
ORNL/TM-12774

ELIPGRID-PC: A PC PROGRAM FOR CALCULATING
HOT SPOT PROBABILITIES

J.R. Davidson

Date Published: October 1994

Prepared by
Oak Ridge National Laboratory

Health Sciences Research Division
Environmental Technology Section

Grand Junction, Colorado
managed by

Martin Marietta Energy Systems, Inc.
for the

United States Department of Energy
under contract DE-AC05-840R21400 MASTER

CONTENTS

FIGURES v

TABLES vii

ACKNOWLEDGEMENTS ix

ABSTRACT xi

1. INTRODUCTION 1

2. PREVIOUS WORK 1

3. PROGRAM ASSUMPTIONS 3

4. PROGRAM DESCRIPTIONS 6

4.1 ELIPGRID-1 6

4.2 ELIPGRID-2 6

4.3 ELIPGRID-PC 7

5. INSTALLATION EXAMPLE 10

6. SUMMARY 11

REFERENCES 12

APPENDIX A DEMONSTRATION OF NONEQUTVALENCE OF ELIPGRID

FORTRAN CODE AND SINGER AND WICKMAN'S EQUATION

APPENDIX B TESTING PROCEDURE

APPENDIX C TRIANGULAR GRID DISCONTINUITY

APPENDIX D ELIPGRID-2 SOURCE CODE

APPENDIX E ELIPGRID-PC SOURCE CODE

APPENDIX F EGGRAPH SOURCE CODE

iii

FIGURES

1. Hypothetical subsurface pocket of contamination 4

2. Grid configuration for finding hot spots 5

3. Probability ofhitvs total sample cost for a square grid 9

C. 1 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 15° angle C-2

C.2 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 0° angle C-3

C.3 Probability of missing hot spot vs L/G ratio, triangular grid, 0 .99 shape,

and 30° angle C-4

C.4 Probability of missing hot spot vs L/G ratio, triangular grid, 0.90 shape,

and 15° angle C-6

C.5 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,

and 15° angle C-7

C.6 Probability of missing hot spot vs L/G ratio, triangular grid, 1.00 shape,

and 15° angle C-8

C.7 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 15° angle C-9

C.8 Probability of missing hot spot vs L/G ratio, triangular grid, 0.90 shape,

and 15° angle C-10

C.9 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,

and 15° angle C-ll

C. 10 Probability of missing hot spot vs L/G ratio, triangular grid, 0.99 shape,

and 15° angle C-13

C.l 1 Probability of missing hot spot vs L/G ratio, triangular grid, 0.85 shape,

and 15° angle C-14

v

TABLES

B. 1 Corrected sequential order of Singer's tables B-l

B.2 Input file listing after style used in ELIPGRID B-3

B.3 ELIPGRID-1 output file listing B-6

B.4 ELIPGRID-2 output file listing B-8

B.5 ELIPGRID-PC output file listing B-l l

B.6 ELIPGRID-PC SIF-style input file listing B-13

B.7 ELIPGRID-PC SIF-style output file listing B-16

vii

ACKNOWLEDGEMENTS

The author would like to recognize two individuals outside of Oak Ridge National

Laboratory (ORNL) and three individuals of ORNL Grand Junction for significant help in

the development of ELff GRID-PC:

Donald A. Singer for his helpful advice relating to ELIPGRID, a program he

developed more than twenty years ago in a much tougher computer environment than is

present today.

Richard O. Gilbert for his encouragement to resolve the problems that developed in

adapting ELIPGRID to the personal computer.

Gloria H. Stevens, Project Manager for the ORNL Independent Verification

Contract on the Grand Junction Project Office Remedial Action Project, for strong

support of the development of ELIPGRID-PC.

Phil V. Egidi for his help with graphics in general and for tremendous help with the

development of a poster session relating to ELIPGRID-PC

John E. Wilson for his excellent help with debugging code. His help was vital in the

tedious task of tracking down subtle coding errors.

ix

ABSTRACT

ELEPGRID-PC, a new personal computer program, has been developed to provide

easy access to Singer's 1972 ELIPGRID algorithm for hot-spot detection probabilities.

Three features of the program are the ability to determine: 1) the grid size required for

specified conditions, 2) the smallest hot spot that can be sampled with a given probability,

and 3) the approximate grid size resulting from specified conditions and sampling cost.

ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-

sheets or graphics software. The program has been successfully tested using Singer's

published ELIPGRID results. An apparent error in the original ELIPGRID code has been

uncovered and an appropriate modification incorporated into the new program.

xi

1. INTRODUCTION

The standard approach for calculating the probability of detecting small, highly

contaminated areas called hot spots is based on a punch-card-era computer program

developed over 20 years ago. This program, ELIPGRID (Singer 1972), is the foundation

for three programs developed by Oak Ridge National Laboratory (ORNL) for the IBM®

personal computer (PC): ELIPGRID-1, a PC version of ELIPGRID; ELIPGRID-2, a

modified PC version; and ELIPGRID-PC, a user-friendly PC version containing several

new options not found in ELIPGRID.

ELIPGRID-1 is a direct translation of ELIPGRID to the PC and retains a coding

error found in ELIPGRID's rectangular grid routine. ELEPGRID-2 is similar to

ELIPGRID-1 but corrects the rectangular grid en or. ELIPGRID-PC, though based on

ELIPGRID's algorithms, is a new program that simplifies input file selection, data entry,

and file output.

ELIPGRID-1 and ELIPGRID-2 can be viewed as transitional programs used to

work out technical problems involved in adapting ELIPGRID to the PC. They are

documented here to provide a record of this transition. ELIPGRID-PC, however, is

intended as a full replacement for the ELIPGRID program.

2. PREVIOUS WORK

In 1969, Singer and Wickman published a mathematical procedure for determining

the probability of locating elliptical geological deposits (Singer and Wickman 1969).

Using this procedure, five computer programs were written to calculate values published

as probability tables for various target shapes, grid types, and grid sizes. These programs

were run on an IBM* System 370/67 computer.

1

2

In 1972, Singer published ELIPGRID, a FORTRAN IV program based on Singer

and Wickman's mathematical procedure (Singer 1972). This program calculated the pro-

bability of success in locating elliptical targets with square, rectangular, and hexagonal

(triangular) grids. The data input and code were designed for the then-standard punch-

card computer.

Zirschky and Gilbert developed a nomographic procedure based on ELIPGRID to

assist with the detection of highly contaminated areas at chemical- or nuclear-waste dispo-

sal sites (Zirschky and Gilbert 1984). Gilbert used these nomographs as the basis for the

chapter "Locating Hot Spots" in his widely referenced book on environmental statistical

methods (Gilbert 1987). These nomographs were subsequently used by the U.S. Environ-

mental Protection Agency (EPA) to develop tables for calculating the probability of

missing various hot-spot shapes using triangular and square sampling grids (U.S.EPA

1989).

Gilbert's nomographs and the EPA tables have some inherent limitations not in the

original ELIPGRID program. Three limitations are:

(1) Probabilities for only one rectangular sampling grid are given in Gilbert's nomo-

graphs; no data for rectangular grids are given in the EPA tables.

(2) Specific orientation angles for suspected hot spots are not allowed. For example, if

the probability of detecting a given target with a given grid for a specific orientation

angle is desired, the tables and nomographs do not provide this information.

(3) Data extracted from a graph are less likely to be accurate than output from a com-

puter program given the same input information.

ELIPGRID-PC removes these limitations by: 1) allowing a large number of rectan-

gular grids, 2) allowing orientation angles for suspected hot spots to be specified, and

3) calculating the results with a computer algorithm.

3

3. PROGRAM ASSUMPTIONS

The following assumptions underlie both the original ELIPGRID and ELIPGRID-

1. The target (hot spot) is assumed to be circular or elliptical. See Fig. 1 for an

illustration of an elliptical subsurface pocket of contamination.

2. Samples or measurements are taken on a square, rectangular, or triangular grid.

Figure 2 illustrates the various grid configurations.

3. The distance between grid points is much larger than the size of the sample being

measured or cored at grid points; that is, a very small portion of the area being

studied can actually be measured.

4. The definition of a hot spot is clear and unambiguous.

5. There are no measurement misclassification errors; that is, no errors are made in

deciding when a hot spot has been detected.

Subsurface Contamination

Fig. 1. Hypothetical subsurface pocket of contamination.

Rectangular
Long Axis of Grid

Fig. 2. Grid configuration for finding hot spots.

6

4. PROGRAM DESCRIPTIONS

4.1 ELIPGRID-1

ELIPGRID-1 is a PC program, writen in Lahey FORTRAN, that closely conforms to
the original ELIPGRID FORTRAN code structure. It was written to demonstrate that
ELIPGRID code could work on a PC. The format for data input is the same as the origi-
nal ELIPGRID punch-card format. The program does not provide any user-interface
features other than a simple help screen and various messages relating to data input file
errors.

ELIPGRID-1 contains the original algorithm used by the RECT subroutine in the pub-
lished version of ELIPGRID. However, the output from ELIPGRID-1 does not match the
published output for a number of rectangular grid cases (Singer 1972). These discrepan-
cies revealed the need to modify the RECT subroutine that resulted in the ELIPGRID-2
program. See Appendix A for a demonstration of the nonequivalence of the original
ELIPGRID FORTRAN code and Singer and Wickman's mathematical development.

Hardware requirements for the program include an IBM® PC (or compatible) with an
Intel® 383™, i486™, or Pentium™ central processing unit, with a minimum of 512 kilo-
bytes (KB) free random access memory (RAM) recommended. Additionally, a math co-
processor is required and a fixed hard disk drive is recommended.

4.2 ELIPGRID-2

ELIPGRID-2 is essentially the same program as ELIPGRID-1, with the key differ-
ence being the modified RECT subroutine. With this modification in place, ELIPGRID-2
is able to reproduce the results of the published data (Singer 1972). See Appendix B for

7

comparisons of ELIPGRID-1, ELIPGRID-2, and ELIPGRID-PC output against Singer's

published data. The source code for ELIPGRID-2 is found in Appendix D.

The hardware requirements for ELIPGRID-2 are the same as those for ELIPGRID-1.

4.3 ELIPGRID-PC

ELIPGRID-PC is a new program incorporating the corrected version of the ELIP-

GRID algorithm found in ELIPGRID-2. Although the algorithm was recoded into CA-

Clipper® for ELIPGRID-PC, no changes were made to the underlying mathematical algo-

rithm (Appendix C documents an algorithmic substitution required for a small portion of

ELIPGRID's triangular grid computations). The source code for ELIPGRID-PC is found

in Appendix E. Source code for a simple graphics program to display and print the output

from the "Write Cost-Based Graph Data" option is found in Appendix F.

ELBPGRID-PC provides some output features not directly available in ELIPGRID:

• ELIPGRID-PC calculates a grid size, given the desired probability of detecting a

specified hot spot.

• ELIPGRID-PC calculates an approximate grid size, given desired cost and hot-

spot specifications. Note that this is an approximate grid size since the underlying

EPA formula for determining the number of samples for a given area is itself

approximate (U.S.EPA 1989).

• ELIPGRID-PC calculates the smallest hot spot that can be detected with a given

probability and grid size.

8

• ELIPGRID-PC provides the capability for graphing with spreadsheets or graphics

software the probability of detection versus cost. Figure 3 is an example of this

for a square grid.

Designed to be user-friendly, ELIPGRID-PC includes the following features:

• A simplified input format (SIF) file option. SIF files provide an easier-to-use

input file structure than the ELIPGRID format input files.

a Screen input and output in either meters or feet.

• Conversion from acres to m2 or to ft2 using the F10 key. The program also calcu-

lates the length of the hot spot semi-major axis from the area of the hot spot.

• Change of the basic unit of length from meters to feet as a command-line option

using the letter F. Command-line option M will force a monochrome screen, and

command-line option H provides usage information.

• Input and output files located on any drive and subdirectory.

• Temporary exit to DOS. DOS commands or other programs may then be

executed.

9

PROBABILITY OF HIT vs COST
100

Li_
O

OQ
<t
CD
O
CL
CL

98

96'

94'

92'

90'

88'

86'

84

82

80

• f •

180 200 220 240 260 280 300 320 340 360 380

COST, $K

Input File: C:\CLIPPER2\EDIT0R\EGPC\Graph.Dat
Print Date: 08/26/94
Print Time: 1:17:54 pm
Grid type chosen : Square
Shape of the elliptical hot spot: 0.80
Length of semi-major axis : 3.15 m
Angle of orientation to grid : 0.0s

Total area to sample : 8093.0 m*
Individual sample cost $: 700.00

Fig. 3. Probability of hit vs total sample cost for a square grid.

10

5. INSTALLATION EXAMPLE

This example is for the ELIPGRID-PC program being copied to a C: fixed hard

drive. ELIPGRID-2 would be installed in a similar manner.

(1) Make £ new subdirectory on the hard drive, for example:

C:V>MD ELIPGRID

(2) Change to the new subdirectory:

C:\>CD ELIPGRID

(3) Copy all files from the source floppy disk in A: or B: drive:

C:\ELIPGRID>COPY A:*.* or COPYB:*.*

(4) Run the ELIPGRID program. EGPC is the executable file name used in these

examples:

Using defaults of a color screen and meters for basic unit of length,

C:VELIPGRID>EGPC

With the basic unit set to feet,

C:\ELIPGRID>EGPC F

To display a command-line parameter help screen,

C:\ELIPGRID>EGPC H.

11

6. SUMMARY

Singer and Wickman's (1969) ELIPGRID algorithm for calculating hot-spot

sampling probabilities has been successfully made available to the PC environment.

ELIPGRID-PC provides the algorithm in CA-Clipper®-compatible format. The program

additionally calculates the grid size required for specified conditions, the smallest hot spot

that can be sampled with a given probability, and the approximate grid size resulting from

specified conditions and sampling cost. ELIPGRID-PC also provides probability of detec-

tion versus cost data for graphing with spreadsheets or graphics software.

ELIPGRID-PC has been successfully tested using Singer's published ELIPGRID

results and includes corrections to the rectangular and triangular grid routines of the

original ELIPGRID.

12

REFERENCES

Gilbert, R. O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van

Nostrand Reinhold, New York.

Singer, D. A. 1972. ELIPGRID, a FORTRAN IV program for calculating the probability

of success in locating elliptical targets with square, rectangular, and hexagonal grids.

Ceocom Programs, 4:1-16.

Singer, D. A. 1994. Letter to J. R. Davidson, Oak Ridge National Laboratory, Grand

Junction, Colorado, from U.S. Geological Survey, Menlo Park, California,

March 11,1994.

Singer, D. A., and F. E. Wickman. 1969. Probability Tables for Locating Elliptical

Targets with Square, Rectangular and Hexagonal Point Nets. Pennsylvania State

University, University Park, Pennsylvania.

U S.EPA. 1989. Methods for Evaluating the Attainment of Cleanup Standards.

Volume 1. Soils and Solid Media. EPA/230/02-89/042. U. S. Environmental

Protection Agency.

Zirschky, J., and R. O. Gilbert. 1984. Detecting hot spots at hazardous-waste sites.

Chemical Engineering, 91:97-100.

APPENDIX A

DEMONSTRATION OF NONEQUTVALENCE OF ELIPGRID FORTRAN CODE

AND SINGER AND WICKMAN'S EQUATION

A-1

DEMONSTRATION OF NONEQUIVALENCE OF ELIPGRID FORTRAN CODE

AND SINGER AND WICKMAN'S EQUATION

For this demonstration, assume that the ELIPGRID FORTRAN code equation is

equivalent to the mathematical equation it is based on. By deriving a logical contradiction,

it is demonstrated that the ELIPGRID code is not equivalent to the mathematical equa-

tion.

The RECT subroutine in ELIPGRID transforms a rectangular grid and elliptical

target to a square grid and transformed elliptical target using an affine transformation

described in detail by Singer and Wickman (1969). The angle of the transformed elliptical

target to the transformed grid is found from Singer and Wickman's Eq. (35),

tan 2y 2g(l - k) tan a
1 - * V - (q2 - o tan3 a

0)

where

y = the angle of the transformed target to the transformed grid, if tan 2 y * 0; if

tan 2 Y < 0 the angle is 90° - \y |;

a = the angle of the original target to the original grid;

q = the shape of the rectangular grid (long side divided by short side);

k = the shape of the original elliptical target (semi-minor axis of the target divided

by semi-major axis).

A-2

The relevant ELIPGRID FORTRAN code is found on lines RECT 175 and

RECT 185 (Singer 1972):

REVANG = (ATAN (2.0 * 0 * (1.0-SQK) * TAN {ALPHA) /

«.AQ - SQK) * TAN {ALPHA)**! * TIS - 1.0)) / 2.0) * 57.295779,

where

REVANG = yinEq. (1);

AQ ~ & and Q is the shape of the rectangular grid (long side divided by the

short side), q in Eq. (1);

SQK = Shape1 and Shape is the semi-minor axis of the target divided by the

semi-major axis, k in Eq. (1);

TIS = AQ* SQK or Jfy3 in Eq. (1);

ALPHA = the angle of orientation of the original target to the original grid, a in

Eq. (1);
57.295779 = the conversion factor for radians to degrees.

Replace ELIPGRID's symbols with the equivalent symbols used in Eq. (1), remove the

radians-to-degrees conversion factor, and solve for tan 2 y, so that the ELIPGRID code in

mathematical form becomes

tan 2y ^ " **> « . (2)
cq7 - k*) tan3 a + k2q2 - 1

A-3

A comparison of Eq. (2) with Eq. (i) reveals two differences. First, the numerator of

the ELIPGRID equation has the term (1 - A2), while Eq. (1) has the term (1 -k). Second,

the denominators have their terms in different orders with different signs. It is possible

that Eq. (2) is an equivalent form of Eq. (1). Assume they are equivalent and derive a

logical contradiction.

First, to simplify both equations, make the following substitutions:

A=(\-k),

C = (q*-kt)tan2 a.

Equation (I) becomes

tan 2y 2 qA tan a
B - C

Equation (2) becomes

tan 2y 2g(l - k2) tan a
C - B

However, (1 - &) = (1 + k)(l - k) = (1 + k)A, so Eq. (2) can be written as

tan 2y 2q(l + k)A tan «
C - B

A-4

Now assume both equations are equivalent, as they should be if the ELIPGRID code

matches Eq. (1):

IgA tan « _ 2g(l + k)A tan g
3 - C C - B

The term 2qA tan a is common to both fractions. Divide both sides by this term if it is not

equal to zero. For q > 0, a > 0, and A > 0, this term will be greater than zero. Note

that A = 1 - k. Therefore, if£ < 1, then/I > 0. Dividing both sides by (2qA tan a)

results in

1 „ (1 * k)
B - C C - B

Cross-multiply to yield

C - B - (1 + k)(B - C) .

Perform the indicated multiplication on the right:

C-B-B+Bk-C-Ck

A-5

Add (B - C) to both sides to give

0 - IB * Bk - 2C - Ck .

Factor the right hand side to yield

0 • B(2 + t) - C(2 + k) .

If k > 0, as it must be for any actual elliptical target, then 2 + k > 0. Therefore, divide
both sides by (2 + k) to give

0 = B - C .

Swapping both sides by the symmetry axiom of algebra yields

B - C - 0 .

Replacing B and C by their original values gives

1 - * V " (4* tan2 a b 0 .

However, the left hand side above is the denominator in Eq. (1) and cannot be 0 for the
large number of legitimate cases where q > 0, a > 0, and 0 < k < 1. Therefore, the
premise of equivalence is false.

A-6

An example case would be q = 2, a - 45°, and k = 0.7. This is the case of a rectan-

gular grid with shape 2, target orientation angle of 45°, and target elliptical shape of 0.7.

Many other such cases could be found.

Dr. Donald A. Singer, author of the ELIPGRID program, agrees with the above

conclusion. His replies to the following questions appear below (Singer 1994).

1) It appears that the term (1 - k) in the numerator of Eq. (1) [Eq. (35), Singer

and Wickman 1969] should be (1 - k2). This term is given as (1.0 - SQK) in the

code on line RECT 175 (Singer 1972). SQK is Shape\ and Shape is the

ELIPGRID code variable for k. Question 1: could the blank space after k in

the Singer and Wickman paper imply a superscript 2 was left out by accident?

2) The denominator of Eq . (1) differs from the code in the order in which the

terms are listed and in their signs. Question 2: could the code denominator be

in error?

Question I. "I agree with you that the blank space after k in Equation 35 in

Singer and Wickman (1969) is clearly meant for a missing

superscript 2. This is consistent with all other equations in Singer

and Wickman and with published computer code in Singer (1972)."

Question 2. "Yes, the computer code for Equation 35 that you have used in

HOTSPOT and ELEPGRID2 is consistent with the output in Singer

(1972) and (based on spot checks) with the tables in Singer and

Wickman."

APPENDIX B

TESTING PROCEDURE

B-1

TESTING PROCEDURE

B.l Singer's Tables

The goal of the ELIPGRID-2 and ELIPGRID-PC programs is to duplicate for a PC

the ELIPGRID program. Once the PC program was written, Singer's Table 1, input data,

and Table 2, output data (Singer 1972), were used as the basis for testing the program.

A comparison of the 100 input cases in Table 1 with the 100 output cases in Table 2

reveals some obvious problems in the sequential arrangement of the data in the tables.

Apparently, the original computer printouts were accidentally disordered in the paste-up

process. Fortunately, a careful comparison of Table 1 to Table 2 provides a key to the

correct sequential order.

Table B. 1 Corrected sequential order of Singer's tabies

Table 1 Table 2

Rows 1-33 1-33

Rows 34-51 65-82

Rows 52-82 34-64

Rows 83-100 83-100

Dr. Donald A. Singer, author of the paper containing the tables in question, agrees

with this conclusion. "Yes, the entries of the output table in Singer (1972) are in a differ-

ent order than in the input table. Fortunately, the output table provides the input values so

that the match can be made correctly as you have done" (Singer 1994).

All 100 of Singer's cases were tested using the corrected sequential order listed in

Table B.l.

B-2

B.2 ELKPGRID-1 RESULTS

Table B.2 is a listing of the input file, TEST100.IN, used to duplicate Singer's

Table 1. Table B.3 is a listing of the output file, TEST100.EG1, produced from running

ELIPGRID-1 onTESTlOO.IN.

All ELIPGRID-1 square and triangular grid output values matched Singers's Table 2

output values. A match is defined as two output values that differ by no more than

±0.0001. This corresponds to a difference in the probability of not hitting the target

of ±0.01%.

The ELIPGRID-1 output from 10 rectangular grid cases, out of 30 total, did not

match the published output in Singer's Table 2. The inability of the program to match

rectangular grid cases led to a review of the RECT subroutine in the published ELIPGRID

code. See Appendix A for a demonstration of the nonequivalence of the published ELIP-

GRID code and Singer and Wickman's original mathematical development. Since the

original ELIPGRID code could not reproduce the published results, a modified RECT

subroutine was developed. ELIPGRID-2 is essentially ELIPGRID-1 with the exception of

the modified RECT subroutine.

B.3 ELIPGRID-2 RESULTS

File TEST100.IN was used for input data to ELIPGRID-2. Table B.4 is a listing of

the output file, TEST100.EG2, produced from running ELIPGRID-2 on TEST100.IN.

All square, triangular, and rectangular grid output values from ELIPGRID-2 matched

Singers's Table 2 output values.

B-3

Table B.2. Input file listing after style used in ELIPGRID
File: C:\CLIPPER2\ED1TOR\HOTSPOT\VAUD100\TEST100.IN Print Date: 08/10/94 Page: 1

TestlOO.In input test file for EL1PGRD1, 2, M, and HOTSPOT, 02/03/94.
1000.0 0.38 22.0 800.0 1 00261
1250.0 0.30 6.0 800.0 1 00187
1250.0 0.50 38.0 800.0 1 0*190
300.0 0.25 24.0 800.0 1 00147
625.0 0.50 35.0 800.0 1 0010
875.0 0.31 7.0 800.0 1 0*19
625.0 0.20 18.0 800.0 1 0026
125.0 0.50 24.0 800.0 1 0030

1625.0 0.15 11.0 800.0 1 0049
1250.0 0.50 0.0 800.0 1 00104
1000.0 0.3S 22.0 1000.0 1 00261
1250.0 0.30 6.0 1000.0 1 00187
1250.0 0.50 38.0 1000.0 1 00190
300.0 0.25 24.0 1000.0 1 00147
625.0 0.50 35.0 1000.0 1 0010
875.0 0.31 7.0 1000.0 1 0019
625.0 0.20 18.0 1000.0 1 0026
125.0 0.50 24.0 1000.0 1 0030

1625.0 0.15 11.0 1000.0 1 0049
1250.0 0.50 0.0 1000.0 1 00104
1000.0 0.38 22.0 1500.0 1 00261
1250.0 0.30 6.0 1500.0 1 00187
1250.0 0.50 38.0 1500.0 1 00190
300.0 0.25 24.0 1500.0 1 00147
625.0 0.50 35.0 1500.0 1 0010
875.0 0.31 7.0 1500.0 1 0019
625.0 0.20 18.0 1500.0 1 0026
125.0 0.50 24.0 1500.0 1 0030

1625.0 0.15 11.0 1500.0 1 0049
1250.0 0.50 0.0 1500.0 1 00104
1000.0 0.38 22.0 859.66 2 00261
1250.0 0.30 6.0 859.66 2 00187
1250.0 0.50 22.0 859.66 2 0#190
625.0 0.50 35.0 565.69 3 0010

2.0
875.0 0.31 7.0 565.69 3 0019

2.0
625.0 0.20 18.0 565.69 3 0026

2.0
125.0 0.50 24.0 565.69 3 0030
2.0

1625.0 0.15 11.0 565.69 3 0#49
2.0

1250.0 0.50 0.0 565.69 3 00104
2.0

1000.0 0.38 22.0 707.11 3 00261
2.0

1250.0 0.30 6.0 707.11 3 00187
2.0

1250.0 0.50 38.0 707.11 3 00190
2.0

300.0 0.25 66.0 707.11 3 00147
2.0

625.0 0.50 35.0 707.11 3 0010
2.0

875.0 0.31 7.0 707.11 3 0019
2.0

625.0 0.20 18.0 707.11 3 0026
2.0

125.0 0.50 24.0 707.11 3 0030
2.0

1625.0 0.15 11.0 707.11 3 0049
2.0

B-4

Table B.2. (cont.)
File: C:\CUPPER2\EDITOR\HOTSPOT\VALIDIOO\TESTIOO.IN Print Date: 03/10/94 Page: 2

1250.0 0.50 0.0 707.11 3 0*104
2.0

1000.0 0.38 22.0 1060.66 3 0*261
2.0

1250.0 0.30 6.0 1060.66 3 0*187
2.0

300.0 0.25 6.0 859.66 2 0*147
625.0 0.50 25.0 859.66 2 0*10
875.0 0.31 7.0 859.66 2 0#19
625.0 0.20 18.0 859.66 2 0*26
125.0 0.50 24.0 859.66 2 0*30
1625.0 0.15 11.0 859.66 2 0*49
1250.0 0.50 0.0 859.66 2 0*104
1000.0 0.38 22.0 1074.57 2 0*261
1250.0 0.30 6.0 1074.57 2 0*187
1250.0 0.50 22.0 1074.57 2 0*190
300.0 0.25 6.0 1074.57 2 0*147
625.0 0.50 25.0 1074.57 2 0*10
875.0 0.31 7.0 1074.57 2 0#19
625.0 0.2 18.0 1074.57 2 0*26
125.0 0.50 24.0 1074.57 2 0*30

1625.0 0.15 11.0 1074.57 2 0*49
1250.0 0.50 0.0 1074.57 2 0*104
1000.0 0.38 22.0 1611.86 2 0*261
1250.0 0.30 6.0 1611.86 2 0*187
1250.0 0.50 22.0 1611.86 2 0*190
300.0 0.25 6.0 1611.86 2 0*147
625.0 0.50 25.0 1611.86 2 0*10
675.0 0.31 7.0 1611.86 2 0*19
625.0 0.20 18.0 1611.86 2 0*26
125.0 0.50 24.0 1611.86 2 0*30

1625.0 0.15 11.0 1611.86 2 0*49
1250.0 0.50 0.0 1611.86 2 0*104
1000.0 0.38 22.0 565.69 3 0*261

2.0
1250.0 0.30 6.0 565.69 3 0*187

2.0
1250.0 0.50 38.0 565.69 3 0*190

2.0
300.0 0.25 66.0 565.69 3 0#147

2.0
1250.0 0.50 38.0 1060.66 3 0*190

2.0
300.0 0.25 66.0 1060.66 3 0*147

2.0
625.0 0.50 35.0 1060.66 3 0*10

2.0
875.0 0.31 7.0 1060.66 3 0#19

2.0
625.0 0.20 18.0 1060.66 3 0*26

2.0
125.0 0.50 24.0 1060.66 3 0*30

2.0
1625.0 0.15 11.0 1060.66 3 0*49

2.0
1250.0 0.50 0.0 1060.66 3 0*104

2.0
1000.0 0.38 22.0 1000.0 1 1*261
1250.0 0.30 6.0 1000.0 1 1#187
1250.0 0.50 38.0 1000.0 1 1*190
300.0 0.25 24.0 1000.0 1 1#147
625.0 0.50 35.0 1000.0 1 1*10
875.0 0.31 7.0 1000.0 1 1#19
625.0 0.20 18.0 1000.0 1 1*26

B-5

Table B.2. (cont.)
File: C:\CLir'PER2\EDITOR\HOTSPOT\VALID100\TEST100.IN Print Date: 08/10/94 Page: 3

125.0 0.50 24.0 1000.0 1 1030
1625.0 0.15 11.0 1000.0 1 1049
1250.0 0.50 0.0 1000.0 1 10104

9.9 9.9 9.9 9.9 9 9 EOF

B-6

Table B. 3. ELIPGRID-1 output file listing

ELJPGRD1 Output File

Data from: lestlOO.In input test file fcr ELIPGRD1, 2, H, and HOTSPOT, 02/03/94.

TARGET GRID TYPE SEHIHAJOR AXIS GRIDSPACE SHAPE ANGLE PROS{1) PftOS{>1) PROBCO]
IN RELATIVE UNITS IN OR1G UNITS

« 4 1 SQUARE 1.25 800.00 0.38 22.0 9.0000 9.0000 0.0000 ...»
#187 SQUARE 1.56 800.00 0.30 6.0 0.1241 0.8448 0.0311
#190 SQUARE 1.56 800.00 0.50 38.0 9.0000 9.0000 0.0000
#147 SOUARE 0.38 800.00 0.25 24.0 0.1104 0.0000 0.8896
#10 SQUARE 0.78 800.00 0.50 35.0 0.8600 0.0494 0.0906
#19 SQUARE 1.09 800.00 0.31 7.0 0.2283 0.46SB 0.3059
#26 SQUARE 0.7B 800.00 0.20 18.0 0.3835 0.0000 0.6165
#30 SQUARE 0.16 800.00 0.50 24.0 0.0383 0.0000 0.9617
#49 SQUARE 2.03 800.00 0.15 11.0 0.1775 0.7755 0.0470
#104 SQUARE 1.56 800.00 0.50 0.1 9.0000 9.0000 0.0000
#261 SQUARE 1.00 1000.00 0.38 22.0 0.6825 0.2557 0.0619
#187 SQUARE 1.25 1000.00 0.30 6.0 0.1672 0.5990 0.2337
#190 SOUARE 1.25 1000.00 0.50 38.0 9.0000 9.0000 0.0000
#147 SOUARE 0.30 1000.00 0.25 24.0 0.0707 0.0000 0.9293
#10 SQUARE 0.63 1000.00 0.50 35.0 0.6136 0.0000 0.3864
#19 SQUARE 0.88 1000.00 0.31 7.0 0.3362 0.2047 0.4591
#26 SOUARE 0.63 1000.00 0.20 18.0 0.2454 0.0000 0.7546
#30 SQUARE 0.13 1000.00 0.50 24.0 0.0245 0.0000 0.9755
#49 SOUARE 1.63 1000.00 0.15 11.0 0.2576 0.4925 0.2499
#104 SOUARE 1.25 1000.00 0.50 0.1 9.0000 9.0000 0.0000
#261 SOUARE 0.67 1500.00 0.38 22.0 0.5306 0.0000 0.4694
#187 SQUARE 0.83 1500.00 0.30 6.0 0.3241 0.1652 0.5107
#190 SOUARE 0.63 1500.00 0.50 38.0 0.8S60 0.1174 0.0266
#147 SOUARE 0.20 1500.00 0.25 24.0 0.0314 0.0000 0.9686
#10 SOUARE 0.42 1500.00 0.50 35.0 0.2727 0.0000 0.7273
#19 SQUARE 0.58 1500.00 0.31 7.0 0.3119 0.0097 0.6783
#26 SQUARE 0.42 1500.00 0.20 18.0 0.1091 0.0000 0.8909
#30 SOUARE 0.08 1500.00 0.50 24.0 0.0109 0.0D00 0.9891
#49 SOUARE 1.08 1500.00 0.15 11.0 0.3856 O.OS37 0.5307
#104 SOUARE 0.83 1500.00 0.50 0.1 0.4696 0.3106 0.2198
#261 HEXAGONAL 1.16 859.66 0.38 22.0 9.0000 9.0000 0.0000
#187 HEXAGONAL 1.45 859.66 0.30 6.0 9.0000 9.0000 0.0000
#190 HEXAGONAL 1.45 859.66 0.50 22.0 9.0000 9.0000 0.0000
#10 RECTANGULAR X AXIS Of GRIDs 2.0 Y AXIS 1.10 565.69 0.50 35.0 0.8367 0.0610 0.1023
sis RECTANGULAR X AXIS OF GRIO& 2.0 Y AXIS 1.55 565.69 0.31 7.0 0.6256 0.2697 0.1047
#26 RECTANGULAR X AXIS Of GRID- 2.0 Y AXIS 1.10 565.69 0.20 18.0 0.3835 0.0000 0.6165
#3: RECTANGULAR X AXIS OF GRID^ 2.0 Y AXIS 0.22 565.69 0.50 24.0 0.0383 0.0000 0.9617

RECTANGULAR X AXIS OF GRID: 2.0 Y AXIS 2.£7 565.69 0.15 11.0 9.0000 9.0000 0.0000
#10. RECTANGULAR X AXIS OF GRID: 2.0 Y AXIS 2.21 565.69 0.50 0.0 9.0000 9.0000 0.0000
#2£1 RECTANGULAR X AXIS OF GRID= 2.0 Y AXIS 707.11 0.3E 22.0 0.7698 0.2120 0.0182
#'.87 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS • .-7 707.11 C .30 6.0 0.5132 0.4797 0.0071
#193 RECTANGULAR X AXIS OF GR1D= 2.0 Y AXIS 1.77 707.11 0.50 38. 0 9.0000 9.0000 0.0000
#147 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS 3.42 707.11 0.25 66.0 0.0707 0.0000 0.9293
#10 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS 0.88 707.11 0.50 35.0 0.6136 0.0000 0.3864
#19 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS 1.24 707.11 0.31 7. D 0.6095 0.0681 0.3224
#26 RECTANGULAR X AXIS OF GRID: 2.0 Y AXIS 0.88 707.11 0.20 18.0 0.2454 0.0000 0.7546
n o RECTANGULAR X AXIS OF GR1D> 2.0 Y AXIS 0.18 707.11 0.50 24.0 0.0245 0.0000 0.9755
#49 RECTANGULAR X AXIS OF GRID' 2.0 Y AXIS 2.30 707.11 0.15 11.0 0.6090 0.3177 0.0733
#104 RECTANGULAR X AXIS OF GRIDS 2.0 Y AXIS 1.77 707.11 0.50 O.O 9.0000 9.0000 0.0000
#261 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS 0.94 1060.66 0.38 22.0 0.5306 0.0000 0.4694
#1B7 RECTANGULAR X AXIS OF GRIDs 2.0 Y AXIS 1.18 1060.66 0.30 6.0 0.5723 0.0411 0.3866
sl»7 HEXAGONAL 0.35 859.66 0.25 6.0 0.1104 0.0000 0.8896
#11 KcXAGOKAL 0.73 859.66 0.50 25.0 0.8187 0.0700 0.1113

B-7

Table B.3. (cont.)

#19 HEXAGONAL 1.02 859, .66 0.31 7.0 0.3162 0.4244 0.2594
#26 HEXAGONAL 0.73 859.66 0.20 18.0 0.3835 0.0000 0.6165
#30 HEXAGONAL 0.15 859. .66 0.50 24.0 0.0383 0.0000 0.9617
#49 HEXAGONAL 1.89 859. .66 0.15 11.0 0.1836 0.8141 0.0023
#104 HEXAGONAL 1.45 859. .66 0.50 0.1 9.0000 9.0000 0.0000 • • • •

#261 HEXAGONAL 0.93 1074, .57 0.38 22.0 0.7795 0.2072 0.0134
#187 HEXAGONAL 1.16 1074. ,57 0.30 6.0 0.2162 0.6030 0.1807
#190 HEXAGONAL 1.16 1074. ,57 0.50 22.0 9.0000 9.0000 0.0000 • • • •

#147 HEXAGONAL 0.28 1074. .57 0.25 6.0 0.0707 0.0000 0.9293
#10 HEXAGONAL 0.58 1074. .57 0.50 25.0 0.6136 0.0000 0.3864
#19 HEXAGONAL 0.81 1074. 57 0.31 7.0 0.4030 0.1713 0.4257
#26 HEXAGONAL 0.58 1074, .57 0.20 18.0 0.2454 0.0000 0.7546
#30 HEXAGONAL 0.12 1074. .57 0.50 24.0 0.0245 0.0000 0.9755
#49 HEXAGONAL 1.51 1074. ,57 0.15 11.0 0.3561 0.4441 0.1998
#104 HEXAGONAL 1.16 1074. .57 0.50 0.1 9.0000 9.0000 0.0000 • • • •
#261 HEXAGONAL 0.62 1611. .86 0.38 22.0 0.5306 0.0000 0.4694
#187 HEXAGONAL 0.78 1611. ,86 0.30 6.0 0.3834 0.1355 0.4810
#190 HEXAGONAL 0.78 1611. ,86 0.50 22.0 0.7738 0.1585 0.0677
#147 HEXAGONAL 0.19 1611. .86 0.25 6.0 0.0314 0.0000 0.9686
#10 HEXAGONAL 0.39 1611. .86 0.50 25.0 0.2727 0.0000 0.7273
#19 HEXAGONAL 0.54 1611.86 0.31 7.0 0.3297 0.0009 0.6695
#26 HEXAGONAL 0.39 1611. .86 0.20 18.0 0.1091 0.0000 0.8909
#30 HEXAGONAL 0.08 1611. .66 0.50 24.0 0.0109 0.0000 0.9891
#49 HEXAGONAL 1.01 1611. .86 0.15 11.0 0.4353 0.0589 0.5058
#104 HEXAGONAL 0.78 1611. .86 0.50 0.1 0.5669 0.2620 0.1712
#261 RECTANGULAR X AXIS OF GRID' 2. ,0 Y AXIS 1.77 565. .69 0.3B 22.0 9.0000 9.0000 0.0000
#187 RECTANGULAR X AXIS OF GRID= 2, .0 Y AXIS 2.21 565. .69 0.30 6.0 9.0000 9.OOOO 0.0000 • • • •

#190 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 2.21 565.69 0.50 38.0 9.0000 9.0000 0.0000
#147 RECTANGULAR X AXIS OF GRID* 2, .0 R AXIS 0.53 565. .69 0.25 66.0 0.1104 0.0000 0.8896
#190 RECTANGULAR X AXIS OF GRID* 2. .0 Y AXIS 1.18 1060.66 0.50 38.0 0.7882 0.1513 0.0605
#147 RECTANGULAR X AXIS OF GRID* 2. .0 Y AXIS 0.28 1060.66 0.25 66.0 0.0314 0.0000 0.9686
#10 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 0.59 1060. .66 0.50 35.0 0.2727 0.0000 0.7273
#19 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 0.82 1060.66 0.31 7.0 0.3314 0.0000 0.6686
#26 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 0.59 1060.66 0.20 18.0 0.1091 0.0000 0.8909
#30 RECTANGULAR X AXIS OF GRID* 2. .0 Y AXIS 0.12 1060. .66 0.50 24.0 0.0109 0.0000 0.9891
#49 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 1.53 1060. .66 0.15 11.0 0.5356 0.0087 0.4557
#104 RECTANGULAR X AXIS OF GRID' 2. .0 Y AXIS 1.18 1060. .66 0.50 0.0 0.7892 0.1508 0.0600
#261 SQUARE 1.00 1000. .00 0.38 RANDOM 0.5789 0.3075 0.1137
#187 SOUARE 1.25 1000, .00 0.30 RANDOM 3.3562 3.4839 0.0730 • • • •
#190 SQUARE 1.25 1000. .00 0.50 RANDOM 9.0DD0 9.000D 0.0000 • • • •
#147 SQUARE 0.30 1000 .00 0.25 RANDOM 0.0707 0.0000 0.9293
#10 SQUARE 0.63 1000. .00 0.50 RANDOM 0.5719 0.0208 0.4072
#19 SOUARE 0.BE 1000. .00 0.31 RANDOM 0.5597 0.0930 0,3474
#26 SQUARE 0.43 1000, .00 0.20 RANDOM 0.2393 0.0031 0.7577
#30 SQUARE 0.-.3 1000 .00 0.5C RANDOM 0.0245 0.0000 0.9755

SOUARE 1.s3 1000 .00 Z.'c
RANDOM 0.4427 0.3738 0.1835

#104 SOUARE ' .25 1000.00 RANDOM 9.0000 9.0000 0.0000

END OF RUN (OR ERROR IN SHAPE)

•••• INDICATES THAT THE PROBABILITY OF MISSING IS ZERO FOR 4T LEAST ONE
ORIENTATION AND PR0B1 AND PROB>1 SMDULD NOT BE USED FOR THIS TARGET

B-8

Table B.4. ELEPGRID-2 output file listing

ELIPGR02 Output File

Data from: TestlOO.In input test file for EL1PGRD1, 2, M, end HOTSPOT, 02/03/94.

TARGET GRID TYPE SEMIMAJOR AXIS GRIDSPACE SHAPE ANGLE P R O B O) PROB(>1) PROBCO)
IN RELATIVE UNITS IN OR1G UNITS

#261 SOJARE 1.25 800.00 0.38 22.0 9.0000 9.OOOO 0.0000
#187 SOJARE 1.56 800.00 0.30 6.0 0.1241 0.B448 0.0311
#190 SQUARE 1.56 800.00 0.50 38.0 9.OOOO 9.OOOO 0.0000
#147 SOL/ARE 0.38 800.00 0.25 24.0 0.1104 0.0000 0.8896
#10 SOUARE 0.78 800.00 0.50 35.0 0.8600 0.0494 0.0906
#19 SOUARE 1.09 800.00 0.31 7.0 0.2283 0.4658 0.3059
#26 SOUARE 0.78 800.00 0.20 18.0 0.3835 0.0000 0.6165
#30 SOUARE 0.16 800.00 0.50 24.0 0.0383 0.0000 0.9617
#49 SQUARE 2.03 800.00 0.15 11.0 0.1775 0.7755 0.0470
#104 SQUARE 1.56 800.00 0.50 0.1 9.OOOO 9.0000 0.0000
#261 SOUARE 1.00 1000.00 0.38 22.0 0.6825 0.2557 0.0619
#187 SQUARE 1.25 1000.00 0.30 6.0 0.1672 0.5990 0.2337
#190 SQUARE 1.25 1000.00 0.50 38.0 9.0000 9.0000 0.0000
#147 SOUARE 0.30 1DOO.OO 0.25 24.0 0.0707 0.0000 0.9293
#10 SQUARE 0.63 1000.00 0.50 35.0 0.6136 0.0000 0.3864
#19 SOUARE 0.88 1000.00 0.31 7.0 0.3362 0.2047 0.4591
#26 SOUARE 0.63 1000.00 0.20 18.0 0.2454 0.0000 0.7546
#30 SQUARE 0.13 1000.00 0.50 24.0 0.0245 0.0000 0.9755
#49 SOUARE 1.63 1000.00 0.15 11.0 0.2576 0.4925 0.2499
#104 SQUARE 1.25 1000.00 0.50 0.1 9.0000 9.0000 0.0000
#261 SQUARE 0.67 1500.00 0.38 22.0 0.5306 0.0000 0.4694
#147 SQUARE 0.83 1500.00 0.30 6.0 0.3241 0.1652 0.5107
#190 SQUARE 0.83 1500.00 0.50 38.0 0.8560 0.1174 0.0266
#147 SOUARE 0.20 1500.00 0.25 24.0 0.0314 0.0000 0.9686
#10 SOUARE 0.42 1500.00 0.50 35.0 0.2727 0.0000 0.7273
#19 SQUARE 0.58 1500.00 0.31 7.0 0.3119 0.0097 0.6783
#26 SQUARE 0.42 1500.00 0.20 18.0 0.1091 0.0000 0.8909
#30 SQUARE 0.08 1500.00 0.50 24.0 0.0109 0.0000 0.9891
#49 SOUARE 1.08 1500.00 0.15 11.0 0.3856 0.0837 0.5307
#104 SQUARE 0.83 1500.00 0.50 0.1 0.4696 0.3106 0.2198
#261 HEXAGONAL 1.16 859.66 0.38 22.0 9.0000 9.0000 0.0000
#187 HEXAGONAL 1.45 859.66 0.30 6.0 9.0000 9.0000 0.0000 • • • •
#190 HEXAGONAL 1.45 859.66 0.50 22.0 9.0000 9.0000 0.0000
#10 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.10 565.69 0.50 35.0 0.7376 0.1105 0.1518
#19 RECTANGULAR X AXIS OF GRID- 2. 0 Y AXIS 1.55 565.69 0.31 7.0 0.7058 0.2296 0.0646
#26 RECTANGULAR X AXIS OF GRID® 2. 0 Y AXIS 1.10 565.69 0.20 18.0 0.3835 0.0000 0.6165 «o RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 0.22 565.69 0.50 24.0 0.0383 0.0000 0.9617

RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 2.57 565.69 0.'5 11.0 9.0000 9.0000 0.0000
#104 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 565.69 0.50 0.0 9.0000 9.0000 0.0000
#261 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.-' 707.11 0.3S 22.0 0.8018 0.1960 0.0022
#187 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.77 707.11 0.30 6.0 9.OOOO 9.0000 0.0000
#190 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.77 7G7.11 0.;: 38.0 9.0000 9.0000 0.0000
#147 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 0.42 707.11 0.25 66.0 0.0707 0.0000 0.9293
#10 RECTANGULAR X AXIS OF GRIO* 2. .0 Y AXIS 0.88 707.11 0.50 35.0 0.6100 0.0018 0.3882
#19 RECTANGULAR X AXIS OF GRID* 2. .0 Y AXIS 1.24 707.11 0.31 7.0 0.6565 0.0446 0.2989 Hit RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 0.88 707.11 0.20 18.0 0.2454 0.0000 0.7546
#30 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 0.18 707.11 0.50 24.0 0.0245 0.0000 0.9755
#49 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 2.30 707.11 0.15 11.0 0.7376 0.2534 0.0090
#104 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.77 707.11 0.50 0.0 9.0000 9.0000 0.0000
#261 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 0.94 1060.66 0.3B 22.0 0.5306 0.0000 0.4694
#187 RECTANGULAR X AXIS OF GRID* 2. 0 Y AXIS 1.18 1060.66 0.30 6.0 0.6013 0.0266 0.3721
#147 HEXAGONAL 0.35 859.66 0.25 6.0 0.1104 0.0000 0.8896 #10 HEXAGONAL 0.73 859.66 0.50 25.0 0.S187 0.0700 0.1113

B-9

Table B.7. (cont.)

#19 HEXAGONAL 1.02 859, .66 0.31 7.0 0.3162 0.4244 0.2594
#26 HEXAGONAL 0.73 859. .66 0.20 18.0 0.3835 0.0000 0.6165
#30 HEXAGONAL 0.15 859.66 0.50 24.0 0.0383 0.0000 0.9617
#4 9 HEXAGONAL 1.89 859.66 0.15 11.0 0.1836 0.8141 0.0023
#104 HEXAGONAL 1.45 859.66 0.50 0.1 9.0000 9.0000 0.0000 mmmm
#261 HEXAGONAL 0.93 1074, .57 0.38 22.0 0.7795 0.2072 0.0134
#187 HEXAGONAL 1.16 1074, .57 0.30 6.0 0.2162 0.6030 0.1807
#190 HEXAGONAL 1.16 1074, .57 0.50 22.0 9.0000 9.0000 0.0000
#147 HEXAGONAL 0.28 1074, .57 0.25 6.0 0.0707 0.0000 0.9293
#10 HEXAGONAL 0.58 1074, .57 0.50 25.0 0.6136 0.0000 0.3864
#19 HEXAGONAL 0.81 1074 .57 0.31 7.0 0.4030 0.1713 0.4257
#26 HEXAGONAL 0.58 1074. .57 0.20 18.0 0.2454 0.0000 0.7546
#30 HEXAGONAL 0.12 1074, .57 0.50 24.0 0.0245 0.0000 0.9755
#49 HEXAGONAL 1.51 1074, .57 0.15 11.0 0.3561 0.4441 0.1998
#104 HEXAGONAL 1.16 1074 .57 0.50 0.1 9.0000 9.0000 0.0000
#261 HEXAGONAL 0.62 1611 .86 0.38 22.0 0.5306 0.0000 0.4694
#187 HEXAGONAL 0.78 1611, .86 0.30 6.0 0.3834 0.1355 0.4810
#190 HEXAGONAL 0.7B 1611, .86 0.50 22.0 0.7738 0.1585 0.0677
#147 HEXAGONAL 0.19 1611 .86 0.25 6.0 0.0314 0.0000 0.9686
#10 HEXAGONAL 0.39 1611 .86 0.50 25.0 0.2727 0.0000 0.7273
#19 HEXAGONAL 0.54 1611.86 0.31 7.0 0.3297 0.0009 0.6695
#26 HEXAGONAL 0.39 1611, .86 0.20 18.0 0.1091 0.0000 0.8909
#30 HEXAGONAL 0.08 1611.86 0.50 24.0 0.0109 0.0000 0.9891
#49 HEXAGONAL 1.01 1611.86 0.15 11.0 0.4353 0.0589 0.5058
#104 HEXAGONAL 0.78 1611, .86 0.50 0.1 0.5669 0.2620 0.1712
#261 RECTANGULAR X AXIS OF GR ID* 2.0 T AXIS 1.77 565. .69 0.38 22.0 9.0000 9.0000 0.0000
#187 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 2.21 565 .69 0.30 6.0 9.0000 9.0000 0.0000 • • • •
#190 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 2.21 565 .69 0.50 38.0 9.0000 9.0000 0.0000 • • • •

RECTANGULAR X AXIS Of GRID' 2.0 r AXIS 0.53 565.69 0.25 66.0 0.1104 0.0000 0.8896
#190 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 1.18 1060.66 0.50 38.0 0.7154 0.1877 0.0969
#147 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 0.28 1060.66 0.25 66.0 0.0314 0.0000 0.9686
#10 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 0.59 1060.66 0.50 35.0 0.2727 0.0000 0.7273
#19 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 0.82 1060 .66 0.31 7.0 0.3314 0.0000 0.6686
#26 RECTANGULAR X AXIS OF GRIP* 2.0 Y AXIS 0.59 1060.66 0.20 18.0 0.1091 0.0000 0.8909
#30 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 0.12 1060.66 0.50 24.0 0.0109 0.0000 0.9891
#49 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 1.53 1060 .66 0.15 11.0 0.5531 0.0000 0.4469
#104 RECTANGULAR X AXIS OF GRID* 2.0 Y AXIS 1.18 1060 .66 0.50 0.0 0.7892 0.1508 0.0600
#261 SOUARE 1.00 1000.00 0.38 RANDOM 0.5789 0.3075 0.1137
#187 SOUARE 1.25 1000.00 0.30 RANDOM 3.3562 3.4839 0.0730 • • • •
#190 SOUARE 1.25 1000.00 0.50 RANDOM 9.0000 9.0000 0.0000
#147 SOUARE 0.30 1000 .00 0.25 RANDOM 0.0707 0.0000 0.9293
#10 SOUARE 0.63 1000. .00 0.50 RAMJOM 0.5719 0.0208 0.4072
#19 SOUARE 0.88 1000.00 C.31 RANDOM 0.5597 0.0930 0.3474
#26 SQUARE 0.63 1000.00 C.20 RANDOM 0.2393 0.0031 0.7577
#30 SOUARE 0.13 1C00.00 C.JO RANDOM 0.0245 o.oooo 0.9755
=49 SQUARE 1.63 '030.00 0. '5 RANDOM 0.4427 0.3738 0.1835
#104 SOUARE 1.25 1330.00 Z- RANDOM 9.0000 9.0000 0.0000

END OF RUN (OR ERROR IN SHAPE)

*•** INDICATES THAT THE PROBABILITY OF HISSING IS ZERO FOR AT LEAST ONE
ORIENTATION AND PROB1 AND PROB>1 SHOULD NOT BE USED FOR THIS TARGET

B-10

B.4 ELIPGRID-PC RESULTS

File TEST100.IN was used for input data to ELIPGRID-PC. Table B.5 is a listing of

the output file, TEST100.HSE, produced from running ELIPGRID-PC on TEST100.IN.

All square, triangular, and rectangular grid output values from ELIPGRID-PC matched

Singers's Table 2 output values.

ELIPGRID-PC can also take input data from an SIF file. Table B.6 is a listing of the

input file, TEST 100. SIF, used to test this option. Table B.7 is a listing of the output file,

TEST100.HSS, produced from running ELIPGRID-PC on TEST100.SIF. All square, tri-

angular, and rectangular grid output values produced from the SIF file matched Singers's

Table 2 output values.

B.5 CONCLUSION

ELIPGRID-1, essentially a duplicate of the published version of ELIPGRID, cannot

reproduce Singer's published output for rectangular grids. ELIPGRID-2 and ELIPGRID-

PC, utilizing modified RECT subroutines, can, however, reproduce Singer's published

output. Therefore, the published output must have been produced by a slightly different

program than the code published in the appendix of Singer's document (1972). Since

ELIPGRID-2 and ELIPGRID-PC have successfully matched the published output in 100

out of 100 cases, they can be considered equivalent to the ELIPGRID code that produced

the output published in Singer's Table 2 (Singer 1972).

B-11

Table B.S. ELIPGRID-PC output file listing
File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSE Print Date: 08/11/94 Page: 1

Output from ORNL/GJ ELIPGRID-PC Program Version: 08/11/94
File Name.: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSE
Created on: 08/11/94
Input file: TEST100.Iri using ELIPGRID format.
Title line: TestlOO.In input test file for ELIPGRD1, 2, M, and HOTSPOT, 02/03/94.

Target Grid Type Semimajor Axis Gridspace Shape Angle Prob(0)
in Relative Units in Orig Units

#261 Square 1.2500 800.00 0.38 22.0 0.0000
#187 Square 1.5625 800.00 0.30 6.0 0.0311
#190 Square 1.5625 800.00 0.50 38.0 0.0000
#147 Square 0.3750 800.00 0.25 24.0 0.8896
#10 Square 0.7813 800.00 0.50 35.0 0.0906
#19 Square 1.0938 800.00 0.31 7.0 0.3059
#26 Square 0.7013 800.00 0.20 18.0 0.6165
#30 Square 0.1563 800.00 0.50 24.0 0.9617
#49 Square 2.0313 800.00 0.15 11.0 0.0470
#104 Square 1.5625 800.00 0.50 0.0 0.0000
#261 Square 1.0000 1000.00 0.38 22.0 0.0619
#187 Square 1.2500 1000.00 0.30 6.0 0.2337
#190 Square 1.2500 1000.00 0.50 38.0 0.0000
#147 Square 0.3000 1000.00 0.25 24.0 0.9293
#10 Square 0.6250 1000.00 0.50 35.0 0.3864
#19 Square 0.8750 1000.00 0.31 7.0 0.4501
#26 Square 0.6250 1000.00 0.20 18.0 0.7346
#30 Square 0.1250 1000.00 0.50 24.0 0.9755
#49 Square 1.6250 1000.00 0.15 11.0 0.2499
#104 Square 1.2500 1000.00 0.50 O.O 0.0000
#261 Square 0.6667 1500.00 0.38 22.0 0.4694
#187 Square 0.8333 1500.00 0.30 6.0 0.5107
#190 Square 0.8333 1500.00 0.50 38.0 0.0266
#147 Square 0.2000 1500.00 0.25 24.0 0.9686
#10 Square 0.4167 1500.00 0.50 35.0 0.7273
#19 Square 0.5833 1500.00 0.31 7.0 0.6783
#26 Square 0.4167 1500.00 0.20 18.0 0.8909
#30 Square 0.0833 1500.00 0.50 24.0 0.9891
#49 Square 1.0833 1500.00 0.15 11.0 0.5307
#104 Square 0.8333 1500.00 0.50 0.0 0.2198
#261 Triangular 1.1633 859.66 0.38 22.0 0.0000
#187 Triangular 1.4541 859.66 0.30 6.0 0.0000
#190 Triangular 1.4541 859.66 0.50 22.0 0.0000
#10 Rectangular, 2.0/1 1.1048 565.69 0.50 35.0 0.1518
#19 Rectangular, 2.0/1 1.5468 565.69 0.31 7.0 0.0646
#26 Rectangular, 2.0/1 1.1048 565.69 0.20 18.0 0.6165
#30 Rectangular, 2.0/1 0.2210 565.69 0.50 24.0 0.9617
#49 Rectangular, 2.0/1 2.8726 565.69 0.15 11.0 0.0000
#104 Rectangular, 2.0/1 2.2097 565.69 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 1.4142 707.11 0.38 22.0 0.0022
#187 Rectangular, 2.0/1 1.7678 707.11 0.30 6.0 0.0000
#190 Rectangular, 2.0/1 1.7678 707.11 0.50 38.0 0.0000
#147 Rectangular, 2.0/1 0.4243 707.11 0.25 66.0 0.9293
#10 Rectangular, 2.0/1 0.8839 707.11 0.50 35.0 0.3882
#19 Rectangular, 2.0/1 1.2374 707.11 0.31 7.0 0.2989
#26 Rectangular, 2.0/1 0.8839 707.11 0.20 18.0 0.7546
#30 Rectangular, 2.0/1 0.1768 707.11 0.50 24.0 0.9755
#49 Rectangular, 2.0/1 2.2981 707.11 0.15 11.0 0.0090
#104 Rectangular, 2.0/1 1.7678 707.11 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 0.9428 1060.66 0.38 22.0 0.4694
#1B7 Rectangular, 2.0/1 1.1785 1060.66 0.30 6.0 0.3721
#147 Triangular 0.3490 859.66 0.25 6.0 0.8896
#10 Triangular 0.7270 859.66 0.50 25.0 0.1113
#19 Triangular 1.0178 859.66 0.31 7.0 0.2594
#26 Triangular 0.7270 859.66 0.20 18.0 0.6165
#30 Triangular 0.1454 859.66 0.50 24.0 0.9617

B-12

Table B.5. (cont)
File: C:\CLIPPER2\EDITOR\EGPC\VALID100VTEST100.HSE Print Date: 08/11/94 Page: 2

049 Triangular 1.8903 859.66 0.15 11.0 0.0023
#104 Triangular 1.4541 859.66 0.50 0.0 0.0000
0261 Triangular 0.9306 1074.57 0.38 22.0 0.0134
0187 Triangular 1.1633 1074.57 0.30 6.0 0.1807
0190 Triangular 1.1633 1074.57 0.50 22.0 0.0000
0147 Triangular 0.2792 1074.57 0.25 6.0 0.9293
010 Triangular 0.5816 1074.57 0.50 25.0 0.3864
019 Triangular 0.8143 1074.57 0.31 7.0 0.4257
026 Triangular 0.5816 1074.57 0.20 18.0 0.7546
030 Triangular 0.1163 1074.57 0.50 24.0 0.9755
049 Triangular 1.5122 1074.57 0.15 11.0 0.1998
0104 Triangular 1.1633 1074.57 0.50 0.0 0.0000
#261 Triangular 0.6204 1611.86 0.38 22.0 0.4694
#187 Triangular 0.7755 1611.86 0.30 6.0 0.4810
#190 Triangular 0.7755 1611.86 0.50 22.0 0.0677
#147 Triangular 0.1861 1611.86 0.25 6.0 0.9686
010 Triangular 0.3878 1611.86 0.50 25.0 0.7273
#19 Triangular 0.5429 1611.86 0.31 7.0 0.6695
0 26 Triangular 0.3878 1611.86 0.20 18.0 0.8909
#30 Triangular 0.0776 1611.86 0.50 24.0 0.9891
#49 Triangular 1.0082 1611.86 0.15 11.0 0.5058
#104 Triangular 0.7755 1611.86 0.50 0.0 0.1712
#261 Rectangular, 2.0/1 1.7678 565.69 0.38 22.0 0.0000
#187 Rectangular, 2.0/1 2.2097 565.69 0.30 6.0 0.0000
#190 Rectangular, 2.0/1 2.2097 565.69 0.50 38.0 0.0000
#147 Rectangular, 2.0/1 0.5303 565.69 0.25 66.0 0.8B96
#190 Rectangular, 2.0/1 1.1785 1060.66 0.50 38.0 0.0969
#147 Rectangular, 2.0/1 0.2828 1060.66 0.25 66.0 0.9686
#10 Rectangular, 2.0/1 0.5893 1060.66 0.50 35.0 0.7273
#19 Rectangular, 2.0/1 0.8250 1060.66 0.31 7.0 0.6686
#26 Rectangular, 2.0/1 0.5893 1060.66 0.20 18.0 0.8909
030 Rectangular, 2.0/1 0.1179 1060.66 0.50 24.0 0.9891
#49 Rectangular, 2.0/1 1.5321 1060.66 0.15 11.0 0.4469
#104 Rectangular, 2.0/1 1.1785 1060.66 0.50 0.0 0.0600
0261 Square 1.0000 1000.00 0.38 Random 0.1137
#187 Square 1.2500 1000.00 0.30 Random 0.0730
#190 Square 1.2500 1000.00 0.50 Random 0.0000
#147 Square 0.3000 1000.00 0.25 Random 0.9293
#10 Square 0.6250 1000.00 0.50 Random 0.4072
#19 Square 0.B750 1000.00 0.31 Random 0.3474
#26 Square 0.6250 1000.00 0.20 Random 0.7577
#30 Square 0.1250 1000.00 0.50 Random 0.9755
#49 Square 1.6250 1000.00 0.15 Random 0.1835
#104 Square 1.2500 1000.00 0.50 Random 0.0000

END OF RUN (OR ERROR IN SHAPE OR L/G RATIO > 3.0)

B-13

Table B.6. ELIPGRID-PC SIF-style input file listing
File: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.SIF Print Date: 08/10/94 Page: 1

TestlOO.SIF, an SIF format input test file for HOTSPOT, 02/06/94.
This sample SIF (Simplified Input Format) file illustrates the format specs:
(1) The 1st line in the file is always the title line,

just as in an ELIPGRID formated input file.
(2) Any line can be conmented by using an asterisk, *,

as the 1st nonblank character.
(3) The data values must be separated by 1 or more spaces.
(4) They must come in the order shown below, but the 2nd, 3rd, & 4th data

rows below illustrate that between-colimn spacing does not matter.
(5) No worries with column spacing is what makes this format "simple" in

contrast to ELIPGRID's rigid FORTRAN style column format.
(6) Note that for rectangular grids, the long/short side ratio follows the

data line as in ELIPGRID. However, it need not be in columns 1-10.
(7) End of File can now be either Shape > 1, as in ELIPGRID's format, or

simply no more data lines in the file.

Semimajor Shape Angle GridSize Type Orient. TargetlD
1000.0 0.38 22.0 800.0 1 0 #261

* Note how next 3 lines do not match ELIPGRID's column format.
1250.0 0.30 6.0 800.0 1 0 #187

1250.0 0.50 38.0 800.0 1 0 #190
300.0 0.25 24.0 800.0 1 0 #147

625.0 0.50 35.0 800.0 1 0 #10
875.0 0.31 7.0 800.0 1 0 #19
625.0 0.20 18.0 800.0 1 0 #26
125.0 0.50 24.0 800.0 1 0 #30

1625.0 0.15 11.0 800.0 1 0 #49
1250.0 0.50 0.0 800.0 1 0 #104
1000.0 0.38 22.0 1000.0 1 0 #261
1250.0 0.30 6.0 1000.0 1 0 #187
1250.0 0.50 38.0 1000.0 1 0 #190
300.0 0.25 24.0 1000.0 1 0 #147
625.0 0.50 35.0 1000.0 1 0 #10
875.0 0.31 7.0 1000.0 1 0 #19
625.0 0.20 18.0 1000.0 1 0 #26
125.0 0.50 24.0 1000.0 1 0 #30

1625.0 0.15 11.0 1000.0 1 0 #49
1250.0 0.50 0.0 1000.0 1 0 #104
1000.0 0.38 22.0 1500.0 1 0 #261
1250.0 0.30 6.0 1500.0 1 0 #187
1250.0 0.50 38.0 1500.0 1 0 #190
300.0 0.25 24.0 1500.0 1 0 #147
625.0 0.50 35.0 1500.0 1 0 #10
875.0 0.31 7.0 1500.0 1 0 #19
625.0 0.20 18.0 1500.0 1 0 #26
125.0 0.50 24.0 1500.0 1 0 #30

1625.0 0.15 11.0 1500.0 1 0 #49
1250.0 0.50 0.0 1500.0 1 0 #104
1000.0 0.38 22.0 859.66 2 0 #261
1250.0 0.30 6.0 859.66 2 0 #187
1250.0 0.50 22.0 859.66 2 0 #190
625.0 0.50 35.0 565.69 3 0 #10
2.0

875.0 0.31 7.0 565.69 3 0 #19
2.0

625.0 0.20 18.0 565.69 3 0 #26
2.0

125.0 0.50 24.0 565.69 3 0 #30
2.0

1625.0 0.15 11.0 565.69 3 0 #49
2.0

1250.0 0.50 0.0 565.69 3 0 #104
2 .0

1000.0 0.38 22.0 707.11 3 0 #261

B-14

Table B.6. (cont,)
File: C:\CLIPPER2\EDIT0R\EGPC\VALID100\TEST100.SIF Print Date: 08/10/94 Page: 2

2.0
1250.0 0.30 6.0 707.11 3 0 #187

2.0
1250.0 0.50 38.0 707.11 3 0 #190

2.0
300.0 0.25 66.0 707.11 3 0 #147

2.0
625.0 0.50 35.0 707.11 3 0 #10

2.0
875.0 0.31 7.0 707.11 3 0 #19

2.0
625.0 0.20 18.0 707.11 3 0 #26

2.0
125.0 0.50 24.0 707.11 3 0 #30

2.0
1625.0 0.15 11.0 707.11 3 0 #49

2.0
1250.0 0.50 0.0 707.11 3 0 #104

2.0
1000.0 0.38 22.0 1060.66 3 0 #261

2.0
1250.0 0.30 6.0 1060.66 3 0 #187

2.0
300.0 0.25 6.0 859.66 2 0 #147
625.0 0.50 25.0 859.66 2 0 #10
875.0 0.31 7.0 859.66 2 0 #19
625.0 0.20 18.0 859.66 2 0 #26
125.0 0.50 24.0 859.66 2 0 #30

1625.0 0.15 11.0 859.66 2 0 #49
1250.0 0.50 0.0 859.66 2 0 #104
1000.0 0.38 22.0 1074.57 2 0 #261
1250.0 0.30 6.0 1074.57 2 0 #187
1250.0 0.50 22.0 1074.57 2 0 #190
300.0 0.25 6.0 1074.57 2 0 #147
625.0 0.50 25.0 1074.57 2 0 #10
875.0 0.31 7.0 1074.57 2 0 #19
625.0 0.2 18.0 1074.57 2 0 #26
125.0 0.50 24.0 1074.57 2 0 #30

1625.0 0.15 11.0 1074.57 2 0 #49
1250.0 0.50 0.0 1074.57 2 0 #104
1000.0 0.38 22.0 1611.86 2 0 #261
1250.0 0.30 6.0 1611.86 2 0 #187
1250.0 0.50 22.0 1611.86 2 0 #190
300.0 0.25 6.0 1611.86 2 0 #147
625.0 0.50 25.0 1611.86 2 0 #10
875.0 0.31 7.0 1611.86 2 0 #19
625.0 0.20 18.0 1611.86 2 0 #26
125.0 0.50 24.0 1611.86 2 0 #30

1625.0 0.15 11.0 1611.86 2 0 #49
1250.0 0.50 O.O 1611.86 2 0 #104
1000.0 0.38 22.0 565.69 3 0 #261

2.0
1250.0 0.30 6.0 565.69 3 0 #187

2.0
1250.0 0.50 38.0 565.69 3 0 #190

2.0
300.0 0.25 66.0 565.69 3 0 #147

2.0
1250.0 0.50 38.0 1060.66 3 0 #190

2.0
300.0 0.25 66.0 1060.66 3 0 #147

2.0
625.0 0.50 35.0 1060.66 3 0 #10

B-15

Table B.6. (cont.)
File: C:\CIIPPER2\EDITOR\EGPC\VALID100\TEST100.SIF Print Date: 08/10/94 Page: 3

875.0 0.31 7.0 1060.66 3 0 #19
2.0

625.0 0.20 18.0 1060.66 3 0 #26
2.0

125.0 0.50 24.0 1060.66 3 0 #30
2.0

1625.0 0.15 11.0 1060.66 3 0 #49
2.0

1250.0 0.50 0.0 1060.66 3 0 #104
2.0

1000.0 0.38 22.0 1000.0 1 1 #261
1250.0 0.30 6.0 1000.0 1 1 #187
1250.0 0.50 38.0 1000.0 1 1 #190
300.0 0.25 24.0 1000.0 1 1 #147
625.0 0.50 35.0 1000.0 1 1 #10
875.0 0.31 7.0 1000.0 1 1 #19
625.0 0.20 18.0 1000.0 1 1 #26
125.0 0.50 24.0 1000.0 1 1 #30

1625.0 0.15 11.0 1000.0 1 1 #49
1250.0 0.50 0.0 1000.0 1 1 #104

9.9 9.9 9.9 9.9 9 9 EOF

B-16

Table B.7. ELIPGRID-PC SIF-style output file listing
File: C:\CUPPER2\ED1TOR\EGPC\VAL1D100\TEST100.HSS Print Date: 08/11/''- Page: 1

Output from ORNL/GJ ELIPGRID-PC Program Version: 08/11/94
File Name.: C:\CLIPPER2\EDITOR\EGPC\VALID100\TEST100.HSS
Created on: 08/11/94
Input file: TEST100.SIF using SIF format.
Title line: TestlOO.SIF, an SIF format input test file for HOTSPOT, 02/06/94.

Target Grid Type Semimajor Axis
in Relative Units

GHdspace
in Orid Units

Shape Angle Prob(0)

#261 Square 1.2500 800.00 0.38 22.0 0.0000
#187 Square 1.5625 800.00 0.30 6.C 0.0311
#190 Square 1.5625 BOO.00 0.50 3G 0 0.0000
#147 Square 0.3750 800.00 0.25 24.0 0.8896
#10 Square 0.7813 800.00 0.50 35.0 0.0906
#19 Square 1.0938 800.00 0.31 7.0 0.3059
#26 Square 0.7B13 800.00 0.20 18.0 0.6165
#30 Square 0.1563 800.00 0.50 24.0 0.9617
#49 Square 2.0313 800.00 0.15 11.0 0.0470
#104 Square 1.5625 800.00 0.50 0.0 0.0000
#261 Square 1.0000 1000.00 0.38 22.0 0.0619
#187 Square 1.2500 1000.00 0.30 6.0 0.2337
#190 Square 1.2500 1000.00 0.50 38.0 0.0000
#147 Square 0.3000 1000.00 0.25 24.0 0.9293
#10 Square 0.6250 1000.00 0.50 35.0 0.3864
#19 Square 0.8750 1000.00 0.31 7.0 0.4591
#26 Square 0.6250 1000.00 0.20 18.0 0.7546
#30 Square 0.1250 1000.00 0.50 24.0 0.9755
#49 Square 1.6250 1000.00 0.15 11.0 0.2499
#104 Square 1.2500 1000.00 0.50 0.0 0.0000
#261 Square 0.6667 1500.00 0.38 22.0 0.4694
#187 Square 0.8333 1500.00 0.30 6.0 0.5107
#190 Square 0.8333 1500.00 0.50 38.0 0.0266
#147 Square 0.2000 1500.00 0.25 24.0 0.9686
#10 Square 0.4167 1500.00 0.50 35.0 0.7273
#19 Square 0.5833 1500.00 0.31 7.0 0.6783
#26 Square 0.4167 1500.00 0.20 18.0 0.8909
#30 Square 0.0833 1500.00 0.50 24.0 0.9891
#49 Square 1.0833 1500.00 0.15 11.0 0.5307
#104 Square 0.8333 1500.00 0.50 0.0 0.2198
#261 Triangular 1.1633 859.66 0.38 22.0 0.0000
#187 Triangular 1.4541 859.66 0.30 6.0 0.0000
#190 Triangular 1.4541 859.66 l ,J0 22.0 0.0000
#10 Rectangular, 2.0/1 1.1048 565.69 0.50 35.0 0.1518
#19 Rectangular, 2.0/1 1.5468 565.69 0.31 7.0 0.0646
#26 Rectangular, 2.0/1 1.1048 565.69 0.20 18.0 0.6165
#30 Rectangular, 2.0/1 0.2210 565.69 0.50 24.0 0.9617
#49 Rectangular, 2.0/1 2.8726 565.69 0.15 11.0 0.0000
#104 Rectangular, 2.0/1 2.2097 565.69 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 1.4142 707.11 0.38 22.0 0.0022
#187 Rectangular, 2.0/1 1.7678 707.11 0.30 6.0 0.0000
#190 Rectangular, 2.0/1 1.767B 707.11 0.50 38.0 0.0000
#147 Rectangular, 2.0/1 0.4243 707.11 0.25 66.0 0.9293
#10 Rectangular, 2.0/1 0.8839 707.11 0.50 35.0 0.3882
#19 Rectangular, 2.0/1 1.2374 707.11 0.31 7.0 0.2989
#26 Rectangular, 2.0/1 0.8839 707.11 0.20 18.0 0.7546
#30 Rectangular, 2.0/1 0.1768 707.11 0.50 24.0 0.9755
#49 Rectangular, 2.0/1 2.2981 707.11 0.15 11.0 0.0090
#104 Rectangular, 2.0/1 1.7678 707.11 0.50 0.0 0.0000
#261 Rectangular, 2.0/1 0.9428 1060.66 0.38 22.0 0.4694
#187 Rectangular, 2.0/1 1.1785 1060.66 0.30 6.0 0.3721
#147 Triangular 0.3490 859.66 0.25 6.0 0.8896
#10 Triangular 0.7270 859.66 0.50 25.0 0.1113
#19 Triangular 1.0178 859.66 0.31 7.0 0.2594
#26 Triangular 0.7270 859.66 0.20 18.0 0.6165
#30 Triangular 0.1454 859.66 0.50 24.0 0.9617

B-17

Table B.7. (cont.)
File: C:\CUPPER2\ED1TOR\EGPC\VALW100\1EST100.HSS Print Date: OS/11/94

#49 Triangular 1.8903 859.66 0.15 11.0 0.0023
#104 Triangular 1.4541 859.66 0.50 0.0 0.0000
#261 Triangular 0.9306 1074.57 0.38 22.0 0.0134
#187 Triangular 1.1633 1074.57 0.30 6.0 0.1807
#190 Triangular 1.1633 1074.57 0.50 22.0 0.0000
#147 Triangular 0.2792 1074.57 0.25 6.0 0.9293
#10 Triangular 0.5816 1074.57 0.50 25.0 0.3864
#19 Triangular 0.8143 1074.57 0.31 7.0 0.4257
#26 Triangular 0.5816 1074.57 0.20 18.0 0.7546
#30 Triangular 0.1163 1074.57 0.50 24.0 0.9755
#49 Triangular 1.5122 1074.57 0.15 11.0 0.1998
#104 Triangular 1.1633 1074.57 0.50 0.0 0.0000
#261 Triangular 0.6204 1611.86 0.38 22.0 0.4694
#187 Triangular 0.7755 1611.86 0.30 6.0 0.4810
#190 Triangular 0.7755 1611.86 0.50 22.0 0.0677
#147 Triangular 0.1861 1611.86 0.25 6.0 0.9686
#10 Triangular 0.3878 1611.86 0.50 25.0 0.7273
#19 Triangular 0.5429 1611.86 0.31 7.0 0.6695
#26 Triangular 0.3878 1611.86 0.20 18.0 0.8909
#30 Triangular 0.0776 1611.86 0.50 24.0 0.9891
#49 Triangular 1.0082 1611.86 0.15 11.0 0.5058
#104 Triangular 0.7755 1611.86 0.50 0.0 0.1712
#261 Rectangular, 2.0/1 1.7678 565.69 0.38 22.0 0.0000
#187 Rectangular, 2.0/1 2.2097 565.69 0.30 6.0 0.0000
#190 Rectangular, 2.0/1 2.2097 565.69 0.50 38.0 0.0000
#147 Rectangular, 2.0/1 0.5303 565.69 0.25 66.0 0.B896
#190 Rectangular, 2.0/1 1.1785 1060.66 0.50 38.0 0.0969
#147 Rectangular, 2.0/1 0.2828 1060.66 0.25 66.0 0.9686
#10 Rectangular, 2.0/1 0.5893 1060.66 0.50 35.0 0.7273
#19 Rectangular, 2.0/1 0.8250 1060.66 0.31 7.0 0.6686
#26 Rectangular, 2.0/1 0.5893 1060.66 0.2U 18.0 0.8909
#30 Rectangular, 2.0/1 0.1179 1060.66 0.50 24.0 0.9891
#49 Rectangular, 2.0/1 1.5321 1060.66 0.15 11.0 0.4469
#104 Rectangular, 2.0/1 1.1785 1060.66 0.50 0.0 0.0600
#261 Square 1.0000 1000.00 0.38 Random 0.1137
#187 Square 1.2500 1000.00 0.30 Random 0.0730
#190 Square 1.2500 1000.00 0.50 Random 0.0000
#147 Square 0.3000 1000.00 0.25 Random 0.9293
#10 Square 0.6250 1000.00 0.50 Random 0.4072
#19 Square 0.8750 1000.00 0.31 Random 0.3474
#26 Square 0.6250 1000.00 0.20 Random 0.7577
#30 Square 0.1250 1000.00 0.50 Random 0.9755
#49 Square 1.6250 1000.00 0.15 Random 0.1835
#104 Square 1.2500 1000.00 0.50 Random 0.0000
END OF RUN (OR ERROR 1H SHAPE OR L/G RATIO > 3)

APPENDIX C

TRIANGULAR GRID DISCONTINUITY

C-l

TRIANGULAR GRID DISCONTINUITY

C.1 Introduction

A modification to the ELIPGRID triangular grid code was required to correct for a

discontinuity in ELIPGRID results for a small number of triangular grid cases. This

appendix documents the discontinuity and explains the modification made to the original

code.

The graph of the probability of missing a hot spot versus a range of increasing hot

spot sizes is a good indicator of any discontinuities in the ELIPGRID algorithm. Fig. C. 1

is a graph of the probability of missing a hot spot versus the semi-major axis length to grid

size (L/G) ratio for a triangular grid. The orientation of the angle and the assumed hot-

spot shape (the ratio of minor axis to major axis) are 15° and 0.99. As the L/G ratio

increases along the x axis, the probability of missing should smoothly decrease to zero.

This is obvious from the fact that larger L/G ratios imply larger hot spots and, hence, a

smaller probability of missing. When the hot-spot size is such that it will always be

sampled at some sampling node, then the probability of missing must be zero.

Fig. C. 1 clearly reveals a discontinuity in the ELIPGRID algorithm between L/G

ratios of 0.S and 0.6. The probability of missing falls below zero at an L/G ratio of about

0.54, then jumps back to zero near an L/G ratio of 0.58. By definition, a probability less

than zero is in error. In addition, the large jump in probability makes the ELIPGRID

algorithm suspect for this set of parameters.

C.2 Effect on Discontinuity of the Orientation Angle

In order to determine if the discontinuity is related to hot-spot orientation angle,

two additional graphs were produced with the same parameters as Fig. C. 1 except for

different hot-spot orientation angles of 0° and 30° (Figs. C.2 and C3). Due to symmetry

C-2

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .99, Angle = 1 5 . 0 °

50.0

40.0

30.0

20.0

10.0

0.0

—10.0 ' ' I i i i i i i
0.6 0.5

L/G Ratio
Semi-major Axis to Grid Size

0.7

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-3

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .99 , Angle = 0 . 0 °

50.0

40.0

30.0

20.0

10.0

0.0

- 1 0 . 0
0.3 0.5

L/G Ratio
Semi-major Axis to Grid Size

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-4

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .99 , Angle = 3 0 . 0 °

50.0

L/G Ratio
Semi-major Axis to Grid Size

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-5

considerations, 30° is the largest angle necessary for triangular grids (Singer and Wickman

1969). Note that the three graphs are virtually identical, although the orientation angles

differ widely. These graphs illustrate that the orientation angle is of no material signifi-

cance to the triangular grid discontinuity problem.

C.3 Effect on Discontinuity of the Hot-Spot Shape

To determine the effect of the hot-spot shape on the discontinuity problem, the graph

in Fig. C.4 was produced unchanged from that in Fig. C. 1 except that the hot-spot shape

was decreased from 0.99 to 0.90. Note the large decrease in the part of the graph below a

probability of zero. Fig. C.S has an even smaller assumed hot-spot shape of 0.8S. Note

that the discontinuity problem has now disappeared. Also, examination of the results from

the largest shape possible, 1.0, reveals no discontinuity problems (Fig. C.6). Thus, this

problem can be confined to hot-spot shapes of less than 1.0 and greater than approximately

0.85.

C.4 Resolution of the Discontinuity by a 4th Order Polynomial Regression

Linear regression was used to provide a smooth curve for the triangular grid cases

listed above. The solid lines in Figs. C.7, C.8, and C.9 are the 4th order polynomial

regression lines calculated after the values near the discontinuity have been removed.

The regression equation used is

P(O) - P0 + PjX + pyc^

C-6

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .90 , Angle = 1 5 . 0 °

60.0

50.0

40.0

30.0

20.0

10.0

0.0

- 1 0 . 0
0.3 0.4 0.5 0.6

L/G Ratio
Semi-major Axis to Grid Size

0.7

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-7

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .85 , Angle = 1 5 . 0 °

L/G Ratio
Semi-major Axis to Grid Size

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-8

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 1.00, Angle = 1 5 . 0 °

50.0

40.0

30.0

~ 20.0

10.0

0.0

— 10.0 1 1 1 1 ' 1 1 ' 1 • • • '
0.3 0.4 0.5 0.6 0.7

L/G Ratio
Semi-major Axis to Grid Size

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-9

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .95 , Angle = 1 5 . 0 °

OJ c
'55
CO

o >

CD
O

50.0

40.0

30.0

20.0

10.0

0.0

- 1 0 . 0
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-10

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .90 , Angle = 1 5 . 0 °

60.0

50.0

40.0

30.0

20 .0 :

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-11

O)
c

'to V)

o >

JD
RO xi o

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .85 , Angle = 1 5 . 0 °

60.0

50.0

40.0

30.0

20.0

L/G Ratio, i.e., Semi-major Axis to Grid Size

A regression line based on a 4th order
polynomial is shown. The values near
the discontinuity have been removed.

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

where

C-12

P(0) — probability of missing the hot spot,

P„ = one of the n = 0 to 4 regression parameters,

x = the L/G ratio.

The regression parameters were determined using SigmaPlot® S.01 on data sets with

the values near the discontinuity removed. Since the regression changes with the shape,

(Sect. C.3), parameters for seven sets of shapes were determined. The actual parameter

values determined may be found in the code in function ProbO_Regr() listed in file

EGPCFORT.PRG in Appendix E.

Figures C.10 and C.l 1 are the graphs for shapes equal to 0.99 and 0.8S after ELIP-

GRID-PC was modified with the regression equation substituted for the ELIPGRID

algorithm in the L/G range greater than 0.S and less than 0.6. These graphs demonstrate

that the ELIPGRID-PC regression modification smooths out the discontinuity and removes

the negative probability problem (the small negative values that still remain when the shape

is near 0.99 are rounded up to zero).

The cause of the discontinuity seems to be related to the mathematical problem of

dealing with the tangent of 90°. Singer and Wickman's mathematical derivation for the

triangular grid case states, "It can be seen from (45) that acute angles can only occur if

k < 1/̂ 3 ~ 0.577. The function tan x has a discontinuity at t = 90°; therefore it is

practical to use (47) to determine where T is acute or obtuse" (Singer and Wickman 1969).

Note their reference to the well-known mathematical discontinuity at the tangent of 90°.

It is also interesting to note that the constant referred to above, l / f i , is in the range of L/G

ratios where the discontinuity occurs.

Further study of their algorithm could possibly reveal a more fundamental solution to

this problem than the regression method used here. However, the regression method

adopted should be satisfactory in most, if not all, practical cases.

C-13

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .99 , Angle = 15 .0 °

50.0

NP 0 s

. 40.0
OJ
C

'55 (0
^ 30.0

•= 2 0 . 0
la
CO

.O o
Q I 10.0

0.0

- 1 0 . 0
0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

Plot of ELIPGRID-PC results after modification.
The modification uses 4th order polynomial
regression for L/G values near the discontinuity.

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

C-14

Probability of Missing Hot Spot vs L/G Ratio
Triangular Grid, Shape = 0 .85 , Angle = 1 5 . 0 °

6 0 . 0

50.0

40.0 :

30.0

- 1 0 . 0

20 .0 :

10.0

0.3 0.4 0.5 0.6 0.7

L/G Ratio, i.e., Semi-major Axis to Grid Size

Plot of ELIPGRID-PC results after modification.
The modification uses 4th order polynomial
regression for L/G values near the discontinuity.

Fig. C. 11. Probability of missing hot spot vs L/G ratio, triangular gird, 0.85 shape,

and 15° angle.

APPENDIX D

ELIPGRID-2 SOURCE CODE

D-1

APPENDIX D

ELIPGRID-2 SOURCE CODE

The first page of this appendix is an example make file for the Lahey F77L®-EM32 com-

piler version 5.10. The remaining pages contain all the main code and subroutines in one

file.

D-2

it Example make f i l e for ELIPGRID-2 using an E: RAH drive with C: dr ive.
FC = E: \ f77 l3
LINKER = E:\386link
PROGRAM = C:ELIPGRD2
DEST = C:

EXTHDRS =
FFLAGS =
HDRS =

LDFLAGS = -STUB RUNB
LOMAP = nul

LIBS = E: \F7713. l ib, E:\UTIL3.LIB
MAKEFILE = Makefile
OBJS = ELIPGRDZ.obj
SRCS = ELIPGRD2.for
S(PROGRAM): S(OBJS) S(LIBS)

SCLINKER) SCOBJS) -EXE t3 -MAP S(LDMAP) -LIB S(LIBS) S(LDFLAGS)
clean:; adel - f t(OBJS)
depend:; Smkmf - f S(MAKEFILE) PROGRAM=S(PROGRAM) DEST=S(DEST)
i n s t a l l : $(PROGRAM)

aecho Insta l l ing S(PROGRAM) in $(DEST)
Sif not S(DEST)X==.X copy S(PROGRAM) S(DEST)

Code File: EL.IPGRD2.For
D-3

Fi le : ELIPGRD2.For

Purpose.: ELIPGR2 is a modification of ELIPGRID for hot spot location.
Note This code modifies ELIPGRID.For by Singer as l i t t l e as

possible. The goil is to provide a PC version of ELIPGRID.
The calcuattion algorithms were not changed; one exception follows.
The RECTO subroutine appears to be in error in the or ig ina l .
The formuala for the transformed angle, REVANG, was changed to
essential ly match the Eq. (35) in (Singer and Wickman 1969, p. 16).
Note that the term (1 - k) in Eq. (35) is probably a typo for
(1 - k«). ELIPGRID's (1 .0 - SQK) is retained here.
The constat PI was l e f t at 3.141492 instead of being changed to the
more correct 3.141593. This should be of no practical consequence.
Some input/output format changes were made.
Note that ELIPGRD2 adds expl ic i t declaration of a l l variables.

Usage. . . : ELIPGRD2 [<InputFileName> or <Help>]
The InputFileName may include a path. The output f i l e w i l l be
written to the input path.

Input f i l e format:
Line 1 = T i t l e : (A80)
Line n * data . : (4F10.2.2I4.A4)

F10.4, F10.4, F10.4, F10.4, 14, 14, A4
Data Variables: A, SHAPE, ANGLE, GDSPAC.NET, MET,TARGET
Example, S q . . . : 1250.0 0.30 6 .0 800.0 1 0*187
Example, Rec. . : 1250.0 0.50 38.0 1060.66 3 0*190

2.0 < - - - 2nd data l ine for rect.= Long/short
Example, Hex. . : 1250.0 0.50 0.0 1611.86 2 0*104
Line EOF : Use ALL va l id values EXCEPT SHAPE is > 1 .0 .

Output is to f i l e <InputFileName>.Out.
When no input f i l e passed, ELIPGRD2.In w i l l be default f i l e name.

Orig. by: D.A Singer
Mods by.: Jim Davidson
Started. : 11/12/93
Last mod: 02/06/94

Compiler: Lahey Fortran F77L-EH/32 Ver. 5.10

Options: /n0/n2/4/n7/nA2/nB/nC/nC1/nD/nF/nH/nl/nK/nL/nO/P/nO1/nO2/nQ3

/R/nS/nT/nV/U/nX/Z1 from current F77L3.FIG f i l e .
L inker . . : Phar Lap 386Link 4.1L
Options: Use LDFLAGS = -STUB RUNB to bind in the RUN386 loader.

LIBS = E:\F77L3.LIB, E:\UTIL3.LIB

UTIL3.LIB is the Lahey Spindrif t U t i l i t y Lib. EH/32 Ver. 2.01.
Notes . . . : Original code lines are commented out with a * in the l e f t column.

The replacement l ine is usually just beneath the or iginal l ine .
The l ine numbers and ID numbers on the right side were l e f t alone.

Code File: EL.IPGRD2.For
D-4

* All variables are explicitly declared in this version.
*

* The original ELIPGRID code documentation header starts below:

C PROGRAM ELIPGRID GRID 5
C GRID 15
C PROGRAM TO DETERMINE THE PROBABLITY OF LOCATtNG AN ELLIPTIC OR GRID 25

C CIRCULAR TARGET UITH A SQUARE, HEXAGONAL OR RECTANGULAR GRID GRID 35
C GRID 45
C GRID 55
C DESCRIPTION OF PARAMETERS GRID 65
C GRID 75
C TARGET® ANY IDENTIFICATION OF TARGET (READ IN "A" FORMAT) GRID 85
C A= LENGTH OF SEMIMAJOR AXIS OF TARGET GRID 95
C SHAPE" SHAPE OF TARGET - SEMIMINOR AXIS DIVIDED BY THE SEMIMAJORGRID 105
C ANGLE* POSITIVE ANGLE BETWEEN LONG AXIS OF TARGET AND GRID GRID 115
C DIRECTION • FOR A SOUARE GRID ANGLE CAN BE ANY ABGLE FROMGRID 125
C 0 TO 45 DEGRESS, FOR A HEXAGONAL GRID ANGLE CAN BE ANY GRID 135
C ANGLE FROM 0 TO 30 DEGREES INCLUSIVE, FOS RECTANGULAR GRID 145
C GRID ANGLE CAN BE ANY ANGLE FROM 0 TO 90 DEGREES GRID 155
C INCLUSIVE AND IS MEASURED FROM THE X AXIS OF THE GRID GRID 165
C GDSPACs DISTANCE BETWEEN POINTS ON THE GRID (IN THE SAME UNITS ASGRID 175
C "A") - FOR A RECTANGULAR GRID GDSPAC IS THE DISTANCE GRID 185
C BETWEEN POINTS ALONG THE Y AXIS OF THE GRID GRID 195
C NET= GRID TYPE - SOUARE GRID'1.HEXAGONAL GRID-2, RECTANGULAR GRID 205

C GRID=3 GRID 215
C MET= SPECIFIC OR RANDOM ORIENTATION - IF MET»0 • RANDOM GRID 225
C 0= SHAPE OF RECTANGULAR GRID - LONG(X) AXIS DIVIDED BY THE GRID 235

C SHORTCY) AXIS GRID 245
C GRID 255

program ELIPGRD2

parameter(cV_DATE = '02 /06 /94 ')

! FMT var. replaced by hardcoded format.

DIMENSION TITLE(20),FMT(20)
character*80 TITLE I First l ine of input f i l
characters TARGET ! Four char. ID for each
character"64 c lnFi le I Input f i l e
character*64 cOutFile ! Output f i l e
character*4 cUpParam I Upcase of 1st 4 le t ters

integer I

integer IBLANK

Code File: EL.IPGRD2.For

integer iDotPos
integer IPRIN
integer IREAD
integer I ROT
integer 1WARN
integer 1Z0NK
integer M
integer MET
integer MROT
integer NET

real A

real ALPHA

real ANGLE

real ANP

real AQUAR

real AREA1

real AREA2

real AREA3

real AREA4

real AREA5

real AREA6

real AREA7

real AREA8

real AREA9

real AREA10

real ASQ

real AVPRO

real AVPR1

real AVPR2

real B

real BALLS

real BSOU

real c

real CAROL

real C1M

real CNM

real D

real DJO

real DJ1

real DM0

real DH1

real EOU

real FIN

D-5

! "." position in input filename
I Outfile unit number
! lnfile unit number
• 45, 30, or 90 angles to test if random

! Target orientation, > 0=randora
! Current random angle
! 1=square, 2=hex, 3=rectangle

! Length of semi major axis

Code File: EL.IPGRD2.For

real FORM
real GAME
real GDSPAC
real GRO
real NAI
real HALFC
real HALFD
real HALFJO
real HALFJ1
real HALFMO
real HALFM1
real HORN
real PET
real PI
real POT
real PROBO
real PROB1
real PR0B2
real Q
real RO
real RDM
real REVA
real REVANG
real REVK
real SER
real SHAPE
real SLING
real SNGLE
real SUMO
real SUM1
real SUM2
real T
real TIN
real TIZ
real WINE
real XHAPE
real XI
real XM
real Y1
real YI
real YAM
real YM
real ZAP

D-6

! Grid spacing

I C/2

1 D/2
I JO/2
I etc.

! Constant p i , 3.141592 in ELIPGRID

! Prob. of no h i ts
! Prob. of 1 h i t

! For rect . gr id, O=longside/shortside

I For rect . gr id, transformed A
I For rect . gr id, transformed angle

! For rect. gr id , transformed SHAPE

! Major/minor axis

Code File: EL.IPGRD2.For
D-7

I External functions
real ARCO
logical fexist

! Function in this code
! Lahey Spindrift Utility Lib

print 'Program..: ORNL/GJ ELIPGRD2 RECT '//
& 'subroutine modified in this code.'
print 'Version..: '//cV_DATE
print *,'Note : Program is an ORNL/GJ modification of •//

£ 'ELIPGRID by Singer.'

DATA IBLANK/4H /,1UARN/AH****/ GRID 275
I READ=5 GRID 2C5
IPRIN=6 GRID 295
READ (IREAD,5) TITLE replaced by below GRID 305

! Get input file name,
call GetlnFi Le(cInFile)
call upc(cInFile,cUpParam)

I Check for HELP parameter or missing file error,
if (cUpParamd:4)=='HELP') then

call HelpScreenO
stop

elseif (.not. fexist(cInFile)) then
call tone(220,18) I From the Lahey Spindrift Utility Lib.
print *,'ERROR 1..: Input file not found.'
print ".'File Name: '//charnb(cInFile)
print •.'Usage : ELIPGRD2 [<InputFileName> or <HELP>]'
stop

end if

I Make cOutFile name from clnFile.
iDotPos = index(cInFile,".")
if (iDotPos •= 0) then

cOutFile = charnb(cInFile)//'.OUT'
else

cOutFile = clnFile{1:iDotPos)//'OUT'
end if

I Open input and output files.
open (IREAD, file=cInFile,status="OLD")
open (IPRIN.f i lezcOutFi le)
print »,'Input : '//charnb(cInFile)
print 'Output...: '//charnb(c0utFile)

Code File: EL.IPGRD2.For
D-8

print *,

I Begin to read and wr i te f i l e s ,

read (IREAD, fmt«' (A80) '> TITLE

C GRID 315

C READS FORMAT FOR DATA (replaced by hardcoded format) GRID 325

C GRID 335

* READ (IREAD,5) FMT GRID 345

* 5 FORMAT (20A4) GRID 355

* WRITE (IPRIN,10) TITLE GRID 365

* 10 FORMAT (1H1.25X.20A4//) GRID 375

wri te (IPRIN, fmt='(1H ,10X,A/)<) 'ELIPGRD2 Output F i le 1

wr i te (IPRIN, fmt='(1H , 1 0 X , A / /) ') 'Data from: '//TITLE
PI=3.141592 GRID 385

WRITE (IPRIN,15) GRID 395

* 15 FORMAT (1HO,6HTARGET,4X,9HGRID TYPE.29X,14HSEMIMAJOR AXIS,4X,9HGRIGRID 405

15 FORMAT (1H ,6HTARGET,4X,9HGRID TYPE.29X,14HSEHIMAJOR AXIS,4X,9HGRI

1DSPACE,4X,5HSHAPE,4X,5HANGLE,4X,7HPR0B(1),4X,8HPR0B(>1),4X.7HPR0B(GRID 415

* 10)/46X,17HIN RELATIVE UNITS.3X,13HIN ORIG UNITS//) GRID 425

10)/46X,17HIN RELATIVE UNITS,3X.13HIN ORIG UNITS)

TI2=0.50000 GRID 435

RDWsSORT(3.0)*0.5 GRID 445

20 MET»0 GRID 455

C GRID 465

C READ DATA GRID 475

C GRID 485

* READ (IREAD,FMT) A,SHAPE,ANGLE,GDSPAC.NET,MET,TARGET GRID 495

READ (IREAD, ' (4F10 .2 ,2 I4 ,A4) ') A.SHAPE,ANGLE,GDSPAC.NET,MET,TARGET

IZONK=IBLANK GRID 505

A=A/GDSPAC GRID 515

SLING-A GRID 525

XHAPE=SHAPE GRID 535

SNGLE^ANGLE GRID 545

SUM1*0.0 GRID 555

SUM2*0.0 GRID 565

SUNO=0.0 GRID 575

MROT-O GRID 585

IF (MET) 35,35,30 GRID 595

30 ANGLE=MROT GRID 605

C GRID 615

C AREAS 1 TO 10 ARE RELATIVE AREAS OF OVERLAP IN THE TRANSFORMED NETGRIO 625

C GRID 635

35 AREA1*0.0 GRID 645

AREA2=0.0 GRID 655

Code File: EL.IPGRD2.For
D-9

c
c
c

c
c
c

AREA3=0.0

AREA4=0.0

AREA5=0.0

AREAS-0.0

AREA7=0.0

AREA8-0.0

AREA9=Q.O

AREA10=0.0

PROBO IS THE PROBABILITY OF HISSING THE TARGET

PR0S1 IS THE PROBABILITY OF LOCATING THE TARGET ONCE

PR0B2 IS THE PROBABILITY OF LOCATING THE TARGET TWO OR

PROBO=Q.O

PROB1=0.0
PROB2=0.0

DETERMINES THE GRID TYPE

GO TO (65,40,45),NET

HEXAGONAL NET

40 F1N=RDU

IROT=30

ZAP=6.0

BALLS=0.57735

GO TO 75

RECTANGULAR NET

45 IF (MROT) 50,50,60

READ SHAPE OF RECTANGULAR GRID

50 READ (IREAD,55) Q

55 FORMAT (F10.5)

60 CALL RECT(SLING,XHAPE,ANGLE,Q,REVK,REVA,REVANG)

Argument SLING is never used by subroutine R E C T O .

60 CALL RECT(XHAPE,ANGLE,Q,REVK,REVA,REVANG)

SHAPE=REV(C

A=REVA*SLING

ANGLE=REVANG

IROT=90

GRID 665

GRID 675

GRID 685

GRID 695

GRID 705

GRID 715

GRID 725

GRID 735

GRID 745

GRID 755

GRID 765

MORE TIMES GRID 775

GRID 785

GRID 795

GRID 805

GRID 815

GRID 825

GRID 835

GRID 845

GRID 855

GRID B65

GRID 875

GRID 885

GRIO 895

GRID 905

GRID 915

GRID 925

GRID 935

GRID 945

GRID 955

GRID 965

GRID 975

GRID 985

GRID 995

GRID1005

GRID1015

GRID1025

GR1D1035

GRID1045

GR1D1055

GRID1065

GRID1075

Code File: EL.IPGRD2.For
D-10

GO TO 70 GRID10B5
GRID1095
GRID1105
GRID1115
GRID1125
GRID1135
GRID1145
GRID1155
GRID1165
GRID1175
GRID1185
GRID1195

90 FORMAT (1H0,6HTARGET,A4,45H IS TOO NEEDLE-LIKE AND LONG FOR THIS PGRID1205
90 FORMAT (1H .6HTARGET,A4.45H IS TOO NEEDLE-LIKE AND LONG FOR THIS P

SOUARE NET

65 IROT*45
70 FIN'1.000

ZAP=4.0
BALLS«0.707107

75 IF (SHAPE-0.05) 80,95,95
80 IF (A-2.0J 95,95,85
85 WRITE (IPRIN,90) TARGET

1ROGRAM)
GO TO 20

95 IF (SHAPE-1.0) 140,115,100

RUN IS TERMINATED UKEN A SHAPE IS GREATER THAN ONE

GRID1215
GRID1225
GRID1235
GRID1245
GRID1255
GRID1265
GRID1275
GRID1285

100 URITE (IPRIN,105)
105 FORMAT (1H0,////,50X,31HEND OF RUN (OR ERROR IN SHAPE)}
105 FORMAT (1H ,//,' END OF RUN (OR ERROR IN SHAPE)1)

WRITE (IPRIN,110) GRID1295
110 FORMAT (1H0,25X,93H"»* INDICATES THAT THE PROBABILITY OF MISSING GRID1305

IIS ZERO FOR AT LEAST ONE ORIENTATION AND PR081,/,25X,45HAND PROB>1GRID1315
1 SHOULD NOT BE USED FOR THIS TARGET)

110 FORMAT (/,' **** INDICATES THAT THE PROBABILITY OF MISSING',
&' IS ZERO FOR AT LEAST ONE',/,' ORIENTATION AND PROB1 ',
&'AND PROB>1 SHOULD NOT BE USED FOR THIS TARGET')
GO TO 525

CIRCLE

115 ASO=A**2
IF (A-TIZ) 120,120,125

120 PRDB2=0.0
PROB1=PI*ASQ/FIN
PROBO=I.O-PROBI
GO TO 425

125 IF (A-BALLS) 130,135,135
130 CIM»ARCO(TIZ,A)

PROB2=ZAP*(ASU*CIM-TIZ*SORT(ASQ-0.25))/F IN
PROB1 »P I "ASO/FIN - 2. 0*PR(M2

GRID1325

GRID1335
GRID1345
GR101355
GRID1365
GRID1375
GR1D1385
GRID1395
GRID1405
GRID1415
GRID1425
GRID1435
GRID1445
GRID1455
GRID1465

Code File: EL.IPGRD2.For
D-11

PROBO-1.O-PROBI-PR0B2 GR1D1475
GO TO 425 GR1D1485

C GRI01495
C IF THE RADIUS OF THE CIRCLE IS GREATER THAN 0.7071 THE PR0BABILITYGRID1505
C OF MISSING IS ZERO AND PROB1 AND PROB2 ARE SET EQUAL TO 9. AS GRID1515
C FLAGS GRID1525
C GRID1535

135 PR0B1=9.0 GRID1545
PROB2=9.0 GRID1555
PROB0=0.0 GRID1565
GO TO 425 GRID1575

C GRID1585
C ELLIPSE GRID1595
C GRID1605

140 B=A*SHAPE GRID1615
C GRID1625
C B IS THE RADIUS OF THE CIRCLE IN THE TRANSFORMED NET GRID1635
C GRID1645

IF (A-TIZ) 145,145,150 GRID1655
145 PROB1=PI*A*B/FIN GRID1665

PROB2=0.0 GRID1675
PROBO=1.0-PR061 GRID1685
GO TO 425 GRID1695

150 IF(ANGLE-O.I) 155,155,160 GRID1705
C GRID1715
C ALPHA IS THE ANGLE IN RADIANS GRID1725
C GRID1735

155 ANGLE*ANGLE+0.1 GRID1745
160 ALPHA=ANGLE/57.295779 GRID1755

CNM=1.0-SHAPE**2 GRID1765
C GRID1775
C C,D,DJ1,DJ0,DM1,DMO ARE DISTANCES BETWEEN CIRCLES IN THE GRID1785
C TRANSFORMED NET GRID1795
C GRID1805

C=SQRT(1,0-CNM*COS(ALPHA)**2) GRID1815
GO TO (170,165,170),NET GRID1825

165 Y1=3.+SHAPE**2-2.*CNM*SINCALPHA)**2-CNM*4.*FIN*SIN(ALPHA)*COS(ALPHGRID1835
1A) GRID1845
D=SQRT(Y1)*0.5000 GRID1B55
GO TO 175 GRID1865

170 D=SQRT(1.0-CNM*SIN(ALPHA)**2) GRID1875
175 BSQU=B**2 GRID1885

FORN=C*C GRID1895
HORN=D*D GRID1905

D-12
Code File: EL.IPGRD2.For

UINE=FIN*SHAPE
HALFC=C*0.50
HALFD=D*0.50
IF (B-HALFC) 185,185,180

180 EOU=ARCO(HAL FC, B)
AREA1=2.0*(BSOU*EOU-HAL FC'SORT(BSQU-HAL FC**2))
GO TO 190

185 AREA1S0.0
190 IF (B-HALFD) 200,200,195
195 HAI=ARCO(HALFD,B)

AREA2=2.0*(BSOU*HAI-HAL FD*SORT(BSQU-HA L FD**2))
GO TO 205

200 AREA2=0.0
205 IF (A-BALLS) 210,210,215
210 PROB2=(AREA1+AREA2)/WINE

PROB1=PI*BSQU/WINE-2.0*PR0B2
PROBO'1.0-PROB1-PROB2
GO TO 425

215 IF (ANGLE) 220,220,225
220 C=00.05
225 CAROL=C*D

* TsARSIN(WINE/CAROL)
T=ASIN(WINE/CAROL)
IF (ANGLE) 235,230,235

230 DJ1=SORT<FORN+HORN)
DJOsS.O

C
C RO IS THE RADIUS NECESSARY FOR THE TARGET TO BE
C

R0=DJl/2.0
GO TO 250

235 1=1.0+(D*C0S(T)/C)

IF (1-1) 240,240,245
240 DJ1=SORT((FORN+HORN)-2.0*CAROL*COS(T))

DJ0=5.0

R0=OJ1/(2.0*SIN(T>)
GO TO 250

245 XI«I
YIsl-1
DJ1=SQRT(XI**2*FORN+HORN-2.0*XI*CAROL*COS(T))
D J0=SGRT(YI**2*FORN+HORN-2.0*YI*CAROL*COS(T))
RO=DJ1*DJ0/<2.0*D*SIN(T))

250 IF (B-RO) 260,255,255
255 PROB1=9.0

GRID1915
GRID1925
GRID1935
GRID1945
GRID1955
GRID1965
GRID1975
GRID1985
GRID1995
GRID2005
GRID2015
GRID2025
GRID2035
GRID2045
GRID 2055
GRID2065
GRID2075
GRID2085
GRID2095
GRID2105
GRID2115
GRID2125

GRID2135
GRID2145
GRID2155
GRID2165

HIT WITH CERTAINTYGRID2175
GR1D2185
GR1D2195
GRID2205
GRID2215
GRID2225
GRID2235
GRID2245
GRID2255
GRID2265
GRID2275
GRID2285
GRID2295
GRID2305
GRID2315
GRID2325
GRID2335

Code File: EL.IPGRD2.For
D-13

PROB2=9.0
PROB0=0.0
GO TO 425

260 HALFJ1=DJ1*0.50
HALFJO=DJO*0.50
IF (B-HALFJ1) 2/0,270,265

265 GR0=ARC0(HAL FJ1,B)
AREA3=2.0*(BSQU*GR0-HAL FJ1*SQRT< BSQU- HAL F J1**2))
GO TO 275

270 AREA3=0.0
275 IF (B-HALFJO) 285,285,280
280 PET=ARCO(HALFJO,B)

AREA4=2.0*(BSQU*PET-HALFJO*SQRT(BSQU-HALFJ0**2))
GO TO 290

285 AREA4-0.0
290 M=1.0+(2.0*D*COS(T)/C)

YM=M-1
XM=M
IF (M-1) 295,295,300

295 DM1=SQRT < F0RN+H0RN«4.0-4.0*CAROL*COS(T))
DM0=5.0
GO TO 305

300 DM1-SORT <XM**2*FORN+4. CHORN-4. 0*CAROL*COS(T))
DM0=SQRT(YM**2*FORN+4. 0*HC)RN-4. 0*CAROL*COSCT))

305 HALFM1=DM1*0.50
HAL FM0sDM0*0.50
IF (HALFN1-DJ1) 310,325,310

310 IF (HALFM1-DJ0) 315,325,315
315 IF (HALFM0-DJ1) 320,325,320
320 IF (HALFMO-DJO) 330,325,330
325 AREA5=0.0

AREA6=0.0
GO TO 360

330 IF (B-HALFM1) 340,340,335
335 YAM=ARCO(HAL FM1,B)

AREA5=2.0*(BSOU*YAM-HALFM1*SORT(BSQU-HAL FM1**2))
GO TO 345

340 AREA5=0.0
345 IF (B-HALFMO) 355,355,350
350 GAMEsARCO(HAL FMO,B)

AREA6=2.0*(BSQU* GAME-HAL FM0*SQRT(BSQU-HALFM0**2))
GO TO 360

355 AREA6=0.0
360 IF (B-DJ1) 370,370,365

GRID2345
GRID2355
GRID2365
GRID2375
GRID2385
GRID2395
GRID2405
GRID2415
GRID2425
GRID2435
GRID2445
GRID2455
GRID2465
GRID2475
GRID2485
GRID2495
GRID2505
GRID2515
GRID2525
GRID2535
GRID2545
GRID2555
GRID2565
GRID2575
GRID2585
GRID2595
GRID2605
GRID2615
GRID2625
GRID2635
GRID2645
GRID2655
GRID2665
GRID2675
GRI02685
GRID2695
GRID2705
GRID2715
GRID2725
GRID2735
GRID2745
GRID2755
GRID 2765
GRID2775

Code File: EL.IPGRD2.For
D-14

365 SERZARC0(DJ1,B)
AREA7=2.0*(BSQU*SER-DJ1*SQRT(BS0U-DJ1"2))
GO TO 375

370 AREA7=0.0
375 IF (B-OJO) 385,385,380
380 AOUAR=ARCO(DJO,B)

AREA8=2.0*(BSQU*A9UAR-DJ0*S0RT(BSQU-DJ0**2))
GO TO 390

385 AREA8=0.0
390 IF (B-C) 400,400.395
395 POT=ARCO(C,B)

AREA9=2.0*(BSQU*POT-C*SQRT(BSOU-FORN))
GO TO 405

400 AREA9=0.0
405 IF (B-D) 415,415,410
410 TIN-ARCO(D,B)

AREA10=2.0*< BSQU'TIN-D*SQRT <BSOU- HORN))
GO TO 420

415 AREA10=0.0

GRID2785
GRID2795
GRI02805
GRID2815
GRID2825
GRID2835
GRID2845
GRID2855
GRID2865
GRID2875
GRID2885
GRID2895
GRID2905
GRID2915
GRID2925
GRID2935
GRID2945
GRID2955
GRID2965

420 PR0B2S(AREA1+AREA2+AREA3+AREA4+AREA5+AREA6-AREA7-AREA8-AREA9-AREA1GRID2975
10)/WINE GRID2985
PROB1=PI*BSOU/UINE-2.0*PR0B2-(AREA7+AREA8+AREA9+AREA10)/UINE GRID2995
PROBO=1.0-PR061-PR0B2 GRID3005
IF (MET) 480,480,430 GRID3015

i MROT=MROT+1 GR1D3025
IF (PR0B1-1.0) 440,440,435 GRID3035
IZONK=IWARN GRID3045

l SUMl'PROBUSUMI GR1D3055
SUM2-PROB2+SUM2 GRID3065
SUMO=PROBO+SUMO GRID3075
IF CIROT-MROT) 445,30,30 GRID3085

i AHP=MROT GRID3095
AVPR1=SUM1/ANP GRID3105
AVPR2=SUH2/ANP GRID3115
AVPRO=SUMO/ANP GRID3125
GO TO (450,460,470),NET GRID3135

1 WRITE (IPRIN,455) TARGET,SLING,GDSPAC,SHAPE,AVPR1,AVPR2,AVPR0, IZONGRID3145
1K GRID3155

,34X,F5.2,7X.F9.2,5X,F4.2,5X,6HRANGRID3165
,34X,F5.2,7X,F9.2,5X,F4.2,5X,6HRAN

GRID3175
GRID3185

460 WRITE (IPRIN,465) TARGET,SLING,GDSPAC,SHAPE,AVPR1,AVPR2,AVPR0,IZ0NGRID3195
IK GRID3205

• 455 FORMAT (1H0,A4,3X,11HSQUARE
455 FORMAT (1H ,A4,3X,11HSQUARE

1DOM,5X,3(F6.4,4X),A4>
GO TO 20

Code File: EL.IPGRD2.For
D-15

» 465 FORMAT (1H0.A4.3X,11HHEXAG0NAL ,34X,F5.2,7X,F9.2,5X,F4.2,5X,6HRANGRID3215
465 FORMAT (1H ,A4,3X,11HHEXAGONAL ,34X,F5.2,7X,F9.2,5X,F4.2,5X,6HRAN

1D0M,5X,3(F6.4,4X),A4) GRID3225
GO TO 20 GRID3235

470 URtTE (IPRIN.475) TARGET,0,SLING,GDSPAC.XHAPE,AVPR1,AVPR2.AVPR0,IZGRID3245
10NK GRID3255

* 475 FORMAT (1 HO,A4,3X,11HRECTANGULAR,18H X AXIS OF GRID= ,F3.1,8H Y AGRID3265
475 FORMAT (1H ,A4,3X,11HRECTANGULAR,18H X AXIS OF GRID= ,F3.1,8H Y A

1XIS ,5X,F5.2,7X,F9.2,5X,F4.2,5X,6HRAND0M,5X,3(F6.4,4X),A4) GRID3275
GO TO 20 GRID3285

480 IF (PROB1-1.0) 490,490,485 GRID3295
485 I20NK=IUARN GRID3305
490 GO TO (495,505,515),NET GRID3315
495 WRITE (IPRIN,500) TARGET,SLING,GDSPAC,SHAPE,ANGLE,PROB1,PROB2,PROBGRID3325

10,IZONK GRID3335
* 500 FORMAT (1 HO,A4,3X,11HSOUARE ,34X,F5.2,7X,F9.2,5X,F4.2,3X,4X,F4GRID3345

500 FORMAT (1H ,A4,3X,11HSQUARE ,34X,F5.2,7X,F9.2,5X,F4.2,3X,4X, F4
1.1,5X,3(F6.4,4X),A4) GRID3355
GO TO 20 GRID3365

505 WRITE (IPRIN,510) TARGET,SLING,GOSPAC,SHAPE,ANGLE,PROB1,PROB2,PROBGRID3375
10,IZONK GRI03385

* 510 FORMAT (1HO,A4,3X,11HHEXAGONAL ,34X(F5.2,7X,F9.2,5X,F4.2,3X,4X,F4GRID3395
510 FORMAT (1H ,A4,3X,11HHEXAGONAL ,34X,F5.2,7X(F9.2,5X,F4.2,3X,4X,F4

1.1,5X,3(F6.4,4X),A4) GRID3405
GO TO 20 GR103415

515 WRITE (IPRIN.520) TARGET,Q,SLING,GOSPAC,XHAPE,SNGLE,PROB1,PROB2,PRGRID3425
1060,IZONK GRI03435

* 520 FORMAT (1 HO,A4,3X,11HRECTANGULAR,18H X AXIS OF GRIDS ,F3.1,8H Y AGRID3445
520 FORMAT (1H ,A4,3X,11HRECTANGULAR,18H X AXIS OF GRID* ,F3.1,8H Y k

1XIS ,5X,F5.2,7X,F9.2,5X,F4.2,3X,4X,F4.1,5X,3(F6.4,4X),A4) GRID3455
GO TO 20 GRID3465

* 525 STOP GRID3475
525 print 'End of run: ORNL/GJ ELIPGRD2.'

STOP GRID3475
END GRID3485

* FUNCTION ARCO(CYB,ERN) ARCO 5
real FUNCTION ARCO(CYB,ERN)

C ARCO 15
C ARCOSINE FUNCTION ARCO 25
C ARCO 35
C NOTE THIS FUNCTION IS AVAILABLE AT SOME COMPUTER FACILITIES ARCO 45
C AND MIGHT THEREFORE REPLACE THIS SECTION OF THE PROGRAM ARCO 55

D-16
Code File: EL.IPGRD2.For

ARCO 65

implicit none

! Arguments:

real CYB

real ERN

I Local variables:

real ZEP

real PEP

real HOPE

real ZOP

real ATP

ZEPs0.0

PEP=3.141592

HOPE=CYB/ERN

ZOP=ABS(HOPE)

IF (HOPE) 5,15,10

5 ZEP=3.141592

10 IF (ZOP-O.5) 15,15,20

15 ARCO=ABS(ZEP-(PEP/2.O-asin(ZOP))) ! changed ARSIN to asin

RETURN

20 ATP=SORT((1.0-ZOP)/2.0)

ARCO=ABS(ZEP-2.0*asin(ATP)) I changed ARSIN to asin

RETURN

END

ARCO 75

ARCO 85

ARCO 95

ARCO 105

ARCO 115

ARCO 125

ARCO 135

ARCO 145

ARCO 155

ARCO 165

ARCO 175

ARCO 185

ARCO 195

* SUBROUTINE RECT(A,SHAPE,ANGLE,Q,REVK,REVA,REVANG) RECT 5

* (Note: Argument A is never used by ELIPGRID algorithm.)

SUBROUT1NE RECT(SHAPE,ANGLE,0,REVK,REVA,REVANG)

C RECT 15

C RECT 25

C THIS SUBROUTINE REDUCES THE RECTANGULAR POINT NET TO A SQUARE RECT 35

C POINT NET WITH AN AFFINE TRANSFORMATION RECT 45

C RECT 55

implicit none

I Argunents:

real SHAPE,ANGLE,Q,REVK,REVA,REVANG

! Local variables:

real AQ

real SQK

real TIS

real ALPHA

real COAL

real SIAL

Code File: EL.IPGRD2.For
D-17

real T

AO=Q*Q RECT 65

SQK=SHAPE**2 RECT 75
TIS=AQ*SQK RECT 85
IF (ANGLE-0.1) 5,5,10 RECT 95

5 ANGLE=ANGLE+0.1 RECT 105
10 ALPHA=ANGLE/57.295779 RECT 115

COAL=COS(ALPHA)**2 RECT 125
SIAL=S1N(ALPHA)**2 RECT 135
T=SQRT(((1.0-TIS)*COAL-(AQ-SQK)*SIAL)**2+4.0*AO*(1.0-SQK)"2*SIAL*RECT 145
1COAL) RECT 155
REVK=((1.0+TIS)*C0AL+(AQ+SQK)*SIAL - T)/ (2. 0*0*SHAPE) RECT 165
! Below appears to be an error in the original code.
! See (Singer and Wickman 1969, p. 16) for the original math formula.

* REVANG=(ATAN(2.0*Q*(1.0-SQK)*TAN(ALPHA)/((AQ-SQK)*TAN(ALPHA)**2*TIRECT 175
* 1S-1.0))/2.0)*57.295779 RECT 185

! Next line is corrected formula.
REVANG=(ATAN(2.0*0*(1,0-SQK)*TAN(ALPHA)/(1.0-TIS-(AQ-SQIC)*

& TAN(ALPHA)**2))/2.0)*57.295779
REVA=S0RT(SHAPE/(Q*REVK)) RECT 195
REVANG=ABS(REVANG) RECT 205

* The following optional code matches (Singer and Uickman 1969, 16)
* and can be used in place of line RECT 205 above. However, no differences
* in output values were seen when testing Singer's 30 rect. grid examples after
* this code was substituted for line RECT 205.
* if (tan(2.0 * REVANG) >= 0.0) then
* REVANG = abs(REVANG)
* else
* REVANG = 90.0 - abs(REVANG)
* endif

RETURN RECT 215
END RECT 225

!===:
Subroutine GetlnFile(cInFile)
I Purpose: Checks for command line file name parameter.
I Defaults to ELIPGRD2.In.
! Input..: clnFile passed in as blank char*64 variable.
I Output.: clnFile is updated.
! Errors.: Warns if no param. passed, then uses ELIPSRDI.In.
implicit none
! Arguments
character*(*) clnFile

Code File: EL.IPGRD2.For
D-18

f Local vara
eharacter*64 cCmndLine
call getcl(cCmndLine)
if (nblonk(cCmndLine) •• 0) then

I No file name passed,
print »,'Warning..: No file name passed)1

print *,'Default..: Will default to ELIPGRD2.In for input.'

print *,'Usagt : ELIPCRD2 (<InputFileName> or <Help>]'
print
clnFile = 'ELIPGRD2.In'

else
clnFile * charnb(cCmndLine)

end if
return
end
I " * End of Sub: GetlnFileO

or1

or'
•//

I ===

Subroutine HelpScreen
1 Purpose: Displays help screen.
I Input..: None.
! Output.: None.
I Errors.: None
implicit none
print *,'ELIPGRID 11 Help Screen'

print *,'Usage: ELIPGRD2 <InputFileName>
print *,' ELIPGRD2 <Help>
print *,' ELIPGRD2

S 'ELIPGRD2.In is input default file.'
print *,
print *,'Format of input file is:'
print 'Line 1 = Title: <A80>'
print *, 'Line n = data.: (4F10.2.2U.A4)'
print *,' F10.4. F10.4, F10.4.
print *,< SENIMAJOR,
print 1250.0

S ' <--Sqr. grid data.'
print *,' 1250.0

5 ' <--Rec. grid data.'
print *,' 2.0 <--- 2nd data line for rectangular grid = '//

6 'long/short sides.'
print V 1250.0 0.50 0.0 1611.86 2 0#104'//

& ' <--Hex. (triangle) data.'

SHAPE,
0.30

0.50

ANGLE,
6.0

F10.4, 14, 14, A4'
GDSPAC.NET, MET,TARGET'

800.0 1 00187'//

38.0 1060.66 3 00190'//

Code File: ELIPGRD2.For
D-19

print *,1 9.9 9.9 9.9 9.9 9 9 EOF'
& ' <--End of file data line.'
print *,'Line EOF : Use ALL valid values '//

& 'EXCEPT SHAPE is > 1.0.'
print *,
print *,'0utput is to file <lnputFileName>.Out.1

p r i n t * , ' E L I P G R D 2 . t n i s d e f a u l t f i l e name when none p a s s e d . '

r e t u r n

end

!*** End of Sub: HelpScreenO

!*** End of File: ELIPGRD2.For

APPENDIX E

ELIPGRID-PC SOURCE CODE

E-1

APPENDIX E

ELIPGRID-PC SOURCF CODE

The first page of this appendix is an index of all user-defined functions in the program.

The source code file name is listed for each function. The next two pages are example

make and link files. Next are listed two ORNL-developed CA-Clipper® language header

files. These have a CH extension and are listed in alphabetic order. Following these are

all the CA-Clipper® source code files. These files have a .PRG extension and are listed in

alphabetic order after the main file named EGPCMAIN.PRG.

Program execution begins with function "Main". Execution can be traced from func-

tion to function from that point.

E-2

Index of all user-defined functions in the ELIPGRID-PC program.

All filenames have a PRG extension.

Function Name File Name

AlertBox EGPCFILE
BlErrc50 EGPCBERR
BoxC enter EGPCMAIN
ChangeDrive EGPCMAIN
ChangeDrOrSub EGPCMAIN
ChangeSubdir EGPCMAIN
ChooseGrid EGPCMAIN
Chooselnput EGPCMAIN
DispTitle EGPCMAIN
DOS Prompt EGPCMAIN
ElipGrid EGPCFORT
ErrMsgBox EGPCMAIN
ErrorUDF EGPCMAIN
ExtrctPath EGPCFILE
Filelnput EGPCFILE
F10_Key EGPCMAIN
GetCostGrd EGPCMAIN
GetFileBox EGPCFILE
GetFilOutFile EGPCFILE
GetGridSiz EGPCMAIN
GetProbHit EGPCMAIN
GetScnOutFile EGPCFILE
GetSmallestArea EGPCMAIN
Help EGPCHELP
HelpScnN EGPCHELP
InputFiomFile EGPCMAIN
Main EGPCMAIN
MenuBox EGPCMAIN
MenuCenter EGPCMAIN
NotReadyYet EGPCMAIN
NumTrim EGPCMAIN
PastDemoDate EGPCBERR
ParamHelp EGPCMAIN
ProbO_Regr EGPCFILE
Rect EGPCFORT
SayCenter EGPCMAIN
SIFFilelnput EGPCFILE
Subdir EGPCFILE
WriteData EGPCMAIN
YN_MsgBox EGPCMAIN

E-3

II File : EGPC.rmk
II Purpose.: Hake file for EGPC program, ELIPGRID-PC.
// Compiler: Clipper 5.2
II Author..: Jim Davidson
II Started.: 08/09/94 from Hotspot.rmk
// Last Mod: 08/09/94
// Compiler Switches below:
// /A = Automatic declaration of publics/privates as memvars.
// /B = Include debugging info., delete this switch for final exe.
// /N = No automatic main proc., must be used for file-wide var declarations.
II 10 = Quiet, suppress line nunber display.
// /U = Uarn of anbiguous var references.
// /V = Treat all ambiguous var references as dynamic vars, not as fields.

"e:\EGPCMain.OBJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCMain.PRG"
e:\Clipper C:\CLlPPER2\EDIT0R\EGPC\EGPCMain /A/N/O/V/U /Oe:\ /Te:\ /Ie:\

"e:\EGPCFile.OBJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCFiIe.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCFile /A/N/Q/V/U /Oe:\ /Te:\ /le:\

"e:\EGPCFort.OBJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCFort.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCFort /A/N/O/V/U /Oe:\ /Te:\ /Ie:\

"e:\EGPCHelp.OBJ": "C:\CLIPPER2\EDITOR\EGPC\EGPCHelp.PRG"
e:\Clipper C:\CLlPPER2\EDITOR\EGPC\EGPCHelp /A/N/O/V/U /Oe:\ /Te:\ /Ie-.\

"e:\EGPCBErr.06J": "C:\CLIPPER2VEDITOR\EGPC\EGPCBErr.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGPC\EGPCBErr /A/N/Q/V/U /Oe:\ /Te:\ /le:\

"e:\EGPCScrn.OBJ C:\CLIPPER2\EDITOR\EGPC\EGPCScrn.PRG"
e:\Clipper C:\CLIPPER2\EDlT0R\EGPC\EGPCScrn /A/N/O/V/U /Oe:\ /Te:\ /le:\

"e:\EGPCGrph.OBJ": "C:\CLIPPER2NEDITOR\EGPC\EGPCGrph.PRG"
e:\Clipper C:\CLIPPER2\EDIT0R\EGPC\EGPCGrph /A/N/O/V/U /Oe:\ /Te:\ /le:\

"e:\EGPC.EXE": "e:\EGPCMain.OBJ" "e:\EGPCFort.OBJ" "e:\EGPCHelp.OBJ" \
"e:\EGPCFile.OBJ" "e:\EGPCBErr.OBJ" "e:EGPCScrn.OBJ" "e:EGPCGrph.Oej"

e:\blinker aC:\CL!PPER2\EDITOR\EGPC\EGPC.LNK

E-4

File : EGPC.Lnk
M Purpose.: Blinker 3.0 response file for EGPC program, ELIPGRID-PC.
Compiler: Clipper 5.2
Author..: Jim Davidson
Started.: 08/09/96 from Hotspot.lnk.
Last Mod: 09/06/96
remove comment character below on last link to force full link, smaller exe
blinker incremental off
blinker incremental pad 256 # 128 is default pad size. Manual p. 9-39.
blinker incremental file e:\EGPC.bif
blinker message nobI ink
blinker demonstration date 1995/06/30
output e:\EGPC
file e:\EGPCMain
Start of dynamic overlay area for Clipper code,
beginarea

file e:\EGPCFile
file e:\EGPCFort
file e:\EGPCHelp
file e:\EGPCScrn
file e:\EGPCGrph

endarea
Blinker error handler below should not be in overlay area, Kanuui 7-7.
file e:\EGPCBErr # Blinker error handler for HOTSPOT
lib e:\clipper
Blinker 3.0 Manual p. 7-20 says "some non-CA-Clipper code must be
overlaid for demo features to take effect, for instance EXTEND.LIB."
This link file is similar to Blinker's minimal overlay scheme, CL520Min.Lnk.
beginarea

lib e:\extend
endarea
lib e:\terminal
lib e:\dbfntx
l i b e : \ c t # Clipper Tools l ib rary

E-5

J f 8SM8I188SIIS888S883SSSS8S8B8IS88SS18885IBS8BBSS6S:SS18SSUSSS88SSS8

// File : Colors.Ch
// Purpose.: Provides color definitions for clipper 5.x programs
// By : Jim Davidson
11 Started.: 07/24/91
// Last Nod: 04/28/94
// Example.: •include "Colors.Ch"

aetcolorC C UhtBlk) / /
/ / =

/*** Below is example use in a program
public C Normal :- C UhtBlu
public C_HighLght := C_CynBlu
public C_Help := C_CynBrn
public C~Error C~WhtRed
// later?..
C_Normal := C_WhtBlk // etc. for rest of colors
* * * * I ~

// Normal screen colors
// Color Data highlight
// Help screens
// Error screens

•define C_BLK_WHT "n/w,w*/n,,,w/n" / / Black on white

•define C U BLK "w/n" / / White on black
•define C WHT BLK "w+/n,n/w" / / Bright white on black
•define C~U BLU "w/b,w+/n,,,gr+/n" / / White on blue
•define C~WHT BLU "w*Vb,w+/n,,,gr+/n" / / Bright white on blue
•define C~WHT~BLKB "w**/n,n/w" / / Bright blinking white on black
^define C~WHT RED "w*/r,wVb,,,gr+/n" / / Bright white on red
(Refine C~UHT~HAG "w*/rb,gr+/n,,,bg+/n" / / Bright white on magenta

•define C CYN BLK "bg+/n" / / Bright cyan on black
•define C~CYN~BLU "bg+/b,gr+/n,,,bg+/n" / / Bright cyan on blue
•define C~CYN BRN "bg+/gr" / / Bright cyan on brown
•define C_CYN_HAG "bg+/rb,gr+/n,,,bg+/n" / / Bright cyan on magenta

•define C YEL BLK "gr+/n,gr+/n" / / Bright yellow on black
•define C YEL~BLNK "gr**/n" / / Bright blinking yellow on black
•define C YEL~BLU "gr+/b,w»/n,,(bg+/n" / / Bright yellow on blue
•define clYEL~HAG "gr+/rb" / / Bright yellow on magenta

•define C RED BLK "r+/n,w»/n» / / Bright red on black
•define CJiRN^BLK "g+/n,w»/n,.,bg+/n» / / Bright green on black

* Colors for Flipper grf_colors<)
* D refers to #define origin
* LIGHT COLORS *
•define DBLACK 0
•define DBLUE 1
•define DGREEN 2
•define DCYAN 3
•define DRED 4
•define DHAGENTA 5
•define DYELLOU 6
•define DUHITE 7
* DARK COLORS
•define DLGRAY 8
•define DLBLUE 9
#define DLGREEN 10
•define DLCYAN 11
•define DLRED 12
•define DLNAGENTA 13
•define DLYELLOW 14
•define DLUHITE 15

E-6

/ / s s s s e a s H B B B S H s s a s s s a s
// File: EGPCMax.Ch
// For: ELIPGRID-PC, EGPC.Exe.
// Purpose: Provides maximun value #defined constants.
// Author: Jim Davidson
// Prog Started: 10/03/93
// Last Mod: 08/09/94 changed name from HotSMax.Ch to EGPC.Ch.
/ / S 3 8 n i 8 S t 8 I i a i K B & S S S S S a K S C 8 S S E H S « I S S S : : S S S S S S S S E I S t S S S & S S S S 8 9 B l !

* Max semimajor axis.
#define cMAX_SemiMajor "9,999.99"

* Max grid cell side, short side for rec. grid.
#define cMAX_GSize "9,999.99"

* Max hot spot area.
#define cMAX_HotSArea "9999.99"

* Max total sample area.
#define nMAX_SampleArea 99999999.9
#define cMAX_SamjleArea "99,999,999.9"

* Max sample cost.
#define cHAX_SampleCost "99,999.99"

* Max number of samples.
#define cMAX_Somples "999,999"

* Max total cost.
#define cMAX_TotalCost "999,999,999.99"

* Max rec ratio.
^define cMAX_RecRatio "99.9"

* Max ori-ntation angle.
#def ine t^4AX_Angle "99.9"

* Max L to G ratio, semimajor axis/grid size,
^define cMAX_LtoG "9999.99"

* Max elliptical shape ratio.
Odefine cMAXShape "9.99"

* Max prob of a hit.
Dldefine cMAX_ProbHit "999.9999"

* Maximun acres.
#define cMAX_Acres "9999.99"

* Desired probability.
#define cOESIRD_PROB "999.9"

* Desirrd cost.

#define cDESIRD_COST "99,999,999"
*** End of File: EGPC.Ch

E-7
Code File: EGPCMain.Prg

/ / rBSS8SC33S8EnS»aSSSSSSSS8SEaSBSS:SS3SS«SSSSSSSS5SSS8BES3aS5SSSS:=SSSSSSSSS

// File : EGPCMain.Prg
// Program..: EGPC.Exe
// Purpose..: Main program file for ELIPGRID-PC program.
// Program provides interface to ELIPGRID (Singer 1972) algorithm.
// Adds features utilizing Singer's original algorithm.
// Author...: Jim Davidson
// Started..: 10/03/93 as HotSMain.prg.
11 Last Mod.: 09/06/94
/ /
// Files....: EGPCMain.Prg This file, main module
// EGPCBErr.Prg Blinker 3.0 related error handler
// EGPCFile.Prg File input code
// EGPCFort.Prg Code translated from EI.IPGRID FORTRAN
// EGPCGrph.Prg Code to write cost-based graph data
// EGPCHelp.Prg Help screen code
// EGPCScrn.Prg Screen input/output related code
//
// Functions are arranged in the files in alphabetical order,
// although main() is the first function in this file.
//
// Notes....: Conpiler = CA-Clipper 5.2
// . Linker = BLINKER 3.0
// Uses CA-Clipper Tools 3.0 library
// /.=======================================:==============̂ ====:===========

Modification history:

03/30/94 On file input, trap rectangular grids with a 1/1 ratio and
use sq. grid instead. Screen input does not allow 1/1 rect. grids.

03/31/94 Restriced desired X prob.s to 99.9% on input screens. Changed error
criteria to a slightly smaller value. Worked better near 100X.

04/04/94 Modified triangular grid routine. See EGPCFort.Prg code.
04/06/94 Correction levels finished to level 3.
04/07/94 Added checks for negative P(0) cases. See EGPCFort.Prg ceae.
04/12/94 Upgraded from Blinker 2.10 to 3.0.
04/13/94 Modified Blinker error file, EGPCBErr.Prg, added for demo exp. date

use. D0S_Prompt() function now uses Blinker swap function.
04/15/94 All shapes are now restricted to >= 0.05. L/G ratios must be <= 3.

See EGPCFort.Prg comment.
04/17/94 90* angles now trapped in RECT subroutine. See EGPCFort.Prg.
04/22/94 Search techniques updated. See EGPCScrn.Prg.
04/28/94 Write cost-based graph data option added. See EGPCGrph.Prg.
04/28/94 Validation against Singer's 100 cases, OK.
05/08/94 Only minor (cosmetic) changes mades since validation.
05/09/94 This is beta version given at DOE TIE conf. in Kennewick, UA.
05/16/94 Corrected error in "Smallest Hot Spot Hit, Given Grid."

See EGPCScrn.Prg.
05/17/94 Validated screen input for 67 cases as documented in Scn_Test.Sqr,

Scn_Test.Tri, and Scn_Test.Rec files in Valid100 subdir.-

05/17/94 Upgraded Clipper to version 5.2d. Validation against Singer's 100
cases, OK.

06/14/94 Upgraded Blinker from 3.0 to 3.01. Validation against Singer's 100
cases, OK. Input = Test100.In & .SIF; Output = .HSE & .HSS files.

08/09/94 Changed name to ELIPGRID-PC, EGPC.Exe, from Hotspot.
Other minor changes.

08/11/94 Forced correction level flag to 3, full correction, see EGPCFort.prg.
Validation against Singer's 100 cases, OK.

08/26/94 Changed all semiminor/semimajor text to semi-minor/semi-major.
Other minor editorial changes.

09/02/94 Changed formula for the nurber of samples for a triangular grid.
See EGPCScrn.Prg and EGPCGrph.Prg files.

09/06/94 Added "Nunber Samples" column to graphics output data file.
* /
/ / B 8 S S 8 I 8 S e S S l S S R 8 S S S S 3 B S S 8 8 S S S S S S B S S 8 8 S S S 8 K S 3 8 8 I S S 8 a B 8 S S S 8 S S S S 8 8 S S 8 3 S 8 S S B S S 8 S S
/ / Version Info

Code File: EGPCMain.Prg
E-8

#define VER DATE "09/06/94"

// Include files.
// Clipper supplied include files.
ftinclude "Directry.Ch"
• i n c l u d e " l n k e y . C h "
(Kinclude "Set.Ch"
^include "Setcurs.Ch"
•include "Box.Ch"

// ORNL developed include files,
^include "Colors.Ch«

// File info definitions
// Key definitions
// setO definitions
// setcursorO related
// Box drawing constants

// Color definitions

// User-defined conmand
#xcoflirand DEFAULT <TheParam> TO <DefaultVal> »> ;

IF (<Thef>aram> *= NIL); <TheParam>:=<DefaultVal>; END IF

Function MainO
* Main nodule of program.
* Initialize local variables.

Main Module

local nCh
local nLCol
local nTRow
local cDOSScreen
local nDOSRow
local IDone
local cDOSCmdLine

:= 1 // Main menu choice
:= 0 // Left col chosen by MenuCenterO
:= 8 // Main Menu top screen row
:= savescreen(0,0,24,79)
:= row()
:= .F. // Main Menu loop flag
: = "" // DOS coninand line params

* Program wide publics.
public cBasicUnit : = "M" // M • meters, F = feet
* The ElipGrid correction levels below provide ability to test old algorithms,
public nElpGrdCor := 3 // ElipGrid correction level

// 0 « Grig. ELIPGRID algorithm
// 1 • Rectangular grid corrections only
// 2 = Level 1's corrections • triangular grid corrections
/ / 3 s Level 2's corrections + angle of 0.0 is not incremented to 0.1
If Correction level 3 is the defaault.

public C Normal
public CJMghLflht
public C_Help
public C_Error
public C_Menu1
public C_Menu2

:= C UHT BLU
C~CVM"BLU

:= C~UHTJ1AG
:= C UHT RED
:«= C"WHT_HAG
:= C~YEL~HAG

// Normal screen colors
// Current subdir color
// Help screens
// Error screens
// Menu screen color 1
// Menu screen color 2

* Get DOS comnand line parameters.
cDOSCmdLine := upper(dosparamO)
if "H" % cDOSCmdline

* Help param. passed.
ParamHelp'VER_DATE)
quit

elseif "M" S cDOSCmdLine
* Monochrome param. passed.
* Black on white for LCD screens.
m->C Normal := C BLK WHT
m->C~HighLght := c"UHT_BLK
m->C Help := C~UHT~BLK
m->C Error : = C UHT~BLK
m->C~Menu1 := C~WHT_BLIC
m->C Menu2 := C~BLK~WHT

endif
if «F" t cDOSCmdLine

* Feet param. passed.
cBasicUnit := "F«

endif

// Normal screen colors
// Current subdir color
// Help screens
// Error screens
// Menu screen color 1
// Menu screen color 2

Code File: EGPCMain.Prg
E-9

--- 08/11/94 Note, JRD ---
* EGPCFort.prg code now forces level 3 correction ell the time.
* Below left in to facilitate any future return to correction levels.
*

* Determine which level of correction to ELIPGRID algorithm to use.
if "0" S cDOSCmdLine

* Use original Singer, 1972 algorithm.
m->nElpGrdCor : = 0

elseif "1" t cDOSCmdLine
* Use rect. grid corrections only.
m-»nElpGrdCor := 1

elseif "2" t cDOSCmdLine
* Add triangular grid corrections to level "1" corrections.
m->r£lpGrdCor := 2

endif

set escapc on
set scoreboard off
set bell off
set confirm on
set wrap on

do while I IDone
setcolor(m->C Normal) // Reset since looping back
els
dispbox(00,00,04,79, B_D0UBLE_SINGLE)
setcolor(m->C Help)
SayCenter(1, » ORNL ELIPGRID-PC ")
setcolor(m->C_Normal)
SayCenter(2,"PC-Based Hot Spot Probability Calculations")
SayCenter(3,"Vers i on " + VER_DATE)
805, 2 say "Current subdirectory: "
8row(),col() say disknameO • ":" + dirnameO color (m->C HighLght)
923, 2 say "F1 key for Help" color(m->C Help)
823,63 say "Esc key to Exit" color(m->C~Help)
dispbox(06,00,22,79, B DOUBLE SINGLE)
dispbox(22,00,24,79, B D0UBLE~SINGLE)
822,00 say " (•"
822,79 say H "

SayCenter(nTRow-1,"Hain Menu")

nCh := HenuCenter(nTRow, <"P Probability of Hitting Hot Spot"
"G Grid Size Required, Given Prob."
"S Smallest Hot Spot Hit, Given Grid"
"C Cost-Based Grid"
"W Write Cost-Based Graph Data"
"N New Drive or Subdirectory"
"D DOS Prompt"
"Q Quit program...">, nCh,1, anLCol)

do case
case nCh == 1

* P Probability of Hitting Hot Spot
ChooseInput(nTRow»nCh+1,nLCol+2)

case nCh == 2
* G Grid Size Required, Given Prob.
GetGr idS i z(ChooseGri d(nTRow+nCh+1, nLCol+2,m->C_Her»u1), VER_DATE)

case nCh « 3
* S Smallest Hot Spot Area Hit, Given Grid
GetSmallestArea(ChooseGrid(nTRow+nCh+1,nLCol+2,m->C_Menu1), VER_DATE)

case nCh == 4
* C Cost-Based Grid
GetCostGrd(ChooseGri d(nTRow+nCh+1,nLCol+2,m->C_Menu1), VER_DATE)

case nCh »» 5
* W Write Cost-Based Graph Data
WriteGphData(ChooseGrid(nTRow»nCh+1,nLCol+2,m->C MenuD, VER_DATE)

Code File: EGPCMain.Prg
E-10

case r»Ch == 6
* N New Drive or Subdirectory
ChangeOrOrSub(nTRow+nCh*1,nLCol+2)

case nCh •• 7
* 0 DOS Prompt
DOS_Prompt()

otherwise
* 0 Quit program... (or Esc key)
iDono ,T.

-i-i color to
restscreen(0,0,24,79,cDOSScreen)
devposCnD0SRow-1,0) // -1 makes DOS prompt come in just
* return to DOS // below last prompt,
return (0) // Return 0 to DOS ErrorLabel

End of Func: MainO
*=========================| End of Main Module |==========================

* — Begin Other Functions — *

Function BoxCenter(nTRow, nRows, nUidth, nType)
* Displays box centered on nRow.
* nType of 1 * double line top, single side, 2 = double all.
* Returns left eolum.
Local nCol := (80-nUidth)/2
default nType to 1
if nType •• 1

MenuBox(nTRow,nCoI,nTRow+nRows.nCol+nWidth-1, B_D0UBLE_SINGLE)
else

MenuBox(nTRow,nCoI,nTRow+nRows,nCo1+nWidth-1,B DOUBLE)
endif
return (nCol)
••• End of Func: BoxCenterO

Function ChangeDriveO
* Change current drive,
local cCurrDrive
local lOrgConfrm
local IDone := .r.
local GetList := <>
lOrgConfrm := set(_SET_CONFlRM,.F.)

do while I IDone
els
cCurrDrive := disknameO
MenuBox(02,01,7,67)
303.02 say " Change current drive to?"
305.03 say "Enter new drive letter" get cCurrDrive pict "I"
805,col(> say ":"
read

if I diskchange(cCurrDrive)
* Invalid drive.
Err_MsgBox(10,"E","Error: Invalid drive.", ;

"Drive: " * cCurrDrive)
loop

else
IDone := .T.
loop

endif
enddo
set(SET CONFIRM,lOrgConfrm)

Code File: EGPCMain.Prg
E-ll

return (NIL)
*** End of Func: ChangeOriveO

Function Chang«OrOrSub(nTR,nLC)
* Menu for changing drive or subir.
* Input: nTR is top row.
* nLC is left col.
*
static nlastCh := 1 // Remetrbers last choice
local nBR := nTR + 4
local nKC := nLC + 32
* Change drive.
ChangeOriveO
if lastkeyO l= K_ESC

* Change subdirectory.
ChangeSubdir(IO)

endif
return (NIL)
*** End of Func: ChangeOrOrSubO

Function ChangeSubdir(nTR)
* Changes current subdir.
local cCurrSubdir := ""
local cCurrDrive := ",l
local cDOSCmnd := ••»
local I Done := .F.
Local GetList O

cCurrDrive
cCurrSubdir

:= disknameO
:= dirnameO

do while I IDone
cCurrSubdir := padr(cCurrSubdir, 64)
MenuBo*(nTR,1,nTR+6,66)
SnTR+1,03 say "Change current subdirectory. Must be on drive

disknameO • •':..."
SnTR+3,03 say "Change to " + cCurrDrive • ":"
3nTR+3,col() get cCurrSubdir pict "8S50!"
flnTR+5,03 say "Current path: " + disknameO + + dirnameO
keyboard chr(K_END)
read
cCurrSubdir := alltrim(cCurrSubdir)

if lastkeyO « K_ESC
* Esc key abort.
IDone := .T.
loop

elseif * cCurrSubdir
* Error, drive name entered.
Err_MsgBox(nTR»6,"E","Error: Drive name entered.", ;

"Note.: This option only changes subdirectories"
" on current drive.", ;
" Use change drive option for new drive.")

loop
elseif ! subdir(cCurrSubdir)

* Error, invalid subdirectory.
Err_MsgBox(nTR*6,"E","Error: Invalid subdirectory.», ;

"Path.: " + cCurrDrive + ":" + cCurrSubdir)
loop

else
* Do the DOS CD command.
if len(cCurrSubdir) > 3 .and. right(cCurrSubdir.l) == "\"

* If not root subdir and we have trailing "\", remove i
* Will mess up DOS CD command.

E-12
Code File: EGPCMain.Prg

cCurrSubdir := I eft(cCurrSubdir,len(cCurrSubdir)-l)
endif
* If no characters in subdir name, default to root of current drive,
if emptyCcCurrSubdir)

cCurrSubdir :=
endif

* Form the command and do the work.
cOOSCmnd :« "CO " + cCurrSubdir
run (cDOSCmnd)

IDone : = .T.
loop

endif
enddo
return (MIL)
*** End of Func: ChangeSubdir(>

Function ChooseGrid(nTR,nLC, cColor)
* Choose grid type desired.
* Input: Top row. Left col., menu color.
* Returns: Grid type as "S", "R", or "T", for square, rect., or triangle.
* NIL returned if Esc pressed.
static nLastGrid := 1 // Remembers last grid type chosen
local nBR := nTR + 5
local nRC := nLC + 30
local cGridType := NIL
local cOrgColor := ""
default cColor to m->C_Normal
cOrgColor := setcolor(cColor)

MenuBox(nTR,nLC,nBR,nRC)
8nTR+1,nLC+2 say "Choose Grid Type "
SnTR+2,nLC+2 prompt " Square 11
8nTR+3,nLC+2 prompt " Rectangular "
8nTR+4,nLC+2 prompt " Triangular "
menu to nLastGrid
if nLastGrid » 1

* Square grid.
cGridType := "S»

elseif nLastGrid *= 2
* Rect. grid.
cGridType "R"

elseif nLastGrid == 3
* Triangular grid.
cGridType := "T"

endif
setcolor(cOrgColor)
return (cGridType)
*** End of File: ChooseGridO
*

Function ChooseInput(nTR,nLC)
* Choose input from Screen/File.

Input: nTR is top row.
nLC is left col.

*

static nLastlnput := 1 // Remembers last input type chosen
local nBR := nTR + 4
local nRC := nLC + 30
local cOrgColor := setcolor(m->C_Menu1)

MenuBox(nTR,nLC,nBR,nRC)
SnTR+1,nLC+2 say "Enter Data From?"
SnTR+2,nLC+2 prompt " S Screen Input "

Code File: EGPCMain.Prg
E-13

3nTR+3,nLC+2 prompt " F File Input "
menu to nLastInput

setcolor(m->C_Normal)
if nLastlnput-" 1

* Screen input.
GetProbH i t(ChooseGr i d(nTR+2,nLC+1), VER_DATE)

elseif nLastInput == 2
* File input.
InputFromFile(nTR+2,nLC+1>

endif
setcolor(cOrgColor)
return (NIL)
*** End of File: ChooselnputC)

Function DispTitle(cGridType(cOption, cOutFile, lOutFile)
* Displays correct title for input screen. Also displays output file, if any.
* Input: cGridType = "S", "R", or "T" for Square, Rec., or Tri. grids.
*

cOption = "P" for Probability of Hitting Hot Spot
= "G" for Grid Size Required, Given Prob.
= "S" for Smallest Hot Spot Hit, Given Grid
= "C" for Cost-Based Grid
= "W" for Write graph data

>cal cTitlel := ""
cal cTitle2 := ""

local cUnit := ""
* Get 1st p< tion of title,
if cOption *= "P"

cTitlel := "Determine Probability of Hitting Hot Spot for "
elseif cOption S "GS"

cTitlel := "Determine Size of "
elseif cOption == "C"

cTitlel "Determine Size of Cost-Based "
elseif cOption «= "W"

cTitlel := "Write Cost-Based Graph D a t a *or "
endif

if cGridType == "S"
* Square grid.
if cOption S "PGCW"

cTitle2 "Square Grid in "
elseif cOption •== »S"

cTitle2 "Smallest Hot Spot for Square Grid in "
endif

elseif cGridType == "R"
* Rectangular grid,
if COption S "PGCW"

cTitle2 := "Rectangular Grid in "
elseif cOption == "S"

cTitle2 :- "Smallest Hot Spot for Rectangular Grid in 11
endif

elseif cGridType ==
* Triangular grid,
if cOption $ "PGCW"

cTitle2 := "Triangular Grid in "
elseif cOption == "S"

cTitle2 := "Smallest Hot Spot for Triangular Grid in "
endif

endif
cUnit := iif(m->cBasicUnit=="F","Feet","Meters")
els
S 0 , 0 to 4,79 double
8 5 , 0 to 24,79
SayCenter(1,cTitle1+cTi tle2+cUni t)

Code File: EGPCMain.Prg
E-14

if I (cOption «= "W")
SayCenter(2, "See Gilbert Chapter 10 for general information.")

else
SayCenter(2, " Writes data input file (ASCII format) for spreadsheets and "+;
"graphics programs.")

endif
if lOutFile

303,02 say "Current Output File: 11 + cOutFile color(m->C_HighLght)
else

803,02 say "Current Output File: None chosen." color(m->C_HighLght)
endif
return (NIL)
*** End of Func: DispTitleO

Function DOS PromptC)
* ShelI to DOS.
* Returns: NIL
local nMajErr := 0 // Major error code
local nMinErr := 0 // Minor error code
local ISuccess :« .F.
set color to
els
setcolor(m->C Help)
scroll(0,0,4,79)
80,0 to 4,79
81,2 say "Type EXIT at DOS prompt to return to ELIPGRID-PC progi-am."
83,2 say "The DOS MEM carinand will give largest executable program size."
* Blinker 3.0 ccmnand, swpruncmd("",0,"",""),
* leaves much more memory free than Clipper run command.
* Default swpruncmdO parameters: run coirmand.com, free as much mem as possible,
* leave current path the default, swap to current path.
ISuccess :« swpruncmd(',,,,0,,,",,",)
if I ISuccess

scroll(0,0,2,79)
? "DOS access failed."
nMajErr :• swperrmajO
nMinErr := superrminO
? "Blinker major, minor error codes: ", NunTrim(nMajErr)+",,,

INumTrim(nMinErr)
? "Press a key to continue..."
inkey(O)

endif
return(NIL)
* " End of Fune: D0S_Prompt<)

A***
Function Err_MsgBox(nTR, cType, cLinl, cLin2, cLin3)
* Generic error or msg box. Defaults to error box.
* Displays up to 3 lines • Press key msg and waits for keypress.
* Returns: NIL
local cTmpScn := 1,11
local IDispMsg := .T.
local nMaxLineWdth := 0
local nWidth := 0
local cOrgCtr := ""
local nLC :• 0
local nBR := 0
local nRC := 0
local nLines := 0
local nCurRow := 0
local nCurCol := 0
default cType to "E" // Default to error box

* Set box color.
if upper(cType) »= "E"

cOrgClr :* setcolor(m->C_Error)

Code File: EGPCMain.Prg
E-15

else
cOrgClr setcolor(m->C Help)

endif

» Get current cursor pos.
nCurRou := row()
nCurCol := col()

if (valtype(cLin3) == "C")
* 3 lines to display
nBR := nTR + 4 + 3 // 4 lines for misc. + 3 msg lines
nMaxLineWdth max(max(len(cLin1), len(cLin2)), len(cLin3))
nLines 3

elseif (valtypetcLin2) « "C")
* 2 lines to display
nBR := nTR + 4 + 2 // 4 lines for misc. + 2 msg lines
nMaxLineUdth := max(len(cLin1)< len(cLin2))
nLines := 2

elseif (valtype(cLinl) == "C")
" 1 line to display
nBR := nTR + 4 + 1
nMaxLineUdth := len(cLinl)
nLines := 1

else
* Incorrect params. passed
IDispMsg := .F.

endif

* Display message,
if (IDispMsg)

nMaxLineWdth := max(nMaxLineWdth, lenC'Press a key to continue..."))
nUidth := 4 + nMaxLineUdth // 2 lines/blanks + largest line
nLC : = (7 9 - n w i d t h) / 2 // center
nRC := nLC + nWidth - 1
cTnpScn := savescreen(nTR, nLC, nBR+1, nRC+1)
MenuBox(nTR ,n.lC,nBR ,nRC)
if (nLines > = 1)

anTR+2, nLC + 2 say cLinl
endif
if (nLines >= 2)

SnTR+3, nLC + 2 say cLin2
endif
if (nLines *= 3)

SnTR+4, nLC + 2 say cLiri3
endif
anBR-1, nLC • 2 say "Press a key to continue..."
tone(440,1)
inkey(O)
restscreenCnTR, nLC, nBR+1, nRC+1, cTmpScn)

else
ao,o
80,0 say " Err_MsgBox() error: Check parameters. tress a key to return... "
inkey(O)

endif (IDispMsg)
setcolor(corgcir)
SnCurRow, nCurCol say ""
return (NIL)

End of Func: Err_MsgBox()

A *

Function ErrorUDFOPassTest, cErrorMsg, nFldLen)
* Generic error routine for 8 say/get valid clauses.
* IPassTest: Logic flag for--pass test?
* cErrorMsg: Message to display
* nFldLen...: Length of get field--as picture specifies for naneric.
* Returns..: .F. if IPassTest == .F., else just returns .T.

Code File: EGPCMain.Prg
E-16

local CurGetName
local nTR :=
local nBR :*
local nLC : =
local nRC :=
local cTmpScr :=
local cCurClr :=
local IRtnVal

:= readvaro
rowC) + 1
nTR + 3
c o L O - nFldLen
nLC + len(eErrorMsg)
savescreen(nTR, nLC, nBR, nRC)
setcolor<m->C Error)
• F.

// Name of current get variable
// Current row + 1 for error box

// Current col is end of get field
+ 1

if ! IPassTest
* Invalid input failed valid test, display error box.
scrol UnTR, nLC, nBR, nRC)
SnTR.nLC to nBR,nRC
8nTR+1, nLC+1 say cErrorMsg
flnTR+2, nLC+1 say "Press a key..."
tone(440,1)
inkey(O)
restscreen(nTR, nLC, nBR, nRC, cTmpScr)
IRtnVal .F.

else
IRtnVal := .T.

endif
setcolor(cCurClr)
return (IRtnVal)
•** End of Func: ErrorUOFC)

Function InputFromFile(nTR,nLC)
* Get input data from ELIPGRID type file or SIF type file.
* Input: nTR = Top row for box.
* nLC • Left col for box.
static nLastType := 1 // Remembers last file type chosen
static nLastFileE := 1 // Remembers last ELIPGRID type file ch
static nLastFileS := 1 // Remembers last SIF type file ch
local nBR := nTR + 4
local nRC := nLC + 30

MenuBox(nTR,nLC,nBR,nRC)
a n T R * 1 , n L C + 2 say "Choose Input File Format"
3nTR+2,nLC*2 prompt "ELIPGRID Type Format"
8nTR+3,nLC+2 prompt "SIF Type Format"
menu to nLastType
if nLastType == 1

* ELIPGRID Format.
FiIelnput(nTR+2,nLC+1,3nLastFiIeE,VER_DATE) // Pass nLastFileE by refer,

elseif nLastType *= 2
* SIF Format.
SIF FileInput(nTR+2,nLC+i,SnLastFileS,VER DATE) // Pass nLastFileS by refer,

endif ~
return (NIL)
»*• End of File: InputFromFile()
»»***»*»»»*»**»*****»*•»**«»«»»»»»«»««»»•»»»«»»»»»

Function NenuBox(nTR,nLC,nBR,nRC, cSides, IShadow)
* Draw box sides for a menu.
* cSides defaults to double top, single sides.
* cSides could be defined constants from from Box.Ch.
* IShadow defaults to .T.
local cOrgColor :« setcolor()
default cSides to B_DOUBLE_SINGLE
default IShadow to .T.
if IShadow

set color to
scroll(nTR+1,nLC+1,nBR+1,nRC+1)
setcolor(cOrgColor)
scrol KnTR,nLC,nBR,nRC)

Code File: EGPCMain.Prg
E-17

endif
dispbox(nTR,nLC,nBR,nRC, cSides)
return (NIL)
» End of Func: MenuBoxO

Function MenuCenter(nRow, aPrmpts, nChoice, nType,nLeftCol)
* Displays centered menu of prompts.
* Returns menu choice.
* Returns left col of menu when nLeftCol is passed in by reference,
local nLong := 0
local nPLen : = 0
local nPrmpts := len(aPrmpts)
local nLCol := 0
local i
default nChoice to 1 // 1st choice to highlight
default nType to 1 // 1=0ouble top, single side,2=all double

* Find longest prompt, set nLong.
for i = 1 to len(aPrmpts)

nPLen := len(aPrmptsCiJ)
nLong := if(nPLen > nLong, nPLen, nLong)

next i
nLCol := BoxCenter(riRow,nPrnf>ts+1 ,nLong+4, nType)
nLeftCol := nLCol
for i = 1 to nPrmpts

8nRow»i,nLCol+1 pronpt " " + padr(aPrmptsIi),nLong) • " "
next i
menu to nChoice
return (nChoice)

End of Func: HertuCenterO

Function NotReadyYet(cMsg)
* Not ready yet msg.
save screen
els
30,0 to 5,79
S 2, 2 say cMsg • " option is not ready yet."
a 4, 2 say "Press a key to continue..."
inkey(O)
return (NIL)
*** End of Func: NotReadyYet()
*

Function NunTrim(nNum)
• Returns nNun in str form trimiiied.
local cNumStr := alltrim(str(nNum))
return (cNunStr)
*** End of Func: NunTrimO

Function SayCenter(nRow, cHsg)
* Displays cMsg on centered nRow.
local nCol := (80-len(cMsg))/2
anRow,nCol say cttsg
return (NIL)

End of Func: SayCenterO

Function YN_HsgBox(cMsg)
* Yes/No Message Box, Displays Msg,
* Returns .T. if »y" or "Y» pressed,
local cAns
local cOldClr := setcolor(m->C Help)
local IRtnVal := .F.

E-18
Code File: EGPCMain.Prg

local TempScr
save screen to TempScr
MenuBox<5,5,10,50)
S 7,7 say cMsg
cAns := upper(chr<inkey(0)))
if cAns « "Y" .or. <lastkey() « K ESC)

IRtnVal :« .T.
endif
8etcolor(c0ldClr)
restore screen from TempScr
return (IRtnVal)
*** End of Func: YN MsgBoxO

*** End of File: EGPCMain.Prg

Code File: EGPCMain.Prg
E-19

* Program : EGPCBErr.Prg
* : Blinker/CA-CUpper error handling for ORNL/GJ ELIPGRID-PC.
* Started : 04/13/94 from BLERRC50.PRG supplied by Blinker 3.0.
* Last Mod : 08/09/94, JRO

* Conpiler : CA-CUpper 5.2
* Linker : Blinker 3.0

* Note : Overlaying of this file is NOT recommended, because
* : if a severe error occurs, it may be impossible to
* : load this error handler into memory, in which case
* : the error will never be reported, making debugging
* : difficult.
*/

^command ? <list,...> => 7? Chr(13) + Chr(10) ; ?? <list>
#command 77 <list,...> => OutErr(<list>)

function BlErrc50()
local bflliError, bOldErrBlk, nErrCode, oErr, lUseErrBlk, i
public llnErr

// First check we're not in a multiple error situation
// (likely cause of multiple error is an error loading
// an overlay while in an error situation)

if m->l!nErr
* ? "Blinker error : "
* 7? BliErrNunO
* ? "(Multiple errors occurred while in error handler)"

quit
endif

m->llnErr :« .T. / / In an error
lUseErrBlk • .t. / / Use BLINKER error block

oErr := ErrorNewO / / Create error object

nErrCode :« BliErrNunO / / Blinker Error Ninber
oErr:subsystem := [BLINKER] / / Failing Subsystem name
oErr:subCode := nErrCode / / Blinker error nunber
oErr:canRetry .F. / / Not Retryable
oErrrseverity := 3 / / Maximum severity

do case
case nErrCode = 1201

oErr:description := [unable to find overlay file]+BliErrPrm()+[in current path]
oErr:filename := BLiErrPrmO

case nErrCode = 1202
oErr:description [DOS read error in file 1+BliErrPrmO
oErr:filename := BliErrPrmO

case nErrCode = 1203
oErrsdescription := [file]+BliErrPrm()+[is not a valid .EXE file]
oErr:filename := BliErrPrmO

case nErrCode = 1204
oErr:description := [overlay file] + BliErrPrmO + [does not match the .EXE file]
oErr:filename := BliErrPrmO

case nErrCode = 1205
oErr:description := [not enough memory to load procedure]

case nERRCode = 1206
oErr:description := [maximum procedure nesting depth exceeded]
lUseErrBlk = .f.

case nERRCode = 1207
oErr:description := [demonstration calls limit exceeded]

E-20
Code File: EGPCMain.Prg

lUseErrBlk - .f.
case nERRCode = 1208

// New ELIPGRID-PC code, 04/13/94, JRD
PastDemoOate()
/* original code

oErr:description [demonstration date limit exceeded]
lUseErrBlk > .f.

V
case nERRCode - 1209

oErr:description := [demonstration time limit exceeded]
lUseErrBlk - .f.

case nERRCode * 1210
oErr:description := [overlay has been prematurely freed]

case nERRCode » 1211
oErr:description := [overlay manager internal stack overflow]

case nERRCode * 1212
oErr:description := [Overlay Opsize exceeded - increase Opsize]

case nERRCode * 1213
oErr:description := [attempt to call DEFINED routine]
lUseErrBlk * .f.

case nERRCode * 1214
oErr:description := [error accessing EMS overlay cache]

case nERRCode * 1215
oErr:description := [error accessing XMS overlay cache]

case nERRCode = 1216
oErr:description := [overlay manager unable to resune]

case nERRCode - 1217
oErr:description := [overlay vector corrupted during execution]

otherwise
oErr:description := [unknown BLINKER error]

end case

for i : 1 to 60
7 mi

next

if lUseErrBlk
bOldErrBlk ErrorBlockCt|e|BUError(e)»

else
?? "Blinker error" • Btr (oErr:subcode,5)
77 " :", oErr:description
f llll

endif

// Cheap substitute for CLS
// So that it does not
// Force in the screen drivers

// Install new error handler

// Just in case error handler
// fails

if (ErrorBlockO <> NIL)
eval(Errorblock(),oErr)

else
quit

end

// Evaluate the error block

if lUseErrBlk
Errorblock(bOldErrBlk)

endif
// Restore the previous handler

tn->lInErr .F.

return (nil)

// Blinker error handler

Static Function BliError(e)
local i

? "Error : "

if (IEirpty(e:subsystemC)))

Code File: EGPCMain.Prg
E-21

?? e:subsystem() + "/" + Ltrim(Str(e:subCode()n
end
if (IEmpty(e:descriptionO))

? "Description : " + e:description()
end
if (IEmpty(e:filenameO))

? "Filename : " • e:fi lenameO
end
f Mi l

? "Call Trace"
i 3
while (lEmpty(ProcName(i)))

? "Called from : Left(ProcName(i)+SPACE(20),20) «• ;
»(" + Substr(SPACE(7)+Str(ProcLine(i)),-7) ") "

end
^ nil
ERRORLEVELC1)
QUIT // terminate application
return (nil)

Function PastDemoOate()
* New code for ELIPGRID-PC past demo date,
local cDemoDate := blidemdte()
cDemoOate := subJ.tr(cDemoDate,5,2)+"/"+right(cDemoOate,2)+,V"+left(cDemoOate,A)
7? repliC"-", 80)
?? " Message: ELIPGRID-PC is past the expiration date of " + cDemoOate
? " Date...: " + dtoc(dateO)
? " Note...: This version of ELIPGRID-PC is not intended for indefinite use."
? " It i8 a beta version for testing and validation."
7 " Contact: Jim Davidson"
? " ORNL/GJ"
? " (303) 248-6259"
7 " for more information."
? repli("-", 80)
// terminate application
errorlevel(l)
quit
return (NIL)

*** End of Func: PastDemoOate()
*** End of File: EGPCBErr.Prg

Code File: EGPCMain.Prg
E-22

/ / S B a s a H B I B S 8 I U B n S M K B H S B I B f f S a 8 n B S I I B 8 8 H 3 a R n B B I H 8 n B H
EGPCFile.Prg
EGPC.Exe, ELIPGRID-PC program.
Provides file input code.
Jim Davidson
10/03/93
08/26/94
Functions are arranged in alphabetical order.

// Modifications since validation with Singer's 100 cases:
// 04/15/94 Added shape, L/G restrictions. Shapes must be >= 0.05. L/G ratios
// must be ** 3.0. See EGPCFort.Prg for comments.
// 04/28/94 Added AlertBoxO to replace alertO. Works well with mono screens.
// 08/09/94 Name changed from HotSFile.prg to EGPCFile.prg.
//eSBMBBBasaa«BBaa8BB>SSEBBaBaaaa8B8SBBSBB88a>SB3BBeS8aBnBBSaBaSaBBS8SBaBBBBSB

// File:
// For:
// Purpose:
// Author:
// Prog Started:
// Last Mod:
// Note:

// Include files
•include "inkey.Ch" // key definitions
•include "Directry.ch" // File info definitions

// User-defi ned command
•xcomnand DEFAULT <TheParam> TO <DefaultVal> => ;

IF (<TheParam> == NIL); <TheParam»:=<DefaultVal>; ENDIF

Function AlertBox(nTR, acOptions, nLinl, nLin2, nLin3)
* Substitute for alertO function. AlertO does not obey color settings.
* AlertBox obeys current color setting. AlertO is hard to read on LCD screens.
* Lines 2 and 3 are optional.
* Returns: Esc * 0, else nunber of array element of acOptions chosen.
local cTmpScn := •in
local IDispMsg : = .T,
local nMaxLineUdth : = 0
local nPrmptWdth : = 0
local nUidth : = 0
local cOrgClr := llll
local nLC : = 0
local nBR : = 0
local nRC •E 0
local nLines ; = 0
local nCurRow : = 0
local nCurCol ; = 0
local nNumOps : = lei
local nCuroja : = 1
local nOpCol : = 0
local nRtnVal : = 0

* Set box color.
cOrgClr := setcolor(m->C_Error)

* Get current cursor pos.
nCurRow : c r o w O
nCurCol := col()

if (valtype(nLin3) «* MC">
* 3 lines to display
nBR := nTR • 4 + 3 // 4 lines for misc. • 3 msg lines
nMaxLineWdth := max(max(len(nLin1), len(nLin2)), len(nLin3))
nLines :« 3

elseif (valtype(nLin2) « "C")
* 2 lines to display
nBR := nTR + 4 + 2 // 4 lines for misc. + 2 msg lines
rMaxLineWdth := max(len(nLin1), len(nLin2))
nLines 2

elseif (valtype(nLinl) « "C")
* 1 line to display
nBR := nTR + 4 + 1

Code File: EGPCMain.Prg
E-23

nMaxLineWdth len(nLfnl)
n U n e s :« 1

else
* Incorrect paranis. passed
(DispMsg : = .F.

endif

* Display message,
if (IDispMsg)

* Get total width of the prorrpts plus inner spacing,
for nCurOp • 1 to nNumOps

nPrmptWdth nPrmptWdth + len(acOptionstnCurOp])
next nCurOp
nPrmptWdth :« nPrmptWdth + 3 * (nHun0ps-1>

* Determine overall width of box.
nMaxLineWdth := max(nMaxLine«dth, nPrmptWdth)
rtUidth :« t + nMaxLineUdth
nLC := (79 - nWidth)/2 // center
nRC nLC + nWidth - 1
cTmpScn := savescreen(nTR, nLC, nBR+1, nRC+1)
MenuBox(nTR,nLC,nBSl,nRC)
if (nLines >= 1)

8nTR+2, nLC + 2 say nLinl
endif
if (nLines >= 2)

8nTR+3, nLC + 2 say nLin2
endif
if (nLines == 3)

anTR+4, nLC + 2 say nLiriS
endif

* Display and get desired menu option,
for nCurOp = 1 to nNumOps

if nCurOp •• 1
nOpCol :• nLC + 2

else
nOpCol nOpCol + len(acOptionslnCurOp-l)) • 3

endif
SnBR-1, nOpCol prompt acOptions[nCurOpJ

next nCurOp
tone(440,0.3)
menu to nRtnVal

restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)
else

ao,o
80,0 say " AlertBoxO error: Check parameters. Press a key to return... "
inkey(O)

endif (IDispMsg)
setcolor(cOrgClr)
SnCurRow, nCurCol say ""
return (nRtnVal)
*** End of Func: AlertBoxO

Function ExtrctPath(cPathFileN)
* Extract path from cPathFileN.
* Example: ExtrctPath("D:\file.ext") ==> "0:\"
* Based on Environ.prg fuction FilePathO supplied by Clipper,
local nBkSlshPos := 0
local cPath := H1>
nBkSlshPos :« ratC'V, cPathFileM)
if nBkSlshPos » 0

cPath :* »"
else

Code File: EGPCMain.Prg
E-24

cPath := substrCcPathFileN, 1, nBkSlshPos)
endif
return (cPath)
*** End of Func: ExtrctPathO

Function Filelnput(nTR, nLC, nlnitFile, cVerDate)
* Get data from ELIPGRID format input file.
* Writes P(0) output to clnFile.Out.
* Input: nTR is top row for file selection box,
* nLC is left cot.
* nlnitFile is initial file to highlight.
* cVerDate is program version date.
* Returns: MIL
local IReadlnsert := readinsert(.T.)
local clnFile := "" // Input file name
local sOutFile := ""
local cDataLine := ""
local nSemiMajor : = 0
local nShape 0 // Ellipse semi -major/semi-minor axis
local nAngle := 0
local nGSize := 0 // Grid size, for Rec. grids, short side
local nGTyp := 0 // Grid type, 1=Sq.(2=Tri., 3=Rec.
local nOrientn := 0 // Specific angle or "random",
local cTrgtID := "" // if nOrientn > 0 use "random" angles
local nlnputLine := 0 // Current file input line
local nRecRatio := 0 // Rec. grid long side/short side ratio
local nLines := 0 // Lines in input file
local nProbNoHit :* 0
local nProbSum 0.0 II Used for "random" angle case
local nCrntAngle := 0 // Used for "random" angle case
locat nLrgstAngle := 0 II Used for "random" angle case
local cFileText := ""
local IProceed := .T.
local GetList := O // Stops ccxpHer warnings

clnFile := GetFileBox(nTR.nLC,,,,,*.,,,,,,anlnitFile)
cFileText := memoread(cInFile)
nLines := mlcount(cFileText)
if lastkeyO « K.ESC .or. emptytcInFile)

* Just return, if Esc key pressed,
elseif nLines < 3

Err HsgBox(10,"E","Error: Less than 3 lines in file.", ;
"File.: " • clnFile, ;
"Need (1) Title line, (2) Data line, (3) EOF line.")

else
cOutFile := GetFilOutFileCclnFile, SlProceed)

if I Proceed
* Do the work!
els
set alternate to (cOutFile)
set alternate on
?? "Output from ORNL/GJ ELIPGRID-PC Program Version: " + cVerDate
? "File Name.: 11 + cOutFile
? "Created on: " + dtoc(dateO)
? "Input file: " + clnFile + " using ELIPGRID format."
? "Title line: " • memoline(cFileText,,1) ?
? "Target Grid Type Semi-major Axis Gridspace Shape Angle Prob(O)"
? " in Relative Units in Orig Units"

* Get data lines
nlnputLine 2 // Skip title line
do while nlnputLine <= nLines

cDataLine := memoline(cFileText,.nlnputLine)

E-3 2
Code File: EGPCFile.Prg

nSemiMajor := val(substr(cDataLine, 1,10))
nShape := val(substr(cDataLine,11,10))
nAngle := val(substr(cDataLine,21,10))
nGSize := val(substr(cDataLine,31,10))
nGTyp := val(substr(cDataLine,41, A))
nOrientn := val(substr(cDataLine,A5, A))
cTrgtID := substr(c0ataLine,A9, A)

ff nGTyp «= 3
* If rect. grid, get long/short ratio from next line.
nInputLine++
cDataLine memoline(cFileText,,nInputLine)
nRecRatio := val(substr(cDataLine, 1,10))
if nRecRatio *= 1.0

* Trap for a rect. grid with a long/short side ratio of 1.0.
* Use a sq. grid since problems can develop using rect. grid in
* certain cases. This problem found in tech. review by J. Wilson.
nGTyp := 1

endif
endif

if nShape > 1 . 0 .or. nShape < 0.05 .or. nSemiMajor/nGSize > 3.0
* EOF or error in shape or L/G ratio > 3.
exit // Exit do while loop

endif

* | Calculate probability of no hit, P(0) | *
if nOrientn <= 0.0

* Calcualte for a single angle.
nProbNoHit ElipGrid(nSemiHajor,nShape,nAngle,nGSize,nGTyp, ;

nRecRatio)
else

* Calculate for average of multiple angles,
* i.e., "random" choice in Singer's 1972 ELIPGRID.
if nGTyp •= 1

nLrgstAngle 45
elseif nGTyp == 2

* For triangular grid (hexagon).
nLrgstAngle 30

elseif nGTyp «= 3
* For rectangular grid.
nLrgstAngle := 90

endif
* Sun up multiple angles results.
nProbSum := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit :•= ElipGrid(nSemiHajor,nShape,nCrntAngle,nGSize, ;
nGTyp, nRecRatio)

nProbSun := nProbSun • nProbNoHit
next nCrntAngle

* Calculate average.
nProbHoHit := nProbSum/(nLrgstAngte+1)

endif
«. . . -

* Print a line of data.
? padr(cTrgtID,B)
if nGTyp »= 1

?? "Square " + space(8)
elseif nGTyp == 3

?? "Rectangular, " * trans(nRecRatio,"99.9") + "/1 "
elseif nGTyp == 2

?? "Triangular " • space(8)
endif

Code File: EGPCFile.Prg
E-3 2

* Print date fields.
?? trans(nSemiMajor/nGSize,"9999.9999")+ space(6) «• ;

trans(nGSize,"9999.99") + space(7) + ;
trans(nShape,"9.99") + space(3) + ;
iif(nOrientn > 0,"Random",trans(nAngle,"99.9"+" ")) + ;

spaced) «• ;
trans(nProbNoHit,"999.9999")

* Increment line index.
nInputLine++

enddo ?
7 "END OF RUN (OR ERROR IN SHAPE OR L/G RATIO > 3.0)"
set alternate to
set alternate off
setcolor(m->C Help)
scrol1(0,0,4,79)
80,0 to 4,79 double
81,2 say "Output written to file: " • cOutFile
82,2 say "Current subdirectory..: " + disknameO • + dirnameO
83,2 say "Press a key to continue..."
inkey(O)

endif
endif
setcolor(m->C_Normal)
readinsert(lReadlnsert)
return (NIL)

End of Func: FilelriputO

Function GetFileBox(nTR, nLC, nBR, nRC, cDirSpec, IDispBox, cColor, nlnitFile)
* Pop-up file selector, all params. are optional
* Parameter defaults:
* nTR top row •=> to 0
* nLC left col «•» to 0
* nBR bot row ==> to maxrow
* nRC right col « > to nLC + 38
* cDirSpec " > »•••"

IDispBox " > .T.
* ColorVAr •«> "W*/n,n/U"
* nlnitFile « » 1
* Returns:
* if Enter key ==> File name
* if Esc key « > NIL

if error ==> NIL

local cOrgClr
local cFil^Name
local cTmpScn
local i
local aDrctry

mi
NIL
•in

O
local acFileNames := O
local nFileChoice := 0

// Scratch
// Array of dir info
// Array of file names

* If any param. not passed, below assigns defaults as needed.
default nTR to 0
default nLC to 0
default nBR to maxrowO
default nRC to nLC + 38
default cDirSpec to
default IDispBox to .T.
default cColor to (m->C_Help)

default nlnitFile to 1

cTmpScn := savescreen(nTR,nLC,nBR+1,nRC+1) // +1 for shadow lines

if (ISubOir(cDirSpec))

Code File: EGPCFile.Prg
E-3 2

Err H8gBoxC15,"E»',«No .SIF files found in current subdir.")
return (MIL)

endif

cOrgClr := setcolor(cColor)
scrol KnTR,nLC,nBR,nRC)
if (iDispBox)

MenuBox(nTR,nLC,nBR,nRC)
endif
8nTR,nLC+2 say 11 Choose Input File... "

eOretry := directory(cOirSpec)
* Sort array according to file name.
asort(aDretry,,, <|FrstName,NextName| FrstNamelFjiAME] < NextNametF_NAME]J)

* Fill an array with file info to display.
acFileNames O
for i = * to len(aDrctry)

aadd(acFileN antes, ;
padl(aOrctry ti,F_NAME] ,13) + ;
padl(rwntrim(aDrctryti,F S U E D , 8) + ;
padl(dtoc(aOrctryti,F DATED, 9) + ;
padl(substrfaOrctry[i7F_TIME],1,5),6))

next i

* Display files are get choice.
nFileChoice := achoice(nTR+1,nLC+1,nBR-1,nRC-1, acFileNames,,,nInitFile)
if (nFileChoice 1= 0)

* Is 0 if Esc key exit
cFfleName := aOrctry£nFileChoice,F_NAME)
nlnitFile nFileChoice

endif
setcoIor(cOrgCIr)
restscreen(nTR,nLC,nBR+1,nRC+1,cTmpScn)
return (cFileName)
*** End of Func: GetFileBoxO

Function GetFilOUtFile(cInFile, IProceed)
* Returns file output file name entered by user.
* Updates flag IProceed.
* IProceed parameter should be passed in by reference,
static cOutFile := M " // Screen output file
local nChoice :s 1
local GetList := O
local cCurrPath :- n'1
local IDone := .F.
local lOrgReadlns := readinsert(.T.) // Insert mode for read = on.

* Make default outfile name.
cCurrPath := disknameO + • dirname()
* Make output file name, clnFile plus .OUT.
if at(''.".clnFile) =® 0
cOutFile := clnFile + ".OUT"

else
cOutFile := substr(cInFile,1,at(,l.".clnFile)) + "OUT"

endif
* Add trailing \ to path, if needed.
cOutFile := cCurrPath + iif(right(cCurrPath, 1)==''W'"."\") + cOutFile

do while I IDone
els
MenuBox(2,1,8,67)
COutFile := padr(cOutFile,64)
803,03 say "Enter output file name:"
804,03 get cOutFile pict "81"

Code File: EGPCFile.Prg
E-3 2

305,03 say "Current path: " • cCurrPath
keyboard chr(K_END)
read
readinsert(lOrgReadlns)
cOutFile alltrim(cOutFile)

if lastkeyO « K_ESC
IProceed .F.

else
IProceed := .T.
if file(cOutFile)

* Decide whether to overwrite output file.
nChoice :* AlertBox(8,C"rES, Overwrite It", "Enter New Name"), ;

"Warning: Above output file exists!",",,f ;
" Overwrite it? ")

if nChoice " 1
* Overwrite output file,
set alternate to (cOutFile)

elseif nChoice == 2
* Enter new name,
loop

else
* Esc key. Don't open output file.
IProceed := .F.

endif
else

* COutFile does not exist, try to open it.
* First test for valid suWir and valid file name,
if I Subdir(ExtrctPath(cOutFile)) .or. ;

I filevalid(token(cOutFile,":V»
* invalid path or file name.
Err_M8gBox(10f''E,,,,,Error: Invalid path or file name.", ;

"File.: " • cOutfile)
loop

else
* Valid path, open file for output,
set alternate to (cOutFile)

enrtif
endif

endif
IDone := .T.

enddo
return (cOutFile)
»** End of Func: OetFilOutFileO

Function GetScnOutFile(lOutFile, lUriteHeader)
* Returns screen output file name entered by user.
* Updates flags lOutFile, IWriteNeader.
* Pass flags in by reference.
static cOutFile := "" // Screen output file
local nChoice := 1
local GetList := O
local cCurrPath := ""
local IDone := ,F.
local lOrgReadlns := readinsert(.T.) // Insert mode for read = on.

* Default to no outfile flag for Esc key pressed on read.
lOutFile := .F.
lUriteHeader := .F.
cCurrPath := disknameO + • dirnameO

if enpty(cOutFile)
* Default out file is cCurrPath\Screen.Out.
* Add trailing \ to path, if needed.
COutFile sr cCurrPath + iif(right<cCurrPath,1)=="\","",'lV,> + "Screen.Out"

Code File: EGPCFile.Prg
E-3 2

else
* An out file name has been used.
* Default out file is CCurrPath\cOutFile. Note that cCurrPath may have
* changed since cOutFile name created.
cOutFile := substr(cOutFile,rat("\",c0utFile)+1) // Get just the filename.
cOytFile := cCurrPath + iif(right(cCurrPathI1)=="\",""."\") • cOutFile

endif

do while I IDone
lOutFile .F. // Reset for loops
IWriteHeader := .F.
els
MenuBox(2,1,8,67)
cOutFile padr(c0utFile,64)
903.02 say " A Screen Output File ts Optional Esc = None "
305.03 say "Enter output file name:"
306,03 get cOutFile pict "3!"
807,03 say "Current path: " + cCurrPath
keyboard chr(K_END)
read
readinsert(lOrgReadlns)

cOutFile := elltrim(cOutFile)
if lastkeyO 1= K_ESC

* First test for valid subdir and valid file name,
if ! Subdir(ExtrctPeth(cOutFile)) .or. ;

I filevalid(token(cOutFile,":\")>
* Invalid path or file name.
Err_HsgBox(10,"E«,"Error: invalid path or file name.", ;

"File.: » * cOutfile)
loop

elseif file(cOutFile)
* File exists.
* Decide whether to overwrite output file,
nchoiee := AlertBox<8, ;

<"N0, Append to it","YES, Overwrite It", "Enter New Name"}, ;
"Warnina: Above screen output file exists!", "", ;
"Overwrite it?")

if nChoice == 1
* Append to output file.
lOutFile .T.
set alternate to {cOutFile) additive

elseif nChoice =>= 2
* Overwrite output file.
lOutFile := .T.
IWriteHeader := .T.
delete file (cOutFile)
set alternate to (cOutFile) additive

elseif nChoice == 3
* Try again,
loop

else
* Esc key. Don't open output file.
IDone := .T.
loop

endif
else

* If here, we have valid path and file does not exist.
* Open file for screen output.
lUriteHeader := .T.
lOutfile := .T.
set alternate to (cOutFile)

endif
endif
IDone := .T.

enddo

Code File: EGPCFile.Prg
E-3 2

return (cOutFile)
•** End of Func: GetScnOutFileO

readfnsert(.T.
•in

Function SIF_FileInput(nTR, nLC, nlnitFile, cVerDate)
* Gets data ?roin SIF format input file.
* Writes output to clnFile.Out.
* Input: nTR is row for file selection box,
* nLC is left col.
* nlniiFile is initial file to highlight.
* cVerDate is program version date.
* Returns: NIL
local (Readlmert
local clnFile
local cOutFile := ""
local cOataLfne := ""
local nSamiNejor := 0
local nShape :* 0
local nAngle := 0
local nGSize := 0
local nGTyp := 0
local rOrientn := 0
local cTrgtID := ""
local nlnputLine := 0
local nRecRatio := 0
local nLines := 0
local nProbNoHit := 0
local nProbSun := 0.0 //
local nCrntAngle := 0 //
local nLrgstAngle := 0 //
local cFileText := ""
local iProcead .T.
local GetList := O

>
// Input file name

// Ellipse semi-major/semi-minor axis

// Grid size, for Rec. grids, short side
II Grid type, 1=Sq., 2=Tri., 3=Rec.
// Specific angle or "random",
11 if nOrientn > 0 use "random" angles
// Current file input line
// Rec. grid long side/short side ratio
// Lines in input file

Used for "random" angle case
Used for "random" angle case
Used for "random" angle case

// Stops compiler warnings

clnFile :« GetFileBox(nTR,nLC,,,"*.SIF»,,,anInitFHe>
cFileText :• memoread(cInFile)
nLines := mlcount<cFileText)
if lastkeyO K_ESC .or. empty(cInFile)

* Just return, if Esc key pressed,
elseif nLines < 3

* Error, invalid file.
Err Msg8ox(10,"E","Error: Less than 3 tines in file.", ;

"File.: " • clnFile, ;
"Need (1) Title line, (2) Data line, (3) EOF line.")

else
* Input file looks OK, create output file name.
cOutFile :» GetFilOutFile(cInFile, SlProceed)

if IProceed
* Do the workI
els
set alternate to (cOutFiie)
set alternate on
?? "Output from ORNL/GJ ELIPGRID-PC Program Version: " + cVerDate
? "File Name.: " • cOutFile

"Created on: " + dtoc(dateO)
"Input file: " • clnFile * " using SIF format."
"Title line: " • memoline(cFileText,,1)

"Target Grid Type Semi-major Axis
in Relative Units

Gridspace Shape
in Orig Units"

Angle ProbCO)"

* Get data lines
nlnputLine :- 2 // Skip title line
do while nlnputLine <= nLines

cDataLine := alltrim(memoline(cFileText,.nlnputLine))

Code File: EGPCFile.Prg
E-3 2

If left(cDataLine,1) »• "«"
* Conment line.
nlnputLfne-M-
loop

endif
* Parse the data values.
nSemiMajor val(substr(cDataLine, 1,at(" ",c0ataL1ne)>)
cDataLine ltHm(substr(cDataLine,at(" cDataLine)))
nShape := val(substr(cDataLine, 1,at(" cDataLine)))
cDataLine := ltrir,i(substr<cDataLine,at(" ",cDetaL1ne))>
nAngle val(substr(cDataLine, 1,at(" ",cDataLine)))
cDataLine ltr1m(8ubstr(eDataLine,atC cDataLine)))
nGSize :«= val(substr(cDataLine, 1,at(" cDataLine)))
cDataLine := ltrim(substr(cDataLine,atC cDataLine)))
nGTyp := val(substr(cDataLine, 1,at(" «,cDataLine)))
cDataLine := ltrim(substr(cDataLine,atC ".cDataLine)))
nOrientn := val(substr(cDataLine, 1,at(" ",cDataLine)))
cDataLine := ltrim(s'jbstr(cDataLine,at(" ".cDataLine)))
cTrgtID := cDataLine

if nShape > 1.0 .or. nShape < 0.05 .or. nSemiHajor/nGSize > 3.0
* EOF or error in shape or L/G ratio > 3.
exit // Exit do while loop

endif

if nGTyp « 3
* If rect. grid, get long/short ratio from next line.
nInputLine++
cDataLine ltrim(memoline(cFileText,,nInputLine)>
nRecRatio := val(cDataLine)
if nRecRatio •• 1.0

* Trap for a rect. grid with a long/short side ratio of 1.0.
* Use a sq. grid since problems can develop using rect. grid in
* certain cases. Problem found in tech. review by John Wilson.
nGTyp := 1

endif
endif

* | Calculate probability of no hit, P(0) | •
if nOrientn <= 0.0

* Calcualte for a single angle.
nProbNoHit ElipGrid(nSemiMajor,nShape,nAngle,nGSize,nGTyp. ;

nRecRatio)
else

* Calculate for average of nultiple angles,
* i.e., "random" choice in Singer's 1972 ELIPGRID.
if nGTyp == 1

nLrgstAngle := 45
elseif nGTyp == 2

* For triangular grioi (hexagon).
nLrgstAngle := 30

elseif nGTyp == 3
* For rectangular grid.
nLrgstAngle := 90

endif
* Sun up multiple angles results,
nprobsun := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit ElipGrid(nSemiMajor,nShape,nCrntAngle,nGSize, ;
nGTyp, nRecRatio)

nProbsurn := nProbSun • nProbNoHit
next nCrntAngle

* Calculate average.
nProbNoHit := nPro6Sun/(nLrgstAr>gle+1)

endif

Code File: EGPCFile.Prg
E-3 2

• *

* Print a line of data.
? padr(cTrgtlD,8)
if nGTyp " 1

7? "Square " + space(fl)
elseif nGTyp •• 3

7? "Rectangular, " + trans(nRecRatio,"99.9") + "/I "
elseif nGTyp » 2

?? "Triangular • + space(8)
endif

* Print data fields.
7? trans(nSemiMajor/nGSize,"9999.9999")+ space(6) • ;

trans(nGSiie,"9999.99") + space(7) • ;
translnShape,'^^") + space(3) + ;
iif(nOrientn » 0,»Random",trans(nAngle,"99.9"+» ")) • ;

spaced) + ;
t rans(nProbNoH i t,"999.9999")

* Increment line index.
n!nputLine++

enddo ?
? "END OF RUN (OR ERROR IN SHAPE OR L/G RATIO > 3)"
set alternate to
set alternate off
setcolor(m->C Help)
scrol1(0,0,A,79)
80,0 to 4,79 double
S1,2 say "Output written to file: " + cOutFile
32,2 say "Current subdirectory..: " + disknameO + ":" + dirnameo
83,2 say "Press a key to continue..."
inkey(O)

endif
endif
readinsert(IReadlnsert)
return (NIL)
*** End of Func: SIF_FilelnputO
***»**»»*»»*»*«»»»»»»•»»«•»•

Function Subdir(cTestSubdir)
* Returns .T. if cTestSubdir exits, .F. otherwise.
* The directoryO command will return an empty array
* if cTestSubdir does not exist,
local IRtnVal :* .F.
local aDirctry :> O

cTestSubdir alltrim(cTestSubdir)
* directoryO returns an empty array, O , if invalid cTestSubdir.
aDirctry := directory(cTestSubdir, "D") // D to include all subdirs
if len(aOiretry) > 0

IRtnVal :* .T.
endif
return (IRtnVal)

End of Func: SubdirO

End of File: EGPCFile.Prg

E-3 2
Code File: EGPCFile.Prg

/ / sS8S*8k lS I *« I I IS88mSB88BS8BSSaSBS3SSSSSBSSS&SSSS38E38 IBS8SCS. lBSS&SBS8B3SSSSS

// File: EGPCFort.Prg
// For: ELIPGRID-PC, EGPC.Exe.
II Purpose: Provides ELIPGR1P FORTRAN code in Clipper form.
II Note correction to ELIPGRID in RECT subroutine.
II Author: Jim Davidson
II Prog Started: 10/03/93
// Last Mod: 08/26/94
// Note: Functions are arranged in alphabetical order.
// Modifications since validation with Singer's 100 cases:
// 03/30/94 Modified various iv/then/else conditions pointed out in J. Wilson's
// technical review.
// 04/04/94 Modified ElipGrid algor. to deal with triangular grid discontinuity.
// Added 3 levels of correction to the ElipGrid algorithm:
// 0 & Use original 1972 Singer code.
// 1 • Use corrected RECT routine.
II 2 * Use corrected RECT routine and corrected triangular grid
// rrutine (4th order regression). "2" is the default.
// 04/06/94 Added level 3 correction.
// 3 = Do not increment angles of 0.0 to 0.1, as in ELIPGRID.
// 04/07/94 Added code to force P(0) to 0.0 when hit probabilities > 1.0 make
// P(0) negative. See relevant ELIPGRID code just above line 435.
// Tested on file TestlOO.IN, output checked with previous validation.
// Tested on file Test100.SIF, output checked with previous validation.
// 04/15/94 Added comments re: Shape restrictions in ELIPGRID at line 75 that
// are now in the calling code. New L/G ratio restriction noted.
// 04/17/94 Added trap for ANLGLE * 90*, tan(90) sometimes causes runtime error.
II Added to level 3 correction: if ANGLE * 90.0, then ANGLE :* 89.999.
// 08/09/94 Changed name from HotSFort.Prg to EGPCFort.Prg.
// 08/11/94 Correction level flag, m->nElpGrdCor, now forced to 3 to provide
// full correction all the time. 04/07/94 mod. makes level 0 dubious.
//«SSSS«ZSSSSnBSSS2BSSKSBnttSS8S8nigSS8mSS8EBSSeiRESSS&SSEXSSSSS&eESSSSSSS

Function ElipGrid(A, Shape, Angle, GdSpac, Net, Q)
* This function is taken from Singer's 1972 ELIPGRID program.
* It retains the original algorithm, but is modified to remove
* all goto type statements. Many line nunbers have been left in the
* comoents as references back to the original code.
*

* Shape : Shapes > 1.0 are trapped before reaching this function.
* assunptions: Shapes < 0.05 are trapped before reaching this function.
* Trapping all Shapes < 0.05 is somewhat more restrictive than
* ELIPGRID, but should have little practical consequences.
* I would like to see a verification of the math before accepting
* arbitrarily *mall Shapes, JRD, 04/15/94.
* L/G
* assunptions: Code assunes all L/G ratios > 3.0 are trapped. Very large L/G
* ratios, e.g. 6 or 7, have caused problems. No known practical
* need requires them. Singer's largest L/G ratio in his 100
* cases was 2.83. Gilbert's largest L/G ratio in nomographs is 1.0.
*

* Note that the MET parameter described below, is not used in this function.
* Random angle case is taken care of by calling code.
*

* Below is original code documentation.
*

* PROGRAM ELIPGRID
*

* PROGRAM TO DETERMINE THE PROBABLITY OF LOCATING AN ELLIPTIC OR
* CIRCULAR TARGET WITH A SQUARE, HEXAGONAL OR RECTANGULAR GRID

DESCRIPTION OF PARAMETERS

* TARGET' ANY IDENTIFICATION OF TARGET (READ IN "A" FORMAT)

Code File: EGPCFile.Prg
E-3 2

A- LENGTH OF SENIMAJOR AXIS OF TARGET
SHAPE- SHAPE OF TARGET - SEMIMINOR AXIS DIVIDED BY THE SEMIMAJOR
ANGLE- POSITIVE ANGLE BETWEEN LONG AXIS OF TARGET AND GRID

DIRECTION - FOR A SQUARE GRID ANGLE CAN BE ANY ABGLE FROM
0 TO 45 DEGRESS, FOR A HEXAGONAL GRID ANGLE CAN BE ANY
ANGLE FROM 0 TO 30 DEGREES INCLUSIVE, FOR A RECTANGULAR
GRID ANGLE CAN BE ANY ANGLE FROM 0 TO 90 DEGREES
INCLUSIVE AND IS MEASURED FROM THE X AXIS OF THE GRID

GDSPAC- DISTANCE BETWEEN POINTS ON THE GRID (IN THE SAME UNITS AS
"A") - FOR A RECTANGULAR GRID GDSPAC IS THE DISTANCE
BETWEEN POINTS ALONG THE Y AXIS OF THE GRID

NET- GRID TYPE - SQUARE GRID-1.HEXAGONAL GRID-2, RECTANGULAR
GRID-3

MET- SPECIFIC OR RANDOM ORIENTATION - IF HET>0 • RANDOM
0- SHAPE OF RECTANGULAR GRID • LONG(X) AXIS DIVIDED BY THE

SHORT(Y) AXIS

* These locals are integers in ELIPGRID.
loca I J B 0
loca IBLANK •B 0
loca IWARN •S 0
loca I ZONK • a 0
loca H • a 0

* The
loca
I oca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca
loca

se locals are reals in ELIPGRID.
ALPHA
ANP
AQUAR
AREA1
AREA2
AREA3
AREA4
AREA5
AREA6
AREA7
AREA8
AREA9
AREA10
ASQ
AVPRO
AVPR1
AVPR2
B
BALLS
BSQU
C
CAROL
CIM
CNM
D
DJO
DJ1
DMO
DM1
EOU
FIN
FORN
GAME
GRO
HA I
HALFC
HALFD
HALFJO
HALFJ1
HALFMO

• 0
= 0
« 0
• 0
" 0
= 0
« 0
« 0
= 0
« 0
= 0
- 0
= 0
« 0
- 0
- 0
- 0
• 0
« 0
• 0
- 0
» 0
= 0
= 0
= 0
- 0
« 0
- 0
- 0
- 0
- 0
- 0
= 0
- 0
- 0
= 0
• 0
= 0
= 0
= 0

// C/2
// D/2
// JO/2
// etc.

E-3 2
Code File: EGPCFile.Prg

local HALFM1 : = 0
local HORN :« 0
local PET 0
local PI := 0 // constant pi, 3.141592 in cLIPGRID
local POT := 0
local PROBO : = 0 // Prob. of no hits
local PR0B1 := 0 // Prob. of 1 hit
local PROB2 := 0
local RO 0
local RDU 0
local REVA := 0 // For rect. grid, transformed A
local REVANG := 0 // For rect. grid, transformed angle
local REVK := 0 // For rect. grid, transformed SHAPE
local SER : = 0
local SLING :» 0
local SNGLE := 0
local SUMO := 0
local SUM1 := 0
locnt St*>2 := 0
local T := 0
local TIN := 0
local TIZ := 0
local WINE := 0
local XHAPE := 0
local XI 0
local KM := 0
local Y1 := 0
local YI := 0
local YAM 0
local YM := 0
local ZAP := 0

/*** Note 08/11/94, JRD ***/
--- Force full correction level all the time. ---
m->nElpGrdCor :» 3

* Below are assignments made in ELIPGRID.
PI := 3.141592 // Follows original value.
TIZ 0.50000
RDW := SQRT(3.0>*0.5

IZONK IBLANK
A := A/GDSPAC
SLING := A
XHAPE := SHAPE
SNGLE ANGLE
SUM1 := 0.0
SUM2 := 0.0
SUMO := 0.0

•
* AREAS 1 TO 10 ARE RELATIVE AREAS OF OVERLAP IN THE TRANSFORMED NET
* 35
AREA1 := 0.0
AREA2 0.0
AREA3 := 0.0
AREA4 0.0
AREA5 := 0.0
AREA6 := 0.0
AREA7 :- 0.0
AREA8 := 0.0
AREA9 := 0.0
AREA10 := 0.0

* PROBO IS THE PROBABILITY OF MISSING THE TARGET

Code File: EGPCFile.Prg
E-3 2

* PR0B1 IS THE PROBABILITY OF LOCATING THE TARGET ONCE
* PR0B2 IS THE PROBABILITY OF LOCATING THE TARGET 1UO OR MORE TIMES
*

PROBO :c 0.0
PROB1 := 0.0
PR0B2 0.0 *

* DETERMINES THE GRID TYPE
*

* GO TO <65,40,45),NET
If NET 2

***New Code, 04/04/94, JRD»*»
* Handle problem with tri. grid discontinuity near L/G = 0.577.
» A is the L/G ratio.
* If ElipGrid correction level is >= 2, consider 4th order linear regression,
if m->nElpGrdCor >= 2

if (A > 0.50 .and. A < 0.60) .and. (Shape >= 0.B5 .and. Shape < 1.0)
* Use 4th order linear regression results, not ELIPGRID algorithm.
return(Prob0 Regr(A,Shape))

endif
endif
End New Code, 04/04/94
*

* HEXAGONAL NET
* 40
FIN : = RDU
* IROT 30 not needed in this function.
ZAP 6.0
BALLS := 0.57735
* GO TO 75

elseif NET « 3

* RECTANGULAR NET
*

* 45 IF OiROT) 50,50,60
*

* READ SHAPE OF RECTANGULAR GRID
*

* 50 READ (IREAD,55) O
* 55 FORMAT (F10.5)
* 60 CALL RECT(SLING,XHAPE,ANGLE,Q,REVK,REVA,REVANG) GRID1035
* Argunent SLING is never used by subroutine R E C T O .
RECT(XHAPE,ANGLE,Q,8REVK,8REVA,aREVANG)
SHAPE :* REVK
A REVA*SLING
ANGLE := REVANG
* IROT 90 not needed in this function.
* GO TO 70
* 70
FIN : = 1.000
ZAP :« 4.0
BALLS := 0.707107

elseif NET «= 1

* SOUARE NET
*

* 65 IROTs45
* IROT 45 not needed in this function.
* 70
FIN := 1.000
ZAP := 4.0
BALLS 0.707107

endif

* SHAPE restiction below handled by trapping ALL SHAPES < 0.05 in calling

E-3 2
Code File: EGPCFile.Prg

* code. This is more restrictive than SHAPES < 0.05 and A (L/G) > 2 test below.
* ELIPGRID-PC also traps all L/G ratios > 3.0.
* 75 IF (SHAPE-0.05) 80,95,95
* 80 IF (A-2.0) 95,95,85
* 85 WRITE (IPRIN.90) TARGET
* 90 FORMAT (1H ,6HTARGET,A4,45H IS TOO NEEDLE-LIKE AND LONG FOR THIS P
* 1ROGRAM)
* GO TO 20 ***

• 95 IF (SHAPE-1.0) 140,115,100 Note: 100 terminates.
* SHAPES > 1.0 or < 0.05 are not allowed to come in to ElipGridO.

if SHAPE » 1.0

* CIRCLE
ASQ := A**2 // 115
* IF (A-TI2) 120,120,125
if A - TIZ <= 0.0

PROB2 :* 0.0
PROB1 :c PI*AS0/FIN
PROBO :« 1.0-PR081
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO : = iif(PROBO < 0.0, 0.0, PROBO)
" • E n d New Code, 04/07/94***

// Top, left STOP in Fig. 7 flowchart
* 1st return // (Singer and Wickman 1969)
return(PROBO) // In JRD notes as STOP 2

else
* IF (A-BALLS) 130,135,135 // 125
if A-BALLS < 0

CIM := ACOS(TIZ/A) // 130
PROB2 :« ZAP*(ASO*CIH-TIZ*SORT(ASO-0.25»/FIN
PROB1 := PI*AS0/FIN-2.0*PR062
PROBO := 1.O-PROBI-PR0B2
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO : = iif(PROBO < 0.0, 0.0, PROB0)
End New Code, 04/07/94

* 2nd return
return(PROBO)

else

* IF THE RADIUS OF THE CIRCLE IS GREATER THAN 0.7071 THE PROBABILITY
* OF MISSING IS ZERO AND PROB1 AND PROB2 ARE SET EQUAL TO 9. AS
* FLAGS
*

PROB1 := 9.0 // 135
PROB2 := 9.0
PROBO := 0.0
* 3rd return
return(PROBO)

endif
endif

elseif SHAPE < 1.0 *

* ELLIPSE
*

B := A*SHAPE // 140

* B IS THE RADIUS OF THE CIRCLE IN THE TRANSFORMED NET

Code File: EGPCFort.Prg
E-38

* IF (A-TIZ) 145,145,150
if A-TIZ <" 0.0

PROB1 PI*A*B/FIN // 145
PROB2 0.0
PROBO 1.0-PROB1
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0> negative.
* See relevant ELIPGRID code just above code line 435.
PROBO iif(PROBO < 0.0, 0.0, PROBO)
End New Code, 04/07/94

* 4th return
return(PROBO) // Top, right STOP in Fig. 7 flowchart

endif // (Singer and Wickman 1969)
// In JRD notes as STOP 1

New Code, 04/06/94, JRD
* Handle 0.0 angle being incremented to 0.1.
if m->nElpGrdCor < 3

* lF(ANGLE-O.I) 155,155,160 // 150
if ANGLE-0.1 <= 0.0

• ALPHA IS THE ANGLE IN RADIANS
*

ANGLE :- ANGLE+0.1 // 155
endif

else
* Level 3 correction below does not increment 0.0 to 0.1,
* but does make sure the angle is positive.
ANGLE := abs(ANGLE)

endif
End New Code, 04/06/94

ALPHA := ANGLE/57.295779 // 160
CNM := 1.0-SHAPE**2
*

* C,D,DJ1,DJ0,DM1,DM0 ARE DISTANCES BETWEEN CIRCLES IN THE
* TRANSFORMED NET .
*

C := SQRT(1.0-CNM*COS(ALPHA)**2)

* GO TO <170,165,170),NET // 164
if NET « 2

* 165 below.
Y1 := 3.(KSHAPE**2-2.0*CNH*SlN(ALPHA>**2-£tiH*4.0*FlN*SlN<ALPHA>*COS(ALPHA}
D := SQRT(Y1)*0.5000

elseif NET « 1 .or. NET 3
D := SQRT(1.0-CNM*SIN(ALPHA)**2)// 170

endif

BSQU :* B**2 // 175
FORN := C*C
HORN D*D
UINE := FIN*SHAPE
HALFC := C*0.50
HALFD := D*0,50

* IF (B-HALFC) 185,185,180 II 179
if B-NALFC > 0.0

EOU := ACOS(HALFC/B) // 180
AREA1 := 2.0*(BSQU*EOU-HALFC*SQRT(BSQU-HALF C**2))

elseif B-HALFC <= 0.0
AREA1 := 0.0 // 185

endif

* IF (B-HALFD) 200,200,195
if B-HALFD > 0.0

/ / 190

Code File: EGPCFile.Prg
E-3 2

HAI ACOS(HALFD/B) // 195
AREA2 := 2.0*<BSQU*HAl-HALFD*SaRT(BSQU-HALFD**2))

else
AREA2 := 0.0 // 200

endif

k IF (A-BALLS) 210,210,215 // 205
if A-BALLs <= 0.0

PROB2 :« (AREA1+AREA2)/UINE // 210
PROB1 P1*BSQU/UINE-2.0*PR0B2
PROBO := 1.0-PROB 1-PROB2
* 5th return
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO iiftPROBO < O.O, 0.0, PROBO)
•••End New Code, 04/07/94***

rtturn(PROBO)

else
* IF (ANGLE) 220,220,225
if ANGLE <= 0.0

C := C+0.05
endif
CAROL := C*0

H Center, left STOP in Fig. 7 flowchart
// (Singer and Wickman 1969)
// In JRD notes as STOP 3

// 215

/ / 220

!(225

T := ASIN(UINE/CAROL)

* IF (ANGLE) 235,230,235
if ANGLE » 0.0

DJ1 := SORT(FORN+HORN) // 230
DJ0 := 5.0

* R0 IS THE RADIUS NECESSARY FOR THE TARGET TO BE HIT UITH CERTAINTY
*

R0 := DJ1/2.0
else

*I=1.0+(D*COS(T)/C) // 235
I := int(1.0+(D*COS(T)/C)) // 235 modified with into
• IF (1-1) 240,240,245
if 1-1 «= 0.0

DJ1 := SQRT((F0RN+H0RN)-2.0*CAROL*COS(T))
DJ0 :« 5.0
R0 := DJ1/(2.0*SIN(T))

else
XI := I // 245
YI :» 1-1
DJ1 SORT(XI**2*F0RN+H0RN-2.0*XI*CAROL*COS(T))
DJ0 := SQRT {V1**2* F0RN+HORN - 2. 0* YI*CAROL*COS (T))
RO Dj1*0j0/(2.0*D*SIN(T))

endif
endif

endif

* 250 IF (B-R0) 260,255.255
if B-RO >= 0.0

PROB1 := 9.0 // 255
PR0B2 := 9.0
PROBO := 0.0
New Code, 04/07/94, JRD
* Handle cases where a hit prob. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO := iif(PROBO < 0.0, 0.0, PROBO)
End New Code, 04/07/94

Code File: EGPCFile.Prg
E-3 2

* 6th return
return(PROBO) 11 Bot., right STOP in Fig. 7 flowchart

endif // (Singer and Uickman 1969)
// In JRD notes as STOP 4

HALFJ1 := DJ1»0.50 // 260
HALFJO :« DJ0*0.50

* Below is CIRCLE A on flowchart Fig. 7. (Singer and Uickman 1969).
* IF (B-HALFJ1) 270,270,265
if B-HALFJ1 > 0.0

GRO :» ACOSCHALFJ1/B) // 265
AREA3 2.0*(BSOU*GRO-HALFJ1*SQRT(BSOJ-HALFJ1<"2))

else
AREA3 0.0 // 270

endif

* 275 IF (B-HALFJ0) 285,285,280
if B-HALFJO > 0.0

PET := ACOS(HALFJO/B) // 280
AREA4 := 2.0*(BSQU*PET-HALFJO*SQRT(BSQU-HALFJO**2))

else
AREA*. := 0.0

endif

* 290 H=1.0+C2.0*D*COS(T)/C)
M := int(1.0*(2.0*D*COS(T)/C)) // 290 modified with i n t o .
YM := M-1
XM : = H

* IF (M-1) 295,295,300
if M-1 <« 0.0

DM1 := SORT(F0RN+H0RN*4.0-4.0*CAROL*COS(T)) // 295
DM0 :« 5.0

else
DM1 := SORT(XM**2*F0RM*4. 0*H0RN -4.0*CAROL*C0S(T)) // 300
DMO SORT(YH**2* FORM+4.0*H0RN-4.0*CAROL*COS(T))

endif

HALFM1 := DM1*0.50 // 30'j
HALFM0 :* DH0*0.50 / * * *

IF (HALFM1-DJ1) 310,325,310
310 IF (HALFM1-DJ0) 315,325,315
315 IF (HALFM0-DJ1) 320,325,320
320 IF (HALFM0-DJ0) 330,325,330
replaced with below:

if HALFM1 « DJ1 .or. ;
HALFM1 « DJ0 .or. ;
HALFM0 « DJ1 .or. ;
HALFM0 DJ0
AREA5 :* 0.0 // 325
AREA6 0.0

else
* 330 IF (B-HALFM1) 340,340,335
if B-HALFM1 > 0.0

YAM :* AC0S(HALFM1/B) // 335
AREAS ;= 2.0*(BSQU*YAM-HALFM1*SORT(BSQU-HALFM1*»2))

else
AREA5 := 0.0 // 340

endif

* 345 IF (B-HALFM0) 355,355,350
if B-HALFM0 > 0.0

GAME := ACOS(HALFMO/B) // 350

Code File: EGPCFile.Prg
E-3 2

AREA6 :» 2.0*(BSQU*GAME-HALFM0*SQRT(BSQU-HALFM0**2))
else

AREA6 := 0.0 // 355
endif

endif

* 360 IF (B-DJ1) 370,370,365
if B-DJ1 > 0.0

SER :« AC0S(0J1/B) // 365
AREA7 := 2.0*(BSOU*SER-DJ1*SQRT(BSQU-DJ1**2))

else
AREA7 := 0.0 // 370

endif

* 375 IF (B-DJO) 385,385,380
if B-DJO > 0.0

AQUAR :» ACOS(OJO/B) // 380
AREAS 2.0*(BSQU*AQUAR-DJ0*SQRT(BSQU-DJ0**2))

else
AREAS 0.0 // 385

endif

* 390 IF (B-C) 400,400,395
if B-C > 0.0

POT ACOS(C/B) // 395
AREA9 := 2.0*(BSQU*POT-C*SQRT(BSQU-FORN))

else
AREA9 := 0.0 // 400

endif

* 405 IF <B-D) 415,415,410
if B-D > 0.0

TIN ACOS(D/B) // 410
AREA10 := 2.0*(BSQU*TIN-D*SQRT(BSQU-HORN))

else
AREA10 :« 0.0 // 415

endif

PR0B2 :* CAREA1+AREA2+AREA3+AREA4+AREA5+AREA6-AREA7-AREA8-AREA9-AREA10)/WINE
PR0B1 PI*BSQU/UINE-2.0*PROB2-(AREA7+AREA8+AREA9+AREA10)/UINE
PROBO := 1.0-PROB1-PROB2
•••New Code, 04/07/94, JRD***
* Handle cases where a hit prcb. is > 1.0, thus making P(0) negative.
* See relevant ELIPGRID code just above code line 435.
PROBO iif(PROBO < 0.0, 0.0, PROBO)
End New Code, 04/07/94

* 7th return
return(PROBO)

endif

* Error return, should never get here.
* 8th return
return(-l)
*** End of Func: ELIPGRIDO

// Bot., right STOP in Fig. 7 flowchart
// 2nd page (Singer and Wickman 1969)
// In JRD notes as STOP 5

Function Prob0_Regr(nLtoG, nShape)
* Determine prob. of missing, P(0), by using a 4th order polynomial regression.
* The regression coefficients were determined using SigmaPlot 5.01 and data
* sets with the values near the discontinuity removed.
* Input: nltoG Semi-major axis to grid size ratio.
* nShape Semi-minor axis to semi-major axis ratio.
* Output: ProbO Prob. of missing target.
* Errors: ff nLtoG or nShape out of applicable range, returns 9.

E-3 2
Code File: EGPCFile.Prg

local nRtnVal :• 0
local nOO, nBl, nB2, nB3t nB4 // digression coefficients
* Check L/G ratio for correct range,
if nLtoG > 0.50 .and. nLtoG < 0.60

do case
case nShape >= 0.85 .and. nShape < 0.86

* Will use regr. coeffs. calculated with nShape « 0.85.
* Any shape < 0.85 did not appear to need regression.
nBO :«= 0.8736
n81 -5.8080
nB2 39.1737
nB3 :« -95.8914
nB4 :•= 71.2386

case nShape >= 0.86 .and. nShape < 0.88
* Will use regr. coeffs. calculated uith nShape == 0.87.
nBO := -1.5907
nB1 := 13.4531
nB2 := -16.2801
nB3 -26.7985
nB4 := 39.9151

case nShape »= 0.88 .and. nShape <0.92
* Will use regr. coeffs. calculated uith nShape == 0.90.
nBO :«= -8.7963
nB1 := 71.1939
nB2 := -187.7169
nB3 := 195.8430
nB4 := -66.7013

case nShape >= 0.92 .and. nShape < 0.94
* Will use regr. coeffs. calculated with nShape == 0.93.
nBO -19.3100
nBl 156.3713
nB2 := -443.8610
nB3 := 533.8017
nB4 := -231.6841

case nShape >* 0.94 .and. nShape < 0 . 9 6
* Will use regr. coeffs. calculated with nShape == 0.95.
nBO -27.4195
nB1 :* 222.4814
nB2 :« -644.0422
nB3 := 800.0227
nB4 := -362.8194

case nShape >= 0.96 .and. nShape < 0.98
* Will use regr. coeffs. calculated uith nShape == 0.97.
nBO -35.7606
nBl :« 290.7372
nB2 -851.5507
n63 := 1077.1734
nB4 := -499.9610

case nShape >= 0.98 .and. nShape < 1.00
* Will use regr. coeffs. calculated with nShape •• 0.99.
nBO := -44.0006
nB1 := 358.3580
nB2 := -1057.7388
nB3 := 1353.4032
nB4 -637.0739

otherwise
* Error: nShape out of range.
nRtnVal 9

endcase
else

* Error: nLtoG ratio out of range.
nRtnVal := 9

endif
if nRtnVal 9

* Calculate 4th order polynomial.
nRtnVal :* nBO • nB1 * nLtoG • nB2 • nLtoG'2 + nB3 * nLtoG"3 + nB4 * nLtoG*4

Code File: EGPCFile.Prg
E-3 2

* Round any neg. values up to 0.0.
nRtnVal iif(nRtnVal<0.0, 0.0, nRtnVal)

endif
return (nRtnVal)
*** End of Func: ProbOJtegrO
*»»•»»•»•»**•*»••»**»»**»»***»»«**•»**»***»»*

Funct i on RECT(SHAPE,ANGLE,Q,REVK,REVA,REVANG)
* This function is taken from Singer's 1972 ELIPGRID program.
* It retains the original algorithm, but is modified to remove
* all goto type statements. Many line nunbers have been left in the
* comments as reference! back to the original code.
* Note the comment below regarding apparent error in the 1972 ELIPGRID code.
* RECT 15
* RECT 25
* THIS SUBROUTINE REDUCES THE RECTANGULAR POINT NET TO A SQUARE RECT 35
* POINT NET WITH AN AFFINE TRANSFORMATION RECT 45
* RECT 55
local AQ
local SQK
local TIS
local ALPHA
local COAL
local SIAL
local T

AQ Q*Q
SQK :• SHAPE**2
TIS :• AQ*SQK

New Code, 04/06/94, JRD
* Handle 0.0 angle being incremented to 0.1.
if m->nElpGrdCor « 3

* IF (ANGLE-0.1) 5,5,10 RECT 95
if ANGLE-0.1 0.0

ANGLE : = ANGLE+0.1 // 5
endif

else
* Level 3 correction below does not increment 0.0 to 0.1,
* but does make sure the angle is positive.
ANGLE :* abs(ANGLE)
* Added ANGLE « 90" trap to level 3 correction, 04/17/94.
ANGLE :* iif(ANGLE*>90.0, 89.999, ANGLE)

endif
•••End New Code. 04/06/94***

ALPHA := ANGLE/57.295779 // 10
COAL := C0S(ALPHA)**2
SIAL := SIN(ALPHA)**2
T :• SQRT(((1.0-TIS)*COAL-(AQ-SQK)*SIAL)**2+4.0*AO*(1.0-SQK)**2*SIAL*COAL)
REVK :* ((1.0+TIS)*C0AL*(AQ+SQK)*SIAL-T)/(2.0*Q*SHAPE)
* Below appears to be an error in the original code.
* See (Singer and Wickman 1969, p. 16) for the original math formula.
* REVANG»(ATAN(2.0*Q*(1.0-SQK)*TAN(ALPHA)/((AQ-SQK)*TAH(ALPHA)**2*TIRECT 175
* S-1.0))/2.0)*57.295779 RECT 185
if m->r£lpGrdCor •• 0

* UBe original formula.
REVANG :« (ATAN(2.0*Q*(1.0-SQK)*TAN(ALPHA)/((AQ-SQK)*TAN(ALPHA)**2 * ;

TIS-1.0))/2.0)*57.29577V
else

* Next line is corrected formula.
REVANG :« (ATAN<2.0*Q*(1.0-SQK)*TAN(ALPHA)/(1.0-TIS-(AC-SQK)* ;

TAN(ALPHA)**2))/2.0)*57.295779
endif
REVA := SQRT(SHAPE/(Q*REVK))
REVANG :« ABS(REVANG) // RECT 205

Code File: EGPCFile.Prg
E-3 2

* The following optional code matches (Singer and Ulckman 1969, 16)
* and can be used In place of line RECT 205 above. However, no differences
* in output values were seen when testing Singer's 30 rect. grid examples after
* this code was substituted for line RECT 205 (in ELIPGRD2.FOR).
* if (tan(2.0 • REVANG) >« 0.0) then
* REVANG «= aba(REVANG)
* else
* REVANG « 90.0 - abs(REVANG)
* endif
RETURN (Nil)
*** End of Func: RECTO

*** End of File: EGPCFort.Prg

Code File: EGPCFile.Prg
E-3 2

//SSB8ISS8SBCSUltllB8S8881B3Sacl>8IB888BB8SllSB8S8BaSSSZ9BBSS&&S&ESSS8BBS28ISSS

/ /
/ /

II
/ /

File:
For:

11 Purpose:
// Author:

Prog Started:
Last Mod:

II Note:
// Modifications:
// 08/09/94 Changed name from HotSGrph.Prg to EGPCGrph.Prg.

09/02/94 Grid cell area for triangular grid now calculated from rhombus.
This adjusts the EPA formula for number of samples for tri. grid.

09/06/94 Added "Number Samples" to graphics output data file.

EGPCGrph.Prg
ELIPGRID-PC, EGPC.Exe.
Provides code for "Write Cost-based Graph Data" option.
Jim Davidson
04/22/94
09/06/94
Functions are arranged in alphabetical order.

/ /
/ /
II
/ / s H S 3 E 3 8 a i K B S B Z I M I t S E 3 E » B B E U (i n 8 S » S 8 a S S S K S 3 S S 3 S S a B m i I S S S S S S « 3 B S 3 & Z S 3 C S S a S S

11 Include files.
// Clipper supplied include files,
•include "Directry.Ch"
•include "Inkey.Ch"
•include "Set.Ch"
•include "Setcurs.Ch"
•include "Box.Ch"

// File info definitions
// Key definitions
// s e t O definitions
II setcursorO related
// Box drawing constants

// ORNL developed include files,
•include "EGPCMax.Ch" // Hot spot maximums for screen I/O

// Simple graph demo related,
•define GPH DEMO
•undef GPH_DEMO

// Defines
•define nPI 3.1415926
•define nSC CONVERGED 0
•define nSC~PAST MAXI 1
•define nSC~AB0RTED 2
•define nSC DATA.RNGE 3
•define nSC~UNKNOWN 99

Not for external use.
// Optional simple graph demo
// Add or remove * as 1st char of line
// to define or undefine graph demo.

// Note that ELIPGRID uses 3.141592
/ /
/ /

Status code:
Status code:

// Status code:

Converged
Past max iterations
Esc key abort

// Status code: Data out of range
// Status code: Unknown error

// User-defined coimiand
•xcomnend DEFAULT <TheParam> TO OefaultVal* => ;

IF (<TheParam> == NIL); <TheParam>:=<DefaultVal>; ENDIF

Function GetCostProbCnDesirdCost, nSemiMajor,nShape,nAngle,cGridType,nRecRatio,;
nSampleArea, nSampleCost, nCostClst, nGSizeFnd, nPrbHtFnd, nNunSampfteq)

* Finds the cost-based probability for a given set of parameters.
* Returns results through 4 variables passed in by reference:
* nCostClst * Closest cost found to nDesirdCost
* nGSizeFnd = Corresponding grid size found
* nPrbHtFnd = Corresponding prob. found
* nNLfflSampfteq = Corresponding number of samples required
* Above vars must be passed in by reference, use 8.
* Returns status codes:
* Converged, prob OK = nSC CONVERGED
* Failed to converge = nSC~PAST MAXI
* Aborted with Esc e nSC~ABORTED
* Data out of range = nSC~DATA RNGE
* Unknown error * nSCJJNKNOUN

•define nMAXC_ITERS 25 // Max cost search iterations

* Below are grid size restrictions to stay in reasonable search,
local nSmalGrid := 0.33334 * nSemiMajor
* Below same as L/G of 0.10.
local nLrgeGrid := 10.0 * nSemiMajor

Code File: EGPCFile.Prg
E-3 2

* Initialize flags.
local IConverg 8 .F. / / .T. if search converges
local lAborted B • F. / / ,T. if Esc key abort
local IPastHaxIt « .F. / / .T. if past max iterations
local lOKProb • .T. / / .F. if problem can't be solved
local nRtnStatus S 0 / / Status code to return

local nGTyp = 1 / / Grid type requested, ELIPGRID form
local nGLong S 0 / / Long side for rec grids
local nSI Counter s 0 / / Search iterations counter
local nRACounter = 0 / / Random angle counter
local nProbNoHit = 1 / / Probability of zero hits, P(0)
local nCrntAngle = 0 If Current angle, used for "random" angle
local nLrgstAngle = 0 / / Largest angle, used for "random" angle
local nProbSun B 0 / / Sunning var., used for "random" angle
local nNoHitSmlGrd S 1 If P(0) for small grid
local nNoHitLrgGrd X 1 H P(0) for large grid
local nlntrGrid E 0 / / Interpolated grid size
local nNoHitlntGrd S 1 / / P(0) for interpolated grid
local nDiffCost • 0 II Current diff. from desired cost
local nCurrCost = 0 If Current cost
local nGridCellArea = 0 II Area of one grid cell
local nNunSanples = 0 II Nunber of samples required

• | pjfyj grid 8 ^ z e f o r g l v e n C 0 8 t | •
918,38 say "Current point iteration: of " • NunTrim(nHAXC_lTERS) +" max."

* Get nGTyp, i.e., ELIPGRID grid type code.
nGTyp :«= iif<cGridType««"S",1,iif(cGridType»"R",3,2»

* Get random largest random angle.
if nAngle •« 99.0

819,38 say "Random angle iterations: 11
nLrgstAngle iif{cGridType«"S",45,iif(cGridType""R",90,30))

endif

* Start searching.
do while I IConverg .and. I (Aborted .and. 1 IPastHaxIt .and. lOKProb

nSlCounter++ // Increment search counter
818,63 say str<nSICounter,3)+ « of « + ;

ltrim(str(nHAXC_ITERS)) • « max."

• GET PROB. AND COST FOR LARGE GRID,
if nAngle I* 99.0

* Non-random single angle case.
nNoHitLrgGrd := ElipGrid(nSemiMajor,nShape,nAngle.nLrgeGrid, ;

nGTyp, nRecRatio)
else

* Sum up multiple angle results, random case.
nProbSun := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit :* ElipGridCnSemiHajor, nShape, nCrntAngle, ;
nLrgeGrid, nGTyp, nRecRatio)

nProbSun := nProbSum + nProbNoHit
nRACounter++
819,63 say ltrim(str(nRACounter)) + " »
* Esc key abort, only used with random angles,
if inkeyf) == K_ESC

IAborted := .T.
exit // exit for/next loop

endif
next nCrntAngle
if IAborted

loop
endif

Code File: EGPCFile.Prg
E-3 2

* Calculate average.
nNoHitLrgGrd nProbSum/(nLrgstAngle+1)

endif

* Check if we met cost criteria with large grid.
* First do area calculations,
if cGridType « »R"

* Rect. jrid.
nGlong :« nLrgeGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong nLrgeGrid

endif
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volune 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType »= »T»

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A * height * base = sin(60*) * base * base = 0.87 * base"2.
nGridCellArea := 0.866025404 * nLrgeGrid * nLrgeGrid

else
* Sq. or rec. grid.
nGridCellArea := nLrgeGrid * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNunSanples :* ceiling(nSampleArea/nGridCellArea)

nCurrCost := nNumSamples * nSampleCost

* Can we quit yet?
nDiffCost abs(nDesirdCost - nCurrCost)
if rOiffCost < nSampleCost

* Met error criteria with current large grid.
* Exit grid search.
nCostClst :* nCurrCost
nGSizeFnd nLrgeGrid
nPrbHtFnd := 1.0 - nNoHitLrgGrd
nNumSampReq := nNunSamples
iConverg := .T.
loop

endif

* Uill grid size need to be larger than 3 * semi-major axis?
* If so, an L/G ratio > 3.0 would be required.
* If first search with largest grid can't get down to the
* desired cost, no need to search farther.
if nSICounter »= 1 .and. (nCurrCost > nDesirdCost)

* Ouit searching.
lOKProb :« .F.
loop

endif

* GET PROB. FOR SMALL GRID,
if nAngle l« 99.0

* Non-random single angle case.
nNoHitSmlGrd := ElipGrid(nSemiMajor,nShape,nAngle.nSmalGrid, ;

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.
nProbSun :« 0.0
for nCmtAngle « 0 to nLrgstAngle

nProbNoMif := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;

Code File: EGPCFile.Prg
E-3 2

nSmalGrid, nGTyp, nRecRatio)
nProbSun rProbSum + nProbNoHit
nRACountepM-
819,63 say ltrlm(str(nRACounter)> + " "
* Esc key abort, only used with random angles,
if inkeyC) •• K ESC

lAborted :« 7t.
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHltSmlGrd := nProbSun/(nLrgstAngle+1)

endif

* Check if we met cost criteria with small grid.
* First do area calculations,
if cGridType •• "R"

* Rect. grid.
nGlong :«= nSmalGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong :« nSmalGrid

endif
* Required nurber of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volune 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area.
If cGridType •• "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A - height * base * sin(60*> * base * base * 0.87 * base*2.
nGridCellArea 0.866025404 * nSmalGrid • nSmalGrid

else
* Sq. or rec. grid.
nGridCellArea nSmalGrid * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds nunber of samples up.
nNumSamples :» ceiling(nSampleArea/nGridCellArea)

nCurrCost :«= nNumSamples * nSampleCost

* Can we quit with current small grid?
nDiffCost :* abs(nOesirdCost - nCurrCost)
if nDiffCost < nSampleCost

* Met error criteria with current small grid.
* Exit grid search.
nCostClst := nCurrCost
nGSizeFnd nSmalGrid
nPrbHtFnd := 1.0 - nNoHitSmlGrd
nNumSampReq nNumSamples
IConverg := .T.
loop

endif

* Will grid size need to be smaller than 1/3 * semi-major axis?
* If so, an L/G ratio < 1/3 would be required.
* If first search with smallest grid can't get up to the
* desired cost, no need to search farther.
if nSICounter «• 1 .and. (nCurrCost < nOesirdCost)

* Quit searching.

E-3 2
Code File: EGPCFile.Prg

lOKProb :• .F.
loop

endif

* Bisection method, (Gerald and Uheately 1989, 7)
nlntrGrid :« (nLrgeGrid • nSmalGrid)/2

* GET PROB. AND COST FOR INTERPOLATED GRID,
if nAngle I* 99.0

* Non-random single angle case.
nNoHitlntGrd ElipGrid(nSemiMajor,nShape,nAngle,nlntrGrid, ;

nGTyp, nRecRatio)
else

* Sum up multiple angle results, random case.
nProbSun :« 0.0
for nCrntAngle • 0 to nLrgstAngle

nProbNoHit := ElipGrid(nSemiHajor, nShape, nCrntAngle, ;
nlntrGrid, nGTyp, nRecRatio)

nProbSun := nProbSun + nProbNoHit
nRACounter*+
819,63 say ItrimCstr(nRACounter)) + " »
* Esc key abort, only used with random angles,
if inkeyO «= K_ESC

I Aborted 7T .
exit // exit for/next loop

endif
next nCrntAngle
if IAborted

loop
endif

* Calculate average.
nNoHitlntGrd := nProbSun/(nLrgstAngle+1)

endif

* Check if we met cost criteria with interpolated grid.
* First do area calculations,
if cGridType •«= "R"

* Rect. grid.
nGLong nlntrGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong :« nlntrGrid

endif
* Required nuifcer of samples is approximate.
* Baaed on (EPA. 1B89. "Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils arid Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType «= "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A * height * base * sin(60*) * base * base = 0.87 * base'2.
nGridCellArea 0.866025404 * nlntrGrid * nlntrGrid

else
* Sq. or rec. grid.
nGridCellArea := nlntrGrid * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds nuifcer of samples up.
nNumSamples ceiIing(nSampleArea/nGridCelIArea)

nCurrCost :» nNunSamples * nSampleCost

* Can we quit with current interpolated grid?
nDiffCost := absCnDesirdCost - nCurrCost)

Code File: EGPCFile.Prg
E-3 2

if nDiffCost < nSampleCost
• Met error criteria with current interpolated grid.
* Exit grid search.
nCostClst :« nCurrCost
nGSizeFnd nlntrGrid
nPrbHtFnd :* 1.0 - nNoHitlntGrd
nHumSampReq :« nNunSamples
IConverg := .T.
loop

endif

* Update large or small search grid sizes.
* This is a minor difference from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing about 0.0.
* Ue look at whether our current fCx) for the interpolated grid
* is larger than the desired value,
if nCurrCost > nDesirdCost

nSmalGrid : = nlntrGrid
else

nLrgeGrid := nlntrGrid
endif

* Have we reached max iterations?
if nSlCounter « nHAXCJTERS

* Failed to converge.
IPastMaxIt .T.
loop

endif
enddo

* Determine return code,
if IConverg

* Converged, probability OK.
nRtnStatus :« nSC_C0NVERGED

elseif IPastHaxIt
* Failed to converge.
nRtnStatus :« nSC PAST MAXI

elseif lAborted
* Aborted with Esc.
nRtnStatus := nSC ABORTED

elseif ! lOKProb
* Data out of range.
nRtnStatus := nSC_DATA_RNGE

else
* Unknown error.
nRtnStatus :« nSC_UNKNOUN

endif

return (nRtnStatus)
*** End of Func: GetCostProbO

Function GetGphDataFile()
* Returns screen output file name entered by user.
* Errors: Checks and warns for valid subdir and file names.
* Returns NIL on Esc key abort.
static cOutFile
local nChoice
local GetList
local cCurrPath
local IDone
local cRtnVal

• = IIVI
1 o
mi
.F.
cOutFile

// Screen output file

local lOrgReadlns := readinsert(.T.)
// Return value, file or NIL
// Insert mode for read = on.

* Default to no outfile flag for Esc key pressed on read.

E-3 2
Code File: EGPCFile.Prg

cCurrPath := disknameO + ":" • dirnameO

if empty(cOutFile)
* Default out file is cCurrPath\Screen.Out.
* Add trailing \ to path, if needed.
cOutFile s« cCurrPath + iif(right(cCurrPath,1)*="\","",»V) + "Graph.Dat"

else
* An out file name has been used.
* Default out file is cCurrPath\cOutFile. Note that cCurrPath may have
* changed since cOutFile name created.
cOutFile s« subatr(cOutFile,rat("\",c0utFile)+1) // Get just the filename.
cOutFile :« cCurrPath + iif(right(cCu^rPBth,1)==''V,,"",,,V,) • cOutFile

endif

do while I IDone
els
MenuBox(2,1,8,67)
cOutFile := padr(cOutFile,64)
904,03 say "Enter graphics data file name:"
905,03 get cOutFile pict "9!"
806,03 say "Current path: " • cCurrPath
907,03 say "Esc = Abort"
keyboard chr(K_END)
read
readinsertClOrgReadlns)

cOutFile : = alltrim(cOutFile)
if lastkeyO != K_ESC

* First test for valid subdir and valid file name,
if 1 Subdir(ExtrctPath(cOutFile)) .or. ;

I filevalid(token(cOutFile,":\")>
* Invalid path or file name.
Err_MsgBox(10,"E","Error: Invalid path or file name.", ;

"File.: " + cOutfile)
loop

elseif file(cOutFile)
* File exists.
* Decide whether to overwrite output file.
nChoice := AlertBox<8, ("YES, Overwrite It", "Enter New Name">, ;

"Warning: Above graph data file exists!", "", ;
"Overwrite it?",<"YES, Overwrite It", "Enter New Name"))

if nChoice == 1
* Overwrite output file,
delete file (cOutFile)
set alternate to (cOutFile) additive

elseif nChoice E= 2
* Try again,
loop

else
* Esc key. Don't open output file.
IDone := .T.
loop

endif
else

* If here, we have valid path and file does not exist.
* Open file for screen output,
set alternate to (cOutFile)

endif
endif
IDone .T.

enddo
if lastkeyO »* K ESC

* Abort.
cRtnVal := NIL

else
* Return file path\name.

E-3 2
Code File: EGPCFile.Prg

cRtnVal :> cOutFile
endif
return (cRtnVal)
*** End of Func: GetGphDataFi l e O

Function OutGphData(lWriteHeader,cVerDate,cOutFile,cGridType,nRecRatio, ;
nShape, nSemiHajor, nAngle, nSampleArea, nSanrpleCost, nMinCost, ;
nLoopCostl, nLoopCostMax, nCostStepSize, ;
nCostClst, nPrbHtFnd, nGSizeFnd, nNumsampReq, nStatus, cOelim)

* Write out header or cost-based graph data,
local cErr :* •l" // Error msg
local nFrstDL :• 18 // First data line

set console off
set alternate on

if IWriteHeader
* Write the file info header.
?? »# Data starts on line: " + NunTrim(nFrstDL)
? "# Output from ORNL/GJ ELIPGRID-PC Program Version: " + cVerDate
? "# File name.: 11 + cOutFile
? "# Created on: M + dtoc(dateO)
? Current length and area unit6...: " + ;

i i f(m->cBas icllni t » " F "," F eet, ft"',"Meters, m»")
? Grid type chosen : " + ;

iif(cGridType""S«,"Square",iif(cGridType=="T","Triangle","Rectangle"))+;
iif(cGridType«"R"," with long/short side ratio "•NumTrimCnRecRatio), "")

? "# Shape of the elliptical hot spot: " + NunTriml nShape)
? Length of semi-major axis : " + NurTrim(nSemiMajor) • ;

iif<m->cBasicUnft*="F"," ft"," m")
? "0 Angle of orientation to grid....: " + ;

i ifCnAngIe«99.0,"Random", NumTrim(nAngle)+"*M)
? "# Total area to sample : " • NumTrim(nSampleArea) • ;

iif(m->cBasicUnit=="F"," ft'"," m«")
? "# Individual sample cost %: " + ltrim(str(nSampleCost,15,2))
? "# Minimum cost for graph data S: " • ltrim(str(nLoopCost1,15,2)) + ;

" approx."
? Maxinun cost allowed this run..*: " + Urim(str(n(.oopCostMax,15,2)) + ;

11 approx."
? "# Step size for cost values *: " • ltrim(str<nCostStepSixe,15,2))+ ;

" approx."
? "# Total Cost Prob. of"
? "# of Sampling Hitting, P<»1) Grid Size Found Nunber Samples"
7
IWriteHeader :* .F.

else
* Write a line of data.
if nStatus == nSC CONVERGED

? trans(nCostClst, "99999999.99") • cDelim + space(5)
77 transWPrbHtFnd, "9.99999") • cDelim + space(7)
?? trans(nGSizeFnd, "999999.999") + cDelim + space(5)
?? trans(nNunSampReq, "999,999")

else
* Determine error code,
if nStatus •= nSC_PAST_MAXI

cErr :*= "Failed to converge."
elseif nStatus == nSC ABORTED

cErr := "Aborted with Esc."
elseif nStatus == nSC_DATA_RNGE

* Data out of range.
cErr := "Data out of range."

else
cErr :« "Unknown error."

endif
? »## Error in calculating cost: " + cErr

Code File: EGPCFile.Prg
E-3 2

endif
endif

set alternate off
set console on
return (NIL)
*** End of Func: OutGphDataO

Function WriteGphData(cGridType, cVerDate)
* Write cost-based graph data.
•define nMAX_COST_POINTS 250

static nSemiMajor := 2.82
local ntSemiMajor :» nSemiMajor
static nAngle :» 0.0
local ntAngle nAngle
static nRecRatio := 2.0
local ntRecRatio := nRecRatio
static nShape := 1.0
static nSampleArea := 7000
local ntSampleArea := nSampleArea
static nSampleCost := 700
local ntSamplecost nSampleCost
static nMinCost := 200000
local ntHinCost := nMinCost
static nCostlncr := 10
local ntCostlncr := nCostlncr
static cDelim M II
local ctDelim cDelim

static cOutFile "Graph.Dat"

local nGSizeFnd := 0
local nPrbHtFnd := 0
local nCurrCost := 0
local nCostClst := 0
local nNumSampReq := 0

* Misc vars.
local nCotitStepSize := 0
local nLoopCostl := 0
local nLoopCostHax := 0
local nGraphPoint := 0
local IWriteHeader := .T.
local nStatus :« 0
local IDone .F.
local IConverg := .F.
local IAborted := .F.
local IPastMaxIt := .F.
local lOKProb := .T.
local nCol := 0
local nKeyPress := 0
local getlist := O

* For simple graph demo.
#ifdef GPH_DEMO

local ariCostVals := O
local anProbVals := O

•endif

private ntShape := nShape

// Max number of cost-based data values

// Length of semi-major axis
// Temp value
// Orientation angle of hot spot to grid
// Temp value
// Rectangular grid long/short ratio.
// Temp value
// Shape, minor/major axis
// Total area to sample
// Temp value
II Cost for one sample
// Temp value
// Minimun cost for graph
// Temp value
// Cost increment for graph
// Temp value
// A S C I data delimiter
// Tes. -'alue

// Graph data output file

// Grid size found
// Prob. of hit found
// Current cost
// Best estimate of cost
// Number of samples required

/ / loop Step size for cost
U Loop cost 1
// Max loop cost
11 Graph point counter
// Write file header flag
// Status code for graph data file
// Loop flag
// Convergence flag
// Esc key abort
// Exceeded rMAXC_ITERS flag
// Solvable problem specs flag
// Scratch columnO
// User key press
// Stops compiler warnings

// Array of cost values
// Array of prob values

// private for F10 key function

if cGridType *= NIL
* Input error: no grid typ passed if
return (NIL)

Code File: EGPCFile.Prg
E-3 2

endif

* Upcase function argument.
cGridType upper(cGridType)

* Get screen output file.
COutFile GetGphDataFileO
if cOutFile « NIL

* Esc key abort,
return (MIL)

endif

* Display screen title.
Di8pTitle(cGridTypel"U">c0utFile,.T.)

do while I IDone
* Make sure header is available at beg. of each loop.
8 6, 2 say "Shape of the elliptical hot spot..:" ;

get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <= 1.0 .and. ntShape >= 0.05, ;
"Shape must be 2 0.05 and s 1.0.",len(cMAX_Shape>)

8 6,49 say "Shape * short axis/long axis."
8 7,49 say "F10 calculates axis from area." color(m->C_Help}
8 7, 2 say "Length of semi-major axis :" ;

get ntSemiHajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
"Length must be > 0.0.",lenCcMAX Semi Major))

8row(),col() say iif(m->cBasicUnit=="F","ft","m")
8 9,49 say • 99.0° for "random" angles.'

if cGridType «« "R"
* Rectangular grid.
8 8, 2 say "Angle of orientation to grid :" ;
get ntAngle pict cMAX_Angle ;

valid ErrorUDFCntAngle >* 0 .and. ntAngle <= 90.0 .or. ntAngle «= 99,;
"Angle must be 0' to 90* or 99*=random.",lenCcMAX Angle))

8 8,col() say
8 8,49 say "Angle can be 0' to 90*. Use"
8 9, 2 say "Long side/short side ratio :" ;

get ntRecRatio pict cKAX_RecRatio ;
valid ErrorUDF(ntRecRatio > 1 . 0 , ;
"Ratio must be > 1.0.",len(cMAX_RecRatio))

elseif cGridType *= "S"
* Square grid.
a 8, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAXJkngle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
"Angle must be 0' to 45* or 99">random.",len(cMAX Angle))

8 8,col() say "*"
8 8,49 say "Angle can be 0* to 45*. Use"

elseif cGridType == "T"
* Triangular grid.
8 8, 2 say "Angle of orientation to grid ;

get ntAngle pict cMAX.Angle ;
valid ErrorUDF(ntAngle >* 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,;
"Angle must be 0* to 30* or 99*=random.«,len(cMAX Angle))

8 8,col() say "*"
8 8,49 say "Angle can be 0* to 30*. Use"

endif

810, 2 say "Total area to sample :" ;
get ntSampleArea pict cMAX_SampleArea ;
valid ErrorUDF<ntSampleArea>0.0,"Area must be > 0.0",len(cHAX SanpleArea))
8row(),col() say iif(m->cBasicUnit«"F","ft,","m,»)

810,25 say "F10 = Acres" color(m->C Help)

Code File: EGPCFile.Prg
E-3 2

a i l , 2 say "Individual sample cost $:" ;
get ntSampleCost pict cMAX SanpleCost ;
valid ErrorllOF(ntSanpIeCost>0.0,"Cost must be > O.O",len(cMAX_SampleCost))

312, 2 say "Minimum cost for graph data $:" ;
get ntMinCost pict cDESIRD_COST
valid ErrorUOF(ntMinCost >• ntSampleCost, ;
"Total cost must be 2 Sample cost.",len(cDESIRD_COST))

814, 2 say "Graph cost increment, 1-500 times sample cost:" get ntCostlncr ;
pict "999" valid ErrorUDF(ntCostIncr > 0 .and. ntCostlncr <= 500, ;
"Cost increment > 0 and i 400.",2)

815, 2 say "Enter colum delimiter, space or comma best..:" get ctOelim

822 , 0 say "[•"
822,79 say
822.1 to 22,78

823.2 say "Enter = Continue Esc = Abort" + space(44) // erase msg

set key K_F10 to F10JCey()
read
set key K_F10 to
mceyPress~:= lastkeyO

* Abort, Write Data, etc...
do case

case (nKeyPress == K_ESC)
* Esc key pressed
if YN_MsgBox("Abort current data entry session? T/M")

IDone : = ,T.
* Close output file,
close alternate
if filesize(cOutFile) < 22 .and. filesize(cOutFile) > 0

* No data written to this file, erase.
* Note: filesizeO returns a -1 if no file found.
* 22 is just the length of the first line of the header.
* An aborted, new file should be just 1 byte, ASCII 26, Crtl-Z.
delete file (cOutFile)

endif
endif

case (nKeyPress »= K_ENTER .or. nKeyPress == K_CTRL_W)
* Enter key or Ctrl-W pressed. [Ctrl-W currently not documented.]
* Save changes to static vars.
nShape :«= m->ntShape
nSemiMajor := ntSemiMajor
nAngle := ntAngle
nMinCost := ntMinCost
nCostlncr := ntCostlncr
cDelim := ctDelim
nRecRatio := ntRecRatio

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSampleCost

* - | Find probs. for various costs |
scrol1(23,1,23,78)
setcoIor("W+/N*") // Force blinking with *
823,2 say "Calculating"
setcolor(m->C Normal)
nCol := colO+1
822,nCol say " T "
823,nCol say " "
824,nCol say u i "
823,52 say "Esc = Stop Calculations..."
setcursor(SC NONE)

Code File: EGPCFile.Prg
E-3 2

* Get loop cost sizes.
nCostStepSize := nSampleCost * nCostlncr
nLoopCostl := nMinCost // May later add check on nMinCost prob.

// before entering the loop.
// Allow maximun of nMAX_COST_POINTS tries to reach 100% prob. of hit.
nLoopCostMax := nLoopCostl + ((nMAX_COST_POINTS-1) * nCostStepSize)

* Write file header, only pass parameters needed.
0utGphData(9lWriteHeader,cVerDate,cOutFile,cGridType,nRecRatio, ;

nShape, nSemiMajor, nAngle, nSampleArea, nSampleCost, nMinCost, ;
nLoopCostl, nLoopCostMax, nCostStepSize)

* Loop through probabilities for all costs.
917,38 say "Calculating graph point: of " • ;

NumTrim(nMAX_COSTJ>OINTS) • " max."

* For simple graphics demo,
•ifdef GPH_DEMO

anCostVals := O
anProbVals := C>

tendif

for nCurrCost = nLoopCostl to nLoopCostMax step nCostStepSize

* Check prob. for current cost.
917,63 say str(++nGraphPoint,3)
nStatus := GetCostProb(nCurrCost, nSemiMajor, nShape, nAngle, ;

cGridType, nRecRatio, nSampleArea, nSanpleCost, ;
BnCostClst, SnGSizeFnd, 8nPrbHtFnd, 9nNumSampReq)

* Write out data for each cost (or failure msg).
OutGphOata<IWri teHeader,cVerOate,cOutF iIe,cGridType,nRecRat io, ;

nShape, nSemiMajor, nAngle, nSarapleArea, nSampleCost, nMinCost, ;
nLoopCostl, nLoopCostMax, nCostStepSize, ;
nCostClst, nPrbHtFnd, nGSizeFnd, nNunSampReq, nStatus, cDelim)

* For simple graphics demo,
ffifdef GPH.DEMO

aadd(ariCost Va I s, nCostC I st)
aadd(anProbVaIs,nPrbHtFnd)

#endif

* Have we reached approx. 100* yet?
if nPrbHtFnd > 0.999995

* Yes, bail out of loop,
exit

endif

* Esc key abort.
if inkey() x = IC_ESC .or. nStatus == nSC_AB0RTED

exit
endif

next nCurrCost
* Close output file,
close alternate

* Clean up calculating msg, etc.
scrol1(23,1,23,78)
822,nCol say "-"
92A,nCol say "-"
tone(440,1)
setcursor(SC_NORMAL)
close alternate
* — .

* Done msg.

E-3 2
Code File: EGPCFile.Prg

if lastkeyO « K_ESC .or. nStatus == nSC_ABORTED
* Aborted msg.
ErrJisgBox^/'M", "Calculations aborted.", ;

"Results in graph data file: " + cOutFile)
else

* Finished msg.
Err_MsgBox(7,"M","Calculations finished.", ;

"Results in graph data file: " • cOutFile)
endif

* Simple graphics demo,
•ifdef GPH_DEHO

GraphDemo(anCostVals, anProbVals)
•endif

IDone :• .T.
loop

endcase (LKey ==)
enddo
return (Nil)
*** End of Func: UriteGphDataO

*** End of standard code.

* Simple graphics demo code,
•ifdef GPHJJEMO

Function GraphDemo(anCostVals, anProbVals)
* Simple graph demo. Not for external use.
* Flipper graphics lib. seems to use lots of memory and lock machine.
* This is probably due to old version of Flipper, version 5.0.
* Currently graph will use no more than last rMAX G POINTS available points,
•define nMAX_G_POINTS 50 // Max graph"points
local nTR := 5 // Top screen row
local nNinPoints := len(anCostVals)
local nCurPoint :•= 0
local nFrstPoint := 0

if I (len(anProbVals) == nNumPoints)
* Error.
Err MsgBox(7,"E","Enor: Data arrays unequal in length.")

endif ~

els
if AlertBox(7,<" Yes, Display Graph »," No, Return ">, ;

"Display simple graph demo?") == 1

if nNumPoints > 0
* Start Flipper.
* 2 coltims of data times 8 bytes per value,
f I ip_ini t(nNuif>oi nts*2»8)
set_sayerrr(1)
* 2 coltims.
initdata(2)
set_type(1,5)
if nNurPoints <= nMAX_G_POINTS

nFrstPoi.it := 1
else

nFrstPoint := nNurf>oints - rMAX G POINTS
endif

for nCurPoint = nFrstPoint to nNimPoints
store_data(anCostVals[nCurPoint]/1000, 100*anProbVals[nCurPoint])

next nCurPoint
plot()

E-3 2
Code File: EGPCFile.Prg

Inkey(D)
textmodeO

else
* No points to graph.
tone(440,.3)
Err NsgBoxC10,"E","Error: No points to graph.")

endif "
endif
return(NlL)
*** End of Func: CraphDefflof)

Hfendif

*** End of File: EGPCGrph.Prg

Code File: EGPCFile.Prg
E-3 2

//CSeBSIBaSBSBIIMM«eS«8BS3BIKBBiee»88BS8RBIIlSSSS8SaBISaiiaaKSBIBIBBl
// File:
// For:
// Purpose:
// Author:
// Prog Started:
II Last Hod:
II Note:

EGPCHelp.Prg
ELIPGRID-PC, EGPC.Exe.
Provides help screen code.
Jim Davidson
10/03/93
09/06/94
Functions are arranged in alphabetical order.

// 06/09/94 Changed name from HotSHelp.Prg to EGPCHelp.Prg.
II' RSBBSSSSSSSS388S8

// Include files
•include "Inkey.Ch"
•include "Set.Ch"
•include "Setcurs.Ch"

// key definitions
// set() function defs.
// setcursorO related

Function HelpO
* F1 help driver function.
local cTmpScn := savescreen(0,0,24,79)
local cClr := setcolor(m->C_Help)
local nCursor := setcursor(SC_NORMAL)
local nKey :* 0 ~
local IDone := .F.
local nScreen := 1
local cMaxScns := "5"
local nMax := val(cHaxScns)

set key K_F1 to // Stop recursion on F1

do while I IDone
els
* Display the nth help screen.
HelpScnN(nScreen, cMaxScns)

* Turn off any file output.
set(_SET_EXTRA,.F.)

30,0 to 24,79 double
if empty(set(_SET_EXTRAFILE))

301,45 say~"F2=Urite Help Screens to Help.Sen" color <m-3C_Normal)
else

301,45 say "Writing Help Screens to Help.Scn 11 color (m->C N o m a l)
endif
923,01 say ;
" Press a key to continue... Esc*Return PgUp-Previous" + ;
" Enter«Next No.spg " color (m->C Normal)

923,29 say ""
inkey(O)

nKey lastkeyO

if nKey == K_ESC
* Return.
IDone .T.
loop

elseif nKey « K_PGUP .or. nKey » K_UP
* Go to prev. help screen.
nScreen--
nScreen := iif(nScreen<1,rMax,nScreen)

elseif nKey >= asc("1") .and. nKey <= ascCcHaxScns)
* Go to page nurber.
* Note that asc("1») == 49, asc("2"> « 50, etc.
nScreen := nKey - 48

elseif nKey •= K_F2 .and. empty(set(_SET_EXTRAFILE))
* Write help screen to "Help.Scn"~file. Only turn on if not on already.

Code File: EGPCFile.Prg
E-3 2

set<_SET_EXTRAFlLE,"HELP.SCN",. F.) // .F. overwrite
?? "ELIPGRID-PC Program Help Screen(s)"
set<_SET_EXTRA,.T.) // .T. means set extra file on

else
* Go to next help screen.
nScreen++
nScreen := iif(nScreen>nHax,1,n!>creen)

endif
enddo

set(_SET_EXTRAFILE,"") II Close Help.scn file
setcolor(cClr)
setcursor< nCursor)
restscreen(0,0,24,79,cTmpScn)
set key K F1 to HelpO
return(NIL)
*** End of Func: HelpO

Function HelpScnN(nNum,cMax)
* Display help screen nunber nNum.
local cNum := ltrim(str(nNum))
* Code demonstration exp. date,
local cDemoOate : = blidemdteO
cDemoDate substr(cOemoOate,S,2)+»/"-friflht(cDemoOate,2)+»/"+left(cDemoOate,4)

301,02 say "ORNL/GJ ELIPGRID-PC Help Screen, 11 + cNun + " of " + cMax ;
color <m->C_Help)

if I empty(set(_SET EXTRAFILE))
• File output,
set console off
7
? "ORNL/GJ ELIPGRID-PC Help Screen, " • cNur + " of " + cMax
set console on

endif

if nNum •= 1
* Display screen 1.
text

ELIPGRID-PC calculates the probabilty of detecting an assuned elliptical
target.

Usage: EGPC [H | M | F | MF)
EGPC H will give more information on above options.

Key Main Menu Options
"P Probability of Hitting Hot Spot" allows input from an ELIPGRID-style
input file, an SIF input file, or the screen.

"G Grid Size Required, Given Prob." determines a grid spacing that
results t'n a hit probability very close to a user-specified value.

"S Smallest Not Spot Hit, Given Grid" determines the length of the
semi-major axis of the smallest hot spot that can be hit, given user-
specified conditions. The result is returned as an area in the
current units.

"C Cost-Based Grid" determines a grid size that meets the user-specified
conditions for a given cost.

"U Write Cost-Based Graph Data" produces ASCII *.DAT files for graphing,
endtext

elseif nNum == 2
text

Code File: EGPCFile.Prg
E-3 2

Input file formats are:
(1) ELIPGRID format, a FORTRAN-style format of column positions.
Line 1 is the title, format is A80. Data values and formats are:
SemimaJorAxis Shape Angle GridSIze GridType Orientation TargetID
F10.2 F10.2 F10.2 F10.2 14 14 A4
If the grid type is 3, i.e., rectangular, the long/short side ratio
must follow on the next data line with F10.2 format.
EOF marker is a Shape > 1.0.

(2) Simplified input format (SIF) removes need for noting column postions.
Line 1 is the title. Data values are in same order as EL.IPGRID format:
SemimajorAxis Shape Angle GridSize GridType Orientation TargetID
One or more spaces must separate each data value.
An asterisk, *, may comment out any line.
EOF marker is a Shape > 1.0 or no more data lines,

endtext

elseif nNun «= 3
text

Exanple input file formats follow:

ELIPGRID format:
Test41.In input file,
[Semi•major Shape

1000.0 0.38
1250.0 0.50
1000.0 0.38

2.0
1250.0 0.50

9.9 9.9

SIF format:
Test41.In input file,
* Semi-major Shape
1000.0 0.38

1250.0 0.50 0.0
1000.0 0.38

2.0
1250.0 0.50

endtext

elseif nNun k 4
text

Grid types:
1 * Square
2 * Triangular (catted hexagonal by Singer).
3 = Rectangular

Orientation of target to grid:
0 * Use angle given by data.

> 0 * Use average of 0 to 45 degree angles for square grid.
Use average of 0 to 30 degree angles for triangular grid.
Use average of 0 to 90 degree angles for rectangular grid.
These average values are called random by Singer.

Cost calculations:
These calculations depend on an approximate formula found in
(EPA 1989, 9-7).

Total Area
Nunber samples required Since this formula is

Grid Cell Area

only approximate, the resulting cost is approximate.

endtext

12/21/93. (Note: this is line 1, the title line.)
Angle GridSize Type Orient. TargetID This line
22.0 800.0 1 0#261 is not part
0.0 1074.57 2 0#104 of an ELIPGRID
22.0 565.69 3 0#261 file.]

0.0 1000.0 1 1#104
9.9 9.9 9 9 EOF

12/21/93. (Note: this is line 1, the title line.)
Angle GridSize Type Orient. TargetID
22.0 800.0 1 0 #261
1074.57 2 0 #104 (Note skewed colums OK.)
22.0 565.69 3 0 #261

0.0 1000.0 1 1 #104

Code File: EGPCFile.Prg
E-3 2

elseif nNun •« 5
text

References:

U.S.EPA. 1989. Methods for Evaluating the Attainment of Cleanup Standards
Volune 1: Soils and Solid Media, EPA, Washington, DC.

Gilbert, R.A. 1987. Statistical Methods for Environmental
Pollution Monitoring. Van Nostrand Reinhold, New York.

Singer, D.A. 1972. "ELIPGRID, A FORTRAN IV Program for Calculating the
Probability of Success in Locating Elliptical Targets with Square,
Rectangular, and Hexagonal Grids," Geocom Programs 4: 1-16.

Further Information:
Jim Davidson, ELIPGRID-PC program developer. ORNL/GJ, (303) 248-6259.

endtext
/*** Removed 08/11/94, JRD, program now forces full level 3 correciton.
814,03 say "Current ELIPGRID-PC Correction Level = " + ;

NumTrim(m->nElpGrdCor) color (m->C_Error)
815,03 say "Run EGPC Help for correction level information."

817,03 say "Demonstration expiration date: "
8row(),col() say cDemoOate color(m->C Error)
endif
return (NIL)
*** End of Func: HelpScnNO

Function ParamHelp(cVerDate)
* Parameter help screen,
set color to Wt/N
els
7? repli<"-",80)
?? "ORNL/GJ ELIPGRID-PC Program, Version: « • cVerDate
? "Usage: EGPC IH | M | F | MFJ"
7
? " EGPC * Defaults to color screen and meters for basic unit."
? " EGPC HEelp] » Help on conmand line parameters, this screen."
? " EGPC MEono] = Monochrome input screens."
? " EGPC FEeet] = Use feet for basic unit of length for screen"
? " input. File input can be any consistent unit."
? " EGPC MF • Monochrome screens and feet for basic screen unit."
?
?
7 " Example: EGPC MF"
? " Use monochrome screen, feet for basic screen unit."
7 repli("-",80)
return (NIL)

*** End of Func: ParamHelpO

••+ End of File: EGPCHelp.Prg

Code File: EGPCFile.Prg
E-3 2

/ / •
/ /
/ /
/ /

Sl t lUMVBI lKSS

File:
For:
Purpose:

EGPCScrn.Prg
ELIPGRID-PC, EGPC.Exe.
Provides screen input/output related code.
Jim Davidson
04/18/94
09/02/94
Functions are arranged in alphabetical order.

// Author:
// Prog Started:
// Last Mod:
// Note:
// Modifications:
// 08/09/94 Changed name from HotSScrn.Prg to EGPCScrn.Prg.
// 09/02/94 Grid cell area for triangular grid now calculated from rhombus.
// This adjusts the EPA formula for number of samples for tri. grid.
//S3SSISHI»in»BKSSnE838SSSSSSeSSSSS8SSSS3SSSSSSSSBSBBSSSSSSSSSSS8SSSSS

// Include files.
// Clipper supplied include files.
•include "Directry.Ch" // File info definitions
•include "Inkey.Ch" // Key definitions
•include "Set.Ch" // s e t O definitions
•include "Setcurs.Ch" // setcursorO related
•include "Box.Ch" // Box drawing constants

// ORNL developed include files.

•include "EGPCMax.Ch" // ELIPGRID-PC maximums for screen I/O

// Defines

•define nPI 3.1415926 // Note that ELIPGRID uses 3.141592

// User-defined command •xconmand DEFAULT <TheParam> TO <DefaultVal> => ; IF <<TheParam> — NIL); <ThePar«n>:«DefaultVal>; ENDIF
A*********************************
Function F10_Key(cProc,nLine,cVar)
* Calculates length of semi-major axis based on area.
* Calculates m' or ft' from acres,
static nHotSptArea := 25.0
static nTotalAcres :* 10.0
local nSemiMajor :* 0.0
local nNewArea :« 0.0
local cTmpScn := savescreen(0,0,24,79)
local GetList <}
set key K F10 to
if cVar » "NTSEMIMAJOR" // Check if var is ntSemiMajor.

* Calculates length of semi-major axis based on area,
scroll(8,49,11,78)
8 8,49 to 11,78
8 9,50 say " Convert hot spot area to M + ;

iif(m->cBa8icUnit=="F,,,"ft", Hm M) color <m-»C_Help)
810,51 say "Enter area:" get nHotSptArea pict cMAX HotSArea
8row(),col() say iif(m->cBasicUnit«="F"," ft'"," m'")
read
if lastkeyO «= K_ENTER

nSemiMajor : =~sqrt(nHotSptArea/(npI * m->ntShape))
keyboard chr(K CTRL Y) + alltrim(str(nSemiMajor)> + chr(K HOME)

endif
elseif cVar » "NTSAMPLEAREA"

* Calculates m> or ft' from total sample acres,
scroll(11,49,14,78)
811.49 to 14,78
812.50 say " Convert acres to " • ;

iif(m->cBasicUnit«"F»,"ft,M, "m« ") • space(7) color (m->C_Help)
813.51 say "Enter total acres.:" get nTotalAcres pict cMAX_Acres
read
if lastkeyO == K_ENTER

* Conversion factors from CRC Handbook of Chem./Phs., 1981/82, p. F-282.

Code File: EGPCFile.Prg
E-3 2

nHewArea :• ;
iif(m->cBasicUnit«"F",nTotalAcres*43560.0,nTotalAcres«4046.8564)

if nNewArea <= nMAX SaoplaArea
keyboard chr(K_CTRljr) • alltrim<8tr(nNewArea)) + chr(K_HOME)
else
tone(440,1)
813,51 say "Answer to large: 11 + NunTrim(nNewArea)
inkey(3)

endif
endif

else
scroll(23,1,23,78)
823,2 say "Call F10 from axis or total area fields."
tone(440,1)
inkey(2)

endif

set key K_F10 to FlOJCeyO
restscreen(0,0,24,79,cTmpScn)
return (NIL)
»** End of Func: FlOJCeyO
**

Function GetCostGrd(cGridTypel cVerDate)
* Searches for a grid size that produces a given cost.
* Only searches for grids with L/G ratios between
* 0.10 and 3.0, i.e., the grid size is between L/3 and 10*L.
* Currently uses a modification of the bisection method for root finding.
* See "Applied Numerical Analysis", 4th Ed., by Gerald and Uheatley p. 7.
* Input: cGridType « "S", "R", or "T" for square, rectangular,
* or triangular grids.
* cVerDate * Version date.
* Returns: NIL
* Error: Aborts if cGridType •= NIL.
*
* The specified cost of sampling will be mathced by the calculated grid
* cost to within t < sample cost.

•define rMAXC.ITERS 25

static nHotsptArea . s 25.0
local ntHotSptArea ;x nHotSptArea
static nSemiMajor ;s 2.82
local ntSemiMajor ; z nSemiMajor
static nAngle 0.0
local ntAngle nAngle
static nRecRatio 2.0
local ntRecRatio • = nRecRat i o
static nShape : = 1.0
static nSampleArea ;s 7000
local ntSampleArea : = nSampleArea
static nSampleCost : = 700
local ntSamplecost • X nSampleCost
static nDesirdCost := 200000
local ntDesi rdCost : = nDesirdCost
static cOutFile • • "Screen.Out"

local nGTyp • s 1
local nGSizeFnd ;s 0
local nGLong : = 0
local nCol : * 0
local nSICounter : « 0
local nRACounter »e 0
local nPrbHtFnd : = 0
local nProbNoHit * 1
local nCrntAngle 0

11 Max cost search iterations

// Hot spot area
// Temp value
// Length of semi-major axis
// Temp value
// Orientation angle of hot spot to grid
// Temp value
// Rectangular grid long/short ratio.
// Temp value
// Shape, minor/major axis
// Total area to sanple
// Temp value
// Cost for one sanple
// Tenp value
// Desired cost
// Temp value
// Screen output file

// Grid type requested
// Grid size found
// Long side for rec grids
// Scratch columnO
// Search iterations counter
// Random angle counter
// Prob. of hit found
// Probability of zero hits, P(0)
// Current angle, used for "random" angle

Code File: EGPCFile.Prg
E-3 2

local ra-rgstAngle :« 0
local nProbSun := 0
local nSmalGrid := 0
local nNoHitSmlGrd :« 1
local nLrgeGrid 0
local nMoHitLrgGrd := 1
local nlntrGrid 0
local nNoHitlntGrd :* 1
local rfliffCoat 0
local nCurrCost := 0
local nCostClst := 0
local nGridCellArea := 0
local nNumSamples := 0

* Misc vare.
local lOutFile : = .F.
local lUriteHeader := .F.
local cStatus :» "OK"
local IDone := .F.
local IConverg : = .F.
local lAborted := .F.
local IPastHaxIt .F.
local lOKProb := .T.
local nKeyPress := 0
local getlist := O

private ntShape := nShape

if cGridType •• NIL
* Input error: no grid typ passed
return (NIL)

endif

// Largest angle, used for "random" angle
// Sunning war., used for "random" angle
// Small grid size
// P(0) for small grid
// Large grid size
// P(0) for large grid
H Interpolated grid size
// P(0) for interpolated grid
// Current diff. from desired cost
// Current cost
// Best estimate of cost
// Area of one grid cell
// Nunber of samples required

// Use output file flag
// Write file header flag
// Status msg for output file data
// Loop flag
// Convergence flag
II Esc key abort
11 Exceeded nMAXCJTERS flag
// Solvable problem specs flag
// User key press
// Stops compiler warnings

// private for F10 key function

in.

* Upcase function argunent.
cGridType :« upper(cGridType)

* Get screen output file.
cOutFile GetScnOutFile(8lOutFile, 8IWriteHeader)

* Display screen title.
DispTitle(cGridType,"C",cOutFile, lOutFile)

do while I IDone
8 6, 2 say "Shape of the elliptical hot spot..:" ;

get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape « 1.0 .and. ntShape >= 0.05, ;
"Shape must be 2 0.05 and 1 1.0.",len(cMAX_Shape))

8 6,49 say "Shape •= short axis/long axis."
8 7,49 say "F10 calculates axis from area." color(m->C_Help)
8 7, 2 say "Length of semi-major axis :" ;

get ntSemiHajor pict cMAX_SemiHajor ;
valid ErrorUDF(ntSemiHajor > 0.0, ;
"Length must be > 0.0.",len(cMAX SemiMajor))

8row(),col() say iif(m->cBasicUnit=="F","ft","m")
8 9,49 say 1 99.0° for "random11 angles.1

if cGridType == "R"
* Rectangular grid.
8 8, 2 say "Angle of orientation to grid :" ;
get ntAngle pict cMAX_Angle ;

valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
"Angle must be 0' to 90* or 99,=random.", len(cHAX Angle))

8 8,col() say "*"
8 8,49 say "Angle can be 0* to 90°. Use"
8 9, 2 say "Long side/short side ratio :" ;

get ntRecRatio p ict cMAX_RecRatio ;

Code File: EGPCFile.Prg
E-3 2

valid ErrorUDF(ntRecRatio > 1.0, ;
"Ratio must be > 1.0.",len<cMAX_RecRatio))

elseif cGridType » "S"
* Square grid.
a 8, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle »« 0 .and. ntAngle « 45.0 .or. ntAngle 99,;
"Angle must be 0* to 45' or 99"«random.»,len(cMAX Angle))

8 8,col(> say "•"
a 8,49 say "Angle can be 0' to 45*. Use"

elseif cGridType «= "T"
* Triangular grid.
a 8, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cHAX_Angle ;
valid ErrorUDF(ntAngle »* 0 .and. ntAngle <« 30.0 .or. ntAngle -- 99,;
"Angle must be 0' to 30' or 99*-random.",len(cMAX Angle))

8 8,col<) say »••
a 8,49 say "Angle can be 0* to 30'. Use"

endif

810, 2 say "Total area to sample :" ;
get ntSanpleArea pict CMAX SampleArea ;
valid ErrorUDF(ntSampleArea>0.0,"Area must be > 0.0",len(cMAX_SampleArea))
8row(),colO say i^f<m->cBasieUn1t•«•,,F","ft,,,,"m",)

310,25 say "F10 - Acres" color(m->C_Help)
811, 2 say "Individual sample cost $:" ;

get ntSampleCost pict cMAX_SampleCost ;
valid ErrorUDF(ntSaopleCost>0.0,"Cost must be > 0.0",len(cMAX_SampleCost))

812, 2 say "Desired cost of grid $:" ;
get ntDesirdCost pict cDESIRD_COST ;
valid ErrortJDF(ntDesirdCost >• ntSampleCost, ;
"Total cost must be 2 Sample cost.",len(cDESIRD_COST))

811,49 say "Program will search for cost" ~
812,49 say "with error < t 1 sample cost."

822, 0 say " (•"
822,79 say "-j"
822.1 to 22,78

823.2 say "Enter * Continue Esc - Abort" + space(44) // erase msg

set key K_F10 to FlOJCeyO
read
set key K_F10 to
nKeyPress-: • lastkeyO

* Abort, Urite Data, etc...
do case

case (nKeyPress -= K_ESC)
• Esc key pressed-

if YN HsgBox("Abort current data entry session? Y/N")
if'lOutFlle

* Close out file,
close alternate

endif
IDone :- .T.

endif
case (nKeyPress «= K_ENTER .or. nKeyPress " K_CTRL_U>

• Enter key or Ctrl-U passed. [Ctrl-U currently not documented.]
• Save changes to static vars.
scrolI(13,1,21,78)
nShape :- m->ntShape
nSemiMajor ntSemiMajor
nAngle := ntAngle
nDesirdCost := ntDesirdCost

E-3 2
Code File: EGPCFile.Prg

nRecRatio :«= ntRecRatio

if cGridType •• "S"
* Sqaure grid.
nGTyp :* 1
nLrgstAngle :* 45

elseif cGridType «= "R"
* Rect. grid.
nGTyp :* 3
nLrgstAngle :• 90

elseif CGridType *= "T«
* Tri. grid.
nGTyp := 2
nLrgstAngle := 30

endif

* Cost related vars.
nSampleArea := ntSanpleArea
nSampleCost := ntSampleCost

* | Find grid size for given cost | *
* Below are grid size restrictions to stay in reasonable search.
nSmalGrid := 0.33334 * nSemiMajor
* Below same as L/G of 0.10.
nLrgeGrid := 10.0 * nSemiMajor

// For "random" angle

// For "random" angle

// For "random" angle

scrol1(23,1,23,78)
setcolor("W+/N*") // Force blinking with •
923.2 say "Calculating"
setcolor(m->C_Morma I)
nCol :« col()+1
822,nCol say " T "
923,nCol say " "
924,nCol say
923,52 say "Esc « Stop Calculations..."
setcursor(SC_M0NE)

* Initialize counters
nSICounter := 0 // Search iterations
nRACounter :•= 0 // Random angle iterations
914,38 say "Cost search iterations.: "
if nAngle •« 99.0

815,2(8 say "Random angle iterations: "
endif
917,38 say "Cost search is usually less"
818,38 say "than 16 iterations."

* Initialize flags
IConverg := .F.
IAborted := .F.
IPastMaxIt := .F.
lOKProb :« .T.

// .T. if search converges
// .T. if Esc key abort
// .T. if past max iterations
// .F. if problem can't be solved

* Start searching.
do while I IConverg .and. I lAborted .and. I IPastMaxIt .and. lOKProb

nSICounter** // Increment search counter
814,64 say NunTrim(nSlCounter)* "/" + ;

ltrim(8tr(nMAXC_ITERS)) + " maximm."

* GET PROB. AMD COST FOR LARGE GRID,
if nAngle I* 99.0

* Hon-random single angle case.
nNoHitLrgGrd :* ElipGridtnSemiMajor,nShape,nAngle,nLrgeGrid, ;

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.

Code File: EGPCFile.Prg
E-3 2

nProbSim : = 0.0
for nCrntAngle • 0 to nLrgstAngle

nProbNoHit :« ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nLrgeGrid, nGTyp, nRecRatio)

nProbSun :* nProbSum + nProbNoHit
nRACounter**
815,64 say ltrim(str(nRACounter))
* Esc key abort, only used uith random angles,
if inkeyO == K ESC

lAborted := .T.
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitLrgGrd nProbSu»/(nLrgstAngle+1>

endif

* Check if we met cost criteria with large grid.
* First do area calculations,
if CGridType « "R"

* Rect. grid.
nGLong nLrgeGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong : = nLrgeGrid

endif
* Required nunber of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volune 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhonfcus formed
* from 2 of the equilateral triangles.
* A * height * base * sin(60') * base * base = 0.87 • base"2.
nGridCellArea := 0.866025404 • nLrgeGrid * nLrgeGrid

else
* Sq. or rec. grid.
nGridCellArea nLrgeGrid * nGLong

endif
* This formula is approx. See CEPA 1989, 9-7).
* Ceiling function rounds nunber of samples up.
nNmSatopics cei ling(nSampleArea/nGridCellArea)

nCurrCost := nNumSamples * nSampleCost

* Can we quit yet?
nDiffCost := abs(nDesirdCost - nCurrCost)
if nDiffCost < nSampleCost

* Met error criteria with current large grid.
* Exit grid search.
nCostClst := nCurrCost
nGSizeFnd := nLrgeGrid
nPrbHtFnd := 1.0 - nNoHitLrgGrd
IConverg .T.
loop

endif

* Will grid size need to be larger than 3 * semi-major axis?
* If so, an L/G ratio > 3.0 would be required.
* If first search with largest grid can't get down to the
* desired cost, no need to search farther.

Code File: EGPCFile.Prg
E-3 2

if nSICounter «« 1 .and. (nCurrCost > rOesirdCost)
* Quit searching.
lOKProb :* .F.
loop

endif

GET PROG. FOR SMALL GRID,
if nAngle I* 99.0

* Non-random single angle case.
nNoHitSmlGrd :« ElipGrid(nSemiMajor,nShape,nAngle,nSmalGrid, ;

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.
nProbSun 0.0
for nCrntAngle * 0 to nLrgstAngle

nProbNoHit ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nSmalGrid, nGTyp, nRecRatio)

nProbSun :•= nProbSun + nProbNoHit
nRACounter**
815,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO «= K_ESC

lAborted :«= T T .
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitSmlGrd :« nProbSun/(nLrgstAngle+1)

endif

* Check if we met cost criteria with small grid.
* First do area calculations,
if cGridType «« "R"

* Rect. grid.
nGLong nSmalGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong nSmalGrid

endif
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volune 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType «= "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A « height * base * sin(60*) * base * base = 0.87 * base'2.
nGridCellArea 0.866025404 * nSmalGrid * nSmalGrid

else
* Sq. or rec. grid.
nGridCellArea nSmalGrid * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds nunber of sanples up.
nNunSamples := ceiling(nSampleArea/nGridCellArea)

nCurrCost nNumSamples * nSampleCost

* Can we quit with current small grid?
nDiffCost :* abs(nDesirdCost - nCurrCost)
if nDiffCost < nSampleCost

Code File: EGPCFile.Prg
E-3 2

* Net error criteria with current small grid.
* Exit grid search.
nCostClst := nCurrCost
nGSizeFnd := nSmalGrid
nPrbHtFnd := 1.0 - nNoHitSmlGrd
IConverg := .T.
loop

endif

* Will grid size need to be smaller than 1/3 * semi-major axis?
* If so, an L/G ratio < 1/3 would be required.
* If first search with smallest grid can't get up to the
* desired cost, no need to search farther.
if nSICounter == 1 .and. (nCurrCost < nDesi rdCost)

* Quit searching.
lOKProb .F.
loop

endif

* Bisection method, (Gerald and Wheately 1989, 7)
nlntrGrid := (nLrgeGrid + nSmalGrid)/2

* GET PROB. AND COST FOR INTERPOLATED GRID,
if nAngle != 99.0

* Non-random single angle case.
nNoHitlntGrd := ElipGrid(nSemiMajor,nShape,nAngle,nlntrGrid, ;

nGTyp, nRecRatio)
else

* Sun 14) multiple angle results, random case.
nProbSun 0.0
for nCrntAngle - 0 to nLrgstAngle

nProbNoHit :« ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nlntrGrid, nGTyp, nRecRatio)

nProbSun := nProbSun • nProbNoHit
nRACounter++
315,64 say ltrim(Str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO *= K ESC

IAborted := 7t.
exit // exit for/next loop

endif
next nCrntAngle
if IAborted

loop
endif

* Calculate average.
nNoHitlntGrd := nProbSum/(nLrgstAngle+1)

endif

* Check if we met cost criteria with interpolated grid.
* First do area calculations,
if cGridType "R"

* Rect. grid.
nGLong := nlntrGrid * nRecRatio

else
* Sq. or Tri. grid.
nGLong nlntrGrid

endif
* Required nutter of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volune 1: Soils and Solid Hedia", p. 9-7.
* Calculate grid cell area,
if cGridType •= "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed

Code File: EGPCFile.Prg
E-3 2

* from 2 of the equilateral triangles.
* A = height • bsae » sin(60') * base * base = 0.87 * base"2.
nGridCellArea 0,866025404 * nlntrGrid * nlntrGrid

else
* Sq. or rec. grid.
nGridCellArea :« nlntrGrid * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNumSamples := ceiling(nSampleArea/nGridCellArea)

nCurrCost := nNumSamples * nSampleCost

* Can ue quit with current interpolated grid?
nDiffCost := abs(nDesirdCost - nCurrCost)
if nDiffCost < nSampleCost

* Net error criteria with current interpolated grid.
* Exit grid search.
nCostClst := nCurrCost
nGSizeFnd := nlntrGrid
nPrbHtFnd := 1.0 - nNoHitlntGrd
IConverg := .T.
loop

endif

* Update large or small search grid sizes.
* This is a difference from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing about 0.0.
* Ue look at whether our current f(x) for the interpolated grid
* is larger than the desired value,
if nCurrCost > rDesirdCost

nSmalGrid := nlntrGrid
else

nLrgeGrid := nlntrGrid
endif

* Have we reached max iterations?
if nSICounter == nMAXC_ITERS

* Failed to converge.
IPastMaxIt := .T.
loop

endif
enddo

* Clean up calculating msg.
scroll(23,1,23,78)
322,nCol say "-"
824,rtCol say "-"
tone(440,1)
setcursor(SC NORMAL)
* T *

* Display results.
setcolor(m->C Help)
if IPastMaxIt-.or. lAborted

* Failed to converge msg. or Esc key aborted,
scrol1(17,1,21,78)
817.1 to 21,78 double
if IPastMaxIt

818,2 say " Failed to converge." color(m->C Error)
elseif lAborted

818,2 say " Calculations aborted..." color(m->C_Error)
endif
819.2 say " Last interpolated grid estimate: " + ;

ltrim(str(nIntrGrid,12,4))

Code File: EGPCFile.Prg
E-3 2

820,2 say " Last calculated cost : $" • ;
11 r i m(t rans (nNumSamples*nSampleCost, cMAX_TotalCost))

elseif I lOKProb
* User input data require grid size out of range,
scrol1(17,1,21,78)
817.1 to 21,78 double
818.2 say " Data out of range." color(m-»C_Error)
819,2 say " The input data require a grid size that is out of " + ;

"the search range of the"
820,2 say " program. Uill only search for grid sizes between" • ;

" 1/3 s Grid s 3 * L."
else

* Found grid msg.
scrolI(14,1,21,78)
813.1 to 21,78 double
if cGridType •« "R"

* Rect. grid.
nGLong := nGSizeFnd * nRecRatio
814,2 say 11 Grid size found, long side = " + ;

ltrim(str(nGLong,10,3))
8row(),col() say iif(m->cBasicUnit=="F"," ft", " m")
815,2 say " Grid size found, short side = " + ;
Itrim(str(nGSizeFnd,10,3))

else
* Sq. or Tri. grid.
nGLong nGSizeFnd
814,2 say " Grid size found = " + ;

ltrim(str(nGSizeFnd,10,3))
endif

8row(),col() say iif(m->cBasicUnit=="F",« ft", " m")

814,49 say "Grid search iterations.: " + NumTrim(nSICounter)
if nAngle *= 99.0

815,49 say "Random angle iterations: " + NumTrim(nRACounter)
endif

816.2 say " Probability of hitting hot spot • " + ;
Itrim(str(100*nPrbHtFnd,6,1)) • "X"

endif

if nSampleArea > 0 .and. IConverg
* Required m m b e r of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType •• "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A * height * base «= sin(60") * base * base * 0.87 * base"2.
nGridCellArea 0.866025404 * nGSizeFnd * nGSizeFnd

else
* Sq. or rec. grid.
nGridCellArea := nGSizeFnd * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNimSamples := ceilirtg(nSanpleArea/nGridCellArca)

818.2 say " Required nunber of samples = " + ;
Itrim(trans(nNunSampIes,cMAX_SampIes))

819.3 say ;
"Required number of samples is approximate. " color "U/RB"

820,2 say " Total cost for above number of samples = S" • ;

Code File: EGPCFile.Prg
E-3 2

11 r i m(t rans (nNunSampl es*nSampl eCost, cMAX Tota I Cos t) >
endif

if lOutFile .and. IConverg
* Write to output file.
* Pass IWriteHeader by reference, WriteOata will update it.
UriteOataOlWri teHeader, cVerOate,cOutF1le,cGridType,nRecRatio, ;

nSemiHajor,nGSizeFf*i,nShape,nAngle,nPrbHtFnd, nSampleArea, ;
nNunSanples, nSampleCost)

elseif lOutFile .and. (lAborted .or. (IConverg)
* Write data for abort or failed to converge.
nGSizeFnd nlntrGrid
nPrbHtFnd := 1.0 - nNoHitlntGrd
cStatus iif(lAborted," ABRT"," FAIL")
Wr 1 teOataOlWriteHeader,cVerDate,cOutF 1 le,cGridType,nRecRatio, ;

nSemiMajor,nGSlzeFnd,nShape,nAngle,nPrbHtFnd,nSampleArea, ;
nNumSamples,nSampleCost,cStatus)

endif
setcolor(m->C_Normal)

otherwise
* Will loop back.
IDone :• .F.

endcase (LKey »)
enddo
return (NIL)
*** End of Func: GetCostGrdO

Function GetGridSiz(cGridType, cVerDate)
* Searches for a grid size that produces a given probability.
* Uses a modification of the linear interpolation method for nonlinear equation
* root finding for most searching. Uses a modification of the bisection
* method when searching for sizes producing very samll or large hot spot
* miss probabilities. See "Applied Nunerical Analysis", 4th Ed.,
* by Gerald and Uheatley pp. 5-10.
* Only searches for grids with L/G ratios between
* 0.10 and 3.0, i.e., the grid size is between L/3 and 10*L.

Input:

Returns:
Error:

cGridType • "S", "R",
or triangular grids.

or "T" for square, rectangular.

cVerDate
NIL
Aborts if

The specified prob.
t < nERR CRITERIA.

* Version date.

cGridType « NIL.
of a hit will be matched by the chosen grid to within
This corresponds to, e.g.

* 90.0% ± < 0 .05%. Or 89.95% < calculated value < 90.05%.
•define
Me fine

nERR
nMAX

CRITERIA 0 .000499999
ITERS 25

11 Worked better than 0.0005 in some cases
// Max search iterations

static nHotsptArea
local ntHotSptArea
static nSemiMajor
local ntSemiHajor
static nAngle
local ntAngle
static nRecRatio
local ntRecRatio
stacic nShape
static nSampleArea
local ntSampleArea
static nSampleCost
local ntSamplecost
static rDesirdProb
local ntDesirdProb
static cOutFile

:= 2 5 . 0 // Hot spot area
:= nHotSptArea // Temp value
:= 2 . 8 2 // Length of semi-major axis
:= nSemiMajor // Temp value
: = 0 . 0 // Orientation angle of hot spot to grid
:= nAngle // Temp value
:s 2 . 0 // Rectangular grid long/short ratio.

nRecRatio // Temp value
:s 1.0 // Shape, minor/major axis

o // Total area to saople
:= nSampleArea // Temp value
:s 0 // Cost for one sample
:s nSampleCost // Temp value
:s 9 5 . 0 // Desired probability
:= nDesi rdProb // Temp value
:= "Screen.Out" // Screen output file

local nGTyp :- 1 // Grid type requested

Code File: EGPCFile.Prg
E-3 2

local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local

nGSizeFnd
nGLong
nCol
nSI Counter
nRACounter
nDesirdNoHit
nPrbHtFnd
nProbNoHit
nCrntAngle
nLrgstAngle
nProbSum
nSawlGrid
nNoHitSmlGrd
nDiffSml
nLrgeGrid
nNoHitLrgGrd
rOiffLrg
nlntrGrid
nNoHitlntGrd
nDifflnt
nGridCellArea
nNumSamples

* Wise vars.
local lOutFile
local lUriteHeader
local cStatus
local IDone
local IConverg
local IAborted
local IPastHaxIt
local lOKProb
local nKeyPress
local getlist

0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
1
0
0
0

:= .F.
: = .F.
: = »0K»
:= .F.
:« .F.
:= .F.
:« .F.
:« .T.

0
O

// Grid size found
II Long side for rec grids
// Scratch colunnO
// Search iterations counter
// Random angle counter
II Desired prob. of missing
H Prob. of hit found
11 Probability of zero hits, P(0)
II Current angle, used for "random" angle
// Largest angle, used for "random" angle
II Sunning var., used for "random" angle
II Small grid size
// P(0) for small grid
11 Small grid diff from desired P(0)
// Large grid size
U P(0) for large grid
II Large grid diff from desired P(0)
II Interpolated grid size
II P(0) for interpolated grid
// Interpolated grid diff from desired P(0)
// Area of one grid cell
II Number of samples required

// Use output file flag
// Write file header flag
// Status msg for output file data
// Loop flag
// Convergence flag
// Esc key abort
// Exceeded nHAX_ITERS flag
// Solvable problem specs flag
II User key press
// StopG compiler warnings

private ntShape nShape // private for F10 key function

if cGridType « NIL
* Input error: no grid typ passed in.
return (NIL)

endif

* Upcase function argument.
cGridType :» upper(cGridType)

* Get screen output file.
cOutFile GetScnOutFIle(8l0utFile, aiWriteHeader)

* Display screen title.
DispTitle(cGridType,"G",cOutFile, lOutFile)

do while I IDone
8 6, 2 say "Shape of the elliptical hot spot..:11 ;

get m->ntShape pict cMAX_Shape ;
valid ErrorUDF(ntShape <«= 1.0 .and. ntShape >* 0.0S, ;
"Shape must be 2 0.05 and £ 1.0.",len(cMAX_Shape))

a 6,49 say "Shape = short axis/long axis."
a 7,49 say "F10 calculates axis from area." color(m->C_Help)
8 7, 2 say "Length of semi-major axis :" ;

get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
"Length must be > 0.0.",lentcMAX SemiMajor))

arow(),col() say iif(m->cBasicUnit«"F"I"ft","m")
8 9,49 say • 99.0* for "random" angles.1

if cGridType « "R"

Code File: EGPCFile.Prg
E-3 2

* Rectangular grid.
8 8, 2 say "Angle of orientation to grid ;
get ntAngle pfct cMAXJtngle ;

valid ErrorUDF(ntArigle >• 0 .and. ntAngle <= 90.0 .or. ntAngle » 99,;
"Angle must be 0' to 90' or 99'*random.",len(cMAX Angle))

8 8,col() say "'"
8 8,49 say "Angle can be 0* to 90'. Use"
a 9, 2 say "Long side/short side ratio :" ;

get ntRecRatio pict cHAX_RecRatio ;
valid ErrorU)F(ntRecRatio > 1.0, ;
"Ratio must be > 1.0.",len(cMAX_RecRatio>)

elseif cGridType *= "S"
* Square grid.
8 8, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntArigle >= 0 .and. ntAngle <= 45.0 .or. ntAngle « 99,;
"Angle must be 0' to 45' or 99'=random.",len(cMAX_Angle))

a 8,col() say
8 8,49 say "Angle can be 0* to 45*. Use"

elseif cGridType »« "T"
* Triangular grid.
a 8, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cKAX_Angle ;
valid ErrorUOF(ntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle « 99,;
"Angle must be 0' to 30° or 99*-random.",len(cHAX Angle))

a 8,cot() say
a 8,49 say "Angle can be 0° to 30'. Use"

endif

810, 2 say "Desired probability of hitting :" ;
get ntDesirdProb pict cDESIRD.PROB ;
valid ErrorUDF(ntDesirdProb >« 10.0 .and. ntDesirdProb<«99.9,;
"Prob. must be 10% to 99.9%.",len(cDESIRD PROB))

810,col() say "%"
810,49 say "Use 10% to 99.9%."
811,49 say " Leave area and sample cost"
812,49 say " at 0 if cost not desired."
811, 2 say "Total area to sample :" ;

get ntSampleArea pict cNAX_sampleArea
8row(),col() say iif(m->cBasicUn1t«="F»',"ft»V'"1'")

811,25 say "F10 > Acres" color(m->C Help)
812, 2 say "Individual sample cost.7 J:" ;

get ntSampleCost pict cHAX SampleCost
822, 0 say " h
822,79 ssy
822.1 to 22,78

823.2 say "Enter = Continue Esc = Abort" * space(44) // erase msg

set key K_F10 to Fl0_Key()
read
set key K_F10 to
nKeyPress lastkeyO

* Abort, Write Data, etc...
do case

case (nKeyPress " K_ESC)
* Esc key pressed
if YN HsgBox("Abort current data entry session? Y/N")

if'lOutFile
* Close out file,
close alternate

endif
IDone := .T.

endif

Code File: EGPCFile.Prg
E-3 2

case (nKeyPress « K_EMTER .or. nKeyPress « K_CTRL_U)
* Enter key or Ctrl-U pressed. CCtrl-U currently not docunented.)
* Save changes to static vars.
scroll(13f1,21,78)
nShape :* m->ntshape
nSemiMajor :* ntSemiMajor
nAngle :« ntAngle
nOeslrdProb :« ntDesirdProb
nRecRstio :« ntRecRatio

if cGridType « "S"
* Sqaure grid.
nGTyp := 1
nLrgstAngle :* 45

elseif cGridType «= "R"
* Rect. grid.
nGTyp 3
nLrgstAngle := 90

elseff cGridType « »T"
* Tri. grid.
nGTyp := 2
nLrgstAngle := 30

endif

// For "random" angle

// For "random" angle

// For "random" angle

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost ;* ntSampleCost

* | Calculate grid size for desired prob.
rfiesirdProb iif{rDe8lrdProb»«100.0,99.95,nDesirdProb)
// Above left in code in case 100X again used as valid X.
nDeairdMoHit :•= 1.0 • (nfiesirdProb*0.01)
* Below approx. same as L/G <* 3.0 restriction.
nSmalGrid := 0.33334 * nSemiMajor
* Below same as L/G of 0.10.
nLrgeGrid s« 10.0 * nSemiMajor

// Force blinking
scroll(23,1,23,78)
setcolor("W+/N*")
923,2 say "Calculating"
setcolor(m->C_Normal)
nCol :* col()*1
822,r\Col say
923,nCol say
824,nCol say
823,52 say "Esc - Stop Calculations..."
setcursor(SC NONE)

ii—ii
ii ii
IUH

* Keep calculating until error is less than r£RR_CRITERIA.
nSICounter :* 0 // Search iterations
nRACounter 0 // Random angle iterations
914,38 say "Grid search iterations.: "
if nAngle » 99.0

815,38 say "Random angle iterations: 11
endif
817,38 say "Grid search is usually less"
818,38 say "than 16 iterations."

IConverg :• .F. // .T.
IAborted :- .F. // .T.
IPastMaxIt :« .F. // .T.
lOKProb := .T. // .F.
do while 1 IConverg .and. I tAborted .and

nSICounter**
814,64 say NunTrim(nSICounter)+ "/" •

ltrim(str(nMAX ITERS)) • " maximum.

if search converges
if Esc key abort
if past max iterations
if problem can't be solved

I IPastMaxIt .and. lOKProb
// Increment search counter

Code File: EGPCFile.Prg
E-3 2

* CET PROB. FOR LARGE GRID,
if nAngle I* 99.0

* Non-random single angle case.
nNoHitLrgGrd ElipGr1d(nSemiMajor,nShape,nAngle,nLrgeGrid, ;

nGTyp, nRecRatio)
else

* Sum up multiple angle results, random case.
nProbSun :* 0.0
for nCrntAngle ' 0 to nLrgstAngle

nProbNoHit ElipGridlnSemiMajor, nShape, nCrntAngle, ;
nLrgeGrid, nGTyp, nRecRatio)

nProbSun nProbSun + nProbNoHit
nRACounter++
815,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO == K_ESC

lAborted := ?T.
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitLrgGrd nProbSin/(nLrgstAngLe+1)

endif

* Check if we met error criteria with large grid.
rOiffLrg : = abs(nOesirdNoHit - nNoHitLrgGrd)
if nOiffLrg < nERR_CRITERIA

* Net error criteria with current large grid.
* Exit grid search.
nGSizeFnd nLrgeGrid
nPrbHtFnd :« 1,0 • nNoHitLrgGrd
IConverg .T.
loop

endif

* GET PROB. FOR SMALL GRID,
if nAngle I* 99.0

* Non-random single angle case.
nNoHitSmlGrd ElipGridtnSemiMajor,nShape,nAngle,nSmalGrid, ;

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.
nProbSun := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit := ElipGrid(nSemiMajor, nShape, nCrntAngle, ;
nSmalGrid, nGTyp, nRecRatio)

nProbSum :« nProbSun + nProbNoHit
nRACounter++
815,64 say ltrim(8tr(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO « K ESC

lAborted := ?T.
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitSmlGrd nProbSun/(nlrgstAngle+1)

endif

Code File: EGPCFile.Prg
E-3 2

• M i l l grid size need to be smaller than 1/3 semi-major axis?
* If ao, an L/G ratio > 3.0 would be required.
* If first search with smallest grid can't get the
* desired prob. of hitting, no need to search farther,
if nSICounter «• 1 .and. (nNoHitSmlGrd > rDesirdNoHit)

* Quit searching.
lOKProb .F.
loop

endif

* Check if we met error criteria with small grid.
nOiffSml :» abs(nDesirdNoHit - nNoHitSmlGrd)
if rOiffSml < nERR_CRITERIA

* Net error criteria with current small grid.
* Exit grid search.
nGSizeFnd :* nSmalGrid
nPrbHtFnd :* 1.0 - nNoHitSmlGrd
IConverg :* -T.
loop

endif

* Get interpolated (or average for small/large probs.) grid size,
if rDesirdNoHit >= 0.04 .and. nDesirdNoHit «= 0.50

* Formula based on a modification to the linear interpolation
* method, (Gerald and Uheately 1989, 10)
* 0.04 and 0.50 limits set by trial and error.
nlntrGrid : E nLrgeGrid • (nLrgeGrid - nSmalGrid) * ;

(nNoHitLrgGrd • rDesirdNoHit) / (nNoHitlrgGrd - nNoHitSmlGrd)
else

* Bisection method, (Gerald and Wheately 1989, 7)
* Uorks better than linear interp. on ends of prob. curve.
nlntrGrid (nlrgeGrid + nSmalGrid)/2

end

* GET PROB. FOR INTERPOLATED GRID,
if nAngle 1= 99.0

* Non-random single angle case.
nNoHitlntGrd ElipGrid(nSemiMajor,nShape,nAngle,nlntrGrid, ;

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.
nProbSun 0.0
for nCrntAngle • 0 to nLrgstAngle

nProbNoHit ElipGrid(nSemiNajor, nShape, nCrntAngle, ;
nlntrGrid, nGTyp, nRecRatio)

nProbSun :» nProbSun + nProbNoHit
r*ACounter++
815,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO « K_ESC

IAborted := .T.
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitlntGrd nProbSum/(nLrgstAngle+1)

endif

* Check if we met error criteria with interpolated grid.
nDifflnt abs(nDesirdNoHit - nNoHitlntGrd)
if rDifflnt < nERR_CRITERIA

* Met error criteria with current interpolated grid.

Code File: EGPCFile.Prg
E-3 2

* Exit grid search.
nGSizeFnd :» nlntrGrid
nPrbHtFnd :« 1.0 • nNoHitlntGrd
IConverg .T.
loop

endif

* Update large or small search grid sizes.
* This is a diff^reice from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values Mill be changing about 0.0.
* Ue look at whether our current f(x) for the interpolated grid
* is larger than the desired value,
if nNoHitlntGrd > nDesirdNoHit

nLrgeGrid :* nlntrGrid
else

riSmalGrid :« nlntrGrid
endif

* Have ue reached max Iterations?
if nS I Counter « nMAXJTERS

* Failed to converge.
IPastMaxIt :> .T.
loop

endif
enddo

* Clean up calculating msg.
scrol1(23,1,23,78)
822,nCol say "-"
824,nCol say
tone(440,1)
setcursor(SCJIORMAL)
* In case rec. grid, get long side.
nGLong :« nGSizeFnd * nRecRatio
* -

* Display results.
setcolor(m->C Help)
if IPastMaxIt-.or. lAborted

* Failed to converge msg. or Esc key aborted.
scroll(17,1,21,78)
817.1 to 21,78 double
if IPastMaxIt

818,2 say " Failed to converge." color(m->C Error)
elaeif lAborted

818,2 say " Calculations aborted..." color(m->C Error)
endif
819.2 say " Last interpolated grid estimate.: " • ;

ltrim(str(nlntrGrid,12,4))
820,2 say " Last calculated prob. of hitting: " + ;

Itrim(str(100*(1-nNoHitlntGrd),12,4)) + "X"
elseif I lOKProb

* Problem specs, require grid size < 1/3 semi-major axis.
scroll(17,1,21,78)
817.1 to 21,78 double
818.2 say " Data out of range." color(m-»C_Error)
819,2 say " The input data require a grid size that is out of " + ;

"the search range of the"
820,2 say " program. Uill only search for grid sizes > 1/3 " + ;

"length of semi-major axis."
else

* Found grid msg.
scroll(14,1,21,78)
813,1 to 21,78 double
if cGridType « "R"

Code File: EGPCFile.Prg
E-3 2

* Rect. grid.
nGLong :• nGSizeFnd * nRecRatio
814,2 say 11 Grid size found, long side * " + ;

ltrim(str(nGLong,10,3))
8row(),col() say iif(m->cBasicUnit=="F"," ft", » m")
815,2 say " Grid size found, short side « " + ;
ltrim(str(nGSizeFnd,10,3))

else
* Sq. or Tri. grid.
nGLong nGSizeFnd
814,2 say " Grid size found * • ;

ltrim(str(nGSizeFnd,10,3))
endif

8row(),col() say iif(m->cBasicUnit=="F",» ft", " m»)

814,49 say "Grid search iterations.: " + NumTrim(nSICounter)
if nAngle •= 99.0

815,49 say "Random angle iterations: " + HunTrim(nRACounter)
endif

816,2 say " Probability of hitting hot spot = " • ;
ltrim(str(100*nPrbHtFnd,6,1)) • "%"

endif

if nSampleArea > 0 .and. IConverg
* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", 9-7.
* Calculate grid cell area,
if cGridType "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A * height * base * sin(60*) * base * base = 0.87 * base'2.
nGridCellArea :« 0.866025404 * nGSizeFnd * nGSizeFnd

else
* Sq. or rec. grid.
nGridCellArea :«= nGSizeFnd * nGLong

enuif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds number of samples up.
nNunSamples := ceiling(nSanpleArea/nGridCellArea)

818.2 say 11 Required number of samples = " + ;
Itrim(trans(nNunSampIes,cMAX_SampIes))

819.3 say ;
"Required nunber of samples is approximate. " color "U/RB"

820,2 say " Total cost for above nunber of samples = S" • ;
11 r1m(t rans(nNumSamples*nSanpleCost,cMAX TotaICost))

endif

if lOutFile .and. IConverg
* Write to output file.
* Pass IWriteHeader by reference, UriteOata will update it.
Write0ata(8lUriteHeader,cVer0ate,c0utFile,cGridType,nRecRatio, ;

nSemiMajor,nGSizeFnd,nShape,nAngle,nPrbHtFnd,nSanpleArea, ;
nN umSamp I es, nSamp I eCos t)

elseif lOutFile .and. (lAborted .or. I IConverg)
* Write data for abort or failed to converge.
nGSizeFnd := nlntrGrid
nPrbHtFnd := 1.0 - nHoHitlntGrd
cStatus :s iif(lAborted," ABRT"," FAIL")
Urite0ata(8lUriteHeader,cVerDate,c0utFile,cGridType,nRecRatio, ;

nSemiMajor,nGSizeFnd,nShape,nAngle,nPrbHtFnd,nSampleArea, ;
nMumSamples,nSampleCost,cStatus)

Code File: EGPCFile.Prg
E-3 2

end if
setcolor(m->C_Normal>

otherwise
* Wilt loop back.
IDone := .F.

endcase (LKey «•)
enddo
return (NIL)
*** End of Func: GetGridSizO

Function GetProbHit(cGridType, cVerOate)
* Calculates probability of missing/hitting hot spot based on
* Singer's 1972 ELIPGRID algorithm.
* Input: cGridType «= "S", »R", or "T" for square, rectangular,
* or triangular grids.
* cVerOate = Version date.
* Returns: NIL
* Aborts if cGridType •• NIL.

static nHotsptArea . m 25.0
local ntHotSptArea : = nHotsptArea
static nSemiMajor : = 2.82
local ntSemiMajor : = nSemiMajor
static nAngle : E 99.0
local ntAngle : = nAngle
static nRecRatio ; s 2.0
local ntRecRatio J C nRecRatio
static nGSize : = 10.0

local ntGSize . -nGSize
static nShape : = 1.0
static nSampleArea : s 0
local ntSampleArea • c nSampleArea
static nSanpleCost : • 0
local ntSamplecost : • nSampleCost
static COutFile : = "Screen.Out"

local nGTyp 1
local nGLong : = nGSize
local nProbNoHit : = 0
local nProbOfAHit : = 0
local nCrntAngle : = 0
local nLrgstAngle : = 0
local nProbSun : = 0
local nGridCellArea : = 0
local nNunSamples : = 0

* Misc : vars.
local lOutFile : * .F.
local lUriteHeader : = .F.
local nChoice : = 0
local IDone : = .F.
local nLKey
local get list s= O

private ntShape nShape

if cGridType •= NIL
return (NIL)

endif

* Upcase function argument.
cGridType := upper(cGridType)

* Get screen output file.

// Hot spot area
// Temp value
// Length of semi-major axis
// Temp value
// Orientation angle of hot spot to grid
// Temp value
// Rectangular grid long/short ratio
/ / Temp value
// G in Gilbert, grid spacing
// Short side, if rectanglular grid
/ / Temp value
// Shape, minor/major axis
// Total area to sample
/ / Temp value
// Cost for one sample
/ / Temp value
// Screen output file

// Grid type
// Long side for rec grids
// Probability of zero hits, P(0)
// Probability of at least 1 hit, 1-P(0)
// Current angle, used for "random" angle
// Largest angle, used for "random" angle
// Sunning var., used for "randoms angle
// Area of one grid cell
// Nunber of samples required

// Use output file flag
// Write file header flag

// Loop flag

// Stops coapiler warnings

// private for F10 key function

E-3 2
Code File: EGPCFile.Prg

cOutFile GetScn0utFile(8l0utFile, 8lUriteHeader)

* Display screen title.
DispTitle(cGridType,"P",cOutFile, lOutFile)

do while I IDone
a 6, 2 say "Shape of the elliptical hot spot..:" ;

get m->ntshape pict cMAX_Shape ;
valid ErrorUDF(ntShape « 1.0 .and. ntShape >* 0.05, ;
"Shape must be » 0.05 and t 1.0.",len(cMAX_Shape))

a 6,49 say "Shape = short axis/long axis."
a 7,49 say "F10 calculates axis from area." color(m->C_Help)
a 7, 2 say "Length of semi-major axis :" ;

get ntSemiMajor pict cMAX_SemiMajor ;
valid ErrorUDF(ntSemiMajor > 0.0, ;
"Length must be > 0.0.",len(cMAX_SemiMajor))

8row(),col() say iif<m->cBaBicUnit=="F"I"ft,,,"m")
a 9,49 say " 99.0* for average of"
810,49 say • multiple, "random", angles.'

if cGridType == "R"
* Rectangular grid.
8 8, 2 say "Angle of orientation to grid :" ;
get ntAngle pict cMAX_Angle ;

valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
"Angle must be 0* to 90* or 99,=random.",len(cMAX_Angle))

8 8,col{) say "•"
8 8,49 say "Angle can be 0* to 90°. Use"
8 9, 2 say "Length of short side of rect. grid:" ;

get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize >= ntSemiMajor/3, ;
"Grid size must be a Semimajor axis/3.0.",len(cMAX_GSize))

8row(),col() say iif(m->cBasicUnit«"F»,"ft","m")
810, 2 say "Long side/short side ratio :" ;

get ntRecRatio pict cMAX RecRatio ;
valid ErrorUDF(ntRecRatio > 1 . 0 , ;
"Ratio must be > 1.0.",len(cMAX_RecRetio))

elseif cGridType "S"
* Square grid.
8 a, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle « 45.0 .or. ntAngle •= 99,;
"Angle must be 0* to 45* or 99*-random.",len(cMAX Angle))

8 8,coin eay "*"
a 8,49 say "Angle can be 0* to 45*. Use"
8 9, 2 say "Length of any side of square grid.:" ;

get ntGSize pict cMAX_GSize ;
valid ErrorUOFCntGSize >» ntSemi Major/3, ;
"Grid size must be 2 Semimajor axis/3.0.",len(cMAX_GSize))

8row(),col() say iif(m->cBasicUnit«"F","ft","m")
elseif cGridType •= "T"

* Triangular grid.
a B, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <* 30.0 .or. ntAngle == 99,;
"Angle must be 0* to 30* or 99*-random.",len(cMAX_Angle))

8 8,col() say "*"
8 8,49 say "Angle can be 0* to 30*. Use"
a 9, 2 say "Length of side of triangular grid.:" ;

get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize >= ntSemiMajor/3, ;
"Grid size must be 2 Semimajor axis/3.0.",len(cMAX_GSize))

arow(),col() say iif<m->cBasicUnit=="F","ft","m")
endif

811,49 say " Leave area and sample cost"

Code File: EGPCFile.Prg
E-3 2

812,49 say " at 0, if cost not desired."
811, 2 say "Total area to sample ;

get ntSampleArea pict cNAX SampleArea
8row(),col() say iif(m->cBasicUnit=="F","ft1","m"")

811,25 say "F10 = Acres" color(m->C_Help)
812, 2 say "Individual sample cost ;

get ntSampleCost pict cMAX SaiqpleCost
822, 0 say "I-"
822,79 say H "
822.1 to 22,78

823.2 say "Enter « Continue Esc = Abort" + space(44) // erase msg

set key K_F10 to FlOJCeyO
read ~
set key K_F10 to
nLKey lastkeyO

• Abort, Write Data, etc...
do case

case (nLKey » K_ESC)
* Esc key pressed
if YN MsgBox("Abort current data entry session? Y/N")

if'lOutFile
* Close out file,
close alternate

endif
IDone := .T.

endif
case (nLKey »= K_ENTER .or. nLKey == K_CTRL_W)

* Enter key or Ctrl-W pressed. [Ctrl-W currently not documented.]
* Save changes to static vars.
scroll(13,1,21,7B)
nShape := m->ntShape
nSemiMajor ntSemiMajor
nAngle :« ntAngle
nGSize ntGSize
nGiong :« nGSize // Will correct for rec grid below
nRecRatio := ntRecRatio

if cGridType <== "S"
* Sqaure grid.
nGTyp := 1

elseif cGridType »= "R"
* Rect. grid.
nGTyp := 3
nGLong := nGSize * nRecRatio

elseif cGridType == "T"
* Tri. grid.
nGTyp := 2

endif

* Cost relsted vars.
nSanpleArea := ntSampleArea
nSampleCost := ntSampleCost

«--- | Calculate probability of no hit, P(0) | *
if nAngle 1= 99.0

* Calcualte for a single angle.
nProbNoHit := ElipGrid(nSemiMajor,nShape,nAngle,nGSize,nGTyp, ;

nRecRatio)
else

scroll(13,1,21,78)
814,02 say'Calculating average for multiple angles, i.e., "random11.1

* Calculate for average of multiple angles, i.e., "random" choice
* in Singer's 1972 ELIPGRID.

Code File: EGPCFile.Prg
E-3 2

if nGTyp «= 1
nLrgstAngle := 45

elseif nGTyp *= 2
* For triangular grid (hexagon).
nLrgstAngle := 30

elseif nGTyp «= 3
* For rectangular grid.
nLrgstAngle 90

endif
* Sun tp multiple angles results.
nProbSun := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit := ElipGrid(nSemiHajor,nShape,nCrntAngle,nGSize, ;
nGTyp, nRecRatio)

nProbSun : = nProbSun + nProbNoHit
next nCrntAngle

* Calculate average.
nProbNoHit := nProbSun/(nLrgstAngle+1)

endif

* Display results.
setcolor(m->C Help)
scrol 1(14,1,21", 78)
313.1 to 21,78 double
nProbOfAHit : = 100 * (1.0 • nProbNoHit)
314.2 say " Probability of hitting at least once = " + ;

str(nProb0fAHit,6,1)+"X»
316,2 say 11 Probability of NOT hitting hot spot = " + ;

str(100*nProbNoHit,6,1) • "X"

• If applicable, display cost,
if nSampleArea > 0

* Required number of samples is approximate.
* Based on (EPA. 1889. "Methods for EvaI. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType «= "T«

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A = height * base » sin(60') * base * base = 0.87 * base*2.
nGridCellArea :- 0.866025404 • nGSize * nGSize

else
* Sq. or rec. grid.
nGridCellArea := nGSize * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Celling function rounds number of sanples up.
nNumSamples := ceiling(nSampleArea/nGridCellArea)

318.2 say " Required number of samples = " + ;
11rim(trans(nNunSampl es,cMAX_Samples))

319.3 say ;
"Required nuifcer of samples is approximate. 11 color "U/RB"

320,2 say " Total cost for above nuifcer of samples = S" + ;
I tr i m(trans(nNunSanples*nSampl eCost,cMAX TotalCost))

endif

if lOutFile
* Write to output file.
* Pass lUriteHeader by reference, WriteData will update it.
WriteDataOlWriteHeader,cVerDate,cOutFile.cGridType,nRecRatio, ;

nSemiHajor,nGSize,nShape,nAngle,nProb0fAHit/100,nSanpleArea, ;
nNunSamp I es, nSamp I eCos t)

E-3 2
Code File: EGPCFile.Prg

endif
setcolor(m->C_Normal)

otherwise
* Ul11 loop back.
IDone :* .F.

endcase (nLKey)
enddo
set alternate to
return (MIL)
• End of Func: GetProbHitO

Function GetSmallestArea(cGridType, cVerDate)
* Searches for smallest hot spot size that produces a given probability.
* Currently uses a modification of the bisection method for root finding.
* See "Applied Numerical Analysis", 4th Ed., by Gerald and Uheatley p. 7.
* Only searches for hot spots with L/G ratios between
* 0.10 and 3.0, i.e., the hot spot semi-major axis size, L,
* is between 0.1 * G and 3 * G, where G is given grid size.
* Input: cGridType « "S", "R", or "T" for square, rectangular,
* or triangular grids.
* cVerDate * Version date.
* Returns: NIL
* Error: Aborts if cGridType «« NIL.
* The specified prob. of a hit will be matched by the chosen hot spot to within
* t < nERR CRITERIA. This corresponds to, e.g.,
* 90.OX l < 0.05X. Or B9.95X < calculated value < 90.05X.

static nAngle
local ntAngle
static nRecRatio
local ntRecRatio
static nGSize

local ntGSize
static nShape
static nSampleArea
local ntSampleArea
static nSampleCost
local ntSamplecost
static nOesirdProb
local ntDesirdProb
static cOutFile

local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local

nGTyp
nHS_L_Fnd
nGLong
nCol
nSICounter
riRACounter
nDesirdNoHit
nPrbHtFnd
nProbNoHit
nCrntAngle
nLrgstAngle
nProbSun
nSmalHS L
nNoHitSmlHSL
nDiffSml
nLrgeHS L
nNoHitLrgHSL
nDiffLrg
nlntrHS L
nNoHitlntHSL
nDiff Int

0.0
nAngle
2.0
nRecRatio
10.0

:« nGSize
:« 1.0
:« 0
:« nSampleArea
:= 0
:* nSampleCost
:= 95.0
:* nDesirdProb
:« "Screen.Out"

1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
1
0

// Orientation angle of hot spot to grid
// Temp value
// Rectangular grid long/short ratio.
// Temp value
// G in Gilbert, grid spacing
// Short side, if rectartglular grid
// Temp value
// Shape, minor/major axis
// Total area to sample
// Temp value
// Cost for one sample
// Temp value
// Desired probability
// Temp value
// Screen output file

// Grid type requested
// Hot spot L value found, semi-major axis
// Long side for rec grids
// Scratch columnO
// Search iterations counter
// Random angle counter
// Desired prob. of missing
// Prob. of hit found
// Probability of zero hits, P(0)
// Current angle, used for "random" angle
// Largest angle, used for "random" angle
// Sunning var., used for "random" angle
// Small trial hot spot semimaj axis len.
// P(0) for small hot spot
// Small hot spot diff from desired P(0)
// Large hot spot size
// P(0) for large hot spot
// Large hot spot diff from desired P(0)
// Interpolated hot spot size
// P(0) for interpolated hot spot
// Interpolated hspot diff from desired P(0)

Code File: EGPCFile.Prg
E-3 2

local nGridCellArea 0
local nNunSamples := 0

// Area of one grid cell
// Number of samples required

* Misc vars.
local lOutFfle
local IWriteHeader

.F.

.F.
:= "OK"

// Use output file flag
II Write file header flag
// Status msg for output file data
// Loop flag
// Convergence flag
// Esc key abort
// Exceeded nMAXJTERS flag
// Solvable problem specs flag
// User key press
// Stops compiler warnings

local cStatus
local IDone
local IConverg
local lAborted

:= .F.
.F.
.F.

: = .T.
:= 0

local IPastMaxIt
local lOKProb
local nKeyPress
local getlist := O

private ntShape := nShape // private for F10 key function

if cGridType == NIL
* Input error: no grid typ passed in.
return (NIL)

endif

* Upcase function argument.
cGridType : = upper(cGridType)

* Get screen output file.
cOutFile :• GetScnOutFile(8lOutFile. SlUriteHeader)

* Display screen title.
DispTitle(cGridType,nS",cOutFile. lOutFile)

* Get input data,
do while I IDone

S 6, 2 say "Shape of the elliptical hot spot..:" ;
get m->ntShape pict cMAX_Shape ;
valid Error(JOF(ntShape <= 1.0 .and. ntShape »= 0.05, ;
"Shape must be 2 0.05 and s 1.0.",len(cMAX_Shape))

a 6,49 say "Shape = short axis/long axis."
a 6,49 say 1 99.0* for "random" angles.1

if cGridType « "R"
* Rectangular grid.
a 7, 2 say "Angle of orientation to grid :" ;
get ntAngle pict cMAX_Angle ;

valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 90.0 .or. ntAngle == 99,;
"Angle must be 0* to 90* or 99*«random.",len(cMAX_Angle))

a 7,col() say "*"
a 7,49 say "Angle can be 0* to 90*. Use"
a 8 , 2 say "Length of short side of rect. grid:" ;

get ntGSize pict cMAX_GSize ;
valid ErrorUDF(ntGSize » 0, ;
"Grid size must be > 0.0.",len(cMAX_GSize))

8row(),col() say iif(m->cBasicUnit=»'lF","ft","m")
a 9, 2 say "Long side/short side ratio :" ;

get ntRecRatio pict cMAX_RecRatio ;
valid ErrorUDF(ntRecRatio > 1.0, ;
"Ratio must be > 1.0.",len(cMAX_RecRatio))

elseif cGridType == "S"
* Square grid.
a 7, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDF(ntAngle >= 0 .and. ntAngle <= 45.0 .or. ntAngle == 99,;
"Angle must be 0* to 45* or 99°=random.",lenCcMAX Angle))

a 7,col() say
a 7,49 say "Angle can be 0* to 45°. Use"

Code File: EGPCFile.Prg
E-3 2

8 8, 2 soy "Length of any side of square grid.:" ;
get ntGSize pict cHAX_GSize ;
valid ErrorUDF(ntGSize >• 0, ;
"Grid size must be > 0.0.",len(cHAX GSize))

arow(),col() say 11f(m->cBasicUnit=="F","ft","m")

elseif cGridType == "T"
* Triangular grid.
a 7, 2 say "Angle of orientation to grid :" ;

get ntAngle pict cMAX_Angle ;
valid ErrorUDFCntAngle >= 0 .and. ntAngle <= 30.0 .or. ntAngle == 99,;
"Angle must be 0° to 30° or 99'*random.", len(cMAX_Angle))

a 7,colO say »•"
a 7,49 say "Angle can be 0' to 30'. Use"
8 8, 2 say "Length of side of triangular grid.:" ;

get ntGSize pict cHAX_GSize ;
valid ErrorUDF(ntGSize >• 0, ;
"Grid size must be > 0.0.",len(cMAX GSize))

arow(),col() say iif Cm->cBasicUnit«"F","ft","m,l>
endif

810, 2 say "Desired probability of hitting " ;
get ntDesirdProb pict cDES!RD_PROB ;
valid ErrorUOF(ntDesirdProb >= 10.0 .and. ntDesirdProb<=99.9,;
"Prob. must be 10% to 99.9%.",len(cDESIRD_PROB))

S10,col() say "X"
910,49 say "Use 10% to 99.9%." ///, %Error <*.05%" removed 03/31/94
311,49 say " Leave area and sample cost"
312,49 say " at 0, if cost not desired."
311, 2 say "Total area to sample :" ;

get ntSampleArea pict cMAX SampleArea
3row(),col() say iif(m->cBasicUnit=="F","ft'","m*")

311,25 say "F10 = Acres" color(m->C_Help)
312, 2 say "Individual sample cost.7 »:" ;

get ntSampleCost pict cMAX SampleCost
322 , 0 say "I-"
322,79 say «-|"
322.1 to 22,78

323.2 say "Enter » Continue Esc = Abort" + space(44) // erase msg

set key K_F10 to F10JCey()
read
set key K_F10 to
nKeyPress := lastkeyO

* Abort, Write Data, etc...
do case

case (nKeyPress == K_ESC)
* Esc key pressed
if YN NsgBoxC'Abort current data entry session? Y/M")

if lOutFile
* Close out file,
close alternate

endif
IDone := ,T.

endif
case (nKeyPress == K_ENTER .or. nKeyPress == K_CTRL_U)

* Enter key or Ctrl-W pressed. CCtrl-W currently not docunented.]
* Save changes to static vars.
scroll(13,1,21,7B)
nShape := m->ntShape
nAngle :* ntAngle
nDesirdProb ntDesirdProb
nRecRatio := ntRecRatio

Code File: EGPCFile.Prg
E-3 2

if cGridType «= "S"
• Sqaure grid.
nGTyp 1
nLrgstAngle := 45

elseif cGridType -= "R"
• Rect. grid.
nGTyp := 3
nLrgstAngle := 90

elseif cGridType •• "T"
• Tri. grid.
nGTyp := 2
nLrgstAngle := 30

endif

* Cost related vars.
nSampleArea := ntSampleArea
nSampleCost := ntSampleCost

* | Find smallest area hit with given prob. |
nDesirdProb := iif(n0esirdProb==100.0,99.95,rDesirdProb)
// Above left in code in case 100% again used as valid X.
nOesircMoHit := 1.0 - (nDesirdProb*0.01)
* Below same as L/G <= 3.0 restriction.
nSmalHSJ. := 0.1 * nGSize
* Below'same as L/G of 0.10.
nLrgeHS_L := 3.0 • nGSize

scrol1(23,1,23,78)
setcolor("W+/N*») // Force blinking
823,2 say "Calculating"
setcolor(m->C_Normal)
nCol := colO+1
822,nCol say " T"
823,nCol say " "
824,nCol say '"-"
823,52 say "Esc = Stop Calculations..."
setcursor(SC_N0NE)

* Keep calculating until error is less than nERR_CRITERIA.
nSICounter := 0 // Search iterations
nRACounter := 0 // Random angle iterations
814,38 say "Search iterations : "
if nAngle •= 99.0

815,38 say "Random angle iterations: "
endif
817,38 say "Hot spot search is usually less"
818,38 say "than 16 iterations."

// For "random" angle

// For "random" angle

// For "random" angle

/ /
/ /
/ /
/ /

• T.
.T.
.T.
.F.

IConverg := .F.
lAborted := .F.
IPastMaxIt := .F.
lOKProb := .T.
do while I IConverg .and. I

nSlCounter++
814,64 say NunTr1m(nSlCounter)+ "/" •

ltrim(str(nMAX ITERS)) + " maximum.

if search converges
if Esc key abort
if past max iterations
if problem can't be solved

LAborted .and. I IPastMaxIt .and. lOKProb
// Increment search counter

* GET PROB. FOR HOT SPOT,
if nAngle •= 99.0

* Non-random single angle case.
nNoHitLrgHSL := ElipGrid(nLrgeHS_L, nShape, nAngle, nGSize,

nGTyp, nRecRatio)
else

* Sun up multiple angle results, random case.
nProbSun := 0.0
for nCrntAngle = 0 to nLrgstAngle

Code File: EGPCScrn.Prg
E-89

nProbNoHit :> ElipGrid(nLrgeHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)

r^robSun := nProbSun + nProbNoHit
nftACounter++
315,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO == K_ESC

IAborted :•= .T.
exit //exit for/next loop

endif
next nCrntAngle
if IAborted

loop
endif

* Calculate average.
nNoHitLrgHSL :« nProbSun/(nLrgstAngle+1)

endif

* Will hot spot size need to be larger than 3*G?
* If so, an L/G ratio > 3.0 would be required.
* If first search with largest hot spot can't get the
* desired prob. of hitting, no need to search farther,
if nSICounter «= 1 .and. (nNoHitLrgHSL > nDesirdNoHit)

* Quit searching.
lOKProb := .F.
loop

endif

* Check if we met error criteria with large hot spot.
nDiffLrg :» abstrOesirdNoHit - nNoHitLrgHSL)
if nDiffLrg < nERR_CRITERIA

* Net error criteria with current large hot spot.
* Exit search.
nHS I Fnd := nlrgeHS L
nPrbHtFnd := 1.0 - nNoHitLrgHSL
IConverg .T.
loop

endif

* GET PROB. FOR SMALL HOT SPOT,
if nAngle 1= 99.0

* Non-random single angle case.
nNoHitSmlHSL := ElipGrid(nSmalHS_L, nShape, nAngle, nGSize, ;

nGTyp, nRecRatio)
else

* Sun ip multiple angle results, random case.
nProbSun := 0.0
for nCrntAngle => 0 to nLrgstAngle

nProbNoHit :* ElipGrid(nSmalHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)

nProbSun s= nProbSun • nProbNoHit
nRACounter**
315,64 say Itrim(strCriRACounter))
* Esc key abort, only used with random angles,
if inkeyO «= K ESC

IAborted .T.
exit // exit for/next loop

endif
next nCrntAngle
if IAborted

loop
endif

* Calculate average.
nNoHitSmlHSL :- nProbSun/(nLrgstAngle+1)

Code File: EGPCScrn.Prg
E-90

endif

* Check if we met error criteria with small hot spot.
rtDlffSml abs(nDesirdNoHit - nNoHitSmlHSL)
if nDiffSml < nERR_CRITERIA

* Met error criteria with current small hot spot.
* Exit search.
nHS L Fnd : = nSmalHS L
nPrbHtFnd 1.0 - nNoHitSmlHSL
IConverg -T.
loop

endif

* Get interpolated hot spot size.
* Bisection method, (Gerald and Uheately 1989, 7)
nlntrHSJ. := (nLraeHS_L + nSmalHS_L)/2

* GET PROB. FOR INTERPOLATED HOT SPOT SIZE,
if nAngle 1= 99.0

* Non-random single angle case.
nNoHitlntHSL := ElipGrid(nIntrHS_L, nShape, nAngle, nGSize, ;

nGTyp, nRecRatio)
else

* Sum up multiple angle results, random case.
nProbSun := 0.0
for nCrntAngle = 0 to nLrgstAngle

nProbNoHit := ElipGrid(nIntrHS_L, nShape, nCrntAngle, ;
nGSize, nGTyp, nRecRatio)

nProbSum := nProbSim + nProbNoHit
nRACounter«-»
815,64 say ltrim(str(nRACounter))
* Esc key abort, only used with random angles,
if inkeyO »= K ESC

lAborted := TT .
exit // exit for/next loop

endif
next nCrntAngle
if lAborted

loop
endif

* Calculate average.
nNoHitlntHSL nProbSunAnLrgstAngle+i)

endif

* Check if we met error criteria with interpolated hot spot.
nOifflnt := abs(nDesirdNoHit - nNoHitlntHSL)
if nDiffInt < nERR_CRITERIA

* Met error criteria with current interpolated hot spot.
* Exit search.
nHS L Fnd nlntrHS L
nPrbHtFnd := 1.0 - nNoHitlntHSL
IConverg . T .
loop

endif

* Update large or small search hot spot sizes.
* This is a difference from linear interpolation and bisection
* methods. They look for sign changes of f(x). In root search
* case, f(x) values will be changing about 0.0.
* Ue look at whether our current f(x) for the interpolated grid
* is smaller than the desired value,
if nNoHitlntHSL < nOesirdNoHit

nLrgeHS_L := nlntrHSJ.
else

nSmalHS L := nlntrHS L

Code File: EGPCScrn.Prg
E-91

endif

* Have we reached max iterations?
if nS I Counter « nMAXJTERS

* Failed to converge.
IPastHaxIt .T.
loop

endif
enddo

* Clean up calculating msg.
scroll<23,1,23,78)
S22,nCol say "-"
824,nCol say "-"
tone<440,1)
setcursor(SC NORMAL)
if cGridType-"® "R"

* In case rec. grid, get long side.
// nGLong := nHS_L Fnd * nRecRatio
//ERROR in 05/09/94 Beta ' ~ //
nGLong nGSize • nRecRatio

endif
* •

* Display results.
setcolor(m->C_Help)
if IPastHaxIt-.or. lAborted

* Failed to converge msg. or Esc key aborted.
scroll(17,1,21,78)
817.1 to 21,78 double
if IPastHaxIt

818,2 say " Failed to converge." color(m->C_Error)
elseif lAborted

818,2 say 11 Calculations aborted..." color(m->C Error)
endif
819.2 say " Last interpolated hot spot estimate: " + ;

ltrim(str(nIntrHS L,12,4))
820,2 say " Last calculated prob. of hitting...: " + ;

ltrim(str(100*C1-nNoHitIntHSL),12,4)) * "X"
elseif I lOKProb

* Problem specs, requires hot spot > 3 * grid size.
scroll(17,1,21,7B)
817.1 to 21,78 double
818.2 say " Data out of range." color(m->C_Error)
819,2 say •< The input data require a hot spot that is out of " + ;

"the search range of the"
820,2 say " program. Will only search for hot spot s 3 * " «• ;

"length of grid size."
else

* Found grid msg.
scroll(14,1,21,78)
813,1 to 21,78 double
* Move over to line up = signs.

814,2 say " Area of smallest hot spot hit = + ;
ltrim(str(nPI * nHS L Fnd"2 * nShape,10,1)) • ;
iif(m->cBasicUnit»»"F",» ft'", " m»")

if cGridType » "R"
* Rect. grid.
815,2 say 11 Given grid size, long side * " + ;

ltrim(str(nGLong,10,3))
8row(), colt) say iif<m->cBasicUnit=="F"," ft", " m")
816,2 say " Given grid size, short side = " + ;
ltrim(str(nGSize,10,3))

else
• Sq. or Tri. grid.
816,2 say " Grid size = " • ;

Code File: EGPCScrn.Prg
E-92

ttrim(str(nGSlze,10,3))
endif
B r o w O , col() say iif<m->cBasicUnit«""F",« ft", " m")
* Move over to line up • signs.

817,2 say " Given probability of hitting « " • ;
ltrim(str(nDesirdProb,6,1)) + "X"

814,49 say "Search iterations : " + NumTrim(nS!Counter)
if nAngle •• 99.0

815,49 say "Random angle iterations: 11 • NumTrim(nRACounter)
endif

endif

if nSampleArea > 0 .and. IConverg
* Required nuifcer of samples is approximate.
* Based on (EPA. 1889. "Methods for Eval. the Attainment of Cleanup
* Standards Volume 1: Soils and Solid Media", p. 9-7.
* Calculate grid cell area,
if cGridType "T"

* Triangular grid.
* Grid cell area is now, 09/02/94, area of the rhombus formed
* from 2 of the equilateral triangles.
* A • height * base e sin(60°) * base * base =.0.87 * base'2.
nGridCellArea : = 0.866025404 * nGSize * nGSize

elseif cGridType «= "S"
* Sq. grid.
nGridCellArea :« nGSize * nGSize

else
* Rec. grid.
// nGridCellArea nHS_l Fnd * nGLong
//ERROR in 05/09/94 Beta '
nGridCellArea :• nGSize * nGLong

endif
* This formula is approx. See (EPA 1989, 9-7).
* Ceiling function rounds nuitoer of samples up.
nNumSanples :* ceiling(n$ampleArea/nGridCellArea)

818.2 say " Required number of samples « " • ;
11 r i m(t rans (nN unSampl es, cMAX_Sampl es))

819.3 say ; ~
"Required nuifcer of samples is approximate. " color "w/RB"

820,2 say " Total cost for above nuitoer of samples * $" + ;
11 r im(t rans (nNunSampl es*nSampleCos t, cMAX_Tota I Cost))

endif

if lOutFile .and. IConverg
* Urite to output file.
* Pass lUriteHeader by reference, WriteOata will update it.
Write0ata(8lUriteHeader,cVerOate,cOutFile,cGridType,nRecRatio, ;

nHS_L_Fnd,nGSize,nShape,nAngle,nPrbHtFnd,nSampleArea, ;
nNunSampl es, nSampl eCost)

elseif lOutFile .and. (lAborted .or. I IConverg)
* Urite data for abort or failed to converge.
nHS L_Fnd := nlntrHSJ.
nPrbHtFnd :* 1.0 - nNoHitlntHSL
cStatus :« iif{lAborted," ABRT"," FAIL")
Urite0ata(8lUriteHeader,cVerDate,cOutFile.cGridType,nRecRatio, ;

nHS_L_Fnd,nGSize,nShape,nAngle,nPrbHtFnd,nSampleArea, ;
nMiiiiSamples, nSampleCost, cStatus)

endif
setcolor(m->CJiormal)

otherwise ~
* Uill loop back.
IDone :» .F.

endcase (LKey *-)
enddo

Code File: EGPCScrn.Prg
E-93

return (NIL)
*** End of Func: GetSmallestAreaO

Function WriteDate{lUriteHeader,cVerDate,eOutFile,CGridType,nRecRatio, ;
nSemiNajor.nGSize,nShape,nAngle,nProbHit,nSampleArea, ;
nNunSamples.nSafflpleCost, cStatus)

* Write header optionally based on IWriteHeader, then write a line of
* data to cOutFile.
* IUriteHeader is passed in by reference, then updated by WriteDataO.
default cStatus to "OK"

set console off
set alternate on
if IWriteHeader

?? "Output from ORNL/GJ ELIPGRID-PC Program Version: " + cVerDate
? "File name.: " + cOutFile
? "Created on: " + dtoc(dateO)
? "Input file: From screen" ?
? "Grid Type Semi-major Axis Gridspace Shape" + ;

" Angle Prob. Hitting Area Samples Cost/ Total"
? " in Rel. Units (L/G) in " • ;

iif(m->cBasicUnit=="F","Feet ","Meters") • " " • ;
" deg 1.0-P(0) " • ;
i i f(m->cBas i cUni t=="F","ft*","m* ") + ;
" (rounded up) Sample Sample Cost "

IWriteHeader := ,F.
endif

* Write a line of data,
if cGridType «= "S"

? "Square " + space(B)
elseif cGridType "R"

? "Rectangular, " • trans(nRecRatio,cMAX_RecRatio) • "/I "
elseif cGridType *= "T"

? "Triangular " • space(8)
endif

* Write data fields.
?? trans(nSemiMajor/nGSize,cMAX_LtoG) • space(8) • ;

trans(nGSize,cMAX_GSize) ~ + space(6) + ;
t rans(nShape,cMAX~Shape) + space(3) + ;
iif(nAngle»=99,"Random"," "+trans(nAngle,cMAX_Angle+ + ;

space(4) • ;
trans(nProbHit,cMAX_ProbHit)

if cStatus 1= "OK"
* Write "ABRT" or "FAIL".
?? cStatus

elseif nSampleArea > 0
* Write cost related info.
?? trans(nSampleArea,cMAX SampleArea) * " " + ;

trans(nNunSamples,cMAX~Samples) • " "+;
trans(nSampleCost,cMAX~SampleCost) + " " + ;
trans(nNunSamples * nSampleCost,cMAX_TotalCost)

endif

set alternate off
set console on
return (NIL)
•»• End of Func: WriteDataO

*** End of File: EGPCScrn.Prg

APPENDIX F

EGGRAPH SOURCE CODE

F-1

APPENDIX F

EGGRAPH SOURCE CODE

The first page of this appendix contains sample make and link files for EGGRAPH.

The remaining pages contain all the main code and subroutines in one file.

F-2

Sample Make and Link Files for EGGRAPH

// File EGGraph.rmk
// Purpose.: Hake file for EGGraph program, G.Exe.
// Compiler: Clipper 5.2
II Author..: Jim Davidson
11 Started.: 05/05/94
// Last Nod: 08/26/94
// Compiler Switches below:
// /A = Automatic declaration of publics/privates as memvars.
/ / IB - Include debugging info., delete this switch for final exe.
// /N * No automatic main proc., must be used for file-wide var declarations.
// /Q = Quiet, suppress line nunber display.
// /W = Warn of anfciguous var references.
// /V = Treat all ambiguous var references as dynamic vars, not as fields.

"e:\EGGraph.OBJ": "C:\CLIPPER2VEDITOR\EGGraph\EGGraph.PRG"
e:\Clipper C:\CLIPPER2\EDITOR\EGGraph\EGGraph /A/N/Q/V/U /0e:\ /Te:\ /Ie:\

"e:\G.EXE e:\EGGraph.OBJ"
e:\blinker 8C:\CLIPPER2\EDITOR\EGGraph\EGGraph.LNK

Fi!e....: EGGraph.Lnk
Purpose.: Blinker response file for EGGraph Program with Flipper libraries
Compiler: Clipper 5.2
Author..: Jim Davidson
Started.: 05/05/94
Last Nod: 08/26/94
blinker incremental off
blinker message noblink
Below is obj source file
file e:\EGGraph
output e:\g
lib e:\clipper
lib e:\ct
lib e:\extend
lib e:\terminal
#lib e:\dbfntx
#lib e:\cld
search e:\flip5
search e:\clip50

Code File: EGGraph.Prg
F-3

/ / s S E B S > B S B H S n U I S & E S : E E & n H « n S B H E S S 2 I 8 X C 3 S : s S S S H n S S S S 5 S S I 3 U U n s a z B 3 H S

// Program..: EGGraph.Prg, G.exe.
11 Purpose..: Simple graphics demo program for ELIPGRID-PC.
11 Version..: 1.0
// Author...: Jim Davidson
11 Started..: 04/28/94
// Last Hod.: 09/06/94
//
// Files : EGGraph.prg This file only.
/ /
// Notes....: Compiler * Clipper 5.2d
// Linker = Blinker 3.0
// Modifications:
// 09/06/94 Added "lUseOefaultF := -F." for error msg "No data values found"
// to force file selection box to pop-up.

// Version Info
•define VER_DATE "09/06/94"
•define i n d inkey(O)

// Include files
•include "Inkey.Ch"
•include "Colors.Ch"
•include "Directry.ch"
•include "Box.Ch"

// key definitions
// Color definitions
// File info definitions
// Box drawing constants

// Generic defines (may not all be used)
•define BELLI chr(7) // Error Bell
•define BELL2 chr(7) • chr(7> // Printing done bell
•define CR_LF chr(13> • chr(10)
•define SC~N0RMAL 1 // Normal cursor (underline)
•define LINESIZE 80 // Buffer line size

// User-defined commands
•xcoomand DEFAULT <TheParam> TO <DefaultVal> ;

IF (<TheParam» « NIL); <TheParam>:«<0efaultVal»; ENDIF

* Currently graph will use no more than last rMAX G_P01NTS available points,
•define nHAX_G_P01NTS 50 // Max graph~points

* Below for colors
static C_Normal := C_UHT_BLU
static C~HighLght := C~CYN BLU
static C~Help := c"WHT_MAG
static C Error := c"UHT~RED

// Normal screen colors
// Current subdir color
// Help screens
// Error screens

* HP LJet IV (III?) commands.
#define HP_RESET chr(K_ESC) + "E"
* Below defined on HP LJ IV PCL Typeface List printout from test menu.
* Font is line printer internal font 48 for HP LJ IV.
•define HP_HNE_PRINTER_I48 chr(K_ESC)*"(11U"*chr(K_ESC)+»(sOp16.67h8.5vOsObOT"

*=============================== | Main Module } *==============================
Function M a i n O
* Main module of program
** Define m a i n O ' s local vars.

local
local
local
local
local
local
local
local
local

IDone
clnFile
clnPath
nHandle
nKeyPress
nTR
cGrphData
cCurLine
nCurLine

.F.
"Graph.Dat"
mi
0
0
5
•Ml
0

// M a i n O loop done flag
// Default input file
// Input file path
// File handle
// InkeyO value of a keypress
// Top screen row

Code File: EGGraph.Prg

local nCurPoint : « 0
local nNumLines : = 0
local nNunPoints : = 0
local nLineNum : = 0
local nDataLines 0
local nFrstPoint : = 0
local nXMin : = -1
local nYMin : = -1
local nXInc : = -1
local nXMax : « -1
local nHaxGValue ;s 0
local nLMargin : - 32
local nCh : = 0
local IBadFile : = .F
local lUseOefaultF ;s .T
local cDOSCndLine : = Mil
local cDOSCharl : = mi
local anCostVals : = o
local anProbVals : = o
local acText := o
local GetList a

/,• Graph X-axis rain value, -1 = auto min
Graph T-axis min value, -1 = auto min

n G*aph X-axis inc. -1 » auto inc
. ,' Graph X-axis max value, -1 = auto max
. sph x of max data value

// vise default file flag
/' DOS command line params

// Define to stop compiler warnings

local HP_HorzSize := 640 / /
local HP~VertSize := 480 / /
IOCBI HP LeftX := 231
local HP~LeftY := 4454
local HP~RghtX := 7800
local HP_RghtY := 10130
local HP_HorzOrg := 1150
local HP_VertOrg := -500
local HP~PerCent := .80

p. 7-10.

* Make static below so will not have to open fonts all the time.
* (If decide to call repetively.)
* Fontl and 2 are positive font handles from font_open().
static Fontl := -1 // Fontl used below is "RMN7 25.3"
static Font2 := -1 // Font2 used below is "SS2 22.3"
static Font3 -1 // Font3 used below is "RMM8 15.3"

els

* Get DOS command line parameters.
cDOSCmdLine := upper(dosparamO)
cDOSCharl := left(alltrim(cDOSCmdLine),1)

if "/«" $ cDOSCmdLine .or. "7" $ cDOSCmdLine .or. cDOSCharl == "H"
* Help param. passed.
ParamHeI p(VER_DATE)
quit

endif

If "." t cDOSCmdLine
* Get file name.
clnFile := Itrim(cDOSCMDLine)
if I file(clnFile)

Err_MsgBoxC3,"E","ELIPGRID-PC Graph Program", ;
"Error: File not found.", ;
"File.: " + clnFile)

lUseDefaultF := .F.
endif

else
if U/F" i cDOSCmdLine .or. cDOSCharl == "F" .or. t file(clnFile)

* Use file selector.
lUseOefaultF := .F.

endif
if »/M" S cDOSCmdLine

Code File: EGGraph.Prg

* Monochrome peram. passed.
* Black on white for LCD screens.
C_Normal :« C_BLK_WHT // Normal screen colors
CJiighLght CJJHT~BLK // Current Bubdir color
C_Help C_UHT BLK // Help screens
C~Error :• C~UHT~BLK // Error screens

endif
endif

* Get drive and path program starts in.
clnPath alltrim(diskname() + ":" • * curdirO)

set escape on
set scoreboard off
set bell off
set confirm on
set wrap on

do while I IDone
setcolor(C Normal) U Reset in case looping back
els

* Get file name if not using default, Graph.dat.
if ? lllseOefault

clnPath padr(clnPath,64)

80,0 to 4,79 double
801, 2 say "Program : EGGraph.Exe"
801,61 say "Version: " + VERJJATE
802, 2 say "Purpose : Sinple demo of a graph program for ELIPGRID-PC.
803, 2 say "Note : File selector only lists *.DAT files."
803,63 say "Esc key to Exit" color<C_Help)

* ••« Get subdir for input file ••• *
nTR :« 6
8nTR,01 to nTR+4,67
8nTR+1, 2 say " Enter drive and path of ELIPGRID-PC graph data file." ;

color(CJlelp)
8nTR*3, 2 say " Do NOT enter file name." color(CJitlp)

* Ge< esired drive and path
keyjoard ehr(K_END)
8nTR»2, 3 get elnPath picture "8!"
read
clnPath alltrim(clnPath)
set key K CTRL_F1 to

if lastkeyO «= K_ESC
IDone .T.
loop

endif

* Check for subdir
if ISutfiir(cInPath)

Err_HsgBox(nTR+5,"E","Subdir path: " + alltrim(cInPath), ;
"Could not be foundl Try again.", ;
"Be sure you did not enter the file name.")

loop
endif

" Put a "\" on end if not there already.
c lnPath := c lnPath «• i i f (r i g h t (c l n P a t h , 1) = = » \ > V » V , \ ")

• m n > » Get Input File =======*
* Pop up Get file box
scroll(nTR+5,0,nTR*19,79)

Code File: EGGraph.Prg
F-6

clnFile := fc.-tFileBox(nTR+5,5,nTR+15,NIL, clnPath + "".DAT")

If lastkeyO == K.ESC .or. empty(c!nFile)
loop

endif
endif

* Put a " V on end if not there already.
clnPath clnPath + iif(ri9ht(elnPath,1)==,,\","">"V")
scroll(nTR,0,24,79)
BnTR+1, 2 say "Input file : " + clnPath + clnFile

* Open the file
nHandle :« fopen(c!nPath + clnFile)
if (ferrorO 1= 0)

Err_M8gBox(10, "E","Error opening: " + clnPath + clnFile)
fclose<nHandle)
loop

endif

* Get the data.
nLineNum := 0
nDataLines := 0
IBadFile := .F.
do while freadln(nHandle, ScCurLine, LINES1ZE) .and. inkeyO ! = K_ESC

* Check first line to verify correct file format,
if nLineNim == 0

if I (left(cCurLine,22) «= UU Data starts on line:")
Err_MsgBox(10,"E", ;

"Error : Incorrect file format in line 1.",;
"First 22 chars are: " • left(cCurLine,22), ;
"Should read : # Data starts on line:")

IBadFile := .T.
exit

endif
endif

nLineNum*+
9nTR+2,2 say "Processing line..: " + str(nLineNun,7)
cCurLine := Itrim(cCurLine)
if left(cCurLine,1) •= "#"

* Comment line, skip over or get data,
if nLineNun >= 6 .and. nLineNun <= 11

aadd(acText,substr(cCurLine,3))
endif

else
* Line with a data point, add to data arrays.
aadd(anCostVals, val(cCurLine))
aadd(anProbVals, val(substr(cCurLine,at(" ".cCurline))))
nNuiPoints-M-

endif
enddo
fclose(nHandle)

* Loop back if bad file format,
if IBadFile

if lUseOefaultF
IDone := .T.

endif
Loop

endif

* Loop back if no data points found,
if nNunPoints <1

Err_HsgBox(10,"E", "Error: Mo data values found.", ;
"File.: " + clnPath + clnFile)

F-7
Code File: EGGraph.Prg

lUseDefaultF := .F. // Force file selection box to pop-up.
loop

endif

* Use last nMAX G POINTS for graph,
if nNumPoints <= nMAXJ5_P0INTS

nFrstPoint := 1
else

nFrstPoint nNumPoints - nMAX_G_POINTS + 1
endif

* Data buffer bytes = Number of points * 2 values/point » 8 bytes/point,
f I i p_i ni t((nNunPoi nts- nF rstPoi nt+1) * 2 * 8)

* Below sets display of error msgs on.
set_sayerrr(1)
* Open font files,
if Fontl < 0

* Only open if not already opened.
Fontl font open(»RMN7_25.9")
Font2 := font~open("SS2 22.3")
Font3 := font~open("RMN8 15.3")

endif
* Set data buffer to 2 cols.
initdata(2)
* Below sets the way Y col 1 will be displayed, 5 = point graph type.
set_type(1,5)
* Set Y col 1 to point pattern, 9 = filled box.
set_style(1,9)

* Get data into data buffer.
for nCurPoint * nFrstPoint to nNimPoints

store_data(anCostVals[nCurPoint]/1000, 100*anProbVaIs[nCurPoint])
next i
* Max graph value.
nMaxGValue := anCostVals[nNurf>oints]/1000

* Set the graph colors. Color macros in "Colors.Ch" Text
* Graph Grid Graph Scale Graph legend Inside
* frame, lines scale, titles, title, bkg, graph
grf colors(DLGREEN, DLCYAN, DLYELLOW, DLYELLOW, DLYELLOW, DLWHITb, DBLUE)
*
* Set graph title font.
set_g_font(Font1)

* Set graph label font.
set_l_font(Font2)

* Set axis tick labels,
set_s_font(Font3)

* Set x axis grid on, pattern = 0, line
set_grid(0,1,0)
* Set y axis grid on, pattern = 0, line
set grid(1,1,0)
g labeI("PROBABILITY OF HIT t:. COST")
x label("COST, SK")
y_labeI("PROBABILITY OF HIT, X")

* Display the graph.
plotO

* Below sets new current font to BIOS type 2.
font_new(2)
font~color(2, DLWHITE,DBLACK)
say_text(atx(70,2),aty(97,2), "Displays up to")

Code File: EGGraph.Prg
F-8

say_text(atx(70,2),aty(100,2), "last 30-50 points.")
set~cursor on
say text(atx(2,2),aty(97,2), "Press a key to exit...")
say~text(atx(2,2),aty(100,2), "F2 prints to HP LaserJet III/IV.")
inkey(O)
* Return to text mode.
textmodeO
setcolor(C_Normal)
els

*** Shall we PRINT the graph? ***
if lastkeyO == K F2 .and. AlertBox(7,{" Yes "," No, abort print "J, ;

"Are you attached to an On Line", "HP LaserJet I I I or IV printer?") == 1
els

* Shall we print data file text info?
nCh :» AlertBox(7, ;

<"Yes, print both", "No, just print the graph", "Abort print"), ;
"Do you want to print BOTH graph and text comments?")

if nCh »= 1 .or. nCh == 2
* Graph related info,
els
* Shall we scale the X-axis?
HenuBoxCO,1,2,78)
SayCenterO, ;

"Enter Graph Related Information. -1 = Automatic Scaling. " • ;
"Esc = Abort")

8 5,2 say "Enter = lowest cost for graph, -1 = auto minimum:" ;
get nXMin pict "99999" ;
valid ErrorUDF(nXMin < rrtaxGValue, ;
"Nin X must be < « + ltrim(str(nMaxGValue,8,1)) • - K",5)

arowO,col()+1 say "SK"

* If scaling X-axis, what max shall we use?
8 7,2 say "Enter » max cost for graph, -1 = auto maximum...:" ;

get nXMax pict "99999" when nXMin > 0 ;
valid ErrorUDFlrVXHax > 0, "X maximun must be > 0 K",5)

arow(),col()+1 say "$K"

* If scaling X-axis, what increment shall we use?
S 9,2 say "Enter Cost increment in SK, -1 = auto increment.:" ;

get nXIne pict "999" when nXHin > 0 ;
valid ErrorUDF(nXInc < nMaxGValue, "X increment must be < " • ;
Itrim(str(nMaxGValue,8,1)) + " K",3)

* Shall we scale the Y-axis?
811,2 say "Enter s lowest probability for graph, -1 = auto scaling:" ;

get nYMin pict "99"
read
if lastkeyO » K_ESC

* Abort print.
IDone .T.
loop

endif
endif

if nCh «= 1
* Print text conments.
els
NenuGox(0,1,2,78)
SayCenter(1,"Enter Text k dted Information. Esc = Abort")
a 5 , 2 say "Enter left margin for teit, 0 - 6 0 : " ;

get nLMargin pict "99" ;
valid ErrorllDF(nLHargin >= 0 .and. nLMargin <= 60, ;
"Must be >* 0 and <» 60.", 2)

Code File: EGGraph.Prg
F-9

read
if lastkeyO == K_ESC

* Abort print.
IDone .T.
loop

endif

els
MenuBox<7,10,9,70)
88,12 say "Sending data to printer. Please wait..."
set print on
set device to print
set console off
set margin to nlMargin
* Send line printer font comnand.
77 HP_IINE_PRINTER_I48

* Establish first text line.
840,0 say " " ?
? "Input File: " + clnPath • clnFile
? "Print Date: " + dtocCdateO)
7 "Print Time: " + ltrim(ampm(timeO>)
for nCurline = 1 to len(acText)

7 acTextlnCurline]
next nCurLine

set margin to
set print off
set device to screen
set console on

elseif nCh == 2
* Just print graph,
els
MenuBox<7,10,9,70)
88,12 say "Sending data to printer. Please wait..."

else
* Abort print.
IDone := .T.
loop

endif

* Now do actual graphics printing.
•

* Set the default orientation to 1 = portrait.
* Flipper Manual p. 7-9.
* This comnand seems needed even though HP III defaults to portait.
hp_setup(1)

* Opens an HP LJet III for re-direction of Flipper comnands.
* Flipper Manual p. 7-5.
hp_open(1LJ1111)

* Set up the units to plot from screen to print device.
* Values used were determined by trial-and-error after talking
* with a Flipper rep.
* Flipper Manual p. 7-10.
* Scale the graph.
HP RghtX *= HP Percent
HP RghtY *= <HP_PerCent+.1)
hp~units({HP HorzSize, HP VertSize, HP LeftX, HP LeftY, ;

HPJJghtX, HP~RghtY, HP_Horz0rg, HP~Vert0rg>)

* Below sets the way Y col 1 will be displayed, 5 = point graph type.
set_type(1,5)

Code File: EGGraph.Prg
F-10

* Set Y col 1 to point pattern, 9 = filled box.
set_style<1,9)

* Set graph title font.
set_g_font(Font1>

* Set graph label font.
set_l_font(Font2)

* Set manual x-axis scaling (or leave as auto),
if nXHin >« 0

set_xman(1) // Turn on manual scaling
set xmin(nXMin) // Set X-axis min
if nXlnc > 0

* When setting X increment, the X-axis max must also be set.
* See Flipper Manual, p. 3-36.
set_xinc(nXInc)
if nXMax «= 0

* This will put X-axis max just beyond largest < value.
nXMax := nXMin + Ceiling((nMaxGValue - nXMin}' s) • nXlnc

end
set xmax(nXMax)

endif
endif
* Set manual Y-axis scaling (or leave as auto),
if nYMin >* 0

set_yman(1) // Turn on manual scaling
set ymin(nYMin) // Set X-axis min

endif "

* Set x axis grid on, pattern = 0, line
set_grid(0,1,0)
* Set y axis grid on, pattern = 0 , line
set grid(1,1,0)
g label("PROBABILITY OF HIT vs COST")
x_label("COST, SIC")
y_labeI("PROBABILITY OF HIT, X")

* Below forces a half-tone graph background
grf_colors(,,,,,, DBLUE)

* Plot lines, points, legends, etc.
p l o t O

/// LJ3 EjectO removed, 05/05/94, HP RESET below does eject.
HP_Close()

* Reset the internal LJ font, if needed, also eject page,
set print on
set console off
?? HP_RESET
set p. snt off
set console on

endif
* Return to text mode.
textmodeO
* Will exit program after enddo.
exit

enddo

close all
set color to
els
? "Type EXIT if you want to return to ELIPGRID-PC program..."
* return to DOS
return (0) // Return 0 to DOS ErrorLabel
*** End of Func: M a i n O

Code File: EGGraph.Prg
F-ll

Function AlertBox(nTR, acOptlons, nLinl, nLin2, nLiri3)
* Substitute for alertO function. AlertO does not obey color settings.
* AlertBox obeys current color setting. AlertO is hard to read on LCD screens.
* Lines 2 and 3 are optional.
* Returns: Esc = 0, else nunber of array element of acOptions chosen,
local cTmpScn :« ""
local IDispMsg := .T.
local nMaxLineUdth := 0
local nPrmptUdth := 0
local nUidth := 0
local cOrgClr := ""
local nLC := 0
local nBR := 0
local nRC := 0
local nLines := 0
local nCurRow := 0
local nCurCol := 0
local nNumOps := len(acoptions)
local nCurOp := 1
local nOpCol := 0
local nRtnVal := 0

* Set box color.
cOrgClr := setcolor(C_Error)

* Get current cursor pos.
nCurRow := rowO
nCurCol := col()

if (valtype(nLin3) == «C«)
* 3 lines to display
nBR := nTR • 4 + 3 // 4 lines for misc. • 3 msg lines
nMaxLineUdth :» max(max(len(nLin1), len(nLin2>), len(nL1n3))
nLines 3

elseif (valtype(nLin2) == "C")
* 2 lines to display
nBR nTR + 4 «• 2 // 4 lines for misc. + 2 msg lines
nMaxLineUdth := max(len(nLin1), len(nLin2))
nLines := 2

elseif (valtypetnLinD == «C")
* 1 line to display
nBR := nTR + 4 • 1
nMaxLineUdth :* len(nLinl)
nLines := 1

else
* Incorrect params, passed
IDispMsg :«= .F.

endif

* Display message,
if (IDispMsg)

* Get total width of the prompts plus inner spacing.
<r>r nCurOp - 1 to nNunOps

nPrmptUdth := nPrmptUdth + len(acOptions[nCurOp])
next nCurOp
nPrmptUdth := nPrmptUdth + 3 * (nNunOps-1)

* Determine overall width of box.
nMaxLineUdth := max(nMaxLineUdth, nPrmptUdth)
nUidth := 4 • nMaxLineUdth
nLC :« (79 - r«idth)/2 // center
nRC := nLC + nUidth • 1
cTmpScn := savescreen(nTR, nLC, nBR+1, nRC+1)
MenuBox(nTR,nLC,nBR,rtRC)
if (nLines >» 1)

Code File: EGGraph.Prg
F-12

3nTR+2, nLC + 2 say nLinl
endif
if (nLines >« 2)

9nTR+3, nLC + 2 say nLin2
endif
if (nLines «= 3)

SnTR+4, nLC • 2 aay nLin3
endif

* Display nod get desired menu option.
' ' ' - 1 I (> U*' -î '1

nOpCol nOpCol + len(ac0ptionstnCur0p-1]) + 3
endif
3nBR-1, nOpCol prompt acOptionstnCurOp]

next nCurOp
tone(440,0.3)
menu to nRtnVal

restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)
else

ao,o
30,0 say 11 AlertBoxO error: Check parameters. Press a key to return... "
inkey(O)

endif (IDispMsg)
setcolor(cOrgClr)
SnCurRow, nCurCol say ""
return (nRtnVal)
•** End of Func: AlertBoxO

Function Ceiling(nNum)
* Returns the next integer >= nNum on the nunber line.
* Examples: Ceiling(3.01) == 4
* Ceiling(3) == 3
* Ceiling(-3.99) == -3
* Ceiling(-3) -3
local nRtnVal := 0
if nNun X int(nHim) == 0

* Already an integer.
nRtnVal :« nNum

else
* If pos, trunc and add 1, else Just truncate.
nRtnVal :* i if (nNun >= 0, int(nNun) + 1, int(nNun))

endif
return (nRtnVal)
*** End of Func: Cei lingO
*

Function Err_NsgBox(nTR, cType, nLinl, nLin2, nLin3)
* Generic error or msg box. Defaults to error box.
* Displays up to 3 lines • Press key msg and waits for keypress.
* Returns: Nil
local cTmpScn : = mi
local IDispMsg : « .T
local nHaxLineUdth :« 0
Local nuidth : = 0
local cOrgClr : = mi
local nLC : = 0
local nBR : = 0
local nRC : = 0
local nLines : = 0
local ncurRow : = 0
local nCurCol := 0

F-13
Code File: EGGraph.Prg

default cType to "E" // Default to error box

* Set box color.
if upper(cType) «= "E"

cOrgClr := setcotor(C_Error)
else

cOrgClr := setcolor(C Help)
endif

* Get current cursor pos.
nCurRow := row()
nCurCol := col()

if (valtype(nLiriS) «= »C»)
* 3 lines to display
nBR := nTR + 4 + 3 // 4 lines for misc. + 3 msg lines
nMaxLineUdth := max(max<len(nLinl), len(nLinZ)), len(nLin3))
nLines := 3

elseif (valtype(nLin2) == "C")
* 2 lines to display
nBR nTR + 4 * 2 // 4 lines for misc. + 2 msg lines
rMaxLineUdth max(len(nLin1), len(nLin2))
nLines 2

elseif (valtype(nLinl) == "C")
* 1 line to display
nBR := nTR + 4 + 1
rMaxLineUdth len(nLinl)
nLines := 1

else
* Incorrect params. passed
IDispMsg .F.

endif

* Display message,
if (IDispMsg)

nMaxLineUdth max(nMaxLineUdth, lenC'Press a key to continue..."))
nUidth :s 4 • nMaxLineUdth // 2 lines/blanks + largest line
nLC (79 - nUidth)/2 U center
nRC := nLC • nUidth - 1
cTmpScn savescreenCnTR, nLC, nBR+1, nRC+1)
MenuBox(nTR,nLC,nBR,nRC)
if (nLines >= 1)

8nTR+2, nLC + 2 say nLinl
endif
if (nLines >= 2)

flnTR+3, nLC + 2 say nLin2
endif
if (nLines *= 3)

anTR+4, nLC + 2 say nLiri3
endif
SnBR-1, nLC + 2 say "Press a key to continue..."
tone(440,1)
inkey(O)
restscreen(nTR, nLC, nBR+1, nRC+1, cTmpScn)

else
30,0
30,0 say " Err_MsgBox() error: Check parameters. Press a key to return... "
inkey(O)

endif (IDispMsg)
setcolor(cOrgClr)
SnCurRow, nCurCol say ""
return (NIL)
*** End of Func: Err MsgBoxO

a***
Function ErrorUDF(IPassTest, cErrorMsg, nFldLen)

Code File: EGGraph.Prg
F-14

* Generic error routine for S say/get valid clauses.
* IPassTest: Logic flag for--pass test?
* cErrot-Msg: Message to display
* nFldLen...: Length of get field--as picture specifies for nuneric
* Returns..: .F. if IPassTest •• .F., else just returns .T.
local CurGetName := readvarC)
local nTR :• row() + 1
local nBR := nTR + 3
local nLC := col{) • nFldLen
local nRC := nLC * len(cErrorMsg)
local cTmpScr := savescreen(nTR, nLC, nBR, nRC)
local cCurClr := setcolor(C Error)
local IRtnVal := .F.

// Name of current get variable
// Current row + 1 for error box

// Current col is end of get field
+ 1

if ! IPassTest
* Invalid input failed valid test, display error box.
scroll(nTR, nLC, nBR, nRC)
8nTR,nLC to nBR,nRC
8nTR+1, nLC+1 say cErrorMsg
8nTR+2, nLC+1 say "Press a key..."
tone(440,1)
inkey(O)
restscreen(nTR, nLC, nBR, nRC, cTmpScr)
IRtnVal := .F.

else
IRtnVal : = .T.

endif
setcoIor(cCurCIr)
return (IRtnVal)

End of Func: ErrorUDFO

Function ExtrctPath(PathFileM)
* Extract path from pathfilename
* Example: ExtrctPath("D:\file.ext") « > "D:\"
* Based on Environ.prg fuction FilePathO supplied by Nantucket
local BkSlshPos, Path
BkSlshPos := rat("\", PathFileN)
if (BkSlshPos «= 0)

Path := ""
else

Path := substr(PathFileN, 1, BkSlshPos)
endif
return (Path)

End of Func: ExtrctPathO

» » » » » • » * » » * » » * » » » » » • » * » * » » » » * » » » • • » » » * » »
Function FReadLn(Handle, Line, LineSize)
• From Ref(Clipper), 4/88, p.9
local More, Uhere, StrLen, TabSpaces, CharPos
local Buffer space(LineSize)
local NumRead := fread(Handle, aBuffer, LineSize)
if (NunRead 0)

Where := at(chr(13) + chr(10). Buffer)
* Did we find a new line
if (Where 1= 0)

* yes, so return
Line := substr(Buffer, 1, Uhere)
* Reposition to just after new line
fseek(Handle, -NumRead + Uhere + 1 , 1)

else
* no, so return all we read
Line sub6tr(Buffer,1,NmRead)

endif
More .T.

else

Code File: EGGraph.Prg
F-15

More : = .F .
endif
return (More)

*** End of Func: FReadLnC)

Function GetFIleBox(nTR, nLC, nBR, nRC, cDirSpec, IDispBox, cColor, nlnitFile)
* Pop-up file selector, all perams. are optional
* Parameter defaults:
* nTR top row ==> to 0
* nLC left col •=> to 0
* nBR bot row ==> to mexrow
* riRC right col ==> to nLC + 38
* cDirSpec ==> "*.*«
* IDispBox ==» .T.
* ColorVAr ==> "W+/n,n/W"
* nlnitFile ==> 1
* Returns:
* if Enter key « > File name
* if Esc key »«> NIL

if error »=» NIL

•A. a I cOrgClr := ""
ocat cFMeName := NIL
local cinvi'-n := ""
•cal i
-al aOretry := O

local acFileNames := O
local nFiler^oice := 0

// Scratch
// Array of dir info
// Array of file names

* If any param. not passed, below assigns defaults as needed.
default nTR to 0
default nLC to 0
default nBR to maxrow()
default nRC to nLC + 38
default cDirSpec to "*.*"
default IDispBox to .T.
default cColor to (C_Help)
default nlnitFile to~1

cTmpScn savescreen(nTR,nLC,nBR+1,nRC+1) // + 1 for shadow

if (ISubOir(cDirSpec))
Err_HsgBox(15,"E","No .DAT files found in current subdir.")
return (NIL)

endif

cOrgClr := setcolor(cColor)
scroll(nTR,nLC,nBR,nRC)
if (IDispBox)

NenuBox(nTR,nLC,nBR,nRC)
endif
3nTR,nLC+2 say 11 Choos* Input File... "

aDrctry directory(cDirSpec)
* Sort array according to file name.
asort(aDretry,,, <|FrstName,NextName| FrstNametF_NAHE] < NextNametF_NAME]})

* Fill an array with file info to display.
acFileNames :« O
for i = 1 to len(aDrctry)

aadd(acFileNames, ;
padl(aDrctryti,F NAME], 13) • ;
padl(numtrim(aDrctry[i,F SIZE]),8) + ;
padl(dtoc(aDretry[i,F DATE]), 9) + ;

Code File: EGGraph.Prg
F-16

padl(substr(aDrctry[i,F_TIME],1,5),6))
next i

* Display files and get choice.
nFileChoice := achoice(nTR+1,nLC+1,nBR-1,nRC-1, acFileNames,,,nlnitFile)
if (nFileChoice 1= 0)

* Is 0 if Esc key exit
cFileName := aDrctrylnFileChoice,F_NAME]
nlnitFile :« nFileChoice

endif
setcolor(cOrgClr)
restscreen(nTR,nLC,nBR+1,nRC+1 ,cTnpScn)
return (cFileName)

End of Func: CetFileBoxO

Function MenuBox(nTR,nLC,nBRtnRC, cSides, IShadow)
* Draw box sides for a menu.
* cSides defaults to double top, single sides.
* cSides could be defined constants from from Box.Ch.
* IShadow defaults to .T.
local cOrgColor := setcolor()
default cSides to B DOUBLE SINGLE
default I Shadow to Tl.
if IShadow

set color to
scrolI(nTR+1,nLC+1,nBR+1,nRC+1)
setcolor(cOrgColor)
scrolI(nTR,nLC,nBR, nRC)

endif
dispbox(nTR,nLC,nBR,nRC, cSides)
return (NIL)

End of Func: MenuBoxO

Function NunTrim(Nun)
* Returns Num in str form trimned
local NumStr := alltrim(str(Nun))
return (NumStr)
»•• End of Func: NunTrimO
**********•••*••*•••••*«••*•

Function ParamHelp(cVerDate)
* Parameter help screen,
set color to W+/N
els
?? repli("-•«,80)
?? "ORNL/GJ ELIPGRID-PC Sinple Graph Program, Version: " + cVerDate
? "Usage: G [Filename.Ext] | [/H | ?] | C/F [/Ml]" ?
? 1 G = Use "Graph.Dat" as default input file.1

? ' G Tr2.A * Use file "Tr2.A" as default input file.1

? " C/F * Use file selector for input files."
? " G /H = Help on caimand line parameters, this screen."
? " G /N » Monochrome non-graphics screens."
?
? " Example: G /F/H"
? " Use file selector and monochrome screens."
?
? "Quick parameter options:"
? " G H = Help"
? " G F = File selector"
? repli("-",80)
return (NIL)
* M End of Func: ParamHelpO

Code File: EGGraph.Prg
F-17

Function SayCenter(nRow, cHsg)
* Displays cMsg on centered nRow.
local nCol := (80-len(cMsg))/2
3nRow,nCol say cNsg
return (NIL)
*** End of Func: SayCenterO

Function Subdir(TestSubdir)
* Returns .T. if TestSubdir exits, .F. otherwise
* The directoryO command will return an empty array
* if the TestSubdir does not exist,
local RtnVal := .F.
local aDirctry :» O

TestSubdir := alltrim(TestSubdir)
aDirctry := directory(TestSubdir, "D") // D to include all subdirs
if len(aoirctry) > 0

RtnVal := .T.
endif
return (RtnVal)
*** End of Func: SubdirO

•** End of File: EGGraph.Prg

ORNL/TM-12774

INTERNAL DISTRIBUTION

3 - 22. J. R. Davidson
23. P. V. Egidi
24. D. K. Halford

25 - 30. C. A. Little
31. P. T. Owen

1. B. A. Berven
2. B. Coleman

32. G. H. Stevens
33. J. E. Wilson
34. Central Research Library

35 - 36. Laboratory Records
37. Laboratory Records - RC
38. ORNL Patent Section
39. ORNL Technical Library, Y-12

EXTERNAL DISTRIBUTION

40. Jim Berger, 1299 Bethel Valley Road, Oak Ridge, TN 37830
41. James A Bowers, Westinghouse Savannah River Company, PO Box 616, Aiken,

SC 29802
42. C. C. Britton, Mesa State College, PO Box 2647, Grand Junction, CO 81502
43. Rich Engelder, RUST Geotech, Inc., PO Box 14000, Grand Junction, CO 81502
44. Richard O. Gilbert, Pacific Northwest Laboratory, ISB 1 Building, PO Box 999,

Richland, WA 99352
45. Carl Gogoiak, U.S. Department of Energy, Environmental Measurements Lab.,

376 Hudson Street, New York, NY 10014-3621
46. Tim LeGore, Westinghouse Hanford Company, PO Box 1970, Richland, WA

47. Don Mackenzie, USDOE/HQ, EM-442, Quince Orchard Bldg., Washington, DC
20585-0002

48. David E. Mathes, USDOE, Office of ER, EM-451 (GTN) Room D-427,
Washington, DC 20545

49. T. J. Novotny, Mesa State College, PO Box 2647, Grand Junction, CO 81502
50. Donald A Singer, U.S. Geological Survey, 345 Middlefield Road, Menlo Park,

C A 94025
51. Andrew Wallo, m, USDOE, Air, Water & Radiation Division, EH-232, 1000

Independence Avenue, SW, Washington, DC 20585
52. Office of Assistant Manager, Energy Research and Development,

Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600
53 - 54. Office of Scientific and Technical Information, U.S. Department of Energy,

P.O. Box 62, Oak Ridge, TN 37831

£H0 Of)T(£

