGrid correction level
// 0 = Crig. ELIPGRID algorithm
// 1 = Rectangular grid corrections only
// 2 = Level 1's corrections + triangular grid corrections
/7 3 = Level 2's corrections + angle of 0.0 is not incremented to 0.1
// Correction Level 3 is the defaault,
public C_Normal := C_WHT_BLU // Normal screen colors
pubtic C_HighLght := C_CYN_BLU // Current subdir color
public C_Help 1= C_WHT_MAG // Welp screens
public C_Error := C_WHT_RED // Error screens
public C_Menul := C_WHT_MAG // Menu screen color 1
public C_Menu2 e= C_YEL_MAG // Menu screen color 2

* Get DOS command line parameters.
¢DOSCmdl ine := upper(dosparam())
if ws $ cDOSCmedl.ine

* Help psram. passed.

ParamHelp’ VER_DATE)

quit
elseif "M" $ cDOSCmdLine

* Monochrome param. passed.

* Black on white for LCD screens.

m->C_Normal := C_BLK_WHT // Normal screen colors

m->C_HighLght = C_WHT_BLK // Current subdir color

m->C_Help := C_WHT_BLK // Help screens

m->C_Error := C_WHT_BLK // Error screens

m->C_Meru1 := C_MHT_BLK // Menu screen color 1

m->C_Menu2 t= C_BLK_WHT // Menu screen color 2
endif

if wFe $ cDOSCmdL ine
* Feet param. passed,
cBasicuUnit := Wfw
endif

E-9
Code File: EGPCMain.Prg

%*--- 08/11/94 Note, JRD ---*
* EGPCFort.prg code now forces level 3 correction all the time.
* Below left in to facilitate any future return to correction levels.
Naon
* Determine which level of correction to ELIPGRID algorithm to use.
if "O" $ cDOSCmdLine
* Uge original Singer, 1972 algorithm.
m->nElpGrdCor := 0
elseif 1" $ cDOSCmdL ine
* Use rect. grid corrections only.
m->nElpGrdCor := 1
elseif "2v § cDOSCmdLine
* Add triangular grid corrections to level "1" corrections.
m->nELpGrdCor := 2
endi f

set escape on

set scoreboard off
set bell off

set confirm on
set wreap on

do while | LDone
setcolor(m->C_Normal) // Reset since looping back
cls
dispbox(00,00,04,79, B_DOUBLE_SINGLE)
setcolor(m->C_Help)
SayCenter(1, " ORNL ELIPGRID-pPC ")
setcolor(m->C_Normal)
SayCenter(2,"PC-Based Hot Spot Probability Calculations")
SayCenter(3,"Version " + VER_DATE)
a05, 2 say "Current subdirectory:
arow(),col() say diskname() + ¥:" + dirname() color (m->C_HighLght)
@823, 2 say "F1 key for Help" color(m->C_Help)
@823,63 say "Esc key to Exit" color(m->C_Help)
dispbox(06,00,22,79, B_DOUBLE_SINGLE)
dispbox(22,00,24,79, B_DOUBLE_SINGLE)
@22,00 say WpM
822,79 say ™"

SayCenter(nTRow- 1, "Main Menu")

nCh := MenuCenter(nTRow, {"P Probability of Hitting Hot Spot" '
"G Grid Size Required, Given Prob." .
“S Smallest Hot Spot Hit, Given Grid" |,
“"C Cost-Based Grid" ’
"} Write Cost-Based Graph Data" R
YN MNew Drive or Subdirectory" ,
"0 DOS Prompt" '
uQ Quit program..."), nCh,1, anLCol)
do case
case nCh == 1
* p Pprobability of Hitting Hot Spot
Chooselnput{nTRow+NCh+1,nLCol+2)
case nCh == 2
* G Grid Size Required, Given Prob.
GetGridSiz(ChooseGrid(nTRow+nCh+1,nLCol+2,m->C_Menu1), VER_DATE)
case nCh == 3
* S Smallest Hot Spot Area Nit, Given Grid
GetSmal lestArea(ChooseGrid(nTRow+nCh+1,nLCol+2,m->C_Menul), VER_DATE)
case nCh == 4
* C Cost-Besed Grid
GetCostGrd(ChooseGrid(nTRow+nCh+1,nLCal+2,m->C_Menu1), VER_DATE)
cage nCh == 5
* i Write Cost-Based Graph Data
WriteGphData(ChooseGrid(nTRow+nCh+1,nLCol+2,m->C_Menul), VER_DATE)

E-10
Code File: EGPCMain.Prg

case nCh == 6
* N New Drive or Subdirectory
ChangeDrorsub(nTRow+nCh+1,nLCol+2)
cese nCh == 7
* D DOS Prompt
DOS_Prompt()
otherwige
* o auit program... (or Esc key)
IDone := .T.

st color to
restscreen(0,0,24,79,cD0SScreen)

devpos (nDOSRow-1,0) // -1 makes DOS prompt come in just
* return to DOS // below last prompt.

return (0) // Return 0 to DOS ErrorlLabel

*** End of Func: Main()

* | End of Main Module |

--- Begin Other Functions ---
BRETRA R AR A SN AAREN AN RN O RO TTRRR Y
function BoxCenter(nTRow, NRows, mdidth, nType)
* Displays box centered on nRom.
* nType of 1 = double line top, single side, 2 = double sll.
* Returns left colum.
local nCol := (BO-nWidth)/2
default nType to 1
if nType == 1
HenuBox(nTRow, nCol , nNTRow+NROWS , nCol+nWidth-1, B_DOUBLE_SINGLE)
else
MenuBox(nTRow, NCol , nTRow+nRows, nCol+nidth-1,B_DOUBLE)
endif
return ¢(nCol)
*** End of Func: BoxCenter()

ARRAANRRRIA AR b bR hhh ey

Function ChangeDrive()
* Change current drive,
local cCurrDrive
local OrgConfrm

local (Done = LF.
local GetList = ()
LorgConfrm := get(_SET_CONFIRM,.F.)
do while | (Done
cls
cCurrDrive := diskname()
MenuBox(¢02,01,7,67)

@03,02 say " Change current drive to?"

@05,03 say “Enter new drive letter® get cCurrDrive pict “i%
805,col() say M:¢

read

if | diskchange(cCurrDrive)
* Invalid drive.
Err_MsgBox(10,"E","Error: Invalid drive.", ;
“Drive: ¥ + cCurrdrive)
Loop
else
Done := .T.
loop
endi f
enddo
set(_SET_CONFIRM, LOrgConfrm)

E-11
Code File: EGPCMain Prg

return {NIL)
#*+* £nd of Func: ChangeDrive()

AN ENEARRTAN N AT N I SEr T E RO dw

Function Changs0rOrSub(nTR,nLC)

* Merw for changing drive or subir.
* Input: NTR is top row.

* nLC is Lleft col.

-

static nLastCh H | // Remembers last choice
local nBR = nTR + &4

local nRC := nlC + 32

* Change drive.

Changedrive()

if Lastkey() 1= K_ESC
* Change subdirectory.
ChangeSubdir(10)

endif

return (NIL)

*** End of Func: ChangedrOrSub()

RARRNEERRANENERERTNAR IR NS

Function ChangeSubdir(nTR)
* Changes current subdir.
local cCurrSubdir := mm
local cCurrDrive := W
Llocal cDOSCmnd =

w ot #n

Llocal lDone .F.
local GetlList = Q
cCurrdDrive s= diskname()
cCurrSubdir := dirname()

do while | (Done

cCurrSubdir := padr(cCurrSubdir, 64)

MenuBox(nTR,1,nTR+6,66)

anTR+1,03 say "Change current subdirectory. Must be on drive ¥ + ;
diskname() + w; . »

@nTR+3,03 say "Change to " + cCurrDrive + ":v

anTR+3,col() get cCurrSubdir pict "as501%

@nTR+5,03 say "Current path: * + diskname() + ":% + dirname()

keyboard chr(K_END)

read

cCurrSubdir := alltrim(cCurrSubdir)

if lastkey() == K_ESC
* Esc key abort.
LDone := .T.
Lloop
elseif ¥:" § cCurrSubdir
* Error, drive name entered.
Err_MsgBox(nTR+6,"E","Error: Drive name entered.", ;
“Note.: This option only changes subdirectories" + ;
* on current drive.", ;
" Use change drive option for new drive.")
Lloop
elseif | subdir(cCurrSubdir)
* Error, invalid subdirectory.
Err_MsgBox(nTR+6,"E","Error: Inval id subdirectory.", ;
“Path.: " + cCurrbrive + “:" + ecCurrSubdir)
Lloop
else
* Do the DOS CD command.
if len(cCurrSubdir) > 3 .and. right(cCurrSubdir,1) == "\"
* 1f not root subdir and we have trailing “\", remove it.
* Will mess up DOS CD command.

Code File: EGPCMain.Prg

E-12

cCurrSubdir := left(cCurrSubdir, len(cCurrSubdir)-1)

endif

* |4 no characters in subdir name, default to root of current drive.
if empty(cCurrsubdir)

cCurrSubd
endi f

ir = mn

* Form the command and do the work.

cDOSCmnd :=

“CD " + cCurrSubdir

run (cDOSCmnd)

Done := .T.
Loop
endif
enddo
return (NIL)

*** End of Func: ChangeSubdir()

ERRERNNENNNEE RN R R

NRRERENEERedkddwdd

Function ChooseGrid(nTR,nLC, cColor)

* Choose grid type

desired.

* Input: Top row, lLeft col., menu color.

* Returns: Grid type as "S", WR®, or “T", for square, rect., or triangle.
hd NIL returned if Esc pressed.

static nLastGrid := 1 // Remembers last grid type chosen
local nBR t=nTR+ 5

local nRC t= nLC + 30

local cGridTiype := NIL

local cOrgColor
default cColor to

Hee
m->C_Normal

cOrgColor := getcolor(cColor)
MenuBox(nTR,nLC,nBR,nRC)
anTR+1,nLC+2 say “Choose Grid Type “

anTR+2,nLC+2 prompt
anTR+3,nLC+2 prompt
anTR+4,nLC+2 prompt
menu to nLastGrid
if nLastGrid == 1
* Square grid.
cGridType := wsH
elseif nLastGrid ==
* Rect. grid.
cGridType := “R"
elseif nLastGrid ==

" Square "
" Rectangular
* Trisngular

* Triengular grid.

cGridType z= uT»
endif
setcolor(cOrgColor)
return (cGridType)

*** End of File: ChooseGrid()

Rl 122l 2220212222012
Function Chooselnput(nTR,nLC)

* Choose input from Screen/File.

“ input: nTR is top row.

" nLC is lteft col.

*

static nLastinput :=

tocal n8R e=nTR + 4

local nRC := nLC + 30

local cOrgColor := setcolor(m->C_Menul)
MenuBox(nTR,nLC,nBR,NRC)

anTR+1,nLC+2 say
anTR+2,nLC+2 prompt

“Enter Data From?"
" S Screen Input "

1 // Remembers last input type chosen

E-13

Code File: EGPCMain.Prg

anTR+3,nLC+2 prompt " F

menu to nLastlnput

setcolor(m->C_Normal)
if nLastinput == 1
* Screen input.
GetProbHit(ChooseGrid(nTR+2,nLC+1), VER_DATE)
elseif nLastinput == 2
* File input.

InputfFromfile(nTR+2,nLC+1)

endif

setcolor(cOrgColor)

return (NIL)

File Input *

*** End of File: Chooselnput()

AREAAA A AN AN A AN AAA N AR ANA NN AN N A AN AN NACAANAA AN R ANN N AN NANS
Function DigpTitle{cGridType, cOption, cOutFile, LOutFile)
* Displays correct title for input screen. Also displays output file, if any.

* Input: cGridiype =
*

cOption

cal cTitled
zal cTitle2
local cUnit

* Get 18t po tion of
1 cOption == Wph
"Determine Probability of Hitting Hot Spot for "

cTitlet :=
elseif cOption

clitlel :=
elseif cOption

cTitlet :=
elseif cOption

cTitlel ==
endif

$ nGgn

nps
gy
Ilsll
Lol
"n

title.

L} sll ’

wgn, or wT" for Square, Rec., or Tri, grids.

for Probability of Hitting Hot Spot
for Grid Size Required, Given Prob.
for Smallest Hot Spot Hit, Given Grid
for Cost-Based Grid

for Write graph data

"Determine Size of *

s= WY

“Determine Size of Cost-Based "

"Write Cost-Based Graph Data for v

if cGridType == wsn

* Square grid.

if cOption $ “PGCW"
t= "Square Grid in "
elseif cOption == nsw
1= "Smallest Hot Spot for Square Grid in

cTitle2

eTitle2
endif

elseif cGridType == “Rw
* Rectangular grid.
if coption $ “PGCW"
:= W“Rectangular Grid in *
elseif cOption == nsw
:= "Smallest Hot Spot for Rectangular Grid in "

cTitle2

cTitle2
endi f

elseif cGridlype == »'»
* Triangular grid.

if coption $ “PGCW"

:= "Trijangular Grid in ®

elseif cOption == ns"

:= "Smallest Hot Spot for Triangular Grid in

cTitle2
cTitle2
endi f
endi f

cUnit := iif(m->cBasicunit==VF" uFeet", "Meters")

cls

80,0 to 4,79 double

85,0 to 24,79

SayCenter(1,cTitlel+cTitle2+cUnit)

E-14
Code File: EGPCMain.Prg

if 1 (cOption == "y»)
SayCenter(2, “See Gilbert Chapter 10 for general information.")
else
SayCenter(2, " Writes data input file (ASCII format) for spreadsheets and "'+;
"graphics programs.”)
endif
if loutFile .
203,02 say "Current Output File: " + cOutFile color(m->C_HighLght)
else
@03,02 say "Current Output File: None chosen." color(m->C_HighLght)
endif
return (NIL)
*** End of Func: DispTitle()

Li e sl 22 22l Tee 1l
Function DOS_Prompt()
* Shell to DOS.
* Returns: NIL
local mMajErr := 0 // Major error code
local nMinErr := 0 // Minor error code
local LSuccess := .F.
set color to
cls
setcolor(m->C_Help)
scrol1¢0,0,4,79)
@0,0 to 4,79
81,2 say "Type ENIT at DOS prompt to return to ELIPGRID-PC program."
a3,2 say "The DOS HMEM command will give largest executable program size."
* Blinker 3.0 command, swpruncmd(*", 0, ", "),
* leaves much more memory free than Clipper run command. .
* Default swpruncmd() parameters: run command.com, free as much mem as possible,
* leave current path the default, swap to current path.
LSuccess := swpruncmd("", 0w nw)
if | lSuccess
scrol 1(0,0,2,79)
? ¥DOS accass failed.
nMajErr := swperrmaj()
nMinErr := swperrming) .
? "Blinker major, minor error codes: ¥, NumTrim{rMajErr)+" * NumTrim(nMinErr)
? YPress a key to continue..."
inkey(0)
endi f
return{NIL)
*** End of Func: DOS_Prompt()

ARRRRENREEIRERERTRNAAAE IV EAT AR RRE ROt RREr e e en

Function Err_MsgBox(nTR, cType, cLint, cLin2, cLin3)

* Generic error or msg box. Defaults to error box.

* Displays up to 3 lines + Press key msp and waits for keypress.
* Returns: NIL
local cTmpScn
local |DispMsg
Llocal nMaxL inebidth
local miWidth
local cOrgClir
local nLC

local nBR

local nRC

local nLines
local nCurRow
local nCurCol
default cType to “E" // Default to error box

-4
.

QOO0 300

* Set box color.
if upper(cType) == “E"
corgClr := setcolor(m->C_Error)

E-15
Code File: EGPCMain.Prg

else
corgClr := getcolor(m->C_Help)
endif

* Get current cursor pos.
nCurRow := row()
nCurCol := col()

if (valtype(clin3) == ucv)
* 3 lines to display

NBR :=nTR + 4 + 3 // 4 lines for misc. + 3 msg lines
nMaxL i newdth := max(max(len(cLin1), len(cLin2)), lenCcLin3))

nLines := 3
elseif (valtype(cLin2) == “C")
* 2 lines to display

NBR := nTR + 4 + 2 // & lines for misc. + 2 msg lines

rMaxL inewdth := max(len(cLinl), len(cLin2))
nLines := 2

elseif (valtype(clint) == "C")
* 1 line to display
nBR := nTR + 4 + 1
rMaxL ineWdth := len(clLin®)
ntines :z 1

else
* Incorrect params. passed
LDispMsg == .F.

endi f

* Display message.
if (lDispMsg)

nMaxL ineldth := max(nMaxLineWdth, len("Press a key to continue..."))
nlidth := 4 + nMaxL ineWdth // 2 lines/blanks + largest line

nLC := (79 - nidth)/2 // center
nRC := nLC + nWidth - 1
cTmpScen := savescreen(nTR, nLC, nBR+1, NRC+1)
MenuBox(nTR,n\.C,nBR,NRC)
if (nLines >= 1)
anTR+2, nlC + 2 say cLim
endif
if (nLines »>= 2)
anTR+3, nLC + 2 say cLin2
endif
if (nLines == 3)
anTR+4, nLC + 2 say cLin3
endif
@nBR-1, nLC + 2 say "Press a key to continue., . "
tone(440,1)
inkey(0)
restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)
else
a0,0
80,0 say " Err_MsgBox() error: Check parameters.
inkey(0)
endif (LDispMsg)
setcolor(corgClr)
anCurRow, nCurCol say "
return (NIL)
w** End of Func: Err_MsgBox()

RS RRENERRE e RRRRdhhtddhhdirid ki ddirdddddriridd

Function ErrorUDF(|PassTest, cErrorMsg, nFldLen)

* Generic error routine for @ say/get valid clauses.
LPassTest: Logic flag for--pass test?

cErrorMsg: Message to display

* %t % @

+ress 8 key to return...

nFldLen...: Length of get field--as picture specifies for numeric.
Returns..: .F. if LPassTest == .F., else just returns .T.

E-16
Code File: EGPCMain.Prg

local CurGetName := readvar() // Xame of current get variable
local nTR := row() + 1 // Current row # 1 for error box
local nBR = nTR + 3

local nLC := col() - nFldLen // Current col is end of get field
local nRC = nlC + len{cErrorMsg) + 1

local cTmpScr := savescreen(nTR, nLC, nBR, nRC)
local ccurClr := setcolor{(m->C_Error)
local LRtnval := .F.

if | lPassTest
* Invalid input failed valid test, display error box.
scrol L(nTR, nLC, nBR, NRC)
anTR,nLC to NBR,NRC
anTR+1, nLC+1 say cErrorMsg
anTR+2, nLC+1 say "Press a key..."
tone(440,1)
inkey(0)
restscreen(nTR, nLC, nBR, nRC, cTmpScr)
LRtnval := .F.
elge
LRtnval := .T.
endi f
setcolor(cCurClr)
return (lRtnval)
=** End of Func: ErrorUWF()

RRRRIT AR AT ONRN NN AR TR T R Ry R

Function Inputfromfile(nTR,ntC)
* Get input data from ELIPGRID type file or SIF type file.
* Input: nTR = Top row for box.
hd nLC = Left col for box,

static nLastType := 1 // Remembers last file type chosen
static nLastFileE := 1 // Remembers last ELIPGRID type file ch
static nLastFileS := 1 // Remembers last SIF type file ch
locat nBR = AR + 4

local nRC = nlC + 30

MenuBox(nTR,nLC,NnBR, NRC)

anTR+1,nLC+2 say "Choose Input File Format"
anTR+2,nLC+2 prompt “ELIPGRID Type Format"
anTR+3,nLC+2 prompt *'S1F Type Format"
menu to nLastlype
if nLastType == 1
* ELIPGRID Format.
Filelnput(nTR+2,nLC+1,AnLastFileE,VER_DATE) // Pass nLastfileE by refer.
elseif nLastType == 2
* SIF Format.
S:F_Filelnput(nTR#Z,nLC+1,anLastFileS,VER_pATE) // Pass nLastfileS by refer.
endi
return (NIL)
*** End of File: InputfromFile()

ARRRAIAREARES R RARETIARTAIRE TR AR TPRAAANNTPATORR TN AN

Function MenuBox{nTR,nLC,NBR,NRC, cSides, (Shadow)
* Draw box sides for a menu.
* cSides defaults to double top, single sides.
* cSides could be defined constants from from Box.Ch.
* IShadow defaults to .T.
local cOrgColor s= setcolor()
default cSides to B_DOUBLE_SINGLE
default (Shadow to .T.
if {Shadom
set color to
scrol L(nTR+1,NLC+1,nBR+1,nNRC+1)
setcolor(cOrgColor)
scrol L{(nTR,nLC,nBR,NRC)

E-17
Code File: EGPCMain.Prg

endi f

dispbox(nTR,nLC,nNBR,NRC, cSides)
return (NIL)

** End of Func: MenuBox()

FRRREAEERAAERRREARANARTARINRARETEAAIRRNIETAT AR AAr bR h iy

Function MenuCenter(nRow, aPrmpts, nChoice, nType,nLeftCol)

* Displays centered menu of prompts.

* Returns menu choice.

* Returns left col of menu when nLeftCol is passed in by refererce.

local nLong := 0

local nPlen := 0

local nPrmpts := len(ePrmpts)
=0

local nLcCol

local i

default nChoice to 1 // 1st choice to highlight

default nType to 1 // 1=Double top, single side,2=all double

* Find longest prompt, set nLong.
for i = 1 to len(aPrmpts)
nPLen := len(aPrmpts(il)

nLong = if(nPLen > nLong, nPLen, nLong)
next i
nLCol BoxCenter(nRow,nPrmpts+1, nLong+4,nType)

nlLeftCol := nLCol
for i = 1 to nPrmpts
8nRowri, nlCol+1 prompt * ¥ + padr(ePrmpts[i),nLong) + " *
next i
menu to nChoice
return (nChoice)
*** End of Func: WenuCenter()

LA At 2t Lt a g2

Function NotReadyYet(cMsg)

* Not ready yet msg.

save screen

cls

80,0 to 5,79

§ 2, 2 say cMsg + * option is not ready yet.®
2 4, 2 say “Press a key to continue..."
inkey(0)

return (NIL)

*** End of Func: NotReadyYet()

AENANAN RN AR SR Rd s

Function NumTrim(nNum)

* Returns PNum in str form trimaed.
local cNumStr := alltrim(str(nNum))
return (cNumStr)

e End of Func: NumTrim()

AENEEEARAAN RN TN RARINEEANAY

Function SayCenter(nRow, cMsg)

* Digsplays cMsg on centered nRow.
local nCol := (80-len(cMsg))/2
@nRow,nCol say cMsg

return (NIL)

» End of Func: SayCenter()

NRRALAARAREREATN ST R Eddrdr

Function YN_MsgBox{cMsg)

* Yes/No Mesgage Box, Displays Msp,

* Returns ,T. if Wy" or "Y" pressed.
local cAns

local cOldClr := setcolor(m->C_Help)
local RtnvVal := .F.

E-18
Code File: EGPCMain.Prg

local TempScr

save screen to TempScr

MenuBox(5,5,10,50)

a8 7,7 say cMsg

cAns := upper(chr(inkey(0)))

if cAng == "Yn _or, (lastkey({) == K_ESC)
(Rtnval := .T.

endif

setcolor(coldclir)

restore screen from TempScr

return (LRtnval)

*** End of Func: YN_MsgBox()

*** End of File: EGPCMain.Prg

E-19
Code File: EGPCBEr.Prg

/i..ttt.ttt...it*..t...tii.iitt..iti*.tii...ﬂi..iiiﬁitti..tit..ii (12112

L]
* Program : EGPCBErr.Prg
* : Blinker/CA-Clipper error handling for ORNL/GJ ELIPGRID-PC.
* Started : 04/13/94 from BLERRC50.PRG supplied by Blinker 3.0.
* Last Mod : 08/09/94, JRD
*
* Compfiler : CA-Clipper 5.2
* Linker : Blinker 3.0
L
* Note : Overlaying of this file is NOT recommended, because
- : if a severe error occurs, it may be impossible to
* : load this error handler into memory, in which case
. : the error will never be reported, making debugging
: : difficult,

/

#commend ? <list,...> => 1?7 Chr(13) + Chr(10) ; ?? <list>
#command 7? <list,...> => OutErr(<list»)

function BLErreS0()
local bBliError, boldErrBlk, nErrCode, oErr, |UseErrBlk, i
public lInErr

// First check we're not in 2 multiple error situation
// (likely cause of multiple error is an error loading
// an overlay while in an error situation)

if m->lInErr

* 7 "Blinker error : "

* 77 BLiErrNum()

* ? "(Multiple errors occurred while in error handler)®

quit
endif
m->lInErr = T, // ln an error
lUseErrBlk = .t. // Use BLINKER error block
oErr := ErrorNew() // Create error object
nErrCode s= BLIErrNum() // Blinker Error Number
oErr:subsystem := ([BLINKER) // Fajiling Subsystem name
oErr:sublode := nErrCode // Blinker error number
oErr:canRetry := .F. // Not Retryable
oErr:geverity :=3 // Maximum severity
do case

case nErrCode = 1201

oErr:description [unable to find overlay file 1+BLiErrPrm()+[in current path)]

oErr:filename := BLiErrPrm()

case nErrCode = 1202
ofrr:description := [DOS read error in file J+BLiErrPrm()
okrr:filename := BLIErrPrm()

case nErrCode = 1203
ofrr:description := [file J+BLiErrPrm()+[is not a valid .EXE file]
oErr:filename := BLiErrPrm()

case nErrCode = 1204
ofrr:description := [overlay file] + BLiErrPrm() + [does not match the .EXE filel
okrr:filename := BLEErrPrm()

case nErrCode = 1205
oErr:description := [not enough memory to load procedure)

case nERRCode = 1206
ofrr:description := [maximum procedure nesting depth exceeded)
luseErrBlk = .f,

case nERRCode = 1207
ofrr:description := [demonstration calls Limit exceeded)

E-20

Code File: EGPCBErr.Prg

lUseErrBlk = .f,
case NERRCode = 1208

// New ELIPGR1D-PC

PastDemoDate()

/* original code
ofrr:description
(UseErrBlk = .f.

*/

cage nERRCode = 1209
oErr:description :=
WUseErrBlk = .f.
nERRCode = 1210
oErr:description :
nERRCode = 1211
oErr:description :
nERRCode = 1212
ofErr:description :
nERRCode = 1213
ofrr:description :=
lugeErrBlk = .f.
nERRCode = 1214
oErr:description :
nERRCode = 1215
ofrr:description :=
nERRCode = 1216
ofrr:description ==
nERRCode = 1217
ofrr:description
otherwise

oErr:description :

end case

case
case
case

case

case
case
case

case

for i = 1 to 60
7 "n
next

if lUseErrBlk

boldErrBlk := ErrorBlock({|e|BLiError(e)))

else

code, 04/13/94, JRD

:= [demonstration date limit exceeded)

[demonstration time Limit exceeded)

[overiay has been prematurely freed]

[overlay manager internal stack overflow]

[Overlay Opsize exceeded - increase Opsizel

[attempt to call DEFINED routine]l

[error accessing EMS overlay cache)

[error accessing XMS overlay cache)

[overlay manager unable to resume)

[overlay vector corrupted during execution]

[unknown BLINKER error)]

//
//
1/

//

?? "Blinker error" + str (oErr:subCode,5)

7?7 ¥ v, oErr:description
? (11]]

endif
if (ErrorBlock() <> NIL)

eval(Errorblock(),cErr)
else

quit

if (UseErrBlk
Errorblock(bOldErrBlk)

endif

w->LInErr = _F.

return (nil)

// Blinker error handler

static Function BLiError(e)
local i
7 “Error HL

if ¢ 'Empty(e:subsystem()

1
1

//

1/

)

Cheap substitute for CLS
So that it does not
Force in the screen drivers

Install new error handler

Just in case error handler
fails

Evaluate the error block

Restore the previous handler

E-21
Code File: EGPCBErr.Prg

77 e:isubsystem() + /" + Ltrim(Str(e:subCode(}))
end
if ¢ |Empty(e:description()))
? “Degcription : " + e:description()
end
if ¢ |Empty(e:filename()))
? "Filename 1 "+ erfilename()
end
? "
7 “Call Trace!
i:=3
while ¢ 1Empty(ProcNeme(i)))
? "Called from : ¥, Left(ProcName(i)+SPACE(20),620) + ;
wen 4+ Substr(SPACE(7)+Str(ProcLine(i)),-7) + ")
jee
end
7 "
ERRORLEVEL(1)
QITY // terminate application
return (nil)

REREEENERT YR NN RT TRy

Function PastDemoDate()

* New code for ELIPGRID-PC past demo date.

local cDemoDate := blidemdte()

cDemoDate := substr(cDemoDate,5,2)+"/"+right(cDemoDate,2)+"/"+left(cDemoDate,4)
?7? repli("=4, B80)

7?7 " Message: ELIPGRID-PC is past the expiration date of " + cDemoDate

" Date...: " + dtoc(date())

" Note...: This version of ELIPGRID-PC is not intended for indefinite use."
" It is a beta version for testing and validation."

Contact: Jim Davidson"

1 m“L/GJII

" (303) 248-6259n

" for more information."

repli(“=1, 80)

// terminate application

errorievel(1)

qQuit

return (NIL)

w** £nd of Func: PastDemoDate()

LIRS RS IS IR IES IO IR)
-

w** End of File: EGPCBErr.Prg

E-22
Code File: EGPCFile.Prg

1/

// File: EGPCFile.Prg

// For: EGPC.Exe, ELIPGRID-PC program.

// Purpose: Provides file input code.

// Author: Jim Davidson

// Prog Started: 10/03/93

// Last Mod: 08726794

// Note: Functions are arranged in alphabetical order.

// Modifications since validation with Singer's 100 cases:
/7 04/15/94 Added shape, L/G restrictions. Shapes must be >= 0.05. L/G ratios
// must be <= 3.0. See EGPCFort.Prg for comments.
// 04/28/94 Added AlertBox() to replace alert(). Works well with mono screens.
// 08/09/94 Name changed from HotSFile.prg to EGPCFile.prg.

1/

// Include files

#include "Inkey.Ch" // key definitions
#include "pDirectry.ch® // File info definitions

// User-defined command
#xcommand DEFAULT <TheParam> TO <Defaultval> => ;
IF (<TheParam> == NIL); <TheParam>:=<Defaultval>; ENDIF

AAARATANATARNATSAAEEAAAANAAAATATENAAANRRARENTANRTAATRN Y

Function AlertBox(nTR, acOptions, nLin1, nLin2, nLin3)

* Substitute for alert() function. Alert() does not obey color settings.

* AlertBox obeys current color setting. Alert{) is hard to read on LCD screens.
* Lines 2 and 3 are optional.

* Returns: Esc = 0, else number of array element of acOptions chosen.

local cTmpScn Bl

local LDispMsg
local nMaxL{newdth
local nPrmptWdth
local mWidth

local corgClr
local nLC

local nBR

local nRC

local nLines

local nCurRow
local nCurCol

local nNumOps
local nCuroOp

local nOpCol
Llocal nRtnval

2000
.

en(acOptions)

n
002~ 0D000CO00O

* Set box color,
corgClr := setcolor(m->C_Error)

* Get current cursor pos.
nCurRow := row()
nCurCol := col()

if (valtype(nlLin3) s= ngh)
* 3 lines to display
NBR := nTR + 4 + 3 /7 & lines for misc. + 3 msg lines
nMaxLineWdth := max¢ max(len(nLin1), len(nlin2)), len(nLin3))
nLines := 3
elseif (valtype(nLin2) ==z “C")
* 2 lines to display
nBR 2= nTR + 4 + 2 // & lines for misc. + 2 msg lines
riMaxLineWdth := max(len(nLin1), len(nLin2))
nLines := 2
elseif (valtype(nLini) == “C¥)
* 1 Lline to display
NBR :=nTR + 4 + 1

E-23
Code File: EGPCFile.Prg

mMaxLineWdth := len(nlin1)
nLines := 1{

else
* Incorrect params. passed
(DispMsg := .F,

endif

* Display message.
if (LDispMsg)
* Get total width of the prompts plus inner spacing.
for nCurOp = 1 to niumdps
nPrmptudth := nPrmptWdth + Len(acOptions [nCurop])
next NCurOp
APraptidth := nPrmptWdth + 3 * (nNumOps-1)

* Determine overall width of box.
mMaxt ineldth := max(nMaxL ineWdth, nPromptWdth)
idth := & + nMaxlineWdth
nLC := (79 - mWidth)/2 // center
NRC := nlC + mWidth - 1
cTmpScn := savescreen(nTR, nLC, nBR+1, NRC+1)
HenuBox(nTR,nLC,nBR,NRC)
if (nLines >= 1)
anTR+2, nLC + 2 seay nlint
endi f
if (nLines >= 2)
SnTR+3, nlLC + 2 say nlin2
endif
if (nlines == 3)
anTR+4, nlC + 2 say nLind
endif

* Display and get desired menu option.
for nCurOp = 1 to nNNumOps
if nCurOp == 1
nOpCol := nLC + 2
elge
nopCol := nOpCol + len(acOptions{nCurOp-1)) + 3
endif
@nBR-1, nOpCol prompt acOptions (nCurOp)
next nCurOp
tone(440,0.3)
menu to nRtnval

restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)
else
@0,0
80,0 say " AlertBox() error: Check parameters. Press a key to return... "
inkey(0)
endif (IDispMsg)
setcolor{ corgClr)
anCurRow, nCurCol say "
return (nRtnval)
w* End of Func: AlertBox()

L2 d a2l il]t il tlidd]

Function ExtrctPath(cPathfileN)
* Extract path from cPathfilen.
* Example: ExtrctPath("D:\file.ext®) ==> "D:*
* Based on Environ.prg fuction FilePath() supplied by Clipper.
local nBkSlshPos := 0
tocal cPath := w»
nBkS(shPos := rat("\", cPathFileN)
if nBkSlshPos == 0
cPath := we
else

Code File: EGPCFile.Prg

E-24

cPath := substr(cPathFileN, 1, nBkSlshPos)

endi f

return (cPath)
*** End of Func: ExtrctPath()

Lt s a2 ad il el ottt il st ildddlidd)
Function Filelnput(nTR, nLC, ninitFile, cVerDate)

L 2

*t s %2

nLC is left col.
ninitFile is initial file to highlight.
is program version date.

cVerDate

* Returns: NIL

lozal
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
{ocat
Llocal
local
local

cInFil

cFileT
nLines

elseif

Err_MsgBox(10,%“E",“Error: Less than 3 Lines in file.", ;

else

LReadInsert
zinFile
cOutfile
cDatalLine
nSemiMajor
nShape
nAngle
nGSize
nGTyp
nOrientn
cTrgtlDd
nlnputLine
nRecRatio
nLines
nProbNoHi t
nProbSum
nCrntAngle
nLrgstAngie
cFileText
LProceed
GetList

"
[E-X-N-N-N-R-N-]

readinsert(.7.)
Ho

000000 =

o

~
o -

mlecount(cFileText)
if lastkey() == K_ESC .or. empty(cinFile)
* Just return, if Esc key pressed.

nLines <3

“File.: " + cInFile, ;
uNeed (1) Title Line, (2) Data line, (3) EOF line.")

//

1/

//
/"
//
//
//
1
//

//

//
1

//

Get data from ELIPGRID format input file.
Writes P(0) output to cInFile.Out.
Input: nTR is top row for file selection box,

Input file name

Ellipse semi-major/semi-minor axis

Grid size, for Rec. grids, short side

Grid type, 1=8q., 2=Tri., 3=Rec.
Specific angle or "random",

if nOrientn > 0 use “random" angles

Current file input line

Rec. grid long sides/short side ratio

Lines in input file
Used for “random" angle case

Used for “random" angle case
Used for “random! angle case

Stops compiler warnings

:= GetFileBox(nTR,nLC,,,"*.*",, , AnInitFile)
ext := memoread(cInfile)

cOutFile := GetFilOutFile(cInfile, @lProceed)

if

LProceed
* Do the work!
cls

set uiternate to (cOutfFile)
set alternate on
2?7 “Output from ORNL/GJ ELIPGRID-PC Program Version: " + cVerDate

“File Name.:
“Created on:
“Input file:
"Title line:

NN NN DN

"Target Grid lype
”

Get date lines
nlnputLine := 2

+ cOutFile
+ dtoc(date())

+ cInfile + * using ELIPGRID format."
+ memoline(cFiteText,,1)

do while ninputLine <= nLines
:= memol ine(cFileText, ,nInputline)

cDataline

1/

Semi-major AXis Gridspace Shape
in Relative Units in Orig Units®

Skip title Line

Angle

Prob(0)"

E-25
Code File: EGPCFile Prg

nSemiMajor := val(substr(cDatsLine, 1,10))

nShape := val(substr(cDatalLine,11,10))
nAngle := val(substr(cDataLine,21,10))
nGSize := val(substr(cDataline, 31,10))
nGTyp := val(substr(cDatalLine, 41, 4))

norfientn := val(substr(cDatalLine, 45, 4))
cTrgtiD := substr(cDatal ine, 49, 4)

if nGTyp == 3
* 1f rect. grid, get long/short ratio from next line.
nlnputl ine++
cDataLine := memoline(cFileText,,ninputLine)
nRecRatio := val(substr(cbDatalLine, 1,10))
if nRecRatio == 1.0
* Trap for a rect. grid with a long/short side ratio of 1.0.
* Use a sq. grid since problems can develop using rect. grid in
* certain cases. This problem found in tech, review by J. Wilson.
nGTyp := 1
endif
endif

if nShape > 1.0 .or. nShape < 0.05 .or. nSemiMajor/nGSize > 3.0
* EOF or error in shape or L/G ratio > 3.

exit // Exit do while loop
endif

---------------- | calculate probebility of no hit, P(0) |------*
if nOrientn <= 0.0
* Calcualte for a single angle.
nProbNolit := ElipGrid(nSemiMajor,nShape,nAngle,nGSize,nGTyp, ;
nRecRatio)
else
* Calculate for average of multiple angles,
* i.e., "random* choice in Singer's 1972 ELIPGRID.
if nGTyp == 1
nLrgstAngle := 45
elseif nGTyp == 2
* For triangular grid Chexagon).
nLrgstAngle := 30
elseif nGTyp == 3
* For rectangular grid.
nLrgstAngle := 90
endif
* Sun up multiple angles results.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProboHit := ElipGrid(nSemiMajor,nShape,nCrntAngle,nGSize, ;
nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
next nCrntAngle

* Calculate average.
rProbloHit := nProbSum/(nLrgstAngle+1)
endif

* Print a line of data.
? padr(cTrgtiD,8)
if nGTyp == 1
7?7 “Square " + gpace(8)
elseif nGTyp == 3
?? “"Rectangular, " + trans(nRecRatio, "99.9n) + M/1 o
elgeif nGTyp == 2
7?7 "Triangular " + gpace(8)
endif

E-26
Code File: EGPCFile Prg

* Print data fields.

2?7 trans(nSemiMajor/nGSize,"9999.9999)+ space(é) +
trans(nGSize,"9999.99") + space(7) +
trans(nShape,"9.99%) + space(3) +
fif(nOrientn > 0,%Random, trans(nAngle, "99_9t+v

space(1) + ;
trans(nProbNolit, 1999 . 9999")

* Increment line index.

ninputline++

Ses w ne

?
? YEND OF RUN (OR ERROR IN SHAPE OR L/G RATIO > 3.0)"
set alternate to
set alternate off
setcolor(m->C_Help)
scroli(0,0,4,79)
80,0 to 4,79 double
1,2 say "Output written to file: ¥ + cOutfile
82,2 say "Current subdirectory..: " + diskname() + ":" + dirname()
43,2 say "Press a key to continue...*
inkey(0)
endif

endif

setcolor(m->C_Normal)

readinsert((Readlnsert)

return (NIL)

w** End of Func: Filelnput()

AAVAAAEA AR NRAAR R R RRR R R ARSI NR RN RRAT AR PR AAA RN RA A AR AR SRS AT N O R ARl
Function GetFileBox(nTR, nLC, nBR, nRC, cDirSpec, LDispBox, cColor, nlnitFile)
* Pop-up file selector, all params. are optional

* Paremeter defaults:

- nTR top row ==> to 0

* nLC left col ==z>» to 0

h nBR bot row a=> to maxrow
* PRC right col ==> to nLC + 38
- cDirSpec =xy Wk _*N

o lDispBox ==> T,

* Colorvar =s> We/n,n/W"
- ninitfile z=>

* Returns:

* if Enter key ==> File name
- if Esc key ==> NIL

* if error ==> NIL

*k

Local cOrgClr :

local cFiloName = NIL

local cTmpScn :
i

{ocal // Scratch
local aDrectry iz () // Array of dir info
Llocal acFileNames := O // Array of file names

Local nFileChoice = 0

* If any param. not passed, below assigns defaults as needed.
default nTR to O

default nLC to 0

default nBR to maxrow()

default nRC to nLC + 38

default cDirSpec to ¥ ##

default LDispBox to .T.

default cColor to (m->C_Help)

default nInitFile to 1

cTmpScn := gavescreen(nTR,nLC,nBR+1,MRC+1) // +1 for shadow lines
if (1SubDir(cDirspec))

E-27
Code File: EGPCFile Prg

Err_MsgBox(15,7E","No ,SIF files found in current subdir.")
return CKIL)
endif

cOrgClr := setcolor(cColor)
scrol L(nTR,nLC,nBR,NRC)
if (LDispBox)
MenuBox (nTR,nLC,nBR, NRL)
endi f
#nTR,nLC+2 say " Choose Input File... "

abrctry := directory(cDirSpec)
* Sort array according to file name.
asort(abrctry,,, C|FrstName,NextName| FretName(F_NAME] < NextName[F_NAME1})

* Fill an array with file info to display.

acFileNames := ()

for i = % to len(aDrctry)

aadd(acFileNames, ;

padlL{aDrctryli,F_NAME], 13) + ;
padl(rnumtrimCadrctey (i, F_SIZE)1),8) + ;
padl (dtoc(edretry(i,F_DATE]), 9) + ;
ped| (substr{adrctry[i,f_TIME],1,5),6))

next i

* Display files ana get choice.
nFileChoice := achoice(nTR+1,nLC+1,nBR-1,nRC-1, acFileNames,,,ninitFile)
if (nFileChoice 1= 0)
* 15 0 if Esc key exit
cFileName := aDretry[nFileChoice,F_NAME)
ninitFile := nFileChoice
endif
setcolor(cOrgClr)
restscreen(nTR,nLC,nBR+1,nRC+1,cTmpScn)
return (cFileNeme)
% End of Func: GetFileBox()

LAl LD T2 D22l g I g d 1l & 2o 7 et o 22 222yl l

Function GetfFiloutFile(clinFile, lProceed)

* Returns file output file name entered by user.

* Updates flag |Proceed.

* (Proceed parameter should be passed in by reference.
static cOutFile = #u // Screen output file
local nChoice = 1

{ocat Getlist 1= ()

local cCurrPath := #n

Llocat LDone .F.
local LOrgReadins := readinsert(.T.) // Insert mode for read = on.

* Make default outfile name.
cturrPath := diskname() + ":" + dirname()
* Make output file name, cinfile plus .QUT.
if at(".",cinFile) ==
cOutfile := cinFile + » ouT*
else
cOutFite := substr(cInFile,1,at(".",cInFile)) + "OUTH
endif
* Add trailing \ to path, if needed.
cOutFile := cCurrPath + iif(right(cCurrPath,1)==\" Ut w1} 4+ cOutFile

do while ! lDone
cls
MenuBox(2,1,8,67)
cOutFile == padr(cOutFile,64)
03,03 say “Enter output file name:"
804,03 get coutfile pict #a1v

E-28
Code File: EGPCFile.Prg

805,03 say "Current path: " + cCurrPath
keyboard chr(K_END)

read

resdingert(lOrgReadins)

cOutFile := alltrim(cOutfile)

if lastkey() == K_ESC
LProceed := .F.
elge
(Proceed := T,
if file(cOutFile)
* Decide whether to overwrite output file.
nChoice := AlertBox(8,("YES, Overwrite [t", “Enter New Name'), ;
uysrning: Above output file existgi wt, o
" Overwrite it? ")
if nChoice == 1
* overwrite output file.
set alternate to (cOutfFile)
elseif nChoice == 2
* Enter hewW Name.
loop
else
* gsc key. Don't open output file.
\Proceed := .F,
endif
elge
* cOutFile does not exist, try to open ft.
* First test for valid subdir and valid file name.
if | subdir(ExtretPath(cOutFile)) .or. :
| filevalid(token(cOutFile, ":\"))
* Invalid path or file name.
Err_MsgBox(10,mE" vError: Invelid path or file neme.v, ;
WFile.: » + coutfile)
Loop
else
* valid path, open file for output.
set alternate to (cOutFile)
ervli f
endi f
endif
Done := .71,
enddo
return (cOutfile)
s End of Func: GetFilOutFile()

FRERERSREARN AR RA AT RAAR N RN RN S AN RS ARTER AR AIS

Function GetScnOutFile(lOutFile, LWriteHeader)

* Returns screen output file neme entered by user.

* Updates flags (OutFile, |WriteHeader,

* Pass flapgs in by reference.

static cOutFile := w» // Screen output file

local nChoice 1=

local GetList = 0
Llocal cCurrPath i= W
Llocal LDone = F.

local \OrgReadins readinsert(.T.) // lnsert mode for resd = on.

* Default to no outfile flag for Esc key pressed on read.

lOutFile = .F.
(WriteHeader := .F.
cCurrpPath := diskname() + “:" + dirname()

if empty(cOutFile)
* pefault out file is cCurrpath\Screen.Out.
* Add trailing \ to path, if needed.
cOQutFile := cCurrPath + iif(right(cCurrPath, 1)==t\n nu n\ny 4 UScreen.Outh

E-29
Code File: EGPCFile.Prg

else
* An out fitle name has been used,
* Default out file is ccurrpath\coutFile. Note that cCurrpsth may have
* changed since cOutFile name created.
cOutFile := substr(cOutFile,rat("\",cOutfile)+1) // Get just the filename.
ctf)utFile = cCurrPath + {if(right(cCurrPath, 1)==imu nit n\ny « cOutfile
endi

do while | LDone
lOutFile :z .F, // Reset for loops
lWriteHeader := .F,
clg
MenuBox(2,1,8,67)
cOutfile := padr(cOutFile,64)
803,02 gay " A Screen Output File Is Optional Esc = None "
@05,03 say “Enter output file name:"
806,03 get cOutFile pict "ai”
807,03 say “"Current path: " + cCurrfPath
keyboard chr(K_END)
read
readinsert(lOrgReadIns)

cOutfile := alltrim(cOutFile)
if lastkey() 1= K_ESC
* First test for valid subdir and valid file name.
if 1 Subdir(ExtrctPath(coutFile)) .or. ;
I fitevalid(token(cOutFile, "z\")}
* Invalid path or file name.
Err_MsgBox(10,"E","Error: 1nvalid path or file name.,", ;
"File.: v + cOutfile)
loop
elseif file(cOutfile)
* File exists.
* Decide whether to overwrite output file,
nChoice := AlertBox(8, ;
{“NO, Append to it» "YES, Overwrite It", “Enter New Name"}, ;
"Warnirg: Above screen output file existsiv, wn, .
“Overwrite it7v)
if nChoice == 1
* Append to output file.
LOutFile = LT,
set slternate to (cOutfile) additive
elseif nChoice 2= 2
* Overwrite output file,
loutFile = LT,
WriteHeader := .T.
delete file (cOutFile)
set alternate to (cOutfile) additive
elgeif nChoice == 3
* Try again.
loop
else
* Esc key, Don't open output file.
tDone := .T.
Loop
endif
else
* 1f here, we have valid path and file does not exist.
* Open file for screen output.
lWriteHeader := .T.
loutfile := T,
set alternate to (cOutfile)
endif
endif
LDone := .T.
enddo

E-30
Code File: EGPCFile Prg

return (cOutFile)
wetk End of Func: GetScnOutFile()

RERBRRRARRNRRRTTREARR R R Rl e drdr oy e v e i s o o sy s dr e o dr e o

Function SIF_Filelnput(nTR, nLC, ninitFile, cVerDate)
* Gets dats from SIF format input file,

* Writes output to cinfFile.Out,

* Input: nTR is row for file gselection box,

. nLC is left col.

hd ninftFile s inftial file to highlight.

* cverDate is program version date.

* Returns: NIL
local (Readinsert

readinaert(.T.)

local clnfile = " // Input file name

local cOutFile = u

local cDataline = nu

local nSemiMe jor =0

local nShape =0 // Ellipse semi-major/semi-minor axis
local nAngle =0

local nGSize =0 // Grid size, for Rec. grids, short side
local nGTyp =0 // Grid type, 1=8q., 2=Tri., 3=Rec.
local nOrientn 0 // Specific angle or "random",

local e¢TrgtiD // if nOrientn > 0 use "“random" angles

local nlnputLine =0 // Current file input line
local nRecRatio =0 // Rec. grid long side/short side ratio
local nLines =0 // Lines in input file

local nProbNokit =0

Llocal nProbSum = 0.0 // Used for "random" angle case
local nCrntAngle =0 // Used for “random" angle case
local nLrgstAngle =0 // Used for “random" angle case
local cFileText = u

local LProcead = .T.

local GetList =0 // Stops compiler warnings
cinFile := GetFileBox(nTR,nLC,,," .SIFY,, ,aninitFile)

cFileText := memoread(cInFile)

nLines 2= mlcount(cFileText)

if lastkey() == K_ESC .or. empty(cInFile)
* Just return, if Esc key pressed.
eiseif nLines < 3
* Error, invalid file.
Err_MsgBox(10,%E",“Error: Less than 3 lines in file.”, ;
"File.: * + clnfile, ;
uNeed (1) Title Lline, (2) Data Line, (3) EOF line.")
else
* Input file Looks OK, create output file name.
cOutFile := GetFilOoutFile(cinFile, alProceed)

if Proceed
* Do the work!
cls
set alternate to (cOutfite)
get alternate on
7?7 "Output from ORNL/GJ EL1PGRID-PC Program Version: " + cVerDate

? "File Name.: " + cOutfile

? "Created on: " + dtoc(date())

? “Input file: » + cInFile + " using SIF format."

? "Title line: " + memoline(cFileText,,1)

?

? "Target Grid Type Semi-major Axis Gridspace Shape Angle
?u in Relative Units in Orig Units"

* Get data lines
ninputline := 2 /7 Skip title line
do while ninputLine <= nLines
cDataLine := alltrim(memoline(cFileText,,ninputLine))

Prob(0)"

E-31
Code File: EGPCFile.Prg

if teft{cDataLfne, 1) == H##
* Comment Line.
ninputl inee++
Loop
endif
* parse the data values.
nSemiMajor := val(substr(cDatalLine, 1,at(" * cDataLine)))

cDetaline := Ltrim(substr(cDataLine,at(" %, cDatalLine)))
nShape := val(substr(cDatalLine, 1,at(" ", cDataLine)))
cDatalLine := ltrim(substr(cDatsLine,at(" " cDataline)))
nAngle := val(substr(cDatalLine, 1,at(" ¥ cDatalLine)))
cDatalLine := ltrim(substr(cDatalLine,at(" " cDataLine)))
nGS1ize := val(subst:(cDatalLine, 1,8t(" ¥ cDataLine)))
cDatalLine := ltrim(substr(cDataLine, at(" *, cDatalLine)))
nGTyp := val(substr(cDataline, 1,at(" % cDataline)))
cDatalLine := ltrim(substr(cDatalLine, at(" *,cOatalLine)))
nOrientn := val(substr(cbataline, 1,at(" v cDataline)))
cDatalLine := ltrim(sbstr(cDataline,at(" %, cDataline)))
cTrgtlD := cDataline

if nShape > 1.0 .or. nShape < 0.05 .or. nSemiMajor/nGSize > 3.0
* EOF or error in shape or L/G ratio > 3.

exit // Exit do while loop
endif
1f nGTyp == 3
* If rect. grid, get long/shaort ratio from next Line.
ninputLine++

cDataline := ltrim(memoline(cFileText,,nInputLine))

nRecRatio :z val(cDatalLine)

if nRecRatio == 1.0
* Trap for a rect. grid with a long/short side ratio of 1.0.
* Use a 5q. grid since problems can develcp using rect. grid in
* certain cases. Problem found in tech. review by John Wilson.
nGTyp := 1

endi f

endif

#eomenemacrroans | Catcutate probability of no hit, P(0) |------ *
if norientn <= 0.0
* Calcualte for a single angle.
nProbNollit := ElipGrid(nSemiMajor, nShape,nAngle,nGSize,nGTyp, ;
nRecRatio)
else
* Calculate for average of multiple angles,
* i.e., Yrandom" choice in Singer's 1972 ELIPGRID.
if nGTyp == 1
nLrgstAngle := 45
elseif nGTyp == 2
* For trisngular grid Chexagon).
nLrgstAngle := 30
elgeif nGTyp == 3
% For rectangular grid.
nLrgstAngle := 90
endif
* Sum up multiple angles results.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoHit := ElipGrid(nSemiMajor, nShape, nCrntAngle,nGSize, ;
nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
next nCrntAngle

+ Calculate average.
nProbloHit := nProbSun/(nLrgstingle+1)
endif

* print a line of data.
? padr(cTrgtlD,8)
if NGTyp == 1
77 “squere " + gpace(8)
elseif nGTyp == 3
77 "Rectangular, " + trans(nRecRatio,"99.9v) + ny1 o
elgeif nGTyp == 2
7?7 “"Triengular ' + gpace(8)
endif

* print data fields.

7?7 trans(nSemiMajor/nGsize,"9999.9999")+ gpace(6) + ;
trans(nGSize, "9999.99") + space(7) + ;
trens(nShape,"9.99") + space(3) + ;

fif(nOrientn > 0,"Random", trans(nAngle,"99.9%+n n)) +
space(1) + ;
trans(nProbNokit, 11999, 99091)
* Increment line index.
ninputline++
enddo
?
? YEND OF RUN (OR ERROR IN SHAPE OR L/G RATIO > 3)"
set alternate to
set alternate off
setcolor{m->C_Help)
scroll¢0,0,4,79)
90,0 to 4,79 double
81,2 say “Output written to file: " « cOutFile

#82,2 sey “Current subdirectory..: % + diskname() + ¥:" + dirname()

83,2 say "Press a key to continue.,."
inkey(0)
endif
endi f
readinsert(lReadinsert)
return (NIL)
*** End of Func: SIF_Filelnput()

ARRAAANTRNRAAR SRR TR AT ARY

Function Subdir(cTestSubdir)

* Returns .T. if cTestSubdir exits, .F. otherwise.

* The directory() conmand will return an empty array
* if cTestSubdir does not exist.

locel (Rtnval := .F,

local aDirctry :x ()

cTestSubdir := atltrim(cTestSubdir)
* directory() returns an empty array, (), if invalid cTestSubdir.
aDirctry := directory(cTestSubdir, "D") // D to include all subdirs
if Lten(aDirctry) > O
LRtnVal := .T.
endif
return (LRtnVal)
*** End of Func: Subdir()

**% eEnd of File: EGPCFile.Prg

L 4

E-33
Code File; EGPCFort Prg

File: EGPCFort.Prg

For: ELIPGRID-PC, EGPC.Exe.

Purpose: Provides ELIPGRIN FORTRAN code in Clipper form.
Note correction to ELIPGRID in RECT cubroutine.

Author: Jim Davidson

Prog Started: 10/03/93

Last Mod: 08/26/94

Note: Functions are arranged in alphabetical order.

Modifications since validation with Singerts 100 cases:

03/30/94 Modified various iv/then/else conditions pointed out in J. Wilson's
technical review.
04/04/94 Modified ELipGrid algor. to deal with triangular grid discontinuity.
Added 3 levels of correction to the ElipGrid algorithm:
0 = Use original 1972 Singer code.
1 = Use corrected RECT routine.
2 = Use corrected RECT routine and corrected triangulsr grid
~cutine (4th order regression). Y2'" ig the default.
04/06/94 Added level 3 correction.
3 = Do not increment angles of 0.0 to 0.1, as in ELIPGRID.
04/07/94 Added code to force P(0) to 0.0 when hit probabilities > 1.0 make
P(0) negative. See relevant ELIPGRID code just above line 435.
Tested on file Test100.IN, output checked with previous validation.
Tested on file Test100.SIF, output checked with previous validation.
04/15/94 Added comments re: Shape restrictions in ELIPGRID at line 75 that
are now in the calling code. New L/G ratio restriction noted.
04/17/94 Added trap for ANLGLE = 90°, tan(90) sometimes causes runtime error.
Added to level 3 correction: if ANGLE = 90.0, then ANGLE := 89.999.
08/09/94 Changed name from HotSFort.Prg to EGPCFort.Prg.
08/11/94 Correction level flag, m->nElpGrdCor, now forced to 3 to provide
full correction all the time. 04/07/94 mod. makes level O dubious.

BRARREARAIRTEEARTAAARNARARR AR ARN AT AN AR NEANRRRD

Function ELlipGrid(A, Shape, Angle, Gdspac, Net, Q)

L]

% % % % % % % % % %R R RS RSN R SRR RSN

This function is taken from Singer's 1972 ELIPGRID program.

It retains the original algorithm, but is modified to remove

all goto type statements. Many line numbers have been left in the
comments as references back to the original code.

Shape : Shapes > 1.0 are trappec before reaching this function.

assumptions: Shapes < 0.05 are trapped befyre reaching this function.
Trapping all Shapes < 0.05 is somewhat more restrictive than
ELIPGRID, but should have little practical consequences.
1 would like to see a verification of the math before accepting
arbitrarily amall Shapes, JRD, 04/15/94.

L/G

assumptions: Code assumes all L/G ratios > 3,0 are trapped. Very large L/G
ratios, e.g. 6 or 7, have caused problems. No known prectical
need requires them. Singer's largest L/G ratio in his 100
cases was 2.83. Gilbert's largest L/G ratio in nomographs is 1.0.

Note that the MET parameter described below, is not used in this function.
Random angle case is taken care of by calling code.

Below is original code documentation.
PROGRAH ELIPGRID
PROGRAM TO DETERMINE THE PROBABLITY OF LOCATING AN ELLIPTIC OR
CIRCULAR TARGET WITH A SQUARE, HEXAGONAL OR RECTANGULAR GRID
DESCRIPTION OF PARAMETERS

TARGET= ANY IDENTIFICATION OF TARGET (READ IN “A"™ FORMAT)

E-34

Code File. EGPCFort.Prg

[R SE BN BE NN NN BE BN NE BN N BN R B N N 4

A=
SHAPE=
ANGLE=

GDSPAC=

NET=

MET=
a=

LENGTH OF SEMIMAJOR AXIS OF TARGET

SHAPE OF TARGET - SEMIMINOR AXIS DIVIDED BY THE SEMIMAJOR
POSITIVE ANGLE BETWEEN LOMG AXIS OF TARGET AND GRID
DIRECTION - FOR A SQUARE GRID ANGLE CAN BE ANY ABGLE FROM
0 TO 45 DEGRESS, FOR A HEXAGONAL GRID ANGLE CAN BE ANY
ANGLE FROM O TO 30 DEGREES INCLUSIVE, FOR A RECTANGULAR
GRID ANGLE CAN BE ANY ANGLE FROM O TO 90 DEGREES
INCLUSIVE AND IS MEASURED FROM THE X AXIS OF THE GRID
DISTANCE BETWEEN POINTS ON THE GRID (IN THE SAME UNITS AS
WA") - FOR A RECTANGULAR GRID GDSPAC IS THE DISTANCE
BETWEEN POINTS ALONG THE Y AXIS OF THE GR1D

GRID TYPE - SQUARE GRID=1,HEXAGONAL GRID=2, RECTANGULAR
GRID=3

SPECIFIC OR RANDOM ORIENTATION - IF MET>0 - RANDOM

SHAPE OF RECTANGULAR GRID - LONG(X) AXIS DIVIDED BY THE
SHORT(Y) AXIS

* These locals are integers in ELIPGRID.
(1]

Llocal
local
local
local
Llocal

I
IBLANK
IWARN
1ZONK
L}

(=N =N~ -]

* These locals are reals in ELIPGRID.

Local
Local
Llocal
local
Local
local
local
local
local
local
Llocal
local
local
local
local
local
local
local
local
locatl
local
local
local
local
local
local
local
Llocal
Llocal
local
local
Local
local
local
local
local
local
local
local
local

ALPHA
ANP
AQUAR
AREA1
AREA2
AREA3
AREA4
AREAS
AREAS
AREA7
AREAS
AREA9
AREA10
ASQ
AVPRO
AVPR1
AVPR2
B
BALLS
BSQU
c
CAROL
CIM
CNM

D

DJO
0J1
DMO
DM
EOU
FIN
FORN
GAME
GRO
HAl
HALFC
HALFO
HALFJO
HALFJ1
HALFMO

/11 €12
1/ b72
7/ 9072
// etc.

]
000000000000 000D0DO0D0O0O000DD0D0O00O000O00O0O0OO00O00O0O0OO0O

E-35
Code File; EGPCFort Prg

local HALFM1
local HORN
local PET
locel P1
local POT
local PROBO
local PROB1
local PROB2
local RO
local RDYW
local REVA
Llocal REVANG
local REVK
local SER
local SLING
Llocal SNGLE
local SUMO
local SuMm1
locay $U»?2
local 1
local TIN
local TIZ
local WINE
local XHAPE
local XI
local XM
local Y1
local YI
local YAM
local YM
local 2ApP

// Constant pi, 3.141592 in ELIPGRID

// Prob. of no hits
// Prob. of 1 hit

// For rect. grid, transformed A
// For rect. grid, transformud angle
// for rect. grid, transformed SHAPE

LU]

6 64 S5 se 04 6 Ge B S8 ee 5 04 ge S8 we .l; .
0O OOOODOOOOOLOLOOOODOOO0O0O0O0O0OO0O0O0O0OQOO

J*** Note 08/11/94, JRD **#/
--- Force full correction level all the time. ---
m->nElpGrdCor := 3

* Below are assignments made in ELIPGRID.

(4 = 3,141592 // Follows original value.
712 := 0.50000

RDW = SQRT(3.0)*0.5
120NK :=]BLANK

A ¢= A/GDSPAC
SLING := A

XHAPE := SHAPE

SNGLE := ANGLE

sUM1 := 0.0

suM2 := 0.0

SUMO := 0.0

»

" AREAS 1 TO 10 ARE RELATIVE AREAS OF OVERLAP IN THE TRANSFORMED NET
* 35

AREA1 = 0.0
AREA2 := 0.0
AREA3 := 0.0
AREAS4 := 0.0
AREAS = 0.0
AREAS = 0.0
AREA7 = 0.0
AREAB = 0.0
AREA9 iz 0.0
AREA10 := 0.0

"
* PROBO 1S THE PROBABILITY OF MISSING THE TARGET

*
*
*

PROBO :
PROB1 := 0.0
PROB2 :
*

L]

Code File: EGPCFort.Prg

E-36

PROB1 IS THE PROBABILITY OF LOCATING THE TARGET ONCE
PROB2 IS THE PROBABILITY OF LOCATING THE TARGET 1WO OR MORE TIMES

DETERMINES THE GRID TYPE

* GO TO (65,40,45),NET
if NET == 2

wesNey Code, 04/04/94, JRD%**

* Harxile problem with tri. grid discontinuity near L/G = 0.577.

* A is the L/G ratio.

* 1f ELipGrid correction level is >= 2, consider 4th order linear regression.

if m->nElpGrdCor >= 2

if (A > 0.50 .and. A < 0.60) .and. (Shape >= 0.85 .and. Shape < 1.0)
* Use 4th order linear regression results, not ELIPGRID algorithm,

return(Prob0_Regr(A,Shape))
endif
endif
:"End New Code, 04/04/94%**

- HEXAGONAL NET

* 40

FIN = RDW

* IROT := 30 not needed in this function.
ZAP = 6.0

BALLS := 0.57735

*GOTOTS

elseif NET == 3
w

RECTANGULAR NET
45 IF ¢aR0T) 50,50,60
READ SHAPE OF RECTANGULAR GRID

SO READ (IREAD,55) Q
S5 FORMAT (F10.5)

LBE R BE BN BN NE BN BN

RECT(XHAPE ,ANGLE,Q,3REVK, SREVA , SREVANG)
SHAPE := REVK
A := REVA*SLING

ANGLE := REVANG

* IROT := 90 not needed in this function.

* GO TO TV

* 70

FIN := 1.000

ZAP = 4.0

BALLS := 0.707107
elseif NET == 1

*

. SOUARE NET

-

* 65 IROT=45

* JROT := 45 not needed in this function.
* 70

FIN := 1.000

ZAP = 4.0

BALLS 3= 0.707107
endif

60 CALL RECT(SLING,XHAPE,ANGLE,Q,REVK,REVA,REVANG) GRID1035
Argument SLING is never used by subroutine RECT().

* SHAPE restiction below handled by trapping ALL SHAPES < 0.05 in calling

E-37
Code File: EGPCFort.Prg

code. This {g more restrictive than SHAPES < 0.05 and A (L/G) > 2 test below.
ELIPGRID-PC also treps all L/G ratios > 3.0.
75 IF (SHAPE-0.05) 80,95,95
80 IF (A-2.0) 95,95.,85
85 WRITE (IPRIN,90) TARGET
90 FORMAT (1H ,6HTARGET,A4,45H IS TOO NEEDLE-LIKE AND LONG FOR THIS P
1ROGRAM)
GO TO 20

* % % % % % 2%

*
L 4
»

* 95 IF (SHAPE-1.0) 140,115,100 Note: 100 terminates.
* SHAPES > 1.0 or < 0.05 are not allowed to come {n to EL{pGrid().

if SHAPE == 1.0
.

- CIRCLE
ASQ := Aw®2 /77 115
* IF (A-T1Z) 120,120,125
if A-TI2Z <= 0.0
PROBZ := 0.0
PROB1 := PI*ASQ/FIN
PROBO := 1,0-PROB1
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code Line 435.
PROBO := jif(PROBO < 0.0, 0.0, PROBO)
***End New Code, 04/07/94%**
// Top, left STOP in Fig. 7 flowchart

* 18t return // (Singer and Wickman 1969)
return(PROBO) // In JRD notes as STOP 2
else
* IF (A-BALLS) 130,135,135 // 125
if A-BALLS < 0
CIM t= ACOS(TIZ/A) // 130

PROB2 :5 ZAP*(ASQ*CIM-TIZ*SQRT(ASQ-0.25))/FIN

PROB1 := PI*ASQ/FIN-2.0*PROB2

PROBO := 1.0-PROB81-PROB2

w**New Code, 04/07/94, JRD***

* Handle cases where & hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code Line 435.

PROBO := iif(PROBO < 0.0, 0.0, PROBO)

w**End New Code, 04/07/94%4*

* 2nd return
return(PROBO)
else
*
. IF THE RADIUS OF THE CIRCLE 1S GREATER THAN 0.7071 THE PROBABILITY
. OF MISSING IS ZERO AND PROB1 AND PROB2 ARE SET EQUAL TO 9. AS
. FLAGS

PROB1 :=
PROBZ :=
PROBO :=
* 3rd re
return({PROBO)
endif

endif
elseif SHAPE < 1.0

-

1/ 135

. ELLIPSE

-

B 2= A*SHAPE /7 140
-

-

-

B IS THE RADIUS OF THE CIRCLE IN THE TRANSFORMED NET

E-38
Code File: EGPCFort.Prg

* IF (A-TIZ) 145,145,150
if A-TIZ <= 0.0
PROB1 := PI*A*B/FIN /7 145
PROBZ := 0.0
PROBO := 1.0-PROB1
New Code, 04/07/94, JRD
* Handle cases where 8 hit prob. is > 1.0, thus making P(0) negative,
* See relevant ELIPGRID code just sbove code line 435.
PROBD := fif(PROBD < 0.0, 0.0, PROBO)
***End New Code, 04/O7/94**%

* 4th return

return(PROBO) // Top, right STOP in Fig. 7 flowchart
endif // (Singer and Wickman 1969)

// 1n JRD notes as STOP 1

New Code, 04/06/94, JRD
* Handle 0.0 angle being incremented to 0.1.
if m->nElpGrdCor < 3

* 1F(ANGLE-0.1) 155,155,160 /7 150

if ANGLE-0.1 <= 0.0

*

hd ALPHA IS THE ANGLE IN RADIANS
*
ANGLE := ANGLE+0.1 /7 155
endif
else
* Level 3 correction below does not increment 0.0 to D.1,
* but does make sure the angle is positive,
ANGLE := sbs(ANGLE)
endif
***End New Code, 04/06/94%+w

ALPHA

CNM
*

= ANGLE/S57.295779 /7 160
= 1.0-SHAPE"*2

* c,p0,DJ1,0J0,DM1,0M0 ARE DISTANCES BETWEEN CIRCLES IN THE
* TRANSFORMED NET .

-

C = SQRT(1.0-CNH*COS(ALPHA)**2)

* GO TO (170,165,170),NET /7 164
if NET == 2
* 165 below.
Y1 = 3_0+SHAPE**2-2 OCNM*SINCALPHA)**2-UiM®4 O*FIN*SIN(ALPHA)*COS(ALPHA)
D := SQRT(Y1)*0.5000
elseif NET == 1 .or, NET == 3
D := SQRT(1.0-CNM*SINCALPHA)**2)// 170

endif
BSQU := B**2 /7 175
FORN := C*C
HORN := D*D
WINE := FIN*SHAPE
HALFC := C*0.50
HALFD := D*(0,50
* IF (B-HALFC) 185,185,180 /19
if B-HALFC > 0.0
EOU 2= ACOS(HALFC/B) // 180

AREAY := 2.0*(BSQU*EQU-HALFC*SQRT(BSQU-HALFC**2))
elseif B-HALFC <= 0.0

AREA1 := 0.0 // 185
endif
* [F (B-HALFD) 200,200,195 /7 190

if B-HALFD > 0.0

E-39
Code File: EGPCFort Prg

HAT := ACOS(HALFD/B) /7 195
AREA2 := 2.0*(BSQU"HAI-HALFD*SORT(BSQU-HALFD**2))
else
AREA2 := 0.0 // 200
endif
* IF (A-BALLS) 210,210,215 // 205
if A-BALLS <= 0.0
PROB2 :x= (AREA1+AREA2)/WINE /7 210

PROB1 := PI*BSQU/WINE-2.0*PROB2
PROBO := 1.0-PROB1-PROB2
* 5th return
wh*New Code, 04/07/94, JRD*w*
* Handle cages where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO == §if(PROBO < 0.0, 0.0, PROBOD)
***znd New Code, 04/07/94%%%
/1 Center, left STOP in Fig. 7 flowchart
r turn{PROBO) // (Singer and Wickman 1969)
// In JRD notes as STOP 3

else
* IF CAMGLE) 220,220,225 /1 215
if ANGLE <= 0.0
c := C+0.05 /1 220
endif
CAROL = C*0 /1 225

T := ASIN(WINE/CAROL)

* IF CANGLE) 235,230,235

if ANGLE == 0.0
DJ1 := SQRT(FORN+HORN) 1/ 230
DJO := 5.0
-

* RO IS THE RADIUS NECESSARY FOR THE TARGET TO BE HIT WITH CERTAINTY
L

RO := DJ1/2.0
else
*1=1.0+(D*COS(T)/C) // 235
1 2= int(1.0+(D*COS(T)/C)) // 235 modified with int()
* IF (1-1) 240,240,245

if 1-1 <= 0.0
LRR| := SQRT((FORN+HORN)-2.0*CAROL*COS(T))
DJO :=5.0
RO 1= DJ1/(2.0*SIN(T))
else
X1 =1 1/ 245
Y1 =]-1

on t2 SQRT(XI**2%FORN+HORN-2.0*XI*CAROL*COS(T))

DJO = SQRY{% I**2*FORN+HORN-2.0*YI*CAROL*COS(T))
RO = DJ1*DJI0/(2.0"D*SINCT))
endif
endi f
endif

* 250 IF (B-RO) 260,255,255
if B-RO >= 0.0

PROB1 := 9.0 // 255
PROBZ := 9.0
PROBO := 0.0

w*eNow Code, 04/07/94, JRD***

* fandle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.

PROBO := iif(PROBO < 0.0, 0.0, PROBO)

wweEnd New Code, 04/07/94wes

E-40
Code File: EGPCFort.Prg

* &th return
return(PROBO) // Bot., right STOP in Fig. 7 flowchart
endif // (Singer and Wickman 1969)
// 1n JRD notes as STOP &

HALFJ1 := DJ1¥0.50 /7 260
HALFJO := DJ0*0.50

* Below is CIRCLE A on flowchart Fig. 7. (Singer and Wickman 1949).
* 1F (B-HALFJ1) 270,270,265
if B~HALFJ1 > 0.0

GRO := ACOSCHALFJ1/B) /] 265

AREA3 := 2,0*(BSQU*GRO-HALFJ1*SQRT(BSQU-HALFJ1*%2))
else

AREA3 := 0.0 // 270
erdif

* 275 IF (B-HALFJO) 285,285,280
if B-HALFJO > 0.0
PET 1= ACOS(HALFJO/B) /7 280
AREA4 := 2.0*(BSQU*PET-HALFJO*SQRT(BSQU-HALFJO**2))
else
AREAG := 0.0
endi f

* 290 M=1.0+(2.0*D*COS(T)/C)

M = int(1.0+(2.0*D*COS(T)/C)) // 290 modified with int().

YM := M-1

XM 1= M

* 1F (M-1) 295,295,300

if M-1 <= 0.0
DM1 := SQRT(FORN+HORN*4.0-4 . 0*CAROL*COS(T)) 1/ 295
DMO := 5.0

else
DM1 := SQRT(XM**2*FORN+4.0"HORN-4.0*CARQL*COS(T)) // 300
DMO := SQRT(YM**2*FORN+4.0*"HORN -4 .0*CAROL*CAS(T))

endif

HALFM1 := DM1*0.50 // 305

HALFMO := DM0*0.50

/itt

IF (HALFM1-DJ1) 310,325,310
310 1F (HALFM1-DJO) 315,325,315
315 IF (HALFMO-DJ1) 320,325,320
320 IF (HALFMO-DJO) 330,325,330
replaced with below:
-it/
if HALFM1 == DJ1 ,or.
HALFM1 == DJO .or.
HALFMO == DJ1 .or.
HALFMO == DJO

AREAS := 0.0 // 325
AREA6 := 0.0
elge

* 330 IF (B-HALFM1) 340,340,335
if B-HALFM1 > 0.0
YAM := ACOSCHALFM1/B) /7 335

AREAS ;= 2.0*(BSQU*YAM-HALFM1*SQRT(BSQU-HALFM1**2))
else

AREAS := 0.0 // 340
endif

* 345 IF (B-HALFMO) 355,355,350
if B-HALFMO > 0.0
GAME := ACOSCHALFMO/B) 7/ 350

E-41
Code File: EGPCFort.Prg

AREAS := 2.0%(BSQU*GAME-HALFMO*SQRT{BSQU-HALFMO**2))
else
AREAS := 0.0 /7 355
endit
endif

* 380 IFf (B-DJ1) 370,370,365
if 8-DJ1 > 0.0

SER := ACOS(DJ1/B) 1/ 365

AREA7 := 2.0%(BSQU*SER-DJ1*SQRT(BSQU-DJ1**2))
else

AREA7 := 0.0 /7 370
endif

* 375 IF (B-DJO) 385,385,380
if 8-DJO > 0.0

AQUAR := ACOS(DJO/8) // 380
AREAB := 2.0*(BSQU*AQUAR-DJO*SQRT(BSQU-DJO**2))
else
AREA8 := 0.0 /7 385
endif
* 3900 If (B-C) 400,400,395
if B-C » 0.0
POT := ACOS(C/B) /7 395
AREA9 := 2.0*(BSQU*POT-C*SORT(BSQU-FORN))
elge
AREA9 := 0.0 /7 400
endif
* 405 IF (B-D) 415,415,410
if 8-D » 0.0
TIN t= ACOS(D/B) // 410
AREA10 = 2.0*"(BSQU*TIN-D*SQRT(BSQU-HORN))
elsge
AREAI0 := 0.0 /7 415
endif

PROB2 := (AREAT+AREA2+AREA3+AREA4L+AREAS+AREAG-AREA7-AREAB-AREA9-AREA10)/WINE
PRO81 -2z PI*BSQU/WINE-2.0*PROB2- (AREA7+AREAB+AREAS+AREAC) /WINE

PROBO := 1.0-PROB1-PROB2

wa*New Code, 04/07/94, JRD***

* Handle cases where a hit preb. is > 1.0, thus making P(0) negative.

* Ssee relevant ELIPGRID code just sbove code line 435,

PROBC := iif(PROBO < 0.0, 0.0, PROBOC)

tend New Code, 04/07/94%

* 7th return
return(PROBO) // Bot., right STOP in Fig. 7 flowchart

erdif // 2nd page (Singer and Wickman 1969)

*
-

// 1n JRD notes as STOP 5

Error return, should never get here.
8th return

return(-1)
*** gnd of Func: ELIPGRID()

AT RREEERAATRTARR AT AR ARSI N SR hRd

Function ProbO_Regr(nLtoG, nShape)

*

[3 B BN IR 2 J

Determine prob. of missing, P(0), by using a 4th order polynomial regression.
The regression coefficients were determined using SigmaPlot 5.01 and data
sets with the values near the discontinuity removed.
1nput: nLtoG Semi-major axis to grid size ratio.

nshape Semi-minor axis to semi-major anis ratio.
Output: Prob0 Prob. of missing target.
Errors: if nLtoG or nShape out of applicable range, returns 9.

E-42
Code File: EGPCFort.Prg

local nRtnVal := 0
local nD0, nB1, nB2, nB3, nB4 // Regression coefficients
* Check L/G ratio for correct range.
if nLtoG > 0.50 .end. nLtoG < 0.60
do cese
case nShape »= 0.85 .and. nShape < 0.86
* Will use regr. coeffs. calculated with nShape == 0.85.
* Any shape < 0.85 did not appear to need regression.

nB0 := 0.8736
ng1 := -5.8080
nge := 39.1737
nB3 := -95.8914
nB4 := 71.2386

case nShape »>= 0.86 .and. nShape < 0.88

* Will use regr. coeffs. calculated with nShape == 0.87.
nBO := -1.5907
nBi := 13.4531
nB2 := -16.2801
nB3 ;= -26.7985
nB4 := 39.9151

case nShape >= 0.88 .and. nShape < 0.92
* Will use regr. coeffs. calculated with nShape == 0.90.

nBO := -8.7963
nB1 := 71.1939
nB82 := -187.7169
nB3 := 195.8430
nB4 := -66.7013

case nShape >= 0.92 .and. nShape < 0.94
* Will use regr. coeffs. calculated with nShape == 0.93.
nBO := -19.3100
nB1 := 156.3713

nB2 := -443.8610
nB3 := 533.8017
nB4 := -231.6841

case nShape >= 0.94 .and. nShape < 0.96
* Will use regr. coeffs. calculated with nShape == 0.95.
nBO := -27.4195
nB1 := 222.4814

nB2 = -644.0422
nB3 := 800.0227
nB4 3= -3562.8194

case nShape >= 0.96 .and. nShape < 0.98
* Will use regr. coeffs. calculated with nShape == 0.97,
nBO := -35.7606

nBt := 290.7372
nB2 := -851.5507
nB3 := 1077.1734
nB4 : ~499.9610

=
case nShape >= 0.98 .and. nShape < 1.00
* Will use regr. coeffs. calculated with nShape == 0.99.
nBO := ~44.0006
nB1 := 358.3580
nB2 := -1057.7388
nB3Y := 1353.4032
nB4 = ~637.0739
otherwise
* grror: nShepe out of range.
nRtnval := 9

endcase

else
* Error: nLtoG ratio out of range.
nRtnval := 9

endif

if nRtnval 1= 9
* Calculate 4th order polynomial.
nRtrval := nBO + nB1 * nlLtoG + nB2 * nLtoG"2 + NB3 * nLtoG"3 + nNB4 * nLtoG 4

E-43
Code File: EGPCFort.Prg

* Round any neg. values up to 0.0.
nRtnVal := iif(nRtnval<0.,0, 0.0, nRtnval)
endi f
return (nRtnVal)
*¢+ End of Func: Prob0_Regr()

LAl A addlddlad A D Pl L Al DA LT s gl

Function RECT(SHAPE,ANGLE,Q,REVK,REVA,REVANG)
* This function is taken from Singer's 1972 ELIPGRID program.
It retains the ariginal algorithm, but is modified to remove
all goto type stetements. Many line numbers have been left in the
comments as reference:r back to the original code.
Note the comment below regarding apparent error in the 1972 ELIPGRID code.
RECT
RECT
TH1S SUBROUTINE REDUCES THE RECTANGULAR POINT NET TO A SQUARE RECT
POINT NET WITH AN AFFINE TRANSFORMATION RECT
- RECT
local AQ
local SQK
local TIS
local ALPHA
local COAL
Llocal SIAL
local T

* * % %R ER

AQ :
SQK t= SHAPE**2
TIS := AQ*SQK

New Code, 04/06/94, JRD
* Handle 0.0 angle being inzremented to 0.1.
if m->nElpGrdCor « 3
* 1F (ANGLE-0.1) 5,5,10 RECT 65
if ANGLE-0.1 <= 0.0
ANGLE := ANGLE+0.1 /75
endif
else
* Level 3 correction below does not increment 0.0 to 0.1,
* but does make sure the angle is positive,
ANGLE := abs(ANGLE)
* Added ANGLE = 90° trap to level 3 correction, 04/17/94.
ANGLE := jif(ANGLE==90.0, 89.999, ANGLE)
endif
***End New Code, 04/06/94%w*

ALPHA := ANGLE/57.295779 // 10

COAL := COSCALPHA)**2

SIAL := SINCALPHA)**2

T := SORT(((1.0-TIS)*COAL - (AQ-SAKI*SIAL)**2+4.0%AQ*(1,0-SQK)**2*SIAL*COAL)
REVK := ((1.0+4TIS)*COAL+(AQ+SQK)*SIAL-T)/(2.0*Q*SHAPE)

* Below appears to be an error in the original code.
* See (Singer and Wickman 1969, p. 16) for the original math formula.
* REVANG=(ATAN(2.0*Q*(1.0-S0K)Y*TANCALPHA)/ CCAQ-SQK)*TANCALPHA)**2*TIRECT 175
* 5-1.0))/2.0)*57.295779 RECT 185
if m->nElpGrdCor == 0
* Use original formula.
REVANG := (ATANC2.0%Q*%(1.0-SQK)*TANCALPHA) /((AQ-SQK)*TAN(ALPHA)**2 * .
T15-1.0))/2.0)*57,295779
else
* Next line is corrected formula.
REVANG = (ATANC2.0%Q%*(1.0-SQK)*TANCALPHA)/7(1.0-TIS-(AC-SOK)* ;
TANCALPHA)*#2))/2.0)*57.295779
endif
REVA sz SQRT(SHAPE/(Q*REVK))
REVANG := ABS(REVANG) // RECT 205

25
35
45
55

* % % % % % W

*

E-44
Code File: EGPCFort.Prg

The following optional code matches (Singer and Wickman 1969, 16)
and can be used in place of Line RECT 205 above. However, no differences
in output values were seen when testing Singer's 30 rect. grid examples after
this code was substituted for Line RECT 205 (in ELIPGRD2.FOR).
i (tan(2.0 * REVANG) >= 0.0) then
REVANG = abs(REVANG)
else
REVANG = 90.0 - abs(REVANG)
endif

RETURN (MIL)
**+* End of Func: RECT()

*** End of File: EGPCFort.Prg

E-45
Code File: EGPCGrph.Prg

1/

// File: EGPCGrph.Prg

// For: ELIPGRID-PC, EGPC.Exe.

// Purpose: Provides code for “Write Cost-based Graph Data” option.
// Author: Jim Davidson

// Prog Started: 04/22/94

// Last Mod: 09/06/94

// Note: Functions are arranged in alphabetical order.

// Wodifications:

// 08/09/94 cChanged name from HotSGrph.Prg to EGPCGrph.Prg.

// 09702794 Grid cell area for trisngular grid now calculated from rhombus.
// This adjusts the EPA formula for number of semples for tri. grid.
/7 09/06/94 Added “"Number Samples" to graphics output data file.

/7

// 1nclude files.
// Clipper supplied include files.

#include "Directry.Ch" // File info definitions

#include "1nkey.Ch" // Key definitions

#include "Set.Ch" // set() definitions

#include “Setcurs,.Cht // seteursor() relsted

#include “Box.Ch* // Box drawing constants

// ORRL developed include files.

#include "EGPCMax.Ch" // Wot spot maximums for screen 1/0

// Simple graph demo related. Not for external use.

#define GPH_DEMO // Optional simple graph demo

#undef GPH_DEMO // Add or remove * as ist char of line
// to define or undefine graph demo.

// Defines

#¥define nPl 3.1415926 // Note that ELIPGRID uses 3.141592

#define nSC_CONVERGED 0 // Status code: Converged

#define nSC_PAST_MAXI 1 // Status code: Past max iterations

#define NSC_ABORTED 2 // Status code: Esc key abort

#define NSC_DATA_RNGE 3 // Status code: Data out of range

#define nSC_UNKNOWN 99 // Status code: Unknown error

// User-defined command
#xcommand DEFAULT <TheParam> TO <Defaultval> => ;
If (<ThePeram> == NIL); <TheParam>:=<DefaultVal>; ENDIF

RRRETERRAC AR TR R AR AN R A EARARNE AR RN TRNNE AN AAN AR R A NA AT RCAARNT AR AN NN ETA RN EROY

Function GetCostProb(rDesirdCost, nSemiMajor,nShape,rAngle,cGridType,nRecRatio,;
nSampleArea, nSampleCost, nCostClst, nGSizeFnd, nPrbHtfnd, nNumSempReq)

* Finds the cost-based probability for a given set of parameters.

* Returns results through & variables passed in by reference:

* nCostClst = Closest cost found to nDesirdCost

* nGSizeFnd = Corresponding grid size found

* nPrbitFnd = Corresponding prob. found

ol nNumSampReq = Corresponding number of samples required
* Above vars must be passed in by reference, use &.

* Returns status codes:

* Converged, prob OK = nSC_CONVERGED

* Failed to converge = nSC_PAST_MAXI

- Aborted with Esc = nSC_ABORTED

* Data out of range = nSC_DATA_RNGE

et Unknown error = NSC_UNKNOWN

#define nMAXC_ITERS 25 // Wex cost search iterations

* gelow are grid size restrictions to stay in reasonable search.
local nSmalGrid :z 0.33334 * nSemiMajor

* Below same as L/G of 0.10.

local nLrgeGrid := 10.0 * nSemiMajor

E-46
Code File: EGPCGrph.Prg

* Initialize flags.

Llocal LConverg := LF, // .T. if search converges

local LAborted := F. // .T. if Esc key abort

local (PastMaxIt = F. // .1. if past max {terations

locel LOKProb H I // .F. if problem can't be solved

local nRtnStatus H X // Status code to return

local nGYyp =1 // Grid type requested, ELIPGRID form
local nGLong =0 // Long side for rec grids

local nSiCounter = 0 // Search iterations counter

local nRACounter =0 // Random angle counter

local nProbNoH{t =9 // Probability of zero hits, P(0)

local nCrntAngle =0 // Current angle, used for “random® angle
local nLrgstAngle 15 0 // Largest angle, used for “random* angle
local nProbSum = 0 // Summing var., used for “random" angle
(ocal nNoHiitSmlGrd := 1 // PC0) for small grid

local nNoHitLrgGrd := 1 // P¢0) for large grid

local nintrGrid =0 // Interpolated grid size

local nNoHitintGrd := 4 /7 PC0) for interpolated grid

local nDiffCost = 0 // Current diff. from desired cost

local nCurrCost 3= 0 // Current cost

(ocal nGridCellArea := 0 // Area of one grid cell

local nNumSamples =0 // Number of samples required
®eoouoomcereaaaan | Find grid size for given cost |-------- *

#18,38 say "Current point iteration: of " + NumTrim(nMAXC_ITERS) +" mex."

* Get NGTyp, i.e., ELIPGRID grid type code.
nGTyp := {{f(cGridType=ang® 1, jjf(cGridType=z="R",3 2))

* Get random largest random sngle.
if nangle == 99.0

919,38 say "Random sngle iterations: *

nLrgatAngle := {{f{cGridType=avsy 45, {{f(cGridType=="r", 90,30))
endif

* Start searching.
do while 1 LConverg .and. ! lAborted .and. | |PastMaxit .and. LOKProb
nSICounter++ // lncrement search counter
18,63 say str(nSiCounter, 3)+ # of ¥ + :
Lerim(str(nMAXC_ITERS)) + " max."

* GET PROB. AND COST FOR LARGE GRID.
if Mngle 1= 99.0
* Non-random single angle case.
mNoHitlLrgGrd := ElipGrid(nSemiMajor,nShape,rAngle,nLrgeGrid, ;
nGTyp, nRecRatio)
else
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoHit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nLrgeGrid, nGTyp, nRecRatfo)
nProbSum := nProbSum + nProbloHit
nRACounter++
819,63 say Ltrim(str(nRACounter)) + ¥ "
* Esc key sbort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit for/next loop
endif
next nCrntAngle
if (Aborted
Loop
endif

E-47
Code File: EGPCGrph.Prg

* Calculate average.
nNoHitLrgGrd := nProbSum/(nLrgstAngle+1)
endif

* Check {f we met cost criteria with Large grid.
* Firgt do area calculations.
if cGridType == "RY
* Rect. prid.
nGlong := nLrgeGrid * nRecRatio
elge
* sq. or Tri. grid.
nGLong := nLrgeGrid
endif
* Required number of samples is spproximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell ares.
if cGridType a= nyw
* Triangular grid.
* Grid cell area is now, 09/02/94, ares of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * bese = 8in(40*) * base * base = 0.87 * base“2.
nGridCellArea := 0.866025404 * nLrgeGrid ¥ nirgeGrid
else
* $q. or rec. grid.
nGridCellArea := nLrgeGrid * nGLong
endi f
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
rNunSamples :x cefling(nSampleArea/nGridCellAren)

nCurrlost := nNumSamples * nSampleCost

* Ceh we quit yet?

nDiffCost := abs(nDesirdCost - nCurrCost)

if nDiffCost < nSampleCost
* Met error criteria mith current large grid.
* gxit grid search.
nCostClat sz nCurrCost

nGSizefnd := nLrgeGrid
nPrblitFnd := 1.0 - nNoHitLrgGrd
niumSampReq := nNumSamples
LConverg = T,
loop

endif

Will grid size need to be larger than 3 * semi-major axis?
If so, an L/G ratio > 3.0 would be required.
I1f first search with largest grid cen't get down to the
desired cost, no need to search farther.
if nSlCounter == 1 .and. (nCurrCost > nDesirdCost)

* Quit searching.

LOKProb := .F.

Loop
endif

* % 38

* GET PROB. FOR SMALL GRID.
if nAngle 1= 99.0
* Non-random single angle case,
nNoRitsmlGrd := ElipGrid(nSemiMajor,nShape,mngle,nsmalGrid, ;
nGTyp, NRecRatio)
else
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoYic <= ElipGrid(nSemiMajor, nShape, nCrntAngle, ;

E-48
Code File: EGPCGrph.Prg

nSmelGrid, nGTyp, nRecRatio)
nProbSum := rProbSum + nNProbNoHit
nRACounter++
819,63 say ltrim(str(nRACounter)) + " "
* Esc key abort, only used with random angles,
if inkey() == K_ESC
LAborted := .T.
exit // exit for/next loop
endi f
next nCrntAngle
if lAborted
Loop
endif

* Calculate average.
nolitSmlGrd := nProbSum/(nLrgstAngle+1)
endif

* Check {f we met cost criteria with small grid.
* First do ares calculations.
if cGridType == ugn
* Rect. grid.
nGlong := nSmalGrid * nRecRatio
else
* 8q. or Tri. grid.
nGlLong :s nSmalGrid
endi f
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attairment of Cleanup
* Standards Volume 1: Sofls and Solid Media", p. 9-7.
* Calculate grid cell area.
if cGridType =a wyw
* Trienguler grid.
* Grid cell area is now, 09/02/94, earea of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = s8in(60°) * base * base = 0.87 * base"2.
nGridCel lArea := 0.866025404 * nSmalGrid * nSmalGrid
else
* 8q. or rec. grid.
nGridCellArea := nSmelGrid * nGLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nkumSamples := ceiling(nSampleArea/nGridCellAres)

nCurrCost := nNumSamples * nSampleCost

* Can we quit with current small grid?
nDiffCost := sbs(nDesirdCost - nCurrCost)
if nDiffCost < nSampleCost
* Met error criterie with current smell grid.
* Exit grid search.
nCostClst := nCurrCost

nGSizeFnd := nSmalGrid
nPrbtfnd := 1.0 - nNoHitSmlGrd
niunSampReq := nNumSamples
LConverg H_J
Loop

erdif

* Will grid size need to be smaller than 1/3 * semi-major axis?
* If 8o, an L/G ratio < 1/3 would be required.
* 1f first search with smallest grid can't get up to the
* desired cost, no need to search farther.
if nSiCounter == 1 ,and. (nCurrCost < nDesirdCost)
* Quit searching.

E-49
Code File: EGPCGrph.Prg

LOKProb := .F.

loop
endif

* Bisection method, (Gerald and Wheately 1989, 7)
nintrGrid := (nLrgeGrid + nSmalGrid)/2

* GET PROB. AND COST FOR INTERPOLATED GRID.
if Mangle 1= 99,0
* Non-random single angle case.
mloHitintGrd := ElipGrid(nSemiMajor, nShape,nAngle,nintrGrid, ;
nGTyp, nRecRatio)
elge
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbloHit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nintrGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
nRACounter++
819,63 say \trim(str(nRACounter)) + “ "
* Esc key abort, only used with rendom angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit for/next loop
endif
next nCrntAngle
if LAborted
Loop
endi f

* Calculate average.
noHitIntGrd := nProbSum/{nLrgstAngle+1)
endif

* Check if we met cost criteria with interpolated grid.
* First do area calculations.
if cGridType == “R®
* Rect. grid.
nGlLong := nintrGrid * nRecRatio
else
* 8q. or Tri. grid.
nGLong := nintrGrid
endif
* Required number of samples is approximate.
* Based on (EPA. 1B89. “Methods for Eval. the Attainment of Clesnup
* Stendards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area.
if cGridType == "n
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = gin(60°) * base * base = 0.87 * base"2.
nGridCellArea := 0.866025404 * nintrGrid * nIntrGrid
else
* 8q. or rec. grid.
nGridCellArea := nintrGrid * nGLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNumsamples := ceiling(nSampleArea/nGridCel lArea)

nCurrCost := nlumSamples * nSampleCost

* Can we quit with current interpotated grid?
rDiffCost := abs(nDesirdCost - nCurrCost)

E-50
Code File: EGPCGrph.Prg

if nDiffCost < nSampleCost
* Met error criteria with current interpolated grid.
* Exit grid search.
nCostClst := nCurrCost
nGSizeFnd := nintrGrid
nPrbitFnd := 1.0 - nNoHitIntGrd
niumSampReq := nNumSamples
LConverg = T,
loop
endi f

* Update large or small search grid sizes.
* This is a minor difference from Linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing sbout 0.0.
* We look at whether our current f(x) for the interpolated grid
* is larger than the desired value.
if nCurrCost > nDesirdCost

nSmalGrid := nintrGrid
else

nLrgeGrid := nintrGrid
endif

* Have we reached max iterations?
if nSlCounter a= nMAXC_ITERS
* Failed to converge.
LPastMaxIt := .T.
Loop
endif
enddo

* Determine return code.
if (Converg

* Converged, probebility OK.

nRtnStatus := nSC_CONVERGED
elseif LPastMaxit

* Failed to converge.

nRtnStatus := nSC_PAST_MAXI
elseif LAborted

* Aborted with Esc.

NRtnStatus := nSC_ABORTED
elgseif 1 LOKProb

* Data out of range.

nRtnStatus := nSC_DATA_RNGE
else

* Unknown error.

nRtnStatus := nSC_UNKNOWN
endif

return (NRtnStatus)
*** End of Func: GetCostProb()

R 2 il L a2 it el {asad, 1247l
Function GetGphDataFile()

* Returns screen output file name entered by user,
* Errors: Checks and warns for valid subdir and file names.

* Returns NIL on Esc key abort.

static cOutfile = wn // Screen output file

local nChoice =1

local GetList = O

local cCurrPath := "

local lDone := .F.

local cRtnVal := cOutfFile // Return value, file or NIL

{ocal LOrgReadins

readinsert(.7.) // Insert mode for read = on.

* Default to no outfile flag for Esc key pressed on read.

E-51
Code File: EGPCGrph.Prg

cCurrPath := diskname() + “:" + dirname()

{f empty(cOutfile)

* Defsult out file is cCurrPath\Screen.Out.

* Add trafling \ to path, if needed.

cOutFile := cCurrPath + iif(right(cCurrPath,1)==u\n un m\ny 4+ nGraph.Dat"
else

* An out file name has been used.

* Default out file is cCurrPath\cOutFile. Note that cCurrPath may have

* changed since cOutFile name created.

cOutFile := gubstr(cOutFile,rat("\",cOutFile)+1) // Get just the filename.

cOutfile := cCurrPath + jif(right(cCurrPath, 1)=st\n un u\uy + cOutFile
endif

do while | lDone
cls
MenuBox(2,1,8,67)
cOutfile := padr(cOoutfile,64)
804,03 say “Enter graphics data file name:"
05,03 get cOutFile pict "at"
806,03 say “Current path: “ + cCurrPath
807,03 say “Esc = Abort"
keyboard chr(K_END)
read
readinsert(l0rgReadins)

cOutfile := alltrim(cOutfile)
if lastkey() 1= K_ESC
* First test for valid subdir and valid file name.
if ! Subdir(ExtrctPath{cOutFile)) .or. ;
! fflevalid(token(cOutFile,":\"))
* Invalid path or file name.
Err_MsgBox(10,"E","Error: Invalid path or file name.", ;
' "File.: ®» + cQutfile)

oop
elseif file(cOutFile)
* File exists.
* Decide whether to overwrite output file,
nChoice := AlertBox(8, ("YES, Overwrite It", "Enter New Name"), ;
"Marning: Above graph data file existsin, wn, .
“Overurite it?v,("YES, Overurite It", “Enter New Name'))
if nChoice ==
* Overwrite output file.
delete file (cOutfFile)
set alternate to (cOutFile) additive
elgeif nChoice == 2
* Try agein.
Lloop
else
* Esc key. Don't open output file.
LDone := .T.
Loop
endif
else
* If here, we have valid path and file does not exist.
* Open file for screen output.
set alternate to (cOutFile)
endif
endif
(Done := .T.
enddo
if lastkey() == K_ESC
* Abort.
cRtnVal := NIL
else
* Return file path\name.

E-52
Code File: EGPCGrph.Prg

cRtnVal := cOutFile
endi f
return (cRtnval)
*** End of Func: GetGphDataFile()

L2 Dl L2 e it L T L D L A Ll s f il e d d it i a2l g

Function OutGphData(iWriteHeader,cverDate,cOutFile,cGridType,nRecRatio, ;
nShape, nSemiMajor, nAngle, nSampleArea, nSampleCost, nMinCost, ;
nLoopCost1, nLoopCostMax, nCostStepSize, ;
nCostCist, nPrbHtFnd, nGSizeFnd, nNumSampleq, nStatus, cDelim)

* Write out header or cost-based graph data.

local cErr = W // Error msg

local nfrstDL := 18 // First data line

set console off
set alternate on

if lWriteHeader
* Write the file info header.
7?7 “# Data starts on line: ¥ + NumTrim(nFrstbL)
“¥ Output from ORNL/GJ ELIPGRID-PC Program version: " + cVerDate
“# File name.: " + cOutFile
“§ Created on: " + dtoc(date())
¥ Current length and area units...: " + ;
iif(m->cBasicUnitzz"Fn “Feet, fti%, "Meters, m'")
? "# Grid type choSen......occcccarcas "+ ;
iif(cGridType==nsy ngquare",iif(cGridType=z="T" “Triangle", "Rectangle'))+;
iif(cGridTypessvRY ¢ with \ong/short side ratio “+NumTrim(nRecRatio), ")
“# Shape of the elliptical hot spot: " + HumTrim(nShape)
"¥ Length of semi-major axis.c.....: " + NumTrim(nSemiMajor) + ;
iif(m->cBasicUnit=aufn w ftu o mn)
? "N Angle of orientation to grid....: " + ;
iif(nAngle==99,0,"Random”, NumTrim(nAngle)s+iten)
? “# Total area to sample............: " + NunTrim(nSempleArea) + ;
iif(m->cBagicUnits=VFe n fe2n n min)
? “# Individual sample coat.........s: ¥ + (trim(str(nSampleCost, 15,2))
? "# Minimum cost for graph data....$: " + ltrim(str(nlLoopCosti,15,2)) +

~ -

~ ~

" approx."

? “# Maximum cost allowed this run..$: ¥ + (trim(str(nLoopCostMax,15,2)) +
" approx.*

? "# Step size for cost values......$: * + ltrim(str(nCostStepSize,15,2))+
" approx.™

? “# Total Cost Prob. of"
7 “# of Sampling Hitting, P(21) Grid Size Found Number Sulples"
ll'-.. ..
lwriteﬂeader = F.
else
* Yrite a line of data.
if nStatus == nSC_CONVERGED
? trans(nCostClst, "99999999.99") + cDelim + space(5)
77 trans(nProltFnd, %9,99999%) + cDelim + space(7)
?? trans(nGSizeFnd, *999999.999") + cDelim + space(5)
?? trans(nNumSampReq, %999 999")
else
* Determine error code.
if nStatus a= nSC_PAST_MAXI
cErr := “Failed to converge."
elseif nStatus == nSC_ABORTED
cErr := “Aborted with Esc.”
eigseif nStatus == nSC_DATA_RNGE
* Data out of range.
cErr := “Data out of range.®
else
cErr := “Unknown error."
endif
? “## Error in calculating cost: " + cErr

E-53
Code File: EGPCGrph.Prg

endif
endif

set alternate off

set console on

return (NIL)

*** £nd of Func: OutGphData()

ANRRANTRAT SNSRI RAEEARIAAA N R AP bRRrdd b il

function WriteGphData(cGridType, cVerDate)
* WUrite cost-based graph data.

#define NMAX_COST_POINTS 250 // Max number of cost-based data values
static nSemiMajor := 2.82 // Length of semi-major axis
local ntSemiMajor := nSemiMajor // Temp value
static nAngle := 0.0 // Orientation sngle of hot spot to grid
local ntAngle := nAngle // Temp value
static mRecRatio = 2.0 // Rectengular grid long/short ratio.
local ntRecRatio := nRecRatio // Temp value
static nShepe = 1.0 // Shepe, minor/major axis
static nSampleArea := 7000 // Total area to sample
locel ntSampleArea := nSampleAres /! Temp value
static nSampleCost := 700 // Cost for one sample
local ntSamplecost :z nSampleCost // Temp value
static nMinCost := 200000 // Minimum cost for graph
local ntMinCost 1= nMinCost // Temp velue
static nCostlincr = 10 // Cost increment for graph
local ntCostincr := nCostlncr // Temp value
static cDelim H LU // ASC71 data delimiter
local ctDelim s= cDelim /7 Tes -alue
static cOutFile ¢= "Graph.Dat" // Graph dats output file
local nGSizefnd = 0 // Grid size found
local nProHtFnd =0 // Prob. of hit found
local nCurrCost =0 // Current cost
local nCostClst =0 // Best estimate of cost
local riNumSampReq := 0 // Wumber of samples required
* Misc vars.
local nCostStepSize := 0 // Step eize for cost loop
local nLoopCost1 = 0 // Loop cost 1
local nLoopCostMax := 0 // Max loop cost
local nGraphPoint := 0 // Graph point counter
local WriteHeader := .T. // Write file header flag
local nStatus = 0 // Status code for graph data file
local (Done = .F. // Loop flag
local (Converg e= _F. // Convergence flag
local lAborted := LF. // Esc key abort
local (PastMaxit := .F. // Exceeded nMAXC_ITERS flag
local LOKProb := LT, // Solvable problem specs flag
tocal nCol =0 // Scratch column()
local nKeyPress := 0 // User key press
local getlist = O // Stops compiler warnings
* for simple graph demo.
#ifdef GPH_DEMO

local arCostVals := () /! Array of cost values

local anProbVals := () // Array of prob values
#endif
private ntShape := nShape // private for F1D key function

if cGridType == NIL
* Input error: no grid typ passed i
return (NIL)

E-54
Code File: EGPCGrph.Prg

endif

* Upcase function argument.
cGridlype := upper(cGridType)

* Get screen output file.
cOutFile := GetGphDataFile()
if cOutFile == NIL

* Esc key abort.

return (NIL)
endif

* Display screen title.
DispTitle(cGridType, "W, cOutFile,.T.)

do while | LDone
* Make sure header is available at beg. of each loop.
8 6, 2 say "Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <= 1.0 .and. ntShape >= 0.05, ;
“Shape must be > 0.05 and < 1.0.%, len(cMAX_Shape))
& 6,49 say “Shape = short axis/long axis."
@ 7,49 say “F10 calculates axis from area." color(m->C_Help)
8 7, 2 say "Length of semi-major axis.........:" ;
get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
“Length must be > 0.0.", len{cMAX_SemiMajor))
arow(),col() say iif(m->cBasicUnits=nFy nfgn gn)
@ 9,49 say ' 99.0° for “random" angles.'

if cGridType == wgw

* Rectangular grid.

@ 8, 2 say "Angle of orientation to grid......:" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == $9,;
vAngle must be 0° to 90° or 99°=random.",len{cMAX_Angle))

@ 8,col() say w-»

8 8,49 say "Angle can be 0* to 90°. Use"

8 9, 2 say "Long side/short side ratio........:" ;
get ntRecRatio pict cMAX RecRatio ;
valid ErrorUDF(ntRecRatio > 1.0, ;
YRatio must be > 1.0.", len(cMAX_RecRatio))

elgeif cGriaType == h§w
* Square grid.
2 8, 2 say “Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
“Angle must be 0° to 45° or 99°=random.", len(cMAX_Angle))
® 8,col() say nv
@ 8,49 say "Angle can be 0* to 45°. Use"
elseif cGridType == ¥T®
* Triangular grid.
@ 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= O .and. ntAngle <= 30.0 .or. ntAngle == 99,;
“Angle must be 0° to 30° or 99°=random.”, len(cMAX_Angle))
8 8,col() say "»
@ 8,49 say "Angle can be 0° to 30°. Use"
endif

810, 2 say "Total area to sample.....ccoancnoeo2?
get ntSampleArea pict cMAX_SampleArea ;
valid ErrorUDF(ntSampleArea>0.0,"Area must be > 0.0", len(cMAX_SampleArea))
8row(),col() say iif(m->cBasicUnit=="F", "fetu wmin)

910,25 say "F10 = Acres" color(m->C_Help)

Code File: EGPCGrph.Prg

E-55

11, 2 say *Individual sample coSt...oeees.0o$i" ;

get ntSampleCost pict cMAX_SampleCost ;

valid ErrorUDF(ntSampleCost>0.0,"Cost must be > 0.0", Len(cMAX_SampleCost))
812, 2 say *Minimum cost for graph data......s L

get ntMinCost pict c¢DESIRD_COSY

valid ErrorUDF(ntMinCost >= ntSampleCost, ;
"Total cost must be 2 Sample cost.",len(cDESIRD_COST))

914, 2 say "Greph cost increment, 1-500 times sample cost:" get ntCostincr ;
pict 999" valid ErroruDF(ntCostincr > 0 .and. ntCostincr <= 500, ;
"Cost increment > 0 and < 400.",2)

@15, 2 say “Enter column delimiter, space or comma best,.:" get ctDelim

822, 0 ey "
822,79 say "{"
@22,1 to 22,78

823,2 say “Enter = Continue

set key K_f10 to F10_Key()
read

set key K_F10 to
nKeyPress := lastkey()

* Abort, Write Data, etc...
do case
case (nKeyPress == K_ESC)
* Esc key pressed

Esc

Abort" + space(44) // erase msg

if YN_MsgBox("Abort current data entry session? Y/N")

lDone := .T.
* Close output file.
close alternate

if filesize(cOutFile) < 22 .and. filesize(cOutFile) > 0
* No data written to this file, erase.
* Note: filesize() returns a -1 if no file found.
* 22 is just the length of the first line of the header.
* An aborted, new file should be just 1 byte, ASCII 26, Crtl-2.

delete file (cOutFile)

endif
endif

case (nKeyPress == K_ENTER .or. nKeyPress == K_CTRL_W)

* Enter key or Ctrl-W pressed.
* Save changes to static vars.

nShape = m->ntShape
nSemiMajor := ntSemiMajor
nngle := ntAngle
nMinCost := ntMinCost
nCostincr := ntCostincr
cDelim := ctDelim
nRecRatio := ntRecRatio

* Cost related vars,

nSampleArea := ntSsmpleArea

nSempleCost := ntSampleCost

[Ctrl-W currently not documented.)

Wocoacmcocanonan- | Find probs. for verious costs |----=---- -

scrol1(23,1,23,78)
setcolor ("W+/N*")
@23,2 say "Catculating”
setcolor(m->C_Normal)
nCol := col()+1
a22,nCol say "
823,nCol sey "I:'
@24,nCol say ™

// Force blinking with *

@23,52 say “Esc = Stop Calculations..."

setcursor(SC_NONE)

E-56
Code File: EGPCGrph.Prg

* Get loop cost sizes.

nCostStepSize := nSampleCost * nCostincr

nLoopCost1 := nMinCost // May later ack check on nMinCost prob.
// before entering the loop.

// Allow maximum of nMAX_COST_POINTS tries to reach 100X prob. of hit.

nLoopCostMax := nLoopCost? + ((nMAX_COST_POINTS-1) * nCostStepSize)

* Write file header, only pass parameters needed.

QutGphData(alWr i teHeader,cVerDate,cOutfile,cGridType,nRecRatio, ;
nShape, nSemiMajor, nAngle, nSempleArea, nSampleCost, mMinCost, ;
nLoopCosti, nLoopCostMax, nCostStepSize)

* Loop through probabilities for all costs.
817,38 say "Calculating graph point: of "+ ;
NunTrim(MAX_COST_PO!NTS) + " max."

* For simple graphics demo.
¥ifdef GPH_DEMO
anCostVals := ()
anProbVals :=)
#endi f

for nCurrCost = nLoopCost] to nLoopCostMax step nCostStepSize

* Check prob, for current cost.

817,63 say str(++nGraphPoint,3)

nStatus := GetCostProb(nCurrCost, nSemiMajor, nshape, nAngle, ;
cGridType, nRecRatio, nSampleArea, nSampleCost, ;
OnCostClst, @nGSizefnd, anPrbitFnd, anNumSampReq)

* Write out data for each cost (or failure msg).

OutGphData(LWriteHeader,cVerDate,cOutfile,cGridType, nRecRatio, ;
nShape, nSemiMajor, nAngle, nSampleArea, nSampleCost, rMinCost, ;
nLoopCost1, nlLoopCostMax, nCostStepSize, ;
nCostClst, nPrbHtFnd, nGSizeFnd, nNumSampReq, nStatus, cDelim)

* For simple graphics demo.
#ifdef GPH_DEMO
aadd(anCostvals,nCostClst)
aadd(anProbvals,nPrbitFnd)
#endif

* Have we reached approx. 100X yet?
if nPrbitfnd > 0.999995

* Yes, bail out of loop.

exit
endif

* Esc key abort.
if inkey() == K_ESC .or. nStatus == nSC_ABORTED
exit
endif
next nCurrCost
* Close output file.
close alternate

* Clean up calculating msg, etc.
scroll(23,1,23,78)

822,nCol say "-%

824,nCol say "

tone(440,1)
setcursor(SC_NORMAL)

close alternate

E-57
Code File: EGPCGrph.Prg

if lastkey() == K_ESC .or. nStatus == nSC_ABORYTED
* Aborted msg.
Err_MsgBox(7,“M", "Calculations aborted.", ;
URegults in graph data file: " + cOutFile)
else
* Finished msg.
Err_MsgBox(7,"M","Catculations finished.", ;
“Results in graph data file: " + cOutFile)
endi f

* Simple graphics demo.
#ifdef GPH_DEMO
GraphDemo(anCostvals, anProbvals)

#Mendi f

Done := .T.

loop
ervicese (LKey ==)

enddo
return (NIL)
w** End of Func: WriteGphData()

*** End of standard code.

* simple graphics demo code.
#itdef GPH_DEMO
L1 2t S22l D P ey iy 2 el 222 a2 2t Lt s g
Function GraphDemo(anCostvals, anProbvals)
* Simple graph demo. Not for external use.
* Flipper graphics Lib. seems to use lots of memory and lock machine.
* This is probably due to old version of Flipper, version 5.0.
* Currently graph will use no more than last nMAX_G_POINTS available points.

#define nMAX_G_POINTS 50 // Max graph points
local nTR = 5 // Top screen row
local mNumPoints c= len(anCostVals)

local nCurPoint :s 0

local nFrstPoint ;= 0

it 1t (len(anProbvals) == nNumPoints)

* Error.

Err_MsgBox(7,"E","Eriar: Data arrays unequat in length.®)
endif

cls
if AlertBox(7,(" Yes, Display Graph “,” No, Return "3}, ;
"Display simple graph demo?") == 1

if nlumPoints > 0
* Start Flipper.
* 2 columns of data times 8 bytes per value.
flip_init(nNumPoints*2*8)
set_sayerrr(1)
* 2 colums.
initdata(2)
set_type(1,5)
if nNumPoints <= nMAX_G_POINTS
nfrstPoint := 1
else
nfrstPoint := nNumPoints - nMAX_G_POINYS
endi f

for mCurPoint = nFrstPoint to nNumPoints

store_data(anCostVals [nCurPoint1/1000, 100*anProbvals (nCurPoint])
next nCurPoint
plot()

E-58
Code File: EGPCGrph.Prg

inkey(0)
textmode()
else
* No points to graph.
tone(440,.3)
Err_MsgBox(10,"E",*Error: No points to grsph.")
endi f
endif
return({NliL)
*** End of Func: GraphDemo()
#endif

w** End of File: EGPCGrph.Prg

E-59
Code File: EGPCHelp.Prg

1/

// File: EGPCHelp.Prg

// For: ELIPGRID-PC, EGPC.Exe.

// Purpose: Provides help screen code.

// Author: Jim Davidson

// Prog Started: 10/03/93

// Last Mod: 09/06/94

// Note: Functions are arranged in alphabetical order.

// 08/09/94 Changed name from HotSHelp.Prg to EGPCHelp.Prg.

// Include files

#include "Inkey.Ch* // key definitions
#include "Set.Ch" // set() function defs.
#include "Setcurs.Ch" // setcursor() related
k2Rl l {112 4,12 2])

Function Help()
* F1 help driver function.
local cTmpScn savescreen(0,0,24,79)

local cClr := getcolor(m->C_Help)
local nCursor := setcursor(SC_NORMAL)
local nKey = 0
local Done t= F.
local nScreen := 1
local cMaxScns := 5%
local nMax := val (¢cMaxScns)
set key K_F1 to // Stop recursion on Fi
do while | LDone
cls

* pDisplay the nth help screen.
HelpScnN(nScreen, cMaxScns)

* Turn off any file output.
set(_SET_EXTRA,.F.)

80,0 to 24,79 double
if empty(set(_SET_EXTRAFILE))
801,45 say “F2=Write Help Screens to Help.Scn" color (m-:C_Normal)
else
801,45 say "Writing Help Screens to Help.Scn " color (m->C_Normal)
endi f
a23,01 say ;
" Press a key to continue... Esc=Return PgUp=Previous" + ;
¢ Enter=Next WNo.zPg " color (m->C_Normal)
323,29 say "
inkey(0)

nKey := lastkey()

if nkKey == K_ESC
* Return.
LDone := .T.
loop
elseif nKey == K_PGUP .or. nKey == K_UP
* Go to prev. help screen.
nScreen--
nScreen := iif{nScreen<i,nMax,nScreen)
elseif nKey >= asc("1") .and. nKey <= asc(cMaxScns)
* Go to page nurber.
* Note that asc("i1") == 49, asc("2") == 50, etc.
nScreen := nkey - 48
elseif nKey == K_F2 .and. empty(set(_SET_EXTRAFILE))
* Write help screen to “Help.Scn" file. Only turn on if not on already.

E-60
Code File: EGPCHelp.Prg

set(_SET_EXTRAFILE,"HELP.SCN",.F.) // .F. overwrite
77 “ELIPGRID-PC Program Help Screen(s)"
set(_SET_EXTRA,.T.) // .T. means set extra file on
else
* Go to next help screen.
nScreen++
nScreen := {if(nScreen>nMax,1,nScreen)
endif
enddo

set(_SET_EXTRAFILE, ") /7 Close Help.scn file
setcolor(cClr)

setcursor(nCursor)

restscreen(0,0,24,79,cTmpScn)

set key X_F1 to Help()

return(NIL)

*** End of Func: Help()

ARRAR AN NTRA AR AT AR AR RRAD

Function HelpScnN{nNum,cMax)

* Digplay help screen number nNum.

local cNum := Ltrim(str{nNum))

* Code demonstration exp. date.

local cDemoDate := biidemdte()

cDemoDate := substr(cDemoDate,5,2)+"/%+right(cDemoDate,2)+"/"+left(cDemoDate,4)

801,02 say “ORNL/GJ ELIPGRID-PC Help Screen, " + cNum + " of " + cMax ;
color (m->C_Help)

if | empty(set(_SET_EXTRAFILE))
* File output.
set console off
?
? “ORNL/GJ ELIPGRID-PC Help Screen, " + cNum + ¥ of " + cMax
get console on

endif

if nNum == 1

* Display screen 1.
text

ELIPGRID-PC calculates the probabilty of detecting an assumed elliptical
target.

Usege: EGPC [H | M | F | MF)
EGPC H will give more information on above options.

Key Main Menu Options
"p Probability of Hitting Hot Spot" allows input from an ELIPGRID-style
input file, an SIF input file, or the screen,

"G Grid Size Required, Given Prob." determines a grid spacing that
results in a hit probability very close to a user-specified value.

uS Smallest Hot Spot Hit, Given Grid" determines the length of the
semi-major axis of the smallest hot spot that can be hit, given user-
specified conditions. The result is returned as an area in the
current units.

“C Cost-Based Grid" determines a grid size that meets the user-specified
conditions for a given cost.

Wy Write Cost-Based Graph Data" produces ASCII *.DAT files for graphing.
endtext

elgeif nNNum == 2
text

E-61
Code File: EGPCHelp.Prg

Input file formats are:

(1) ELIPGRID format, a FORTRAN-style format of column positions.

Line 1 §s the title, formst is A80. Data values and formats are:
SemimajorAxis Shape Angle GridSize GridType Orientation TargetlD
F10.2 F10.2 F10.2 F10.2 14 14 AL

1f the grid type is 3, i.e., rectangular, the long/short side ratio
must follow on the next data Line with £10.2 format.

EOF marker is a Shape > 1.0.

(2) Simplified input format (SIF) removes need for noting column postions.
Line 1 is the title. Date values are in same order as ELIPGRID format:
SemimajorAxis Shape Angle Gridsize Gridlype Orientation TargetlD
One or more spaces must separate each data value,
An asterisk, *, may comment out any line.
EOF marker is a Shape > 1.0 or no more data lines.

endtext

elseif nium == 3
text
Example input file formats follow:

ELIPGRID format:
Test4l.In input file, 12/21/93. (Note: this is line 1, the title line.)
[Semi-major Shape Angle GridSize Type Orient. TargetlD This line

1000.0 0.38 22.0 800.0 1 O#261 is not part
1250.0 0.50 0.0 1074.57 2 O#104 of an ELIPGRID
1000.0 0.38 22.0 565.69 3 O#261 file.]
2.0
1250.0 0.50 0.0 1000.0 1 1#104
9.9 9.9 9.9 9.9 9 9 EOF
SIFf format:

Test4l.In input file, 12/21/93. (Note: this is Line 1, the title Line.)
* Semi-major Shape Angle GridSize Type Orient. TargetiD

1000.0 0.38 22.0 800.0 1 0 #261

1250.0 0.50 0.0 1074.57 2 1] #104 (Note skewed columns 0K.)
1000.0 0.38 22.0 565.69 3 0 #261

2.0

1250.0 0.50 0.0 1000.0 1 1 #104

endtext

elseif num == 4

text
Grid types:

1 = Square
2 = Triangular (called hexagonal by Singer).
3 = Rectangular

Orientation of target to grid:
0 = Use angle given by data.
> 0 = Use average of 0 to 45 degree angles for square grid.
Use average of 0 to 30 degree angles for triangular grid.
Use average of 0 to 90 degree angles for rectangular grid.
These average values are called random by Singer.

Cost calculations:
These calculations depend on an approximate formula found in
CEPA 1989, 9-7).
Total Area
Nurber samples required = -------------- « Since this formula is
Grid Cell Area

only approximate, the resulting cost is approximate.

endtext

E-62
Code File: EGPCHelp.Prg

elgeif nium == 5
text
References:

U.S.EPA. 1989. Methods for Evaluating the Attainment of Cleanup Standards
volume 1: Soils and Solid Media, EPA, Washington, DC.

Gilbert, R.A. 1987. Statistical Methods for Environmental
Pollution Monitoring. Van Wostrand Reinhold, New York.

Singer, D.A. 1972. “ELIPGRID, A FORTRAN 1V Program for Calculating the
Probability of Success in Locating ELliptical Targets with Square,
Rectangular, and Hexagonal Grids," Geocom Programs 4: 1-16.

Further Information:
Jim Davidson, ELIPGRID-PC program developer. ORNL/GJ, (303) 248-6259.
endtext
/*** Removed 08/11/94, JRD, program now forces full level 3 correciton.
814,03 say "Current ELIPGRID-PC Correction Level = " + -
NumTrim(m->nE | pGrdCor) color (m->C_Error)
815,03 say "Run EGPC Help for correction level information."
t.t/
817,03 sey “"Demonstration expiration date: *
row(),col() say cDemoDate color(m->C_Error)
endif
return (NIL)
*** End of Func: HelpScnN()

BEARARERRANANA RN AR AR TNS

Function Paramielp(cVerDate)

* Parameter help screen.

set color to W+/N

cls

7?7 repli(®=" 80)

7?7 “ORNL/GJ ELIPGRID-PC Program, Version: " + cVerDate

" Example: EGPC MF®

" Use monochrome screen, feet for basic screen unit."
repli(“=",80)

return (NIL)

*** £nd of Func: Paramielp()

? "Usage: EGPC (W | M | F | MFI»

?

. EGPC = Defaults to color screen and meters for basic unit."
m EGPC Klelpl = Help on command Line parameters, this screen."

7 EGPC M[ono] = Monochrome input screens.

70 EGPC Fleetl = Use feet for basic unit of length for screen"

re input. File input can be any consistent unit."
AL EGPC MF = Monochrome screens and feet for basic screen unit."
?

?

?

?

?

w+* End of File: EGPCHelp.Prg

E-63
Code File: EGPCScrn.Prg

1/

/¢ File: EGPCScrn.Prg

// For: ELIPGRID-PC, EGPC.Exe.

// Purpose: Provides screen input/output related code.

/¢ Author: Jim Davidson

// Prog Started: 04/18/94

// Last Mod: 09/702/94

// Note: Functions are arranged in alphabetical order.

// Modifications:

// 08709794 Chenged name from HotSScrn.Prg to EGPCScrn.Prg.

/7 09702794 Grid cell area for triangular grid now calculated from rhombus.
1/ This adjusts the EPA formula for rumber of samples for tri. grid.
/7

// Include files.

// Clipper supplied include files.

#include *"Directry.Ch" // File info definitions

#include "Inkey.Ch" // Key definitions

#include “Set.Ch" /7 set() definitions

#include "Setcurs.Ch" // setcursor() related

#include “Box.Ch" // Box drawing constants

// ORNL developed include files.

#include "EGPCMax.Ch" // ELIPGRID-PC maximums for screen 1/0
// Defines

#idefine nP1 3.1415926 // Note that ELIPGRID uses 3.141592
// User-defined command

#xcommand DEFAULT <TheParam> TO <Defaultval> => ;

IF (<TheParam> == NIL); <TheParam>:=<Defaultval>; ENDIF

BRARANNBARANAAN AR BARA N IAAN AR RTRAEY

Function F10_Key(cProc,nLine,cvar)

* Calculates length of semi-major axis based on area.
* Calculates m?! or ft? from acres.

static nHotSptArea := 25,0

static nTotalAcres := 10.0

Llocal nSemiMajor := 0.0

Local nNewAres := 0.0

Llocal cTmpScn := savescreen(0,0,24,79)

Llocal Getlist =)

set key K_F10 to

if cvar s= “NTSEMIMAJOR" // Check if var is ntSemiMajor.
* Calculates length of semi-major axis based on area.

scrol 1(8,49,11,78)
@ 8,49 to 11,78
@ 9,50 say " Convert hot spot area to » + ;
fif(m->cBasicUnit==wFn wft», wm %) color (m->C_Help)
810,51 say “Enter area:" get nHotSptArea pict cMAX_HotSArea
@rowl),col() say iif(m->cBasicUnit=a®F", " fe2u n miu)
read
if lastkey() == K_ENTER
nSemiMajor := sqrt(nHotSptArea/(nPl * m->ntShape))
keyboard chr(K_CTRL_Y) + alltrim(str(nSemiMajor)) + chr(K_HOME)
endif

elseif cvar == NTSAMPLEAREA"

* Calculates m* or ft! from total sample acres.
scroll(11,49,14,78)
11,49 to 14,78
812,50 say " Convert acres to " + ;
iif(m->cBagicUnit==nfn uftin upt w) 4+ gpace(7) color (m->C_Help)
813,51 say “Enter total acres.:" get nTotalAcres pict cMAX_Acres
read
if lastkey() == K_ENTER
* Conversion factors from CRC Handbook of Chem./Phs., 1981/82, p. F-282.

E-64
Code File: EGPCScr.Prg

niewArea := ;
iif(m->cBasicUnit=="F" nTotalAcres*43560.0,nTotalAcres*4046.8564)
if nNewArea <= nMAX_SampleArea
keyboard chr(K_CTRL_Y) + alltrim(str(nNewArea)) + chr(K_HOME)
else
tone(440,1)
813,51 say "Answer to large: " + NumTrim(nNewArea)
inkey(3)
endif
endif
elge
scrol 1(23,1,23,78)
823,2 say "Call F10 from axis or total ares fields."
tone(440,1)
inkey(2)
endif

set key K_F10 to F10_Key()
restscreen(0,0,24,79,cTmpScn)
return (NIL)

*** End of Func: F10_Key()

LAl dd A it i Al 22 2Dl 2 d it d LAl dd il ddd)

chtvon GetCostGrd(cGrld‘rype, cVerDate)
* Searches for a grid size that produces a given cost.

local ntDesirdCost
ss2tic cOutFile

= nDesirdCost // Temp value
= WScreen.Out" // Screen output file

* Only searches for grids with L/G ratios between

* 0.10 and 3.0, i.e., the grid size is between L/3 and 10*L.

* Currently uses a modification of the bisection method for root finding.
* See "Applied Numerical Analysis", 4th Ed., by Gerald and Wheatley p. 7.
* Input: cGridType = “S", #RM, or “T" for square, rectangular,

hi or triangular grids.

hd cVerDate = Version date.

* Returns: NIL

* Error: Aborts if cGridType == NIL.

»

* The specified cost of sampling will be mathced by the calculated grid
* cost to within £ < gample cost.

#define NMAXC_1TERS 25 // Max cost search jterations
static nHotsptArea := 25.0 // Mot spot sres

local ntHotSptArea := nHotSptArea // Temp value

static nSemiMajor := 2.82 // Length of semi-major exis

local ntSemiMajor := nSemiMajor // Temp value

static nAngle 1= 0.0 // Orientation angle of hot spot to grid
local ntAngle = pAngle // Temp value

static nRecRatio = 2.0 // Rectangular grid long/short ratio.
local ntRecRatio := nRecRatio // Temp value

static nShape = 1.0 // Shape, minor/major axis

static nSampleArea := 7000 // Total area to sample

local ntSampleArea := nSampleArea // Temp value

static nSampleCost := 700 // Cost for one sample

local ntSamplecost := nSempleCost // Temp value

static nDesirdCost := 200000 // Desired cost

local nGTyp ez 1 // Grid type requested

local nGSizeFnd =0 // Grid size found

local nGLong := 0 // Long side for rec grids

local nCol := 0 // Scratch column()

local nSICounter := 0 // Search iterations counter

local nRACounter = 0 // Random angle counter

local nPrbitfnd := 0 // Prob. of hit found

local nProbNoHit = 1 // Probability of zero hits, P(0)

local nCrntAngle ¢tz 0 // Current angle, used for “random" angle

E-65
Code File; EGPCScm.Prg

Local nirgstAngle
Llocal nProbSum
local nSmalGrid
Local mioHitSmiGrd
Llocal nLrgeGrid
Local nloHitLrgGrd
local nintrGrid
Llocal mNoHitintGrd
local mMiffCost
Local nCurrCost
local nCostClst
local nGridCel lArea
Local nNumSamples

// Largest angle, ugsed for “random” angle
// Suming var., used for “random” angle
// Small grid size

// P(0) for small grid

// Large grid size

// P(0y for large grid

Interpolated grid size

// P(0) for interpolated grid

// Current diff. from desired cost

// Current cost

// Best estimate of cost

// Area of one grid cell

// Nurber of samples required

o 48 S as e P 48 U8 83 AD %9 00 a8
" NN
OO0 202000
~
S~

* Misc varg.

Llocal LOutFile := LF. // Use output file flag

local lWriteHeader := .F. // Hrite file header flag
Llocal cStatus = HOK® // Status msg for output file data
local lDone := .F. // Loop flag

Llocal lConverg t= LF. // Convergence flag

local LAborted := .F. // Esc key abort

local lPastMaxit := F, // Exceeded nMAXC_ITERS flag
local LOKProb iz LT, // Solvable problem specs flag
local nKeyPress =0 // User key press

local getlist =0 // Stops compiler warnings
private ntShape := nShape // private for F10 key function

if cGridType == NIL
* Input error: no grid typ passed in.
return (NIL)

endif

* Upcase function argument.
cGridlype := upper(cGridType)

* Get screen output file.
cOutFile := GetScnOutFile(8!0utFile, SlUWriteHeader)

* Display screen title.
DispTitle(cGridType,"C",cOutFile, lOutFile)

do while ! LDone
8 6, 2 say "Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <= 1.0 .and. ntShape >= 0.05,
“Shape must be > 0.05 and < 1.0.%, Len(cMAX_Shape))
@ 6,49 say "Shape = short axis/long axis."
@ 7,49 say “F10 calculates axis from area." color(m->C_Help)
@ 7, 2 say “Length of semi-major 8xiS..ccccecai¥ ;
get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
“Length must be > 0.0.", Len(cMAX_SemiMajor))
arow(),col() say iif(m->cBasiclnit==Nf", “fth, m)
2 9,49 say ' 99.0° for “random" angles.'

if cGridType == WRw
* Rectangular grid.
2 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
“Angle must be 0° to 90° or 99°=random.", len(cMAX_Angle))
@ 8,col() say n°»
8 8,49 say “Angle can be 0° to 90°. Use"
@ 9, 2 say “Long side/short side ratio......,.:" ;
t ntRecRatio pict cMAX_RecRatio ;

E-66
Code File: EGPCScm.Prg

valid ErrorUDF(ntRecRatio > 1.0, ;
“Ratio must be > 1.0.", Len(cMAX_RecRatio))

elgeif cGridType == "s"
* Square grid.
@ 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
“Angle must be 0° to 45° or 99°=random.’, (en(cMAX_Angle))
@ 8,col() say "¢
8 8,49 gsay "Angle can be 0° to 45°. Use"
elseif cGridlype == "»
* Triangular grid.
@ 8, 2 say “Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,;
“Angle must be 0° to 30° or 99°=random.", len(cHAX_Angle))
8 8,col() say n°»
@ 8,49 say “Angle can be 0° to 30°. Use"
endi f

@10, 2 say "Total area to sampleé....cccveeuaeat®
get ntSampleArea pict cMAX_SampleAres ;
valid ErrorUDF(ntSampleArea>0.0,"Area must be > 0.0", len(cMAX_SampleArea))
Srow(),col() say iif(m->cBasicUnitmstFn nfera umtny
810,25 say "F10 = Acres" color(m->C_Help)
811, 2 say "Individual sample cost...... I T
get ntSampleCost pict cMAX_SampleCost ;
valid ErrorUDF(ntSampleCost>0.0,"Cost must be > 0.0", Len(cMAX_SampleCost))
812, 2 say "Desired cost of grid....cceeer... L HLUH
get ntDesirdCost pict cDESIRD_COST :
valid ErroriDF(ntDesirdCost >= ntSampleCost, ;
"Total cost must be > Sample cost.",len(cDESIRD_COST))
811,49 say “Program will search for cost"
812,49 say "with error < ¢ 1 sample cost."

822, 0 say "t»
822,79 say "%
822,1 to 22,78

823,2 say “Enter = Continue Esc = Abort" + gpace(44) // erase msg

set key K_f10 to F10_Key()
read

set key K_F10 to
nKeyPress := lastkey()

* Abort, Urite Data, etc...
do case
case (nkeyPress == K_ESC)
* Esc key pressed
if YN_MsgBox("Abort current data entry session? Y/N")
if LOutFile
* Close out file.
close alternate
endif
lDone := .T.
endif
case (nKeyPress == K_ENTER .or. nKeyPress == K_CTRL_W)
* Enter key or Ctrl-W prassed. [Ctrl-W currently not documented.]
* Save changes to static vars.
scroll(13,1,21,78)
nShape := m->ntShape
nSemiMajor := ntSemiMajor
nAngle = ntAngle
nDesirdCost := ntDesirdCost

E-67
Code File: EGPCScm.Prg

nRecRatio := ntRecRatio

it cGridType == ugn

* Sqeure grid.

nGTyp H

nLrgstAngle := 45 // Fer “random" angle
elgeif cGridType == upn

* Rect. grid.

nGTyp = 3

nLrgstAngle := 90 // For “random" angle
elseif cGridType == nTa

* Tri. grid.

nGTyp = 2
nLrgstAngle := 30 // For “random" angle
endif

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSampleCost

WAL TTEISRELILLITS | Find grid size for given cost |-------- *

* Below are grid size restrictions to stay in reasonable search.
nSmalGrid := 0.33334 * nSemiMajor

* Below same as L/G of 0.10.

nLrgeGrid = 10.0 * nSemiMajor

scrol(23,1,23,78)

setcolor(M+/N*") // Force blinking with *

823,2 say "Calculating®
setcolor{m->C_Normal)
nCol :z col()+1
822,nCol say ¥t
823,nCol say :I"
#24,nCol say
823,52 say “Esc = Stop Calculations...”
setcursor(SC_NONE)

* [nitialize counters
nSiCounter := 0 // Search iterations
PRACounter := 0 // Random engle iterations
814,38 say "Cost search iterations.: "
it nAngle == 99.0
815,38 gsay “Random angle iterations: "
endif
817,38 say "Cost gsearch is usually less%
818,38 say “than 16 iterations.™

* Initialize flags.

{Converg = F. // .T. if search converges
(Aborted = ,F. /7 .T. if Esc key sbort
{PastMaxit := .F, // .Y. if past max iterations
LOKProb = T, // .F. it problem can't be solved

* Start searching.
do while ! (Converg .and. ! lAborted .and. ! (PastMax!t .and. LOKProb
nSiCounter++ // lncrement search counter
814,64 say NumTrim(nSICounter)+ W/® + -
Ltrim(str(nMAXC_ITERS)) + " maximum.*

* GET PROB. AND COST FOR LARGE GRID.
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitLrgGrd := ElipGrid(nSemiMajor,nShape,nAngle,nlrgeGrid, ;
nGTyp, nRecRatio)
elge
* Sumn wp multiple angle results, random case.

E-68
Code File: EGPCScrn.Prg

nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbMoHit := ElipGrid(nSemiMajor, nShape, nCrntAnple, ;
nlLrgeGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHlit
nRACounter++
815,64 say Ltrim(str{nRACounter))
* £gc key abort, only used with random angles.
if inkey() == K_ESC
LAborted := .T.
exit // exit for/next loop
endi f
next nCrntAngle
if lAborted
Loop
endif

* Calculate average.
nNoHitLrgGrd := nProbSum/(nLrgstAngle+1)
endi f

* Check {f we met cost criteria with large grid.
* First do srea calculations.
if cGridType == uR¢
* Rect. grid.
nGLong := nlLrgeGrid * nRecRatio
elge
* Sq. or Tri. grid.
nGLong := nlLrgeGrid
endif
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanuwp
* Standards Volume 1: Soils and Sol id Media", p. 9-7.
* Calculate grid cell ares.
if cGridType zx nyw
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = 8in(60°) * base * base = 0.87 * base"2.
nGridCel lArea := 0.866025404 * nlLrgeGrid * nlLrgeGrid
elge
* 8q. or rec. grid.
nGridCel lArea := nLrgeGrid * nGlLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
numSamples := ceiling(nSampleArea/nGridCel lAres)

nCurrCost := nNumSamples * nSampleCost

* Can we qQuit yet?

nDiffCost := abs(nDesirdCost - nCurrCost)

if nDiffCost < nSampleCost
* Met error criteria with current large grid.
* Exit grid search.
nCostClst := nCurrCost

nGSizeFnd := nLrgeGrid
nPrblitFnd := 1.0 - nNoHitLrgGrd
{Converg := LT,
loop

endif

* Will grid size need to be larger than 3 * semi-major axis?
* 1f so, an L/G ratio > 3.0 would be required.

* 1f first search with largest grid can't get down to the

* desired cost, no need to search farther.

E-69
Code File: EGPCScrn.Prg

if nSiCounter == 1 .and. (nCurrCost > nDesirdCost)
* Quit searching.
lOKProb := .F.
Loop

endif

“ GET PROB. FOR SMALL GRID.
if nAngle = 99.0
* Non-random single angle case.
nNoHitSmlGrd := ElipGrid(nSemiMa]or,nShape,nAngle, nSmalGrid, ;
nGTyp, nRecRatio)
elge
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNolit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nSmalGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
NRACounter++
815,64 say Ltrim(str(nRACounter))
* Esc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := ,T.
exit // exit for/next loop
endi f
next nCrntAngle
if lAborted
Loop
endif

* Calculate average.
nNoHitSmlGrd := nProbSum/(nLrgstAngle+1)
endif

* Check if we met cost criteria with small grid.
* First do area calculations.
if cGridType == ugw
* Rect. grid.
nGLong := nSmalGrid * nRecRatio
elge
* 8q. or Tri. grid.
nGLong :x nSmalGrid
endif
* Required number of samples is spproximate.
* Besed on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area.
if cGridType == uTwn
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = gin(60°) * base * base = 0.87 * base’2.
nGridCel lArea == 0.866025404 * nSmalGrid * nSmalGrid
else
* Sq. or rec. grid.
nGridCellArea := nSmalGrid * nGlLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of sanples up.
nNumSamples := ceiling(nSampleArea/nGridCel lArea)

nCurrCost := nNumSamples * nSempleCost
* Can we quit with current small grid?

nDiffCost := abs(nDesirdCost - nCurrCost)
if nDiffCost < nsampleCost

E-70
Code File: EGPCScm.Prg
* Met error criteria with current small grid.

* Exit grid search.
nCostClst := nCurrCost

nGSizefnd := nSmalGrid
nProftfnd := 1.0 - nNoHitSmlGrd
LConverg H I I
Loop

endif

* Will grid size need to be smaller than 1/3 * semi-major axis?
* If s0, an L/G ratio < 1/3 would be required.
* If first search with smallest grid can't get up to the
* desired cost, no need to search farther.
if nSlCounter == 1 .and. (nCurrCost < nDesirdCost)
* Quit searching.
LOKProb == ,F.
loop
endif

* Bisection method, (Gerald and Wheately 1989, 7)
nintrGrid := (nLrgeGrid + nSmalGrid)/2

* GET PROB. AND COST FOR INTERPOLATED GRID.
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitIntGrd := ElipGrid(nSemiMajor,nShape,nAngle,nintrGrid, ;
nGTyp, nRecRatio)
else
* Sum up multiple angle results, rendom case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbloHit :x El{pGrid(nSemiMajor, nshape, nCrntAngle, ;
nintrGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbloHit
NRACounter++
815,64 say ltrim(str{nRACounter))
* Egc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit tor/next Loop
endif
next nCrntAngle
if LAbortod
toop
endi f

* Calculate average.
nNoHitIintGrd := nProbSum/(nLrgstAngle+1)
endif

* Check if we met cost criteria with interpolated grid.
* First do area calculations.
if cGridType == uR#
* Rect. grid.
nGlong := nintrGrid * nRecRatio
elae
* 8q. or Tri. grid.
nGLong := nintrGrid
endif
* Required number of samples is approximate.
* Based on (EPA. 1889. “Methods for Eval. the Attainment of Cleanup
* Stendards Volume 1: Soils and Solid Media®, p. 9-7.
* Cslculate grid cell area.
if cGridlype == w»
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed

E-71
Code File: EGPCScm Prg

* from 2 of the equilateral triangles,
* A = height * beze = 8in(60°) * base * base = 0.87 * base"2.
l nGridCel lArea := 0,866025404 * nIntrGrid * nIntrGrid
elge
* Sq. or rec. grid.
nGridCel lArea := nintrGrid * nGlLong
endi f
* This formula is approx. See (EPA 1989, 6 9-7).
* Ceiling function rounds number of samples up.
riumSamples := ceiling(nSampleArea/nGridCel lArea)

nCurrCost := nNumSamples * nSampleCost

* Can we quit with current interpolated grid?

mDiffCost := abs(nDesirdCost - nCurrCost)

if nDiffCost < nSampleCost
* Met error criteria with current interpolated grid.
% Exit grid search.

nCostClst := nCurrCost
nGSizeFnd := nIntrGrid
rProfitFnd == 1.0 - nMoHitIntGrd
LConverg = .T.
Lloop

endif

Update large or small search grid sizes.
This is a difference from linear interpolation and bisection
methods. They look for sign changes of f(x). In root search
case, f(x) values will be changing about 0.0.
We look at whether our current f(x) for the interpolated grid
is larger than the desired value.
if nCurrfest > nDesirdCost

nSmalGrid := nintrGrid
else

nLrgeGrid := nintrGrid
endif

* %% N8R

* Have we reached max iterations?
if nSICounter == NMAXC_ITERS
* Failed to converge.
\PastMaxit := .T.
Lloop
endif
enddo

* Clean up calculating msg.
scrol 1(23,1,23,78)
822,nCol say "

824,nCol say -0
tone(440,1)

* Display results.
setcolor(m->C_Help)
if lPastMaxlt .or. LAborted
* Failed to converge msg. or Esc key aborted.
scroll(17,1,21,78)
817,1 to 21,78 double
if (PastMaxIt
@18,2 say " Failed to converge." color(m->C_Error)
elseif lAborted
818,2 aay " Calculations aborted..." color(m->C_Error)
endi f
819,2 say " Last interpolated grid estimate: “ + ;
Ltrim(str(nlntrGrid,12,4))

E-72
Code File: EGPCScmn.Prg

820,2 say v Last calculated cost...........: $" + ;
Ltrim(trans(nNumSamples*nSampleCost,cMAX_TotalCost))

elseif | LOKProb

* yger input date require grid size out of range.

scrol1(¢17,1,21,78)

Q17,1 ta 21,78 double

@18,2 say " Data out of renge." color(m->C_Error)

@19,2 say " The input data require a grid size that is out of " + ;
%the search range of the

820,2 say " program. Will only search for grid sizes between" + ;
" /3 s Grid s 3 *L.“

elge

* Found grid msg.

scroll(14,1,21,78)

@13,1 to 21,78 double

if cGridType == WRH
* Rect. grid.
nGLong := nGSizefnd * nRecRatio
814,2 say " Grid size found, long side ="s

Ltrim(str({nGLong,10,3))

arow(),col() say iif(m->cBasicunit=="Fn n fen n mt)
15,2 say " Grid size found, short side ="e;
ltrim(str(nGSizefnd, 10,3))

else
* 8q. or Tri. grid.
nGLong := nGSizeFnd
814,2 say " Grid size found = e

Lltrim(str{nGSizefnd,10,3))
endif

Vrow(),col() say iif(m->cBasicUnitzz"fh o ftn, 1 go)

914,49 say "Grid search iteratjons.: " + NumTrim(nSICounter)
if nAngle == 99.0

815,49 say "Random angle iterations: * + NumTrim(nRACounter)
endif

16,2 say " Probability of hitting hot spot = * + ;
Lerim(str¢100*nPrbitFnd,6,1)) + "Xv
endif

if nSampleArea > 0 .and. LConverg
* Required number of samples is approximate,
* Based on (EPA. 1889. “Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area.
if cGridType == nTH
* Triangular grid.
* Grid cell area is now, 09/02/94, erea of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = 8in(60") * bage * base = 0.87 * base"2.
nGridCellArea := 0.866025404 * nGSizeFnd * nGSizeFnd
else
* §q. or rec. grid.
nGridCellArea := nGSizefnd * nGLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNunSamples := ceiling(nSampleArea/nGridCel LArea)

218,2 say " Required number of samples ="+,
Ltrim(trans(nNumSampl es, cMAX_Samples))
a19,3 say ;
“Required number of samples is approximate. " color "W/RB"
820,2 say " Total cost for above number of samples = $" + ;

E-73
Code File: EGPCScrn.Prg

Ltrim(trans(nNumSemples*nSampleCost,cMAX _TotalCost))
endif

if LOutFile .and. LConverg
* Write to output file.
* pags lWriteHeader by reference, WriteData will update it.
WriteData(alwriteHeader,cVerDate,cOutfile,cGridType, nRRecRatio, ;
nSemiMajor,nGSizefnd,nShape,MAngle, nPrbitFnd, nSampleArea, ;
nNumSamples , nSampleCost)
elseif lOutFile .and. (lAborted .or. ! lConverg)
* Write data for abort or failed to converge.
nGSizefnd := nintrGrid
nPrboitFnd := 1.0 - nNoHitIntGrd
cStatus = §if(LAborted," ABRT" " FAIL")
writeData(aluriteHeader,cverDate,cOutfile, cGridType, nRecRatio, ;
nSemiMa jor,nGSizeFnd,nShape, nAngle, nPrbHitFnd, nSampleArea, ;
nNumSamples, nSampleCost , cStatus)
endif
setcolor(m->C_Normal)
otherwise
* Will loop back.
\Done := _F,
endcase (LKey ==z)
enddo
return (NIL)
*** End of Func: GetCostGrd()

AT ARNAN A RE NN AN N R ETNATARNINRAATTATANNNI NS

Function GetGridSiz(cGridType, cVerDate)
* Searches for & grid size that produces a given probebility.

a8 3

static nDesirdProb
local ntDesirdProb
static cOutFile

.0 // Desired probability
esirdProb // Temp value
creen.Qut? /7 Screen output file

* Uges & modification of the lLinear interpolation method for nonlinear equation
* root finding for most searching. Uses a modification of the bisection

* method when searching for sizes producing very samll or large hot spot

* migs probabilities. See "Applied Numerical Anslysis", 4th Ed.,

* by Gerald and Wheatley pp. 5-10.

* Only searches for grids with L/G ratios between

* 0,10 and 3.0, i.e., the grid size is between L/3 and 10*L.

* Input: cGridType = »§n, WRu_ or wT" for square, rectangular,

. or triangular grids.

b cVerDate = Version date.

* Returns: NIL

* Error: Aborts if cGridType == NIL.

* The specified prob. of a hit will be matched by the chosen grid to within

* & < nERR_CRITERIA. This corresponds to, e.g.,

* 90.0% £ < 0.05%. Or 89.95% < calculated value < 90.05X%.

#define NERR_CRITERIA 0.00049999¢ // Morked better than 0.0005 in some cases
#define NMAX_ITERS 25 // Max search iterations

static nHotsptArea := 25.0 // Hot spot ares

local ntHotSptArea := nHotSptArea // Temp value

static nSemiMajor = 2,82 // Length of semi-major axis

local ntSemiMajor := nSemiMajor // Temp value

static nAngle := 0.0 // Orientation angle of hot spot to grid
local ntAngle := pAngle // Temp vslue

static nRecRatio 1= 2.0 // Rectangular grid long/short ratio.
local ntRecRatio := nRecRatio // Temp value

stacic nShape = 1.0 // Shepe, minor/major axis

static nSampleArea := 0 // Total area to sample

local ntSampleArea := nSampleArea // Temp value

static nSampleCost :=0 // Cost for one sample

local ntSamplecost := nSampleCost // Temp value

X
[[§
-

local nGTyp // Grid type requested

E-74

Code File: EGPCScrn.Prg

local nGS{zeFnd

local nGlLong
local nCol

local nSiCounter
local nRACounter
local nDesirdNoHit
local nPrblitfnd
local nProbloHit
local nCrntAngle
Local nLrgstAngie

local nProbSum

local nSmalGrid
local nNoHitSmlGrd

local nDiffSml

local nLrgeGrid
Llocal nNoHitLrgGrd

local nDiffLrg

local nintrGrid
local nNoHitintGrd

tocal mDiffint

local nGridCel lArea
local nNumSemples

* Misc vars.
local lOutFile

local lWriteHeader

local cStatus
local (Done

local \Converg
local (Aborted

local lPastMaxit

{ocal {OKProb

local nKeyPress

local getlist

private ntShape

// Grid size found

// Long side for rec grids

// Scratch column()

// Search iteratfions counter

// Rendom angle counter

// Desired prob. of missing

// Prob. of hit found

// Probability of zero hits, P(0)

// Current angle, used for “random angle
// Largest angle, used for “random" angle
Suming var., used for “random" sngle
// Small grid size

/7 P(0) for small grid

/7 Smell grid diff from desired P(0)

// Lerge grid size

// P¢0) for Large grid

// Large grid diff from desired P(0)

// Interpolated grid size

// P(0) for interpclated grid

// 1nterpolated grid diftf from desired P(0)
// Area of one grid cell

// Number of samples required

W KHHNNONSSN
0002002000000 2000000CO0O
~
~

.F. // Use output file flag

.F. // Write file header flag

oK // Status msg for output file data
.F. // Loop flag

.F. // Convergence flag

.F. // Esc key abort

.F. // Exceeded nMAX_ITERS flag

.T. // Solvable problem specs flag

0 // User key press

QO // Stops compiler warnings

nShape // private for F10 key function

if cGridType == NIL
* Input error: no grid typ pessed in.

return (NIL)

endi f

* Upcase function argument.
cGridlype := upper(cGridType)

* Get screen output file.
cOutFile = GetScnOutFile(a8lOutFile, aluwriteleader)

* Display screen title.
pispTitle(cGridlype,"G", cOutFile, lOutfile)

do while | (Done

@ 6, 2 say “Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <= 1.0 .and, ntShape >= 0,05, ;
“Shape must be > 0.05 and < 1.0.", len(cMAX_Shape))
8 6,49 say “Shape = short axis/long axis.®
@ 7,49 say "F10 calculates axis from area." color(m->C_Help)
87, 2 sey "Length of semi-major axis.........:" ;
get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
“Length must be > 0.0.", len(cMAX_SemiMajor))
arow(),col() say iif(m->cBasicunit==Rfe nfth, iph)

8 9,49 say !

99.0° for “random" angles.'

if cGridType == "p"

E-75
Code File: EGPCScmn.Prg

* Rectangular grid.
8 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorlDF(ntAngle >= 0 .and. ntAngle <= 90,0 ,or, ntAngle == 99,;
"Angle mugt be 0° to 90° or ©9°=random.", len(cMAX_Angle))
@ 8,col() say wv
@ 8,49 say “Angle can be 0° to 90°. Use®
8 9, 2 say YLong side/short side ratio........:" ;
get ntRecRatio pict cMAX_RecRatio ;
valid ErrorUDF(ntRecRatio > 1.0, ;
"Ratio must be > 1.0.", Len(CcMAX_RecRatio))

elseif cGridType == us#
* Square grid.
@ 8, 2 say “Angle of orientation to grid......:¥ ;
get ntAngle pict cMAX_Anple ;
valid ErrorlOF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
“Angle must be 0° to 45° or 99°=random.", len(cMAX_Angle))
@ 8,col() say "M
@ 8,49 say “Angle can be 0° to 45°. Use®
elseif cGridiype == “y4
* Triangular grid.
® 8, 2 say “Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorDF(ntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,;
“Angle must be 0° to 30° or 99°=random.", len(cMAX_Angle))
@ 8,col() say "*n
Q 8,49 say "Angle can be 0° to 30°. Use"
endif

810, 2 say “Desired probability of hitting....:2% ;
get ntDesirdProb pict cDESIRD_PROB ;
valid ErrorUDF(ntDesirdProb >= 10.0 .and. ntDesirdProb<=99.9,;
“prob. must be 10X to 99.9%.”, len(cDESIRD_PROB))
810,col() say "xv
810,49 say “Use 10X to 99.9%.%
1,49 say » Leave area and sample cost"
812,49 say ¥ at O if cost not desired."
911, 2 say "Total area to SamMPle.....ccccasesei®
pet ntSampleArea pict cMAX_SampleArea
8rom(),col() say iif(m->cBasicUnit==tFn uftin umtn)
811,25 say "F10 = Acres" color(m->C_Help)
812, 2 say "Individue! sample cost...........5:% ;
get ntSampleCost pict cMAX_SampleCost
822, 0 say »
@22,79 say W%
822,1 to 22,78

823,2 say “Enter = Continue Esc = Abort" + space(44) // erase msg

set key X_F10 to F10_Key()
read

set key K_f10 to
nKeyPress := lastkey()

* Abort, Write Data, etc...
do case
cage (nKeyPress ==z K_ESC)
* Esc key pressed
if YN_MsgBox("Abort current data entry session? Y/N")
if LOutFile
* Close out file.
clogse alternate
endif
LDone := .T.
endi f

E-76
Code File: EGPCScrn.Prg
case (nkeyPress == K_ENTER .or. nKeyPress == K_CTRL_W)

* Enter key or Ctrl-W pressed. [Ctrl-W currently not documented.]
* Save changes to static vars.

scroll(13,1,21,78)

nShape = m->ntShape
nSemiMajor := ntSemiMajor
nAngle 1= ntAngle

nDesirdProb := ntDesirdProb
nRecRstio := ntRecRatio

if cGridType == "g»

* Sqaure grid.

nGTyp Ho

nirgstingle := 45 // For "random" angle
elseif cGridType == “g"

* Rect. grid.

nGTyp =3

nLrgstAngle := 90 // For "random" angle
elseif cGridType == #yH

* Tri. grid.

nGTyp 1= 2
nlrgstAngte := 30 // For “random® angle
endi f

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSampleCost

Mecosacnncccnnaan | caleutate grid size for desired prob. |-------- *
rDesirdProb :x jif({nDesirdProb==100.0,99.95 nDesirdProb)

// Above left in code in case 100X again used as valid X.
rDesirdNoHit := 1.0 - (nDesirdProb*0.01)

* Below approx. same as L/G <= 3.0 restriction.

nSmalGrid s= 0.33334 * nSemiMajor

* Below same as L/G of 0.10.

nLrgeGrid 1= 10.0 * nSemiMajor

scrol1(23,1,23,78)

setcolor (Hu+/N*") // Force blinking
823,2 say "Calculating"

setcolor(m->C_Normal)

nCol := col()+1
822,nCol say u»
823,nCol say "I"

824 ,nCot say

823,52 say “Esc = Stop Calculations..."
setcursor{SC_NONE)

* Keep calculating until error is less than nERR_CRITERIA.
nSiCounter := 0 // Search iterations
nRACounter := 0 // Random angle iterations
814,38 say "Grid search iterations.:
if nAngle == 99.0

@15,38 say “Rendom angle iterations: "
endi f
817,38 say “Grid search is usually less"
818,38 say "than 16 iterations.®

|Converg sz F. /7 .1. if search converges

LAborted := L F. /! .1. if Esc key abort

lPastMaxlt := .F. // 7. if past max iterations

LOKProb = T, // .F. if problem can't be solved

do while | 1Converg .and. |} LAborted .and.) LPastMexlt .and. LOKProb
nSiCounter++ // Increment search counter

814,64 say NumTrim(nSICounter)+ %/ + ;
Ltrim(str{nMAX_ITERS)) + * maximum.*

E-77
Code File: EGPCScrn.Prg

* GET PROB. FOR LARGE GRID.
if nAngle = 99.0
* Non-random single angle case.
nNoHitLrgGrd := ElipGrid(nSemiMajor ,nShepe,nAngle,nLrgeGrid, ;
nGTyp, NRecRatio)
elge
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoHit := ElipGrid{nSemiMajor, nShape, nCrntAngle, ;
nLrgeGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNolit
PRACounter++
815,64 say ltrim(str{nRACounter))
* Esc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit for/next loop
endif
next nCrntAngle
if lAborted
Loop
endif

* Calculate average.

nNoHitLrg6rd := nProbSum/(nLrgstAngle+1)
endif

* Check if we met error criteria with large grid.
nDiffLrg := abs(nDesirdNoHit - nNoHitLrgGrd)
if nDiffLrg < nERR_CRITERIA
* Met error criteria with current large grid.
* Exit grid search.
nGSizeFnd := nLrgeGrid
nPrbitFnd := 1.0 - nNoHitLrgGrd
LConverg = T,
Loop
endif

* GET PROB. FOR SMALL GRID.
if nAngle 1= 99.0
* Non-random single angle case.
riolitSmiGrd := ElipGrid(nSemiMajor, nShape,nAngle,nSmalGrid, ;
nGTyp, nRecRatio)
elge
* Sun up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNodit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nSmalGrid, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
NnRACounter++
815,64 say Ltrim(str(nRACounter))
* Esc key abort, only used with random angles.
if inkey() == K_ESC
LlAborted := .T,
exit // exit for/next loop
endif
next nCrntAngle
if \Aborted
loop
endif

* Calculate average.
nNoHitSmlGrd := pProbSum/{nLrgstAngle+1)
endif

E-78
Code File: EGPCScrn.Prg

® Yill grid size need to be smaller than 1/3 semi-masjor axis?
* [f g0, an L/G ratio > 3.0 would be required.
% 1f first search with smallest grid csn't get the
* desired prob. of hitting, no need to search farther.
if nSicounter == 1 ,and. (nNoHitSmlGrd > nDesirdNoHit)
* Quit searching.
LOKProb := .F.
Loop
endif

* Check if we met error criteria with small grid.
nDiffSml := sbs(nDesfirdNoHit - nNoHitSmlGrd)
if nDiffSml < nERR_CRITERIA
* Met error criteria with current small grid.
* gxit grid search.
nGSizefnd := nSmelGrid
nPrbitFnd := 1.0 - nNoHitSmlGrd
LConverg H 2
loop
endi f

* Get interpolated (or average for small/large probs.) grid size.
if nDesirdNolit >= 0.04 .and. nDesirdNoHit <= 0.50
* Formula based on a modification to the linear interpolation
* method, (Gerald and Wheately 1989, 10)
* 0.04 and 0.50 limits set by trial and error.
nintrGrid := nLrgeGrid - (nLrgeGrid - nSmalGrid) * ;
(nNoHitLrgGrd - nDesirdNoHit) / (nNoHitLrgGrd - nNoHitSmilGrd)
else
* Bisection method, (Gerald and Wheately 1989, 7)
* Works better than linesr interp. on ends of prob. curve.
nIntrGrid := (nLrgeGrid + nSmalGrid)/2
end

* GET PROB. FOR INTERPOLATED GRID.
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitIntGrd := El{ipGrid(nSemiMajor, nShape,ningle,nintrGrid, ;
nGTyp, nRecRatio)
else
* Sum up nultiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoHit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nintrGrid, nGlyp, nRecRatio)
nProbSum = nProbSum + nProbNoHit
nRACounter++
815,64 say Ltrim(str(nRACounter))
* Egc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit for/next loop
endif
next nCrntAngle
if \Aborted
Loop
endif

* Calculate average.
nNoHitIntGrd := nProbSum/(nLrgstAngle+1)
endi f

* Check if we met error criteria with interpolated grid.
nDiffint := abs(nDesirdNoHit - niNoHitintGrd)
if nDiffint < NERR_CRITERIA

* Met error criteria with current interpolated grid.

E-79
Code File: EGPCScrn.Prg

* Exit grid search.
nGSizeFnd :w nintrGrid
nPrbitFnd := 1.0 - mNoHitIntGrd
lConverg = T,
{oop

endif

* Update large or small search grid sizes.
* This is a diff2rexce from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing about 0.0.
* We look at whether our current f(x) for the interpolated grid
* is larger than the desired value.
if noHitlntGrd > nDesirdNolit

nLrgeGrid := nintrGrid

nSmalGrid := nintrGrid

* NHave we reached max iterations?
if nSICounter == nMAX_ITERS
* Failed to converge.
PastMaxlit := T,
loop
endi f
enddo

* Clean up calculating msg.
scroll(23,1,23,78)

822,nCol say "-%

824 ,nCol gay "-*

tone(440,1)

setcursor(SC_NORMAL)

* In case rec. grid, get long side.
nGLong := nGSizeFnd * nRecRatio

* Display results.
setcolor(m->C_Help)
if LPastMaxlt .or. lAborted
* Failed to converge msg. or Esc key sborted.
scroli(17,1,21,78)
@17,1 to 21,78 double
if LPestMaxit
818,2 say " Failed to converge." color(m->C_Error)
eigeif |Aborted
818,2 say " Calculations aborted...” color(m->C_Error)
endi f
819,2 say “ Last interpolated grid estimate.: » + ;
Ltrim(strinintrGrid, 12,4))
820,2 say " Last calculated prob. of hitting: " + ;
Lerim(str(100*(1-nNolitintGrd), 12,4)) + wx»
elseif ! LOKProb
* Problem specs. require grid size < 1/3 semi-major axis.
scrol 1(17,1,21,78)
a17,1 to 21,78 double
18,2 say " Data out of range.¥ color(m->C_gError)
819,2 say ¥ The input data require a grid size that is out of » + ;
Hthe gsearch range of the*
820,2 say " program. Will only search for grid sizes > 1/3 " + ;
Ylength of semi-major axis."
else
* Found grid meg.
scroli(14,1,21,78)
@13,1 to 21,78 double
if cGridType == WRn

E-80
Code File: EGPCScrn.Prg

* Rect. grid.
nGlong := nGSizeFnd * nRecRatio
814,2 say " Grid size found, long side L
Ltrim(str(nGLong, 10,3))
Brow(),col() say iif(m->cBasicUnit=zHEw o fth 0 guv)
815,2 say " Grid size found, short side LI
ltrim(str(nGSizefnd,10,3))
elge
* 8q. or Tri. grid.
nGlong := nGSizeFnd
814,2 say " Grid size found =0y,
Lerim(str(nGSizeFnd,10,3))
endi f

@row(),col() say iif(m->cBasicUnit=="F" o ftw, u mn)

814,49 say "Grid search iterations.: " + NumTrim(nSICounter)
if Mngle == 99.0

815,49 say "Random angle iterations: ¥ + NumIrim(nRACounter)
endif

816,2 say " Probability of hitting hot spot = " + ;
ltrim(str(100*nPrbitFnd,6,1)) + X"
endi f

if nSampleArea > 0 .and. lConverg
* Required number of samples is approximate.
* Based on (EPA. 1889. “Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Medis", ©. 9-7.
* Calculate grid cell area.
if cGridType == nyn
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = §in(60°) * bage * base = 0.87 * base"2.
nGridCel lArea := 0.866025404 * nGSizeFnd * nGSizeFnd
else
* S§q. or rec. grid.
nGridCellAres := nGSizefnd * nGLong
eren f
* This formula is approx. See (EPA 1989, 9-7).
* Cefling function rounds number of samples up.
nNumSamples := ceiling(nSampleArea/nGridCel LArea)

@18,2 say " Required number of samples ="s ;
Ltrim{trans(nNumSamples, cMAX_Samples))
a19,3 say ;

“Required number of samples is approximate. % color “W/RB"
820,2 say " Total cost for above number of samples = $" + ;
Ltrim(trans(nNumSamples*nSampleCost,cMAX_TotalCost))

erdif

if lOutFile .and. lConverg
* yrite to output file.
* Pagg lWriteHeader by reference, WriteData will update it.
WriteData(@luriteHeader,cVerDate,cOutFile,cGridType, nRecRatio,
nSemiMajor,nGSizefnd, nShape, nAngle,nPrbitFnd, nSampleArea, ;
niunSamples, nSampleCost)
elseif lOutFile .and. (lAborted .or. | LConverg)
* Urite dats for abort or failed to converge.
nGSizeFnd := nintrGrid
nPrbfitFnd := 1.0 - nioHitintGrd
cStatus := fif(lAborted,”™ ABRT"," FAIL")
WriteData(@liriteieader,cverDate,cOutFile,cGridType, nRRecRatio,
nSemiMa jor,nGSizeFnd, nShape,nAngle, nPrblitFnd, nSampleArea, ;
niumSemples,nSampleCost,cStatus)

Code File: EGPCScrn.Prg

endif

setcolor(m->C_Normal)

otherwise

* Will loop back.

lDone := .F,
endcase (LKey ==)

enddo
return (NIL)

*** End of Func: GetGridSiz()

L2 22 i 2 Il il il idadillllt J1117%:%)

Function GetProbMit(cGridType, cverDate)
* Calculates probability of missing/hitting hot spot based on

Input:

Returns: RKIL

static
local
static
local
static
local
static
local
static

nHotsptArea
ntHotSptAres
nSemiMajor
ntSemiMajor
nMngle
ntAngle
nRecRatio
ntRecRatio
nGSize

local ntGSize
static nShape
static nSampleArea
local ntSampleArea
static nSampleCost
local ntSamplecost
static cOutFile

tocal
local
local
local
local
local
Local
Local
locat

nGTyp

nGLong
nProbiolit
nProbOfANi t
nCratAngle
nlrgstAngle
nProbSum
nGridCel lArea
niumSamples

* Misc vars.

local lOutFile
local lWriteHeader
local nChoice
Local lDone

local nlKey

local getlist

private ntShape
if cGridType == NIL

return (NIL)
endif

cVerDate

"N hHNnN
OOOQOQOE—'

Singer's 1972 ELIPGRID algorithm.
cGridType = WSn wpn op #T¢ for square, rectangular,
or trisngular grids.

= Version date.

25.0
nHotSptArea
2.82

nSemiMajor
nAr'vgle

2.0
nRecRatio
10.0

nGSize

1.0

0
nSampleArea
0

nSampleCost
"Screen.Out"

(7]
-
N
n

.F.
.F.

.F.
(¢}
nShape

* Upcase function argument.

cGridType

:= upper(cGridType)

* Get screen output file.

Aborts if cGridType == NIL.

/7
1/

1/
1/
/7
/7

E-81

Hot spot area

Temp value

Length of semi-major axis

Temp value

orientation angle of hot spot to grid
Temp value

Rectangular grid long/short ratio
Temp value

G in Gilbert, grid spacing

Short side, if rectanglular grid
Temp value

Shape, minor/major axis

Total area to sample

Temp value

Cost for one sample

Temp value

Screen ocutput file

Grid type

Long side for rec grids

Probability of zero hits, P(0)
Probability of at least 1 hit, 1-P(0)
Current angle, used for “random" angle
Largest angle, used for “random" angle
summing var., used for “random® angle
Area of one grid cell

Number of samples required

Use output file flag
Write file header flag
Loop flag

Stops compiler warnings

// private for F10 key function

E-82
Code File: EGPCScrn.Prg

cOutFile :z GetScnOutFile(alOutFile, AlWriteHeader)

* Display screen title.
DispTitle(cGridType,"P", cOutFile, |OutFile)

do while ! lDone
@ 6, 2 say “Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid ErrorlOFf(ntShape <= 1.0 .and. ntShape >= 0.05, ;
“Shape must be > 0.05 and < 1.0.", len(cMAX_Shape))
@ 6,49 say “Shape = short axis/long axis.®
@ 7,49 say "F10 calculates axis from area." color(m->C_Help)
@ 7, 2 say “iLength of semi-major axis.........:" ;
get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
Length must be > 0.0.", len(cMAX_SemiMajor))
arou(),col() say iif(m->cBasicUnit=="1F" nfth umph)
@ 9,49 say ¥ 99.0° for average of"
810,49 say * multiple, "random®, angles.'

if cGridType == URM
* Rectangular grid.
@ 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErcorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
Angle must be 0° to 90° or 99°=random.", len(cMAX_Angle))
@ 8,col() say "¢
@ 8,49 say “Angle can be 0° to 90°. Use"
8 9, 2 say "Length of short side of rect. grid:" ;
get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize >= ntSemiMajor/3, ;
"Grid size must be > Semimajor axis/3.0.", len(cMAX_GSize))
arouw(),col() say iif(m->cBasicUnit=swgs ufen ugn)
810, 2 say “Long side/short gide ratio........:" ;
get ntRecRatio pict cMAX_RecRatio ;
valid ErrorUDF(ntRecRatio > 1.0, ;
“Ratio must be > 1.0.", Len(cMAX_RecRatio))
elseif cGridType s= ug»
* Square grid.
8 8, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
“Angle must be 0° to 45° or 99°=random.”, len(cMAX_Angle))
8 8,col() cay w=n
@ 8,49 say “Angle csn be 0° to 45°. Use"
8 9, 2 say "Length of any side of square grid.:" ;
get ntGSize pict cMAX_GSize ;
valid ErrorlDF(ntGSize >= ntSemiMajor/3, ;
"Grid size must be > Semimajor axis/3.0.%,len(cMAX_GSize))
Srow(),col() say §if(m->cBasicUnita=tfu nftu aumn)
elseif cGridlype s= uy®
* Triangular grid.
@ 8, 2 say “Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDfF{ntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,;
“Angle must be 0° to 30° or 99°zrandom.", len(cMAX_Angle))
8 B,col() say "»
@ 8,49 sey “Angle can be 0° to 30°. Use
9 9, 2 say "Length of side of triangular grid.:" ;
get ntGSize pict cMAX _GSize ;
valid ErrorUDF(ntGSize >= ntSemiMajor/3, ;
“Grid size must be z Semimajor axis/3.0.%, len(cMAX_GSize))
arow(),col() say iif(m->cBasicUnitz=Npn, nftn lims)
endif

811,49 say * Leave area and sample cost"

E-83
Code File: EGPCScm.Prg

812,49 say " at 0, if cost not desired."
@811, 2 say "Total area to sample........cc0n003¥
get ntSampleArea pict cMAX_SampleArea
grow(),col() say iif(m->cBagicUnitss!F4 Vfgin upiu)
811,25 say "F10 = Acres" color(m->C_Help)
812, 2 say "individual ssmple cost........... L TU
get ntSampleCost pict cMAX_SampleCost
822, 0 say :‘r‘
822,79 say "qu
822,1 to 22,78

823,2 say “Enter = Continue Esc = Abort" + space(44) // erase msg

set key K_F10 to F10_Key()
read

set key K_F10 to

nLKey :z lastkey()

* Abort, Write Data, etc...
do case
case (nLKey == K_ESC)
* Esc key pressed
if YN_MsgBox(“Abort current data entry sessijon? Y/N")
if lOutFile
* Close out file.
close alternate
endif
LDone := .T.
endif
case (nlKey == K_ENTER .or. niKey == K_CTRL W)
* Enter key or Ctrl-W pressed. [Ctrl-W currently not documented.]
* Save changes to static vars.

scroll(13,1,21,78)

nShape := m~>ntShape

nSemiMajor := ntSemiMajor

nAngle := ntAngle

nGSize = ntGSize

nGLong s nGSize // Mill correcy for rec grid below

nRecRatio := ntRecRatio

if cGridType == nugm
* Sgaure grid.
nGTyp B
elseif cGridType a= WR"
* Rect. grid.
nGTyp =3
nGlLong := nGSize * nRecRatio
elseif cGridType == wy»
* Tri. grid.
nGTyp :
endif

2

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSampleCost

Feooroceoconane-e | Calculate probsbility of no hit, P(0) |-------- .
if nAngle 1= 99.0
* Calcualte for a single angle.
nProbNoHit := ElipGrid(nSemiMajor,nShape,nAngle,nGSize, nGTyp, ;
nRecRatio)
else
scrolt(13,1,21,78)
814,02 say'Calculating average for multiple angles, i.e., "“random".®
* Calculate for average of multiple angles, i.e., “random" choice
* in Singer's 1972 ELIPGRID.

E-84
Code File: EGPCScrn.Prg

if nGTyp == 1
nLrgstAngle := 45
elseif nGlyp == 2
* For triangular grid (hexagon).
nLrgstAngle := 30
elseif nGTyp == 3
* for rectangular grid.
nLrgstAngle := 90
endif
* Sum Uup multiple angles results.
nProbSum := 0.0
for nCrntAngle = 0 to nlLrgstAngle
nProbNotit := ElipGrid(nSemiMajor, nShape,nCrntAngle,nGSize, ;
nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
next nCrntAngie

* Calculate average.
nProboHit := nProbSum/(nLrgstAngle+1)
endif

* Display results.

setcolor(m->C_Help)

scrot((14,1,21,78)

813,1 to 21,78 double

nProbOfAHit := 100 * (1.0 - nProbNoHit)

@14,2 say ™ Probability of hitting at least once ="+ ;
str{nProbOfANIt, 6, 1)+4Xe
816,2 say ¥ probability of NOT hitting hot spot = "4+,

str(100*nProbNoHit,6,1) + "X»

* 1f applicable, display cost.
if nSampleArea > 0
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attairment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area.
if cGridiype == ny»
* Trisngular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base = sin(60°) * base * base = 0.87 * base"2.
nGridCellArea := 0.866025404 * nGSize * nGSize
else
* 8q. or rec. grid.
nGridCel LArea := nGSize * nGlLong
endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNumSamples := ceiling(nSampleArea/nGridCeliArea)

818,2 say " Required number of samples =¥y .
Ltrim(trans(nNumSamples,cMAX_Samples))
819,3 say ;

"Required number of samples is approximate. " color “W/RB"
820,2 say " Total cost for above number of samples = $" + :
Ltrim(trans(nNunSamples*nSampleCost,cMAX_TotalCost))

endif

if LOutFile
* \Write to output file.
* pass lWriteHeader by reference, WriteData will update it.
WriteData(aluWriteHeader,cverDate,cOutFile,cGridType,rRecRatio, ;
nSemiMajor,nGSize,nShape, nAngle, nProbOfAHit/ 100, nSampleArea, ;
numSampl es ,nSampleCost)

Code File: EGPCScrn.Prg

endif
setcolor(m->C_Normal)

otherwise
* Witl loop back.
(Done := .F.
endcase (nLKey =z)
enddo
set alternate to
return (N1L)
*** End of Func: GetProbHit()

E-85

LI 222 2 2Tl 2222 a2t T2 a2l L 2 Dt 2] Ll d g

Function GetSmallestAres(cGridType, cVerDate)
* Searches for smallest hot spot size that produces s given probability.

or triangular grids.

Returns: NIL

[B N BN N BN BN N 2 R 2N 2 4

static NnAngle := 0.0
local ntAngle := nAngie
static NRecRatio = 2.0

tocal ntRecRatio := nRecRatio

static nGSize = 10.0

local ntGSize 1= nGSize
static nShape =2 1.0

static nSampleArea := O

local ntSampleArea := nSampleArea
static nSampleCost := 0

local ntSamplecost := nSampleCost
static nDesirdProb := 95.0

local ntDesirdProb := nDesirdProb

static cOutFile

“Screen.Out"

Llocal nGTyp

local nHS_t_Fnd
tocal nGLong

tocal nCol

local nSICounter
local NRACounter
local nDesgirdNoHit
local nPrbitFnd
tocal nProblNolit
local nCrntAngle
local nLrgstAngle
tocal nProbSum
local nSmalHS_L
local nNoHitSmLHSL
local nDiffSml
tocal nLrgeHS_t
local nNoHitLrgHSL
local nDiffLrg
local nintriS_t
local NNOHi t1ntHSL
local nDiffInt

N HENREDRA NN

46 88 56 a0 OF B4 se 05 4 e 0s se S s U8

.
neann

L]
O=200200-20000+20000000~

cVerDate = Version date.

Error: Aborts if cGridType == NIL.

The specified prob. of a hit will be matched by the chosen hot spot to within
t < NERR_CRITERIA. This corresponds to, ¢.9.,

90.0% ¢ < 0.05X. Or B89.95%X < calculated value < 90.05%.

1/
//
1/
1/
1/
1/
'
1/
1/
//
1/
1/
1/
//
1/

/7
/7

Currently uses & modification of the bisection method for root finding.
See "Applied Numerical Analysig", 4th Ed., by Gerald and Wheatley p. 7.
Only searches for hot spots with L/G ratios between

0.10 and 3.0, i.e., the hot spot semi-major axis size, L,

is between 0.1 * G and 3 * G, where G is given grid size.

Input: cGridType = "S», WR® or “T» for square, rectangular,

Orientation angle of hot spot to grid
Temp value

Rectangular grid tong/short ratio.
Temp value

G in Gilbert, grid spacing

Short side, if rectanglulaer grid
Temp value

Shape, minor/major axis

Total area to sample

Temp value

Cost for one sample

Temp value

Desired probability

Temp value

Screen output file

Grid type requested

Hot spot L value found, semi-major axis
Long side for rec grids

Scratch colum()

Search iterations counter

Random angle counter

Desired prob. of missing

Prob. of hit found

Probability of zero hits, P(D)

Current sngle, used for "random" angle
Largest angle, used for "random" angle
Summing ver., wused for “random" angle
Small trisl hot spot semimaj axis len.
P(0) for small hot spot

Small hot spot diff from desired P(0)
Large hot spot size

P(0) for large hot spot

Large hot spot diff from desired P(0)
Interpolated hot spot size

P(0) for interpolated hot spot
Interpolated hspot diff from desired P(0)

E-86
Code File; EGPCScrmn.Prg

local nGridCellArea := 0 // Ares of one grid cell

local nNumSamples = 0 // Number of samples required
* Misc vars,

local lOutfile := F. // Use output file flag

local lWriteHeader := .F. // drite file header flag
{ocal cStatus s= WOKN // Status msg for output file data
local lDone := F. // Loop flag

local Converg := LF, // Convergence flag

lozal Aborted 1= LF, // Esc key abort

local lPastMaxIt = .F. // Exceeded nMAX_ITERS flag
local LOKProb i= LT, // Solvable problem specs flag
local nKeyPress = 0 // User key press

local getlist = () // Stops compiler warnings
private ntShape := nShape /1 private for F10 key function

if cGridType == NIL
* Ilnput error: no grid typ passed in.
return (NIL)

endi f

* Upcase function argument.
cGridType := upper(cGridType)

* Get screen output file.
cOutfile := GetScnOutFile(3lOutFile, alWriteHeeder)

* Display screen title.
DispTitle(cGridType, s, cOutFile, LOutFile)

* Get input data.
do while | LDone
@ 6, 2 say "Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <= 1.0 .and. ntShape >= 0.05, ;
“"Shape must be 2 0.05 and < 1.0.", {en(cMAX_Shape))
@ 6,49 say "Shape = short axis/long axis."
@ 8,49 say ' 99.0° for “random" angles.'

if cGridType == uRn
* Rectangular grid.
8 7, 2 say "Angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
“Angle must be 0° to 90° or 99°=random.”, len(cMAX_Angle))
@ 7,col() say #°u
@ 7,49 say "Angle can be 0° to 90°. Use"
@ 8, 2 say "Length of short side of rect. grid:" ;
get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize >= 0, ;
“Grid size must be > 0.0.", lLen(cMAX_GSize))
arow(),col() say iif(m->cBasicUnit=="F" "ft", um")
@ 9, 2 say “Long side/short side ratio........:¥ ;
get ntRecRatio pict cMAX_RecRatio ;
valid ErrortDF(ntRecRatio > 1.0, ;
“Ratio must be > 1.0.7, len(cMAX_RecRatio))

elseif cGridType == ugw

* Square grid.

8 7, 2 say "Argle of orientation to grid...... HU
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
“Angle must be 0° to 45° or 99°=random.”, len(cMAX_Angle))

@ 7,col() say "°»

@ 7,49 say “Angle can be 0° to 45°, Use"

E-87
Code File: EGPCScrn.Prg

8 8, 2 say “Length of sny side of square grid,:" ;
get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize >= 0, ;
"Grid size must be > 0,0.%, Len(cMAX_GSize))
Srouw(),col() say jif(m->cBasicunit=="Fn tfty nmi)

elseif cGridType == wI¢
* Triangular grid,
@ 7, 2 say "angle of orientation to grid......:" ;
get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,:
“Angle must be 0° to 30° or 99°xrandom.", len(cMAX_Angle))
8 7,col() say “=»
@ 7,49 say BAngle can be 0° to 30°. Use"
@ 8, 2 say "Length of side of triangular grid.:" ;
get ntGSize pict cMAX_GSize ;
valid ErrorUDF(NntGSize >= 0, ;
wGrid size must be > 0.0.", Len(cMAX_GSize))
Srow(),col() say iif(m->cBasicUnit=="F", “ft", m')
endi f

@810, 2 say "Desired probability of hitting....:* ;
get ntDesirdProb pict cDESIRD_PROB ;
valid ErrorUDF(ntDesirdProb >= 10.0 .and. ntDesirdProb<z99.9,;
“Prob. must be 10X to 99.9%.", len(cDESIRD_PROB))
@10,col() say "%
810,49 say "Use 10X to 99.9X.% ///, XError <2.05X" removed 03/31/94
211,49 say ¢ Leave area and sample cost"
812,49 gay " at 0, if cost not desired."
@11, 2 say "Total area to sample....... cvenon Lo
get ntSampleArea pict cMAX_SampleArea
arow(),col() say iif(m->cBasicUnit=="F" "ftisn uptu)
811,25 say "F10 = Acres" color(m->C_Help)
@12, 2 say "Individual sample cost...........8:" ;
get ntSampleCost pict cMAX_SempleCost
@22, 0 say "in
822,79 say "1» "
822,1 to 22,78

@23,2 say “Enter = Continue Esc = Abort” + space(44) // erase msg

set key K_F10 to F10_Key()
resd

set key K_F10 to
nKeyPress :z tastkey()

* Abort, MWrite Data, etc...
do case
case (nKeyPress == K_ESC)
* Esc key pressed
if YN_MsgBox("Abort current data entry session? Y/N")
if LlOutFile
* Clogse out file.
close alternate
endi f
LDone := .T.
endif
case (rKeyPress == K_ENTER .or. nKeyPress z= K_CTRL_W)
* Enter key or Ctrl-W pressed. [Ctrl-W currently not documented.]
* Save changes to static vars.
scrot((¢13,1,24,78)
nShape 1= m->ntShape
nAngle := ntAngle
nDesirdProb := ntDesirdProb
nRecRatio := ntRecRatio

E-88
Code File: EGPCScm.Prg

if cGridType == wg#

* Sgaure grid.

nGTyp H

nLrgstAngle := 45 // For “random" angle
eiseif cGridType == Mp®

* Rect. grid.

nGTyp =3

nLrgstAngle := 90 // For “random" angle
elseif cGridType == U0

* Tri. grid.

nGTyp 1= 2
nLrgstAngle := 30 // For "“random" angle
endif

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSempleCost

Weooooromcroconan | Find smallest erea hit with given prob. RELTELLE w
nDesirdProb 1= iif(nDesirdProb==100.0,99.95,nDesirdProb)

// Above left in code in case 100X again used as valid %.
nDesirdNoit := 1.0 - (nDesirdProb®0.01)

* Below same 8s L/G <= 3.0 restriction.

nSmalHS_L := 0.1 * nGSize

* Below same as L/G of 0.10.

nLrgeHs_L := 3.0 * nGSize

scroll(23,1,23,78)

setcolor{Vu+/N*") // Force blinking
823,2 say "Calculating"

setcolor(m->C_Normal)

nCol := col()+1
@822,nCol say "y
@823,nCol say "I"

@24, ,nCol say "iv

823,52 say “Esc = Stop Calculations..."
gsetcursor(SC_NONE)

* Keep calculating until error is less than nERR_CRITERIA.
nSiCounter := 0 // Search iterations
nRACounter := 0 // Random angle iterations
814,38 say “Search iterationg......: ®
if nAngle == 99,0

815,38 say “"Random angle iterations: "
endif
817,38 gay "Hot spot search is usually less"
818,38 say “than 16 iterations.”

LConverg := LF. 7/ .T. if search converges
LAborted = F. 7/ .T. if Esc key abort
LPagtMaxit := .F, /7 .%. if past max iterations
LoKProb = T // .F. if problem can't be solved

= - - 3 .
do while | lConverg .and. ! lAborted .and. | lPastMaxIt .and. LOKProb
nS1Counter++ // Increment search counter
814,64 say NumTrim(nSICounter)+ /" + ;
lerim(str(nMAX_ITERS)) + * maximum.”

* GET PROB. FOR HOT SPOT,
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitLrgHSL := ELlipGrid(nLrgeHS_L, nShape, nAngle, nGSize, ;
nGTyp, nRecRatio)
else
* Sum up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle

E-89
Code File: EGPCScm. Prg

nProbNodit := ElipGrid(nLrgeHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)
nProbSum := pProbSum + nProbNoHit
NRACounter++
815,64 say ltrim(str(nRACounter))
* £gc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit // exit for/next loop
endi f
next nCrntAngle
if LAborted
Loop
endi f

* Calculate average,
nNoHitLrgHSL := nProbSum/(nLrgstAngle+1)
endif

* Will hot spot size need to be larger than 3*G?
* 1f 8o, an L/G ratio > 3.0 would be required.
* 1f first search with largest hot spot can't get the
* desired prob. of hitting, no need to search farther.
if nSiCounter == 1 .and. (nPNoHitLrgHSL > rDesirdNoHit)
* Quit searching.
LOKProb := .F.
loop
endif

* Check if we met error criteria with large hot spot.
nDiffLrg := abs(rDesirdNoHit - nNoHitLrgHSL)
if nDiffLrg < NERR_CRITERIA
* Met error criteria with current large hot spot.
* Exit gearch.
nHS_L_Fnd := nlrgelS_L
nPrbitFnd := 1.0 - nNoHitLrgHSL
LConverg H 2
Loop
endif

* GET PROB. FOR SMALL HOT SPOT.
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitSmiHSL := ElipGrid(nSmalHS_L, nShape, nAngle, nGSize, ;
nGTyp, nRecRatio)
elsge
* Sun up multiple angle results, random case.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbodit := ElipGrid(nSmeiHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
NRACOuNnter++
815,64 say Ltrim(str{nRACounter))
* Esc key abort, only used with random angles.
if inkey() == K_ESC
LAborted := .T.
exit // exit for/next loop
endif
next nCrntAngle
if lAborted
Loop
endif

* Calculate average.
nNOHTtSMLNSL := nProbSum/(nLrgstAngle+1)

E-90
Code File: EGPCScrn.Prg

endif

* Check 1f we met error criteria with small hot spot.
nDiffSml := abs(rDesirdNoHit - nMOHitSmiNsL)
1f nDiffsml < NERR_CRITERIA
* Met error criterfa with current small hot spot.
* Exit search.
nHS_L_Fnd := nSmalHS_L
nPrblitFnd := 1.0 - nNoHitSmLHSL
LConverg H I
loop
end{f

* Get interpolated hot spot size.
* Bisection method, (Gerald and Wheately 1989, 7)
nIntrHS_!. := (nLrgeHS_L + nSmalHS_L)/2

* GET PROB. FOR INTERPOLATED HOT SPOY SIZE.
if nAngle 1= 99.0
* Non-random single angle case.
nNoHitIntHSL := ElipGrid(nintriS_L, nShape, nAngle, nGSize, ;
nGTyp, nRecRatio)
else
* Sum up nultiple angle results, random case.
nProbsum := 0.0
for nCrntAngle = 0 to nLrgstAngle
nProbNoHit := ElipGrid(nIntrHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)
nProbSum := nProbSum + nProbNoHit
NRACounter++
@15,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles.
if inkey() == K_ESC
lAborted := .T.
exit /7 exit for/next loop
endif
next nCrntAngle
if lAborted
loop
endif

* Calculate average.
nNOHitINtHSL := nProbSum/(nLrgstAngle+1)
endif

* Check if we met error criteria with interpolated hot spot.
nDiffInt := abs(rDesirdNoHit - nNoHitIntHSL)
if nDifflnt < nERR_CRITERIA
* Met error criteria with current interpolated hot spot.
* Exit search.
nHS_L_Fnd := nintris_L
nPrbitFnd = 1.0 - nNoHitIntHSL
LConverg = T,
loop
endif

* Update large or small search hot spot sizes.
* This {s a difference from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing about 0.0.
* We Look at whether our current f(x) for the interpolated grid
* is smaller then the desired velue.
if NNOHitINtHSL < nDesirdNolit

nLrgeHS_L := nintrHS_L
else

nSmalHS_L := nintris_L

E-91
Code File: EGPCScmn.Prg

endif

* Have we reached max iterations?
if nSICounter == nMAX_ITERS
* Failed to converge.
PastMaxit := T,
toop
endif
enddo

* Clean up calculating msg.
scrol 1(23,1,23,78)
822,nCol say 4-0
824,nCol say w0
tone(440,1)
setcursor(SC_NORMAL)
if cGridType == "R"
* In case rec. grid, get long side.

// nGlong := nHS_L_Fnd * nRecRatio
//ERROR in 05/09/94 Beta ° 74
nGLong := nGSize * nRecRatio
endif
L g g -

* pisplay results.
setcolor(m->C_Help)
if (PastMaxit .or. laborted
* Failed to converge msg. or Esc key aborted.
scroll(17,1,21,78)
817,1 to 21,78 double
if LPastMaxIt
818,2 say " Failed to converge." color(m->C_Error)
elseif lAborted
18,2 say " Calculations aborted..." color(m->C_Error)
endi f
19,2 say ¥ Last interpolated hot spot estimate: ¥ + ;
Ltrim(str(nIntris_L,12,4))
820,2 say " Last calculated prob. of hitting...: v + ;
(trim(str(100%(1-nNoHitIntHSL), 12,4)) + ¥X¥
elseif ! LOKProb
* problem specs. requires hot spot > 3 * grid size.
scroll(¢17,1,21,78)
17,1 to 21,78 double
18,2 say " Data out of range." color(m->C_Error)
819,2 say " The input data require a hot spot that is out of " + ;
fithe search range of the
820,2 say " program. Will only search for hot spot < 3 * u ¢ »
"length of grid size.®
else
* found grid msg,
scroll(14,1,21,78)
813,1 to 21,78 double
* Move over to line up = signs.
814,2 say " Area of smsllest hot spot hit = ¥ + ;
Ltrim(str(nPl * rHS_L_Fnd“2 * nShape,10,1)) + ;
iif(m->cBasicUnitasifu n frin, w grit)
if cGridType == WRw
* Rect. grid.
815,2 say " Given grid size, long side =" +
ltrim(str(nGLong, 10,3))
@row(), col() say iif(m->cBesicUnit==YF» ¥ ftu n mn)
816,2 say " Given grid size, short side =" + ;
ltrim(str(nGSize,10,3))
else
* sq. or Tri. grid.
816,2 say " Grid size

" 4 o

E-92
Code File: EGPCScm.Prg

Ltrim(str(nGSize,10,3))
endi {
Brow(), col() say iff(m->cBasicUnits=svg® u fto » m)
* Move over to line up = gigns.
817,2 say * Given probabiiity of hitting =4 + ;
{trim(str(nDesirdProb,6,1)) + "X

814,49 say “Search iterations......: " + NumTrim(nSICounter)
if Mingle == 59.0
815,49 say "Random angle fteratfons: “ + NumTrim(nRACounter)
endif
endif

if nSampleAres > 0 .and. (Converp

* Required number of samples is approximate.

* Based on (EPA. 1889. “Nethods for Eval. the Attainment of Cleanup

* Standards Volume 1: Soils and Solid Media", p. 9-7.

* calculate grid cell area.

if cGridType == NT®
* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral trisngles.
* A = height * base = sin(60°) * base * bage =.0.87 * base“2.
nGridCel lArea := 0.866025404 * nGSize * nGSize

elseif cGridiype == ws»

* 8q. grid.
nGridCel lArea := nGSize * nGSize
elge
* Rec. grid.
7 nGridCellArea := nHS_L_Fnd * nGlLong

//ERROR in 05/09/94 Beta °

nGridCel lArea := nGSize * nGlong
endif
* This formula is approx. See (EPA 1989, 9-7).
* cefiling function rounds number of samples up.
niusSaoples := cefling(nsampleArea/nGridCellArea)

818,2 say * Required number of samples LR
ttrim{trans(nNumSamples, cMAX_Samples))
@19,3 say ;

"Required number of samples is approximste. " color “W/RB"
820,2 say * Total cost for above number of samples = $" + ;
Ltrim(trans(nNumSamples®*nSampleCost,cMAX_TotalCost))

endi f

if \OutfFile .and. (Converg
* Write to output file.
* Pass |WriteHeader by reference, WriteData will update it,
WriteData(aluvriteHeader,cverDate,cOutFile,cGridType, nRRecRatio, ;
niS_L_Fnd,nGSize,nShape, nAngle, nPrbiitFnd, nSampleArea, ;
numSamples,nSampleCost)
elgeif (OutFile .and. (lAborted .or. ! lConverg)
* Write data for abort or failed to converge.
nHS_L_Fnd := nintriS_L
nPrbitfnd := 1.0 - nNoHitIntHSL
cStatus t= jif(lAborted,* ABRT"," FAIL")
writeData(alWriteHeader,cverDate,cOutFile,cGridType,nRecRatio, ;
niS_L_Fnd, nGSize,nShape,nAngle,nPrblitFnd, nSampleArea, ;
numSampl es, nSampleCost, cStatus)
endif
setcolor(m->C_Normal)
otherwise
* Will loop back.
LDone := .F.
endcase (LKey ==)

E-93
Code File: EGPCScmn.Prg

return (NIL)
*++ End of Func: GetSmallestArea()

L2221 222 2 2221222 e D2 PR e A L P 4 Rl gt A D a gttt g]

Function WriteData(lwriteHeader,cVerDate,cOutFile,cGridType, nRecRatio, ;
nSemiMajor, nGSi ze,nShape,nAngle,nProbHit,nSampleArea, ;
nNumSamples , nSampleCost, cStatus)

* yrite header optionally based on luriteleader, then write a line of

* data to cOutfile.

* |yriteHeader is passed in by reference, then updated by WriteData().

default cStatus to “oK"

set console off
set alternate on
if \MriteHeader
?7? “Output from ORNL/GJ) ELIPGRID-PC Program Version: " + cVerDate

? “File name,: " + cOutFile
? "Created on: " + dtoc(date())
? “Input file: From screen"
?
? "Grid Type Semi-major Axis Gridspace Shape" + ;
" Angle Prob. Hitting Area Samples Cost/ Total"
7" in Rel. Units (L/G) in" +;
iif(m->cBasicUnit=="F" "Feet ", "Meters") + "o
" deg 1.0-P(0) L I

fif(m->cBasicUnit==WFu uftrn gz n) + ;
" (rounded up) Sample Sample Cost "
(WriteHeader = .F.
endif

* yrite a Line of data.
if cGridType a= wen
? “Square " + space(B)
elseif cGridType == wgo
? “Rectangular, * + trans(nRecRatio,cMAX_RecRatio) + u/1 ©
elseif cGridType == nye
? “Trisngular ¢ + space(8)
endi f

* Yrite date fields,

77 trans(nSemiMajor/nGSize,cMAX_LtoG) + space(B) ¢ ;
trans(nGSize,cMAX_GSize) + space(6) + ;
trans(nShape,cMAX_Shape) + space(3) + ;

iif(nAngle==09 "random," “+trans(nAngle,cMAX_Angle+"*n)) + ;
space(&) + ;

trans(nProbiit,cMAX_ProbHit)

if cStatus = woK"
* Write PABRT® or “FAILY.
?? cStatus

elseif nSampleArea > 0

* Write cost related info.

7?7 trans(nSampleArea,cMAX_SampleArea) + ¢ + ;
trans(nNumSamples, cMAX_Samples) A H
trans(nSampleCost,cMAX_SampleCost) ¢ " * +
trans(riumSamples * nSampleCost,cMAX_TotalCost)

endif

set alternate off

set console on

return (NIL)

*** End of Func: WriteData()

*** End of File: EGPCScrn.Prg

APPENDIX F

EGGRAPH SOURCE CODE

F-1

APPENDIX F
EGGRAPH SOURCE CODE

The first page of this appendix contains sample make and link files for EGGRAPH.

The remaining pages contain all the main code and subroutines in one file.

F-2

Sample Make and Link Files for EGGRAPH

1/
//
1/
1/
1/
1/
//
//
1/
1/
1/
/"
1/

File....: EGGraph.rmk

Purpose.: Meke file for EGGraph program, G.Exe.
Compiler: Clipper 5.2

Author..: Jim Davidson

Started.: 05/05/94

Last Mod: 08/26/94

Compiler Switches below:

/A = Automatic declaration of publics/privates as memvars.

/8 = Include debugging info., delete this switch for final exe.

/N = No automatic main proc., must be used for file-wide var declarations.
/Q = Quiet, suppress line number display.

/M = Warn of ambiguous var references.

/V = Treat all ambiguous var references as dynamic vars, not as fields.
\EGGraph.08J": "C:\CLIPPER2\EDITOR\EGGraph\EGGraph.PRG"

e:\Clipper C:\CLIPPER2\EDITOR\EGGraph\EGGraph /A/N/Q/V/W /Oe:\ /Te:\ /le:\

\G.EXE": "e:\EGGraph.0BJ"
e:\blinker @C:\CLIPPER2\EDITOR\EGGraph\EGGraph.LNK

Fite....: EGGraph.tnk

Purpose.: Blinker response file for EGGraph Program with Flipper libraries
Compiler: Clipper 5.2

Author..: Jim Davidson
Started.: 05/05/94

Last Mod: 08/26/94
blinker incremental off
bl inker message noblink

Below is obj source file
file e:\EGGraph

output e:\g

Llib e:\clipper

lib e:\ct

lib e:\extend

Llib =:\terminal

#lib e:\dbfntx

#lib e:\cld

search e:\flip5

search e:\clip50

F.3
Code File: EGGraph.Prg

/7
// Program..: EGGraph.Prp, G.exe.

// Purpose..: Simple graphics demo program for ELIPGRID-PC.
// Version..: 1.0

// Author...: Jim Davidson

// Started..: 04/28/94

// Last Mod.: 09/06/94

1/

// Files....: EGGraph.prg This file only.
//

// Notes....: Compiler = Clipper 5.2d

/7 Linker = Blinker 3.0

// Modifications:

// 09/06/94 Added “{useDefaultF := .F.* for error msg "No data values found"
1/ to force file selection box to pop-up.

/7
// Version Info

#define VER_DATE *“09/06/94%
#define in() inkey(0)

/7 Include files

#include “Inkey.Chv // key definitions

#include "Colors.Ch» // Color definitions
#include "Directry.ch” // File info definitions
#include “Box.Ch» // Box drawing constants

// Generic defines (may not all be used)

#define BELL1 chr(7) // Error Bell

#define BELL2 chr(7) + chr(7) // Printing done bell
#define CR_LF chr(13) + chr(10)

#define SC_NORMAL 1 7/ Normal cursor (undertine)
#define LINESIZE 80 // Buffer line size

// User-defined commands
#xcommsnd DEFAULT <TheParam> TO <Defaultval> => ;

IF (<TheParam» == NIL); <ThePeram>:=<DefaultVal>; ENDIF

* Currently graph will use no more than last nMAX_G_POINTS available points.
#define nMAX_G_POINTS 50 // Max graph points

* Below for colors

static C_Normal := C_MWHT_BLU // wormal screen colors
static C_HighLght := C_CYN_BLU // Current subdir color
static C_Help 1= C_WHT_MAG // WHelp screens
static C_Error := C_WHT_RED // Error screens

* WP LJet 1V (111?) commands.

#define HP_RESET chr(K_ESC) + "Ev

* Below defined on HP LJ IV PCL Typeface List printout from test menu.

* Font is line printer internal font 48 for WP LJ 1V,

#define HP_LINE_PRINTER_I48 chr(K_ESC)+"(11Un+chr(K_ESC)+"(s0p16.67h8.5v0s0bOT"

* | Main Module |
fFunction Main()

* Main module of program

** pefine main()'s local vars.

local (Done := .F. // Main() loop done flag

local cInFile := UGraph.Dat" // Default input file

local clnPath g= // lmput file path

tocal nHandle =0 // File hsndle

Local nKeyPress := 0 // 1nkey() value of a keypress
local nTR =5 // Top screen row

Local cGrphDats g= W

local cCurLine H L

local nCurlLine = 0

Code File: EGGraph.Prg

local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
tocal
local
local
local
local

local

local
local
local
local
local
tocal
Local
local
Llocal

nCurPoint
nium. {nes
nNunPoints
nL ineNum
nDatalL jnes
nfrstPoint
nXMin

nYMin

nXInc

nXMax
niMdaxGvalue
nLMargin
nCh
(BadFile
lUseDefaul tF
¢cDOSCdL ine
¢DOSChart
anCostVals
anProbvals
acText

GetList

NP_HorzSize
HP_VertSize
HP_LeftX
HP_LeftY
HP_RghtX
HP_RghtY
H#P_HorzOrg
HP_VertOrg
HP_PerCent

n8 we o8 20 08 B ey

wou o
[
-

a
'
-

wuua
W
N

T
[L CR LS A 1
~
w

.
L}

~

w

640
480
231
4454
7800
10130
1150
-500
.80

F-4

/¢ firaph X-sxis min value, -1 = auto min
/. Graph Y-axis min value, -1 = auto min
/1 Geaph X-axis inc, -1 = auto inc

o/ Graph X-axis max value, -1 = auto max
. wc9ph x of max data value

* use default file flag
DOS command {ine params

N
-~

// Define to stop compiler warnings

// See HP_Units() info in Flipper
// marval, p. 7-10.

* Make static below so will not have to open fonts all the time.

* (1f decide to call repetively.)

* Font] and 2 are positive font handles from font_open().

static Font1
static Font2
static Font3

cls

* Get DOS command line parameters.
¢DOSCmdL ine := upper(dosparam())

-1
-1
-1

// Font! used below is "RMN7_25.av
// Font2 used below is "5582_22.3"
// Font3 used below is “RMNB_15.a

cDOSChar1 := left(alltrim(cDOSCmdLine), 1)

if w/4n $ cDOSCmdLine _or. "7 $ cDOSCmdLine .or. cDOSCharl == “N®
* Help param. passed.
Paramielp(VER_DATE)

quit
endif

If n,n ¢ cDOSCmdL ine
* Get file nome.

cinfFile := Ltrim{(cDOSCMDLine)

if 1 file(cInFile)

Err_MsgBox(3,"E", "ELIPGRID-PC Graph Program”, -
File not fourd.",
“ + cinfFile)

YError:
“File.:

(UseDefaultfF := .F.

endif
else

if w/Fu § cDOSCmdLine .or. cDOSChar

* Use file selector.
(UseDefaultf := .F.

endi f

if w/mMv $ cDOSCmdLine

== Wf% _or, | file(cIlnFile)

Code File: EGGraph.Prg

* Monochrome param. passed.
* Black on white for LCD screens.

C_Normal s= C_BLK_WHT // Normal screen colors
C_HighLght := C_WHT_BLK // Current subdir color
C_Help 1= C_WHT_BLK // Welp screens
C_Error '= C_WHT_BLK // Error screens
endif
endif
* Get drive and path program starts in.

cinPath :z slltrim(diskneme() + ":" + "\" + curdir())

set escape on

set scoreboard off
set bell off

set confirm on
set wrap on

do while | Done
setcolor(C_Normal) // Reset in case looping back
cls

* Get file name if not using default, Graph.dat.

it

! luseDefault
clnPath ;= padr(clnPath,64)

20,0 to 4,79 double

@01, 2 say "“Program....: EGGraph.Exe"

801,61 say "Version: " + VER_DATE

802, 2 say “Purpose....: Simple demo of a graph program for ELIPGRID-PC."
03, 2 say "Note.......: File selector only lists *.DAT files."

803,63 say “Esc key to Exit® color(C_Kelp)

* ==ax Get subdir for input file === %

nTR := §

8nTR,01 to nTR+4,67

anTR+1, 2 say " Enter drive and path of ELIPGRID-PC graph data file.” ;
color(C_Help)

@nTR+3, 2 say " Do NOT enter file name." color(C_Help)

» Get egired drive and psth
keywosrd chr(K_END)

anTR+2, 3 get clnPath picture "a!"
read

cinPath := alltrim{cinPath)

set key K_CTRL_F1 to

if lastkey() == K_ESC
lDone := T,
loop

endif

* Check far subdir
if ISubDir(clnPath)
Err_MsgBox(nTR+5,"E" "Subdir psth: * + alltrim(cinPath), ;
Could not be found! Try again.®, ;
ge sure you did not enter the file name.")
loop
endif

* put a "\" on end if not there already.
cinPath := cinPath + iif(right(cinPath, 1)==m\n un muny

zzzazzaz Get Input File s==cm==
* pop up Get file box
scrol L(nTR+5,0,nTR+19,79)

F-6
Code File; EGGraph.Prg

cinFile := G tFileBox(nTR+5,5,nTR+15,NIL, cinPath + "* DAT")

if lastkey() == K_ESC .or. empty(cinFile)
Loop
endif
endif

* Put a "\" on end if not there already.

cinPath := cinPath + {if(right(cinPath, 1)==t\# hu n\n)
scrol L(nTR,0,24,79)

anTR+1, 2 say "Input file.......: " + clnPath + cInfile

* Open the file

nHandle := fopen(cinPath + clnFile)

if (ferror() I= 0)
Err_MsgBox(10, “E","Error opening: " + clnPath + clnFile)
fclose(nHandle)
Loop

endif

* Get the data.
nL ineMum = 0
nDatalines := 0
{BadFile 1= LF.
do while freadln(nhiandle, accurLine, LINESIZE) .and. inkey() != K_ESC
* Check first Line to verify correct file format.
if nLineNum == 0
if 1 (left(cCurLine,22) == “# Data starts on line:")
Err_MsgBox(10,"E", ;
VEPrOr .. eaessessenst INcorrect file format in line 1.Y,;
"First 22 chars are: ¥ + left(cCurlLine,22), ;

*Should read.......: ¥ Data starts on line:")}
LBadFile := .T.
exit
endif
endif
nlL i neNum++

anTR+2,2 gay "Processing line..: " + str(nLineNum,?)
cCurtine := Ltrim(cCurLine)
if left(cCurLine,1) == Wpw
* Comment line, skip over or get data.
if nLineNum >= 6 .and. nlLineNum <= 11
aadd(acText,substr(cCurline,3))
endif
else
* Line with a data point, add to data arrays.
aadd(anCostVals, val(cCurlLine))
sadd(enProbVals, val(substr(cCurlLine,at(" ", cCurtine))))
numPoints++
endif

enddo
fclose(nHandle)

* Loop back if bad file format.
if lBadFile
if lUseDefaultF
lDone := .T.
endif
Loop
endif

* Loop back if no data points found.
if nNumPoints <1
Err_Msgaox(10,%E¥, “Error: No cata values found.", ;
"File.: " + cInPath + clnFile)

F-7
Code File: EGGraph.Prg

lUseDefaultF := .F. // Force file selection box to pop-up.
loop
endif

* Use last nMAX_G_POINTS for graph.
if nlumPoints <= nMAX_G_POINTS
nfrstPoint := 1
else
nFrstPoint := nNumPoints - nMAX_G_POINTS + 1
endif

* Data buffer bytes = Number of points * 2 values/point * 8 bytes/point.
flip_init((rNumPoints-nFrstPoint+1) * 2 * 8)

* Below sets display of error msgs on.
set_sayerrr(1)
* Open font files.
if Font! < 0
* Only open if not already opened.
Font1 := font_open("RMN7_25.a")
Font2 := font_open("sS2_22.3")
Font3 := font_open("RMNE_15.3")
endif
* Set data buffer to 2 cols.
initdata(2)
* Below sets the way Y col 1 will be displayed, 5 = point graph type.
set_type(1,5)
* Set Y col 1 to point pattern, 9 = filled box.
set_style(1,9)

* Get data into data buffer.

for nCurPoint = nFrstPoint to nNumPoints
store_data(anCostvals[nCurPoint] /1000, 100*anProbvals(nCurPoint])

next i

* Max graph value.

nMaxGValue := anCostvals[nNumPoints]/1000

* Set the graph colors, Color macros in "Colors.Ch* Text
* Graph Grid Graph Scale Graph legend Inside
b frame, lines scale, titles, title, bkg, qraph

grf_colors(DLGREEN, DLCYAN, DLYELLOW, DLYELLOW, DLYELLOW, DLWHITE, DBLUE)
»

* Set graph title font.
set_g_font(Font1)

* Set graph (abel font.
set_l_font(Font2)

* Set axis tick labels.
set_s_font(Font3)

* Set x axis grid on, pattern = 0, line
set_grid(0,1,0)

* Set y axis grid on, pattern = 0, line
set_grid(¢1,1,0)

g_Llabel ("PROBABILITY OF HIT .. COST")
x_Llabel("COST, $K")
y_label("PROBABILITY OF HIT, X*)

* Display the graph.
plot()

* Below sets new current font to BIOS type 2.
font_new(2)

font_color(2, DLWHITE,DBLACK)
say_text(atx(70,2),aty(97,2), "“Displays up to")

F-8
Code File: EGGraph.Prg

say_text(atx(70,2),aty(100,2), "last 30-50 points.")

set cursor on

say_text(atx(2,2),aty(97,2), “Press a key to exit...")
say_text(atx(2,2),aty(100,2), “F2 prints to HP Laserdet 111/1V.")
inkey(0)

* Return to text mode.

textmode()

setcolor(C_Normal)

cls

#+% Shall we PRINT the graph? we«

if lastkey() == K_F2 .and. AlertBox(7,(" Yes "," No, abort print "3}, ;
"Are you attached to an On Line", "HP LaserJet 111 or IV printer?") == 1
cis

* Shall we print data file text info?

nCh := AlertBox(7, ;
{“Yes, print both", “No, just print the graph", “Abort print®}, ;
Do you want to print BOTH graph and text comments?")

if nCh == 1 .or. nCh == 2

* Graph related info.

cls

* shall we scale the X-axis?

MenuBox(0,1,2,78)

SayCenter(1, ;
“Enter Graph Related Information. -1 = Automatic Scaling. " + ;
“Esc = Abort")

8 5,2 say “Enter = lowest cost for graph, -1 = auto minimum:" ;
get nXMin pict “99999% .
valid ErrorUDF(nXMin < nMaxGvValue, ;
#Min X must be < ¢ + ltrim(str(n4axGvalue,8,1)) + ¢ K",5)

arow(),col()+1 say “SK"

* I1f scaling X-axis, what max shall we use?
8 7,2 say “Enter = max cost for graph, -1 = auto maximum...:" ;
get nXMax pict "99999" when nXMin > 0 ;
valid ErrorUDF(nXMax > 0, “X maximum must be > 0 K¥,5)
arow(),col()+1 say "SK*

* 1f scaling X-axis, what increment shall we use?

@ 9,2 say “Enter Cost increment in $K, -1 = auto increment.:" ;
get nXInc pict 999" when nXMin > 0 ;
valid ErrorUDF(nXInc < rMaxGValue, "X increment must be < " + ;
Ltrim(str(nMaxGValue,8,1)) + % K%, 3)

* Shall we scale the Y-axis?

811,2 say “Enter = lowest probability for graph, -1 = auto scaling:" ;
get nYMin pict "99

read

if lastkey() == K_ESC
* Abort print.

lDone := .T.
Lloop
end{f
endif
if nCh == 1
* Print text comments.
cls
MenuBox(0,1,2,78)

SayCenter(1,"Enter Text b ated Information. Esc = Abort")
@ 5,2 say “Enter left margin for tuoct, 0-60:% ;
get nLMargin pict #99n .
valid ErrorUF(nLMargin >= 0 .and. nLMargin <= 60, ;
"Must be >= 0 and <= 60.%, 2)

F-9
Code File: EGGraph.Prg

read

if lastkey() == K_ESC
* Abort print.
lDone := .T.
Loop

endif

cls

HenuBox(7,10,9,70)

8,12 say "Sending dats to printer. Please wait..."
set print on

set device to print

set console off

set margin to nLMargin

* Send Line printer font command.

?7 HP_LINE_PRINTER_148

* Establish first text line.
a0,0 say * ¢
?

? "Input File: " + cinPath + cInfile
? "Print Date: " + dtoc(date())
? "Print Time: " + ltrim(ampm(time()))
for nCurline = 1 to len(acText)

7 acText [nCurline}
next nCurline

set margin to
set print off
set device to screen
set console on
eiseif nCh == 2
* Just print graph,
cls
MenuBox(7,10,9,70)
88,12 say “Sending data to printer. Please wait..."
else
* Abort print.
Done := .T.
loop
endif

Now do actual graphics printing.
Set the default orientation to 1 = portrait.
Flipper Manual p. 7-9.

This command seems needed even though HP 111 defaults to portait.
hp_setup(1)

[2R 3B 3R 2 J

* Opens an HP LJet 111 for re-direction of Flipper commands.
* Flipper Manual p. 7-5.
hp_open('LJIII")

Set up the units to plot from screen to print device.
Values uszd were determined by trisl-and-error after talking
with a Flipper rep.

Flipper Manual p. 7-10,

Scale the graph.

HP_RghtX *= HP_PerCent

HP_RghtY *= (HP_PerCent+.1)

hp_units((HP_HorzSize, HP_VertSize, HP_LeftX, HP_LeftY, ;
HP_RghtX, HP_RghtY, HP_HorzOrg, HP_VertOrg))

* Below sets the way Y col 1 will be displayed, 5 = point graph type.
set_type(1,5)

F-10
Code File: EGGraph.Prg

* Set Y col 1 to point pattern, 9 = filled box.
set_style(1,9)

* Set graph title font.
set_g_font(Font1)

* Set graph label font,
set_L_font(Font2)

* Set manuat x-axis scaling (or leave as auto).

if NiMin >= 0
set_xman(1) // Turn on manual scaling
set_xmin(nxMin) // Set X-axis min
if nXinc > 0O

* yYhen setting X increment, the X-axis max must also be set.

¥ See Flipper Manual, p. 3-36.

set_xinc(nXInc)

if nMax <= 0O
* This will put X-axis max just beyond largest * walue.
nXMax := nXMin + Ceil ing((nMaxGValue - nXMin:/ £) * nXlnc

set_xmax(nXMax)
endif
endif
* Set manual Y-axis scaling (or leave as auto).
if nYMin >= 0

set_yman(1) // Turn on manual scaling
set_ymin(nYMin) // Set X-axis min
erdif

" Set x axis grid on, pattern= 0, line
set_grid(0,1,0)

* Set y axis grid on, pattern = 0, line
set_grid(1,1,0)

g_Llabel("PROBABILITY OF HIT vs COST")
x_label ("COST, $K")
y_label("PRWABlLlTY OF HIT, X™)

* Below forces a half-tone graph background
grf_colors(,,,,,, DBLUE)

* Plot lines, points, legends, etc.
plot()

17/ LJ3_Eject() removed, 05/05/94, HP_RESET below does eject.
HP_Close()

¥ Reset the internal LJ font, if needed, also eject page.
set print on
set console off
?? HP_RESET
set g. °nt off
set console on
endif
* Return to text mode.
textmode()
* Will exit program after enddo.
exit
enddo

close all

set color to

cls

7 "Type EXIT if you want to return to ELIPGRID-PC program..."

* return to DOS

return (0) // Return 0 to DOS ErrorlLabel
*** End of Func: Main()

F-11
Code File: EGGraph.Prg

NEREERANRAATANAEIAN TN TENECIANNLOAN SN AA AR DR R dddwdrd

Function AlertBox(nTR, acOptions, nLin1, nLin2, nLin3)

* Substitute for alert() function. Alert() does not obey color settings.

* AlertBox obeys current color setting. Alert() is hard to read on LCD screens.
* Lines 2 and 3 are optfonal.

* Returns: Esc = 0, else number of array element of acOptions chosen.

local ¢TmpScn H L

local lDispMsg
local nMaxLinewdth
local nPrmptudth
local nWidth

local corgClr
local nLC

local nBR

local mRC

local nLines

local nCurRow
local nCurCol
local PNumOps
local nCurOp

local nOpCol
local nRtnval

s o0 20 se e
2S00 O0O-
= -4

.

en(acOptions)

e ws s ws ee
CO0O=—000000

* Set box color.
corgClr := setcolor(C_Error)

% Get current cursor pos.
nCurkRow := row()
nCurCol := col()

if (valtype(nLin3) == nCun)
* 3 lines to display
nBR := nTR + 4 + 3 // & Lines for misc. + 3 msg lines
nMexLinetWdth := max(max(len(nLin1), len(nLin2)), len(nLin3))
nLines := 3

elseif (valtype(nLin2) == "C")
* 2 lines to display

NBR :=nNTR + 4 + 2 // & lines for misc. + 2 msg lines
nMaxL ineddth := max(len(nLin1), lLen(nLin2))
nLines = 2

elseif (valtype(nLinl) == ugw)
* 1 line to display
nBR := NnTR + 4 + 1
nMexLineldth := len(nLint)
nLines :=

else
* Incorrect perams. passed
\DispMsg := .F.

endif

* Display message.
if (LDispMsg)
* Get total width of the prompts plus inner specing.
{nr nCurOp = 1 to nNumOps
nPrmptWdth == nPrmptWdth + Len(acOptions [NCurOp))
next nCurOp
nPrmptWdth := nPrmptWdth + 3 * (PNumOps-1)

* Determine oversall width of box,

nMaxL inewdth := max(nMexLinewdth, nPrmptWdth)
midth := 4 + nMaxLineWdth

nle := (79 - miidth)/2 // center
nRC := nLC + miidth - 1

cTmpScn := savescreen(nTR, nlLC, nBR+1, nRC+1)
MenuBox{nTR,nLC,NBR,NRC)

if (nLines >= 1)

F-12

Code File: EGGraph.Prg

anTR+2, nLC + 2 say nLini

endif
if (nLines >= 2)

@nTR+3, nlC + 2 say nLin2

endi f
if (nLineg == 3)

@nTR+4, nLC + 2 say nLin3

endif

* Display and get desired menu option.
L ¢ -1 to H‘“‘d’\f\n

nOpCol := nOpCol + len(acOptions[nCurOp-1]1) + 3

endif

@nBR-1, nOpCol prompt acOptions {NCurOp]

next nCurOp
tone(440,0.3)
menu to nRtnVal

restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)

else
@0,0

80,0 say % AlertBox() error: Check parameters.

inkey(D)
endif (lDispMsg)
setcolor(cOrgClr)
SnCurRow, nCurCol say "#
return (nRtnval)
**+* End of Func: AlertBox()

ARG EEERINNOACEI NN d e d
Function Ceiling(nNum)

* Returns the next integer
* Examples: Ceiling(3.01)
L

Ceiling(3)
- Ceiling(-3.99)
hd Ceiling(-3)

locat MRtnval := 0

if rNum X int(nNum) == 0
* Already an integer.
nRtnval := nNum

else

=

num on the number Line.
4
3
-3
-3

* 1f pos, trunc and add 1, else just truncate.
nRtrval :x iif(nNum >= 0, int(nNum) + 1, int(nNum))

endi f
return (nRtnval)
*** End of Func: Ceiling()

ARAN AT EN TR AT AR RERAT AR TR ARV AREETRRATANARAA AT NOD

Function Err_MsgBox(nTR, cType, nLinl, nLin2, nLin3)
Defaults to error box.

* Generic error or msg box.

* Displays up to 3 lines + Press key msg and waits for keypress.

* Returns: NIL
local cTmpScn
local |DispMsg
Llocal nMaxLinewdth
local miidth
local cOrgClr
tacal nLC
local nBR
local nRC
local nLines
local nCurRow
local nCurCol

s an
200
s -t
.

honon

weun
[-X-N-N-N-N-]

46 88 o3 oo 0 85 ue s s e» 48

Press 8 key to return... %

\

F-13

Code File: EGGraph.Prg

default cType to “E" // Default to error box

* Set box color.
if upper(clype) == WgM

cOrgClr := getcolor(C_Error)
else

cOrgClr := getcolor(C_Kelp)
endif

* Get current cursor pos.
nCurRow := row()
nCurCol := col()

if (valtype(nLin3) == »wCw)
* 3 {ines to display

NBR = NTR + 4 + 3 /! 4 lines for misc. + 3 msg lines
rMaxL ineWdth := max(max(len(nLin1), len(nLin2)), len(nLin3))

nLires :=
elseif (valtype(nLin2) == nCw)
* 2 {ires to display

PBR := NTR + &4 + 2 // & lines for misc. + 2 msg lines

nMaxLineWdth := max{len{nLin1), len{nLin2))
nLines := 2

elseif (valtype(nLinl) == wCw)
* 1 line to display
nBR := NTR + 4 + 1
nMaxLineWdth := len(nLin1)
nLines :=

else
* Incorrect params. passed
\DigpMsg := .F.

endif

* Display message.
if (LDispMsg)

nMaxLineddth := max(nMaxLineWdth, len("Press & key to continue..."))
ndidth := & + nMaxLineWdth // 2 lines/blanks + largest line

nLC == (79 - nWidth)/2 // center
NRC := nLC + nWidth - 1
cTmpScn := savescreen(nTR, NLC, nBR+1, nRC+1)
MeruBox(nTR,nLC,nBR,NRC)
it (nLines >= 1)
anTR+2, nLC + 2 say nlLin)
endif
if (nLines »>= 2)
9nTR+3, nLC + 2 say nLin2
endif
if (nLines == 3)
onTR+4, nLC + 2 say nLin3
endif
SnBR-1, nLC + 2 say "Press a key to continue..."
tone(440,1)
inkey(0)
restscreen{nTR, nLC, nBR+1, NRC+1, cTmpScn)
else
a0,0
80,0 say " Err_MsgBox() error: Check parameters.
inkey(0)
endif (lDispMsg)
setcolor(corgClr)
anCurRow, nCurCol say “*
return (NIL)
*** End of Func: Err_MsgBox()

AEERASERERE R EAITRER TR E AT AAR AR RN R AT drdrdr b drirdr

Function ErrorUDF(lPassTest, cErrorMsg, nfldLen)

Press a key to return... "

F-14
Code File: EGGraph.Prg

* Generic error routine for @ say/get valid clauses.

* |PassTest: Logic flag for--pass test?

* cErrorMsg: Message to display

* nFldlen,..: Length of get field--as picture specifies for numeric.
* Returns.,: .F. if |PassTest == ,F., else just returns .T.

local CurGetName := readvar() // Neme of current get variable
local nTR = rom() + 1 // Current row + 1 for error box
local nBR = nTR + 3

local nLC := col{) - nFldiLen // Current col is end of get field
local nRC := nLC + len(cErrorMsg) + 1

local ¢TmpSer := savescreen(nTR, nLC, nBR, NRC)

local cCurClr := setcolor(C_Error)

local LRtnval := .F,

if ! |PassTest
* Invalid input failed valid test, display error box.
scroll(nTR, nLC, nBR, NRC)
anTR,nLC to nBR,nRC
@nTR+1, nLC+1 say cErrorMsg
anTR+2, nLC+1 say "Press a key,.."
tone(440,1)
inkey(0)
restscreen(nTR, nLC, nBR, NRC, cTmpScr)
LRtnval := .F.
else
IRtnVal := .T.
endi f
setcolor({cCurcClr)
return (lRtnval)
*** End of Func: ErrorUDF()

RERARARARRRRRN TR RRRRNTRRARRRdd

Function ExtrctPath{ PathFileN)
* Extract path from pathfilename
* Exemple: ExtrctPath("D:\file.ext") ==> "p:\"
* Based on Environ.prg fuction FilePath() supplied by Nantucket
Llocal BkSlshPos, Path
BkSlshPos := rat("\", PathFileN)
if (BkSlshPos == 0)
P.th - (1]}
else
Path := substr(PathFileN, 1, BkSlshPos)
endif
return (Path)
» End of Func: ExtrctPath()

RERVERBAARANRET AT SN RERTRACNACANRARR R TRRE

Function FReadLn(Handle, Line, LineSize)
* From Ref(Clipper), 4/88, p.9
local More, Where, StriLen, TabSpaces, CharPos
local Buffer := space(LineSize)
local NumRead := fread(Hardle, Q8Buffer, LineSize)
if (NumRead t= Q)
Where := at{chr(13) + chr(10), Buffer)
* Did we find a new line
if (Where != 0)
* yes, 8o return
Line := substr(Buffer, 1, Where)
* Reposition to just after new line
fseek(Handle, -NumRead + Where + 1, 1)
else
* no, so return all we read
Line := substr(Buffer,1,NumRead)
endif
More := .T.
elge

F-15
Code File; EGGraph.Prg

More := .F.
endif
return (More)

% End of Func: FReadLn()

ARRRIAERIARTRREATREAIRR ST RITTTYIITRRATRAARTAATRA AR ATTASTY SR TATERATSRE AT RARN
Function GetFileBox(nTR, nLGC, nBR, NRC, cDirSpec, LDispBox, cColor, ninitFile)
* Pop-up file selector, sll perems. are optional

* Parameter defaults:

if Enter key ==> File nome
if Esc key s=> NIL
if error ==> NIL

- nTR top row ==> to 0

hd nLC left col ==> to 0

hod nBR bot row ==> to mexrow
* nRC right col ==> to nLC + 38
~ cDirspec =y W wN

bl lDispBox => .T.

- ColorVAr s=> W+ /n,n/W"
- ninitFile s=> 1

* Returns:

»

»

scal cOrgClr

ocal cFileName := NIL
(ncal cimpi.n H L

cal i // Scratch

~al abDrectry = O // Array of dir info
local acFileNames := () // Array of file names
tocal nFileChnice := 0

* If any param. not passed, below assigns defaults as needed.
default nTR to O

default nlC to O

default nBR to maxrou()

default nRC to niLC + 38

default cDirSpec to " wn

default LpispBox to .T.

default cColor to (C_Help)

default ninitfile to 1

cTmpScn := savescreen(nTR,nLC,nBR+1,nRC+1) // + 1 for shadow

if (I1Subbir{cDirSpec))
Err_MsgBox(15,"E","No .DAT files found in current subdir.”)
return (NIL)

endif

cOrgClr := setcolor{cColor)
scrolL{nTR,NLC,NBR,NRC)
if (lDispBox)
MenuBox(nTR,nLC,nBR,NRC)
endif
anTR,nLC+2 say * Choos® Input File... "

aDrectry := directory(cDirSpec)
* Sort array according to file name.
asort(abrctry,,, (|FrstName, NextName| FrstName[F_NAME] < NextName[F_NAME]})

* Fill an array with file info to display.
acFileNames := ()
for { = 1 to len(aDrctry)
sadd(acFileNames, ;
padl(aDrctry(i, F_NAME],13) + ;
padl (numtrim(aDretryli, F_SI2E1),B) + ;
padl(dtoc(abrctryli,F_DATE]),) + ;

F-16
Code File: EGGraph.Prg

padl(substr{aDrctry[i, F_TIME],1,5),6))
next i

* Display files and get choice.

nFileChoice := achoice(nTR+1,nLC+1,nBR-1,NRC-1, acFileNames,, ,ninitFile)

if (nfileChoice t= 0)
* 1s 0 if Esc key exit
cFileName := aDretry(nfileChoice, F_NANE]
ninitfile := nFileChoice
endif
setcolor(corgctr)
restscreen(nTR,nLC,nBR+1,nRC+1,cTmpScn)
return (cFileName)
*** End of Func: GetFileBox()

LA 12 Lt 12 2 d 2 s P e LR dl g Sl L2l st ettty
Function MenuBox(nTR,nLC,nBR,nRC, cSides, |Shadow)
* Draw box sides for a menu.
* cSides defaults to double top, single sides.
* cSides could be defined constants from from Box.Ch.
* lShadow defaults to .T.
tocal cOrgColor := getcoior()
default cSides to B_DOUBLE_SINGLE
default LShadow to .T.
if LShadow
set color to
scrol L(nTR+1,nLC+1,nBR+1,NRC+1)
setcolor(cOrgColor)
scrol L{nTR,nLC,nBR, NRC)
endif
dispbox(nTR,nLC,nBR,NRC, cSides)
return (NIL)
*** End of Func: MenuBox()

ARRRNTRRATER AR R bbb Rd

Function NumTrim(Num)

* Returns Num in str form trimmed
Llocal HumStr := atitrim(str(Num))
return (NumStr)

w** End of Func: NumTrim()

ARRAAARRR AR EE T ARTTARNTE RN
Function Paramielp(cvVerDate)
* Parameter help screen.

set color to W/N

cls

77 repli(i=tt_80)

?? YORNL/GJ ELIPGRID-PC Simple Graph Program, Version: " + cVerDate

? "Usage: G [Filename.Ext) | [/H | 21 | [/F [/M11"®

?

7 G = Use "Graph.Dat" as default input file.®
7! G Tr2.A = Use file “Tr2.A" as default input file.!’
AL G /F = Uge file selector for input files."

" G /N = Help on command Line parameters, this screen.”
I G /M = Monochrome non-graphics screens."

?

? ¥ Example: G /F/M"

A Use file selector and monochrome screens.®

?

? "Quick parameter options:®

72w G N = Help"

kA GF e File selector”

? repli(“=+,80)

return (NIL)
w** End of Func: Paramietp()

F-17
Code File: EGGraph.Prg

LA d a2 T2 Al il a1l a il el lyd]

Function SayCenter(nRow, cMsg)

* Digsplays cMsg on centered nRow.
local nCol := (80-len(cMsg))/2
anRow,NCol say cMsg

return (NIL)

*** £nd of Func: SayCenter()

Ladlladddt Dl At d tid it ddlddy

Function Subdir(TestSubdir)

* Returns .T. if TestSubdir exits, .F. otherwise

* The directory() command will return sn empty array
* §f the TestSubdir does not exist.

tocal Rtnval := .F.

tocal aDirctry := ()

TestSubdir := alltrim(TestSubdir)
aDirctry := directory(TestSubdir, "D") // D to include all subdirs
if len(aDirctry) > 0
Rtnval := |T.
endif
return (Rtnval)
*** £nd of Func: Subdir()

*** £nd of File: EGGraph.Prg

1.
2.

3- 22
23.
24.
25 - 30.
31.

41.

42,
43.

45.

47.

49.
50.

51.

52.

53 -54.

ORNL/TM-12774

INTERNAL DISTRIBUTION

B. A. Berven 32. G. H. Stevens

B. Coleman 33. J. E. Wilson

J. R. Davidson 34. Central Research Library

P. V. Egidi 35 - 36. Laboratory Records

D. K. Halford 37. Laboratory Records - RC

C. A, Little 38. ORNL Patent Section

P. T. Owen 39. ORNL Technical Library, Y-12
EXTERNAL DISTRIBUTION

Jim Berger, 1299 Bethel Valley Road, Oak Ridge, TN 37830

James A. Bowers, Westinghouse Savannah River Company, PO Box 616, Aiken,
SC 29802

C. C. Britton, Mesa State College, PO Box 2647, Grand Junction, CO 81502
Rich Engelder, RUST Geotech, Inc., PO Box 14000, Grand Junction, CO 81502

Richard O. Gilbert, Pacific Northwest Laboratory, ISB 1 Building, PO Box 999,
Richland, WA 99352

Carl Gogolak, U.S. Department of Energy, Environmental Measurements Lab.,
376 Hudson Street, New York, NY 10014-3621

ggls%eGore, Westinghouse Hanford Company, PO Box 1970, Richland, WA
Don Mackenzie, USDOE/HQ, EM-442, Quince Orchard Bldg., Washington, DC
20585-0002

David E. Mathes, USDOE, Office of ER, EM-451 (GTN) Room D-427,
Washington, DC 20545

T. J. Novotny, Mesa State College, PO Box 2647, Grand Junction, CO 81502

Donald A. Singer, U.S. Geological Survey, 345 Middlefield Road, Menlo Park,
CA 94025

Andrew Wallo, IIl, USDOE, Air, Water & Radiation Division, EH-232, 1000
Independence Avenue, SW, Washington, DC 20585

Office of Assistant Mana%er, Energy Research and Development,
Oak Ridge Operations Olfice, P.O. Box 2001, Oak Ridge, 37831-8600

Office of Scientific and Technical Information, U.S. Department of Energy,
P.O. Box 62, Oak Ridge, TN 37831

END DOTE
13- -9

