o

N
O

e flze

Gl ga2
vl T
2 [l22
lleE

s Ml

SAND93-2064 Distribution
Unlimited Release Category UC-706
Printed September 1993

Data Collection System
Volume 1:
Overview and Operators Manual

Richard B. Caudell, Marvin E. Bauder,
William B. Boyer, Ralph E. French, Robert J. Isidoro,
Peter C. Kaestner, W. George Perkins

Instrumentation Development Department 9321
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

Sandia National Laboratories (SNL) Instrumentation Development Department was tasked
by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers
on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on
September 18, 1992. This report contains a overview and description of the computer
hardware and software that was used to acquire, reduce, and display the data. The
document is divided into two volumes: an overview and operators manual (Volume 1) and

-

a maintenance manual (Volume 2).
HASTER
S1Ta TR R
¥

—- G SIRRTR T B L S 2k PR T SN S

Data Collection System Contents

CONTENTS
1.0 OVERVIEW OF RTD720 SOFTWARE 1-1
L1 Introduction 1-1
1.2 Computer-Instrument Network i 1-1
1.3 Instrumentation Data Base and Instrument Control Files 1-4
1.4 Control-Account Software i 1-5
1.4.1 Master Node Menu 1-5
1.42 Slave Node Menu 1-6
1.5 Software Package Summary o 1-6
1.5.1 The Login Procedure i 1-6
1.52 Run RTD Scheduler i, 1-6
1.5.3 The Initialize Function e 1-7
1.5.4 The Realize Function i 1-7
1.5.5 The Plotting Function 1-7
1.6 Automated Dry-Run Data-Acquisition Software 1-8
1.6.1 RTD720 Scheduler e 1-8
1.7 Semi-Automated Data Acquisition e 1-8
1.8 Setup, Acquisition, and Plotting Programs 1-9
1.8.1 Instrument-Setup Program INITIALIZE 1-9
1.8.2 Data-Acquisition Program REALIZE 1-9
1.8.3 Data Files and Directories 1-10
1.9 Setup (RTDTEST) Software I-11
1.10 Fielding Results e 1-11
2.0 RTD VAX NETWORK e e e e 2-1
2.1 Introduction e 2-1
2.2 Selection Process 2-1
2.3 Hardware e 2-2
2.4 SOftWare e e 2-2
2.5 System Parameters 2-3
2.6 NetworKingot e 2-4
2.7 Security CONMCEIMS . . . v vttt e e et e e e 2-5
3.0 OVERVIEW OF RTD720 SCHEDULER AND DIAGNOSTICS 3-1
3.1 Introduction e 3-1
3.2 RTD720 Scheduler 3-1
3.3 Semi-Automated Data Acquisition 3-4
3.3.1 Option 1 -1Initialize 3-4
3.3.2 Option 2 - Realize/Analyze i 3-5
3.33 Option 3 -Plotting e 3-7
3.3.4 Option 4 - Development Scheduler 3-8
Sandia National Laboratories Underground Testing

Data Collection System Contents

CONTENTS (Continued)

4.0 REALIZE AND INITIALIZE USER INFORMATION 4-1
4.1 INtFOAUCHION .+« v v v et e e e e e 4-1
4.2 DefinitionNs . . ot vttt 4-1
43 Running REALIZE and INITIALIZEoy 4-1
44 Command Line Examples i 4-2
45 Command Qualifiers for INITIALIZE i 4-3
4.6 Command Qualifiers for REALIZE oo 4-4
4.7 Sequence of OPErationso vven vttt 4-7
4.8 General COMMENES . . o v v vttt et e e 4-7
50 ANALYZE USERS MANUAL e 5-1
5.1 INtFOdUCHION & &+ v v e e e e e e e e 5-1
5.2 Input Parameterst 5-1
53 Input Fileo 5-1
54 Output Filesot 5-1
5.5 EXamplesot 5-2
5.6 Sequence of Operation 5-2
5.7 PROC_RTD720 Sequence of Operation oot 5-3
5.8 DiHagnOStiCS . . vttt 5-4
6.0 USING PRELEWD, WITH COMMENTS ON GRAFPAK 6-1
6.1 INtFOdUCHION . o« v o ot e e e e e e e 6-1
6.2 Definitions . . .o v it e 6-1
6.3 GRAFPAK-GKS COmMMENtS . . . v v vt it e e e e 6-2
6.4 Running PRELEWD e 6-2
6.4.1 PRELEWD Command Line Examples v 6-3
6.5 PRELEWD Parameters v vt vt it m it it e i e 6-4
6.6 PRELEWD Command Qualifiers i 6-5
6.6.1 PRELEWD Command Qualifier Definitions 6-6
6.6.2 PRELEWD’s Print Command i 6-10
6.7 PRELEWD General Commentsouuiueretnvineeon.. 6-11
6.7.1 Common Error MESSages oottt 6-11
6.7.2 Error Message Levels i 6-12
7.0 RTDTEST Operator Information o 7-1
7.1 PUIPOSE .+« v v vt e et e ettt e e 7-1
72 RTDTEST FUNCLONS . . vttt et e e e e e 7-1
7.2.1 Set Up the RTD fromthe ICF 7-1
722 Modify the ICF . ..o 7-1
7.2.3 Update INGRES Data Baseco v, 7-2
Sandia National Laboratories Underground Testing

Vi

Data Collection System Contents

724 Acquire Data froman RTD i 7-3
7.2.5 Plot the Acquired Data to the Terminal 7-3
7.3 Interface with CONTROL i 7-3
R OIENCES . . . v vt e e e e R-1
FIGURES
1-1 KSC-1 Data Channel Diagram, 1-3
1-2 LPARL Data Channel Diagramc iy 1-3
1-3 SAIC Data Channel Diagram i, 1-4
1-4 RTD720 Software Data Flow Diagram 1-7
2-1 RTD Network . .o e e e e e e 2-4
TABLES
3-1 Status Messages, Program or Origin, and Description of Messages 3-2
Sandia National Laboratories Underground Testing

vii

Data Collection System

ACL
ATC
CHN
DCL
DEC
DNA
DSP
FMS
GKS
ICF
KSC-1
LPARL
NTS
SAIC
SNL
SPL

ACRONYMS

Access Control List

Advanced Technology Center

Channel

Digital Command Language

Digital Equipment Corporation

Defense Nuclear Agency

digital signal processing

Forms Management System

Graphical Kernel System

instrument control file

Kaman Sciences Corporation

Lockheed Palo Alto Research Laboratory
Nevada Test Site

Science Applications International Corporation
Sandia National Laboratories

Software Project Leader

Sandia National Laboratories

viii

Acronyms

Underground Testing

Data Collection System Overview of RTD720 Software

1.0 OVERVIEW OF RTD720 SOFTWARE

1.1 Introduction

The Sandia National Laboratories (SNL) Field Instrumentation Department has been tasked by the
Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers on the HUNTERS
TROPHY field test conducted at the Nevada Test Site (NTS) on September 18, 1992. This report
contains a description of the computer hardware and software that was used to acquire, reduce, and
display the data. The rest of this chapter contains an overview of the hardware and software in the
Sandia RTD720 recording system. The remainder of the document presents detailed descriptions of the
hardware and software. It is assumed that the reader and user are very familiar with Digital Equipment
Corporation (DEC) VAX computers, the VMS operating sytem including DECnet, and the capabilities
of the RTD720 digitizer. References are provided to specific VAX VMS and RTD720 manuals.

The data was recorded by SNL in parallel with primary data recorded by DNA contractors Science
Applications International Corporation (SAIC), Kaman Sciences Corporation (KSC-1), and Lockheed
Palo Alto Research Laboratory (LPARL). The SNL recorders were located in NTS Area 12, Building
909, and the contractor recorders were located in various recording aicoves in the HUNTERS
TROPHY tunnel (downhole). Analog data recorded by SNL was transmitted from downhole to
Building 12/909 using fiber-optic technology. SNL is also tasked to provide comparisons between the
primary data recorded by DNA contractors and the secondary data recorded by SNL. Details of the
comparison procedure are addressed in a separate document.

Each RTD720 digitizer can be configured with one, two, or four independently programmable data
channels. Each data channel can be used to record several signals, the first of which could be a laser
calibration pulse supplied by the fiber optics developers. W'e have provided software not only to
record and display the data but also to provide for instrumentation setup.

SNL involvement in a DNA instrumentation modernization project began with the DIAMOND
FORTUNE event. SNL commitment to the project has increased through the HUNTERS TROPHY
field test. DNA’s ultimate goal is to develop and field an uphole recording capability similar to SNL’s,

1.2 Computer-Instrument Network

Computers and instruments associated with RTD720 testing are located in Building 12/909. The master
computer in the RTD720 network is a DEC VAX 4000. A backup VAX (having less capability than
the VAX 4000) was used for data acquisition when the VAX 4000 was not functioning properly
during early dry runs for HUNTERS TROPHY.

The VAX 4000 is equipped with two ethernet interfaces. One ethernet interface connects to the Field
Instrumentation Department NTS VAX network and the other connects to a data network, including
several smaller computers or workstations, For HUNTERS TROPHY, we used several Sandia-owned

Sandia National Laboratories Underground Testing

1-1

Data Collection System Overview of RTD720 Software

microVAX-Il computers that were temporarily available. For subsequent tests, the microVAX-II
computers will be replaced by SNL-purchased, DNA-owned workstations. Each microVAX-II is
equipped with an ethernet interface and a DEC IEQ!1 Dual IEEE-488 interface. All ethernet
interfaces use the DECnet communication protocol (Digital Equipment Corp., 1988). Each
microVAX-II uses the two IEEE-488 buses on the IEQ! 1 interface to communicate with the RTD720
digitizers.

The VAX 4000 has the DECnet node name "GEAR10." GEARI10 is an acronym composed of the
following elements:

General purpose interface bus
Ethernet

Analog

Recording node

10 - Serial number

':h:hwtd—'

Each microVAX-II has node name RMVm0, where m0 is a serial number (e.g., 10). For HUNTERS

TROPHY, each contractor was assigned a separate node (RMVmO0). This was done so that contractors
could make dry runs by hand in their own area without having access to the data of other contractors.
Node assignment was made as follows:

a. RMV10 - KSC-1
b. RMV20 - LPARL
<. RMV30 - SAIC

Figures 1-1 through 1-3 are channel diagrams for each RMV node. Eight RTD720s were allotted to
KSC-1 experiments with 16 data channels. Within these data channels were 32 subchannels (i.e.,
separately recorded signals). Four RTD720s were assigned to LPARL data with 4 data channels and a
total of 28 subchannels. SAIC data was assigned 14 RTD720s using 14 channels with a total of 68

subchannels.

The RTD720 control network was connected to tbe Sandia NTS VAX network for HUNTERS
TROPHY. Many assets of the Sandia network were used to support the RTD720 recording project
(e.g., INGRES data base, optical disk archiving, ethernet printers, etc).

Sandia National Laboratories Underground Testing

1-2

Data Collection System

G518

RHV1O
HicroVAX 2

I

Overview of RTD720 Software

1EEE 486 Bus [1EEE 4bp Bus
RMV11 RHV1C
[R) 1 }
I . L 1 . [[|
RTD RTD RTD RTD RTD RTD RTD RTD
1 § ¥ 3 L 1 LI 49 4
. [f”“i” I [I [1 AT
Ch 1 ch 1| | Cho1 “h 1 ch o1l Ch 1 ch 1 Ch 1
‘mi Eﬁi} l {o’u 041 014 021 {UM ‘c !(m }
[IS R U S R
ch 2 ch Choo ch 2! ch 2 ch 2 Ch 2 Ch 2
&TS } luaz 1 ’uj:] qu a2 [ozz {unz z {o4z[
- e I . e e R

Figure 1

Figure 1-1. KSC-1 Data Channel Diagram

LPARL

RMVZO

MicroVAX 2

l

'[RE
N et

ATL RTD
41 "o

l |
Ch | ch
011 Lo

|

Figqure o.

5

1EEE 488 Hus

RMVZZ

Figure 1-2. LPARL Data Channel Diagram

Sandia National Laboratories

Underground Testing

Data Collection System Overview of RTD720 Software

SALC
RMV 30 l
MicroVAX o I
1EEE 488 Bus LEEE 488 Bus
RMV31 RUV3Z
,,,,, l |
R | 1 | I)
RTD RTD RTD RTD RTD RTD
% 1 [# 7 # 1 # o 77
Ch [Ch Ch Ch Ch Ch
011 ! 021 071 011 0z 071
Figure 3

Figure 1-3. SAIC Data Channel Diagram

1.3 Instrumentation Data Base and Instrument Control Files

Data about each instrument, channel, and signal are contairied in a data base that is maintained using
an SNL-written INGRES application. The INGRES application is used to create ICFs to be used by
other software to control access to instruments. In particular, the RTD720 instrument control files
contain fields for all possible settings of each channel, as well as descriptions of all signals that may
be multiplexed into each channel on every RTD720. The RTD720 control files are stored in a special
GEARI10 directory designated DD:[TABLES]. Each control file contains information about all
RTD720s that are connected via a single IEEE-488 interface to a given RMVmO. The control file
associated with the nth IEEE-488 bus on RMVmO is named RMVmnR20.TBL. There is one such file
for each active IEEE-488 bus on any RMVm0. Each IEQ11 interface is equipped with two IEEE-488
buses with device designations IXAO: (bus 1) and IXAl: (bus 2). For the HUNTERS TROPHY
configuration, the ICFs were named as follows:

Sandia National Laboratories Underground Testing

Data Collection System Overview of RTD720 Software

KSC-1 RMVI1 RMV11R20.TBL
RMVI12 RMVI12R20.TBL
LPARL RMV21 RMV21R20.TBL
RMV22 RMV22R20.TBL
SAIC RMV3l RMV31R20.TBL
RMV32 RMV32R20.TBL

1.4 CONTROL-Account Software

There are two types of nodes in the computer architecture for testing RTD720s. In this architecture the
GEAR10 node is the "Master" node and there is a certain set of procedures that n.ay be performed
when logged into CONTROL on GEAR10. RMVmO nodes in this architecture are "Slave" nodes and
may not perform those procedures granted to the GEAR10 node. They are allowed to perform other
procedures appropriate to "Slave" nodes. In either case, the CONTROL-account procedure begins
when a user logs onto the node with usemame CONTROL. The CONTROL account on any node at
the NTS is a captive account that allows a restricted group of users to perform a very limited set of
activities specified in a menu. After usename and password validation, the procedure presents a valid
user with a menu of options appropriate to the type of node (Master or Slave).

1.4.1 Master Node Menu
If the user is logged into the "Master" node (GEAR10) then the menu is as follows:

n Run RTD720 Dry-Run Scheduler

(2) Run RTD-diagnostics

3) Get new instrument-control files from data base node
(L) Logbook

(M) Mail

(E) Exit

If the user selects "Run RTD720 Dry-Run Scheduler" from the menu, the command procedure invokes
the RTD720 scheduler, a software ensemble that includes both FORTRAN-coded executable images
and DEC Digital Command Language (DCL) command procedures. The RTD720 scheduler and the
procedures invoked are discussed below in Section 1.6 "Automated Dry-Run Data-Acquisition
Software."

Sandia National Laboratories Underground resting

Data Collection System Overview of RTD720 Software

1.4.2 Slave Node Menu

If the user is logged into a "Slave" node (RMVmO0) then the menu is as follows:

(1 Run RTDTEST

(2) Show users

(3) Get new instrument control files from data base node
4) Push modified instrument-control files to data base node
(E) EXIT

If the user selects "Run RTDTEST" from the menu, the command procedure invokes the RTDTEST
image. This option is described in Section 1.8 "SETUP (RTDTEST) SOFTWARE." The CONTROL.
housekeeping includes all necessary control-file copies to the instrumentation data base node.

It should be noted that the list of users authorized to use the GEAR10 CONTROL command
procedure is not necessarily identical to the list authorized to use the RMYm0O CONTROL command
procedure or any other VAX on the NTS VAX network,

1.5 Software Package Summary

Figure 1.4 illustrates the software package applied to the HUNTERS TROPHY event that will be
described in the following sections. The activities associated with the GEAR10 computer are enclosed
in the dotted lines.

1.6.1 The Login Procedure

When a user logs into GEAR10, the login procedure described in Section 1.4 will first check to see if
ICFs in the data base (upper left comer of Figure 1.4) have a later creation date than the ICFs in
DD:[TABLES) on GEAR10. ICFs on GEAR10 will be updated automatically if a later issue exists in
the data base.

1.5.2 Run RTD Scheduler

Assuming that the user selects "Run RTD Scheduler" to be described in Section 1.6, the Scheduler will
look into DD:[TABLES] for ICFs. For each ICF it finds, it will create three command procedures to
be submitted at the appropriate time to batch. As illustrated in the upper center of Figure 1.4, one
procedure will be created for INITIALIZE, which loads each device on the bus with parameters from
the ICF. Another procedure will be created for REALIZE and ANALYZE (directly under
INITIALIZE in Figure 1.4). REALIZE will pull data from RTD720 devices creating a BIG file from
which ANALYZE generates channel files for plotting by PRELEWD. Finally, the third command
procedure for PRELEWD will not be submitted to batch until all the REALIZE jobs (for all 1CFs) are
completed.

Sandia National Laboratories Undereround Testing

Data Collection System Overview of RTD720 Software

1.5.3 The Initialize Function

The initialize function is described in Section 1.8.1. As illustrated in the uppe: right corner of Figure
1 4, INITIALIZE communicates with the RTD720 devices on an RMVmO node through the RTD720
DRIVER in performing the task of loading ICF parameters into each RTD720.

1.5.4 The Realize Function

Section 1.8.2 describes how the REALIZE an.« ANALYZE programs pull data from R1D720 devices
and create plotting files for PRELEWD. As shown in Figure 1.4, REALIZE also communicates with
RTD720 devices through the RTD720 DRIVER running on the RMVmO node.

1.8.8 The Plotting Function

Section 1.8.2 also describes how the PRELEWD program creates plots from CHN type files. This is
illustrated in the lower left corner of Figure 1.4. CHN type files may also be used by the digital signal
processing (DSP) program that creates ENG type files from which the data can be subjected to a
variety of signal processing techniques.

UL Cofrtware Data Fiow Disgram
o S ORTD [
Jog \' ’ . & B }4 '} RTL 0
Alrytialyce : khr‘v’;!‘ {l
I‘ ~y . ’ ’
lata » N e
B e L mwRTn7 ;’
a b dravey
INGRES Instrument {healizyg i ITek 11804
Inutiunentatibn Cortral S o e 7 e
tabane Filee g Frles | ; \
et s T }:1}_,1., 5 ﬁkutcmm?’
|)
e Analyze s / TNy [Sipuiation
P AL | 4 ‘ / R A \-i Fulse |
. S e ENG Fries ‘ | Generatorel
CHN P o e 'r'* i . | S
| Loa
{I’:n]M-"iv; { Dhsp)
s
PR A b Fries AGTIT Files
"1 31 SRR S PR ——
Figure 1-4. RTD 720 Software Data Flow Diagram
Sandia National Laboratories Underground Testing

1-7

Data Collection System Overview of RTD720 Software

1.6 Automated Dry-Run Data-Acquisition Software

The automated dry-run data-acquisition software is designed to acquire, reduce, and display data
automatically from all RTD720 channels in rapid sequence. The software includes cooperating
processes (discussed below) that run on the GEARI0 and the RMVmO nodes. The software is
designed to provide a scaled data plot for each signal defined by the experimenters. In addition, the
software generates data files that can be examined by using DSP software (Lee, 1990).

1.6.1 RTD720 Scheduler

Each of the RMVmO nodes shown in Figures 1-1 through 1-3 is connected to the GEAR10 computer
through a data ethernet. Two IEEE-488 buses are used on each RMVmO, and several RTD720
digitizers are connected to each IEEE-488 bus. DECnet and the VAX VMS operating system allow
the ethernet hardware to be accessed essentially in parallel by a large number of processes. The
purpose of the RTD720 scheduler software is, thus, to initiate and keep track of an independent
automated, data-acquisition process for all RTD720s connected to each IEEE-488 bus.

Because there is one uniquely named RTD720 instrument control file for each IEEE-488 bus, the
RTD720 scheduler software simply searches the directory GEAR10::DD:[TABLES] for these files
(with names of the form "RMVmnR20.TBL"). As each instrument control file is found, the RTD720
scheduler creates a command procedure that is specific for instrument setup and data recovery from
the nth IEEE-488 bus on RMVmO. The scheduler first sets the default directory to
GEAR10::DD:[SOURCE.RMVmn]. The scheduler then invokes the created command procedure,
which in turn sequentially invokes INITIALIZE (instrument setup software), REALIZE (data
acquisition software), ANALYZE (data analysis software), and PRELEWD (data plotting software) for
the corresponding RMVmO and IEEE-488 bus. The RTD720 scheduler creates and invokes a
command procedure for each unique instrument control file it finds in directory DD:[TABLES]. All
command procedures run concurrently, and each writes its output to the appropriate directory.

When the RTD720 scheduler detects the final exit from the created command procedures, it then
displays completion status and archives the data. Archiving consists of copying the data files and log
files from the directories in which they were created on GEARI10 to a similar area on NI4VAX. At
the end of a day’s activities, the program NIGHTMARE will copy the files on N14VAX from their
temporary storage area to a permanent storage area. F inally, the Scheduler exits to the GEARI0
CONTROL command procedure, which again displays its menu. At this point, the operator could
select "EXIT" or some other option.

1.7 Semi-Automated Data Acquisition

During "Signal" dry runs, the RTD_SCHEDULER command file will normally be called upon to
automate the data acquisition and processing functions. When tasks such as laser calibration, cable
compensation, and other diagnostic functions necessary in checking out system software and hardware
are to be performed, the RTD-DIAGNOSTICS Package is used. This is done by selecting the "Run

Sandia National Laboratories Underground Testing

1-8

Data Collection System Overview of RTD720 Software

RTD-digitizer diagnostics" option from the CONTROL-account menu. These activities are classified as
"hand" dry runs and it is optional whether or not the results are sent to archives (N14VAX).

1.8 Setup, Acquisition, and Plotting Programs

As described in the preceding sections, three functions are performed by the software when running
either the Scheduler or the Diagnostics. The setup function of installing the ICF parameters into the
RTD720 devices is done by the INITIALIZE program. The acquisition function of pulling data from
RTD720 devices and creating separate channel files for plotting is done by the REALIZE and
ANALYZE programs. The plotting function is done by the PRELEWD program.

1.8.1 Instrument-Setup Program INITIALIZE

INITIALIZE is a program that sequentially initializes all RTD720s on all IEEE-488 buses. Running
on GEAR10, INITIALIZE gets instrument setup parameters from instrument control files in the
directory GEAR10::DD:[TABLES]. The program then uses cooperating procedures running on the
RMVmOs to download the instrument control file settings to each RTD720. A separate invocation of
INITIALIZE is started for each IEEE-488 bus so that multiple copies of INITIALIZE run concurrently
on GEAR10. This use of VAX/VMS multitasking capability should allow setup for all instrurnents to
proceed rapidly.

An essential function of INITIALIZE will be to leave each RTD720 in an appropriate arm enablement
state. According to Tektronix personnel (Hawkey, Undated), the command ARM INTERNAL puts an
RTD720 into a state in which it can accept the command ACQUIRE STATE:HLDNXT, which
actually arms the RTD720. Once the digitizer is armed, it can then record data upon receipt of an
appropriate trigger. Normally, however, we will use external arm and trigger signals. To achieve
external arming, the RTD720 must receive the command ARM EXTERNAL. Once this command has
been received, the RTD720 will be armed by a TTL external signal at a rear-panel connector. Once
the digitizer is armed, it can be triggered by a specified signal trigger applied to the rear-panel external
trigger input connector. The exact timing of the arm and trigger signals is the subject of ongoing
discussion.

1.8.2 Data-Acquisition Program REALIZE

The main program that collects data into usable files is called REALIZE. Although the RTD720
scheduler runs in the CONTROL account directory on GEAR10, it causes each invocation of
REALIZE to run in a directory that is deduced from the control-file name. Thus, each invocation of
REALIZE writes its output into this directory. Each REALIZE image knows, from the name of this
directory and from parameters and qualifiers on its command line, which instrument control file and
output directory on GEARI0 it is to work with. REALIZE first opens its output file (called a BIG
file) and prepares to write data to the appropriate disk directory on GEAR10. REALIZE then calls a
subprogram that opens communications with the appropriatt RMVm0. Another subprogram then
awaits and records triggers that will occur on the RTD720s. This subprogram reports to REALIZE

Sandia National Laboratories Underground Testing

1-9

Data Collection System Overview of RTD720 Software

which RTD720s were triggered. REALIZE then loops through the triggered channels, calling a
subroutine that gets raw data, one RTD720 at a time. As data are recovered, REALIZE writes the
data to the BIG file. Once all triggered devices have been read, REALIZE calls a subroutine that
closes communication with the RMVm0. Finally, REALIZE closes the BIG file and sends a
completion signal to the RTD720 scheduler.

The modules that are invoked from REALIZE are subroutines that run on GEAR10 as part of the
REALIZE executable image. These subroutines in turn communicate using the DECnet protocol
(Digital Equipment Corp., 1988) with a data-retrieval executable image that runs on the appropriate
RMVm0. The GEARI10 resident module informs the RMVmO resident module where to find
control-file information and where to write the raw data (both on GEAR10). The RMVmO0-resident
modules are designed to ensure that the RTD720 setups are correct (i.e., in agreement with the
control-file values), to poll RTD720s for triggers, to collect raw date from the RTD720s over the
IEEE-488 interface, to store the data in GEAR10 arrays specified by REALIZE, and to close
communication with the RMVmO0. When REALIZE exits, the command procedure created by the
RTD720 scheduler then invokes the processing program ANALYZE, which breaks the BIG data file
down into a series of experiment files called CHN files. When ANALYZE exits, the command
procedure invokes the plotting program PRELEWD on GEAR10. The output of PRELEWD is a set
of paper plots and ASCII files (when requested) that can be supplied to experimenters. In ad’dﬁon,
the binary channel data files can undergo digital signal processing and trend analysis.

1.8.3 Data Files and Directories

REALIZE creates a BIG file containing the data froin one or more RTD data channels and
ANALYZE creates a CHN file for each subchannel described in the data base. In addition, each of the
processes — INITIALIZE, REALIZE, ANALYZE, and PRELEWD — creates log files that should be
reviewed when problems are encountered. These data files along with the log files are stored in
directories on the DD: disk for signal dry runs as follows:

Data Bus Data File Directory

RMV1I DD:[SOURCE.RMV11]
RMV 12 DD:[SOURCE.RMV12]
RMV21 DD:[SOURCE.RMV21]
RMV22 DD:[SOURCE.RMV22]
RMV3li DD:[SOURCE.RMV31]
RMV32 DD:[SOURCE.RMV32]

Sandia National Laboratories Underground Testing

1-10

Data Collection System Overview of RTD720 Software

For hand dry runs, files are stored in subdirectories of data file directories based upon run type as
follows:

Run Type Subdirectory
Dry Run .DIAG
Laser Calibration .LASER
Cable Compensation .CABLE

As an example, if a cable compensation hand dry run was performed on bus | of RMV 10 then the
data would be found in DD:[SOURCE.RMV11.CABLE].

1.9 Setup (RTDTEST) Software

RTDTEST is a CONTROL-account option that is intended to allow users to perform setups and hand
dry runs on RTD720s. A development version of RTDTEST was written to run on a RMVmO for the
DISTANT ZENITH field test (Caudell, 1991).

The RMVmO0s shown in Figures i-1 through 1-3 are accessible from the NTS VAX network via
terminal servers. Any authorized user can log on to the RMVm0 CONTROL account from any
terminal connected to the terminal-server network. The functions of the instrument control software
RTDTEST allow the user to modify RTD720 setups, modify ICFs, and indicate to the INGRES
software to update the data base. RTDTEST allows interactive control to acquire, analyze, and display
(plot) dry run data at the terminal. Additional functions of RTDTEST allow the user to send
commands to an RTD720, obtain status information, and calibrate the RTD720.

For example, when an authorized user wishes to perform setup type tasks such as making minor
changes to the ICFs and monitor the results by plotting data pulled from an RTD720 device with the
revised ICF, the CONTROL-account menu option, RTDTEST is the appropriate choice.

1.10 Fielding Results

The most significant result from RTD720 testing during HUNTERS TROPHY fielding was the
dramatic reduction in processing time achieved compared to the DIAMOND FORTUNE event. The
data volume was approximately five times as great as the DIAMOND FORTUNE data volume, but
processing took about one fifth as long. The problem of incompatibilities between the GEAR 10 and
the ethernet was corrected early in HUNTERS TROPHY fielding, and the results indicated that there
was no need to change computer architecture as had previously been proposed (Isidoro, 1992).

Additional capabilities were added to the software to

o Make some changes to the Instrument Control Files in RTDTEST;
. Acquire, process, and plot data from an RMV node independent of GEAR10;
Sandia National Laboratories Underground Testing

1-11

Data Collection System Overview of RTD720 Software

o Permit laser calibration and cable compensation,

. Separate the plotting capability from the data acquisition and processing option
in the diagnostic package and the scheduler;

L Halt the scheduler to allow the operator to make corrections in the event all
triggers have not been received; and

J Support multiple triggers on the RTD720.

A problem occurred during cable compencsation that unfortunately was not detected until after the
HUNTERS TROPHY shot on September 18, 1992. The KSC-1 results on buses RMVI1 and RMV12
showed proper pulses on all RTD channel |’s but only baselines on all channel 2’s. No such
discrepancy had ever been observed during signal dry runs. It was later determined that the reason for
the discrepancy was that the software that pulls data from RTD devices always pulls both channels of
data when there are two channels associated with the device. No problem occurred during signal dry
runs or during the shot because we always asked the processing program to process all channels.
During cable compensation, however, we were interested in only one of the two channels and the
processing program always provided the first half of the data file no matter which channel was asked
for. In other words, the BIG file contained channel | data when either channel | or channel 2 data was
requested. The problem has been corrected.

Sandia National Laboratories Underground Testing

1-12

Data Collection System RTD VAX Network

2.0 RTD VAX NETWORK

2.1 Introduction

Instrumentation Development Department 9321 uses DEC VAX computers to support full-scale
nuclear testing at NTS.

The SNL NTS VAX Network provides for automating activities ranging from the setup of data
collection instrumentation to the final playback and analysis of the test data. The computer systems
are used in interactive and batch modes ranging from single-program cxecution to intercomputer,
multiple-task communications. A complete description of the SNL VAX Network can be found in a
Sandia Report, number SAND91-2916, printed in March 1992,

The RTD VAX Network was designed to use DEC VLCs and a DEC VAX 4000. For HUNTERS
TROPHY, DEC microVAX-Ils were used. The microVAX-IIs use an IEQI11 Q bus-to-GPIB bus
converter, which differs from the DEC VLCs that use an [EZ11 SCSI-to-GPIB bus converter. The
DEC machines can be used interchangeably with only minor code changes to reflect differences in
calling the GPIB driver.

The selection process for the hardware considered the eventual system that would be used. For the
HUNTERS TROPHY event, DEC microVAX-IIs were used as instrument controller nodes, instead of
the VLCs discussed in Section 2.2, describing the selection process.

Talaris printers were selected for these systems. The code is written to use QUIC commands from the
Talaris library. If Talaris 800 or 1200 printers are used, the library module QC is required as an
addition. If Talaris 1590 printers are used, the QC module for the library is delivered with the
software. For additional speed, it is recommended that a QUIC hardware chip be installed in the
Talaris 1590.

2.2 Selection Process

When selecting the equipment, several things were considered, including cost, ease of code portability
between SNL and DNA, interconnections to the SNL VAX network, data portability between the
agencies, and maintenance cost. The VAX architecture, specifically the 4000 line of computers,
satisfied these considerations. The VMS operating system with its virtual memory capability and other
features, such as enhanced FORTRAN, DECnet, and system utilities, greatly reduced software
development cost. The VAX VMS architecture allowed for portions of the software in current use to
port to the new computers with minimal modifications.

In selecting the network hardware, we decided to continue the thick-wire ethernet application that is
used throughout the SNL VAX Network. This backbone is compatible with multivendor,

Sandia National Laboratories Underground Testing

2-1

Data Collection System RTD VAX Network

multiprotocol networking. Thick-wire ethernet is also more durable and is less susceptible to network
errors than thin-wire applications.

The software and hardware were chosen to reduce the time required to perform a dry run or actual test
playback and to ease the interface for the operators and engineers.

2.3 Hardware

The VAX 4000-300 was chosen for its Q-bus capabilities, DSSI architecture ability, and low cost.
The VAX 4000 requires no special power or environmental needs. The system configuration and
specifications are listed below:

DV-43LTI1-B9, VAX 4000-300 rackmount system
64 Mbytes memory

2-DSSI adapters

1-RF35E-AA, 852-Mbyte ISE disk

1-TF85E-JA, 2.6-Gbyte cartridge tape system

The four VAX VLC workstations supplied a low-cost solution for the GPIB interface to the RTD720s.
The specifications are:

PV31A-AA, 4000 VLC VAXstation

8 Mbytes memory

MS40-BA, 8 Mbytes additional memory

VCRI16, 16 inch color 1024 x 726 monitor
SZ03B-CA RZ25 426 Mbyte tabletop SCSI disk drive

® & & o o

The IEZ11! is an SCSI-to-GPIB bus converter. It allows for up to 14 IEEE-488 bus instrument
connections. The device connects to the SCSI port that also contains the SCSI disk. The maximum
number of connections to an SCSI bus is seven. The VAX 4000-300 computer and the RF35 disk
take two of these connections. The transfer rate of the IEZ11 is up to 500 kbytes per second.

2.4 Software

The operating system for the five computers is VAX VMS 5.5. Additional software packages,
including the Graphical Kernel System (GKS), the Forms Management System (FMS), IEX drivers,
and INGRES, are required before the application programs will run,

The GKS is a package supplied by Advanced Technology Center (ATC). The package is licensed in
two manners: The VAX 4000 has a development license and the VAX VLCs have an execution

license.

Sandia National Laboratories Underground Testing

2-2

Data Collection System RTD VAX Network

The address and phone number for ATC is:

Advanced Technology Center Phone (714) 583-9119
22982 Mill Creek Drive Fax (714) 583-9213
Laguna Hills, CA 92653

The FMS software is a DEC product and consists of a single file to allow for execution of application
code. A license would be required to allow for development and recompilation of code that includes
any FMS commands.

The IEX driver is a DEC product and requires a license. The VLCs are licensed for the product.
This package provides the interface to the [EZI1 interface.

INGRES is the data base package that is used to create the instrument control files. This package is
licensed to the VAX 4000-300. for HUNTERS TROPHY, INGRES was run on the SNL node
N12DBM. INGRES is purchased through a third-party vendor. The address and phone number for
the INGRES producer is:

ASK Computer Systems, Inc.
INGRES Products Division
1080 Marina Village Parkway
Alameda, CA 94501-1041
Phone (415) 769-1400

To provide development capabilities, additional licenses for FORTRAN and FMS are necessary. It is
recommended that these licenses be purchased for the VAX 4000-300 if development is desired.

2.5 System Parameters

To allow for better system performance and the successful execution of some applications, it is
necessary that the following system parameters be set:

min_SYSMWCNT = |287 ! from 1257 for GKS
min_GBLPAGES = 114415 ! from 10700 for GKS
min_LRPCOUNT =40 ! from 8
min_LRPCOUNTV =100 ! from 60
min_MAXBUF = 33000 ! for users accounts
min_CHANNELCNT = 200 " from 127 for INGRES

The LRPCOUNTS were increased to help the DECnet traffic. The MAXBUF parameter was
increased because of the application codes,

Sandia National Laboratories Underground Testing

2-3

Data Collection System RTD VAX Network

2.6 Networking

The network consists of a VAX 4000-300 and four VAX VLC workstations. A diagram of the
network is included in Figure 2-1. Thick-net ethernet was chosen as the transmission media for
durability. The VLC workstations have a thick-net 15-pin AUI connector. The VAX 4000-300 has a
switchable port for either thin or thick net. Thick net was selected on this machine for compatibility.
The VAX 4000-300 can also be equipped with dual ethernet ports by utilizing a DESQA. Dual
ethernet ports would separate the RTD720 data traffic from the communications to a production
network. To increase the performance for networking, it is recommended that the following
parameters be increased in NCP by issuing the following commands:

. $ MCR NCP
L define exec incoming timer 60
° define exec outgoing timer 90
. define exec max links 35
o define exec pipeline quota 12000
. set line ISA-0 state off
o define line ISA-0 receive bufters 30
. set line ISA-0 state on
o $
+ iy i
|
|
i
!
, - . , . .]
! A L f l } VAL | .
SREI SO o ‘
,,,,,, ! 5
! SN }J { { | (S + }
Figure 2-1. RTD Network
Sandia National Laboratories Underground Testing

Data Collection System RTD VAX Network

2.7 Security Concerns

Security was considered in the original architecture design for the software and hardware. The
Software Project Leader (SPL) and the Network Manager agreed on the design to allow for the
separation of the agency’s data and operational separation in accessing the instrument buses, The
network, as shown in Figure 2-1, allows for bus isolation with user authentication on the VLCs to
prevent any agency from accessing the IEEE-480 buses of other agencies. The standard group
protections and Access Control List (ACL) features of VMS provide for the remainder of the data
isolation.

The SZ03B-CA RZ25 426-Mbyte tabletop SCSI disk drive purchased for the VAX VLCs was chosen
for ease of removal if the systems were required to change classification modes. Simply disconnecting
the power cord and the SCSI interface would allow for the removal of the drive for sanitization

procedures.

The RF35E-AA 852-Mbyte disk used in the VAX 4000-300 can be removed with one thumbscrew
located on the front of the drive. By selecting these disks, Winchester technology could be applied
while considering the problems associated with classification issues.

The computer network was operated in a classified (SRD) mode for the HUNTERS TROPHY event

and for approximately two months afterward. The conversion to and from classified operation was
performed in accordance with the DOE-approved network security plan.

Sandia National Laboratories Underground Testing

Data Collection System RTD VAX Network

Sandia National Laboratories Underground Testing

2-6

Overview of RTD720
Data Collection System Scheduler and Diagnostics

3.0 OVERVIEW OF RTD720 SCHEDULER AND DIAGNOSTICS

3.1 Introduction

The automated dry-run data-acquisition software is designed to acquire, reduce, and display data
automatically from all RTD720 channels in rapid sequence. The software includes cooperating
processes (discussed below) that run on the VAX 4000 and the microVAX 1l computers. The
software is designed to provide a scaled data plot for each signal defined by the experimenters.

In addition, the software generates data files than can be subjected to examination using DSP software.

3.2 RTD720 Scheduler

The purpose of the RTD720 scheduler software is to initiate and keep track of an independent
automated data-acquisition process for all RTD720s connected to each IEEE-488 bus.

Because there is one uniquely named RTD720 instrument control file for each IEEE-488 bus, the
RTD720 scheduler software simply searches the directory GEAR10::DD:[TABLES] for these files
(with names of the form RMVmnR20.TBL). As each such instrument control file is found, the
RTD720 scheduler creates a command procedure that is specific for instrument setup and data
recovery from the nth IEEE-488 bus on microVAX-II RMVmO0. The scheduler first sets the default
directory to GEAR10::DD:[SOURCE.RMVmn]. The scheduler then invokes the created command
procedure, which in turn sequentially invokes INITIALIZE (instrument setup software), REALIZE
(data acquisition software), ANALYZE (data analysis software), and PRELEWD (data plotting
software) for the corresponding microVAX Il and IEEE-488 bus. The RTD720 scheduler creates and
invokes a command procedure for each unique instrument control file it finds in directory
DD:[TABLES]. All command procedures run concurrently, and each writes its output to the
appropriate directory.

Each task created provides the scheduler with status messages which are displayed at the control
terminal. This is done through message files created by the scheduler. A separate message file is
created for each job that is submitted. Each file is displayed on a separate portion of the screen. Each
submitted job represents the RTD720 devices associated with an ICF. The programs INITIALIZE,
REALIZE, ANALYZE, and PRELEWD write messages to this message file, each with its own
"COMM_SYM" so the sender can be identified. The scheduler scans through these messages as the
jobs are running, pausing after each loop. It retrieves the latest message in each file and displays it at
the appropriate screen location. Table 3-1 describes the messages that may be displayed in each
program.

Sandia National Laboratories Underground Testing

3-1

Overview of RTD720
Data Collection System Scheduler and Diagnostics

Table 3-1. Status Messages, Program of Origin, and Descriptions of Messages.

LT]
COMM_SYM MESSAGE Program Description

STARTING INI'T The command line is being parsed and initialize has

started.

SETTING UP DEVICE n INIT Attempting to initialize device n.

ERROR EXIT INIT A futal error has been found and an exit has occurred
See INITIALIZE log file for details.

NORMAL EXIT INIT Terminating normally.

STARTING REAL The command line is being parsed and REALIZE has
started.

OPENING LINK REAL Attempting to open task-to-task link.

LINK OPENED REAL Task-to-task link opened snceesstully

SUCCESSFULLY

STARTING ACQUISITION REAL Starting data acyuisition across link

DOING DEVICE n REAL Starting data acquisition for device n

ACQUISITION REAL Ending data acquisition.

TERMINATED

ERROR EXIT REAL A tatal error has been found and an exit has occurred.
See REALIZE log file for details,

LINK CLOSED REAL The task-to-task link is closed.

RTD DATA AVAILABLE REAL Device n data has been transferred.
L]

Sandia National Laboratories Underground Testing

Data Collection System

Overview of RTD720
Scheduler and Diagnostics

Table 3-1. Status Messages, Program of Origin, and Descriptions of Messages (Concluded).

R e T s

COMM_SYM MESSAGE Program

Description

STARTING ANALYSIS ANLZ

NORMAL EXIT ANLZ
ERROR EXIT ANLZ
PRELEWD STARTING PREL
PRELEWD NORMAL EXIT PREL
PRELEWD:EXIT ERROR PREL
“plot file name" PREL

Program ANALYZE begins.
End of program ANALYZE.

The error exit from ANALYZE is displayed whenever
bad status is encountered from:

I. BIG_DIR which obtains a list of channels in the BIG
file.

OR
2. READ_BIG_HDR which reads the header from the
BIG file for a channel

OR
3. READ_BIG which reads a buffer of data from the
BIG file.

Examine the ANALYZE log file to determine which
event caused the error.

The command line is being parsed and PRELEWD has
started.

Normal termination.

A fatal error has occurred. See PRELEWD log for
further information.

Attempting to generate a plot for the named file.

When the RTD720 scheduler detects the final exit from the created command procedures, it then
displays completion status and performs any necessary data archival functions. Finally, it exits to the
GEAR10 CONTROL command procedure, which displays its menu. At this point, the operator could

select "EXIT" or some other option

The RTD_SCHEDULER creates a log file in DD:[SOURCE] identifying the directories from which
the SCHEDULER is deleting files, and the plotting node and device selected by the operator. The log

file is named SCHEDULER.LOG.

Sandia National Laboratories

Underground Testing

3-3

Overview of RTD720
Data Collection System Scheduler and Diagnostics

3.3 Semi-Automated Data Acquisition

During "signal" dry runs, the RTD_SCHEDULER command file will normally be called upon to
automate the data acquisition and processing functions. When tasks such as laser calibration, cable
compensation, and other diagnostic functions necessary in checking out system software and hardware
are to be performed, the RTD DIAGNOSTICS package is used. These activities are classified as
"hand" dry runs and it is optional whether or not the results are sent to archives (NI4VAX). The
menu for the diagnostics package is as follows:

(1) Initialize one or more RTD720s

(2) Obtain and Analyze RTD720 data from one or more RTD720s
(3) Plot RTD720 data from one or more RTD720s

(4) Run Development Scheduler

(E) Exit

For options 1, 2, and 3, a debug option is available to the software designers. This option permits the
debugging of programs while running from the COM file. It helps to isolate errors when determining
the location of the bug, in the COM file or in the program. It also provides an option to skip
programs when only the interface of the COM file and a specific program is necessary.

On-line help is available for options I, 2, and 3. To obtain help, the user enters a question mark (?)
in response to a question for which help is needed. An explanation is then provided followed by a
repeat of the question.

3.3.1 Option 1 - Initialize

When the initialize option is selected, the diagnostics command procedure (RUN_RTD_DIAGS.COM)
invokes the command procedure RUN_INITIALIZE_RTD720.COM. After confirming that the user is
running from the GEAR10 node, the program searches through the ICFs in the DD:[TABLES]
directory and presents the user with a list of files. Each file represents a bus containing one or more
RTD720 devices. The user is asked to respond to the following items:

1. Select one of the files (or buses) for initializing devices. The user may also elect to
initialize all devices on all buses (ICFs) by entering a carriage return only (no
number).

to

If the user has not chosen to initialize all devices on all buses, the next question will
be to determine which RTD720 on the bus is to be initialized. [If the user simply
enters a carriage return (no number), all devices on the bus will be initialized.

Sandia National Laboratories Underground Testing

3-4

Overview of RTD720
Data Collection System Scheduler and Diagnostics

3. Next, the user will be asked to select a data source. The options are:

a. 0 ==> normal or diagnostics (default)
b. 1 ==> laser calibration
c. 2 ==> cable compensation

4. What type of dry run is it? The options are hand (H) or signal (S). If the hand dry
run (H) is selected, all files created will be stored in a subdirectory of the applicable
default directory as follows:

normal or diagnostics ==> default_dir.diag

laser calibration ==> default_dir.laser
cable compensation ~ ==> default_dir.cable

5. If the user has requested cable compensation and has also selected a single device to
initialize, the program will then request a channel number on the device to be
initialized.

6. If the user has selected signal (S) for run type, all files will be deleted from the

applicable directory before proceeding.

7. Before attempting to initialize any devices, this procedure will display the options that
the user has selected and ask for the operator's approval before continuing. The
operator can review his or her selections at this point and reenter parameters if desired.

8. A log file will be created in the applicable subdirectory of DD:[SOURCE.RMVXX]
containing the parameters entered by the operator. The file is named
DIAG_INITIALIZE.LOG

3.3.2 Option 2 - Realize/Analyze

When the realize/analyze option is selected, the diagnostics command procedure
RUN_RTD_DIAGS.COM invokes the command procedure RUN_REALIZE_RTD720.COM. As in
the initialize option, the realize command procedure starts out by confirming that the user is running
from the GEAR10 node. The program then searches through the ICFs in the DD:[TABLES] directory
and presents the user with a list of files. Each file represents a bus containing one or more RTD720
devices. The user is requested to respond to the following items:

1. Select one of the files (or buses) for data acquisition and analysis. In the
realize/analyze option, however, the user cannot elect to acquire and analyze data on
all buses. This can be done only by the RTD_SCHEDULER.

Sandia National Laboratories Underground Testing

3-5

Overview of RTD720

Data Collection System Scheduler and Diagnostics

(2%]

Next, select a data source. The options are:

. 0 ==> normal or diagnostics (default)
. | ==> lager calibration
2 ==> cable compensation

coe

3 What type of dry run is it? The options are hand (H) or signal (S). If the hand dry
run (H) is selected, all files created will be stored in a subdirectory of the applicable
default directory as follows:
normal or diagnostics ==> default_dir.diag
laser calibration ==> default_dir.laser
cable compensation ==> default_dir.cable

4. If the run type is signal (S), all files created prior to the current date in the default
directory will be deleted before new data is acquired. If the run type is hand (H), the
user will be asked if existing files in the directory should be cleaned up.

5. The user is then asked: "Do you want to REALIZE new data?" At this point, the
user may choose to skip REALIZE (data acquisition), and ANALYZE previously
acquired data.

6. If the user has chosen to REALIZE new data, the next question is "From what RTDs
do you want data? [ALL]" If the user wishes to retrieve data from all RTDs on the
bus, the response should be a carriage return, otherwise the program expects a
numerical entry of the desired RTD device. If the user has requested cable
compensation and has also selected a single device to collect data, the program will
then request
a. A channel number on the device to collect data,

b. The applicable subchannel number, and
c. A character string tag (up to 8 characters) identifying the applicable pulse
width.
If the user had requested laser calibration and a single device, the program will ask
a. From which channels do you want data?
b. From what subchannels do you want data?
Sandia National Laboratories Underground Testing

3-6

Overview of RTD720
Data Collection System Scheduler and Diagnostics

7. The next question is: "Do you want REALIZE to look for triggers?" If the devices
have not yet been triggered, the user would probably want the program to look for a
trigger before attempting to acquire data. On the other hand, the operator may know
that the device(s) have already been triggered and he or she simply wants to extract
stored data.

8. Before attempting to get data, this procedure will display the options that the user has
selected and ask for the operator’s approval before continuing. The operator can
review the selections at this point and reenter parameters if desired.

9, A log file will be created in the applicable subdirectory of DD:[SOURCE.RMVXX]
containing the parameters entered by the operator. The file is named
DIAG_REALIZE.LOG.

10. After a BIG file has been acquired by REALIZE, the user is given a choice of whether
or not to create channel plotting files using the ANALYZE program.

I Finally, if this has been a signal dry run, all files created during the current run will be
transferred to archives on the N14VAX node. If this has been a hand dry run, the user
will be given a choice of whether or not to archive files.

3.3.3 Option 3 - Plotting

The plotting option was added to the list of diagnostics during HUNTERS TROPHY. Plotting had
formerly been part of the data acquisition and processing package (RUN_REALIZE_RTD720.COM),
but it was determined that it was not always necessary to create plots when acquiring data, and
plotting was generally a very time-consuming process.

When the plotting option is selected, the diagnostics command procedure RUN_RTD_DIAGS.COM
invokes the command procedure RUN_PRELEWD_RTD720.COM. As in the other options, the
plotting command procedure starts out by confirming that the user is running from the GEARI0 node.
The program searches through the ICFs in the DD:[TABLES] directory and presents the user with a
list of files. Each file represents a bus containing one or more RTD720 devices. The user is
requested to respond to the following items:

. Select one of the files (or buses) for plotting, Plotting will be limited to those channel
files in the directory associated with the RTD720 bus selected.

to

Select a data source. The options are:
0 ==> normal or diagnostics (default)

)
| ==> laser calibration
2 ==> cable compensation

Sandia National Laboratories Underground Testing

3-7

Overview of RTD720
Data Collection System Scheduler and Diagnostics

The data source is necessary in the plotting option to locate the applicable directory

for plotting.

3. What type of dry run is it? The options are hand (H) or signal (S). If the hand dry
run (H) is selected, all files stored in the applicable subdirectory will be plotted as
follows:

normal or diagnostics ==> default_dir.diag
laser calibration ==> default_dir.laser
cable compensation ~ ==> default_dir.cable

4, Select a plotting node (the default is N12VAX) and a plotting queue for the plotting
program, PRELEWD, to send plotting files.

5. The user has an option in the number of files plotted. The user may either select a
single device (RTD) or plot all files in the directory.

After all plots have been submitted to the selected node and queue, all PRELEWD log files will be
copied to the default directory in the archive node.

3.3.4 Option 4 - Development Scheduler

This option would not normally be used by an operator. It was placed here to take advantage of the
environment afforded by the Control Account in comparing the performance of several different
computers in a standard task of creating plot files from all the channel files in all the directories
associated with ICFs DD:[TABLES]. The purpose of these performance comparisons was to
determine if an alternate architecture, in which the programs INITIALIZE, REALIZE, ANALYZE,
and PRELEWD would be run at the RMV level on VAX 4000 VLC workstations (replacing the
present microVAXs), would significantly reduce processing time.

Because it was believed that PRELEWD (the plotting program) was largely responsible for the amount
of time required to process RTD720 data in a previous event (DIAMOND FORTUNE), the
performance of each architecture was measured by determining time required to process a set of 36
channel files contained in 6 different directories each corresponding to a different RTD data bus:

I The GEARI0 VAX 4000 computer in the current architecture submits all 6 jobs to run
in parallel; therefore, its performance was measured by the time it took to process the
entire set of 36 files (6 per directory) when all jobs were submitted in parallel.

2. The VAX workstation performance was measured by determining the time required to

process 2 jobs running in parallel, because this is the way it would be done in the
proposed new architecture.

Sandia National Laboratories Underground Testing

Overview of RTD720
Data Collection System Scheduler and Diagnostics

The results of this study showed that the present architecture was superior to the proposed architecture
because the time required (about 3 minutes) was less than the 4 1/2 minutes required by the VAX
workstation in the new architecture. The poor performance of the system during DIAMOND
FORTUNE was attributed to incompatibilities between the GEAR 10 computer and the ethernet that
were corrected for the HUNTERS TROPHY event.

Sandia National Laboratories Underground Testing

3-9

Overview of RTD720
Data Collection System Scheduler and Diagnostics

Sandia National Laboratories Underground Testing

3-10

Data Collection System REALIZE and INITIALIZE User Information

4.0 REALIZE AND INITIALIZE USER INFORMATION

4.1 Introduction

REALIZE and INITIALIZE are two programs in the NTS Instrumentation System suite of codes,
They are very similar in construction, and both call the RTD720 communications subprograms
described in Volume 2, Section 3. INITIALIZE reads the ICF and sends the setup information to the
communications subprograms, which in turn transfer the information to the slave node to be sent on
the GPIB to the RTD720. REALIZE reads the ICF and, if required, checks for triggers. It then
requests data from the communications subprograms for each RTD, which it formats into a BIG file.
For information on the BIG file see Volume 2, Appendix C. Because INITIALIZE and REALIZE are
similar, they will be described together. Unless a specific program is indicated, all information
pertains to both,

4.2 Definitions
The following defines some useful terms:

4 directory_name refers to the NODE::DISK:[DIRECTORY) description that is either an
implied or stated part of every file name.

(2) file_spec refers to the entire file description
NODE:DISK:[DIRECTORY JFILE_NAME.EXTENSION;VERSION, or as much of it
as is required.

3 {...} indicates that what is enclosed in { } is optional.

4.3 Running REALIZE and INITIALIZE

Source code and executables for both programs exist on all major nodes (GEAR10, ABQVAX, and
N12VAX), and executables exist on the RMV nodes.

These programs are usually run under the captive account CONTROL., which has the necessary
privileges. CONTROL defines all necessary commands and then initiates execution with a command
line formed from the user's answers to questions.

Sandia National Labhoratories Underground Testing

4-1

Data Collection System REALIZE and INITIALIZE User Information

A user not running as CONTROL must define the VMS-like commands, INITIALIZE or REALIZE,
using the following commands:

$ DEFINE REALIZESLIBRARY (directory_name containing .CLD files)
$ SET COMMAND REALIZESLIBRARY:INITIALIZE_ COMMAND_DEF.CLD
$ SET COMMAND REALIZESLIBRARY:REALIZE_COMMAND_DEF.CLD

These definitions should be in LOGIN.COM on all nodes intended for REALIZE or INITIALIZE.
They make use of the DEC Utility Command Definition described in the VMS Programming Manual
Volume 2B. REALIZE_COMMAND_DEF.CLD is the definitive authority on REALIZE's parameters
and qualifiers, while INITIALIZE_COMMAND_DEF.CLD is the definitive authority on
INITIALIZE's parameters und qualifiers. The CLD files are ASCIL

4.4 Command Line Examples

The following are examples of command lines that might arise in actual usage. Normally a user will
be running as CONTROL trom a command file, although both programs can be executed directly.
These examples should cover most user situations. The specific meaning of each qualifier in
INITIALIZE and REALIZE is covered in Sections 4.5 and 4.6, respectively.

(h $ INITIALIZE/DEVICE=4/TABLE=DD:[TABLES|RMVIR20.TBL.

This command line requests that the RTD with device address 4 on port | of node
RMV 10, be initialized with information from the ICF DD:[TABLES]RMVI1R20.TBL.

(2) $ REALIZE/TABLE=DD:[TABLES)JRMV2IR20.TBI.

This line requests recovery of data from all RTDs available from port | of node
RMV20, with the BIG file created in the current directory, and no wait for triggers.

(3) $ REALIZE/DEVICE=1/TABLE=DD:[TABLES]JRMVI2R20.TBL/ -
SEND=ABC::DD:[RTDSTUFF)USE=]

This command requests recovery of data from that RTD with device address | on pon
2 of node RMV10. The BIG file created in the current directory, and sent to the
DD:[RDTSTUFF] directory on node ABC after being closed. The data are to be
recovered with no wait for triggers. The data recovered is for laser cals, and the Jaser
cal subchannel description (/USE=1) is put in the BIG file. The user must have write
permission on that node in ABC:DD:[RTDSTUFF].

Sandia National Laboratories Underground Testing

Data Collection System REALIZE and INITIALIZE User Information

4) $ REALIZE/DEVICE=2/CHANNEL =2 -
TABLE=ABC::DD:[TABLESJRMV32R20.TBI. -
/SEND=USER:[HOME)/TRIGGER

This command line requests data only from channel 2 from the RTD with device
address 2 on port 2 of node RMV30, with the BIG file created in the directory
USER:JHOME] on the current node. REALIZE will not recover data until after a
trigger (/TRIGGER) has been received.

4.8 Command Qualifiers for INITIALIZE

The verb defined by INITIALIZE COMMAND_DEF.CLD has one required and several optional
qualifiers.

QUALIFIER DEFAULT

Required Qualifier:

(1) 7TABLE=filespec. NA

Qualifiers that control REALIZE logic:

(2) /DEVICE=n all devices

(3) 7USE=n, (n=0,1,0r 2) USE=0

Qualifiers not intended for the casual user:

(4) /DEBUG not present

(5) /ICOMM_SYM=string not present

Taking these in order:

(1) 7/TABLE=Hle_spec
The /TABLE=file_spec qualifier MUST be supplied. The filespec is the ICF 1o be
used. 1 it is not supplied, or if the ICF specified does not exist, execution is
terminated.

(2) /DEVICE=n

The n is a GPIB device address on a specific computer port. /DEVICE without o
value is not allowed.

Sandia National Laboratories Underground Testing

4-3

Data Collection System REALIZE and INITIALIZE User Information

(3) /JUSE=n (n=0,1, or 2)
/USE=0 (default)

USE directs which set of structures is to appear in the BIG file.
USE=0 requests normal event data structures,

USE=1 indicates that laser cal data structures are requested, and
USE=2 indicates that cable compensation structures are requested.

The ICF contains information for each of the above conditions. INITIALIZE must be
told which set to use.

(4) /DEBUG
If used, this qualifier MUST follow the verb INITIALIZE. It causes an alternate
image to be invoked which has been linked "/DEBUG" with DEC's debugger utility.
DEBUG may not be negated, just omitted. Generally, it is intended for software
developers’ use only.

(5) /COMM_SYM=string
This special qualifier is used ONLY when INITIALIZE is invoked while using the
CONTROL account and RTD_SCHEDULER.COM. The casual INITIALIZE user
should not supply this qualifier. string. DAT is the name of a file into which messages
are written, and from which the RTD _SCHEDULER.COM reads those messages for
display on the screen.

4.6 Command Qualifiers for REALIZE

The verb defined by REALIZE. COMMAND_DEF.CLD has one required and several optional
qualifiers.

QUALIFIER DEFAULT
Required Qualifier:
(1) /TABLE=filespec, NA
Qualifier dealing with BIG file creation or disposition:
(2) /SEND{=directory_name}, /NOSEND
Qualifiers that control REALIZE logic:

(3) /CHANNE!.=n all ICF channels

Sandia National Laboratories Underground Testing

Data Collection System REALIZE and INITIALIZE User Information

QUALIFIER DEFAULT
(4) /DEVICE=n all ICF devices
(5) /USE=n, (n=0,1, or 2) USE=0
(6) /TRIGGER /NOTRIGGER

Qualifiers not intended for the casual user:
(7) /DEBUG not present
(8) /COMM_SYMestring not present
Taking these in order:
(1) /TABLE=file_spec

The /TABLE=file_spec qualifier MUST be supplied. The filespec is the ICF to be
used. If it is not supplied, or if the ICF specified does not exist, execution is
terminated.

(2) /SEND(=directory_name)
/NOSEND (default)

The /SEND qualifier tells REALIZE what to do with BIG files. BIG files are created
in the CURRENT DIRECTORY. If /SEND specifies a directory_name, then BIG files
are copied to that directory_name. This is done by using LIBSSPAWN from within
REALIZE. If /SEND does not specify a directory_name, it has the same action as
/NOSEND, and the BIG files are created in the current directory and not moved.

WARNING

Using the CONTROL account gives the user all necessary
permissions and privileges. If you are NOT running under
CONTROL, and if BIG files are to be sent to another
directory_name, YOU MUST HAVE WRITE
PERMISSION in that directory_name. You must always
have write permission in the currert directory.

Sandia National Laboratories Underground Testing

Data Collection System REALIZE and INITIALIZE User Information

) /ICHANNEL=n (n=12.3, or 4)
RTD720 devices have either 1, 2, or 4 channels. If you only want the data from a
specific channel. it is named here. /CHANNEL without a value is not allowed.
(4 /DEVICE=n
The device specification is a device address on a specific computer pont.
/DEVICE without a value is not allowed.
(%) /USE=n (n=0,1, or 2)
/USE=0 (default)
USE directs which set of structures is to appear in the BIG flle,
USE=0 request normal event data structures,
USE=1 indicates that laser cal data structures are requested, and
USE=2 indicates that cable compensation structures are requested.
The ICF contains information for each of the above conditions. REALIZE must be
told which set to use and send in the BIG file.
(6) ITRIGGER
NOTRIGGER (default)
The /TRIGGER qualifier indicates that REALIZE asks the function interface to look
for trigger signals. The negated values tell it not 1o expect triggers, just get the data
)] /DEBUG
If used, this qualifier MUST follow REALIZE. 1t causes an alternate image to be
invoked, one that was linked /DEBUG with DEC's debugger wtility. DEBUG may not
be negated, just omitted. It is generally intended for software developers’ use only,
® ICOMM_SYM=string
This special qualifier is used ONLY when REALIZE is invoked while using the
CONTROL account and RTD_SCHEDULER.COM. The casual REALIZE user
should not supply this qualifier. string. DAT is the name of a file into which messages
are written, and from which the RTD_SCHEDULER.COM reads those messages for
display on the screen.
Sandia National Laboratories Underground Testing

4-6

Data Collection System REALIZE and INITIALIZE User Information

4.7 Sequence of Operations

A simplified overview of the operations of REALIZE and INITIALIZE follows:

(h

(3)

(4)

(S)
(6)
(7)

(8)

(9

(10)
(1n

4.8

Check the computing environment. Get the USERNAME, the current node, the directory. and
the date and time. Open the LOG file and write the name of the execution file and its creation
date.

Parse the command line after writing it to the LOG file. If an ICF is not specified, then
terminate with an appropriate message in the LOG file. Set the defaults into all parameters

not specified on the command line.

Open the ICF and read all non-RTD-specific records. Start filling the record that will be sent
to the communications subprograms.

Find all devices available in the ICF and for each device find all possible channels. Make an
intersection of these lists with device/channel requests from the command line.

Read the RTD-specific records. Close the ICF.
Open the node-to-node link.
For REALIZE only. open the BIG file.

For REALIZE only, and only if requested, determine the trigger status of all desired modules
via the communications subprograms.

If INITIALIZE. then. for each device, request the device to be set up by passing the ICF data
for that device to the communications subprograms.

If REALIZE, then. for each device. request its data and write it, by channel, to the BIG file.
When finished with all devices, close the node-to-node link.
Close all open files and exit.

General Comments

FEach program creates a .LOG file. This file contains relevant information, such as the command line.
the name and creation date of the executable, and all unusual happenings noted by the software. This
file will be created in the current directory. The .LOG file should be the first place to look if you
suspect an error. It is formatted to allow its use with SLOG (Summary LOG. Appendix G). Errors
that occur in the communications subprograms described in Volume 2, Section 3 are documented in
their .L.OG file but are noted in the appropriate REALIZE or INITIALIZE LOG file.

Sandia National Laboratories Underground Testing

Data Collection System REALIZE and INITIALIZE User Information

REALIZE creates a BIG file that is passed on to ANALYZE and contains records from the ICF and
data recovered from the RTD. This file is organized by channel for all devices requested.

Sandia National Laboratories Inderground Testing

Data Collection System ANALYZI: Users Manual

5.0 ANALYZE USERS MANUAL

6.1 Introduction

During the Diamond Fortune test, the NTS Instrumentation Development Department 9321 developed
a computer architecture to acquire and process RTD720 high-speed digital data. Within this
architecture, the REALIZE program acquires data from RTD720 devices and stores it together with the
appropriate header information in a file called BIG. The ANALYZE program then separates the
contents of BIG into individual channel (or subchannel) files with the appropriate header information.
These channel (CHN) files can then be plotted using the PRELEWD program,

6.2 Input Parameters

Most input parameters to ANALYZE are obtained from the channel information provided in the
CHNBIG header. The user must supply the name of the BIG file on the command line. There are
two parameters that may be entered as an argument on the command line:

JCHANNEL=n or /{CHANNEL="n1,n2,n3,etc." or /CHANNEL="nl-nn" to select one or more
specific channels in a group to be processed in this run. Note: CHANNEL may be shortened
to CH.

{SUBCHAN=n or /SUBCHAN="n1,n2.n3.etc." or /SUBCHAN="nl-nn" to select one or more
specific subchannels on one RTD channel processed in this run. Note: SUBCHAN may be
shortened to SUB.

6.3 Input File
ANALYZE requires an RTDBIG file as input.

5.4 Output Files

If the input from the BIG file is a single channel without subchannels, then there is one output file
name CHNsnnrmmm.DAT. If the input is a channel with two or more subchannels, then there is a
CHNsnnrmmm-kk. DAT file for the combined raw data and for each subchannel. The combined raw
data will be identified as subchannel "00."

In the examples above:
snn = source code
r = recorder code
mmm = channel number
kk subchannel number

1

i

i

#

Sandia National Laboratories Underground Testing

5-1

Data Collection System ANALYZE Users Manual

ANALYZE also creates a file called ANALYZE.LOG that contains a description of the discrepancies
observed during the run on each of the data channels contained in the BIG file.

6.6. Examples
An example of the simplest case for running ANALYZE:

$ ANALYZE RTDBIGIOIT.DAT

ANALYZE will obtain the source and recorder codes from the BIG file name.
The next three commands are examples of channel selection from within the total group in a BIG file.
The first example is for one channel, the second for several selected channels, and the last for a range
of channels,

$ ANALYZE/CHANNEL=2 RTDBIGIOTL.DAT

$ ANALYZE/CHANNEL="37,12,1/" RTDBIG1011.DAT

$ ANALYZE/CHANNEL="3-14" RTDBIGI1011.DAT
The fellowing command shows how subchannels may be selected from one specified channel.

$ ANALYZE/CHANNEL=2/SUB=1,3 RTDBIGGI011.DAT

6.6 Sequence of Operation

The ANALYZE program performs its function of creating channel and subchannel files from the BIG
file created by the REALIZE program in the following sequence:

I Initialize program variables,

2. Open a log file ANALYZE.LOG for informative messages and diagnostics.

3. Parse the command hine for BIG file name and other processing parameters.

4. Extract source and collection point parameters from the BIG file name to use in

creating CHN file names

5. Open the BIG file using the OPEN_BIG utility.
6. Write header information into the log file.
7. Get a directory of data channels in the BIG file using the BIG_DIR utility.
Sandia National Laboratories Underground Testing

3-2

Data Collection System ANALYZE Users Manual

10.

For each data channel in the directory, perform the following sequence of operations
(unless specific channels have been selected on the command line):

a. Get the header information for the channel using the READ_BIG_HEADER
utility.

b. Read in a buffer of information from the BIG file for the channel using the
READ_BIG utility.

c. Call the PROC_RTD720 subroutine that creates the desired channel and sub-
channel files based upon data base information contained in the header.

Notify the RTD Scheduler that ANALYZE has completed its processing of the BIG
file.

Close the BIG file using the CLOSE_BIG utility.

6.7 PROC_RTD720 Sequence of Operation

When the PROC_RTD720 subroutine is called, it performs the following sequence of operations for
each prescribed data channel:

B

-
N

Convert the input data from a byte array to a 16-bit integer array.

Obtain a list of applicable subchannels from data base information in the header.

3. Compare the number of subchannel names so obtained with the number of subchannels
specified in the data base.

a. If these numbers do not agree, only create the "00" subchannel, which contains
all the data for the channel.

4. For each subchannel defined in the data base, the following steps are performed to
create files based upon the boundaries defined by EXPMT_LEFT and
EXPMT_RIGHT parameters in the data base.

a. Open the designated subchannel file.
b. Write the applicable portion of the channel information from the BIG file into
the subchannel file.
Sandia National Laboratories Underground Testing

5-3

Data Collection System ANALYZE Users Manual

c. Write the appropriate header information at the beginning of the subchannel
file.
d. Close the subchannel file.

6.8 Diagnostics

ANALYZE will generate a file called ANALYZE.LOG. For each data channel within the BIG file,
ANALYZE will display the messages:

(1) PROCESSING RTD CHANNEL NO. xxx
(2) PROCESSING COMPLETE ON CHANNEL xxx NO SAMPLES PROCESSED: xxxxx

Between these two messages discrepancies may be displayed that are applicable to the data channel
encountered during processing.

The following is a listing of all diagnostics and a description of the meaning:

DIAGNOSTIC DISCUSSION
1. NO DATA FOR THIS CHANNEL A byte count of zero was obtained when an

attempt was made to read from the RTDBIG
file for this memory channel.

2. COULD NOT FIND ALL RTD720 The number of subchannels in one section of
SUBCHANNELS the data base does not agree with the actual
subchannel numbers from another part of the
data base. The ANALYZE program, therefore,
cannot properly identify output CHN files.
The data base administrator should be notified
immediately if this discrepancy occurs.

3. SELECTED SUBCHANNEL NO. XX The subchannel selected on the command line

DOES NOT EXIST. could not be found in the list of applicable
subchannels from the data base.

4. TRACE_LEFT IS ZERO IN TABLES The convention is that the first data point in an
CHANGED TO ONE BY ANALYZE - array will have an index of 1. Zero, therefore,
SUB_CHAN XX would be out of bounds in this convention.

Sandia National Laboratories Underground Testing

5-4

Data Collection System ANALYZE Users Manual

DIAGNOSTIC DISCUSSION

5. NOTE! EXPMT_RIGHT IN TABLES = The count associated with experiments in
XX TOTAL SAMPLES = YY the data base is greater than the number of
- SUB_CHAN 2Z points in the BIG file.

6. ***** DATA IN SUB-CHAN XX Data values of either "0" or "255" were
AT BAND EDGE observed in the input data file indicating that

the actual value could have been out of range.

Sandia National Laboratories Underground Testing

5-5

Data Collection System ANALYZE Users Manual

Sandia National Laboratories Underground Testing

3-6

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

6.0 USING PRELEWD, WITH COMMENTS ON GRAFPAK

6.1 Introduction

PRELEWD is a first-look plotting program for use with the NTS Instrumentation System suite of
codes. 1t reads channel (CHN) files and generates a hardcopy plot for each channel as a pant of the
run sequence. Because it operates in BATCH mode during the run sequence, it is very fault tolerant.
PRELEWD can plot on a limited set of graphics terminals, and is therefore widely used by our
customers. It does not have any analysis capability, but there are a limited number of plot formatting
instructions available through the ICF. The underlying graphics package is GRAFPAK-GKS.

6.2 Definitions
Some useful terms are listed below:

() The sequence xxvvzzz-nn is the historical source-collection-channel-subchannel
sequence by which the provenance of the data is known. Where

) xxy is the source code, i.e.. R11, for the RTD720 with bus address | on RMV
10 pont 1,

b) v is the collection code, i.e., S, for source/colleciion devices like the RTD720,
M. for Mass Memory; L, for HDDR: T, for HDDR tape recovery,

¢) 222 is the octal channel number. i.¢.. 007 or 177 for cither the HDDR or MM,
and the decimal channel number for S devices like the RTD720s,

d) nn is the subchannel number for all non-SANDUS devices. 00" implies data
for the entire channel, i.c.. o raw data file. nn ~ O implies all or some part of
that channel’s data,

() CHN file refers to a file with a name of the form CHNxxxvaze-nn . DAT. For
additional information on CHN files.see CHANNEL DATA FILE FORMAT,
Appendix .

3 PLT file refers to the generated plot file PLTxxxvezz-nn DAT, where the vevyszz-nn
comes from the first (and possibly the only) data file in the plot file. P11 files are
generated by GRAFPAK in the QUIC format

Sandia National Laboratories Underground Testing

6-1

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

4) SAD file refers to the generated ASCIH file SADxxvvzzz-mn DAT, where the xevyesz-nn
comes from the CHN file used. SAD files are only created when using the SRAD or
QRAD qualifier

(5) Directory _name refers to the NODE::DISK [DIRECTORY | description that is either an
implied or stated pant of every file name.

(6) File_spec refers to the entire file description,
NODEDISK[DIRECTORY JFILE NAMEEXTENSION.VERSION, or as much of it
as is required.

M {..} indicates that what is enclosed in | | is optional.

6.3 GRAFPAK-GKS Comments

GRAFPAK is the name for the shared library of subroutines that creates the graphics 1t is a product
licensed from ATC® in California, and may not be distributed outside the 9320 network without a
valid license 1t conforms to the GKS standard (A useful relerence is Computer CGraphics
Programming GRS - The Graphics Standard by Enderle, Kansy, and PlafY published by
Springer-Verlag, 1987 Later editions exist) PRELEWD generates plots from CHN flles, and uses
GRAFPAK to accomplish this. GRAFPAK can be used with either FORTRAN or €. Both
GRAFPAR-GRS A Fartran Reference Manual, and GRAFPAR-GRS € Reference Manual are
available from ATC

GRAFPAK must exist on any computer on the 9320 network where PRELEWD runs. Al logicals
necessary 1o use GRAFPAK are defined system wide

6.4 Running PRELEWD

PRELEWD.EXE should already be distributed to all 9320 network computers 1t is often executed as
a pant of the run-time sequence, in which case, all definitions, privileges, and permissions are takhen
care of by the user account CONTROL. To run PRELEWD, the user must define the VMS-like
command PRELEWD by entering the DCL command

$ SET COMMAND LDPRELEWDIPRELEWD COMMAND DEF.CLD

* Advanced Technology Center, 22082 Mill Creek Drive, Laguna Hills, CA 92683, (714) 583-9119- FAN
(714) 583.0213

Sandia National Laboratories Underground Testing

Using PRELEWD, with

Data Collection System Comments on GRAFPAK

This definition should be placed in LOGIN.COM on all nodes intended for PRELEWD. This uses the
DEC Utility, Command Definition described in the VMS Programming Manual Volume 28.
PRELEWD_COMMAND DEF.CLD is the definitive authority on PRELEWD's parameters and
qualifiers. 1t is an editable ASCHI file.

Having defined the verb PRELEWD. PRELEWD can now he exeeuted by entering:

$ PRELEWD {/gualifier(s)) PI

Pl is described in Section 6.5 and the qualiflers are described in Sections 6.6 and 6.6 1,

6.4.1 PRELEWD Command Line Examples

The following are some examples of command lines that might arise in actual usage. These should
cover most user situations. The specific meaning of each qualifier is described in Section 6 6.

(hH $ PRELEWD/DEVICE=2 CHNR1ISOT-01
This command line plots the file CHNREISOTT-01.DAT on device 2, which is o
Tektronin 4208
(2)y S PRELEWD/DEVICE-VQUEUE CHNR2S021.00
Fhis hine creates a hardcopy plot of the raw data file CHNR22S021-00 and prints ot
using the default queue on the current node.
(Y $ PRELEWDY/DEVICE=/SEND=RUSER: [HOMEPQUEUE-XYZ, -
CEOTHER [HOMEJCHNR 12S011.03.DAT.3
This command uses C:OTHER:JHOMEJCHNRI2SOTT-03.DATY 1o create a PLT fle,
which is an RTD720 CHN file located in a directory on node C. 1t sends the PLT file
o BOUSER:THOME Y for plotting on gueue XYZ on node B
(4) $ PRELEWI/DEVICE=4SRAD DDSOURCE RMVI2. DIAG|CHNR32S® -
This line creates screen plots on a VT340, and SRAD files for all the CHNRI2S® files
in the directors DD [SOURCE RMV3I2 DIAG),
Sandia National Lahoratories Underground Testing

6-3

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

(5 $ PRELEWD/DEVICE=1/QRAD/NOPLOT/NOCALIBRATE "" -
COLLECTION.LIS

This command line creates short SRAD files with Y-axis scaling in COUNTS, without
creating plot files, for cach file listed in the ASCII file COLLECTION.LIS.

6.8 PRELEWD Parameters

There is one and only one REQUIRED parameter, pl, which is a file_spec, and may have wildcards.

WILDCARDS ARE DANGEROUS!!

If wildeards are used, be very careful that all
files selected will be CHN files. PRELEWD
gets severe indigestion from files not in the
CHN format.

P1 specifies the data file(s) and. if missing on the command line, the following prompt will be issued:
"Filename (wild cards OK) please”

PRELEWD adds o .DAT extension if it is missing. 1 a version number is specified. it will be used.
It there are several versions of a CHN file, and no version is supplied. PRELEWD follows the DCI.
convention of using the latest version number. All the input files are opened as READONLY,

If the plots are NOT directed to a terminal, a PLT file is created for every n input files, where n
defaults to 4 or is obtained from the /GROUP qualifier. The PLT file is created in QUIC format. The
location of the PLT file will be as explained below under the /SEND qualifier.

A second parameter, p, is expected if and only if pl is the empty string, **** (two double quotes with
NO intervening characters). See paragraph 6.4, example 5. P2 is optional and, if present, is the name
of a file containing a list of CHN files. Wildcards are not allowed. The files may come from
different nodes, disks, and directories, and each piece of the file_spec holds until a new, corresponding
piece is encountered. The files must be one file spec per line, with not more than 512 files total,

Sandia National Laboratories Underground Testing

6-4

Using PRELEWD, with

Data Collection System Comments on GRAFPAK

6.6 PRELEWD Command Qualifiers

The verb defined by PRELEWD_COMMAND_DEF.CLD has the sixteen optional qualifiers listed
below, each of which is followed by its default value. A complete description of each qualifier
follows in Section 6.6.1.

(h

()

QUALIFIER DEFAULT
Qualifiers not intended for the casual user:
/DEBUG not present
/MONITOR=string not present
ICOMM_SYMs=string not present

3

Qualifiers for file creation or disposition:

(4)
(5)
(6)
)

(8)

9

/QUEUE({=queue_name} NOQUEUE
/SEND=directory_name /NOSEND
/SRAD{=directory_name} /NOSRAD
/QRAD {=directory_name} /NOQRAD

(SRAD and QRAD are mutually exclusive)

/NOPLOT /PLOT
(This qualifier only allowed with /SRAD or /QRAD)

IGROUP{=n} /GROUP=4

Qualifiers that modify the plot’s appearance:

(10) /NOGRID /GRID
(11) /NOLEGEND /LEGEND
(12) /SINGLE /NOSINGLE
(This qualifier not allowed with /SRAD or /QRAD)
(13) /MUX /INOMUX
Sandia National Laboratories Underground Testing

Using PRELEWD, with

Data Collection System Comments on GRAFPAK
(14) /DEVICE=n /INODEVICE

(If interactive, the user will be prompted for this information)

Qualifiers that control PRELEWD logic.

6.6.1

(15)

(16)

/NOCALIBRATE ICALIBRATE

/SORT /NOSORT

PRELEWD Command Qualifier Definitions

(h

(3)

(4)

/DEBUG

If used, this qualifier MUST follow PRELEWD. [t causes an aliernate image to be
invoked that has been linked /DEBUG with DEC's debugger utility. DEBUG may not
be negated, just omitted. Generally, it is intended for software developers’ use only.

IMONITOR=string

This special qualifier v used ONLY when PRELEWD is invoked by SUPERMON.
String contains information necessary to establish a communications link from
PRELEWD to SUPERMON, and allows PRELEWD to inform SUPERMON of ity
progress. 1t is not necessary for o PRELEWD user to supply this qualifier; in fact, it
may cause an error.

ICOMM_SYMs=string

This special qualifier 1s used ONLY when PRELEWD is invoked while using the
CONTROL account and RTD_SCHEDULER.COM. The casual PRELEWI) user
should not supply this quabifier. String DAT is the name of a file into which messages
are written, and from which the RTD_SCHEDULER.COM reads those messages for
display on the screen

/QUEUE {=queue_name}, (defuult queue_name=SYSSPRINT)
/NOQUEUE (default)

The queue_name, if supplied, must be a laser printer queue to which output plot files
can be directed. If /QUEUL is specified. but the queue_name is omitted, the default
queue_name is SYSSPRINT. The laser printer must be able to accept QUIC
commands.

Sandia National Laboratories Underground Testing

6-6

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

For additional information, see Section 6.6.2 and the /SEND qualifier.

(5 /SEND=directory_name
/NOSEND (default)

The /SEND qualifier tells PRELEWD what to do with PLT files. PLT files are
always created in the CURRENT DIRECTORY unless the qualifier specifies a
directory_name on the CURRENT NODE. In that case, PLT files are created there.
If the specified directory_name is on another node, then the PLT files are created in
the CURRENT DIRECTORY and, as each PLT file is generated, it is copied to the
new node using the LD:{TNOLSINET_EXECUTE.COM procedure. If /QUEUE was
specified, then the COPY is accompanied by the appropriate PRINT command to be
executed on the destination node. This is done by SPAWN of a command procedure
with the same name as the plot file, but with a .COM extension.

WARNING

Using the CONTROL. account gives the user all necessary privileges and
permissions I you are not running under CONTROL, and PLT files are
to be sent to another directory_name, YOU MUST HAVE WRITE
PERMISSION in that directory_name. You must always have write
permission in the current directory.

I both the /QUELUL qualifier and the /SEND qualifier are missing or negated, the plot
file(s) will NOT be printed, and will remain in the current directory. If the PLT files
are sent to another node, a copy remains in the current node even though they are
deleted from the destination nede after printing.

(6) ISRAD | =directors _name}
/NOSRAD (default)

OR

(7 /QRAD{=directon name}
/NOQRAD (default)

If present, and not negated. either qualifier causes SAD files to be created in

directory name, or in the current directory if directory_name is omitted. The format

Sandia National Laboratories Underground Testing

6-7

Using PRELEWD, with

Data Collection System Comments on GRAFPAK

of an ASCII SAD file is understood by the program UFO on the 9310 computer
system. The data in the files is in the same units as the plot. Not all CHN channel
types can currently be put into this format, but SANDUS, 7912, and RTD720 channels
can. T48 files and CAL files from 7912s may also be made into SAD files.

/SRAD causes the creation of SAD files with ALL the data from the CHN file, that is,
before data thinning, while /QRAD causes the creation of SAD files containing plot
information after data thinning. The amount of space used by a SAD file is
significantly greater than the original CHN file. The /QRAD qualifier creates smaller
SAD files than the /SRAD qualifier but even these can be large. /QRAD was created
for use with realtime files from a SANDUS. It would be a useful qualifier for very
large RTD720 data files.

(8) /NOPLOT
/PLOT (default)
The /NOPLOT qualifier is allowed only with the /SRAD (or /QRAD) qualifier, and
inhibits the generation of PLT files. This will not save much time, but it does
conserve disk space. If /NOPLOT is present, then /NOSEND, /NOQUEUE, and
/DEVICE=1 are implied.

(9) /GROUP{=n}
IGROUP=4 (default)
The /GROQUP qualifier need not be present, and if present need not have a value. The
default value is 4. It is the number of input files per PLT file. »n is bounded between
1 and 20. The xxxyzzz-nn part of the PLT file is taken from the first data file in that
plot file, regardless of the size of /GROUP.

(10) /NOGRID
/GRID (default)
This qualifier deletes the grid that normally appears on a plot.

(11) /NOLEGEND
/LEGEND (default)
This qualifier deletes the legend that normally appears on the plot.

Sandia National Laboratories Underground Testing

6-8

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

(12) /SINGLL
INOSINGLE (default)

This qualifier causes 7912 traces to appear as a single line, not as the two lines that
normally appear. The qualifier is optional, and is negatable. 1t is not allowed with the
ISRAD (or /QRAD) qualifier described above. The algorithm is: y(plotted)=|y(upper)
+ y(lower))/2.0

(13) /MUX
/NOMUX (default)

A MUX channel contains up to 32 subchannels, and the default is to plot ALL
subchannels on one page(screen). This qualifier, if present and not negated. causes
each subchannel to be plotted on ONE page/screen. It tzkes significantly more time to
plot SANDUS ANALOG MUX channels this way. This type of channel has not been
used for several tests.

(14) /DEVICE{=n}
/NODEVICE (default)

GKS must know what the plotting surface is going to be. This qualifier allows the
user to select the output device on the command line. If not selected here, the
program will ask the question interactively. This is useful when PRELEWD is called
from a command procedure. The qualifier is optional and may be negated. If present,
the default value is | (laser). Any value supplied should be between | and 5
inclusive, and the user is NOT asked any questions. The » should be chosen from the
information below describing the response to request for an output device.

PRELEWD will display ATC's GRAFPAK logo. If run interactively, and if the

/DEVICE qualifier is not present or is negated, PRELEWD will ask the user once for
one piece of information:

"Please enter the plot device desired:"
(1) OMS in landscape mode
(2) TK4208 terminal
(3) VT330
(4) VT340
(5) X-WINDOWS
(Respond with a number from 1-5, default=1):

If PRELEWD is run in BATCH mode or as a DETACHED process, /DEVICE=1 is
chosen by default.

Sandia National Laboratories Underground Testing

6-9

Using PRELEWD, with

Data Collection System Comments on GRAFPAK

When plotting to a terminal, PRELEWD will pause between plots. It will continue
after the user strikes a RETURN key.

(15) /NOCALIBRATE

The Y-axis scaling is determined by the ICF value of PLOT_OPTION. If the
INOCALIBRATE qualifier is specified, no calibration information will be used and
while the format of the plot will be normal, the Y-axis will be forced to COUNTS.

(16) /SORT
/NOSORT (default)

The /SORT qualifier is valid only if the data files are specified in parameter pl, and
only if there are more that 20 data files. If specified, the data files are ordered for
plotting first by experimenter name and then by experiment identification. This is a
political qualifier.

6.6.2 PRELEWD'S Print Command

PRELEWD directs each PLT file to the requested queue as it is generated with the following
command:

$ PRINT/DELETE/QUEUE=queue_name/PASSALL/NOFEED/NOFLAG -
/NOTRAILER/SETUP=QC/NOBURST directory_name:PLTxxxyzzz-nn.DAT

Special features of this print command include the following items:

(h

(4)

The file directory_name:PLTxxxyzzz-nn.DAT is deleted after printing. PLT files are created in
the current directory on the execution node regardless of where they are to be sent. If they are
sent on to another node, the copy at the final node is the one deleted, the original remains. In
other words, the /DELETE applies only to the node from which printing occurs. This feature

is less useful with the advent of network printing where a queue name is all that is required.

The /PASSALL qualifier is REQUIRED by GRAFPAK, regardless of who initiates the
printing. This is the most common mistake made by the casual PRELEWD user

ISETUP=QC works for Talaris 1590-T printers that contain firmware to change QUIC
commands to XCEL commands. A modification to SYSSLIBRARY:TALDEVCTL.OLB to
add a text module named QC is required if the queue is not a Talaris 1590-T, or if the 1590-T
is not properly configured.

The command eliminates miscellaneous extra pages insofar as possible.

Sandia National Laboratories Underground Testing

6-10

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

6.7 PRELEWD General Comments

In addition to any PLT files and SAD files that may be created, a PRELEWD.LOG file is created for
cach run. This file contains information relevant to that run, the command line. the creation date of
the version of PRELEWD being executed, the specific files examined, and number of points plotted
for each. If anything unusual happens, it is recorded in PRELEWD.LOG. This file will be created in
the current directory, PRELEWD.LOG is formatted to allow its use with SLOG (Summary LOG,
Appendix I).

ABNORMAL TERMINATION

Should PRELEWD fail, or should you use
CONTROLY to exit PRELEWD, the terminal
can be left in an indeterminate state, possibly
requiring it to be RESET.,

6.7.1 Common Error Messages

Several common error messages and possible solutions are listed below:

() "error while opening unit outlog, probably no write permission in directory” OR
"It is very probable you do not have write permission in the current directory” OR

"Unable to open SRAD file, do you have write permission in the data directory?
No SRAD file creation"

Unable to create a file, due to no write permission in the current directory.
Usually the user is trying to run PRELEWD from the DD directory tree.

(2) "Supplied indirect file list, file not found?"

The parameter P1 was ‘', and either P2 was missing, or the file_spec was improper. See
Section 6.5,

3) "No time cals for this channel because there were too few zero crossings. The number found
was nn"

Tektronix 7912 calibrations are based on the baseline crossings of a sine wave, and at least

“min-cycles" full cycles are required for a time calibration. PROCESS calculates the number

Sandia National Laboratories Underground Testing

6-11

Using PRELEWD, with
Data Collection System Comments on GRAFPAK

of crossings that did occur, and there were too few. The data are abnormal or (usually) the
screen intensity was too low. There are several error messages associated with 7912
calibration, but this is most frequently seen.

(4) "Prelewd found no acceptable files"
P1 was improperly typed, i.c. CNHR31*. not CHNR31*,

6.7.2 Error Message Levels

There are three levels of error messages, INFORMATIVE, NON-FATAL ERROR, and FATAL
ERROR.

An example of a message is (here, an echo of the command line as entered):
(A) (B) (€)
** *+ INFORMATIVE from COMMAND For your information

PRELEWD/DEV=2 UK:[PKAESTNER.TEST.HT DATA|CHNRI2S031-01 54
(D) (F)

where the parts are:

(A) Level of the error message.

(B) Name of the subprogram which originated the message;

(C) One of several canned greetings from the message subprogram;,
(D) Text of the message, usually the heart of the problem;

(E) An integer, which may or may not be meaningful. A maintenance programmer should look at
the source code.

A variant of this format is:

NEW DATA FILE INFORMATIVE from HANDLE A FILE Current data file is
UK:[PKAESTNER . TEST.HT_DATAJCHNRI25031-01.DAT:1 0

which gives the file_spec for the current CHN file. A list of the CHN files found is written to the
log file earlier. This message gives the user a progress report.

Sandia National Laboratories Underground Testing

6-12

Data Collection System RTDTEST Operator Information

7.0 RTD TEST OPERATOR INFORMATION

7.1 Introduction

This section describes the operators manual for the software system (RTDTEST) that manages
Tektronix RTD720 Digitizers (RTDs) using Digital Equipment Corporation (DEC) computers and
workstations.

7.2 RTDTEST Functions

RTDTEST is an interactive menu driver system, The user can only access this system by signing onto
CONTROL and selecting the RTDTEST option. The MAIN menu will appear giving the user several
options. Most menus (forms) give the user the opportunity to QUIT and or move back to the
PREVIOUS menu. All user responses are validated and any incorrect response is indicated at the
bottom of menu with a message. Most messages show the correct responses allowed. There is no limit
to how many times an invalid response can be made by the user.

The functions of the instrument control software allow the user to modify RTD settings, modify ICFs,

and flag the INGRES software to update the data base with modified ICFs. The user can interactively

acquire, analyze, and display (plot) dry run data at the terminal. Additional functions allow the user to
send commands to an RTD, obtain status information, and calibrate the RTD720.

7.2.1 Set Up the RTD from the ICF

This option allows the operator to set up a RTD for Dry Run/Shot Configuration based on information
residing in the INGRES data base. It accomplishes this by reading the ICF and sending the
appropriate commands (ASCII strings) to an RTD. (Refer to 7.2.2 and 7.2.3.)

7.2.2 Modify the ICF

The ICF can be modified by changing device (RTD) settings according to the options for each
function listed below.

Acquire:
a) Internal,
b) Length,
c) Mode,
d) Clock,
e) Number of records, and
f) State
Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Operator Information

Trigger:
a) Source,
b) Coupling,
¢) Slope,
d) Type Level,
e) Level,

f) Type position,
g) Position, and

h) Mode
Arming can be set to:

a) External, or

b) Internal

Channel settings can be modified according to the options for each function listed below.

General settings:

a) Range,

b) Offset,

c) Type offset,
d) Coupling,

e) Band-width, and
f) Channel off/on

Subchannel:
a) Left bound, and
b) Right bound

Note: This for the first ten (1-10) subrecords in the INGRES data
base. The left and right bound is used only by PRELEWD for plotting,
and does not affect the RTD.

The ICF is used as the means to transport these changes to the INGRES data base if required. If not
transported, the changes are used only for the current RTDTEST session. (See 7.2.1 and 7.2.3.)

7.2.3 Update INGRES Data Base
At the end of the current RTDTEST session and if an ICF was modified, the operator is prompted as

to whether the modified ICF is to be sent to the INGRES data base for updating. If the resonse is
YES, the ICFs are copied from their present directory to an INGRES directory.

Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Operator Information

7.2.4 Acquire Data from an RTD

If an RTD has acquired data previously (acquisition ¢yele has completed - an event code equal to 465)
the operator can pull the data from the RTD and plot it on the terminal being used. (Refer to 7.2.9)

7.2.8 Plot the Acquired Data to the Terminal

A two-dimensional plot of X.Y data is available it an RTD has acquired data and that data has been
written to a temporary file. The option in 7.2.4 has to be performed first. A graphic terminal is
required for this function.

7.3 Interface with CONTROL

RTDTEST is accessed through software called CONTROL. A complete description of CONTROL
and its interface is discussed in the VAX-available document "RTDTPDWN.HT." R) Isidoro of
SNL. Department 9321,

Sandia National Laboratories Underground Testing

7-3

Data Collection System RTDTEST Operator Information

Sandia National Laboratories Underground Testing

Data Collection System References

REFERENCES

Lee. J W, 1990 "Digital Signal Processing Workstation User Guide,” Unpublished report, Sandia
National Laboratories

Hawkey, M, Undated. Tektronix, fnc. Heaverton, OR, private communication to R 8. Caudell.

DEC (Digital Equipment Corporation), 1988 “Giuide to DECnet-VANX Networking," Digital
Lquipment Corporation VAX Syatem Management, Volume $, Chapter 2. April 1988

Caudell, R B, 1991 "Tektronin RTDT20 Digitizer L yvaluation during DISTANT ZENTTHL" memo to
W. B Bover, Division 9121, November 21

Inidoro, R 1., 1992 "Preliminars Results of RTDT0 Testing on VAN Workstation (VEC A4000) and
Other Nodes”, memo to distribution. August 19

Sandia National Laboratories Underground Testing

R-1

Data Collection System References

Sandia National Laboratorics Underground Testing

R-2

SAND93.2064
Unlimited Release Distribution
Printed September 1993 Category UC-706

Data Collection System
Volume 2:
Maintenance Manual

Richard B. Caudell, Roger D. Aden,
Rabert J. Isidoro, Peter C. Kaestner

Instrumentation Development Department 9321
Sandia National Laboratories
Albuguerque, NM 87185

ABSTRACT

Sandia National Laboratories (SNL.) Instrumentation Development Department was tasked
by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers
on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on
September 18, 1992, This report contains a overview and description of the computer
hardware and software that was used to acquire, reduce, and display the data. The
document is divided into two volumes: an operators manual (Volume 1) and a
maintenance manual (Volume 2).

Data Collection System Contents

CONTENTS
1.0 CONTROL-ACCOUNT SOFTWARE [-1
1.1 Introduction o e 1-1
1.2 LOGIN.COM Procedure o, 1.1
1.3 MOVE TABLES.COM Procedure o 1.2
1.4 Hand Dry-Run Software R P
1.5 Signal Dry-Run Software e 1.3
1.6 Control Menus 1.3
1.6.1 ACEmONodes L 14
1.6.2 SANDUS Nodes o 1.4
1.6.3 GEARIO ... 1.8
1.64 NIJVAX ... o 1.8
1.6.5 HDDRaNodes e o 1.5
.66 MMI2uaNodes P D
1.7 LD:JCONTROL] Directory 1.6
2.0 REALIZE AND INITIALIZE MAINTENANCE INFORMATION . 2]
2.1 Introduction , o o2l
2.2 OVEIVIEW . o o o 2.1
2.2.1 Progrumming Constraints o 2.2
23 References for REALIZE and INITIALIZE 2.2
231 Documentation oo o 2.2
2.3.2 Structure Definition Files o 23
2.3.3 Other Include Files o L 2.4
234 Command Definition Files o Q.5
24 Useful Information 2.5
2.5 Source Files, Purpose, and Contents oL 2-6
2.6 External Modules 27
2.6.1 Modules Called from LEWDOLB, .. .27
2.6.2 Modules Called from UTILITY.OLB 2.8
2.7 Records and StrUCtures 2.8
2.8 Files Created e 2.9
281 The BIG File ... e 2.9
28.2 The LOG File .. e 2.9
2.8.3 FOUND., The Error Routine i 2-10
29 The Call Tree .. 2-12
Sandia National Laboratories Underground Testing

1

Data Collection System Contents

CONTENTS (Continued)
10 REALIZE AND INITIALIZE INTERFACE MANUAL 3-1
11 Purpose PR 3-1
32 Bnvironment L, 3-1
T3 BFunclions 3.1
Y31 Interface with !M IlAl IZE and REALIZE, 3-1
V32 Tasketo-Task Communication 0 3-2
1313 DEC VLCI00 Interface to RTD720 .00 oo o o oo 3-7
Y4 Commands Procedures 3-9
141 Compile und Link RTD720 DRIVER Only 000 3-10
142 Lk RTD720 DRIVER Only ... oo 3-11
18 RTD720 DRIVER Program Calling Tree 3-11
40 OVERVIEW OF ANALYZE o 4-1
41 Introduction . 4-1
42 Uhities e 4-1
41 Data Structures/Data Base oo 4-2
44 Common Parametess . . 4.2
45 dnput Parameters . 4-3
40 Program Execunon ... 4-3
47 Output Files . . e 4-4
48 Sequence of Operation ..o 0 4-4
49 PROC RTD720 Sequence of Operation 4-5
410 Compile’Link Instructions . 4-6
JHE DIERoSUCS 4-6
412 FLINT Tree . . 4-7
S0 PRELEWD MAINTENANCE INFORMATION 5-1
S Introduction - 1
§2 OVEIVIOW 5-1
S CGeneral l)eswptmn 5-1
£33 PRELEWD Programming CORSUAINGS . o oo 592
54 Suggested Reading ... e 393
S4.1 Structure Definition Files ..o oo 5-3
A4 GKS Information 5-4
$4.3 INCLUDE Files Containing Common Blocks 5-4
544 INCLUDE Files Defining Parameters 0 5-7
§4.5 SRAD ReEferences 5-8
§.5 Useful Information 5-8
§.5.1 Source, Object, and Executable Files oo 5-8
Sandia National Laboratories Underground Testing

v

Data Collection System Contents

CONTENTS (Continued)

5.52 The XTRACT Modules 5-9
5.5.3 The Variable Type 5-9
5.54 Data Conversiont 5-9
555 Default Plot Values 5-10
556 Data Thinning 5-10
5.5.7 Tektronix 7912 Calibration 5-11
56 Useful Command Files 5-14
5.7 Source File., Purpose, and Contents 5-15
5.8 External Modules 5-27
5.8.1 Modules Needed from UTILITY.OLB 5-28
5.8.2 Modules Needed from DUMP.OLB 5-28
5.8.3 Modules Needed from the Shared Library, GKSFLB.EXE 5-29
5.9 Records and Structures 5-30
5.9.1 CHN Header Structure i 5-31
5,10 FilesCreated e 5-33
5.10.1 The LOG File e 5-33
5.10.2 FOUND, The Error Routine 5-34
5103 The PLT File e e 5-35
5104 The SRAD File 5-36
5.1 The Call Tree 5-36
6.0 RTDTEST MAINTENANCE INFORMATION 6-1
6.1 Purpose 6-1
6.2 RTDTEST Functions 6-1
6.2.1 Set Up the RTD from the ICF 6-1
6.2.2 Modify the ICF 6-1
6.2.3 Update INGRES DataBase 6-3
6.2.4 Acquire Data fromanRTD 6-3
6.2.5 Plot the Acquired Data to the Terminal, 6-3
6.2.6 Display RTD Set Up Information 6-3
6.2.7 Send Individual Manual Command toan RTD 6-3
6.2.8 Calibratean RTD 6-4
6.2.9 Interface with CONTROL 6-4
6.3 Program Function Descriptions 6-4
6.4 Command Procedures 6-9
6.4.1 Compile and Link RTDTEST, 6-10
6.4.2 Link Only RTDTEST i 6-12
6.5 Program Calling Tree 6-16
Sandia National Laboratories Underground Testing

Data Collection System Contents

CONTENTS (Continued)

REFERENCES e R-1
Appendix A - Instrument Control File for Tektronix RTD720 Digitizers A-1
Appendix B - Instrument Control File (Table) Utility Routines B-1
Appendix C - BIG File Format C-1
Appendix D - Channel Data File Format D-1
Appendix E - BIG File Utility Routines E-1
Appendix F - Maintenance of ICF (Table), BIG, and Channel File

Utility Routines o F-1
Appendix G - Summary Log (SLOG), G-1
Appendix H - Utility Library H-1
Appendix | - File Read Routines I-1
Sandia National Laboratories Underground Testing

Vi

Data Collection System

ACL
ATC
CHN
DCL
DEC
DNA
DSP
FMS
GKS
ICF
KSC-1

LPARL

NTS
RTD
SAIC
SNL
SPL

ACRONYMS

Access Control List

Advanced Technology Center

Channel

Digital Command Language

Digital Equipment Corporation

Defense Nuclear Agency

digital signal processing

Forms Management System

Graphical Kernel System

instrument control file

Kaman Sciences Corporation

Lockheed Palo Alto Research Laboratory
Nevada Test Site

Tektronix RTD720 Digitizers

Science Applications International Corporation
Sandia National Laboratories

Software Project Leader

Sandia National Laboratories

vii

Acronyms

Underground Testing

Data Collection System Acronyms

Sandia National Laboratories Underground Testing

viii

Data Collection System CONTROL-Account Software

1.0 CONTROL-ACCOUNT SOFTWARE

1.1. Introduction

Normal data acquisition, processing, and display for the Sandia National Laboratories (SNL) Field
Instrumentation Departments are done via a limited-access account designated CONTROL. Identical
copies of the CONTROL-account software are in directory LD:[CONTROL] on all operational
computer nodes used by the SNL Field Instrumentation Departments. The use of a limited-access
account permits authorized individuals, such as equipment operators, to use relatively sophisticated
software with exceptionally high system-access privileges in a protected environment. Operational
characteristics of the software are discussed in subsequent sections. Complete listings of the
CONTROL procedures are stored in LD:[CONTROL].

1.2 LOGIN.COM Procedure

A user may access the CONTROL-account software by typing in the user name CONTROL when
logging into a VAX node. CONTROL has been set up by the system manager so that no password is
needed, and its log-in command procedure (LOGIN.COM) begins running immediately.
LOGIN.COM first performs some housekeeping functions, such as defining the INQUIRE command
simulator and defining its control-Y and control-T actions. LOGIN.COM then asks the user to enter
his or her username and password. If the username and password are valid, LOGIN.COM then
checks to see if the username is permitted to operate CONTROL on the current node. If the user
passes these checks, the process name is defined to include the user name of the operator so that logs
of CONTROL usage may be kept.

LOGIN.COM then determines the name of the computer node on which it is running. If the node
name contains the string RMV, then the logical name TABLE _DIR is defined as
GEAR10::DD:[TABLES.node], where node stands for the node-name character string (e.g.,
RMV10). Otherwise, TABLE_DIR is defined as DD:[TABLES]. Software that runs under
CONTROL should use TABLE_DIR to refer to the instrument-control-file directory, so the proper
directory will automatically be referenced.

If the node name contains any of the strings ACE, RMV, or SAN, then the operator is asked if the
software is to check N12DBM (the data base node) for the most recent versions of whichever
instrument-control files are in directory TABLE_DIR. If the node name does not contain one of the
instrumentation node strings, N12DBM is unconditionally searched for later versions of the
instrument-control files contained in TABLE_DIR. The DCL command procedure
MOVE_TABLES.COM, discussed below, is used to perform the search for and any necessary
movement of tables (Perkins, 1992).

Sandia National Laboratories Underground Testing

1-1

Data Collection System CONTROL-Account Software

Once the node name has been established, LOGIN.COM displays a menu appropriate to the node.
Several menus are displayed in Section 1.6.

After a given menu is displayed, the operator is asked to enter a choice. Choice L allows the
operator to enter notes in the CONTROL-account logbook file; choice M invokes the VMS MAIL
utility; and choice E performs some housekeeping functions and logs the operator off the computer.
Most nodes offer these generic choices. The numbered choices define software that can be invoked
by entering the number associated with the choice. For example, if one chooses number 6 from the
ACE menu, CONTROL executes the following DCL commands:

$ define uub0 uua0
$ @Id:[dhtest]dhtest
$ exit

The define command performs a logical definition necessary to run DHTEST on an ACE node. The
command @!d.[dhtest]dhtest invokes DCL command procedure DHTEST.COM that is resident in the
directory LD:[DHTEST]. The DHTEST.COM command procedure in turn invokes the

FOR'l RAN-coded executable DHTEST program that performs various test and setup procedures
related to SANDACE and SANDUS hardware. Finally, the exit command returns control to the main
body of the CONTROL-account LOGIN.COM command procedure. At this point the menu is
displayed again and the operator may select another menu option.

In most cases, the software invoked outside of LD:[CONTROL] has been written and is maintained
by someone other than the CONTROL developer in a directory other than LD:[CONTROL]. For
historical reasons, however, some command files invoked by LOGIN.COM are located in
LD:[CONTROL].

When an operator selects E and the node name contains any of the strings ACE, RMV, or SAN, then
any instrument-control files that have been modified during the current session will be copied from
TABLE_DIR to an appropriate directory on NI12DBM, where the technical information will be
extracted into the instrumentation data base for use in creating new versions of the instrument-control
files. If the node is not an ACE, an RMV, or a SANDUS node, or after the instrument-control file
copies are completed, the operator is logged off the computer.

1.3 MOVE_TABLES.COM Procedure

Tables are copied to or from instrumentation or recording nodes by using a DCL command procedure
called MOVE_TABLES.COM, which is discussed at length by Perkins (1992).

Sandia National Laboratories Underground Testing

1-2

Data Collection System CONTROL-Account Software

1.4 Hand Dry-Run Software

Software that is specifically designed to set up or exercise instrumentation or recording hardware with
significant operator control can be lwnped into the "hand dry-run software" category. The category
includes ACETEST, AUTOCAL, AUTOSIM, DHTEST, high-density data recorder diagnostics,
mass-memory diagnostics, RTD diagnostics, RTDTEST, and UHTEST. Most of the diagnostic or
hand dry-run programs are invoked via command procedures running outside LD:[CONTROL).
However, a few programs are still invoked by command procedures in LLD:[CONTROL].

1.5 Signal Dry-Run Software

Software that is specifically designed to acquire, process, and plot signal dry-run or shot data can be
lumped into the "signal dry-run software" category. At present, this category inc.udes DATALOG,
SUPERMON, and RTD_SCHEDULER. SUPERMON and DATALOG are invoked via command
procedures running outside LD:[CONTROL], but RTD_SCHEDULER is invoked by a command
procedure in LD:[CONTROL].

Even though SUPERMON is invoked by a command procedure that runs outside LD:[CONTROLY],
the SUPERMON FORTRAN code submits batch jobs that use DCL command procedures resident in
LD:[CONTROL].

1.6 Control Menus

The following three sections are control menus (screens) that can be accessed from CONTROL.-
account software. Each section duplicates the screen display for the given control menu.

Sandia National Laboratories Underground Testing

1-3

Data Collection System CONTROL-Account Software

1.6.1 ACEmO Nodes

You are logged into the CONTROL account on node ACEI0. CONTROL LOGIN.COM was created
8-APR-1992 16:16:53.00. Your choices from node ACEI0 are

(n
(2)
(3)
4)
(5)
(6)
(7
(8)
9
(10)
(L)
(M)
(E)

Run ACETEST

Plot channels

Show users

Run 7912 AUTOCAL (local)

Dry run report

Run DHTEST

Run DHTEST for a different system

Run AUTOSIM (local)

Get new instrument-control files from data base node
Push modified instrument-control files to data base node
Logbook

Mail

Exit

1.6.2 SANDUS Nodes

You are logged into the CONTROL account on node SANSO4. CONTROL LOGIN.COM was
created 8-APR-1992 16:16:53.00. Your choices from node SAN504 are

(1

Fetch, process, and plot data

() Run DHTEST
(3) Run DHTEST for a different system
4) Show users
(5) Get new instrument-control files from data base node
(6) Push instrument-control and master files to archival and backup nodes
(7 Dry run report
(L) Logbook
(M) Mail
(E) Exit
Sandia National Laboratories Underground Testing

1-4

Data Collection System CONTROL-Account Software

1.6.3 GEAR10

You are logged into the CONTROL account on node GEAR10. CONTROL LOGIN.COM was
created R-APR-1992 16:16:53.00. Your choices from node GEARIO are

(h Run RTD720 dry-run scheduler

(2) Run RTD-digltizer diagnostics

3) Get new instrument-contro! flles from data base node
(L) Logbook

(M) Mail

(E) Exit

1.6.4 N12VAX

You are logged into the CONTROL account on node N12ZVAX. CONTROL LOGIN.COM was
created 8-APR-1992 16:16:53.00. Your choices from node N12VAX are

(1) Run SUPERMON

(2) Run DHTEST

(3 Run 7912 AUTOCAL (ethernet)

(4) Run AUTOSIM

(5) Get new instrument-control files from data base node
(L) Logbook

(M) Mall

(E) Exit

1.6.5 HDDRa Nodes

You are logged into the CONTROL account on node HDDRA. CONTROL LOGIN.COM was
created 8-APR-1992 16:16:53.00. Your choices from node HDDRA are

(N Run 7912 AUTOCAL (remote bitstream)

(2) Run HDDR diagnostics

(3) Get new instrument-control files from data base node
(4) Run ACETEST

(5) Run uphole hardware test program UHTEST

(6) Archive today's AUTOCAL and LASER-cal files
(L) Logbook

(M) Mail
(E) Exit
Sandia National Laboratories Underground Testing

1-5

Data Collection System

1.6.6 MM12a Nodes

You are logged into the CONTROL account on node MM12A. CONTROL LOGIN COM was

CONTROL-Account Software

created 8-APR-1992 16:16:53.00. Your choices from node MM |2A are

(h Run mass-memory diagnostics
) Run uphole hardware test program UHTEST
3 Get new instrument-control files from data base node

(L) Logbook
(M) Mail
(E) Exit

1.7 LD:[CONTROL] Directory

Table 1.1 lists the directory of flles in LD:{CONTROL].

Table 1.1 Directory of LD:[CONTROL] files.

Eile Name

ABORT JOB.COM;3$
LD:[SUPERMON)
ACEDEV_DBG?20_INIT.COM;2
ACE_PROC.COM; 28
LD:[ACETEST)
ARCHIVE_MM.COM;6
LD:[SUPERMON)
CONTROL.LOG: |
COPY_FILE.COM;4
LD:[DSP|

EDTINLEDT;4

HDDR _DIAGS.COM:;16
LD:[FETCH)
INQUIRY.EXE;30
INQUIRY.FOR;60
LOAD_8330.COM;8
LD:(8330DECOM]
LOGIN.COM;277
LOGNET.COM:8
LOGPERK.COM;?

Sandia National Laboratories

Eile Name

DBG720.COM;17
DRYRUN_BACKGROUND COM; 122
LD:(SUPERMON]
DRYRUN_DSP.COM:46
LD:[SUPERMON|
DRYRUN_FOREGROUND.COM; 109
LD:(SUPERMON)|
DSPUSERDEF.COM;32
NET_EXECUTE.COM:$6

PROCESS PLOT.COM; 12
1.D:[SUPERMON]
REM_EXECUTE.COM;28
RMV_DBG720_INIT.COM;2
RTD720.COM;4
RTD_SCHEDULER.COM;82
L.D:(REALIZE)
RUN_ENABLIZE_RTD720.COM; 13
LD:[REALIZE]
RUN_INITIALIZE_RTD720.COM;1$
LD:(REALIZE)

Underground Testing

Data Collection System

Table 1.1. Directory of LD:[CONTROL] files.

CONTROL-Account Software

Eile Name

MM_DIAGS.COM; 12
MOVE_TABLES.COM;85
RUN_REAL.COM: 10
RUN_REALIZE_RTD720 COM;41
LO:[REALIZE]
RUN_RTD_DIAGS.COM;?
LD/(REALIZE]
SANDUS_PROC.COM;33
TEST_717.EXE.9
TEST_717.FOR:12
TEST_8330.EXE,7
TEST_8330.FOR:10
TEST_SRCH.EXE$
TEST_SRCH.FOR:8
TEST_ZT.EXE;3
TEST_ZT FOR:4

Sandia National Laboratories

Underground Testing

Data Collection System CONTROL-Account Software

Sandia National Laboratories Underground Testing

REALIZE and INITIALIZE
Data Collection System Maintenance Information

2.0 REALIZE AND INITIALIZE MAINTENANCE INFORMATION

2.1 Introduction

REALIZE and INITIALIZE are two programs in the Nevada Test Site (NTS) Instrumentation System
suite of codes. They are very similar, using many of the same modules. INITIALIZE reads the
instrument control file (ICF) and sets up RTD720s as requested. REALIZE reads the ICF, fetches
data from RTDs, and writes it to a BIG file. Because REALIZE and INITIALIZE are so similar,
they will be documented together and, unless a specific one is indicated, all information pertains to
both.

The NTS Instrumentation System is a sequence of programs that work across an extensive network of
special and general-purpose computers, with special hardware to record and to display short-lived
phenomena captured from a hostile environment. The data is received by one of several types of
source devices. Source devices such as the SANDUS can record many channels of data, while other
source devices can only record one channel.

With the recent advent of newer digitizers that have their own memory (the RTD720 specifically), a
new sequence of programs has emerged. REALIZE recovers data from the RTD720s and packs it
into BIG files, which ANALYZE reformats into individual CHN files. Neither program can be
viewed as a single entity, as they are closely tied to both the hardware and the software of SNL's
NTS Instrumentation System. A change in any part of this system may affect REALIZE, because it
prepares BIG flles for use by ANALYZE, which in turn prepares CHN files for use by PRELEWD,
Both programs use ICFs prepared by still another program.

2.2 Overview

This is not a maintenance manual that lists troubleshooting procedures or instructions for adding
undocumented features. Maintenance information is often obtained from the source, which contains
comments for guidance. This document, instead, discusses REALIZE/INITIALIZE and the routines
that perform specific tasks.

This document is directed to persons familiar with the Run Time Library and Digital Equipment
Corporation’s (DEC) FORTRAN, particularly DEC's vetsion of structures and records. A
knowledge of the RTD hardware is not necessary. It assumes that the user has read and is familiar
with Section 4.0 of the Operators Manual, REALIZE and INITIALIZE User Information. It is also
helpful if the user has also run one or both of the programs.

Sandia National Laboratories Underground Testing

tI
)

REALIZE and INITIALIZE
Data Collection System Maintenance Information

2.2.1 Programming Constraints

REALIZE was written as an interface to software that sets up and recovers data from RTD720s.
INITIALIZE was written later to allow the setup function to be done earlier in time, and independent
of the data recovery Both are significantly easier to understand than FETCH or DECOM, partly
hecause they communicate through a GPIB in ASCIL. The only constraints were those of time. They
had to be written quickly Clock time is not important, as the RTD's were uphole and would retain
the data for & very reasonable penid.

Previous experience with Tektronix 7912s and LeCroy 6880s led to the techniques used for the
RTDs BIG files and ICFs were already available in addition to very good software with which to
manipulate both The command procedures were in place to mo' ¢ the ICFs as needed. The only
significant software that had to be written was the device communication software.

2.3 References for REALIZE and INITIALIZE

The following list of references 1s specific. It does not include references in the VAX/VMS
Documentanion Set, the VAX/VMS FORTRAN Reference Manual or User's Manual. Please read the
INCLUDE files, because they - ontain significant comments.

2.3.1 Documentation

- Section 4 of the Operators Manual (Volume 1).

It contains a description of REALIZE and INITIALIZE and of the command line qualifiers available
to eurh

REALIZE and INITIALIZE Inierface Manual - Section 3 of the this volume

This section describes routines called from REALIZE and INITIALIZE, the node-to-node interface,
and routines that interface directly to the RTD720s Specifically, it describes the communications
interface that exists on the REALIZE execution node

x RID720 Digitizers - Appendix A

This 1s documentation on the ICF file for the RTDs. 1t will aid in understanding both INITIALIZE
and REALIZE Both programs must read the ICF to find out what equipment is available, and how it
I8 to be configured Both programs must pass selected iCF records to the communications routines.

Sandia National Laboratories Underground Testirg

s
~J

REALIZE and INITIALIZE
Data Collection System Maintenance Information

Instrument Control File (Table) Utility Routines - Appendix B

This documents the package of routines needed to create, read, write, modify ICFs. Understanding
ICFs is essential to understanding both INITIALIZE and REALIZE.

BIG File Format - Appendix C
This is documentation on the BIG file. Understanding BIG files will aid in understanding REALIZE.

BIG File Utility Routines - Appendix E

This documents the package of routines that create, read, write, and modify the BIG files.

ines - Appendix F

This is the maintenance document for both the TABLE routines and the BIG routines.

2.3.2 Structure Definition Files

Because both REALIZE and INITIALIZE are going to read records from the ICF, and because
REALIZE will write a BIG file, it is necessary to define several structures that are local, but consist
in part of structures defined for the NTS Instrumentation System.

REALIZE_STRUCTS.DEF contains two structures. It does not reserve any memory. It does include
the file REALIZE.PRM. Both these files are referenced with the directory_name symbol
REALIZESINCLUDE, which is defined:

$ DEFINE REALIZESINCLUDE LD:[REALIZE] (or wherever the files are located).
The structure /ONE_RTD/ is used :o pass information to the communications routines. It defines

several variables available from a record within the structure. This is to make the variables more
accessible,

Sandia National Laboratorie; Underground Testing

| 3]
)

REALIZE and INITIALIZE
Data Collection System Maintenance Information

The structure /CHANNEL_INFO_STRUCTY/ is used to help form the BIG file header. It too defines
variables available in the records that are part of the structure.

The following three files are referenced with the directory_name symbol INCLUDESINCLUDE,
which is defined:

$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever they are located).

TABLE_STRUCTS.DEF is one of the important fiies containing structure definitions needed to
understand the ICF and the BIG file. It does not reserve any memory.

BIG_STRUCTS.PRM contains, among other parameters, the maximum number of subchannels
allowed for RTD720s.

BIG_STRUCTS.DEF is the second of the important files containing structure definitions needed to
understand the BIG file. It defines the BIG file header and the header for each type of source
equipment. BIG_STRUCTS.DEF requires BIG_STRUCTS.PRM, but it is not called out.

2.3.3 Other INCLUDE Files

There are comments in these files. Generally they are included with the /NOLIST option; however,
each main program has them listed. These files are usually maintained in REALIZESINCLUDE.

REALIZE.PRM contains parameters that define the maximum size of most of the REALIZE arrays.
Other necessary parameters have been included here for consistency.

ADMIN.CMN declares many of the variables that are needed in REALIZE. It defines the common
blocks:

(a) ADMIN_INT_1 - integer variables

(b) ADMIN_INT_2 - additional integer variables

(c) ADMIN_CHAR_I - string variables

(d) ADMIN_CHAR_LENGTH_1I - the *‘real"’ length of the string variables
(e) ADMIN_LOG 1 - logical variables

Sandi.1 National Laboratories Underground Testing

2-4

REALIZE and INITIALIZE
Data Collection System Maintenance Information

2.3.4 Command Definition Files

REALIZE and INITIALIZE have a number of command line qualifiers, but no parameters. All
information about the RTD720s comes via the required /TABLE qualifier. The CLD files are usually
maintained in REALIZESINCLUDE.

INITIALIZE_COMMAND _DEF.CLD is the file that defines the command line images and qualifiers
specifically for INITIALIZE. It is the ultimate authority on the INITIALIZE command line
qualifiers.

REALIZE_COMMAND_DEF.CLD is the file that defines the command line images and qualifiers
specifically for REALIZE. It is the ultimate authority on the REALIZE command line.

2.4 Useful Information

The source code is all written in FORTRAN. VAX/VMS Run Time Library routines and System
Service Routines are used. There is system level 1/0 while reading the ICF and writing the BIG
files. Each source file contains one program module with the same name as the file. The source is
compiled /NOOPT/DEBUG, and the object modules are maintained in the object library
REALIZE.OLB, created with the Librarian Utility. Because of the I/0 in REALIZE, using the
/OPTIMIZE qualifier is wasted, and therefore only one object library is maintained. REALIZE.OLB
resides in the directory_name REALIZESLIBRARY, which has to be defined by the programmer as
follows:

$ DEFINE REALIZESLIBRARY LD:[REALIZE] (or wherever the file is maintained).

Four executable files are normally created from REALIZE.OLB. They are REALIZE.EXE and
DEBUG_REALIZE .EXE for REALIZE, and INITIALIZE EXE and DEBUG_INITIALIZE EXE for
INITIALIZE. The DEBUG_.. executables are made with the /DEBUG qualifier on the LINK
command.

In addition to the .FOR files that contain the source, there are several .COM files that may be useful,

Because of the limited disk space available, most .COM files that create files also do a PURGE.
After the object modules have been introduced into REALIZE.OLB, they are deleted.

Sandia National Laboratories Underground Testing

REALIZE and INITIALIZE
Data Collection System Maintenance Information

The important .COM files follow:

(a) REALLIB.COM requires one parameter: the name of module to compile. The
resulting object module is put into REALIZE . OLB, and the object file is deleted. The
compile command is:

$ fortran/list/nooptimize/debug/extend ‘p!’

(b) REALIZE.COM is used to create REALIZE executables. It uses REALLIB and
requires one parameter, as described above. After REALLIB.COM is done, or if the
required parameter is NONE, it does a LINK to create module REALIZE.EXE, and a
LINK/DEBUG to create DEBUG_REALIZE.EXE. REALIZE.COM requires that, in
addition to the symbols named above, the symbols UTILITYSLIBRARY and
PRELEWDSLIBRARY should be defined as follows:

$ DEFINE PRELEWDSLIBRARY LD:[PRELEWD] (or wherever PRELEWD.OLB
is maintained)

$ DEFINE UTILITYSLIBRARY LD:[UTILITY] (or wherever UTILITY.OLB and
UTILITY.DBG_OLB are maintained)

(c) INITIALIZE.COM is used to create INITIALIZE.EXE, and
DEBUG _INITIALIZE.EXE. It requires the same symbols.

Because there is so much shared code in the two programs, the operator must relink both REALIZE
and INITIALIZE when a source module is changed. Assuming modules BLAH.FOR and
CRAM FOR have been changed, the following sequence is suggested:

$ @REALLIB BLAH

$ @REALLIB CRAM

$ @REALIZE NONE and/or
$ @INITIALIZE NONE

2.5 Source Files, Purpose, and Contents
There are a number of source files, each containing on. ~dule with the same name as the file.
Production source code, the object library, executables, and include files are usually kept in the

directory REALIZESINCLUDE. Development source code, its object library, and executables are
maintained in another directory. A distinct .CLD file must be maintained in each directory.

Sandia National Laboratories Underground Testing

2-6

REALIZE and INITIALIZE
Data Collection System Maintenance Information

This section is intended to provide a quick guide to the location of an item. Each module is prefaced
with a more elaborate description of its purpose, arguments, modules called, and calling module(s).
The major modules also contain a history of their significant changes. Unless noted otherwise, the
routines named below are used by both REALIZE and INITIALIZE.

H REALIZE.FOR is a main program, and controls REALIZE's overall logic.
(2) INITIALIZE.FOR is a main program, and controls INITIALIZE's overall logic.
(3 COMMAND_LINE.FOR parses the REALIZE command line.
(4) INITIAL _ COMMAND LINE.FOR parses the INITIALIZE command line.
(5) ENVIRONMENT.FOR finds the operating environment, current directory, etc.
(6) FOUND.FOR is an error routine that writes the LOG file. See paragraph 6.8.3.
(7 GET_DEV_CHAN.FOR determines the devices and channels in the ICF, then does an AND
with any command line device and/or channel requests.
(8) PARSE_PETE_NUM_LST.FOR decodes numeric lists from command line qualifiers.
9) READ_ RTD TABLE RECORDS supervises recovery of all remaining ICF records needed.
(10) READ RTDCS.FOR reads the subchannel record /RTD_CC_SUB_DESC/ from the ICF-.
(1Y READ_ "RTDES.FOR reads the subchannel record /RTD_ FXP SUB DESC/ from the ICF.
(12) READ RTDLS.FOR reads the subchannel record /RTD LC_ SUB DESC/ from the ICF.
(13) READ_RTD_CHANS.FOR reads the record /RTD_ CHAN DESC/ from the ICF.
14) READ RTD_ "DEVICES.FOR reads the record /RTD DEV DESC/ from the ICF.
(15) WRITE BlG FILE.FOR writes the BIG file. (Used only by REALIZE.)

2.6 External Modules

Two external object libraries supply modules not in the above list of source files.

2.6.1 Modules Called from LEWD.OLB

LEWD.OLB is external to a nuruber of other executables. It contains several routines that are similar
to UTILITY routines, and should be specified first in the LINK process.

(H CLI returns the command line which is sent to the .LOG file.

(2) ELIMINATE_BLANKS eliminates leading and trailing blanks from a string, and returns the
truncated string and the number of characters in it.

(3) PARSE NUMBER extracts a number from the command line qualifier.

(4) PARSE_STRING extracts a string from the command line qualifier.

Sandia National Laboratories Underground Testing

2-7

REALIZE and INITIALIZE
Data Collection System Maintenance Information

2.6.2 Modules Called from UTILITY.OLB

This object library is really two libraries, UTILITY.OLB and UTILITY.DBG_OLB, where

UTILITY.DBG_OLB is compiled with the /NOOPT/DEBUG qualifiers. These libraries consist of a

number of useful basic modules written by the staff and available to all.

(1 CHANGE_COMM_SYM creates or modifies the file string.dat, where string is the
COMM_SYM qualifier's value. It opens the file string. DAT, and appends the input string to

that file. The calling command procedure reads this file, and displays the newest addition on
the screen.

() CLOSE_BIG closes a BIG file, and is part of the BIG_ROUTINES set of modules.
(3) CLOSE_TBL closes an ICF, and is part of the TABLE_ROUTINES set of modules.
4) CNV_NUM_LST_TBL converts a numeric string to integer representation.

(5) FILE_DATE obtains the creation date of the calling executable module.

(6) OPEN_BIG opens a BIG file, and is part of the BIG_ROUTINES set of modules.
(7 OPEN_TBL opens an ICF, and is part of the TABLLE_ROUTINES set of modules.
(8) PARSE_PRESENCE gets information about a cor. mand line parameter.

9) READ_TBL_REC reads a nanicd ICF record, and is part of the TABLE ROUTINES set of
modules.

(10) TBL_CHAN_DIR gets a list of entries in the ICF, and is part of the TABLE_ROUTINES set
of modules.

(11) WRITE_BIG writes a BIG file, and is part of the BIG_ROUTINES set of modules.

2.7 Records and Structures
For a detailed description of DEC's nonstandard implementation of records and structures, see both
the VAX FORTRAN Language Reference Manual (Order Number AA-DO34E-TE) and the YAX

FORTRAN User Manual (Order Number AA-DO3SE-TE), both dated Ji:ne 1988. Later editions
exist.

Sandia National Laboratories Underground Testing

2-8

REALIZE and INITIALIZE
Data Collection System Maintenance Information

If an operator chooses not to delve deeply into records and structures, he or she should think of a
structure as a description of a collection of variables (a plan), and a record as the structure’s
realization in memory. The structure is the architect's plan, while the record is the construction
company’s building, realizing that other buildings may be built using the same set of plans. The
variables described in the structure may be any legal FORTRAN type in any order. In a record, the
variables are stored in structure order with no blank space. A record statement assigns a variable
name to a structure. A structure description may contain record statements, but the structures named
in those record statements must have been previously defined.

The variable name that defines a record statement can be used in much the same way that usual
variable names are used, but the name refers to all the elements contained in that record. The
structure defined by a record statement may be dimensioned. An individual element in a record is
referenced by prefixing its name with the name of each record it is a member of, working outward.
Thus the variable name A.B.C(i).X is element X of the ith record C in record B in record A. There
is a difference between a structure and a record, but most authors use the words interchangeably.

2.8 Files Created

FORTRAN logical units 1 and 3 are used in both program modules. Logical unit 2 is used only in
REALIZE. For temporary use, logical unit numbers come from the RTL routines LIBSGET_LUN
and LIBSFREE_LUN.

TBLLUN (=1) is the logical unit for the ICF file.
BIGLUN (=2) is the logical unit for the BIG file.
IOUTLOG (=3) is the logical unit for the LOG file.

2.8.1 The BIG File

One BIG file is created for all data recovered from the RTDs on a GPIB. BIG file format is
described in Appendix E. It contains all necessary records from the ICF and data. ANALYZE only
needs a BIG file to create CHN files. BIG files created by REALIZE are named RTDBIGRmn.DAT,
where m is the leading digit of the RMV node number, and n is the GPIB bus number.

2.8.2 The LOG File
The file REALIZE.LOG (or INITIALIZE . LOG) is created in the current directory during each

execution. This file is opened in ENVIRONMENT, and written in FOUND., FOUND is described
below. The LOG file is the first place to begin troubleshooting, It has an execution date/time stamp,

Sandia National Laboratories Underground Testing

REALIZE and INITIALIZE
Data Collection System Maintenance Information

the command line, and the creation date and name of the .EXE file. It tells about any unusual
occurrence, and what, if anything, was done about it. Each entry is annotated with the originating
module’s name, Information about messages in the LOG file is in the Opeartors Manual.

If an error has occurred in the RTD720 communications routines, it is noted with a request to see the
LOG file written by those routines.

LOG file messages are sometimes cryptic. While trying to interpret any message, the user should
review the module that generated the message for insight into the problem, or item of information.

2.8.3 FOUND, The Error Routine

Module FOUND is the standardized error routine. FOUND is used in all codes, though not always
in exactly the same version. A typical call to FOUND looks like this:

do i=1,num_cl_chans
if(cl_chans() .It. 1 .or.
1 cl_chans(i) .gt. 4) then
ij=ij+1
call found(.false.,0,"COMMAND LINE’,2,
16,'Command line channel ’
/’had bad value, setting '
/I’to -1, was *,cl_chans(i),2)
cl_chans(i)=-1
endif
enddo

[P0 S Iy

Explanation: The /CHANNEL qualifier was used, the number of channels was called out, and
num_cl_chans was not zero. The RTD hardware only permits channel numbers in the range of | to 4
inclusive. This loop checks each channel number, and counts and redefines all invalid channel
numbers. It also writes a message about each bad channel number to the LOG file.

Note the use of the concatenation symbol **//"* to extend the sixth argument. The significance of
each of the eight «~guments is (in order):

(h false. a logical and if .true. then argument 2 is meaningful.

Sandia National Laboratories Underground Testin?

Data Collection System

(2)

3)

4)

(5)

(6)

(7

(8)

'COMMAND LINE’

2

16

Command ... was

cl_chans(i)

5]

REALIZE and INITIALIZE
Maintenance Information

the status value returned by a system routine. If this argument is
meaningful, LIBSSIGNAL is called, and the message is added to the
LOG file.

a string containing the name of the calling module.

an integer in the range 1 to 3 that defines the error level written to the
LOG file, and controls some module logic.

> INFORMATIVE
> NON-FATAL ERROR
= > FATAL ERROR

W n
Hou

!
2
K

i
]

an integer in the range | to 17, and an index into a set of canned
messages. They are defined in the source code. In this case the
message is: For your information.

the specific message about what was found, and what, if anything,
was done about it. Notice here how it directs the operator to the next
argument.

an integer that may or may not be meaningful. In this case, it is the
offending channel number.

an integer value in the range of 1 to 9 that indicates the programmer's
sense of the severity of the message. One is usually fatal, and 9 is
usually informative. Here, the user will not get what was requested,
because that request was not understood. This value is put into the
SLOG tag. See Appendix G.

Because every error is in the log file, and each is tagged with the name of the originating program,
all the possible errors are not listed here, The DEC utility program SEARCH is helpful in this task.

For further information on the LOG file format required by SLOG, see Appendix G.

Sandia National Laboratories Underground Testing

2-11

REALIZE and INITIALIZE
Data Collection System Maintenance Information

2.9 The Call Tree

The following call tree is from the program FLINT (version 2.71). At least the first occurrence of
each routine has been annotated. Those routines that appear as (name) are external to REALIZE.
Those with names followed by (n) are referenced later as ‘‘see n'".

This is a primary tree starting at the program INITIALIZE:

INITIALIZE-+- (OPEN_TBL) opens an ICF

main prog. |
T-(CLOSE“TBL) closes an ICF
T-(READ_TBLnREC) reads an ICF record
+-ENVIRONMENT (1)-+-(LIBSGETJPI)
who,what,when
where and why +-(LIB$8YS_TRNLOG)
+- (LIB$FIND_FILE)
|
+- (LIBSFIND_FILE_END)
!
+-(FILE_DATE) find executable name
i and date
{
|
+- (LIBSDATE_TIME)
i
+-FOUND (2) -+- (LIB$SYS_GETMSG)
writes
log file +-(CHANGE COMM_SYM) RTD
Scheduler
communications
+- (MICRO_VAX_LINK_CLOSE)
break the node-to-node
link.
I T-(LIBSSIGNAL)
|
| +- (LIBSENABLE_CTRL)
I
+- (EXIT) auf wiedersehen
+- (ELIMINATE _BLANKS) trim lead and
trail blanks
+-INITIAL_COMMAND_LINE-+-PARSE_PETE_NUM_LST (3)-+- (CNV_NUM_LST_TBL)
crack the command | extract numbers from | convert list
line list +- (PARSE_STRING)
find string on
+- (CLI) command line
| get command line, write
| to LOG file
Sandia National Laboratories Underground Testing

2-12

REALIZE and INITIALIZE
Data Collection System Maintenance Information

TaFOUND see 2

+- (PARSE_STRING)
%-(STR$UPCA8E)

.

+- (ELIMINATE_BLANKS)
i~(paasnuuumasn)

4~FOUND seae 2

tind all devices |
+-FOUND sea 2

ICF records are read

+-FOUND see 2

| read res records

! read rls records

read rcs records
- {MICRO_VAX_LINK_OPEN)
| open the node-to-node communications
+ {CHANGE_COMM_SYM)
| tell the scheduler what's going on
- (RTD720_MASTER_SET_UP)
. eetup RTD per ICF Information
- {MICRO_VAX_ LINK_CLOSE)
' close the node-to-node communications
+- (EXIT)

This is a primary tree starting at the program REALIZE:

REALIZE-+- (LIBSSPAWN)

main |

program +- (OPEN_TBL) TABLE ROUTINES
| opens ICF
+- (CLOSE_TBL) TABLE ROUTINES
| closes ICF

Sandia National Laboratories

2-13

!
+- (CHANGE_COMM_SYM) send message to
RTD scheduler

l GET DEV_CHAN (4)-+- (TBL_CHAN DIR) finds all channels in an ICF

+-READ_RTD_TABLE_RECORDS (5)-+-READ RTD_DEVICES-+- (READ TBL_RKC)
see that all necessary read device rec | TABLE ROUTINES
+-FOUND pee 2

i

+-READ_RTD_CHANS-+- (READ_TBL_REC)
’ read chan rec | TABLE ROUTINES
| +-FOUND sgee 2
+-READ_RTDES- - (READ_TBL_REC)

+-READ_RTDLS-- (READ_T3L_REC)

+-READ_RTDCS- - (READ_TBL_REC)

Underground Testing

REALIZE and INITIALIZE
Data Collection System Maintenance Information

+- (READ_TBL_REC) TABLE ROUTINES

| reads records from ICF

+- (CLOSE_B1G3) BIG ROUTINES

| close BIG file

+- (OPEN_Bld) BIG ROUTINES

| opens B1G file

+-ENVIRONMENT sgee 1

! who, what, when, where, and why
+-COMMAND LINE-+-PARSE PETE_NUM LST see)}
! crack the ! get nunbers from string of numbers

! command line +- (CLI)

| get and write command line to LOG file
+-FOUND see 2

! the LOG file write routine

+- (PARSE_STRING)

| gets command line st.ing

+- (STRSUPCASE)

|
+- (ELIMINATE_BLANKS)
| trim lead and trail blanks
+- (PARSE_NUMBER)
| get number from command line
!
+- (CHANGE _COMM_SYM)
! tell scheduler what's happening
+- (PARSE_PRESENCE)
find out if qualifier exists

-FOUND see 2

— ——

+-GET_DEV_CHAN see 4
| determine which devices and channels to get data from
+-READ_RTD_TABLE_RECORDS see 5
| read the necessary ICF records
+- (MICRO_VAX_LINK_OPEN)
| open the node-to-node communications
+- (RTD720_MASTER_ACQUISITION)
| verify triggers
+- (CHANGE_COMM_SYM)
| tell scheduler what's happening
+- (RTD720_MASTER_PULL_DATA)
| recover the data from an RTD channel
+-WRITE_BIG _FILE-+- (WRITE BIG) BIG ROUTINES
| write data to |
BI1G file +-FOUND see 2

clos2 node-to-node communications

|
|
l
+- (MICRO_VAX_LINK_CLOSE)
{
+- (ELIMINATE_BLANKS)

1

i
+- (EXIT) job is complete

Sandia National Laboratories Underground Testing

2-14

REALIZE and INITIALIZE
Data Collection System Interface Manual

3.0 REALIZE AND INITIALIZE INTERFACE MANUAL

3.1 Purpose

This maintenance document describes the software interface with (1) INITIALIZE, (2) REALIZE. (3)
task-to-task communication, and (4) RTD720_DRIVER that manages Tektronix RTD720 digitizers
(RTD) using Digital Equipment Corporation (DEC) VAX computers and DEC VL V4000
workstations.

3.2 Environment
The computers, laser printers (plotting), and RTDs are installed in SNL building 12-909 at the NTS.

For information on the computer/instrument network and system hardware, see Volume 1, Section 2.
RTD VAX Network. Note that all programs were written in VAX FORTRAN 5.0 for DEC VMS

systems,

3.3 Functions
The functions of the programs described by this document are grouped into three functional areas:

(1) programs interfacing with INITIALIZE and REALIZE; (2) simple programs illustrating task-to-
task communication, and (3) DEC VLC400 interface to RTD720.

3.3.1 Interface with INITIALIZE and REALIZE
Micro_vax_link_open

This subroutine (1) creates and opens the log file with a name format of the node, date, and time
(e.g., RTD720_RMVI10_18JUN92_132421.log) and (2) opens the commu:lication (task-to-task)
between a VAX computer and a DEC VLC4000 workstation.

Micro_vax_link_close

This subroutine (1) closes the log file and (2) closes the communication (task-to-task) between a VAX
computer and a DEC VLC4000 workstation,

Sandia National Laboratories Underground Testing

o

N
O

g l2s

e
e

e
i e

REALIZE and INITIALIZE
Data Collection System Interface Manual

RTD720 _master_acquisition

This subroutine handles the communication between the DEC VAX and any one of several DEC
VLC4000 workstations that have RTD720s attached to their GI''B bus. In addition, this software
concerns itself with determining which devices have acquired data.

Additional information is presented in the source code detailing how a specific RTD720 either did or
did not acquire data and how it is handled.

RTD720_master_set_up

This subroutine is called by INITIALIZE for one RTD720 at a time. It passes data from the
Instrument Control File (ICF) to the program RTD720_slave_enable.

RTD720_master_pull_data

This subroutine handles the communication between the DEC VAX and any one of several DEC
VLC4000 workstations that have RTD720s attached to their GPIB bus. In addition, this software
concerns itself with pulling only raw data for one RTD720 at a time when invoked by the program
REALIZE; and it passes information to program RTD720_slave_ pull_data.

Additional information is presented in the source code detailing how a specific RTD720 either did or
did not acquire data and how it was handled.

3.3.2 Task-to-Task Communication

The following sections illustrate task-to-task communication between programs on different nodes
(computers).

Controlling

The following source listing of a FORTRAN program illustrates the basics of task-to-task
communication between two programs, each on a different node (computer).

* Program Controlling

* This is a simple program to illustrate task-to-task

* communication.
*

Sandia National Laboratories Underground Testing

Data Collection System

* The players are:
*

*Controlling - This program is the main driving module

that sends messages (Arrays, Structures,
variables) to the program SERVANT executing
on a different node (computer). In addition,
can receive messages back from SERVANT.

* ¥ # X %

*Servant - This program receives and can send messages

*back to the program CONTROLLING
*

*DEMO - This the .COM that resides on the computer

*node that CONTROLLING calls

*

*This example is designed to send only one message to SERVANT

*and receive one message back from SERVANT.
*

REALIZE and INITIALIZE
Interface Manual

*QOpening the Task to Task (Link_lun) only occurs once in a *session.

*The same applies to the close (Link_lun)
*

*Messages can be sent back and forth as many times as necessary.

*

*Reminder: For each message sent to SERVANT from
*CONTROLLING (a write statement), there must be a
*corresponding read statement in SERVANT and vice versa.

*

*The messages (Arguments) passed back and forth can be

*different each time, but the corresponding write/read

*pairs between programs must be identical.
*

* Additional information on Task-to-Task can be found:

* *

-DECnet-VAX Guide 2-12
-Networking 1-3, 1-21, 8-1, 8-16, and 8-25
-Fortran example - Networking 8-44

* ¥

integer*4 LIB$get_lun
integer*4 Status

Sandia National Laboratories

3-3

Underground Testing

Data Collectiou System

integer*4 Istat
integer*4 Link_lun
character*20 Buffer_1
character*75 Buffer 2
character*60 File_name

Open the communication (Task to Task)

* ¥ ¥ *

Status = LIB$get_lun (Link_lun)
File_name = RMV40::"TASK =DEMO"

Open (Link_lun,
- file=File_name,
- status =0OLD,
- IOstat =Istat,
- form=UNFORMATTED)

If (Istat .ne. 0) Stop

Now send a message to another Node

Buffer 1 ="'

Buffer_1 = 'ET call home now Mom’
Write (*,’(1x,a)’) Buffer_l

Write (Link_lun,IOstat =Istat) Buffer_1

If (Istat .ne. 0) Stop

* * ¥

Buffer 2 = '~

Sandia National Laboratories

Now read a message from the another Node

3-4

REALIZE and INITIALIZE
Interface Manual

Underground Testing

REALIZE and INITIALIZE
Data Collection System Interface Manual

Read (link_lun,IOstat =Istat) Buffer_2

Write (*,’(1x,a)’) Buffer_2

Close the communication (Task to Task)

Close (Link_lun,IOstat =Istat)

End

Physical End of Program Source

Servant

The following source listing of a FORTRAN program is the servant program in the task-to-task
communication between two programs, each on a different node (computer).

Program Servant
This is a simple program to illustrate task-to-task communication.

Servant - This program receives and can send messages
back to the program CONTROLLING

This example is designed to receive only one message from CONTROLLING
and send one message back to CONTROLLING.

Opening the Task to Task (SYSNET_lun) only occurs once in a session.
The same applies to the close (SYSNET _lun)

* X X X X X H X ¥ X X

Sandia National Laboratories Underground Testing

3-5

Data Collection System

integer*4 LIB$get_lun
integer*4 Istat
integer*4 SYSNET _lun
character*20 Buffer_l

character*75 Buffer 2
*

™

* Open the link (Task to Task) back to the calling task

*

Status = LIBSget_lun (SYSNET _lun)

Open (SYSNET _lun,
file="SYSSNET",

- status ="old’,

- [Ostat =Istat,

- form="unformatted’)

Read (SYSNET_lun,IOstat =Istat) Buffer_1
If (Istat .ne. 0) Stop
Buffer 2 = '’

Buffer_2 (1:57) =

"But Mom do I have to come home? I am still having fun ET’
Write (SYSNET_lun,lOstat = Istat) Buffer_2
If (Istat .ne. 0) Stop
Close (SYSNET_lun,IOstat =Istat)
If (Istat .ne. 0) Stop

END

* Physical End of Program Source

Sandia National Laboratories

3-6

REALIZE and INITIALIZE
Interface Manual

Underground Testing

REALIZE and INITIALIZE
Data Collection System Interface Manual

Demo.com

The following source listing of a DEC VAX .COM written in DEC Command Language (DCL) is
necessary to allow task-to-task communication between two programs, each on a different node
(computer).

$!

$! This .COM file illustrates what is necessary to set up

$! task-to-task communication between two DEC VAX computers
$!

$ run ABQVAX::UC:[rcaudell. Task_to_Task]SERVANT

$!

$ exit
3.3.3 DEC VLC400 Interface to RTD720
RTD720 driver

Seven major functions are performed by this program:

(D Opens the link back to the calling host for task-to-task communication between two
computer nodes the first time the program executes.

(2) Obtains the name of the node where RTD720 is currently executing; creates and opens
the log file with a name format of the node, date, and time (e.g.,
RTD720_RMV10_18JUN92_13241.log); and sets up communication to the GPIB
interface.

3) If the request is INIT, attempts to initialize one specific RTD720 based on information
from the ICF by calling the program RTD720_slave_set-up.

“ If the request is ACQU, finds out which RTD720 has completed data acquisition (i.e.,
an event code of 465 is found in the RTD event stack by calling
RTD720_slave_acquisition) and passes this information book to REALIZE.

()] If the request is PULL, attempts to pull digitized data from a specific RTD by calling

the program RTD720_slave_pull_data and passing the data (if found) back to
REALIZE for BIG file construction.

Sandia National Laboratories Underground Testing

3-7

REALIZE and INITIALIZE
Data Collection System Interface Manual

(6) If the request is PARM, passes back the PREAMBLE (data header) from the specific
RTD if the PULL function 5 was successful to REALIZE for BIG file construction.

@) If the request is EXIT, closes the log file and closes the task-to-task communication
on its respective node.

RTD720 _set_up_communication

This program (1) de-assigns the assigned channel that handles communication, the VAX's IEx
communication port, and the RTD720 programs, if it is not the first time through in this session, and
(2) sets up the necessary communication between the DEC VLC 4000 workstation/EKx
communication port attached and the RTDs. Refer to the source code for additional information.

RTD720_slave_acquisition

This subroutine handles the communication between the VLC 4000 workstation (RMV10, etc.) and
any one of several RTD720s attached to its GPIB bus. It polls each requested RTD720 address passed
to it from RTD720_master_acquisition to see if it has received an EVENT code 465. This means that
the RTD720 has completed acquiring and digitizing data.

RTD720_slave_set_up

This program handles the communication between the DEC VLC 4000 workstation (RMV10, etc.)
and any one of several RTDs attached to its GPIB bus. It takes information passed to it from the ICF.
This sets up an RTD for Dry Run/Shot configuration by translating the information into ASCII strings
(the language of the RTD) and sending the commands through the GPIB bus to the RTD.

RTD720_slave_pull_data

This program gets data from a specific RTD. The functions of this program are to retrieve data from
an RTD, if it has completed its acquisition cycle, and to retrieve the Preamble.

DEC GPIB_QIOW _subs

This file is a collection of several subroutines used to access the DEC GPIB bus and general devices
attached to the bus. Subroutines are: (1) Initialize the GPIB, (2) Set GPIB timeout, (3) Listen, (4)
Unlisten, (5) Talk, (6) Untalk, (7) Clear, (8) Serial poll, (9) Recognize event, (10) Set event, (11)
Remote enable, (12) Write to a device, (13) Read from a device (ASCII), and (14) Read from a

device (Byte).

Sandia National Laboratories Underground Testing

3-8

REALIZE and INITIALIZE
Data Collection System Interface Manual

10SB_error

This standard error-handling routine formats and prints the I/O status block (IOSB) from an error
detected during a queue 1/0 request and wait (QIOW) request.

In addition, it calls sysiem routine to translate the IOSB(1) code into a readable description.

The QIOW service queues an I/0 request to a channel associated with a specific device. For a
complete definition, refer to the VAX/VMS System Service Reference Manual, April 1986, Software
version: 4.4, pages SYS-277 through SYS-282.

The 10SB receives the final completion status of the /O operation. It has three fields: (1) condition
value, (2) transfer count, and (3) device-specific information.

Find_node

This subroutine finds the computer node the program RTD720 is currently running by using a system
call to lib$sys_trnlog.

Convert_error_code

This subroutine converts an error code into a readable message using a system call to
Lib$sys_getmsg.

3.4 Commands Procedures

The programs that interface with INITIALIZE and REALIZE are compiled and linked

differently. Refer to the section on compiling programs into INITIALIZE and
REALIZE. The programs involved are mentioned in section 5.1 of this document.

Sandia National Laboratories Underground Testing

Data Collection System

3.4.1 Compile and Link RTD720_Driver Only

$!
$!
$! File name: RTD720_driver_cl.com
$!
$!

set verify
Del RTD720_driver.exe.*

For RTD720_driver

For RTD720_slave_acquisition
For RTD720_slave_pull_data

For RTD720_slave_set_up

For RTD720_set_up_communication
!

$ Link RTD720_driver,-
RTD720_slave_acquisition,-
RTD720_slave_pull_data,-
RTD720_slave_set_up,-
RTD720_set_up_communication,-
Find_node,-
Convert_error_code,-
DEC_GPIB_QIOW_subs,-

POPOPDPAPAPAPSPHAPP

IOSB_error,-
str_length
$!
$ set noverify
$! e
$! End of .COM file
$ e

Sandia National Laboratories

3-10

REALIZE and INITIALIZE
Interface Manual

Underground Testing

Data Collection System

3.4.2 Link RTD720_Driver Only

$!

$!

$! File name: RTD720_driver_link_only.com

$!

$!

$ set verify

$

$ Del RTD720_driver.exe.*

$

$ Link RTD720_driver,-
RTD720_slave_acquisition,-
RTD720_slave_pull_data,-
RTD720_slave_set_up,-
RTD720_set_up_communication,-
Find_node,-
Convert_error_code,-
DEC_GPIB_QIOW _subs,-
I0SB_error,-
str_length

$

$ set noverify

. A ——
$! End of .COM file
1A

3.5 RTD720_Driver Program Call Tree

RTD720_DRIVER
+-FIND_NODE

|
+-RTD720_SET_UP_COMMUNICATION
+-INLT

|

|

+-10SB_ERROR

I
+-CONVERT_ERROR_CODE

I
+-TIMEQUT

|
+-UNLISTEN

Sandia National Laboratories

3-11

REALIZE and INITIALIZE
Interface Manual

Underground Testing

REALIZE and INITIALIZE
Data Collection System Interface Manual

-UNTALK
~REMOTE_EHABLE

— —— A —

+-SET_EVENT
+-RTD720_SLAVE_ACOUISITION

+-UNLISTEN

1
+-108B_ERROR
!

+-UNTALK

!
+-SERIAL_POLL
|

+-LISTEN

|
+-WRT_RT0720
]

+-TALK

+-READ_RTD720
+-RTD720_SLAVE_SET_UP

-STR_LENGTH
~UNLISTEN
-108B_ERROR
“UNTALK

~LISTEN

—— e b e o &

+-WRT_RTD720
+-RTD720_SLAVE_PULL_DATA

+-LISTEN

I
+-108B_ERROR
!
+-WRT_RTD720
|

+<TALK

I
+-READ_RTD720

!
+-READ_RTD720_B1G

Sandia National Laboratories Underground Testing

3-12

Data Collection System Overview of ANALYZE

4.0 OVERVIEW OF ANALYZE

4.1 Introduction

Starting with the DIAMOND FORTUNE test, the NTS Instrumentation Development Department
(9321) has developed a computer architecture to acquire and process RTD720 high-speed digital data.
Within this architecture, the REALIZE program acquires data from RTD720 devices and stores it
together with the appropriate header information in a file called the BIG file. The ANALYZE
program then separates the contents of the BIG file into individual channel (or subchannel) files with
the appropriate header information. These channel (CHN) files can then be plotted using the
PRELEWD program.

4.2 Utilities

The following utility programs are used by ANALYZE to perform the functions indicated. The
sources for these routines are located in the LD:{UTILITY] directory. The object modules are
contained in UTILITY.OLB in the LD:[UTILITY] directory.

1) PARSE_STRING.FOR -- parses the command line for the indicated qualifiers and
returns the value of the qualifier as a character string.

(2) CNV_NUM_LST_TBL.FOR -- converts a numeric list contained in a character string
to an array of integers. The number of integer values passed back in the array is
returned as the function value.

(3) CHANGE_COMM _SYM.FOR -- opens and/or adds a comment line to a file used by
the RTD_SCHEDULER to keep track of the status of programs INITIALIZE,
REALIZE, ANALYZE, and PRELEWD.

4) OPEN_BIG.FOR -- opens the BIG file which is the input file to ANALYZE. See
BIG_ROUTINES.DOC for complete user description.

(5) BIG_DIR.FOR -- returns a directory of channel numbers contained in the BIG file.
See BIG_ROUTINES.DOC for complete user description.

(6) READ_BIG_HDR.FOR -- retrieves the header information for a channel from the
BIG file and stores the contents in a structure provided by the user. See
BIG_ROUTINES.DOC for complete user description.

Sandia National Laboratories Underground Testing

4-1

Data Collection System Overview of ANALYZE

)] READ _BIG.FOR -- reads a specified number of bytes of data from the BIG file and
stores them in a user-supplied array. See BIG_ROUTINES.DOC for complete
description.

8) CLOSE_BIG.FOR -- closes the BIG file when we are done with it. See
BIG_ROUTINES.DOC for complete description.

4.3 Data Structures/Data Base

The information needed to process the data for a given channel of information is contained in an
INGRES-type data base. The ANALYZE program does not have access to this data base. The
REALIZE program that creates the BIG file does have access to the data base and inserts the
necessary information to process the BIG file data in the header portion of the BIG file. The
structure that defines the header contents may be found in BIG_STRUCTS.DEF and
TABLE_STRUCTS.DEF. TABLE_STRUCTS.DEF describes the data base structure and
BIG_STRUCTS.DEF defines those portions of this structure applicable to data processing. For a
description of how to use structures in VAX FORTRAN see reference 8. The header structure for
the output channel (and subchannel) files written by ANALYZE is defined in CHN_HEADER.DEF.
This structure normally includes that portion of the BIG file header applicable to plotting and other
signal processing techniques that follow ANALYZE plus certain parameters created by ANALYZE
that are not in the BIG file header.

4.4 Common Parameters

There are three common parameters that are used by ANALYZE and other programs associated with
data acquisition and processing of RTD720 data. They are:

L. RTD_EXP_SUB_MAX -- the maximum number of RTD720 subchannels when the
run type is Signal Dry Run.

2. RTD_LC_SUB_MAX -- the maximum RTD720 subchannels when the run type is
Laser Calibration.

3. RTD_CC_SUB_MAX -- the maximum RTD720 subchannels when the run type is
Cable Compensation.

These parameters are declared in a document called BIG_STRUCTS.PRM and ANALYZE gains
access to them through an include file in BIG_STRUCTS.DEF.

Sandia National Laboratories Underground Testing

42

Data Collection System Overview of ANALYZE

4.5 Input Parameters

Most input parameters to ANALYZE are obtained from the channel information provided in the
CHNBIG header. The user must supply the name of the BIG file on the command line.

There are two parameters which may be entered as an argument on the command line. They are

/CHANNEL=n or /CHANNEL="nl1,n2,n3,etc." or /CHANNEL ="nl-nn" to select one or
more specific channels in a group to be processed in this run. Note: CHANNEL may be

shortened to CH.

/SUBCHAN=n or /SUBCHAN="n1,n2,n3,etc." or /SUBCHAN="nl-nn" to select one or
more specific sub-channels on one RTD channel processed in this run. Note: SUBCHAN may
be shortened to SUB.

Definitions for command line parameters are contained in the file
ANALYZE_COMMAND DEF.CLD which is lccated in LD:[ANALYZE].

4.6 Program Execution
An example of the simplest case for running ANALYZE is as follows:
$ ANALYZE RTDBIGG1011.DAT

ANALYZE will obtain the source and recorder codes from the BIG file name.

The next three commands are examples of channel selection from within the total group in a BIG file.
The first example is for one channel, the second for several selected channels, and the last for a range
of channels.

$ ANALYZE/CHANNEL =2 RTDBIGG1011.DAT
$ ANALYZE/CHANNEL="3,7,12,17" RTDBIGG1011.DAT
$ ANALYZE/CHANNEL ="3-14" RTDBIGG1011.DAT

The following command shows how subchannels may be selected from one specified channel.

$ ANALYZE/CHANNEL=2/SUB=1,3 RTDBIGG1011.DAT

Sandia National Laboratories Underground Testing

Data Collection System Overview of ANALYZE

4.7 Output Files

In the data base definitions of RTD720 data channels there will always be at least one subchannel
defined, even if it includes the entire file. In the output there will always be a combined raw data file
plus a file for each subchannel. Output file designation is CHNsnnrmmm-kk.DAT for the combined
raw data and for each subchannel. The combined raw data will be identified as subchannel "00".

In the examples above:

snn = source code

r = recorder code

mmm = channel number - decimal
kk = subchannel number - decimal

4.8 Sequence of Operation

The ANALYZE program performs its function of creating channel and sub-channel files from the
5lG file created by the REALIZE program in the following sequence:

1. Initialize program variables.
2. Open a log file ANALYZE.LOG for informative messages and diagnostics.
3. Parse the command line for BIG file name and other processing parameters.

4. Extract source and collection point parameters from the BIG file name to use in
creating CHN file names.

5. Open the BIG file using the OPEN_BIG utility.
6. Write header information into the log file.
7. Get a directory of data charnels in the BIG file using the BIG_DIR utility.

8. For each data channel in the directory, perform the following sequence of operations
(unless specific channels have been selected on the command line):

a. Get the header information for the channel using the READ_BIG_HEADER
utility.

b. Read in a buffer of information from the BIG file for the channel using the
READ_BIG utility.

Sandia National Laboratories Underground Testing

Data Collection System Overview of ANALYZE

10

c. Call the PROC_RTD720 subroutine that creates the desired channel and
subchannel files based upon data base information contained in the header.

Notify the RTD Scheduler that ANALYZE has completed its processing of the BIG
file.

Close the BIG file using the CLOSE_BIG utility.

4.9 PROC_RTD720 Sequence of Operation

When the PROC_RTD720 subroutine is called, it performs the following sequence of operations for
each prescribed data channel:

1.

Convert the input data from a byte array to a 16-bit integer array.

2. Obtain a list of applicable subchannels from data base information in the header.

3. Compare the number of subchannel names so obtained with the number of
subchannels specified in the data base.

a. If these numbers do not agree, only create the "00" subchannel which contains
all the data for the channel.

4. For each subchannel defined in the data base, the following steps are performed in
order to create files based upon the boundaries defined by EXPMT_LEFT and
EXPMT _RIGHT parameters in the data base.

a. Open the designated subchannel file.
b. Write the applicable portion of the channel information from the BIG file into
the subchannel file.
c. Write the appropriate header information at the beginning of the subchannel
file.
d. Close the subchannel file.
Sandia National Laboratories Underground Testing

4-5

Data Collection System Overview of ANALYZE

410 Complile/Link Instructions

The ANALYZE program may be compiled using the standard FORTRAN statement described in
reference 8. To link the resulting OBJ files with the required utility routines, the command procedure
LINK_ANALYZE.COM may be used. Its contents are as follows:

$ LINK/EXE=ANALYZE ANALYZE, - LD:[UTILITY]UTILITY/LIB

4.11 Diagnostics

ANALYZE generates a file called ANALYZE.LOG. For each data channel within the BIG file,
ANALYZE displays the messages:

(1) PROCESSING RTD CHANNEL NO. xxx
(2) PROCESSING COMPLETE ON CHANNEL xxx NO SAMPLES PROCESSED: xxxxx

Between these two messages it may display discrepancies applicable to the data channe!l encountered
during processing.

The following is a listing of all diagnostics togzther with a description of the meaning. The first
diagnostic is generated in the main routine (ANALYZE). The rest are generated in PROC_RTD720.

DIAGNOSTIC DISCUSSION

1. NO DATA FOR THIS CHANNEL A byte count of 0 was obtained when an
attempt was made to read from the RTDBIG
file for this memory channel.

2. COULD NOT FIND ALL RTD720 The number of subchannels in one

SUB-CHANNELS section of the data base does not agree with the
actual snbchannel numbers from another part
of the data base. The ANALYZE program,
therefore, cannot properly identify output
CHN files. The data base administrator
should be notified immediately if this
discrepancy occurs.

3. SELECTED SUB-CHANNEL NO. XX The subchannel selected on the command line
DOES NOT EXIST. could not be found on the list of acceptable
channels from the data base.

Sandia National Laboratories Underground Testing

4-6

Data Collection System

DIAGNOSTIC
4. TRACE_LEFT IS ZERO IN TABLES
CHANGED TO ONE BY ANALYZE

5. NOTE! EXPMT_RIGHT IN TABLES
XX TOTAL SAMPLES = YY

6. ***** DATA IN SUB-CHAN XX
AT BAND EDGE

4.12 Flint Tree

Overview of ANALYZE

DISCUSSION

It has been established by convention that the
first data point in an array will have an index
of 1, not 0. Zero, therefore, would be out of
bounds in this convention.

The count associated with experiments in the
experiments in the data base is greater than the
numnber of points in the BIG file.

Data values of either 0 or 255 were observed
in the input data file indicating that the actual
value could have been out of range.

This is a primary tree starting at the program ANALYZE.

ANALYZE-+- (CNV_NUM_LST_TBL)
(OPEN_B1G)
(81G_DIR)

(READ_BIG_HOR)

-
!

4=

]

|

*o

!

L X3

!

+- (READ_BIG)
]

]
+-(CLOSE_B1G)

|

+-(LIBSDATE_TIME)

|

+-(L1BSSYS_TRNLOG)

|
+-PARSE_STRING-+-(CLISGET_VALUE)
| |

+-(CLISPRESENT)
(CHANGE_COMM_SYM)

(BAD_STATUS)

LOGANALYZE (1)--(FILE_DATE)

(LIBSGETJP!)

'
I

+-

|

‘e

I
+-CL1--(CLISGET_VALUE)
]

4

I

+- (SEND_NETWORK_MSG)
I

Sandia National Laboratories

4-7

Underground Testing

Data Collection System Overview of ANALYZE

+-PROC_RTD720-+-LOGANALYZE see 1
|
+-RTDCHN_OPEN
|
+-RTOSUB_OPEN

Sandia National Laboratories Underground Testing

4-8

Data Collection System PRELEWD Maintenance Information

5.0 PRELEWD MAINTENANCE INFORMATION

8.1 Introduction

PRELEWD is a first-look plotting program for use with the NTS Instrumentation System suite of
codes. It reads a CHN file and generates a hard copy plot for cach channel as a part of the run
sequence. Because it operates in BATCH mode during the run sequence, it is very fault tolerant.
PRELEWD can plot on a limited set of graphic terminals, and is, therefore widely used by our
customers. It does not have any analysis capability, but there are a limited number of plot formatting
instructions available through the ICF. The underlying graphics package is GRAFPAK-GKS.

The name PRELEWD, pronounced prey-lude, and often misspelled PRELUDE, came about in the
following way. It was necessary to have a new name to enable users to differentiate it from PLOT,
the earlier program with similar goals. The programmer arrived at "Logical Examination With
Display" for the plotting portion of the code, which was easy to write. The problem arose in trying
to get a reasonable description of the file header and data being passed. The entire instrumentation
system was in a state of flux — even experienced people were having trouble with code interfaces.
Plotting was the last link in a chain, being forced to wait till other earlier links had been forged
before its interface could be formalized. Because of this stressful wait, the programmer added PRE
to show the need to know what was coming in.

5.2 Overview

This is not a maintenance manual in the sense that it lists troubleshooting procedures, or instructions
for adding undocumented features. Maintenance information is often ob:ained from the source, which
contains comments for guidance. This document, discusses PRELEWD and the routines that perform
specific tasks.

This documentation is directed to users familiar with plotting, the Run Time Library, and DEC's
FORTRAN, particularly DEC’s version of structures and records. A knowledge of the hardware is
helpful but not essential. The documentation assumes the user has read and is familiar with "Section
6.0, "Using PRELEWD, with GRAFPAK Comments," in the Operators Manual. It also assumes that
the user has run PRELEWD.

5.3 General Description

PRELEWD cannot be viewed as a single entity, because it is closely tied to SNL's NTS
Instrumentation System, both the hardware and the software. A change in any part of this system

Sandia National Laboratories Underground Testing

Data Collection System PRELEWD Maintenance Information

may affect PRELEWD. It uses CHN files prepared either by PROCESS, which used BIG files
nrepared by FETCH/DECOM, which decommed data from hardware, or by ANALYZE from BIG
files, which were prepared by REALIZE from hardware. The NTS Instrumentation System is a
sequence of programs that work, across an extensive network of special and general purpose
computers, with special hardware to record and to display short-lived phenomena captured from a
hostile environment. The data are received by one of several types of source devices. Source devices
such as the SANDUS can record many channels of data, while other source devices can only record
one channel. These channel data are then multiplexed with data from other channels and sent to a
remote location where the data are recorded in several possible ways: in a memory bank (Mass
Memory, MM), on magnetic tape (High Density Digital Recorder, HDDR), or in memory on the
source device itself (RTD720). Once captured, there are several programs required. They are
FETCH, DECOM, PROCESS, and PRELEWD. FETCH demultiplexes data from the HDDR into
BIG files containing one or more channels. DECOM reformats the data from MM into BIG files
containing one or more channels. PROCESS separates these files into individual channel files called
CHN files. More recently, with the advent of newer digitizers, which have their own memory (the
RTD720 specifically), a new sequence of programs has emerged. REALIZE recovers data from the
RTD720s, and packs it into BIG files of one or more channels which ANALYZE reformats into
individual CHN files.

PRELEWD processes the CHN files, from whatever source, for plotting, and optionally reformats the
data into ASCII files for possible relcase to the user. Such files are called SRAD files, where SRAD
is the philosophy for the files. See Section 5.4.5.

8.3.1 PRELEWD Programming Constraints

PRELEWD's main purpose is to create first-look hard copy plots from an increasing variety of
recording devices as soon as possible after an event. Because the NTS Instrumentation System is a
local area network, PRELEWD must not have limitations, other than VMS security limitations as to
where the CHN file comes from, or where output files are to go.

Secondary purposes have been assigned: They are terminal viewing of data, and creation of
secondary flles in a less machine-dependent format for data transfer to others. These goals have
driven PRELEWD's development philosophy in many ways. Unless the situation is hopeless,
PRELEWD attempts to create graphic output. There is minimal interactive dialogue, none if the
command line facilities are used. Plotting options are minimal, and very little data manipulation is
allowed. The user has complete freedom in where the CHN files come from, and in where the
graphics output goes, but not in the choice of output devices.

Sandia National Laboratories Underground Testing

5-2

Data Collection System PRELEWD Maintenance Information

6.4 Suggested Reading

The following list of references is specific to the NTS Instrumentation System, GKS, or to
PRELEWD. It does not include references such as the VAX/VMS Documentation Set, or the
VAX/VMS FORTRAN Reference Manual, and User’s Manual. It is strongly suggested that the user
read the INCLUDE files, because they contain extensive comments.

Using PRELEWD, with GRAFPAK Comments - Section 6 of the Operators Manual

It contains a useful description of PRELEWD and of the command line qualifiers and parameters
available. It contains a series of definitions, and talks about the symbols INCLUDESINCLUDE and
PRELEWDSINCLUDE which allow the maintenance programmer to change to a new set of include
files without having to modify every FORTRAN source module.

Channel Data File Format - Appendix D

This is documentation on the CHN file, with a short section on structures and records.
Understanding the CHN file will aid in understanding both PRELEWD and the two programs which
generate files for PRELEWD, PROCESS, and ANALYZE.

5.4.1 Structure Definition Files
While there are a number of structures defining files used throughout the NTS Instrumentation
System, only two are applicable to PRELEWD. Both of these files usually reside in the
directory_name INCLUDESINCLUDE, which is defined by the following:

$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever they are located)

The two files are listed below.

TABLE_STRUCTS.DEF is one of the important files containing structure definitions needed to
understand the CHN file. It contains structure definitions for all but the CAL _... structures and the
CHN file header.

CHN_HEADER.DEF is the other important file for understanding CHN files. It contains CAL
structure definitions, and defines all the records used in PRELEWD.

Sandia National Laboratories Underground Testing

5-3

Data Collection System PRELEWD Maintenance Information

8.4.2 GKS Information

GKS is an acronym for Graphics Kernel System, and is an ISO standard. ATC's" implementation of
GKS is called GRAFPAK, and was used because it has been certified to conform to the ctandard.

This makes it easier to include a new plotting surface in PRELEWD without having to write extensive
code.

GRAFPAK is the name for the s'.ared library of subroutines that creates the graphics, and may not be
distributed outside the 9320 network without a valid license. GRAFPAK must exist on any computer
on the 9320 network where PRELEWD runs. All logicals necessary to use GRAFPAK are defined
system wide.

GKS PRIMER (Lucia McKay; Nova Graphics International, 1984) introduces the ideas used in GKS.
This book discusses the basics and is not lengthy, although similar references may exist that are more
recently published.

Computer Graphics Programming: GKS - The Graphics Standard (Enderle, Kansy, and Pfaff;
Springer-Verlag, 1987) is a guide to GKS programming and the standard. Later editions exist.

GRAFPAK-GKS Users Guide (Advanced Technology Center). This is a description of the
GRAFPAK-GKS package used in PRELEWD. It contains some explanatory information. It should
also be used in conjunction with the specific workstation guide for the workstation(s) intended for use.
These are supplied by ATC.

GRAFPAK GKS: FORTRAN Reference Manual (Advanced Technology Center). This is a description
of the calls available from FORTRAN in GRAFPAK, their arguments, and meaning. GRAFPAK

calls are specially noted in the source modules, and are listed in Section 5.8.2. A GRAFPAK C
Manual is also available but no source was written in C.

8.4.3 INCLUDE Flles Containing Common Blocks
The next group of files is usually maintained in the directory_name PRELEWDSINCLUDE, which is
$ DEFINE PRELEWDSINCLUDE LD:[PRELEWD] (or wherever the file is located).

) Advanced Technology Center, 22982 Mill Creek Drive, Laguna Hills, California 92653, (714)
583-9119 FAX (714) 583-9213

Sandia National Laboratories Underground Testing

5-4

Data Collection System PRELEWD Maintenance Information

CHNHEAD.CMN is the include file that defines the record CHN to be the structure
/CHN_FILE_HDR_DESC/ and puts it into common CHNHEAD.

DF.CMN is the include file that declares common variables needed by the sources in the file
DATA_FETCH.FOR. This group of subroutines reads the CHN file, one block at a time, examines
the high-order nibble for an opcode, and the low-order twelve bits for data. It defines the common
blocks:

(a) DF_OPCODES - contains the four possible opcodes.

(b) DF_INDICES - contains the many indices and counters used.
(c) DF_LOGICALS - contains various logical variables.

(d) DF_VAR - contains several indices, and other variables.

(e) DF_VARI - more of the above, and a block sized array.

FNAME .CMN is the include file that declares common variables that affect the overall logic.
Components of file names are declared here.

Consider the following code fragment:

integer*4 1_alpha
character*10 alpha
alpha='G’
I_alpha=1

FORTRAN considers the length of alpha to be 10. The real length is I, as counted by the number of
nonblank characters. PRELEWD recognizes this and carries the real length in a related variable, here
I_alpha. Then alpha(1:1_alpha) specifically picks out the real part of alpha.

The common blocks created are:

(a) CHAR_VAR_LENI - lengths in real characters of the character variables.
(b) CHAR_VAR_LEN2 - lengths in real characters of the character variables.

(c) CHAR_VAR_I - the character variables.
(d) CHAR_VAR_ 2 - more character variables.
(e) CHAR_VAR - still more character variables.
()] LUN_UNITS - the 1/0 unit numbers.
(8) FILE_VAR - information about the CHN file.
(h) CMD_LINE - variables, some logical, connected with the command
line.
)] OVERSIGHT - exactly what it says.
Sandia National Laboratories Underground Testing

5-5

Data Collection System PRELEWD Maintenance Information

PPLOT.CMN is the include file which declares most of the variables used to format the plot, hold
titles, determine dimensions etc. PPLOT.CMN includes file PPLOT.PRM, described later. Defaults
for many of these variables are set in module DEFAULT_PLOT. Most of the variables in these
commons are defined in the sources contained in file BUILD.FOR. This file has extensive
comments. It creates the commons listed as follows:

(a) CONTROL - overall plot-control variables.

(b) PLOT_LOGICAL 0 - logicals controlling which pieces to plot.
(3] PLOT LOG!CAL 1 - logicals controlling which pieces to plot.
(d) LEGEND_CHAR ™ - legend variables, location and size.

(e) LEGENDA - legend variables, location and size.

(3] GRIDA - number of grid lines in ~ach direction.
(8 TITLE_CHAR - title line.

(h) TITLES - title locations.

(i) X_AXIS_CHAR - X-axis labels.

() X_AXIS - label locations

(k) Y_AXIS_CHAR - Y-axis labels.

{)] Y_AXIS - label locations.

(m) RIGHT_CHAR - right axis labels.

(n) RIGHTA - label locations.

(0) PLOT_CHAR - characteristics of the plot.

(p) PLOT_0 - size and location of the plot surface.
(q) PLOT_! - size and location of the plot surface.
(r) DEVICE_CHAR - strings connected with the plotting devices.
(s) DEVICES - characteristics of each device.

SCALES.CMN declares variables that help dynamically scale numerical values to a power of 10 and
the 1/2/5 scaling used. It creates only common SCALES.

SRAD.CMN declares variables connected with creating the SRAD files. It creates the common block
SRAD.

UNITS.CMN declares variables which generate a proper label to go with the scaled data values. It
creates the common blocks:

(a) UNITS_CHAR - strings with base units, and output units.
(b) UNITS_CONV - conversion factor from existing to new units.

Sandia National Laboratories Underground Testing

5-6

Data Collection System PRELEWD Maintenance Information

VERDATE.CMN creates no common blocks, but contains comments that list the major changes that
have occurred in PRELEWD since the last version. This file is included and listed only in the
medule ENVIRONMENT. It has a good history of PRELEWD.

XTRACT.CMN declares variables that are extracted from the various header records (the XTR_...
modules) and used for the duration of the current plot. Defaults are set in DEFAULT_HEADER. It

creates the following common blocks:

(1) G_AND_GC_1 - variables from /GEN_DESC/ and
(2) G_AND_GC_2 - /GENERAL_CHANY/ structures
(3) G_AND_GC_3 - such as TEST_NAME

(4) ALL_DEVICES 1 - variables common to all devices
(5) ALL_DEVICES 2 - such as Y_LABEL and PLOT_OPTION
(6) ALL_DEVICES 3

(7) SANDUS 1 - variables peculiar to the SANDUS in one of its
(8) SANDUS 2 - configurations such as PRETRIG_BYTES or
(9) SANDUS_3 - MODULE _TYPE

(10) SANDUS 4

(11) NON_SANDUS 1 - variables peculiar to non-SANDUS devices

(12) NON_SANDUS 2 - such as TRFRACT for RTD720s,

(13) NON_SANDUS_3 - NO_ZERO_CROSS for the Tektronix 7912s

(14) NON_SANDUS 4

(15) NON_SANDUS 5

(16) TRANSFER! - variables that are obtained from other header variables,

(17) TRANSFER2 - or that were overlooked or ignored when first encountered.

5.4.4 INCLUDE Files Defining Parameters

The dynamic nature of underground testing requires that programs be flexible. It must be easy to
change dimensions as each new test comes along. This is a good reason to use FORTRAN's
parameter statement.

BIG_STRUCTS.PRM contains, among other parameters, the maximum number of subchannels
allowed for those devices with subchannels. This file is maintained in INCLUDESINCLUDE.

PPLOT.PRM contains parameters that defi 1e the maximum size of most of the PPLOT arrays. Other

necessary parameters have been included ° _re for consistency. This file is maintained in
PRELEWDSINCLUDE.

Sandia National Laboratories Underground Testing

Data Collection System PRELEWD Maintenance Information

PRELEWD COMMAND _DEF.CLD is the file that defines the command line images, qualifiers, and
parameters. This file is the final authority for all qualifiers and parameters on the PRELEWD
command line, It is maintained in PRELEWDS$INCLUDE.

5.4.5 SRAD References

SRAD is an acronym for Storage, Retrieval, Analysis, and Display. The formal SNL document,
listed last, contains the information in the first document.

SRAD DATA FORMATS (Marking and Kissel; August 12, 1988) is an informal document that
describes the SRAD format available first, and which PRELEWD uses.

UFO (UnFold Operator): Default Data Format (Kissel, Marking, and Biggs; March 7,1991,
SAND91-0490) describes a more relaxed data format that has not yet been implemented.

5.5 Useful Information

5.5.1 Source, Object, and Executable Files

The source code is all written in FORTRAN, and while Run Time Library routines and System
Service Routines are used, there is only FORTRAN-level 1/0. This may not be true of GRAFPAK,
but that is not important. The source code files usually contain several program modules that address
the same area. The source is compiled /NOOPT/DEBUG, and the object modules are maintained in
LEWD.OLB, an object module library created with the Librarian Utility. Because of the 1/0 in
PRELEWD, there may be no advantage in using the /OPTIMIZE qualifier. Thus only one object
library is necessary. This library is maintained in the directory PRELEWDSLIBRARY, and is
defined by the programmer as follows:

$ DEFINE PRELEWDSLIBRARY LD:[PRELEWD] (or directory_name where file located)
Two executable files are created from LEWD.OLB, PRELEWD.EXE, and LEWD_DEBUG.EXE;
the latter is created with the /DEBUG qualifier. The debug version of PRELEWD is for the use of
the software developers, and is invoked as follows:

$ PRELEWD/DEBUG ... (other qualifiers and parameters as required)

COMMON blocks are maintained with the source in the directory PRELEWDSINCLUDE where that
symbol is defined by the programmer as follows:

$ DEFINE PRELEWDSINCLUDE LD:[PRELEWD] (or directory_name where file located)

Sandia National Laboratories Underground Testing

5-8

Data Collection System PRELEWD Maintenance Information

5.5.2 The XTRACT Modules

Because structure definitions and structure variable names can change, PRELEWD extracts data from
the records into its own variables whose names do not change. This means that even though each
channel description record has a variable called NUM_SUB_CHANS, which can be called out from
the record as CHN.RC.NUM_SUB_CHANS for the RTD720, CHN.T.NUM_SUB_CHANS for the
Tektronix 7912, or CHN.C.NUM_SUB_CHANS for the Tektronix 7103, having the logic to refer to
the correct variable name at each use would be awkward. Instead, in the XTR... modules for each
device, there is a statement of the following form:

NUM_SUB_CHANS =CHN.x.NUM_SUB_CHANS

and further references use the single variable NUM_SUB_CHANS.

§.5.3 The Variable Type

Where necessary, logical flow is device dependent. The PRELEWD integer variable TYPE carries
two pieces of information about the current CHN file. MOD(TYPE,128) always has the primary
channel type description value (i.e., 31 is a RTD720 channel. If the file is a calibration file
(SANDUS, or Tektronix 7912 are the only devices that have this type of CHN file) then 128 is added
to TYPE to carry that information. Thus, TYPE > 128 implies a calibration file, and
MOD(TYPE, 128) gives the channel type. This is done in HEADER_READ.FOR

5.5.4 Data Conversion
Data conversion from the A/D counts to engineering units is a linear conversion
Y(engineering units) = SLOPE * Y(counts) + OFFSET,

where SLOPE and OFFSET are determined by PROCESS (for the SANDUS), by PRELEWD (for the
7912) or by the instrument (for the RTD720). SLOPE and OFFSET are in the header, or sufficient
information to calculate them is in the header. If PRELEWD cannot determine them, the plot
proceeds, but the Y axis label becomes COUNTS.

For certain gauges an additional conversion may be required. These are always specific, and the
variable PLOT_OPTION has a value other than NONE, COUNTS, or LINEAR. Certain extra
conversions have been built into PRELEWD for ytterbium gauges, slifers, and Type-E and -K
thermocouples. Except for slifers, these conversions have not been used.

If a new conversion is requested, first agree with the ICF creator what its callout will be. Then
create a module to do it. This module must be integrated into the module GET_ANS (in

Sandia National Laboratories Underground Testing

Data Collection System PRELEWD Maintenance Information

DATA_FETCH.FOR) based on a variable called IGA. IGA is generated in module GET_IGA (in
CONJECTURE.FOR). Both these modules have extensive comments to help, but basically IGA is
used in a COMPUTED GOTO.

5.5.5 Default Plot Values

The source file DEFAULTS.FOR contains two modules that set strange and very obvious default
values into plot variables, and some header variables. The purpose was twofold: first to make sure
that the variable was reset for each plot, and second to make sure that the variable had a good value.
This is an especially useful feature when adding a new recording device to PRELEWD.

8.5.6 Data Thinning

When the number of X values to be plotted exceeds the number of rasters (pixels or ?) on the X axis
of the display surface, time is wasted doing the computations for moving the pen (or its equivalent)
up and down in the Y direction. An extreme example of this is certain realtime data files with a
quarter of a million data points to be plotted on a laser printer with a resolution of 300 rasters/inch.
In this situation there are about 80 points/raster over a 10 inch axis.

Two subroutines have been written which greatly speed up plot time for these situations. The two
subroutines are THINN, and LOOKN. THINN is called by a user, and calls LOOKN. LOOKN does
not call any other subprograms.
THINN is called with the following nine, long word arguments:
call thinn(noi,x,y,nop,xstart,xend,xp,yp,nopr)

where

NOI is the number of equally spaced intervals into which the sean (=XEND-

XSTART) is to be divided. Typical values are 300 dots/inch for a laser printer, or

650 for the full screen of a Tektronix 4208.

X and Y are input arrays each containing NOP points. X is assumed to be ordered such that
X({I) < X(1+1) for I=1,NOP.

XP, and YP are owput arrays each containing NOPR points. XP will be ordered such that
XP(I) < XP(I1+1) for I=1,NOPR. XP and YP must have dimensions at least 2*(NOI +1).

This restriction on XP/YP dimensioning is a seldom-achieved upper bound on the number of
output points.

Sandia National Laboratories Underground Testing

5-10

Data Collection System PRELEWD Maintenance Information

The technique is to divide the span into NOI+1 intervals, and then determine the maximum and
minimum Y for all points in each interval. The three cases to be considered are

(1) The trivial case where there are O input points in the interval. This will cause the
most recently examined input point to be moved to the output array. This seems to
work very well in PRELEWD where we normally have several input points per
interval. It continues the plot smoothly when the original data were constant across
several intervals, and the data compression software in PROCESS signaled a repeated
value. This was done for PRELEWD, and may not give the desired results for your
situation,

(2) Where there are either 1 or 2 input points in the interval, they are transferred to the
output array.

(3) The significant case is where there are more than 2 input points in the interval. Here,
(XMIN,YMIN) and (XMAX,YMAX) are determined to correspond the minimum and
maximum input Y values in the interval. If the minimum (or maximum) Y value
occurs more than once, the largest corresponding XMIN (or minimum will be used.
The two points, (XMIN,YMIN) and (XMAX,YMAX), are transferred to the output
array with care being taken to insure that XP remains ordered.

The above discursion assumes that the entire X/Y array is available, and even in these days of virtual
memory, this may not be the case. When the XSTART, and XEND for the entire axis are known,
but only a subset of the X/Y values are available at one time, THINN can be used. Let f=(X(NOP)-
X(1)/(XEND_XSTART) be the fraction of the span for this subset of the total array. The call then
looks like the following:

call thinn(nint(f*real(noi)),x,y,nop,x(1),x(nop),xp.yp,nopr)
NOTE: THINN does not check to see if 2*NOI > NOP, this is left to the user. When
NOP/NOI > 100, the use of THINN is clear, and when NOP/NOI < 2, the output

arrays will be the same as the input arrays (except for some pathological data). When
NOP/NOI > 3, it may be advantageous to use THINN.

5.5.7 TEKTRONIX 7912 Calibration

This paragraph describes how 7912 calibration data is used in PRELEWD. The calibration is done in
PRELEWD from information in the CHN header supplied by PROCESS, information which has been
extracted from selected waveforms in the CALBIG file. Calibration of both the engineering values

and the time axis occurs if there is sufficient data. The purpose of calibration is to apply a piecewise

Sandia National Laboratories Underground Testing

5-11

Data Collection System PRELEWD Maintenance Infor nation

linear correction to account for nonlinearities in both the vertical amplifier and the time base. The
module that contains most of this is CAL_DATA_PROVIDED in CONJ_7912.for.

There are two calibrations of the 7912, one which occurs about 48 hours before an event. This is
called the early calibrations and the BIG files are called T48BIG files. They are unique to 7912s.
L.:ite calibrations occur about four hours prior to an event. They are known as late cals, and the big
files are CALBIG files. CALBIG files can also occur for SANDUS devices. It is the late calibration
that is used by PROCESS to generate the data that it inserts into the file header.

The CALBIG file contains, for each channel, the following eight waveforms in the order given:

a) | baseline for "baseline” sine wave,
b) | baseline sine wave,

) three DC levels,

d) two pulses, and

e) | experiment system baseline.

These eight waveforms are a subset of the set of 17 similar waveforms done during the early time
calibration. The calibration values are obtained from the baseline sine wave (b, above) and the
baseline for the baseline sine wave (a, above) to calibrate the time (X or abscissa) axis, and the three
DC levels to calibrate the engineering unit (Y or ordinate) axis. These are obtained from the
CALBIG file. Data from the T48 file is not used in calibration of the 7912s, but is available to the
experimenter.

The three DC levels are recorded in algebraically increasing order. They are selected from the set of
eight DC levels in the T48 file. The logical array CAL_BRIEF (in the T7912_CHAN_DESC
structure) contains three TRUE values, where TRUE indicates that the DC level is common to both
the early and late time AUTOCAL runs. The index of the TRUE value is the index into the
CAL_LEVEL (in the /T7912_CHAN_DESC!/ record) array which contains the engineering value
(usually voltage) for that DC level.

PROCESS determines the mean value, in counts, for each of the three DC levels. This is done in the
following manner:

(1 at every point having an upper and lower value, the mean of the upper and lower values is
computed, and

(2) the average and standard deviation of these mean values are computed.
These values are stored by PROCESS, and included in the header of the CAL file and, later in the

header of the CHN file for use by PRELEWD. They are the arrays MEAN, and SIGMA respectively
(in the /CAL_7912/ record) in the same order as hefore.

Sandia National Laboratories Underground Testing

5-12

Data Collection System PRELEWD Maintenance Information

These three values break the 7912s vertical 0-511 count range into four areas, 0-MEAN(1),
MEAN(1)-MEAN(2), MEAN(2)-MEAN(3), MEAN(3)-511. A linearly interpolated correction is
applied depending on whether the data value is in the range 1, 0-MEAN(2) or range 2,
MEAN(2)-511.
y_corrected = slope_in_jth_range * y_recorded+ offset_in_jth_range
where
slope_in_jth_range = {(CAL_LEVEL(j+1) - CAL_LEVEL(j)} /{(MEAN(j+1) - MEAN())}
offset_in_jth_range = CAL_LEVEL(j) - slope_in_jth_range * MEAN(j)

Note that extrapolation is done if the values are outside the range MEAN(1)-MEAN(3). The
correction for the upper and the lower data values are determined separately.

PROCESS also determines the mean of the baseline for baseline sine wave in the manner described
above, and using this value determines the count value of each baseline sine wave intersection with
this mean. The number of crossings is NO_ZERO_CROSS (in the CAL_7912 structure), and the
count value of each crossing is in the ZERO_CROSS array (in the CAL_7912 structure).
PRELEWD generates an array X_RANGE of the baseline crossing values at the start of each full
cycle. The time that a full cycle should take is the sine wave's period which can be obtained from
BASE_SINE_FREQ (in the T7912_CHAN_DESC structure). The corrected sample interval in the jth
cycle is
period/number of counts in that cycle.
The uncorrected sample interval is TIME_DIV/51.1,
where TIME_DIV is in the /T7912_CHAN_DESC/ record.
The corrected time for a point in the jth interval is
t_corrected = corrected_sample_rate *
{current_count - count_at_beginning_of_interval} +
elapsed_time_to_beginning_jth_interval
If the current point falls outside a full cycle, either before the first crossing, or after the last full cycle

crossing, an unmodified sample interval is used to compute the time.

Sandia National Laboratories Underground Testing

5-13

Data Collection System PRELEWD Maintenance Infurmation

Thus PRELEWD's output consists of two arrays, which may be plotted and/or written to an SRAD
file. They are the following:

(a) an array of time values at which the samples occurred (NOTE: samples may not be evenly
spaced in time), and

(b) an array of signal amplitude values in engineering units into the 7912.

The above-described corrections are enabled if PLOT_OPTION (in the T7912_CHAN_DESC
structure) has the value LINEAR. Even with PLOT_OPTION = LINEAR, they can be defeated by
using the /CALIBRATE = NONE qualifier on the PRELEWD command line. PRELEWD attempts to
make the corrections unless:

(a) there are fewer then 2 TRUE values found in the CAL_BRIEF array, in which case signal
amplitude corrections will be omitted.

(b) the number of counts in any full cycle is less than 0.5 or greater than 1.25 times the number
of counts expected based on the period and sample rate.

(c) NO_ZERO_CROSS is less than the ICF value min-cycles, no time base corrections are made,

5.6 Useful Command Flles

There are several .COM files which may be useful. Because of the limited disk space available, all
of them do a PURGE before exiting. Since object modules are in an object library, they are not
retained. If the user wants to retain a copy cf something for other uses, it is suggested that he or she
either rename the module, or copy it to another directory. The important .COM files are the
following

(N FORLIB.COM requires one parameter, the file to be compiled, with the resulting object
modules put into LEWD OLB. Its three DCL commands are shown below.

$ fortran/list/extend/nooptimize/debug 'pl’
$ library/replace/insert lewd 'p1'/log
$ delete *.obj;*

() LEWD.COM uses FORLIB.COM, and requires one parameter, which is the parameter
required by FORLIB.COM, or the string NONE. When FORLIB.COM is done, or if the
parameter was NONE, it links the GRAFPAK libraries with LEWD.OLB creating two
modules PRELEWD .EXE, and LEWD_DEBUG.EXE. The link command is given below to
show the libraries required.

Sandia National Laboratories Underground Testing

5-14

Data Collection System PRELEWD Maintenance Information

$ link/exe =prelewd lewd/lib/include = prelewd, -
repair$library:dump/lib, -
utility$library:utility/lib, -
sys$input/option
gksdir:gksflb.exe/share
sys$share:vaxcrtl.exe/share

3) ALL_PRELEWD.COM deletes the existing LEWD.OLB, and creates a new empty
LEWD.OLB. It uses DCL to find all .FOR files in the current directory. It sends each as
found to FORLIB,.COM. It is useful when an INCLUDE file changes, or when LEWD.OLB

becomes unteadable.

4) BATCH.COM uses ALL_PRELEWD.COM to compile all .FOR files in the directory, and
LEWD.COM to create new executables. It deletes the .OLB file, and .EXE files. It was
written to work with the DCL command SUBMIT.

Assuming that modules BLAH.FOR and CRAM FOR have been changed. the following sequence is
suggested:

$ @FORLIB BLAH ! compile BLAH and put BLAH.OB) into LEWD OLB
$ @LEWD CRAM ! compile CRAM, put CRAM.OBJ into LEWD.OLB and LINK

8.7 Source Files, Purpose, and Contents

There are a number of source files containing PRELEWD modules. Each source file contains one or
more source modules, usually modules with a similar goal, or that work with similar objects.
Changes are usuall,’ device oriented, and having all the modules for that device in one file is nice.

Production source code, the object library, executables, and include files are kept in the directory
PRELEWDSINCLUDE. Development source code, its object library, and executables are maintained
in another directory. A distinct .CLD file must be maintained in each directory,

Below is a brief description of the module's purpose. This is intended to provide a quick guide. The

source for each module is prefaced with a more elaborate description of its purpose, the file(s) that
calls it, and the file(s) it calls. The major modules also contain a history of their significant changes.

Sandia National Laboratories Underground Testing

5-15

Data Collection System PRELEWD Maintenance Information

The files and the modules contained in each are as follows:

(D PRELEWD.FOR contains the main program and other modules described below:

(a)

(b)

(c)

(d)

PRELEWD is the main program, and controls the overall flow. It has all INCLUDE
files listed. It contains the loop over all flles called out in parameter pl, or p2.

FOUND is an error routine used by everyone everywhere. See the discussion in the
Operators Manual.

HANDLE_A_FILE notifies the monitor program about the file being used, and
controls the logic for each CHN file. It reads the header, and sets up all the header-
dependent variables.

SPECIAL_CONSIDERATIONS sets up for unusual DATA_FETCH calls such as
SANDUS MUX channels in which each subchannel is on a new page.

(2) BUILD.FOR defines all plot parameters and locations for the various pieces of the plot, the
colors, legend, and builds the static parts of the plot. It contains modules listed below:

(a) BUILD_PLOT makes many of the GRAFPAK calls, and conuols the format of the
plot.

(b) GRID generates a grid.

(c) LEGEND_XFORM creates the transformation that keep the data out of the legend.
Legends are very awkward, requiring two different transformations, one for data with
a time up to the time of the right edge of the legend, and one for data with times
greater than that.

(d) LEGEND defines the legend box and contents. [t is very device specific.

(e) RIGHT writes the labels on the right Y axis. These labels correspond to upper and
lower band edge, and to calibration levels when they are known.

(f) WRITE_FILE writes title lines two through four, the standard lines. The first title
line is an error line, and is written in CONJECTURE.

(g) U2NDC converts from user (data) to normalized device coordinates.

(h WLABEL writes a label under a tick mark.

Sandia National Laboratories Underground Testing

5-16

Data Collection System PRELEWD Maintenance Information

(0 LAB_LENGTH determines the length of a label based on the character size, and the
number of characters.

()] TAL sets the length of the tick marks as a fraction of the character size, and the
specific axis they are on. It controls the tick and tick label logic.

(k) XAXIS controls both the top and bottom X-axis generation, its labels, and tick marks.
{}) YAXIS controls both the left and right Y- axis generation, its labels and tick marks.
(m) PRETTY_PLOT defines the plot basics such as character height and spacing, label
and axis location. 1t sets the position for all the fixed elements of the plot except for
the legend.

(M MODIFY_X_LABEL modifles the X-axis label for special situations such as early and
late calibrations.

(k)] CLOSES FOR closes GKS and the workstation, and contains these modules:

(a) CLOSE_STATION closes the current workstation when all CHN files have been
plotted It also closes the workstation, which closes the PLT file when GROUP files
are in the current PLT file. [t creates the COM file to send the plot flle as requested.
and initiates the SPAWN.

(b) DEACTIVATE_AND_CLOSE deactivates the current workstation prior to exit from
GRAFPAK

(©) PARSE_CLI parses the COM file DCL command into short pieces.

4) COMMON.FOR is a collection of modules which have no INCLUDE files, hence seldom
change. and contains the following modules:
(a) CLOSE_GKS closes GKS.

(b NO_DUPES eliminates duplicate real-values entries from an array. Used for multiple
baseline calibration marks on the right axis, If there can be duplicates.

(c) SORT_EM sorts an array of real numbers. Used with NO_DUPES.

(d) SAMUX_CAL is a dead-end module for SANDUS MUX cals.

Sandia National Laboratories Underground Testing

5-17

Data Collection System PRELEWD Maintenance Information

(e)
(n

®

(h)

()

g

(k)

(M

(m)

(n)

(0)

(p)

q)

SDIG_CAL is a dead-end module for SANDUS digital cals.

THINN cuts the number of data points to match the resolution of the workstation.
See Section 5.5.6 for further information.

LOOKN works with THINN above. Extracts the maximum and minimum values
from an array of real values, and can identify the special cases where there are 0, 1,
or 2 points in the array.

COMMAND parses the command line for the parameter(s) and qualifier(s). It obtains
the value for pl, and p2 if p! is empty. Some of the qualifiers have a value, while
the value for others is their presence or absence. Defaults are set here. Only
qualifiers defined in the CLD flle can be parsed.

DETERMINE_DIMENSIONS determines dimensions for the data arrays. This is
device dependem. with fixed-length arrays for the 7912s, and variable-length arrays
for other devices.

ELIMINATE_BLANKS removes leading and trailing blanks from a string, and
returns the trimmed string, and its real length. See discussion in Section 5.4.3.

FILE_COMPS breaks a file specification into its components, and returns those
components and their real length.

CLI parses the command line for the value of an input parameter, and returns that
value, and its real length.

LENGT determines the real length of a string.

PARSE_STRING parses the command line for a qualifier, and returns its value, or a
default value, if no value was supplied.

PARSE_NUMBER parses the command line for a qualifier and returns either a
default value, or the command-line value.

ADJUST_MAX makes final adjustments to maximum scaling on axis. A first cut has
been made on the maximum axis value. We now want to possibly modify it so that
the maximum data value is less than the axis limit.

ADJUST_MIN makes final adjustments to minimum scaling on axis. A first cut has
been made on the minimum axis value. We now want to possibly modify it so that
the minimum data value is greater than the axis limit.

Sandia National Laboratories Underground Testing

5-18

Data Collection System PRELEWD Maintenance Information

(r)

(s)

®)

DATA_MAGNITUDE determines a scale factor which scales the data into a specified
range. “Returns the scale factor as the 1 in 10**1,

MAJ_ANNOTATE aids in major tick mark annotation. It sets the number of labels
on an axis, and determines the NDC increment between major tick marks.

ORIGIN_OFFSET evaluates the axis offset, if any. Sets the axis origin at the
minimum data value if the range of the data (max-min) is small compared to the
maximum axis value.

(u) SET_FILE_NAME modifies an input file name by replacing the prefix with either
PLT or SAD.

(v) LOOKS_OK tries to OPEN a file to determine if the user can write in the current
directory. If successful, CLOSE the file and DELETE it.

(w) SHO_ERROR prints a string and notes a position in that string. This module works
with SPECIAL STR to put bad strings into the LOG file, pointing out the nonprinting
character in the string.

(x) SPECIAL_STR removes nonprinting characters and annotates them.

(y) WTLENG determines the screen length of a string in current graphic units.

(2) WLIMIT determines the size of the current plotting surface in NDC units.

(aa) WAXIS draws an axis.

(ab) YT_ONE_D is a special one-dimensional ytterbium gauge conversion.

(ac) YT_HYDRO is a special two-dimensional ytterbium gauge conversion.

(ady TYPE_Kisa specnal type-K thermocouple conversion which uses a fifth-degree
polynomxal fit in one of two ranges, 0-400 degrees, or 400-1000 degrees C.

(a¢) TYPEEisa speclal type E thermocouple conversion which uses a fifth-degree
polynnmial fit in one of two ranges, 0-400 degrees, or 400-1000 degrees C.

af)y SLIFER is a special slifer gauge conversion from voltage to KHz. This is a linear
conversion.

Sandia National Laboratories Underground Testing

5-19

Data Collection System PRELEWD Maintenance Information

(ag)

(ah)

(al)

(aj)

POLEVAL evaluates a fifth-degree polynomial. Used in the special conversions
above. Contains the coefflcients for each conversion.

CRACK_DIRECTORY aids in creating a meaningful LOG file tag.
DECODE_8_BIT_EXT decodes data from a very special SANDUS niode. This
feature, while implemented, has never been used. It is described in 7459/ 100 KHZ
Data Module Operation and Maintenance Manual, (D. Wetling, SAND87-1736).

ELIMINATE_DBLE_TICS takes the ' " 's off command line qualifiers created by
SUPERMON.

(5) CONJECTURE.FOR controls the translation of header information into plot information, and
contains the modules:

(a)

(b)

()
(d

(e)

CONJECTURE generates the titles then calls the device-dependent routines for
translation of header information into plot information.

WHAT_LABEL returns a scaled axis label, given the base units and maximum axis
value.

LOR finds the location of and the text for calibration-level labels on the right axis.

GET_IGA determines IGA, which controls the data conversion in GET_ANS. See
Section 5.5 4.

APPEND_ERROR starts the first title line, and/or appends an error to it. This line is
formed based on logical variables in the record /GENERAL_CHAN/.

(6) CONJ_7912.FOR translates header information into plot information for the Tektronix 7912,
and contains the following modules:

(a)

T7912 sets the necessary variables for a Tektronix 7912 plot. It calculates the sample
interval, defines variables that cause either one or two graph lines on the plot,
prepares the x- and y-axis labels, and computes the slope and offset for the data
conversion.

(b) T7912_CAL prepares for a multiple page Tektronix 7912 calibration plot. The
calibration file can be either early or late. This causes differences in the number of
graph lines per plot, and in the axis labels. Calibration plots are always in COUNTS.
The contents of a CAL file is described in Appendix D.

Sandia National Laboratories Underground Testing

5-20

Data Collection System PRELEWD Maintenance Information

(c)

(d)
(e)

t)

(8)
(h)
0]

)

(k)

Iy

(m)

PAGE1_LABELS prepares axis labels for the first page of a multiple page 7912 cal
plot.

SCOPE converts a cal level to engineering units for the right axis label.

PAGE2_LABELS prepares axis labels for the second page of a multiple page 7912 cal
plot.

PAGE3_LABELS prepares axis labels for the third page of a multiple page 7912 cal
plot.

T7912_CAL_EARLY reads only the T48 7912 CAL file.
T7912_CAL_LATE reads only the 7912 CAL file.

CAL_DATA_PROVIDED calculates the calibrations in time and/or Y. See section
5.5.7 for further information.

XTR_T extracts data from the record /T7912_CHAN_DESC/ which contains channel
(device) setup information.

XTR_TC extracts data from the record /CAL_7912/, which contains channel
calibration information.

XTR_TD controls data extraction from Tektronix 7912 records.

XTR_TS extracts data from the record /T7912_SUB_DESC/, which contains
experiment information.

) CONJ_RTD720.FOR translates RTD720 header data into plot parameters, and contains the
following modules:

(a)

RTDS sets the necessary information for a RTD720 plot. This includes determination
of the x- and y-axis span, based on the number of data points in the record, the axis
labels, and the initial and final data time, based on the start of this segment’s data in
the record.

(b) RTD720_CAL is a dead-end module for nonexistent RTD720 cal files. It follows the
established format for CONJ_* files.
(©) XTR_RD directs the data extraction from the RTD720 structures.
Sandia National Laboratories Underground Testing

5-21

Data Collection System PRELEWD Maintenance Information

(d)

(e

()
(®
(h)
(1)

XTR_RC extracts data from the record /RTD720_CHAN_DESC/, which contains
channel-specific setup information.

XTR_R_CAL extracts data from the record /CAL_RTD/, which currently contains no
important data, but is retained for future use.

XTR_RES extracts data from the record /RTD720_EXP_SUB_DESC/.
XTR_RLS extracts data from the structure /RTD720_LC_SUB_DESC/.
XTR_RCS extracts data from the structure /RTD720_CC_SUB_DESC/.

XTR_R extracts data from the structure /RTD720_DEV_DESC/.

(8) CONJ_SALOG.FOR translates SANDUS ANALOG header data into plot parameters, and
contains modules:

(a)

(b)

(c)

(d

SALOG sets values for a SANDUS ANALOG plot. This includes determination of the
X- and Y-axis span, based on the number of data points in the record, the axis labels,
and the initial and final data time.

SALOG_CAL sets values for a SANDUS ANALOG CAL plot. This includes
locating the cal levels in the file, and modification of the X axis to show the cal level.

SANDUS converts counts into engineering units for the right label. This is
complicated by the many special conversions that occur for SANDUS ANALOG data.

YLIMITS converts counts at band edge to engineering units to define the Y axis
extent.

9 CONJ_SAMUX.FOR sets parameters for a SANDUS MUX plot. A SANDUS analog
multiplex channel has not been used recently. It contains the following modules:

(a) SAMUX set values for a SANDUS MUX plot. This includes determination of the
axis span, labels (there may be as many as 32 subchannels for each channel), and
initial and final times for each subchannel. All subchannels may be done on one plot,
or done one per page. See the MUX qualifier.

(b) SAMUX_POST prepares for the next subchannel of a SANDUS MUX plot.

Sandia National Laboratories Underground Testing

5-22

Data Collection System PRELEWD Maintenance Information

(10) CONIJ_SDIG.FOR translates SANDUS digital header data, and contains only module SDIG.
There can be up to 8 digital subchannels for each channel. Each subchannel is put on
horizontally. Subchannels are stacked vertically. Each subchannel is one bit in a channel

data byte.

(11) CONJ_T7103.FOR translates Tektronix 7103 header data into plot parameters. This type of
device was used experimentally on one event, and will probably never be used again. The

file contains modules:

(a)
(b)
(c)
(d)
(e)

M

CCD set values for a Tektronix 7103 CCD camera plot.
CCD_CAL prepares for a 7103 CAL plot.

XTR_C extracts data from the record /T7103_CHAN_DESC/.
XTR_CC extracts data from the record /CAL_T7103/.
XTR_CD drives the data extraction for the Tektronix 7103.

XTR_CS extracts data from the record /T7103_SUB_DESC/.

(12) DATA_FETCH.FOR reads a block at time, and converts the data from counts to engineering
units. [t contains the following modules:

(a) DATA_FETCH initializes counters, reads all data, and initializes plotting. The
source module has extensive documentation.

(b) FIRST_DATA_POINT handles the very first data point. The first point requires
initialization for the X data value.

(c) PROCESS_ONE_RECORD controls the data recovery for one data record. It takes
one data record, and breaks out the opcode, handling each of the possible opcodes.

(d) UNKNOWN_OPCODE flags the presence of an unknown or bad opcode.

(e) NEW_REPEAT has logic to control the repeat factor. A repeat factor arises during
data compression only, and tells how many times the last valid data value is repeated
before the next data value has changed by more than the compression factor. See
Appendix D.

(H DATA_VALUE initiates the conversion of data values to engineering units. In most
cases, this is a linear conversion.

Sandia National Laboratories Underground Testing

5-23

Data Collection System PRELEWD Maintenance Information

(8)

(h)

(i)

()

(k)

0

(m)

(n)

(0)

PLOT_ARRAY_FILLED assumes control when data needs to be plotted. GRAFPAK
can only handle 10,000 points. When that number of data values has been translated,
it is necessary to plot, and start collecting again. The program also handles missing
data.

SAMP_RATE_CHANGE handles the sample-rate switchers. There can only be a
sample-rate change from SANDUS ANALOG channels. [f there is one, an error
message is generated on the last data point indicating that it is looking for a sample
rate beyond the allowed two rates. This can be ignored.

FILL_GAP sets data values when there is a repeat factor.
OPCODE extracts the opcode and the data from the input 1*2 word.

GET_ANS return: a Y value given a count value. Conversion is done based on the
variable IGA (Section 5.5.4), which is based on the device and the value of
PLOT_OPTION.

GET_TIME returns a time value given the time at the last data point, the sample
interval, and the current repeat factor. Up until the GKS routines are called, time is
carried as a real*8 value.

RDR reads the ith block of data.

DATA thins the data, if necessary, and converts the time array to real*4. The
module chooses the correct transformation if there is a legend, and calls the GKS plot
routine.

MUDDLE _7912 makes a single trace from a 7912 upper and lower trace. It is a
simple mean of the two values.

(13) DEFAULTS.FOR resets commons between plots, and contains the following modules:

(a) DEFAULT_HEADER sets default values into the XTRACT commons. Some defaults
will cause fatal errors, others will just call attention to themselves.
(b) DEFAULT_PLOT sets default values into the PLOT commons.
Sandia National Laboratories Underground Testing

5-24

Data Collection System PRELEWD Maintenance Information

(14) ENVIRONMENT FOR evaluates command line options, determines the files to be plotted,
defines global variables, and contains the following modules:

(a) ENVIRONMENT defines logical units used, determines the current date and time, the
username, the current directory name, and the current node name. It calls routines
which parse the command line. It concerns itself with items that will hold for the
entire run.

(b) CONDITIONS determines the files to be plotted if they are specified with the pl
parameter. The module checks raw data files, and the validity of the file names.

(c) INDIRECT parses the file named in the p2 parameter, and validates the file names
given there.

(15) GET_FILE.FOR has most of the CHN file 1/0 routines, and contains the following modules:
(a) GET_FILE first inquires about then opens the current data file.

(b SORT_BY_EXP will sort the list of data files, first by experimenter name, and then
by experiment ID. See the /SORT qualifier. This is a political qualifier, never used,
but available.

(c) DELETE_FILE deletes an unavailable file from the list of files, compresses the list,
and readjusts the count. This occurs when the file cannot be opened.

(16) HEADER_READ.FOR reads the first block of the current data file's header, and extracts
values from the two records /GEN_DESC/ and /GENERAL_CHAN/. This supplies the total
header length, which allows the remaining header blocks to be read in. This is a useful
"bootstrap” technique. This file contains only the module HEADER _READ.

(17) NICE_LIMITS FOR adjusts the X- and Y- axis spans to the data. It gets any offset
required, determines the number of major axis divisions, and adjusts the maximum and
minimum of each axis to make 1,2,5 scaling. It contains only one module, NICE_LIMITS,

(18) OPENS.FOR opens both GKS and the work station, and contains the following modules:

(a) OPEN_GKS opens the plotting interface GKS, and turns error checking on.

(b) OPEN_STATION sets GKS to generate plots for the requested plotting surface. This
is where the parameters for each possible plotting surface are defined (via DATA
statements). Special calls for each plotting surface are done here. This module is
very GKS specific.

Sandia National Laboratories Underground Testing

5-25

Data Collection System PRELEWD Maintenance Information

(c)

INQUIRE_STATION asks the user to define the workstation, if it was not defined on
the command line, and if a BATCH job is not currently running.

(19) SRAD.FOR contains modules that write the SRAD file (SAD---.DAT). The headers are
written with the same modules used with TABLEREAD, BIGREAD and CHNREAD (see
Section 5.8.2 and Appendix I). This file contains the following modules:

(a)
(b)

(c)

(d)

(e)

(H
(8)
(h)
(i)
@

SRAD_CLOSE writes the final line, and closes the current SAD file.
SRAD_DATA writes data to the current SAD 1.

SRAD_HEADER controls the writing of the header to the SAD file based on the
primary channel type.

SRAD_ANALOG writes the SANDUS ANALOG header to the SAD file.

SRAD_MORE controls the writing of data when > 1 piece of plot. This occurs if
there is missing data. This is usually a problem only with 7912s.

SRAD_7912 writes the Tektronix 7912 header to the SAD file.
SRAD_7912_MORE controls the writing of T7912 data when > 1 piece of plot.
SRAD_T7103 writes the T7103 header to the SAD file.

SRAD_DECIDE controls which SRAD data writing module to call.

SRAD_RTD720 writes the header for the RTD720 to the SAD file.

(20) XTR.FOR extracts data from the header for common structures and for SANDUS structures,
and contains the following modules:

(a)

XTR_G extracts data from the record /GEN_DESC/. This consists of the variables
TEST_NAME and SOURCE_NAME.

(b) XTR_GC extracts data from the record /GENERAL_CHANY/. This consists of
information available to PROCESS/ANALYZE, and not available in other records.
(c) XTR_SA extracts data from the record /S_ALOG_CHAN_DESC/, which contains
information about the instrument and about the experiment.
Sandia National Laboratories Underground Testing

5-26

Data Collection System PRELEWD Maintenance Information

(d) XTR_SAC extracts data from the record /CAL_S_ALOG/, which is calibration
information for this channel.

() XTR_SAD calls XTR_SA, and XTR_SAC.

(f) XTR_SD extracts data from the record /S_DIG_CHAN_DESC/, which contains
information about the instrument setup.

® XTR_SDC extracts data from the structure /CAL_S_DIG/, which contains calibration
information available from PROCESS.

(hy XTR_SDD calls XTR_SD, XTR_SDS, and XTR_SDC.

(i) XTR_SDS extracts data from the record /S_DIG_SUB_DESC/, which contains
experiment information about each subchannel.

{)] XTR_SM extracts data from the record /S_AMUX_CHAN_DESC/, which contains
instrument setup information.

(k) XTR_SMC extracts data from the record /CAL_S_AMUX/, which contains
calibration information from PROCESS.

() XTR_SMD calls XTR_SM, XTR_SMS, and XTR_SMC.

(m) XTR_SMS extracts data from the record /S_AMUX_SUB_DESC/, which contains
experiment information for each subchannel.

(21) XTRACT.FOR calls the appropriate extraction module for the primary channel type, and
contains only one module, XTRACT.
5.8 External Modules

Two external object libraries, and one shared library supply modules not in PRELEWD's source tiles.
Note that LEWD.OLB is external to a number of other executables.

Sandia National Laboratories Underground Testing

5-27

Data Collection System PRELEWD Maintenance Information

8.8.1 Modules Needed from UTILITY.OLB

This library consists of a number of useful, basic modules written by the staff, and readily available
(see Appendix H). UTILITY.OLB is maintained in UTILITYSLIBRARY, which is defined as

$ DEFINE UTILITYSLIBRARY LD:[UTILITY] (or wherever the library is maintained)

(h CHANGE_COMM_SYM enables program-command procedure communications on
one node.

(2) CHN_CHAR_INT converts numeric characters to an integer in specified base.

(3) DISCONNECT_NETWORK_LINK disconnects a node-to-node communications link.

(4) FILE_DATE obtains the creation date of the executable module.

(5) PARSE_PRESENCE gets information about a command line parameter.

(6) REQUEST_NETWORK_LINK opens a node-to-node communications link.

)] SEND_NETWORK_MSG sends a short message over the node-to-node link.

5.8.2 Moduies Needed from DUMP.OLB

This object library contains at least one module for every nonempty structure defined in
BIG_STRUCTS DEF, TABLE_STRUCTS.DEF, and CHN_HEADER.DEF. It is used as part of the
debugging facilities developed for the NTS Instrumentation System (see Appendix 1).

DUMP.OLB is maintained in REPAIRSLIBRARY, which is defined as
$ DEFINE REPAIRSLIBRARY LD:[REPAIR] (or wherever the library is maintained).

The following routines are called only from the SRAD_... modules, and creates an ASCII dump of
the record whose structure is given in the module name after the DUMP_ or DUMPI_. In the case of
DUMPI, it dumps the ith record in the record array.

The following modules dump records whose structures are defined in TABLE_STRUCTS.DEF.

(1) DUMPI_RTD_CC_SUB_DESC
() DUMPI_RTD_EXP_SUB_DESC
(3 DUMPI_RTD LC_SUB_DESC
4) DUMPI_T7103_SUB_DESC

(55 DUMPI_T7912_SUB_DESC

(6) DUMP_GEN_DESC

(7) DUMP_RTD_CHAN_DESC

8) DUMP_RTD_DEV_DESC

(9 DUMP_S_ALOG_CHAN_DESC

Sandia National Laboratories Underground Testing

5-28

Data Collection System PRELEWD Maintenance Information

(100 DUMP_T7103_CHAN_DESC
(11) DUMP_T7912_CHAN_DESC

The following modules dump records whose structures are defined in CHN_HEADER DEF.

() DUMP_GENERAL_CHAN
(2) DUMP_CAL_7912

(3) DUMP_CAL_RTD

4) DUMP_CAL’S_ALOG

(5 DUMP_CAL_T7103

§.8.3 Modules Needed from the Shared Library GKSFLB.EXE

This is the GKS library. It is supplied under license from ATC and must be available on all nodes
where PRELEWD is to be run, PRELEWD uses only a small part of the capabilities available in
GKS. GKSFLB.EXE is maintained in the directory specified by the system-wide symbol GKSDIR.

(h GACWK - activates a workstation.

(2) GCLKS - closes GKS.

3) GCLRWK - clears a workstation.

(4) GCLWK - closes a workstation.

(5) GDAWK - deactivates a workstation.

(6) GECLKS - initiates an emergency close of GKS.

(7 GOPKS - opens GKS.

(8) GOPWK - opens a workstation.

9) GPL - draws a polyline.

(10) GPREC - packs a data record.

(11) GQACWK - inquires about active workstations.

(12) GQCHUP - inquires about the current character up vector.
(13) GQDSP - inquires about the workstation display size.
(14) GQOPS - inquires about the GKS operating state.
(15) GQTXP - inquires about the current text path.

(16) GQTXR - inquires about the current text representation.
(17) GQTXX - inquires about a text string's extent.

(18) GSASF - sets aspect source flags.

(19) GSCHH - sets the character height.

(200 GSCHUP - sets the character up vector.

(21) GSCR - sets the color representation,

(22) GGDS - sets the deferral state.

(23) GSELNT - selects the normalization transformation.
(24) GSPLCI - sets the line color.

Sandia National Laboratories Underground Testing

5-29

Data Collection System PRELEWD Muintenance Information

(25) GSPLI - sets a polyline bundle index.

(26) GSPLR - sets polyline representation.

(27) GSTXI - sets a text bundle index.

(28) GSTXP - sets the text path.

(29) GSTXR - sets text representation.

(30) GSVP - sets viewport,

(31) GSWKVP - sets workstation viewport,

(32) GSWKWN - sets workstation window.

(33) GSWN - sets the window.

(34) GTX - writes text.

(35) GUESC - an unregistered escape from GKS (opens and closes the Tektronix 4208
dialogue area).

(36) GUESC002 - an escape from GKS allowing a pause between screen plots.

(379 GUESCO0S0 - an escape from GKS allowing the PLT file to be named

(38) GUESCO0S1 - an escape from GKS to set the error severity level

(39) GUESCO0S2 - an escape for GKS which allows error checking.

(40) GUESC302 - an escape from GKS allowing a look at the last GKS error.

8.9 Records and Structures

For a detailed description of the DEC's nonstundard implementation of records and structures, see
both the VAX FORTRAN Language Reference Manual Order Number AA-DOJJE-TE, dated June
1988, and the VAX FORTRAN User Manual Order Number AA-DO3SE-TE dated June 1988 More
recent editions exist.

If the user chooses not to delve deeply into records and structures, he or she should think of a
structure as a description of a collection of variables, a plan, and a record as the structure’s
realization in memory. The structure is the architect's plan, while the record is the construction
company's building, realizing that other buildings may be built using the same set of plans. The
variables described in the structure may be any legal FORTRAN type in any order. In a record, the
variables are stored in structure order with no blank space. A record statement assigns a variable
name to a structure. A structure description may contain record statements.

Use the variable name defined in a record statement in much the same way that usual variable names
can be used, but the name refers to all the elements contained in that record. The structure defined
by a record statement may be dimensioned. An individual element in a record is referenced by
prefixing its name with the name of each record it is a member of, working outward. Thus the
variable name A.B.C(i).X is element X of the ith record C in record B in record A. There is a
difference between a structure and a record, but many authors use the two words interchangeably .

Sandia National Laboratories Underground Testing

Data Collection System PRELEWD Maintenance Information

8.9.1 CHN Header Structure

The following is taken from CHN_HEADER.DEF and is the structure that describes the CHN file
header.

If the operator understands this structure, he or she will have no problem with any other structure.
The lines have been numbered to help explain this structure.

01 structure / CHN_FILE_HDR_DESC /

02 union

03 map

04 record / GENERAL_CHAN / gc

0s record / GEN_DESC / g

06 union

07 map

08 record / S_ALOG_CHAN_DESC / sa
09 record / CAL_S_ALOG / sa_cal

10 end map

11 map

12 record / S_DIG_CHAN_DESC / sd

13 record / S_DIG_SUB_DESC / sds(1:S_DIG_SUB_MAX)
14 record / CAL_S_DIG / sd_cal

15 end map

16 map

17 record / S_AMUX_CHAN_DESC / sm
18 record / S_AMUX_SUB_DESC / sms(1:S_AMUX_SUB_MAX)
19 record / CAL_S_AMUX / sm_cal

20 end map

21 map

2 record / T7912_CHAN_DESC / t

23 record / T7912_SUB_DESC / ts

24 record / CAL_7912 / t_cal

25 end map

26 map

27 record / T7103_CHAN_DESC / ¢

28 record / T7103_SUB_DESC / cs

29 record / CAL_T7103 / ¢_cal

30 end map

k)| map

32 record / RTD_DEV_DESC / r

33 record / RTD_CHAN_DESC /rc

34 union
Sandia National Laboratories Underground Testing

5-31

Data Collection System PRELEWD Maintenance Information

K}] map

36 record / RTD_EXP_SUB_DESC / res
” end map

38 map

39 record / RTD_LC_SUB_DESC / rls
40 end map

41 map

42 record / RTD_CC_SUB_DESC / rcs
43 end map

4 end union

45 record / CAL_RTD / r_cal

46 end map

47 end union

48 end map

49 map

50 byte Z2(512,6)

]| end map

52 end union
§3 end structure

Note that this structure has both variables (Z, line 50) and records as elements. Some of the records
are dimensioned (lines 13 and 18). The parameters that give the upper bounds of these dimensions
are in BIG_STRUCTS.PRM. For every STRUCTURE there is an END STRUCTURE, for every
UNION an END UNION, and for every MAP an END MAP.

Starting at the right-most indentation levels, the UNION/END UNION of lines 3444 includes three
MAP/END MAP groups, lines 35-37, 38-40, and 41-43. A UNION/END UNION is similar to a
FORTRAN equivalence statement, and the MAP/END MAP groups define the elements that are
equivalent. The records named RES, RLS, and RCS will start at the same location, and the longest
will define the space taken by this UNION/END UNION group.

Now consider the UNION/END UNION group, lines 6-47. It has the 6 MAP/END MAP groups,
lines 7-10, 11-185, 16-20, 21-25, 26-30, and 31-46. Each of these 6 groups is specific to a specific
source device, and each defines the layout of the CHN file header for that source device. Lines
31-46 define the RTD720 specific part of the header.

Now look at the UNION/END UNION group, lines 2-52. It covers two MAP/END MAP groups,
lines 3-48, and 49-51. Lines 4 and § define the two records which are PHYSICALLY and
LOGICALLY first in the header, and in ALL headers. The MAP/END MAP group at line 49-31
defines a byte variable Z dimensioned (512,6). Z and the MAP/END MAP group, lines 3-48,
occupy the same address space. Six is the length in physical records of the longest device header,
and $12 is the byte length of a physical record. This construction allows the first physical record

Sandia National Laboratories Underground Testing

5-32

Data Collection System PRELEWD Maintenance Information

from the file to be read using an ordinary binary file read. The variable CHN.GC.LEN_HEADER in
the record GC then indicates how many more physical records need to be read from this CHN file.
See module HEADER_READ for details.

The STRUCTURE/END STRUCTURE statements, lines 1-53, complete the structure definition. The
include lle CHNHEAD.CMN declares this structure to be a record named CHN. There may be
several record statements, each declaring this structure to have a locally unique name.

8.10 Files Created

FORTRAN logical units 2, and 5-10 are defined in module ENVIRONMENT. For temporary use,
logical unit numbers come from the RTL routines LIBSGET_LUN and LIBSFREE_LUN. LUN
values below § are reserved for the output plot file. Currently, only the value 2 is used. LUN (=10)
is the CHN file. INLUN (=35) is the keyboard for input if this is not a batch job. IOUTLUN (=6)
is for the terminal, and is used if this is not a batch job. IOUTLOG (=7) is for the LOG file.
SRADLUN (=9) is for the SRAD file.

§.10.1 The LOG File

A file, PRELEWD.LOG, is always created in the current directory for each execution of PRELEWD.
This file is written by the module FOUND, which is described later. PRELEWD.LOG is the first
place to begin troubleshooting. It has an execution date/time stamp, the command line, and the name
and creation date of the EXE file. It lists each existing file that is supplied either by parameter pl.
or p2. As each CHN file is started, a message is sent to the .LOG file, and to the screen if the job is
interactive. It tells of any unusual values found in the header, and what was done to fix the value;
the number of data values before and after compression, and sent to the plotting surface. Each entry
is annotated with the originating module’s name.

Sandia National Laboratories Underground Testing

Data Collection System PRELEWD Maintenance Information

8.10.2 FOUND, The Error Routine

Module FOUND is the standard error routine used here, though not always exactly the same version.
For further information on the LOG file format required by SLOG, see Appendix G. A typical call
might look like the following:

if(.not. istat)
call found(true,istat,
'CLOSE STATION'.2,2,
'Trying to spawn the '
/1'string: ‘/icf(1:1lch,
Iplot_que_name,3)

N H WD —

Explanation: A command procedure to print a PLT file has been generated, and the necessary
LIBSSPAWN command executed, but for some reason it failed (istat = .false.). This call to FOUND
indicates that something out of the ordinary happened, and shows the command trying to be executed.

Note the use of the concatenation symbol **//** to extend the sixth argument. The significance of
each of the eight arguments is (in order) as follows:

(nH .true. a logical and if .true. then argument 2 is meaningful.
2) istat the status value returned by a system routine, in this case

LIBSSPAWN. If this argument is meaningful, LIBSSIGNAL is
called. and the message is added to the LOG file.

3) CLOSE STATION a string containing the name of the calling module.

(4) 2 an integer in the range | to 3 which defines the error level written to
the LOG file, and controls some module logic.

| == > 'INFORMATIVE'
2 ==> 'NON-FATAL ERROR'
3 == > 'FATAL ERROR’

Sandia National Laboratories Underground Testing

5-34

Data Collection System PRELEWD Maintenance Information

(5) 2 an integer in the range 1 to 17, and an index into a set of canned
messages. They are defined in the source code. In this case the
message is, "Occurred trying to use RTL routine."

(6) "Trying..."//cf(1:1cf) the specific message about what was found, and what, if anything,
was done about it. Notice here how it includes the string cf(1:lcf).
This argument can be any reasonable length.

) Iplot_que_name an integer, which may or may not be meaningful. In this case it is the
length the string plot_que_name.

(8) 3 an integer value in the range of 1 to 9 which indicates the
programmer’s sense of the severity of the message. 1 is usually fatal,
and 9 is usually informative. Here, the user will not get plots he
requested because the spawn failed. This value is put into the SLOG
tag. See Appendix G.

Because every error is in the log file, and each is tagged with the name of the originating program,
all the possible errors are not listed here. The DEC utility program SEARCH performs this function.

For further information on the LOG file format required by SLOG, see Appendix G.

5.10.3 The PLT File

A PLT file is created if and only if the plotting surface is chosen to be, or defaults to a printer. The
printer must be a QMS laser printer. The nnnxxxyzzz-ww DAT of the first CHN file name
encountered in a new group is changed to PLTxxxyzzz-ww.DAT, and GROUP (default=4) CHN file
plots are included in that file. This occurs in the module CLOSE_STATION.

If the PLT files are queued to a printer via the command line, they are deleted after printing. If PLT
files are sent to another node and queued for printing via the command line, then the original remains
in the current directory. In this case, for each PLTxxxyzzz. DAT file created, a PLTxxxyzzz-ww.COM
file is created in the current directory that does the COPY to the new node, and queues the file for
printing on that node. The RTL routine LIBSSPAWN (no wait) executes this command procedure.
If created, the .COM file is not deleted. An attempt is made to be sure that PRELEWD does not use
DECnet to send files to the node it is currently running on.

Sandia National Laboratories Underground Testing

5-35

Data Collec:ion System PRELEWD Maintenance Information

5.10.4 The SRAD File

SRAD files may be requested from the command line. in which case all the CHN files processed will
have SRAD files created, or on a file-by-file basis using the logical header variable SRAD_FILE (=
.TRUE.). SRAD files are much larger than the parent CHN file, so caution is advised. If the user
must create SRAD files on a regular basis, consider using the QRAD qualifier. See Section 3.1.
SRAD files are named SADxxxyzzz-ww.DAT after the parent. A copy of the SRAD file will remain
in the current directory if the file is sent to another node. No .COM file is involved; the COPY
command is SPAWNed directly using LIBSSPAWN.

5.11 The CALL Tree

The following call tree is from the program FLINT (v 2.71). At least the first occurrence of each
routine is annotated here. Those routines that appear as (name) are external to PRELEWD. Those
with names followed by (n) are referenced later as ‘‘see n."”’

This is a primary tree starting at the program 'PRELEWD’

PRELEWD-+-ENVIRONMENT-+- (FILE_DATE) name and date of executable file
main | who, what H
program | where, when +-(LIBSGETJPI)
why

1

+-FOUND (1)+-(LIBSSYS_GETMSG)

log file |

messages-+-(SEND_NETWORK_MSG) Supermon responses
written

here -(CHANGE_COMM_SYM) RTD responses

-(DISCONNECT_NETWORK_LINK) Supermon
turnof f

|
[}
+
|
|
+
]
1
|
+-(GAOPS) GKS close out

1

i

+-(GECLKS) GKS close out

[}

1

+-(LIBSSIGNAL)

i

+-(LIBSENABLE_CTRL)

]

|

+-(EXIT) iff error was FATAL
(LIBSFIND_FILE)

(LIBSFIND_FILE_END)

FILE_COMPS (2)-+-(SYSSFILESCAN)

file !

]
components +-FOUND see 1
]

i
+-LENGT

|
|
:
|
|
|
|
!
[
|
]
]
]
]
i
I
t
¥
!
]
|
|
]
|
|
]
]
]
|
|
|
|
'
!
1
+-
|
|
+-
|
|
+-
|
|
|
i
i
|
i
1
i
|

Sandia National Laboratories Underground Testing

5-36

Data Collection System PRELEWD Maintenance Information

+-(L1B$SYS_TRNLOG)

!

|

+-(LIBSDATE_TIME)

I

+-COMMAND - - - - - +-CL1-+-(CLISGET_VALUE)

command !
line +-FOUND see 1
cracker
+-FOUND see 1
[}
{
+-INDIRECT-+-SPECIAL_STR
if P2 H
then +-ELIMINATE_BLANKS trim
here ' lead and trailing blanks
+-FILE_COMPS see 2
t
!
+- (STRSUPCASE)
|
|
+-FOUND see 1

+-FILE_COMPS see 2
[}
|
+-PARSE_STRING (3)-+-(CLISGET_VALUE)
/qual= "string" |

+-(CLISPRESENT)

+-ELIMINATE_DBLE_TICS--ELIMINATE_BLANKS
| changes "string" to string
+-(PARSE_PRESENCE)
| /qual ?
+-PARSE_NUMBER - +- (CNV_CHAR_INT)

/qual=n !
+-PARSE_STRING see 3

+-(REQUEST_NETWORK_LINK) Supermon communications
1]

i
+-(CHANGE_COMM_SYM) RTD720 communications
|

[
+-CRACK_DIRECTORY to get LOG_TAG fields

+-CONDITIONS--+-(LIBSGETJP!)

| batch ? !
| +-FOUND see 1
[}
+-(LIBSFIND_FILE)
]
l-FILE_COMPS see 2
[}
|
+-(LIBSFIND_FILE_END)
|
+-SORT_BY_EXP-+-HEADER_READ (4)-+-XTR_G--+-SPECIAL_STR
IFF > 20 read G and GC gets G |
files, to get fields info +-SHO_ERROR
and for sort
requested
+-XTR_GC---+-SPECIAL_STR
gets GC |
info +-FOUND
]
|
+-SHO_ERROR
Sandia National Laboratories Underground Testing

5-37

Data Collection System PRELEWD Maintenance Information

s +-FOUND see 1
i-GET_FILE (5)--FOUND see 1

| Opens data file

T-(SOR:BEGIN_SORT} The sorting stuff
%-(SORSRELEASE_REC).
%-(SORSSORT_MERGE).
l'(SORSRETURN_REC).

Jr-(sonstaun_smm.

1-FOUND see 1

1!"FII.IE__COMPS see 2

l-DELETE_FlLE--FOUND see 1
file requested

+-0PEN_GKS-+- (GQOPS) GKS but not found
Open GKS |} hence deleted

T'(GOPKS) GKS from list
%'(GUESC}OZ) GKS
%-FOUND see 1
.

(GUESCO052) GKS

+-FOUND see 1
1
1
+-HANDLE_A_FILE-+-GET_FILE see S
Loop on H
all data +-HEADER_READ see 4
files !
+-XTRACT-+-XTR_SAD-+-XTR_SA-+-SPECIAL_STR
extract| SANDUS chan |
header | ANALOG data +-FOUND see 1
data data !
+-SHO_ERROR
|
]
+-XTR_SAC--FOUND see 1
cal data
+-XTR_SDD-+-XTR_SD-+-SPECIAL_STR
SANDUS chan |
DIGITAL | data +-FOUND see 1
data !
+-SHO_ERROR
+-XTR_SDS-+-SPECIAL_STR
sub-chan|
data +-FOUND see 1
]
i
+-SHO_ERROR
+-FOUND see 1
|
t
+-XTR_SDC--FOUND see 1
cal data (fatal)
+-XTR_SMD-+-XTR_SM-+-SPECIAL_STR
Sandia National Laboratories Underground Testing

5-38

Data Collection System PRELEWD Maintenance Information

SANDUS chan |
ANALOG data +-FOUND see 1

MUX !
data +-SHO_ERROR
+-XTR_SMS-+-SPECIAL_STR
sub-
channel +-FOUND see 1
date
+-SHO_ERROR
+-FOUND see 1

|
+-XTR_SMC--FOUND see 1
cal data (fatal)
+-XTR_TD-+-XTR_T-+-SPECIAL_STR
7912 chan |
date | data +-SHO_ERROR
|

]
+-FOUND see 1

+-XTR_TS-+-SPECIAL_STR
sub-

channel+-FOUND see 1
data |
+-SHO_ERROR

+-XTR_TC--FOUND see 1

cal data

+-XTR_CD-+-XTR_C-+-SPECIAL_STR

7103 chan |

data data +-FOUND see 1
]

I
| +-SHO_ERROR
]
|

+-XTR_CS-+-SPECIAL_STR

sub- |

channel+-FOUND see 1
]

i
+-SHO_ERROR

' +-XTR_CC--FOUND see 1
| cal data
+-XTR_RD-+-XTR_R-+-SPECIAL_STR
RTD720 | device}

data data +-FOUND see 1
)

}
+-SHO_ERROR

+-XTR_RC--FOUND see 1

| channel data
+-XTR_RES-+-SPECIAL_STR
USE=0 |

sub- +-FOUND see 1
channel |

data +-SHO_ERROR

+-XTR_RLS-+-SPECIAL_STR
| USE=1 |
| sub- +-FOUND see 1
| channel |

Sandia National Laboratories Underground Testing

5-39

Data Collection System

| data +-SHO_ERROR
]
)
+-XTR_RCS-+-SPECIAL_STR
USE=2
sub-channel+-FOUND see 1
data |
+-SHO_ERROR
+-FOUND see 1

+-FILE_COMPS see ¢

|
+-FOUND see 1

]
+-(SEND_NETWORK_MSG)
!

[}

+- (CHANGE_COMM_SYM)

]

[

+-DEFAULT_HEADER-+-(LIBSDATE_TIME)
| make sure !

header stuff +-FOUND see 1

has values

+-DEFAULT_PLOT make sure plot stuff
H has values
+-CONJECTURE -+-FOUND see 1

convert
header
info to
plot info

-APPEND_ERROR form plot error line
Title line 1
~ELIMINATE_BLANKS

— - —

+-SALOG-+-SALOG_CAL set for CAL plot
set |
for +-FOUND see 1
SANDUS |
+-ELIMINATE_BLANKS

-YLIMITS given counts get
plot units
+-YT_ONE_D (6)--POLEVAL see A

| Ytterbium conversion
+-YT_HYDRO (7)--POLEVAL see A
| Ytterbium conversion
+-TYPE_K (B8)-+-FOUND see 1
Thermo- '

couple +-POLEVAL see A
conversion |

~TYPE_E (9)-+-FOUND see 1
Thermo- |

couple +-POLEVAL see A
conversion Sth degree
+-SLIFER polynomial
evaluation

_——

———— ———————

|

+-ORIGIN_OFFSET

| Weird data?

+-WHAT_LABEL (10)--FOUND see 1

| Match label to plot

+-LOR (11)-+-8CF (function
label on |} argument)
right +-FOUND see 1

+-SDIG-+-FOUND see 1

Sandia National Laboratories

5-40

PRELEWD Maintenance Information

Underground Testing

Data Collection System PRELEWD Maintenance Information

big. |
plot +-8DIG_CAL--FOUND see 1
set | you're dead

up ;-eumnm_muxs
+-ORIGIN_OFFSET
i
]
+-WHAT_LABEL see 10

+-SAMUX - +-SAMUX_CAL - FOUND see 1
MUX | you're dead

plot +<FOUND see 1

setup |
+-ELIMINATE_BLANKS

l

+-YLIMITS

3

+-YT_ONE_D see &
!

+-YT_HYDRO see 7

|
+-SAMUX_POST (12)-+-ELIMINATE_BLANKS
1FF one aub-
channel/page +-YLIMITS
]

1
+-YT_ONE_D see 6
YT_HYDRO see 7

]
[}
¢
!
+-FOUND see 1

!
+-ORIGIN_OFFSEY
!

+-WHAT_LABEL

+-T7912-+-(STRSUPCASE)
™2 |
plot +-ELIMINATE_BLANKS
set- |
up +-FOUND see 1
[}
|
+-T7912_CAL-+-WHAT_LABEL see 10
| 7912 cal |
plot set- +-T7912_CAL_EARLY see
8

]
1
| wp |

| | 748 files here

! +-T7912_CAL_LATE see C
| 7912 cal setup

+-LOR see 11 here

!

+-CAL_DATA_PROVIDED see D
| calibrate real data
+-WHAT_LABEL see 10

+-CCD-+-CCD_CAL--FOUND see !
7103| 7103 cal plot setup
plot+-ELIMINATE_BLANKS
set-|

up +-YLIMITS

I
+-FOUND see 1

Sandia National Laboratories Underground Testing

5-41

Data Collection System

|FF SRAD
flag set
write
file
header

Sandia National Laboratories

+-(GQOPS) GKS

L T R T ey S Y S S

PRELEWD Maintenance Information

!
+-WHAT_LABEL see 10

+RTDB-+-RTD720_CAL --FOUND see 1
RT0720| You're dead

plot
setup |

+-ELIMINATE_BLANKS
+-YLIMITS

l-rouuo see |
i-ORIGIN'OFFIET
i-vnAT_LAlEL see 10

+-GET_IGA--FOUND see 1
evaluates 1GA for use in

GET_ANS

|

+-QPEN_STATION-+-LOOKS_OK
tind current |
workstation «+-INQUIRE_STATION--FOUND see !
and open it

check on plt file
what workstation?
“SET_FILE_NAME (13)--FOUND see !
plot file filename
+FOUND see 1

- (GUESCO50) GKS calls
- {GOPWK)

- (GUESC302)

< (GACWK)

-(GSDS)

-(GUESCO51)

- (GPREC)

*(GUESC)

+-SRAD_HEADER-+-SRAD_ANALOG-+-LOOKS_OK

SANDUS
ANALOG
file

header

| check file name
+-8ET_FILE_NAME see 13
| SRAD file name
+-FOUND see 1

-(DUMP_GEN_DESC) G dump
-(DUMP GENERAL _CHAN) GC dump

- (DUMP_S_ALOG_CHAN_DESC)
$A d

+-(DUMP_CAL_S_ALOG)

| SA_CAL dump

+-SRAD_MORE see E

Missing data?

— o —— —

+-SRAD_7912-+-L00KS_OK

7912 |

Underground Testing

5-42

Data Collection System PRELEWD Maintenance Information

header +-SET_FILE_NAME see 13
£~FOUND see |

1’ (OUMP_GEN_DESC)
«(DUMP_GENERAL _CHAN)

- (DUMP_17912_CHAN_DESC)
1 dump
-(DUNP1_T7912_SUB_DESC)

18 dump
«(DUMP_CAL_7912)

1_CAL dump
-$AD_7912_MORE see ¢
Multiple plot lines!
¢-8RAD_T7103-+-LOOKS_OK

7103 |

header +-$ET_FILE_NAME see 13
dump

P B G - P —

!

+<FOUND see |

J
+-(DUMP_GEN_DESC)

!
4+ (DUMP_GENERAL_CHAN)

|
+-(DUMP_T7103_CHAN_DESC)

dump
DUMPI_T7103_SUB_DESC)

$ dump
DUMP_CAL_17103)
_CAL dump

¢
(
c
(
c
SRAD_MORE see E

!
'Y
i
i
+-
I
'

+-SRAD_RTD720-+-LOOKS_OK
RTD720 |
header +-SET_FILE_NAME see 13
durp !

T-FDUND see 1

t

+- (DUMP_GEN_DESC)

t
+- (DUMP_GENERAL _CHAN)

]
)
++ (DUMP_RTD_DEV_DESC)

R dump
+-(DUMP_RTD_CHAN_DESC)
| RC dump
+-(DUMP!_RTD_EXP_SUB_DESC)
| RES dump
+-(OUMPI_RTD_LC_SuB_DESC)
| RLS dump
+-(DUMP]_RTD_CC_SUB_DESC)
| RCS dump
+- (DUMP_CAL_RTD)
| R_CAL dump
+-SRAD_MORE see E

+-BUILD_PLOT-+- (GSASF) GKS stuff
! layout |
| plot +(GSTXR) .

Sandia National Laboratories Underground Testing

5-43

Data Collection System

Sandia National Laboratories

PRELEWD Maintenance Information

l
?-<alen) .
+-(GBELNT) .

“WLIMIT-+-(GQDSP) OKS
plot |

surface+-FOUND see |
bounds

P —

!
;-(OIUKV#) oxs
- (a8WKWN)

++PRETTY_PLOT-+<(GBCHH) GKS
set aize
snd
bounds

+-WTLENG see G
| get text bounds
+<(0QTXR) OKS

|
:-rouuo see !
+-(GSTXR) OKS
+-LEGEND-+-(QSPLI) GKS
write
l:gcnd +-(GETX1) OKS
| !
requirede -ELIMINATE_BLANKS
!
¢-WHAT_LABEL see 10
!
+-{QSCHH) OKS
1
]
+-(GQTXX) OKS
]
+-(GPL) GKS
!
+<{GTX) GKS
H
+-FOUND see !
“NAXI§-+-
draw |
X BRige:

tabels)
etc.

NICE LIMITS see H

set s per 1/2/5 scaling
MODIFY_X_LABEL

sdd ofTeet and scale to label
-(GSTX1) OKS

«(GSCHN) OKS

*WTLENG see G

+(GTX) GKS

+(QSPLI) GKS

W e B - -

~WAX18 (14)-+-(GBPLI) GKS
| draw }

lines +-(GPL) GKS
+-TAL (15)-¢-ADJUST_MIN see |
| do tics | get nice minx

Underground Testing

5-44

Data Collection System PRELEWD Maintenance Information

and +<ADJUST MAX ses J
Labels | get nice man x
+- (GECHUP) OKS
|
¢-(aSPLI)Y OXS
|
& (0PL) OKS
!
*-GRID=+-(GSPLT) OKS
draw |
grid +-(GPL) OKS

+<WLABEL see K

+-FOUND nee |

S-YAXIS-¢-NICE_LINITS see H

draw |

y anige-(QSCHUP) OKS

Labels]

etc ;*(Bl!ll) aKs
?"ntcNN) oKs
;‘(nlvtl) GKs
«-MAXIS aee 14

!
++-WTLENG nee G

|

+<(GTX) OXS

]

+-TAL see 13
!

+-FOUND see !

MRITE_TITLE-«-SAMUX_POST see 12
write | WX sub-channels
four «(GBTX!) OKS

title

Lines «-(GSCHM) OKa

%

*+-WTLENG see O
3

++(GTX) OKSB

¢-RIGHT-*-(QSPLI) OKS
right |
anis +-(Q8TXI) OKS
Label |

+-(QSCHK) OKS

!

+-WILENG see G

|

+-U2NDC

| User to NDC conversion
+-(GTX) GKS

!
+-(GPL) GKS

+-(Q8WN) OKS

Sandia National Laboratories Underground Testing

5-45

Data Collection System

-(Q8VP) OKS

no legend

transformations
~(QsPLL) OKS

s-DETERMINE _DIMENSIONS

| partition one-d srray for dats
+-SPECIAL_CONSIDERAT IONS

| WX end special stutf here
<OATA FETCH:-RDR--FOUND see !
tetch data | resd date record
and plot 1t+-FOUND see !

A 4

set up first !
|

-

process 236 192
words

either 10000 cdeta
points or done

;' (GUESCO02) OKS
+- (GCLAWK) GKS

!

+-CLOBE_STATION-+-(GPREC) OKS
close work
station, +-FOUND see !
done or need |
to write file :-(OUIIC) axs

i
+<(QSCR) QXS

close it

S(LIBSGET_LUN)

P ———

Sandia National Laboratories

5-46

data point .

PRELEWD Maintenance Information

~LEGEND_XFORM-+- (OBWN) GKS
!
ploting +<(QBVP) OKS

!

+-MUDDLE 7912 -OPCODE see L

| meld 7§12 plot Lines to Y Line
+-FIRST_DATA_POINT-+-OPCODE sew L

crack 1*2 word
GET_ANS see N
counts to eng units

+-UNKNOWN_OPCODE see N

12 word not clear

*PROCESS _ONE_WECORD:+-OPCODE nee L

| whatts in %2 word

+<DATA_VALUE see O

| deta!

*«NEW_REPEAT nee P

| repaat!

;~uuxum_mcoz e
N

who knows?

+-PLOT_ARRAY_FILLED (16)-+-SRAD_DECIDE see

! -}
IFF SRAD
+-0ATA see R

thin and plot it

+-DEACTIVATE_AND_CLOSE-+-(GRACWK) GKS

!
+-FOUND see !
!
++ (GDAWK) GKS
4
i
+-(GCLWK) CKS

Underground Testing

Data Collection System PRELEWD Maintenance Information

#-PARSE_CL!--FOUND see !
| split spawn cmd into pieces
+<(LINSFREE_LUN)

!
++(LIBSSPAWN)

!
+-SRAD_7912_DATA- - FOUND see
| 1FF SRAD § 7912 tinish data
+-SRAD_CLOSE- - FOUND see !

ItF §RAD close SAD file

*-CLOBE_GKS--(GCLKS) OKS

| close GKS, all done
+-(SEND_NETWORK_M$G)

| tell Supermon we are done
+-(DISCONNECT _NETWORK_LINK)

| break Supermon communications
+- (CHANGE_COMM_SYW)

| Tell RTD_SCHEDULER we're done
+-CLIDSENABLE_CTRL)

| tnable control Y
s (EXLIT)

"C1AO babe"

This (s a detached tree starting st the subprogram SHO_ERROR, BNO_ERROR writes a line pointing to an
nonprinting character in the original string. This is a detached tree starting at the subprogram SANDUS

SANDUB-+-YT ONE D see & These are all SPECIAL conversions
of data beyond the A'y(counts)+8

<YT_HYDRO see 7 conversion,

~1YPE X see 8

“TYPE_E see 9

B B - - —

<SLIFER

this is & detached tree starting at the subprogram SPECIAL_STR. SPECIAL_STR works with SHO ERROR. This is
» detached tree starting at the subprogram XTR_R_CAL XTR_R_CAL--FOUND see ! if at this point no cal files
are known. This is & detached tree starting at the subprogram SCOPE plot bounds. This is a continuetion
tree starting at the subprogram POLEVAL

(A) POLEVAL--FOUND see !

This is 8 continuation tree starting at the subprogram /17912 CAL_EARLY' (B) T7912 CAL_EARLY-+-PAGEY LABELS
special labels for T48 cals page !

~FOUND see

*PAGE2_LABELS (17)--LOR se3 11
special (absls for 748 cais, page 2
*PAGEI_LABELS

special lubels for 148 cals page 3

P o o A —

This is & continuation tree starting st the subprogram 'T7912_CAL_LATE' (C) T7912_CAL_LATE-+-PAGE!_LABELS es
above but normal cals

!

+-FOUND see 1

!

+-PAGE2_LARELS weoe 17
3

+-PAGE3_LABELS

Sandia National Laboratories Underground Testing

5-47

Data Collection System PRELEWD Maintenance Information

This is & continuation tree starting at the subprogram 'CAL_DATA_PROVIDED' (D)
CAL_DATA_PROVIDED-+-APPEND_ERROR adds to error title Line if bad

cal info for deta
-FOUND see 1

—— A —

+-NO_DUPES cal level labels on right axis

i

]

+-SORT_EM makes sure they are in order
This s & continuation trec starting at the subprogrem 'SRAD_MORE' (E) SRAD_MORE--FOUND see 1. Thin is @
continuation tree starting st the subprogram 'SRAD_7912 HOI!' (F) SRAD_7912 noue <FOUND see 1. This (s a
continuation tree atarting at the subprogram 'WTLENG’ (G) WTLENG-+-(GQCHUP) GKS

]

'
+-FOUND see 1

+-(QRCHUP) GKS

+-(COTXP) GKS

+-(QBTXP) GKS

«-€GQTXK) GKS

;hit,in a continuation tree starting at the subprogram 'NICE_LIMITE’ (M) NICE_LIMITS-+-ORIGIN_OFFSEY weird
ata

|

¢<DATA_MAGNITUDE-- FOUND see 1

| micro or mege?
+<MAJ_ANNOT - FOUND see 1

| major and minor divisions on plot
+-ADJUST_MIN see |

!
+-ADJUST_MAX see J

This 18 A continuation tree starting at the subprogram ‘ADJUST MIN' (1) ADJUST MIN--FOUNO nee 1. This iy &
continuation tree storting st the subprogram ‘ADJUST_MAX! (J) ADJUST MAX- - “FOUND see 1. This (s a
continuation tree ttnrtine at the subprogram IWLABELT (K) WLABEL-+-(GSTX!) GKS

l

+-LAB_LENGTH- - FOUND see !

char positions for label
*ELIMINATE_BLANKS

* —_—

*WILENG see G

-(GTX) GKS§

—— - W —

~FOUND see0 !
This is a continuation tree starting at the subprogram 'OPCODE’
(L) 09CO0E~7-(LI!3€KTZV)
l'DECODE_B_OH_EIY-'(LICSEXYZV) don’t look here for help
This is a continustion tree starting at the subprogram 'GET _ANS'
(M) GEY‘ANS~T-FOUND see 1
:-YY_ONE_D see 6 These are all special conversions

] beyond A*y+B
+-YT_HYDRO see 7

Sandia National Laboratories Underground Testing

5-48

Data Collection System PRELEWD Maintenance Information

!

+-TYPE_K see 8
]

|

+-TYPE_E see 9
|

|

+-SLIFER

This is a continuation tree starting at the subprogram ’'UNKNOWN_OPCODE’ (N) UNKNOWN_OPCODE--FOUND see 1.
This is a continuation tree starting at the subprogram 'DATA_VALUE'

(0) DATA_VALUE-+-GET_TIME (18)--FOUND see 1

| gets X value at current point

+-GET_ANS see M

| gets Y value at current point

+-PLOT_ARRAY_FILLED see 16

| either done or 10000 points

+-SAMP_RATE_CHANGE (19)--FOUND see 1
need to change sample interval

This is a continuation tree starting at the subprogram ’/NEW_REPEAT’
(P) NEW_REPEAT-+-FILL_GAP-+-GET_TIME see 18
| make plot}
| look OK +-PLOT_ARRAY_FILLED see 16
1
]
+-SAMP_RATE_CHANGE see 19
This is a continuatiun tree starting at the subprogram ‘SRAD_DECIDE’
(Q) SRAD_DECIDE-+-SRAD_MORE see E
|
1}
+-SRAD_DATA--FOUND see 1
This is a continuation tree starting at the subprogram ‘DATA’
(R) DATA-+-(GSPLCI) GKS
)
'
+-THINN- - LOOKN
! thin the data to the workstation limits
+-QRAD_DATA--FOUND see 1
| Like SRAD only sherter and faster
+-(GSELNT) GKS
[}

]
+-(GPL) GKS

Sandia National Laboratories Underground Testing

5-49

Data Collection System PRELEWD Maintenance Information

Sandia National Laboratories Underground Testing

5-50

Data Collection System RTDTEST Maintenance Information

6.0 RTDTEST MAINTENANCE INFORMATION

6.1 Purpose

This maintenance document describes the RTDTEST software system that manages Tektronix
RTD720 Digitizers (RTDs) using Digital Equipment Corporation (DEC) computers and workstations.

6.2 RTDTEST Functions

The functions of the instrument control software RTDTEST allow the user to modify RDT720 setups,
modify ICFs, and indicate to the INGRES software to update the data base. RTDTEST allows
interactive control to acquire, analyze, and display (plot) dry run data at the terminal. Additional
functions RTDTEST provides are to send commands to an RTD720, obtain status information, and
calibrate the RTD720.

6.2.1 Set up the RTD from the ICF

This optior. allows the operator to set up an RTD for Dry Run/Shot Configuration based on
information residing in the INGRES data base. It accomplishes this by reading the ICF and sending
the appropriate commands (ASCII strings) to an RTD. (Refer to 6.2.2 and 6.2.3)

6.2.2 Modify the ICF

The ICF can be modified by changing the device (RTD) settings according to the options for each
function listed below.

Acquire:

a) Internal;

b) Length

¢) Mode;

d) Clock;

e) Number of records; and
f) State

Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Maintenance Information

Trigger:

a) Source;

b) Coupling;

c) Slope;

d) Type Level,
e) Level;

f) Type position,
g) Position; and
h) Mode

Arming can be set to:

a) External, or
b) Internal

Channel settings can be modified according to the options for each function listed below.
Channel Settings:

a) Range,

b) Offset,

c) Type offset,

d) Coupling,

e) Band-width, and
f) Channel off/on

Sub Channel:

a) Left bound, and
b) Right bound

Note: This for the first ten (1-10) subrecords in the INGRES data
base. The left and right bound are used only by PRELEWD for
plotting, and do not affect the RTD.

The ICF is used as the means to transport these changes to the INGRES data base if required. If not
transported, the changes are used only for the current RTDTEST session (See 6.2.1 and 6.2.3).

Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Maintenance Information

6.2.3 Update INGRES Data Base

At the end of the current RTDTEST session and if an ICF was modified, the operator is asked if the
modified ICFs should be sent to the INGRES data base for updating. If the response is Yes, the ICFs
are copied from their present directory to an INGRES directory.

6.2.4 Acquire Data from an RTD

If an RTD has acquired data previously (acquisition cycle has completed - an Event code equal to
465), the operator can pull the data from the RTD and plot it on the terminal being used (Refer to
5.5).

6.2.5 Plot the Acquired Data to the Terminal

A two-dimensional plot of X,Y data is available if an RTD has acquired data and if that data has been
written into a temporary file. The option in Section 6.2.4 has to be done first. A graphics terminal is
required for this function.

6.2.6 Display RTD Set Up Information

This program queries a specific RTD720 for its current internal set up and displays the information
on three FMS forms.' This program serves the same function as pressing the Utility button on the
front panel and then pressing the View button (on the left side of the front panel) three times.

6.2.7 Send Individual Manual Command to an RTD.

The operator can send a command (ASCII string) to the RTD. However, a query command, a
command with a "?", cannot be sent.

For example, the operator wants to change the number of channels available for data acquisition. If
the current channel configuration is set to one (VMODE = CH1) and the two channel configuration
is needed (VMODE = DUAL), the operator will type "VMODE DUAL" and press the return key.

Note: The only checking done is for a query "?" command.
However, if the command is typed incorrectly, it can be re-entered.

' The forms are identical to those shown in The RTD720 Transient Digitizer Operator Manual
revised February 1991, pp. 3-125 through 3-126.

Sandia National Laboratories Underground Testing

6-3

Data Collection System RTDTEST Maintenance Information

6.2.8 Calibrate an RTD

The operator can calibrate a specific RTD for a) Time, b) Trigger, ¢) Vertical, or d) All. In
addition, the operator can set the RTD back to factory default settings.

6.2.9 Interface with CONTROL

RTDTEST is accessed through the CONTROL software. A complete description of CONTROL and
its interface is discussed in the VAX-available document, RTDTPDWN . HT, by R. J. Isidoro of SNL
Department 9321.

6.3 Program Function Descriptions

RTDTEST is a menu-driven system based on the DEC FMS. Only those responses found on the
menus (forms) will be accepted. All other responses will be shown on the terminal as an error and
give the operator infinite additional chances to respond correctly. Most menus where appropriate will
allow the operator to Quit RTDTEST.

RTDTEST driver. This program is the main module that controls all programs (subroutines) in
RTDTEST (Refer to 6.5 Program Calling Tree).

Four major functions are performed. The program 1) obtains the name of the node where RTDTEST
is currently executing; 2) creates and opens the log file with a name format of the Node, Date,and
Time - (i.e., RTDTEST_RMV10_18JUN92_132421.log); 3) controls the logic flow of the its three
subordinate programs a) initialize, b) process, and c¢) wrap up; and 4) closes the log file and writes
the log file name to the terminal for the operators information.

RTDTEST _initialize. This program is executed only once during a session and performs the
following four functions: 1) obtains the user name; 2) obtains the process name; 3) sets up the Forms
Management System (FMS) and; 4) displays the WELCOME form on the terminal.

RTDTEST Process. This program has three major functions: 1) the first time in the current session,
it calls the program "RTDTEST _node," which in turn calls the program
"RTDTEST_Get_Device_address"; 2) it displays the form MAIN on the terminal; and 3) it controls
the logic for all further processing.

This is the program that contains the major processing loop and it keeps processing until the operator
responds with a Quit.

Sandia National Laboratories Underground Testing

6-4

Data Collection System RTDTEST Maintenance Information

The following selections can be chosen by this program:

(a) Select a bus (Normally two buses are available),

(b) Select one RTD720 digitizer from the ones available,

() ICF Management - With this option, certain fields can be modified in value content.
(d) Calibration - with this option a specific RTD720 can be calibrated,

(e) Status Information (RTD720 set up) can be viewed, and

() Miscellaneous Functions.

RTDTEST wrap_up. This program is executed only once during a session and performs the
following three functions: 1) displays the END form on the terminal; 2) closes down the FMS; and
3) de-assigns the channel reference to the GPIB bus interface.

Convert_error_code. This subroutine converts an error code into a readable message using a system
call "Lib$sys_getmsg"

DEC GPIB_QIOW subs. This file is a collection of several subroutines used to access the DEC
GPIB bus and, in general, devices attached to the bus. The subroutines are 1) Initialize the GPIB, 2)
Set GPIB timeout, 3) Listen, 4) Unlisten, 5) Talk, 6) Untalk, 7) Clear, 8) Serial poll, 9) Recognize
Event, 10) Set Event, 11) Remote enable, 12) Write to a device, 13) Read from a device (ASCII),
and 14) Read from a device (Byte).

Extract_string. The purpose of this subroutine is to search an ASCII buffer for a certain string of

characters and then extract the characters following that string delimited by ', or ')" or '". The
main purpose for this program is to decode queries (ASCII strings) returned from an RTD.

Find_node. The purpose of this subroutine is to find the computer node the program RTDTEST is
currently running on by using a system call to "lib$sys_trnlog".

Get_chan_from_icf. The purpose of this subroutine is to read an ICF and copy specific channel
information from an RTD720 into a temporary structure for use by subroutines in the RTDTEST
system.

Get_device_from_icf. The purpose of this subroutine is to read an ICF and copy specific information
from an RTD720 into a temporary structure for use by subroutines in the RTDTEST system.

Sandia National Laboratories Underground Testing

6-5

Data Collection System RTDTEST Maintenance Information

Get_process. The purpose of this subroutine is to find the process name (ASCII string) using a
system call to "lib$getjpi".

Get _subchan_from_icf. The purpose of this subroutine is to read an ICF and copy specific
subchannel information from an RTD720 into a temporary structure for use by subroutines in the
RTDTEST system.

Get_User. The purpose of this subroutine is to find the user's name (ASCII string) by using a system
call to "lib$getjpi".

10SB_error. This is a standard error handling routine to format and print the 1/O status block (IOSB)
from an error detected during a QIOW request. In addition, this subroutine calls the system routine
to translate the IOSB(1) code into a readable description.

The Queue 1/0 request and wait (QIOW) service queues an I/O request to a channel associated with a
specific device. For a complete definition, refer to the VAX/VMS System Service Reference Manual,
April 1986, Software version: 4.4, pages SYS-277 through SYS-282.

The 1/0 status block (I0SB) receives the final completion status of the I/G operation. It has three
fields: 1) condition value, 2) transfer count, and 3) device-specific information.

Modify_chan_on_ICF. The purpose of this subroutine is to put modified channel information back
into the ICF (a specific channel record for a specific RTD device address).

Modify device_on_ICF. The purpose of this subroutine is to put modified device information back
into the ICF (for a specific RTD device address).

Modify_subchan_on_ICF. The purpose of this subroutine is to put modified subchannel information
back into the ICF (for a specific channel record and a specific RTD device address).

Notebook. Any time the operator has an option (on a form) to make an entry into Notebook, this
program 1) displays the Notebook form on the terminal and 2) copies the comments entered by the
operator on the form and writes them to the permanent file, Notebook.fil This file can be viewed
later by using a source editor, or the file can be printed.

Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Maintenance Information

Query RTD720. This program accepts an ASCII RTD query command and sends it to the specified
RTD. Its second function is to read the response from the RTD and send the ASCII message back to -
the terminal for the operator to view,

RTDTEST Get_Device_Address. This program has the following three functions: 1) determines
which bus form is required and displays that form on the terminal, 2) edits the operator response
based on which node or bus was selected, and 3) passes back the GPIB bus address for the RTD in
question (i.e., I, 2,30).

RTDTEST _ICF _modification. This program has the following functions: 1) displays the form MOD
on the terminal; 2) allows the operator to select the record to modify, that is, device attributes or
channel/subchannel information, depending upon the "use"; 3) displays the USE form on the terminal
- i) USE = 0 means data, ii) USE = | means cable compensation, and iii) USE = 2 means laser
calibration; 4) display the SEL form on the terminal allowing the operator to pick a channel for
modification and then displays the CHAN form (If a device was selected to be modified the program
displays the DEV form); 5) depending upon the selection, the following programs are called: for
device modification - Get_device_from_ICF and Modify_device_on_ICF, for channel subchannel
modification - Get chan_from_ICF, Modify_chan_ on_ICF and Modify_subchan_on_ICF.

RTDTEST ICF _management. This program displays the form ICF on the terminal and allows the
operator to select the following functions: a) ICF Madification, b) update an RTD from the ICF, ¢)
plot data stored in an RTD if available, and d) make an entry to the Notebook.

RTDTEST calibration. This program will display the CAL form on the terminal, and allow the
operator to calibrate a specific RTD by using the STANDARDIZE commands: a) Time, b) Trigger,
c) Vertical, or d) All, and SAFEGUARD (Factory Default) command.

RTDTEST display plot. This program generates a two-dimensional plot of X,Y data obtained from
an RTD if data was available. A graphics terminal is required for this function.

RTDTEST manage plot. This program performs the following functions: 1) calls

RTDTEST get_data (written by R. B. Caudell), 2) calls RTDTEST_THINN (written by P. Kaestner)
that thins (compresses) the data to fit the number of terminal rasters, and 3) calls

RTDTEST display_plot (modified version of a plot program written by J. Lee) that displays the data
graphically on the terminal.

Sandia National Laboratories Underground Testing

Data Collection System RTDTEST Maintenance Information

RTDTEST manual_command. This program displays the COMM form on the terminal and allows
the operator to send a command to a specific RTD. The only editing this program performs on the
command is to check for a '?* or cuery. No queries can be done with this program.

RTDTEST _Node. This program has the following functions:

(h It displays one of several forms, depending on the node

(a) RMV10,
(b) RMV?20, or
(c) RMV30

These forms allow the operator to choose one of two buses (EKAO or EKAI);

(2) It calls RTDTEST _bus, which passes back to this program the device address (i.e., 1,
2, or.... 30); and

3) It passes back the GPIB port (bus) either EKAO or EKAI.

RTDTEST pull_data. The purpose of this program is to get data from a specific RTD. The
functions of this program are to retrieve data from an RTD if it has completed its acquisition cycle
and to retrieve the Preamble.

RTDTEST set_up_RTD. This program handles the communication between the DEC VLC 4000
Workstation (RMV 10 and others) and any one of several RTDs attached to its GPIB bus. It takes
information passed to it from the ICF. This sets up an RTD for Dry Run/Shot Configuration by
translating the information into ASCII strings (the language of the RTD) and sending the commands
through the GPIB bus to the RTD.

RTDTEST set_up_info. This program has the following functions: (1) calls Query RTD several
times to obtain status information from an RTD, (2) calls Extract_string more than one hundred
times, and (3) Prints the RTD set up information (three forms are required).

RTDTEST set_up_communication. This program (1) de_assigns the assigned channel that handles
communication the VAX's IEx communication port and the RTDTEST programs, if it is not the first
time through in this session, and (2) sets up the necessary communication between the DEC VLC

Sandia National Laboratories Underground Testing

6-8

Data Collection System RTDTEST Maintenance Information

4000 Workstation/EKx communication port attached and the RTDs. Refer to the source code for
additional information.

Send_command _to RTD. This progriim sends one (ASCI string) command to a specific RTD and
no editing is done. (You get what you type.)

Str_Length. Str_Length.for finds the unpadded length of a character string and returns it as the
function value. The unpadded length is not necessarily the same as the length returned by the built-in
Len function. (This function was written by Jonathan P. Anspach, EG&G Energy Measurements,
Inc., in support of Sandia National Laboratories.)

Table_modified. This integer function first tests to see if it is running on one of the nodes ACEnn,
RMVj0, or SANmmm. If not, it returns a status value of 0. No further action occurs,

The code uses system service SYSSFILESCAN to parse FILE_SPEC for the file name, which is
stored in FILE_NAME. It then checks directory TABLE_DIR for a file named FILE_ NAME. TBL
(or named FILE_NAME.DAT if a SANDUS or SANDACE node is used). [f there is no such file,
the routine returns a status value of 4. No further action occurs,

If FILE_NAME TBL (FILE_NAME.DAT if a SANDUS or SANDACE node is used) exists, the
routine uses run-time library routine LIBSDELETE_SYMBOL to delete any local symbol with the
name FILE_NAME. Any error return from LIBSDELETE_SYMBOL. is passed back to the caller.
If deletion of any local symbol was successful, the code uses the run-time library routine

LIBSSET_SYMBOL. to create the global symbol FILE_NAME with u value of FILE_NAME. An
error return from LIBSSET_SYMBOL is passed back to the calling program.

6.4 Command Procedures

The following two sections describe the verbatim command procedures for (1) compiling and linking
RTDTEST or (2) linking only RTDTEST.

Sandia National Laboratories Underground Testing

6-9

Data Collection System

6.4.1 Compile and Link RTDTEST

$!
s/
$!
s!
§!

nnnnnn

$ set verify

$!

$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For
$ For

Convent_error_code
DEC_GPIB_QIOW_subs
Extract_string

Find_node
Get_chan_from_ICF
Get_device_from_ICF
Get_process
Get_subchan_from_ICF
Get_user

10SB_error
Modify_chan_on_ICF
Modify_device_on_ICF
Modify_subchan_on_ICF
Notebook

Query _RTD720

RTDTEST _Get_Device_Address
RTDTEST_ICF_modification
RTDTEST_ICF_management
RTDTEST _calibration
RTDTEST _driver
RTDTEST _display_plot
RTDTEST _initialize
RTDTEST _misc_functions
RTDTEST_manage_plot
RTDTEST_manual_command
RTDTEST _node

RTDTEST _process
RTDTEST pull_data
RTDTEST _set_up_RTD720
RTDTEST _set_up_info
RTDTEST _set_up_communication
RTDTEST _wrap_up
Send_command_to_RTD720

Sandia National Laboratories

6-10

RTDTEST Maintenance Information

Underground Testing

Data Collection System

$ For Str_length

$ For Table_modified

$ For Thinn

§!

$ Link RTDTEST driver.-
Convert_error_code,-
DEC_GPIB_QIOW _subs,-
Extract_string,-
Find_node,-
Get_chan_from_ICF,-
Get_device_from_ICF,-
Get_process,-
Get_subchan_from_ICF
Get_user,-
I0SB_error,-
Modify_chan_on_ICF,-
Modify_device_on_ICF,-
Modify_subchan_on_ICF,-
Notebook.-
Query_RTD720,-
RTDTEST _Get_Device_Address,-
RTDTEST_ICF_modification,-
RTDTEST_ICF_management,-
RTDTEST _calibration,-
RTDTEST _display_plot,-
RTDTEST _initialize,-
RTDTEST_misc_functions,-
RTDTEST_manage_plot,-
RTDTEST _manual_command,-
RTDTEST _node,-
RTDTEST process,-
RTDTEST _pull_data,-
RTDTEST _set_up_RTD720,-
RTDTEST _set_up_info,-
RTDTEST _set_up_communication,-
RTDTEST_wrap_up,-
Send_command_to_RTD720,-
Str_length,-
Table_modified,-
Thinn,-
GKSEXTEND/LIB, -
sys$input/option

Sandia National Laboratories

6-11

RTDTEST Maintenance Information

Underground Testing

Data Collection System

gksdir:gksflb.exe/share
sys$share:vaxcrtl.exe/share,-
L.D:[UtilityJutility/lib

$!

$ purge *.obj

$!

$ rename RTDTEST _driver.exe

§!

$ set noverify

$!

$! 0 e

$! End of .COM file
$! eeeeccesneees

6.4.2 Link Only RTDTEST

$ set verify

$!

$ Link RTDTEST driver,-
Convent_error_code,-
DEC_GPIB_QIOW _subs,-
Extract_string,-
Find_node,-
Get_chan_from_ICF,-
Get_device_from_ICF,-
Get_process,-
Get_subchan_from_ICF.-
Get_user,-
10SB_error .-
Modify_chan_on_ICF,-
Modify_device_on_ICF,-
Modify_subchan_on_ICF,-
Notebook -
Query_RTD720,-
RTDTEST_Get_Device_Address,-
RTDTEST _ICF_modification,-

Sandia National Laboratories

6-12

RTDTEST Maintenance Information

RTDTEST .exe

Underground Testing

Data Collection System

RTDTEST_ICF_management,-

RTDTEST calibration,-
RTDTEST _display_plot,-
RTDTEST _initialize,-

RTDTEST_misc_functions,-

RTDTEST _manage_plot,-

RTDTEST manual_command,-

RTDTEST _node,-
RTOTEST _process,-

RTDTEST pull_data,-

RTDTEST set_up_RTD720,-

RTDTEST _set_up_info,-
RTDTEST _set_up_communication -
RTDTEST _wrap_up,-

Send_command_to_RTD720,-

Str_length,-
Table_modified,-
Thinn,-

GKSEXTEND/LIB, -

sys$input/option

gksdir:gksflb.exe/share

sys$share:vaxcrtl.exe/share,-

LD:[Utility)utility/lib
$!

$ purge *.obj
$!

$ rename RTDTEST _driver.exe

$V
$!

LA ——

3! End of .COM file

LA ——

$ set noverify

*1

RTDTEST processing log start

(*) RTDTEST _driver start

Sandia National Laboratories

RTDTEST Maintenance Information

RTDTEST .exe

15-DEC-1992 15:49:28.93

6-13

Underground Testing

Data Collection System

The logfile is:
The logfile_lun:

o RTDTEST _initialize start
User is:
Node is:
Process is:
RTDTEST _initialize stop

o0 RTDTEST _process start
You selected option:

o RTDTEST _Node start

You selected option:
The BUS (Port) ID passed is:

RTDTEST_Node stop

o RTD720 set up communication start
The BUS (Port) ID passed is:
The First_time_set_up is:
The "Assign channel" is:
The BUS (Port) ID passed is:
The "Assign channel” is:
Initialized GPIB bus to address:

RTD720 set up communication stop

o RTDTEST_Get_Device_Address sta
You selected option:
You selected device address:

RTDTEST_Get_Device_Address stop

o RTDTEST _set_up_in®) start
Assign channel passed is:
Port ID passed is:

Device address passed is:
RTDTEST _set_up_info stop

Sandia National Laboratories

RTDTEST Maintenance Information

ABQVAX::LD:[RTDTEST.LOGS)JRTDTEST_RMV10_15DEC92_154928.log

119

15-DEC-1992 15:49:29.31
RCAUDELL
RMV10
RCAUDELL

15-DEC-1992 15:49:30.85

15-DEC-1992 15:49:30.87
6 - Query Set Up Info

15-DEC-1992 15:49:36.68
3-Busll
EKAOQ:

15-DEC-1992 15:49:51.55

15-DEC-1992 15:49:51.59
EKAQ:
True
240
EKAO:
240
0
15-DEC-1992 15:49:51.63

15-DEC-1992 15:49:51.64
A - RTD720 address 1
|

It

15-DEC-1992 15:49:55.87

15-DEC-1992 15:49:55.88
240
EKAO:
1
15-DEC-1992 15:50-17.18

Underground Testing

6-14

Data Collection System

You selected option:

o RTDTEST _calibration start
You selected option

*1
o Send_command_to_RTD720 start

Command sent to the RTD720 is:

Send_command_to_RTD720 stop

Calibrating TIME complete PASS

You selected option
RTDTEST_calibration stop

You selected option:
o RTDTEST_misc_functions start
You selected option
RTDTEST _misc_functions stop
You selected option:
o RTDTEST_ICF_management start
You selected option:
RTDTEST_ICF_management stop

You selected option:

RTDTEST_process stop

o RTDTEST_wrap_up start
De_assigned GPIB_channel
RTDTEST_wrap_up stop

(*) RTDTEST _driver stop

RTDTEST Maintenance Information

5 - Calibration

15-DEC-1992 15:50:26.77
3 Calibrate Time

15-DEC-1992 15:50:33.46
STANDARDIZE TIME;
15-DEC-1992 15:50:33.48

Press Return
2 Previous Menu
15-DEC-1992 15:50:49.69
7 - Miscellaneous Functions
15-DEC-1992 15:51:09.29
2 - Previous Menu
15-DEC-1992 15:51:14.17
4 - ICF Management
15-DEC-1992 15:51:20.76
2 - Previous Menu
15-DEC-1992 15:51:28.96
1 - Quit

15-DEC-1992 15:51:40.88

15-DEC-1992 15:51:40.88
240
15-DEC-1992 15:51:43.11

15-DEC-1992 15:51:43.11

RTDTEST processing log finish

*1

Sandia National Laboratories

Underground Testing

6-15

Data Collection System RTDTEST Maintenance Information

6.5 Program Calling Tree

The following pages illustrate the hierarchical RTDTEST programs relationship to each other. Calls
to get date/time, get system assigned logical unit numbers, or any Forms Management System calls
are not shown in this Tree.

Ji
RTDTEST_DRIVER

|

+-FIND_NODE

|

+-RTDTEST_INITIALIZE
+-GET_USER

+-GET_PROCESS
-RTDTEST_PROCESS
+-NOTEBOOK

l

+-RTDTEST_NODE

I

+-RTDTEST_SET_UP_COMMUNICATION (A)
l

+-RTDTEST_GET_DEVICE_ADDRESS

-RTDTEST _ICF_ MANAGEMENT
+-RTDTEST_ICF_MODIFICATION (B)

|
+-GET_DEVICE_FROM_ICF (C)

|
+-GET_CHAN_FROM_ICF (D)

f
|
1
|
+
|
|
|
|
|
I
i
|
I
l
!
1
!
|
|
|
|
I

|
+-RTDTEST_SET_UP_RTD720 (E)

|
+-RTDTEST_MANAGE_PLOT (F)
|
+-NOTEBOOK
-RTDTEST_CALIBRATION
+-NOTEBOOK

!
+-SEND_COMMAND_TO_RTD720 (G)

{
|

+
|
|
l
f
!
|
|
|
|
i
|
+
!
i
I
!

Sandia National Laboratories Underground Testing

6-16

Data Collection System RTDTEST Maintenance Information

1 +-QUERY_RTD720 (H)

+-RTDTEST_SET_UP_INFO
+-QUERY_RTD720 (H)

3 I

! +-EXTRACT_STRING

|

|

+-RTDTEST_MANUAL_COMMAND
+-NOTEBOOK

|
+-SEND_COMMAND_TO_RTD720 (G)

-RTDTEST_WRAP_UP
+-TABLE_MODIFIED

— e ——————

*1
(A) RTDTEST_SET_UP_COMMUNICATION
+-10SB_ERROR- +-CONVERT_ERROR_CODE

|

+-TIMEOUT
L-UNLISTEN
L—~UNTALK
L--REMOTE_ENABLE
L-SET_EVENT
(B) RTDTEST_ICF_MODIFICATION
+-GET_DEVICE_FROM_ICF
| +-CLOSE_TBL
L-OPEN__TBL

|
+-READ_TBL_REC

+-CLOSE_TBL
|
+-OPEN_TBL

|
1
|
:
+-MODIFY_DEVICE L 'CF
|
l
:
| I

Sandia National Laboratories Underground Testing

Data Collection System

RTDTEST Maintenance Information

+-READ_TBL_REC

|
+-MODIFY_TBL_REC

-GET_CHAN_FROM_ICF (D)

-GET_SUBCHAN_FROM_ICF
+-CLOSE_TBL

+-READ_TBL_REC

-MODIFY_CHAN_ON_ICF

+-CLOSE_TBL

I
+-OPEN_TBL

l
+-READ_TBL_REC

I
+-MODIFY_TBL_REC

+-MODIFY_SUBCHAN_ON_ICF
+-CLOSE_TBL

|
|

+-OPEN_TBL

|

l

|
+
|
+
}
| +-OPEN_TBL
|

l
+
|

|

|

|

|

I

!

!

l
+-READ_TBL_REC

+-MODIFY_TBL_REC

Ji
(C) GET_DEVICE_FROM_ICF
+-CLOSE_TBL
|
+-OPEN_TBL

|

|
+-READ_TBL_REC

(D) GET_CHAN_FROM_ICF
+-CLOSE_TBL

3
+-OPEN_TBL

Sandia National Laboratories

6-18

Underground Testing

Data Collection System

RTDTEST Maintenance Information

+-READ_TBL_REC

(E) RTDTEST_SET_UP_RTD720

+-STR_LENGTH

|
+-LISTEN

|

+-10SB_ERROR

I
+-WRT_RTD720

(F) RTDTEST_MANAGE_PLOT
+-NOTEBOOK

|
+-RTDTEST_PULL_DATA

l
f
|
l
I
l
I
|
I
l
!
l
I
|
i
!
I
l
+
:
+
!

+-UNLISTEN

f
+-10SB_ERROR

I
+-UNTALK

l
+-LISTEN

l
+-WRT_RTD720

!
+-TALK

|
+-READ_RTD720

|
+-READ_RTD720_BIG

|
+-QUERY_RTD720 (H)

-EXTRACT_STRING

-THINN--LOOKN

+-RTDTEST_DISPLAY_PLOT

Sandia National Laboratories

+-AUTO_SCALE

|
+-DEFINE_XFORMS

6-19

Underground Testing

Data Collection System RTDTEST Maintenance Information

*1
(G) SEND_COMMAND_TO_RTD720
+-UNLISTEN

|
+-10SB_ERROR

L-UNTALK
L-LISTEN
L--WRT__RTD720
(H) QUERY_RTD720
+-LISTEN
L-IOSB_ERROR
L-WRT_RTD?ZO
L-TALK

I
+-READ_RTD720

Sandia National Laboratories Underground Testing

6-20

Data Collection System RTDTEST Maintenance Information

Sandia National Laboratories Underground Testing

6-21

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

APPENDIX A

INSTRUMENT CONTROL FILE FOR
TEKTRONIX RTD 720
DIGITIZERS

Sandia National Laboratories Underground Testing

A-1

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

Sandia National Laboratories Underground Testing

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
APPENDIX A
INSTRUMENT CONTROL FILE FOR
TEKTRONIX RTD 720
DIGITIZERS

A.l1 INTRODUCTION

At the Nevada Test Site (NTS), Sandia National Labs (SNL) utilizes computer control from a
network of VAX and microVAX computers to perform Tektronix RTD 720 data acquisition and
recording. Each experiment fielded is accompanied by a large. software accessible volume of
technical (such as digitizer setup) and administrative (such as name, organization, measurement)
information about the digitizer and the experiment. The repository for this information is an
INGRES-based instrumentation database on VAX computer 1 de NI2DBM. The database
format provides a convenient method to define experiments, assign digitizers to experiments,
initially configure digitizers, and generate reports throughout the event sequence. However,
data-acquisition and reduction programs that execute on other nodes of the network often require
database information in a different format.

Instrument Control Files (ICF) are the mechanism by which the instrumentation database,
digitizer data-acquisition systems, and data-recording and analysis systems communicate with
one another. Digitizer setup information is passed to the database via the ICF. Administrative
and technical information is passed from the database to the data recording and analysis
programs via the ICF. Each ICF is customized to the unique needs and Jefinition of a particular
digitizing/recording system. For the purposes of this document, the ¢iscussion will be limited
to the Instrument Control Files associated with the Tektronix RTD 720 digitizer systems.

It should be noted that the ICF is a defined interface between the database and
data-acquisition/reduction programs. There is nothing unique about the relationship of the ICF
to the INGRES database system. On that basis, any database software or other programmatic
effort capable of creating and reading files that meet ICF specifications could be used in place
of INGRES.

Sandia National Laboratories Underground Testing

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

A.2 HISTORY

Instrument Control Files (ICF) have been known by a variety of names during previous field-test
events, The most prevalent name has been "Instrumentation Table" and indeed, there is much
documentation in existence that will continue to use this name for years to come. Directory and
file names throughout the system still reflect the use of the word "table."

Historically, during the early years, the instrumentation table diJ indeed contain all of the
"database” information for a given system. With the introduction of tiie INGRES-based database
into the system and new table definitions [1], the instrumentation table was no longer the
"database" for a given system. Definition of this new file consisted of instrument sctup
information, a limited amount of administrative information, and virtually no information with
regard to cableplant measurements, simulation, and signal timing.

Beginning with the Distant Zenith event (1991), the effort to rename "Instrument Table" to
"Instrument Control File" began. The goal was to eliminate the word "table" from the file
name, because the word "table” in the database world is a totally different ¢ vacept than the
historical use of the word for instrument control files. As with any such effort requiring
ingrained thought patterns to change, the effort has met with limited success, and still has a long
way to go before achieving universal acceptance. Therefore, while this document will attempt
to carefully use the ICF concept, it is quite possible that the ICF will accidently be called by the
word "table” in oversight,

A.J INSTRUMENT CONTROL FILE OVERVIEW

An Instrument Control File (ICF) consists of a collection of records that are applicable to the
type of digitizing/recording system. Thus, the ICF for a SANDUS system is different from the
ICF for an ACE (Tektronix 7912) system, and these in turn are different from the ICF for a
RTD 720 system. Each ICF record structure is unique and defined via an "Include File" by the
name of TABLE STRUCTS.DEF. The ICF is implemented as a standard RMS keyed-access
indexed file containing variable length records. This file organization was chosen [1] because
it allows both random access and true variable length records.

Curi»ntly, TABLE_STRUCTS.DEF is sized to accommodate 40 different structure definitions.
However, not all 40 structures are defined at this time. There are a number of embedded spare
placeholders, and structures 35 through 40 are available for future expansion. The first four
bytes of each record structure are reserved for a numeric key that is used to index into the file,

Sandia National Laboratories Underground Testing

Data Collection System

Instrument Control File for
Tektronix RTD720 Digitizers

Definition of these bytes will be discussed in greater detail in Section 4. The following

structures are currently defined:
Structure Name

STRUCT DESC
GEN_DESC
STREAM_DESC
MM _DESC
HDDR_DESC
GEAR_DESC

SOURCE_DESC
SIMULATOR_DESC
S_TRIG_DESC
PRI_TYPE_DESC
TRIGGER CHAN_DESC
S_ALOG_CHAN_DESC
S_DIG_CHAN_DESC

S DIG_SUB_DESC
S_AMUX_CHAN_DESC
S_AMUX_SUB_DESC
T7912_CHAN_DESC
T7912_SUB_DESC
T7103_CHAN_DESC
T7103 SUB_DESC
RTD_DEV_DESC
RTD_CHAN DESC
RTD_EXP_SUB_DESC
RTD_LC_SUB_DESC
RTD_CC_SUB_DESC

1 Structure

2 General

3 Stream

4 Mass Memory

5 High Density Digital Recorder

6 General Purpose Interface Bus
(GPIB) ethernet Analog Recording

7 Source

12 Simulator

13 SANDUS Trigger

17 Primary Type

18 Trigger Channel

19 SANDUS Analog Channel

20 SANDUS Digital Channel

21 SANDUS Digital Subchannel

22 SANDUS Analog Multiplexer

X SANDUS Analog Mux Subchannel

24 Tek 7912 Channel

25 Tek 7912 Subchannel

28 Tek 7103 Channel

29 Tek 7103 Subchannel

30 Tek RTD Device

3l Tek RTD Channel

32 Tek RTD Experiment Subchannel

KX Tek RTD Laser Cal Subchannel

34 Tek RTD Cable Comp Subchannel

In an RTD 720 data acquisition system consisting of three RTD 720 digitizers (devices), with
each digi:'zer configured to record two channels (DUAL mode) and each channel configured to
record two (time multiplexed) signals (i.e., two subchannels), the collection of ICF records

would be as follows:

Sandia National Laboratories

A-5

Underground Testing

o

lI= 1l

N
O

I

e flzs

g

Do 22

Il

s lie

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

One STRUCT_DESC record.
One GEN_DESC record.

One GEAR_DESC record.
One PRI_TYPE_DESC record.

Three RTD_DEV_DESC records; Experiment configuration.
(1 record per device)

Three RTD_DEV_DESC records; Laser Cal configuration.
(1 record per device)

Three RTD_DEV_DESC records; Cable Comp configuration.
(1 record per device)

Six RTD_CHAN_DESC records; Experiment configuration.
(1 record per channel,
2 records per device)

Six RTD_CHAN_DESC records; Laser Cal configuration.
(1 record per channel,
2 records per device)

Six RTD_CHAN_DESC records; Cable Comp configuration.
(1 record per channel,
2 records per device)

Six RTD_EXP_SUB_DESC records; Experiment configuration; Subchannel 00
(1 record per channel,
2 records per device)

Twelve RTD_EXP_SUB_DESC records; Experiment configuration.
(1 record per subchannel,
2 records per channel,
4 records per device)

Sandia National Laboratories Underground Testing

A-6

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

Six RTD_LC _SUB _DESC records; Laser Cal configuration; Subchannel 00
(1 record per channel,
2 records per device)

Six RTD_I.C_SUB _DESC records; Laser Cal configuration.
(typically only 1 subchannel used,
1 record per subchannel,
1 record per channel,
2 records per device)

Six RTD_CC_SUB_DESC records; Cable Comp configuration; Subchannel 00
(1 record per channel,
2 records per device)

Twelve RTD_CC_SUB_DESC records; Cable Comp configuration.
(1 record per subchannel,
2 records per channel,
4 records per device)

for a total of 79 records for the system described.

Sandia National Laboratories Underground Testing

A-7

Diia Collection System

Instrument Control File for
Tektronix RTD720 Digitizers

In tree form, the ICF would appear as follows:

STRUCT_DESC ‘ l

GEN_DESC l l GEAR_DESC l

PRI_TYPE_DESC

RTD_DEV_DESC Device 1

Experiment Configuration ,

RTD_CHAN_DESC
Channel 1

Sub 2 '

RTD_CHAN_DESC |
--| Sub 00 Channel 2 --1 Sub 00 *
Y P
RTD_EXP_SUB_DESC Sub 1 ! Sub 2
|

l RTD_DEV_DESC Device 1 Laser Calibration Configuration
| ' |
RTD_CHAN DESC RTD_CHAN DESC l
Channel 1 --1 Sub 00 Channel 2 --| sub 00 I
A U D SN DU D
Sub 1 Sub 2 RTD_LC_SUB_DESC Sub 1 Sub 2
‘ RTD_DEV_DESC Device 1 Cable Compensation Configuration
l ' I |
RTD_CHAN_DESC RTD_CHAN DESC - '
Channel 1 --|{ Sub 00 ChanneT 2 --] sub 00
— JRNENN DR D
1
Sub 1 Sub 2 RTD_CC_SUB_DESC i Sub 1 Sub 2

The records for Device
Device 1.

Sandia National Laboratories

2 and Device 3 would duplicate those of

Underground Testing

A-8

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

The total number of records in the ICF for a given system will vary, depending upon system
configuration. The number of devices, channels, and subchannels determines the number of
each type of record. Under the current method of operation, only the database administrator can
modify system configuration, upon direction from the Project Officer.

Subchannel 00 records are special; they direct the data analysis program to create a "CHN" file
that contains all of the data recorded for the channel. Thus, when two or more time multiplexed
signals are recorded on a given channel, the 00 CHN file will contain all of the signals, and a
plot of this file will display all signals in time relationship. This is in contrast to the CHN files
for the individual subchannels, which will contain only those data associated with the subchannel
signal.

TABLE _STRUCTS.DEF continues to evolve from event to event. Historically, it has been
reworked and customized for each UGT event. This accepted practice is necessary to
accommodate the changing needs of events, experiments, and measurement techniques.

A complete listing of TABLE STRUCTS.DEF for the Hunters Trophy event is included at the
end of this Appendix.

Instrument Control Files follow a traditional naming convention established a number of years
ago. An ICF for SANDUS 505 will be named "SANS05.TBL". An ICF for ACE 21 with
Tektronix 7912 digitizers will be named "ACE21T12. TBL". And last, but not least, an ICF for
RMYV 11 with Tektronix RTD 720 digitizers will be named "RMV11R20.TBL".

A.4 STRUCTURE DETAIL

A4.1 Record Type 1 /STRUCT DESC/

This record is used to keep an internal description of the control file within the control file itself.
It will normally only be used by the control file access routines.

The structure record number (struct_rec_num, bytes 1 and 2) are set to 0 for STRUCT_DESC,
with record type (struct_rec_type, byte 3) set to 1. Byte 4 is an unused dummy field, set to 0.

Sandia National Laboratories Underground Testing

A-9

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
integer*2 struct_rec_num
byte struct_rec_type
byte dummy

Currently, the structure is defined with space allocated to store up to 40 different record
structure names; each name can be up to 24 characters long. This is followed by space to store
the length in bytes of the 40 preceding named structures (in the same order). The actual number
of record structures defined within TABLE_STRUCTS.DEF appears next.

character*24 rec_name(40)
integer*4 rec_len(40)
integer*4 tot_structs
The last field is allocated for the date/time of the last revision.
character*24 last_edit
There is always one, and only one, of this record type in every control file.

A.4.2 Record Type 2 /GEN_DESC/

This record is used to convey general information about the UGT event, software, and
characteristics of the data source.

The structure record number (gen_rec_num, bytes 1 and 2) are set to O for GEN_DESC, with
record type (gen_rec_type, byte 3) set to 2. Byte 4 is an unused dummy field, set to 0.

integer*2 gen_rec_num
byte gen_rec_type
byte dummy

The are eleven fields available for general information. A number of these fields are not
applicable to RTD 720 type digitizers, but are included for standardization.

Space has been allocated to designate the test name (UGT event), up to a maximum of 24
alphanumeric characters. For example, the letters "Hunters Trophy" were used for the Hunters

Trophy event. This is followed by an alphanumeric test number of up to eight characters, which
is available to identify software applicable to the UGT. Sixteen characters are available to

Sandia National Laboratories Underground Testing

A-10

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

identify the name of the data collection source. For Hunters Trophy names like "RMV 11",
"RMV 12" were used. Four characters are available for the source code. For Hunters Trophy
the code "R11" accompanied the source name RMV 11, "R12" accompanied the source name
RMV 12,

character*24 test_name

character*8 test_number
character*16 source_name
character*4 source_code

The following fields are not applicable to RTD 720 digitizers and are defaulted to zero.
integer*4 num_streams
integer*4 ref _trig
integer*4 ref_trig_tol
integer*4 hddr_offset
integer*4 mm_offset
real*4 sec_per_bit
The last field is allocated for the date/time of the last revision.

character*24 last_edit

There is always one, and only one, of this record type in every control file.

A4.3 Record Type 6 /GEAR_DESC/
This record is used to describe the GEAR data collection system. The structure record number
(struct_rec_num, bytes 1 and 2) are set to O for GEAR_DESC, with record type
(struct_rec_type, byte 3) set to 6. Byte 4 is an unused dummy field, set to 0.

integer*2 struct_rec_num

byte struct_rec_type

byte dummy

The only field currently in use in this record is the collection point node name. For the Hunters
Trophy event, the name used was "GEAR 10",

Sandia National Laboratories Underground Testing

A-11

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

character*16 col_name

The remaining character fields are filled with nulls, and the integer fields are defaulted to
zeroes, These fields are provided for future expansion.

character*16 ether_port(2)
integer*4 %fill(4)

The last field is allocated for the date/time of the last revision.
character*24 last_edit

There is always one, and only one, of this record type in every control file.

Ad4 Record Type 17 /PRI_TYPE_DESC/

This record identifies which channel numbers are assigned in this ICF and the type of digitizer
associated with the channel. Only channel numbers that have been assigned in this record will
have descriptive records in the ICF. PRI_TYPE_DESC is short for Primary (Digitizer) Type
Description.

Theoretically, one could define a primary type description record with a mix of every type of
digitizer for any of the available channels; from the practical viewpoint, ICF files have always
been limited to one type of digitizer per file.

The structure record number (pri_rec_num, bytes 1 and 2) are set to 0 for PRI_TYPE_DESC,
with record type (pri_rec_type, byte 3) set to 17. Byte 4 is an unused dummy field, set to O.

integer*2 pri_rec_num
byte pri_rec_type
byte duminy

This is followed by a one-dimension array of 512 bytes indexed O through 511. This represents
the possible channel numbers of O through 511 (512 channels total).

byte pri_chan_type(0:511)

Sandia National Laboratories Underground Testing

]
~
[\

A

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

The number that is inserted into each of the 512 bytes corresponds to the digitizer type assigned
to the channel number. If the number is 0 (default), it is an unused, or dummy channel. If the
number is other than 0, it represents the digitizer type and, consequently, the record type
description that appears elsewhere in the ICF. The current list of possible digitizer types
follows:

Overhead or Dummy.
SANDUS Trigger.
SANDUS Analog.
SANDUS Digital.
SANDUS Analog Mux,
Tektronix 7912.
Tektronix 7103.

RTD 720 Device.

RTD 720 Channel,

T O A O T T

The last field is allocated for the date/time of the last revision.
character*24 last_edit

There is always one, and only one, of this record type in every control file.

A4.5 Record Type 30 /RTD_DEV_DESC/

This record describes the RTD 720 device. Because the device may be configured differently
for the task of taking experiment data, measuring fiber optic laser calibration, or measuring
characteristics of the cable plant, each device will have three records of this type in the ICF, one
for each task. Byte 4 of the record is used to identify the configuration/task combination.

Within the record structure for RTD_DEV_DESC, bytes 1 and 2 combine to form the integer
device number (dev_num), which is set to the decimal number that is the same as the GPIB bus
address for the device. Record type (dev_rec_type, byte 3) is set to 30. Record use (rec_use,
byte 4) identifies the task; and is set to O for Experiment, 1 for Laser Calibration, and 2 for
Cable Compensation,

Sandia National Laboratories Underground Testing

A-13

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
integer*2 dev_num
byte dev_rec_type
byte rec_use

The next two fields are allocated for the date/time of the last revision and identification of the
person or program making the change.

character*24 last_edit
character*12 editor

The next four fields contain general information such as the identification of the rack housing
the RTD 720 digitizer, data width, node_name, and port_id. Rack identification was not used
during the Hunters Trophy event. When it is used, it is carried through to the PRELEWD
program and appears on the data plot. Data width is the width of a data sample in bits and is
always set to 8 for RTD 720s. A typical node name for Hunters Trophy was "RMV10". And
the accompanying port_id was set to "IXA0:" when the ICF was associated with RMV 11, and
"IXA1:" when the ICF was associated with RMV 12,

character*8 source_loc

integer*4 data_width
character*8 node_name
character*8 port_id

The remainder of this record structure is allocated to the various RTD 720 commands used to
configure and control the digitizer device operation. To convey the function and meaning of
each command within this document would require the contents of the Tektronix manual to be
duplicated. Therefore, the reader is referred to the RTD 720 Operators Manual for further
definition of the commands. What is included here is the field name followed by a list of valid
entries where applicable.

One field is allocated to the "VERTICAL" command:;

character*4 vmode Vertical mode;
CHI, DUAL, or QUAD.

Sandia National Laboratories Underground Testing

A-14

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

Six fields are associated with "ACQUIRE" commands:

character*8 acq_mode Mode;
NORMAL or ADVANCE.
character*8 acq_state State;
STOP, RUN, or HLDNXT.
character*8 acq_interval Acquire interval;
500E-12, 1E-9, 2E-9 or
4E-9.
integer*4 acq_length Record length;
512 to maximum memory
for each channel.
integer*4 acq_nrecord Number of consecutive
records to fill in
to fill in ADVANCE
mode; 1 to a maximum
of 1024,
character*8 acq_clock Acquire clock source,
INTRNAL or EXTERNAL.,

Nine fields are associated with "ARM and TRIGGER" commands:

character*8 arm Arming source;

INTRNAL or EXTERNAL.
character*8 trig_mode Trigger mode;

AUTO or NORMAL.
character*8 trig_coupling Trigger coupling;

AC, DC, or HFREJ.
real*4 trig_level Trigger level in percent

of full scale or volts

as determined by type.
character*8 trig_typelevel Trigger level type;

PERCENT or VOLTS.
real*4 trig_position Trigger position in counts,

time, or percent of

record length as det-

ermined by type.

Sandia National Laboratories Underground Testing

A-15

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

character*8 trig_typepos Trigger position type;
PERCENT, POINT, or SECOND.
character*8 trig_slope Trigger slope;
PLUS or MINUS.
character*8 trig_source Trigger source;
CH1, CH2, CH3, CH4, or
EXTERNAL.

Two fields are associated with "WAVEFORM PREAMBLE" commands:

character*8 wftx_mode Waveform transfer format;
DL at this time.

character*8 wftx_intrleave Waveform transfer interleave;
ON or OFF.

Four fields are associated with "DATA and WAVEFORM" commands:

integer*4 data_cnt_rec Number of records in the
waveform transfer.
integer*4 data_count Number of points in the
waveform transfer.
integer*4 data_start Data transfer starting
point.
integer*4 data_strecord Selects first record to
be transferred.

Three fields are associated with "HIGH-SPEED DATA OUTPUT" commands:

character*4 hsdo_state High speed port selection;
ON - Data is sent to
HSDO port,
OFF - Data is sent to
GPIB port.

integer*4 hsdo_txmode HSDO port’s handshake
mode;
1 or 2.

character*12 hsdo_dump HSDO dump mode;
CONTINUOUS or OFF,

Sandia National Laboratories Underground Testing

A-16

Data Collection System

Instrument Control File for
Tektronix RTD720 Digitizers

Thirteen fields are associated with "STATUS and EVENT" commands:

character*4

character*4

character*4
character*4
character*4
character*4
character*4
character*4
character*4
character*4
character*4
character*12

character*80

rqs

Enable/Disable SRQ line;
ON or OFF.

srq_abstouch Enable/Disable SRQ on the

srq_cmderr
srq_exerr
srq_exwarn
srq_idprobe
srq_inerr
srq_inwarn
srq_opcmpl
srq_usrl
srq_usr2
uid

ident

following status or
error conditions;
ON (Enable) or OFF (Disable).
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
ON or OFF.
A string that assigns a
name to the device.
Space for response to
the ID? query.

Ten fields are associated with "GPIB RELATED" commands:

character*8

character*4

character*8

character*8

abstouch

debug_gpib

dt

init

Sandia National Laboratories

CLEAR or a string
representing X,y
coordinates of a
simulated button push.

Sets the state of GPIB
debugging;

ON or OFF.

Sets the acquisition
state;

RUN, STOP, HLDNXT, or
OFF.

Initiation source;

PANEL, GPIB, or ALL.

Underground Testing

A-17

Data Collection System

character*4 longform

character*4 path

character*12 userl(2)

character*12 user2(2)

Instrument Control File for
Tektronix RTD720 Digitizers

Loagform command,
ON or OFF.
Path command;
ON or OFF.
Quoted strings to be
displayed. (Two fields).
Quoted strings to be
displayed. (Two fields).

Seven fields are associated with "CURSOR" commands:

character*4 crsl_loctn
character*4 crs2_loctn
integer*4 crsl_xpoint
integer*4 crs2_xpoint
character*8 cref
character*8 crsd_typetime
character*4 cursors

Four fields are allocated for

integer*4 pt_off
integer*4 XzZero
integer*4 yoff
real*4 xincr

Sandia National Laboratories

WINX, where x =
WINX, where x =
0 to record_length-1.
FIRST or SAME.
HZ or SECOND.,
ON or OFF.

preamble data from the device:

Number of points between
the trigger and the
first point transmitted.

Horizontal zero point
(always 0).

Vertical binary offset
(always 128).

Horizontal sample interval
in seconds.

Underground Testing

A-18

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

One field is allocated for waveform data from the device:

real*4 trfract Fraction of sample
interval in which the
trigger occurred.
Possible values depend
upon vertical mode and
are as follows;
CHI: 0;
DUAL: 0., .5;
QUAD: 0., .25, .5, .75.

There will be three records of this type for each RTD device, one record with the "record use"
byte set to 0 to configure the device for taking Experiment data, one record with the "record
use" byte set to 1 to configure the device for taking Laser Calibration data, and one record with
the "record use" byte set to 2 to configure the device for taking Cable Compensation data.

A.4.6 Record Type 31 /RTD_CHAN_DESC/

This record describes the RTD 720 channel. Because the channel may be configured differently
for the task of taking experiment data, measuring fiber optic laser calibration, or measuring
characteristics of the cable plant, each channel may have three records of this type in the ICF,
one for each task. Byte 4 of the record is used to identify the configuration/task combination.

If an RTD is operating in "QUAD" mode with four channels (traces), then there may be up to
twelve records of this type for the device.

Within the record structure for RTD_CHAN_DESC, bytes 1 and 2 combine to form the integer
channel number (chan_num), which is the combination of the GPIB bus address and the RTD
720 channel number. Record type (chan_rec_type, byte 3) is set to 31. Record use (rec_use,
byte 4) identifies the task; it is set to O for Experiment, 1 for Laser Calibration, and 2 for Cable
Compensation.

integer*2 chan_num

byte chan_rec_type
byte rec_use
Sandia National Laboratories Underground Testing

A-19

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

The next three fields are allocated for the channel number in ASCII, date/time of the last
revision, and identification of the person or program making the change.

character*16 sec_desc
character*24 last_edit
character*12 editor

The next field specifies how many subchannels are associated with the channel.

integer*4 num_sub_chans Number of subchannels;
Equal to or greater
than 1, equal to or less
than 16.

Five fields are associated with "VERTICAL SETUP" commands:

character*8 ch_range Full scale vertical

range setting;

0.25 to 20.0 Volts.
character*8 ch_offset Input offset in percent

of full scale or volts

as determined by offset

type;

0 to 100 Percent or

+/- 1.0 Volts to

+/- 10.0 Volts.
character*8 ch_typeoffset Offset type;

PERCENT or VOLTS.
character*4 ch_coupling Vertical coupling;

AC, DC, or OFF.
character*8 ch_bwlim Bandwidth limiting filter;

FULL, HUNDRED, or

TWENTY (MHz).

Sandia National Laboratories Underground Testing

A-20

Data Collection System

Instrument Control File for
Tektronix RTD720 Digitizers

One field is associated with "DATA and WAVEFORM" commands:

character*4 data_ch

Waveform data from this
channel;
ON or OFF.

Two fields are allocated for preamble data from the channel:

real*4 ymult

real*4 yzero

Vertical scale factor
(volts per count).
Vertical offset of the
wave form (volts).

Nine fields are associated with setting up the Laser Calibrator:

character*12 sim_ts_node

integer*4 las_cal_cntr
integer*4 las_sig_cal
integer*4 las_freq
integer*4 las_ext
integer*4 las_lcl_rmt
integer*4 las_Ickout
integer*4 las_trig
integer*4 las_power

Terminal server node
name.

Switch Controller address.

Gage signal / Laser cal
address.

50 MHz / 1 MHz address.

Laser input;

Internal / External
address.

Local / Remote address.

Laser lockout address.

Laser closure trigger
address.

Laser Cal ON/OFF power
address,

‘This completes the RTD_CHAN_DESC structure description.

Sandia National Laboratories

Underground Testing

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

A.4.7 Record Type 32 /RTD_EXP SUB_DESC/

This record describes the RTD 720 subchannel configuration for Experiment data. Record types
33 and 34 are used to describe subchannel configuration for Laser Calibration and Cable
Compensation respectively.

There will be one record of this type present for every RTD 720 subchannel. Each subchannel
is associated with one unique event experimeni. In addition, there will also be one record of
this type designated subchannel 00, which represents the subchannel configuration for the entire
channel, i.e., all subchannels.

If an RTD channel is being used to record three subchanneis, the ICF will have a total of four
records of this type. Each subchannel will have one record, plus the combination subchannel
00.

Within the record structure for RTD_CHAN_DESC, bytes 1 and 2 combine to form the integer
channel number (chan_num), which is the combination of the GPIB bus address and the RTD
720 channel number. Record type (sub_rec_type, byte 3) is set to 32. Byte 4 identifies the
integer subchannel number.

integer*2 chan_num
byte sub_rec_type
byte sub_num

Twenty-foui fields are allocated for "GENERAL" information:

character*16 sec_desc Channel number in ASCII.
character*24 last_edit Date/time of last edit.
character*12 editor Name of person or program
making the change.
character*12 expmt_id Sandia Experiment number.
character*20 expmtr_name Experimenter name.
character*8 expmtr_org Experimenter organization,
or acronym if non-Sandia.
character*16 expmtr_note Plot annotation string,

defined by Experimenter.

Sandia National Laboratories Underground Testing

A-22

Data Collection System

character*8 plot_option

character*12 y_label

real*4 conv_factor
integer*4 expmt_order
real*4 expmt_delay
real*4 expmt_atten
integer*4 expmt_left
integer*4 expmt_right
logical*4 use_start_stop

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

Plot option;
Acceptable entries are:
'NONE’, '"COUNTS’, 'LINEAR".
"NONE' requests no plot,
'COUNTS'’ requests a
plot in percent of full
scale. 'LINEAR' requests
a plot of engineering
units in the linear
form "ay+b".

Y-axis label for linear plots.

Gage conversion factor
in engineering units
per volt.

Experiment order of
occurrence on the trace.

Signal delay inserted
to achieve time
multiplexing of
experiments.

Signal attenuation which
which results from
the inserted signal
delay.

Experiment left bound
in counts.

Experiment right bound
in counts.

Use the plot start and
stop time which follow;
.true. means use
plot_start and plot_stop,
false. means the
plot start and stop
time will come from
other sources.

Underground Testing

Data Collection System

real*8 plot_start
real*8 plot_stop
logical*4 use_min_max
real*4 y_min

real*4 y_max

real*8 relative_delay
character*4 zero_ref

Sandia National Laboratories

A-24

Instrument Control File for
Tektronix RTD720 Digitizers

Plot start time in
seconds; valid only if
use_start_stop above
is .true.

Plot stop time in
seconds; valid only if
use_start_stop above
is .true.

Use the y-min and y-max
values which follow;
.true. means use
y_min and y_max,
.false. means the plot
y min and max value
will come from other
sources.

Minimum y value to plot;
valid only if
use_min_max above is
.true., units must
agree with y_label.

Maximum y value to plot;
valid only if
use_min_max above is
.true., units must
agree with y_label.

Relative delay in seconds,
a correction added to
time values before
plotting.

Zero reference; used to
identify on plots the
basis for the
relative_delay
correction above.
'COMP’(ton), 'FIDU’,
' ' are acceptable.

Use of this field MAY

Underground Testing

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

classify the plot.
character*4 srad_file Indicates whether or not
to produce an SRAD file
while generating a plot.
Acceptable entries are
'NONE’, and 'SRAD’.

Four fields are allocated for "K-FACTOR" information:

logical*4 apply_kfactor Apply K-factor to this
experiment;

.true. means apply.
real*4 kfactor Measured K-factor.
real*4 kfactor_atten Late change affecting

K-factor,
character*80 kfactor_method Description of how the

K-factor was measured.
Two fields are allocated for "EQUALIZATION" information.

logical*4 equalize Apply equalization to
this experiment;
.true. means equalize.
character*48 equalize_file Filename of the equalization
function,

Two fields are allocated for "NORMALIZATION" informatio..

logical*4 normalize_time Normalize the time axis;
.true. means normalize.
real*4 normalz_factor Normalization factor.

Four fields are allocated for "TREND ANALYSIS" information.

real*4 sig_atten Signal attenuation for
TREND.
real*4 sig_term_res Signal termination
resistance.
Sandia National Laboratories Underground Testing

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
real*4 sig_prop_time Total signal propagation
time (seconds).
real*4 trg_prop_time Total trigger propagation

time (seconds).

Fifteen fields are allocated for "SIMULATION" information.

logical*4 sim_option External simulation;
.true. means simulation
applied.

integer*4 num_simulators Number of simulators

used to generate the

simulation signal,

four maximum.
character*16 sim_unique_id(4) Four fields in which

to store unique

identification for

each simulator used.
real*8 sim_pp_volts Simulated signal voltage,

peak-to-peak being

inserted for this

experiment.
real*4 insert_atten Attenuator inserted

after fanout.
real*4 fanout_atten Fanout attenuation.
real*4 cable_atten Sum of all cable

attenuation between
the simulation signal
generator and this

experiment,
integer*4 sim_switch Simulator switch number.
character*16 sim_unique_fo Fiber Optic ID code.
integer*4 sim_fo_switch Fiber Optic switch number.
character*8 est_tek_atten Estimated attenuation

needed to avoid
over driving the
Tek 11801.

Sandia National Laboratories Underground Testing

A-26

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

integer*4 picosec_atten Attenuation setting,
Picosecond generator.

This completes the RTD_EXP_SUB_DESC structure description.

A48 Record Type 33 /RTD_LC_SUB_DESC/

Currently. this structure is identical to the RTD_EXP_SUB_DESC structure and is defined in
the same manner, However, in the future the defined fields and descriptions are subject to
change in order to customize.

Ad)9 Record Type 34 /RTD_CC SUB_DESC/
Currently, this structure is identical to the RTD_EXP_SUB_DESC structure and is defined in

the same manner. However, in the future the defined fields and descriptions are subject to
change in order to customize.

A.S UTILITY ROUTINES

There are ten utility routines available for use with ICF files. Recently, [2] some features were
added to several of the utilities [1] to enhance their usefulness.

Currently, programs that execute as part of the database application call the following utilities:
) OPEN_TBL Opens an existing control file.
2) CLOSE_TBL Closes a control file.
3) ADD_TBL REC Adds a record to the control file.
4) READ_TBL_REC Reads a record from the control file.
An additional stand alone utility CREATE_TBL is used to create a new, empty ICF. When a

new control file is initially created it contains only one record, the STRUCT_DESC record, and
must be populated with other records before being useful.

Sandia National Laboratories Underground Testing

A-27

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

A.6 CONTROL FILE MOVEMENT

The life cycle of all Instrument Control Files begins and normally ends within the database
application. Files are created by one of two methods:

(1) Upon command issued by the database operator, which may be invoked at any
time.

(2) Creation occurs when an ICF that has been modified by digitizer operations is
received by the database application.

Except for the first-time ICF creation, database operators enter only "administrative" information
into the database. This information is associated with items such as experimenter name,
organization, measurement descriptions, etc. On the other hand, "technical" information is
associated with the setup of the digitizer. Technical information is overlaid into the database
by reading an ICF that has been modified.

Each time the database application creates a new ICF, a copy is placed into the directory
N12DBM::ID:[INGRES.INST_TABLES]. This directory is then purged to keep the directory
clean with only the latest version present.

Files are copied from N12DBM to the appropriate directory on computer node GEAR10 under
supervision of the CONTROL program. Each time a RTD system operator logs onto the
GEARI10 node in interactive mode, the CONTROL program searches the GEARI10 directory
DD:|TABLES] for ICF. For each file encountered, the node N12DBM is searched for a newer
ICF with the same name. If a newer file is available from N12DBM, CONTROL initiates a
dialogue in which the operator is told which new files are available and given the option to copy
each new ICF. If a copy is requested, the new file is pulled from N12DBM. Otherwise, no
updated copy of the ICF will be pulled.

In addition to the dialogue at login, the CONTROL menu on GEARI1O0 is designed to allow the
pulling of a new ICF at any time during the CONTROL session, should it become necessary.

The RTD digitizer control and setup software (called RTDTEST) [3] is used to modify an ICF.
After the ICF has been modified one or more times, a global symbol is defined to inform the
CONTROL program that ICF modifications have been made. When the operator selects either
the "EXIT" or "Push modified ICF to database node" command from the CONTROL menu,
CONTROL pushes a copy of the modified ICF to directory NI12DBM::ID:

Sandia National Laboratories Underground Testing

A-28

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

[INGRES.CTRL_TABLES], where it is subsequently used to overlay the database.

The database application periodically searches the directory NI12DBM::ID:
[INGRES.CTRL_TABLES) for receipt of modified ICF. When a file is found, the application:

(1) Copies the ICF into an internal working directory.

(2) Examines the "last_edit" field from each RTD device, channel, and subchannel
record to determine whether the date/time that appears in the ICF is different
from the date/time currently residing in the database.

(3) For each record with differing date/time information, selected "technical”
information (i.e. instrument setup) is extracted from the ICF and used to overlay
existing database contents.

(4) The input ICF is then deleted from the directory N12DBM::ID:
[INGRES.CTRL_TABLES] ending the life cycle for the file.

(5) Creates a new ICF that has the most current database information, and places the
ICF into the directory N12DBM::ID:[INGRES.INST_TABLE].

This procedure assures that the most up-to-date version of any given RTD ICF is always resident

on computer node N12DBM. The database application never modifies existing control files.
After serving their intended purpose, files are deleted and replaced with totally new files.

A copy of the complete, unabridged version of TABLE_STRUCTS.DEF as defined and used
for the Hunter's Trophy event follows.

Sandia National Laboratories Underground Testing

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers

|
|

| Some notes about the form of this file:

TABLE_STRUCTS,DEF May 12, 1992 R. Aden, 9321
Hunters Trophy

this file defines the fields for the new control files, It sssumes the
following organization: Each data source (ACE, SANDUS, RMV, etc.)

will have one control file associated with it. The control file will
contain information common to all channels of the source as well as
channel -specific information. The common information describes the
configurations of the source and collection hardware. The contents

and form of the channel-specific information will vary, depending on
the type of channel.

Unless otherwise noted all values are communicated using the following
set of base units:

Time is in seconds,
Interval fs in seconds.
Delay fs in seconds.

Resistance is in ohms,
Impedance ia in ohms.
Voltage is in volts.
Current is in amperes.
Frequency {8 in hertz.

HRRNAR AN R RERARA RN RN NRANATARN BRIV ERANRART T RAAIRRTRRTTANRRRRRRRRARNROANON

(&) The first four bytes must look like:
integer+2
byte
byte

(2) The file MUST be named TABLE_STRUCTS.DEF and reside in
LD: [INCLUDE) else CREATE_TBL will not find ft.

(3 The first byte position is the number of the structure
in this file. The structure /STRUCT _DESC/ must remain first
and the /UNUSED_nn_DESC/ must be present or subsequent
structures must be renumbered.

(4) There are some restrictions on the structures this routine
can analyze.

(1) Field names must be declared individually on separate |ines,
For example, the routine does not understand this structure:

structure /struct/
integer*2 a, b
end structure

It must be defined this way:

structure /struct/
integer*2 a
integer*2 b
end structure

Sandia National Laboratories Underground Testing

A-30

Data Collection System

Instrument Control File for
Tektronix RTD720 Digitizers

(2) Substructures are allowed, but you may not declare records
that are defined by substructures.

(3) Only one- and two-dimensional arrays are allowed.

! The following structure is used to keep an internal description of the
! table within the table itself, [t will normally only be used by the

! table access routines.

structure /STRUCT_DESC/
integer*2 struct_rec_num
byte struct_rec_type
byte

character*24 rec_nam(40)

integer*s rec_len(40)

integer*4 tot_structs

character*24 last_edit
end structure

Structure record number (always 0).
Structure record type (1).
! Dumy field (not used).

Record structure name.
Record length in bytes.
Number of record structures.
Date of last edit.

[The following structure describes general information about the table, test,

[and characteristics of the source.

structure /GEN_DESC/
integer*2 gen_rec_num
byte gen_rec_type
byte dumy

character*24 test_name
character*8 test_number

character*16 source_name
character*4 source_code
integer*4 num streams
integer*4 ref_trig
integer*4 ref_trig_to!l
integer*4 hddr_offset
integer*4 mm_offset
real*4 sec_per bit
character*24 last_edit
end structure

General record number (always 0).
General record type (2).
Dummy field (not used).

DNA Test name.

Department 9321 test number for
software version tracking.

Source name.

Source code.

Number of streams from this source.

Reference trigger number,

Maximum difference counts.

Offset for HDDR stream number,

Offset for MM stream number.

Bit stream rate.

Date of last edit.

' The following structure describes the streams coming out of the source.

t There is one record per stream.
structure /STREAM_DESC/
integer®?2 strm_rec_num
byte strm_rec_type
byte dummy

character*12 prime second

Sandia National Laboratories

! Stream record number,
! Stream record type (3).
! Dumy field (not used).

! Indicates whether this is the

! primary or secondary stream,
!
!

Acceptable entries are:
'PRIMARY’, 'SECONDARY'.

Underground Testing

A-31

Data Collection System

character*4 dest_type

character*8 dest_node

integer*4 dest_rec_num

integer*4 frame_{ength

integer*4 subcom_depth

integer*2 format(200,8)

character*24 last_edit
end structure

Instrument Control File for
Tektronix RTD720 Digitizers

Stream destination type;
acceptable entries are:
'TUNKN', 'MM‘, 'HDDR'.

Destination computer node.

Destination record number.

Frame length in bytes.

Frame subcommutation depth,

Format description.

Date of last edit.

| The following structure describes the mass memory. There should be a record

1 for each stream into mass memory.

structure /MM_DESC/
integer*2 mm_rec_num
byte mm_rec_type
byte dusmmy

character*16 col_name
integer*s pointer_addr

integer*s cal_start_addr

integer*4 cal_end_addr
integer*4 2t_start_addr
integer*4 zt_end_addr
integer*4 mm_presamples
character*8 mm_dev_name
character*24 last_edit

end structure

! The following structure describes the HDODR.

! each stream into an HDDR.

structure /HDDR_DESC/
integer*?2 hddr_rec_num
byte hddr_rec_type
byte dummy

character*16 col_name
integer*4 hddr_track
real*4 record_speed
integer*4 e8330_Live_inp
integer*4 eB8330_tape_inp
integer*4 tab67_fmt_num
integer*4 hardware_path

character*8 tab67_dev(2)
character*8 ta653_dev
character*8 ta717_dev(2)
character*8 eB8330_dev(2)
integer*4 e8330_sta_no(2)
character*24 last_edit

end structure

Sandia National Laboratories

Mass memory record number.
Mass memory record type (4).
Dummy field (not used).

Name of collection point.

Address pointer into zero-time data buffer;
acceptable entries are 0 or 1.

Starting address of calibration buffer;
entry should always be 2.

Ending address of calibration buffer.

Starting address of zero-time data buffer.

Ending address of zero-time data buffer.

Number of presamples.

Computer device name.

Date of last edit.

There should be a record for

HODR record number.
HDDR record type (5).
Dummy field (not used).

Name of collection point.

HDDR track number.

Recording speed in inches per second.

8330 (ive input port number.

8330 tape input port number,

TA667 format number.

Hardware path taken by live stream;
acceptable entries are 1 or 2.

Computer device name for TA667.

Computer device name for TA653.

Computer device name for TA717.

Computer device name for 8330.

8330 station number.

Date of last edit.

Underground Testing

A-32

Data Collection System

| The following structure describes the GEAR collection system,
(GP18 ethernet Analog Recording)

| be one record for each GEAR system,

structure /GEAR_DESC/

integer*2 struct_rec_num |
byte struct_rec_type !
byte dummy

character*16 col_name

character*16 ether_port(2)

integer*4 X%fill(4)

character*24 last_edit
end structure

- - —

! The
! one of these records present in the table.

structure /SOURCE_DESC/

integer*2 source_rec_num !
byte source_rec_type !
byte dummy |

character*16 col_name]

character*8 tabb66_dev !

character*8 terminal_dev !

character*8 server_dev !

character*24 last_edit !
end structure

! The following structure is presently unused, it

it must be present as a placeholder.

structure /UNUSED_08_DESC/

integer*2 struct_rec_num !
byte struct_rec_type
byte dummy

end structure

| The following structure is presently unused, it

it must be present as a placeholder,

structure /UNUSED_09_DESC/

integer*2 struct_rec_num !
byte struct_rec_type !
byte dummy !

end structure

| The following structure is presently unused, it

it must be present as a placeholder.

structure /UNUSED_10_DESC/

integer*2 struct_rec_num !
byte struct_rec_type |
byte dummy |

end structure

Sandia National Laboratories

fol lowing structure describes the data source.

Instrument Control File for
Tektronix RTD720 Digitizers

There should

Structure record number.
Structure record type (6).

| Dummy field (not used).

Collection point node name.
Ethernet port name(s).

For future use,

Date of last edit,

There should always be

Source record number (always 0).
Source record type (7).
Dummy field (not used).

Name of collection point,

DRQ port connected to TA666.

Terminal port connected to ACE.
Terminal server port connected to ACE.
Date of last edit.

is here for future expansion,

Structure record number,

| Structure record type (8).
| Dummy field (not used).

is here for future expansion,

Structure record number.
Structure record type (9).
Dummy field (not used).

is here for future expansion,

Structure record number,
Structure record type (10).
Dummy field (not used).

Underground Testing

A-33

Data Collection System

1

Instrument Control File for
Tektronix RTD720 Digitizers

| The following structure is presently unused, it is here for future expansion,

t and it must be present as a placeholder,

structure /UNUSED_11_DESC/

integer*2 struct_rec_num
byte struct_rec_type
byte dummy

end structure

f
!
|

Structure record number.
Structure record type (11).
Dummy field (not used).

| The following structure deascribes the family of simulation sources, There
| will be one record of this type for every simulator.

structure /SIMULATOR_DESC/

integert? struct_rec_num
byte struct_rec_type
byte dummy

character*16 sim_unique_id
character*16 sim_model
character*12 sim_arm_mode
character*i2 sim_location
character*12 sim_vax_node
character*12 sim_ts_node
character*12 sim_trg_source
character*12 sim_trg_mode
character*12 sim_trg_slope

real*4 sim_trg_level
real*4 sim_trg_delay
real%4 sim_thruput
logical*é sim_term_50
real*4 sim_baseline
real*4 sim_peak v
real*4 sim_pul_width
real*4 sim_pul_rise
real*4 sim_pul_fall
real*4 gim_pul_area
real*s sim_pul_delay
real*s sim_add_atten
real*s sim_pul_period

character*12 sim_polarity

real*4 sim_max_volts
real*4 sim_max_width
real*4 sim_max_delay
real*4 aim_max_offset
real*s sim_max_period
integer*4 sim_x_menu
integerv4 sim_gpib_addr
integer*4 sim_pwr_switch
integer*4 num_channels

character*12 sim_chan(16)
character*12 sim_tgen_model
character*12 sim_tgen_loc
character*12 sim_tgen_node

integer*4 sim_tgen_gpib
integer*4 sim_tgen_p_sw
real*4 sim_tgen_volts

Sandia National Laboratories

Structure record number,
Structure record type (12).
Dummy field (not used).

Unique fdentification.
Model description.
Arming/Control mode.
Simuslator Location.
VAX Port/Node name.
Terminal server node name.
Trigger source.
Trigger mode.
Trigger slope.
Trigger level.
Trigger delay.
Simulator thru-put delay.
Simulator termination;

.true, indicates 50 ohm termination,

.falge, indicates high impedance.
Bagel ine voltage.
Peak voltage.
Pulse width.
Pulse risetime.
Pulse falltime.
Pulse area,
Pulse delay.
Added attenuation,
Pulse period,
Pulse polarity.
Maximum programmable voltage.
Maximum programmable pulse width,
Maximum programmable pulse delay.
Maximum programmable offset.
Maximum programmable period,
Set-up recall number.
Unique GPIB address.
Power switch number,
Number of channels which follow.
Channel array (16 max).
Trigger Generator model.
Trigger Generator location,
Trigger Generator terminal server node.
Trigger Generator GPIB address.
Trigger Generator power switch number,
Trigger Generator output volts.

Underground Testing

A-34

Data Collection System

real*s sim_tgen_width |
real®4 sim_tgen_delay |
real*4 sim_tgen_rate !
character*24 last_edit !

end structure

| The following structure describes time mapping of SANDUS triggers,

‘e

Instrument Control File for
Tektronix RTD720 Digitizers

Trigger Generator pulse width,
Trigger Generator delay.
Trigger Generator pulse period.
Last edit,

there

! should be one record of this type for each SANDUS.

structure /S_TRIG_DESC/

integer*2 trig_rec_num '
byte trig_rec_type !
byte dummy |
integer*4 trig_num(é) |
real*8 trig_time(6) '
real*4 trig_pct_dev(é) |
integer%4 san_counter(6) |

|

character*24 last_edit
end structure

Trigger record number (always 0).
Trigger record type (13).
Dummy field (not used).

Trigger number,

Trigger time,

Allowable percent deviation.
SANDUS trigger counter number.
Date of last edit.

| The following structure is presently unused, it is here for future expansion,
! and it must be present as a placeholder,
structure /UNUSED_14_DESC/
integer*2 struct_rec_num | Structure record number.
byte struct_rec_type | Structure record type (14).
byte dummy | Dummy field (not used).
end structure
! The following structure is presently unused, it is here for future expansion,
! and it must be present as a placeholder.
structure /UNUSED_15_DESC/
integer*2 struct_rec_num ! Structure record number.
byte struct_rec_type | Structure record type (15).
byte dummy ! Dummy field (not used).
end structure
! The following structure is presently unused, it is here for future expansion,
I and it must be present as a placeholder.
structure /UNUSED _16_DESC/
integer*2 struct_rec_num ! §tructure record number,
byte struct_rec_type ! Structure record type (16).
byte dummy | pumy field (not used).
end structure
! The following structure describes the primary types of all the channels in
| the source, We assume a maximum of 512 channels per source.

structure /PRI _TYPE_DESC/
integer*?2 pri_rec_num !
byte pri_rec_type 1

Sandia National Laboratories

Primary record number (always 0).
Primary record type (17).

Underground Testing

44 - j 5

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
byte dummy | Dummy field (not used).
byte pri_chan_type(0:511) | Primary channel type description:

I 0 = Overhead or Dummy,

| 18 » Trigger,

| 9 = SANDUS Analog.

| 20 = SANDUS Digital.

| 21 = SANDUS Digital Subchannel.

| 22 = SANDUS Analog Mux.

{23 = SANDUS AMux Subchannel.

I 26 = Tektronix 7912.

I 2% = Tektronix 7912 Subchannel.

| 26 s Currently unused.

I 27 = Currently unused.

| 28 s Tektronix 7103.

{29 = Tektronix 7103 Subchannel.

| 30 = RTD 720 Device.

| 31 = RTD 720 Channel.

| 32 = RTD 720 Experiment Subchannel.
I 33 =« RYD 720 Laser Cal Subchannel.
I 34 = RTD 720 Cable Comp Subchannel.
character*24 laat_edit | Date of last edit.
end structure

I The following structure describes trigger counter channeis. There should be
! & record of this type preaent for every trigger counter channel.

structure /TRIGGER_CHAN_DESC/
integer*2 chan_num
byte chan_rec_type
byte dummy

Channel number (octal).
Channel record type (18).
Dummy field (not used).

Width of data sample in bits.

Number of bytes per sample.

Trigger number for this channel (1-6).

Byte of trigger count this channel occupies (1-4).
Date of last edit.

integervs data_width

integer*é byte_span

integer*4 trig_num

integer+*s trig_byte

character*24 last_edit
end structure

! The following structure describes the SANDUS analog channels. There should
! be one record of this type present for avery SANDUS analog channel.

structure /§_ALOG_CHAN_DESC/
integer*Z chan_num
byte chan_rec_type
byte dummy

Channel number (octal).
Channel record type (19).
Dummy field (not used).

UGENERAL" Information follows:

Channel number in ASCII.

Date of last edit,

SNL Experiment number,

Experimenter name.

Experimenter organization, or
acronym if non-Sandia.

Experimenter plot annotation.

character*16 sec_desc
character*24 last_edit
character*12 expmt_id
character*20 expmtr_name
character*8 expmtr_org

character*16 expmtr_note

Sandia National Laboratories Underground Testing

A-36

Data Collection System

character*8

plot_option

character*12 y_label
character®12 alt_y_label

integer*s

integer*4
character®*8

logical®é

resl*8

real*8

logical*4

real*4

real*s

real*s
real*8
real*8

character*4

logical*s

integer*4

data_width

byte_span
data_conv

use_start_stop

plot_start
plot_stop
use_min_max
y_min

y_max

atart_time
stop_time
relative_delay

zero_ref

compress

nom_devtn

Sandia National Laboratories

Instrument Control F

.

ile for

Tektronix RTD720 Digitizers

Plot option;
a character string such as
'NONE', 'COUNTS', 'LINEAR', 'YT-1D’,
'YT-HD', 'TC-K', 'SLIFER’, etc.
'NONE' requests no plot, 'COUNTS’
requests a plot in percent of full scale.
'LINEAR requests a plot of engineering
units in the linear form "ay+b",
Other values request a plot of engineering
units applying a non-linear, special routine.

Y-axis Label for |inear plots.

Y-axis label for non-linear plots.

Width of the data sample in bits.

Used to determine the UBE,
the maximum count value.
Appears in the plot legend.

Number of bytes per sample.

Data conversion;
acceptable entries are:

TLINEAR’, 'EXTENDED’.
PRELEWD interprets 'EXTENDED’ to mean
data_width = 12 and byte_span » 2.

Use the plot start and stop time which follow;
.true. means use plot_start and plot_stop,
.false, means the plot start and stop time
will come from other sources.

Plot start time in seconds;
valid only if use_start_stop above is .true.

Plot stop time in seconds;
valid only {f use_start_stop above is ,true.

Use the y-min and y-max values which follow;
.true. means use y_min and y_max,

.false. means the plot y min and max value
will comr .rom other sources,

Minimam y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.

Maximum y value to plot;
valid only {f use_min_max above is .true.,
units must agree with y_label or alt_y_label.

sample interval start time,

Sample interval stop time.

Relative delay in seconds, a correction
added to time values before plotting.

2ero raference; used to identify on plots the

basis for the relative_delay correction above.

Currently 'COMP'(ton), 'FIDU!, and ' ' are
acceptable. Use of this field MAY classify
the resulting plot.

Compress data;
.true., indicates that hardware compression
of the data has occurred, while
.false. indicates NO hardware
compression has occurred.

Acceptable deviation from nominal;
valid only if compress above
is .true, This is a decimal value.

Underground Testing

14"37

Data Collection System

integer®4

logical®é

real*8

character*s

character*s

character*d

integer*4

character*8

character*8

integer*4

character*8

real"4

character¥4

integer*4

integer*4
real*8

delay_count

log_chan

log_samp_int

srad_file

circult_type

data_mod_type

num_ad_conv

mem_realtime

mem_size

sig_cond_gain

input_otffset

fitter_freq

pretrig_bytes

num_samp_ints

num_samps(2)
samp_int(2)

Sandia National Laboratories

- v - — - . - - - —— e ——— — — o -

Instrument Control File for
Tektronix RTD720 Digitizers

Number of samples before comprassion;
valid only if compress above
is .true.
Log this channel;
.true. means that this is a data logger
channel and the log_rete which follows is
to be used for sample interval.
Log sample rate in seconds;
valid only if log_chan sbove is .true.
Indicates whether or not to produce
an SRAD file when generating a plot,
Acceptable entries are 'NONE', and 'SRAD'.

NSETUPY [nformation follows:

Circuit type description;

acceptable entries are:

'BRIDGE' or 'V-MONITOR’,
Module identification;

acceptable entries are:

tTAS9YY, 1TAS92!,

Appears in the plot legend.
N r of A/D converters;

acceptable entries are Y or 2,
Module tygo:

acceptable entries are:

'MEMORY', 'REALTIME’,
Memory size;

acceptably entries are:

'4 KB', '8 KB', '16 KB', '1 KB', 'N/A'.
Signal conditioning gain;

acceptable entries are:

1, 2, 5, 10, 20, 50,

100, 200, 500, 1000, 2000, 5000, 10000,

Appears in the plot legend.
Input offset;

acceptable entries are:

O.Fsl' I.S/‘l. l.1/2l‘ l.‘/‘l’

0010 lﬂ/(,l' le/Zl' l.]/“»' 'NZA!,
Filter frequency, in Hz;

acceptable entries are:

$00, 1000, 2000, 5000,

10000, 20000, 50000,

100000, 200000, 500000,

1000000, 2000000, 5000000, 10000000,

Appeairs in the plot legend.
Number of pretrigger bytes.

To convert to pretrigger data samples

divide pretrig_bytes by byte_span.
Number of sample intervals;

must be greater thaen 0 and

less than or equal to 2.
Number of samples per sample interval,
Sample intervals, in seconds.

The first value appears in the

plot legend,

Underground Testing

A-38

Data Collection System

character*8

character*s

logical*4

logical*4

logical*é

integer*é

real%s
logical®s

real*s
real%
character*80

logical*4

real*s
real®s
real®s
real%4
real®é

logical*4

character*12

integer*s
logical®s

real*8
real*4
real%4
real*s
integer%s
integer*4

trig_mode

trig_level

trig_arm
trig_inhibit
trig_manual

trig_number

gage_req_exc
apply_ktfactor

kfactor
kfactor_atten
kfactor_method
normalize_time
normalz_factor
sig_atten

sig_term_res

aig_prop_time
trg_prop_time

cal_option

cal_mode

cal size
cal_use(4)

cal_level(4)

cal_eng_units(4)

cal_slope_dev
cal_top
cal_bottom

cal_slope

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

I Trigger mode;

| acceptable entries are:

I 'INTERNAL', 'EXT A', YEXT B’,

| 'MANUAL Y, 'N/AY,

| Internal trigger level;

| acceptable entries are:

| '."I’ 0.3/“' o.],gr. 0.1/(.0‘
o0, N80, a0, 143740, /AT,
| Trigger arm;

I .true. means the module is armed,

| .false. means the module (s triggered.
I Trigger inhibit;

I .true. means trigger inhibited,

| .tfalse, means trigger "ot inhibited.

| Manual trigger;

I .true. means set trigger,

I .false. means clear trigger.

| Trigger number for this channel.

I This trigger and the ref_trig are used
| by PROCESS to determine the time of the
1 first semple.

I “K-FACTOR,
t NORMALIZATION, and TREND" Information follows:

| Gauge requested excitation.

| Apply K-factor to this channel;
| .true. means apply.

| Meanured K-factor,

| Late change affecting X-factor.
| Description of how K-factor was
| measured.

| Normalize the time axis;

I .true. means normalize.

) Normalization factor.

| 8ignal attenuation for TREND,

! Signal termination resistance.
| Total signal propogation time,
| Total trigger propogation time.

| WCALIBRATION" Information follows:

| Calibrate this channel;
I Jtrue, means calibrate.
| Calibration mode (on TAS91/TAS92 board);
| acceptable entries are:
| 'DATA', ‘2ERO’, 'SHUNT!,
| TeTEST', '-TEST!, '8Y§ CAL',
| 'SPARE', 'LIN CHK', 'N/A!,
| Number of calibration samples.
{ Calibration levels to use;
| .true, means use this level,
| Calibrator levels in volts,
| Calibration levels in engineering units.
| Calibration slope.
| Calibration slope deviation.
| Top cal level to use,
| Bottom cal level to use.

Underground Testing

A-39

Data Collection System

integer*s cal_dift_check

integer*s cal_balance

character®8 cal_source(é)

character*8 cal_type(4)

character*8 cal_atten

logical*s sim_option

integer*s num_simulators

character®1é sim_unique_id(4)

real*8 aim_pp_volts
real®s insert_atten
real®é fanout_atten
real®s cable_stten
integer*s sim_switch

character®16 sim_unique_fo
integer®é sim_fo_switch

character®8 est_tek_atten

integer®s
end structure

picosec_atten

! The following structure describes the SANDUS digital channels.

—— o — - —————

- ——

Instrument Control File for
Tektronix RTD720 Digitizers

Minimum acceptable difference
between cal top and cal bottom
in counts,
It circult_type = "BRIDGE", this
field Indicates which cal level corresponds
to the gage balance level,
Calibration source;
acceptable entries are:
IVRF, TALT!, TN/AY,
Calibration type;
scceptable entries sre:
f2ERO!, 'SHUNT', 'STEP', 'eTERT’,
0.““0' 'QAGE’, v|.“c. 0'1‘21.
'SKIR3Y, '9-K3', '8K1R2', 'SK2LY',
tEKY-30, PEXTY, VINTY, IN/AY,
Calibration stteruation factor;
acceptable entries are!
e, 110011, 1100017, KN, TN/ZAY,

WEIMULATION® [Information follows!

External aimulation;

Jtrue, means simulation applied.

Number of simulators used to
generate the aimulation signal,
four maximum,

Simulator unique identification
for each simuiator used,

Simulated aignal voltage, peak-to-peak
being inserted for this experiment,

Attenuator inserted after fanout,

Fanout attenuation.

Sum of ail cable attenuation between
the simulation signal generator and
thin experiment,

Simulator switch number,

Fiber Optic 10 code,

Fiber Optic switch number.

Estimated attenuation needed to avoid
over driving the Tek 11801,

Attenuation setting, Picosecond ganerator,

There should

| be one record of this type present for every SANDUS digital channel.

structure /8_DIG_CHAN_DESC/

integer® chan_num
byte chan_rec_type
byte dummy

character*16 sec_desc
character®24 last_edit
integer*4 date_width
fnteger*4 byte_span

Sandia National Laboratories

Channel number (octal),
Channel record type (20).
Dummy field (not used),

HGENERAL" Information follows:
Channel number {n ASCII,
Date of last edit,

Wwidth of data sample in bits,
Number of bytes per sample.

Underground Testing

A-40

Data Collection System

character*s

real*d
real*l
integer*s

logical*s

real*8

character®s

loglcal®é

integer®4

integer®s

loglcal®s

resl*8

character®s

character*8

integer®é

character*d

character*8

character*4

integer®s

data_conv

start_time
stop_time
num_sub_chans

aep_dig_subch

relative_delay

tero_ref

compress

compress_mask

delay_count

log_chan

log_samp_int
srad_file

deta_mod_type
num_ad_conv
mem_realtime
mem_size
pretrig_bytes

rum_samp_ints

Sandia National Laboratories

—— - — ———— - —_— - — — - ——— - —

Instrument Control File for
Tektronix RTD720 Digitizers

Data conversion’
acceptable entries are:
'LINEAR?,
Sample interval start time.
Somple interval atop time,
N r of subchannels (bit flelds);
Lens than or equsl %o 12,
Process/Plot usage flag;
Jtrue. use bit flelds es described
in the subchannel structure(s),
false. combine all bits (old method),
Relative delay in seconds, a correction
added to time values before plotting.
2ero reference; used to identify on plots the
basis for the relative delay correction above.
Currentiy 'COMP/(ton), 'FIDU', and ' ' ate
acceptable. Use of this field MAY classity
the resulting plot,
Compress data;
true, indicates that hardware compression
of the data has occurred, while
fatne. indicetes NO hardware
compression has occurred.
Compression mask;
valid only {f compress above
ia (true,
Number of samples before compression;
valid enly if compress above
is .true,
Log this channel;
true, means that thia is a datas logger
channel and the log_samp_int which follown is
to be used for sample interval.
Log sample rate in seconds;
valid only {f log_chsn above is ,true.
Indicates whether or not to produce
an SRAD file when generating a plot,
Acceptable entries are 'NONE’, and 'SRAD',

HSETUPY Information foliows:

Module identification;
acceptabie entries are:
TTASOYY, 1TAS92Y,
Appears in the plot (egend,
Number of A/D converters;
acceptabie entries are Y or 2.
Module type;
acceptable entries are:
'MEMORY !, 'REALTIME',
Memory &fze;
acceptable entries are:
thKB', ‘B KB', 16 KB', 'Y KB!, IN/A,
Number of pretrigger bytes.
To convert to pretrigger data samples
divide pretrig_bytea by byte_span,
Number of sample intervals;
mJst be greater than 0 and
{ess than or equal to 2.

Underground Testing

A-41

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

Number of samples per sample interval,
fample intervels, in seconds.
The firat value appears in the
plot legend.
Trigger mode;
acceptable entries are:
CINTERNALY, 'EXY A’, 'EXT 87,
TMANUAL', 'N/AY,
trigger arm;
Jtrue. means the module is armed,
.false, means the module is triggered.
trigger inhibit;
«true. means trigger inhibited,
.false, means trigger not inhibited.
Marual trigger;
.true, means set trigger,
false, means clear trigger.
Trigger number for this channel.
this trigger and the ref_trig are used
by PROCESS to determine the time of the
first sample.

integer*é m_samps(2)
real*s samp_int(2)

character*8 trig_mode

logical®s trig_arm
togical®s trig_innibit
logical*s trig_manual

integer*s trig_number

- ——————— —— - ——— ——— -

HCALIBRATION" [nformation foliows:
Calibration of SANDUS digital channels
is not currently implemented in PRELEWD,

-

Calibrate thia channel;

logical*s cal_option
t .true, means calibrate.

end structure
| The following structure describes the SANDUS digital subchannels (bit tields).
I There should be a record of this type present for every subchannel in @
I SANDUS digital channel (12 meximum).

structure /8 _01G_SUB_DESC/

{nteger® chan_num I Main channel number.
byte sub_rec_type | Bit fleld record type (21).
byte sub_num i Subchannel (bit field) number (decimal).

WOENERAL" Information follows:

Channel number in ASCII,
Date of last edit.
SNL Experiment number,
Experimenter name,
Experimenter organization, or
acronym if non-Sandia.
Experimenter plot annotation.
Plot option;
acceptable entries are:
*NONE’, 'COUNTS'.
'NONE‘ requests no plot, 'COUNTS’
roquests a plot in parcent of full scale.
Y-axis label for (inear plots.
Ignored for this channel type.

character®i6 sec_desc
character*24 last_edit
character®12 expmt_id
character*20 expmtr_name
character*8 expmtr_org

character*ié expmtr_note
character*8 plot_option

character*12 y_label

Sandia National Laboratories Underground Testing

Data Collection System

logical®4

real*s
real*8

logical®*s

real*s

real*4

integer*é

{nteger*s

logical®4

integer*s
logical*4

real*8
real%s
real*s
real®
intager*4
integer*é
integer*s

end structure

use_start_stop

plot_start
plot_stop

use_min_max

ymin
y_max

fleld offset
fleld_width

cal_option

cal _nize
cal_use(s)

cal_level(4)
cal_eng_units(4)
cal_slope
cal_slope_dev
cal_top
cal_bottom
cal_ditf_check

——————————— —— — v — e — - — -

Instrument Control File for
Tektronix RTD720 Digitizers

Use the plot start and stop time which follow;
.true. means use plot_stert and plot_stop,
.false. means the plot start and stop time
wmill come from other sources.

Plot start time {n seconds;
valid only {f use_start_stop above is .true.

Plot atop time in seconds;
valid only {f use_start_stop above is .true,

Use the y-min and y-max values which follow;
Jtrue. means use y_min and y_max,

.false. means the plot y min and max value
will come from other sources,

Ninimum y value to plot;
valid only {f use_min_max above is .true.,
units must agree with y_label or alt_y_label.

Maximum y value to plot;
valid only {f use_min_max sbove is .true.,
units must sgree with y_label or alt_y label.

Bit field starting offset counting
from the Least significant bit.

Bit field length; values other than 1
are not currently implemented.

WCALIBRATION" Information follows:
Calibration of SANDUS digital subchannels
is not currently implemented in PRELEWD.

Calibrate this subchannel;
.true. means calibrate.

Number of calibration samples.

Calibration Levels to use;
.true, means use this level,

Calibrator levels in volts.

Calibration levels in engincering units,

Calibration slope,

Calibration slope deviation.

Top cal level to use.

Bottom cal level to use.

Minimum acceptable difference
between cal top and cal bottom
in counts,

! The following structure describes the SANDUS analog multiplexer channels.
| There should be one record of this type present for every SANDUS analog

! multiplexer channel,

structure /8_AMUX_CHAN_DESC/

integer* chan_num
byte chan_rec_type
byte dummy

character*16 sec_desc
character*24 last_edit

Sandia National Laboratories

Channel number (octal).
Channel record type (22).
Dummy field (not used).
WGENERALY Information follows:

Channel number in ASCII.
Date of last edit.

Underground Testing

A-43

Data Collection System

integer*s

{nteger*s
character*8

real*8
real*8
integer*4

real*8

charactervé

logical*é

integer*s

integer*s

logical*é

real*8

character*4

character*8

integer*4

character*8

character*8

character“$

data_width

byte_span
data_conv

stare_time
stop_time
mum_sub_chans

relative_delay

zero_ref

compress

nom_devtn

delay_count

log_chan

log_samp_int
srad_file

data_mod_type
numn_ad_cony
mem_realtime
mem_size

pretrig_bytes

Sandia National Laboratories

- - —— - ——— e ——— - — . —_ - —— e — - — o —— o ——

Instrument Control File for
Tektronix RTD720 Digitizers

Width of the data semple in bits,
Used to determine the UBE,
the maximum count value.
Appears in the plot legend.
Number of bytes per sample,
Data conversion;
acceptable entries are:
'LINEAR', 'EXTENOED’.
PRELEWD interprets 'EXTENDED' to mean
data_width » 12 and byte_span « 2,
Sample interval atart time,
Sample interval stop time.
Number of subchannels;
Less than or equal to 32.
Relative delay in seconds, & correction
added to time valuss before plotting.
2ero reference; used to identify on plots the
basis for the relative_delay correction above.
Currently 'COMP!(ton), 'FIDU’, and ' ! are
acceptable. Use of this field MAY classify
the resulting plot.
Compress data;
.true. indicates that hardware compression
of the date has occurred, while
.false. indicates NO hardware
compression has occurred,
Acceptable deviation from nominal;
valid only if compress above
is .true, This is a decimel value,
Number of samples before compression;
valid only if compress above
is .true,
Log this channel;
.true. means that this is a data {ngger
channel and the log_semp_int which follows {s
to be used for sample interval,
Log sample rate in secords;
valid only if log_chan above s .true.
Indicates whether or not to produce
an SRAD file when generating a plot,
Acceptable entries are 'NONE’, and ‘SRAD',

WSETUP" Information follows:

Module identification;
acceptable entries are:
'TAS917, 'TAS92/,
Appesrs in the plot legend.
Number of A/D converters;
acceptable entries are 1 or 2,
Module type;
acceptable entries are:
'MEMORY’, 'REALTIME’,
Memory size;
acceptable entries are:
"4 KB', '8 KB', 16 KB', 'Y KB', 'N/A',
Number of pretrigger bytes,
To convert to pretrigger data samples
divide pretrig_bytes by byte_span,

Underground Testing

A-44

integert4

integer*4
real*8

character*8

logical*4

logical*é

logical*é

integer*4

logical*4

character*4

integer*4
logical*4

real*8
real*4
real*4
integer*4
integer*4
integer*4

end structure

Data Collection System

num_samp_ints

num_samps(2)
samp_int(2)

trig_mode

trig_arm

trig_inhibit

trig_manual

trig_number

cal_option

cal_object

cal_size
cal_use(4)

cal_level(4)
cal_stope
cal_slope_dev
cal_top
cal_bottom
cal_diff_check

!
!
!
!
!
'
!
!
!
!
'
!
!
!
!

Instrument Control File for
Tektronix RTD720 Digitizers

Nunber of sample intervals;
must be greater than 0 and
less than or equal to 2.
Number of samples per sample interval.
Sample intervals, in seconds.
The first value appears in the
plot legend,
Trigger mode;
accepiable entries are:
' INTERNAL’, 'EXT A’, 'EXT B',
MANUAL ', 'N/A?,
Trigger arm;
.true. means the module is armed,
.false. means the module is triggered.
Trigger inhibit;
.true. means trigger inhibited,
.false. means trigger not inhibited.
Manual trigger;
.true, means set trigger,
,false. means clear trigger.
Trigger number for this channel.
This trigger and the ref_trig are used
by PROCESS to determine the time of the
first sample.

WCALIBRATION" Information follows:
Calibration of SANDUS analog multiplexer channels
is not currently implemented in PRELEWD.

Calibrate this channel;

.true. means calibrate.
Calibration object;
'MAIN’ means use main channel cal values
and calibrate as an aggregate,
'SUB’ means use the cal information contained
in the subchannel structure(s).
Number of calibration samples.
Calibration levels to use;
.true. means use this level.

Calibrator levels in volts.

Calibration slope.

Calibration slope deviation.

Top cal level to use.

Bottom cal level to use.

Minimum acceptable difference
between cal top and cal bottom
in counts.

! The following structure describes the SANDUS analog multiplexer subchannels.
! There should be a8 record of this type present for every subchannel in a
I SANDUS analog multiplexer channel (32 maximum).

structure /S_AMUX_SUB_DESC/

integer*2 chan_num ! Main channel number.
byte sub_rec_type ! Subchannel record type (23).
byte sub_num ! Subchannel number (decimal).

Sandia National Laboratories Underground Testing

A-45

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

"GENERAL" Information follows:

Channe! number in ASCII.

Date of last edit.

SNL Experiment number.

Experimenter name.

Experimenter organization, or
acronym if non-Sandia.

Experimenter plot annotation.

Plot option;

a character string such as

'NONE’, 'COUNTS’, 'LINEAR’, 'YT-1D',

'YT-HD', 'TC-K', 'SLIFER’, etc.

'NONE' requests no plot, 'COUNTS'

requests a plot in percent of full scale.
'LINEAR’ requests a plot of engineering
units in the linear form "“ay+b".

Other values request a plot of engineering
units applying a non-linear, special routine.

Y-axis label for linear plots.

Y-axis label for non-linear plots.

Use the plot start and stop time which follow;
.true. means use plot_start and plot_stop,
.false. means the plot start and stop time
will come from other sources.

character*16 sec_desc
character*24 last_edit
character*12 expmt_id
character*20 expmtr_name
character*8 expmtr_org

character*16 expmtr_note
character*8 plot_option

character*12 y_label
character*12 alt_y_label
logical*4 use_start_stop

real*8 plot_start Plot start time in seconds;
valid only if use_start_stop above is ,true.
real*8 plot_stop Plot stop time in seconds;

valid only if use_start_stop above is ,true,
Use the y-min and y-max values which follow;

.true. means use y _min and y_max,

.false. means the plot y min and max value

will come from other sources.

logical*4 use_min_max

real¥%4 y_min Minimum y vatue to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.
real*4 y_max Maximum y value to plot;

valid only if use_min_max above is ,true.,
units must agree with y_label or alt_y_{abel.
Word displacement from sync pattern.

integer*4 word_disp

"CALIBRATION" Information fol lows:
Calibration of SANDUS analog multiplexer
subchannels is not currently implemented in PRELEWD.

Calibrate this channel;

.true. means calibrate.
Number of calibration samples.
Calibration levels to use;

.true. means use this level.

logical*4 cal_option

integer*4 cal_size
logical*4 cal_use(4)

real*8 cal_level(4) Calibrator levels in volts.

real*4 cal_eng_units(4) Calibration levels in engineering units.
real*4 cal_slope Calibration slope.

real*4 cal_slope_dev Calibration slope deviation.

Top cal level to use.
Bottom cal level to use.

integer*4 cal_top
integer*4 cal_bottom

Sandia National Laboratories Underground Testing

A-46

Data Collection System

integer¥4 cal_diff_check

end structure

Instrument Control File for
Tektronix RTD720 Digitizers

Minimum acceptable difference
between cal top and cal bottom
in counts.

t The following structure describes the Tektronix 7912 channels. There should
! be one record of this type present for every 7912 channel,

structure /T7912_CHAN_DESC/

integer“? chan_num
byte chan_rec_type
byte rec_use

character*16 sec_desc
character*24 last_edit
character*8 source_loc

integer*4 data_width
real*8 start_time
real*s stop_time
integer*4 num_sub_chans
integer*s drc_op_code
integer*4 gpib_address

character*4 dt_get
character*8 intensity
character*s4 focus
character*12 time_div
character*8 h_position
character*4 magnifier
character*4 trig_mode
character*4 trig_coupling
character*4 trig_slope
character*4 trig_source
character*4 trig_holdoff
character*8 trig_level
character*4 v_coupling
character*12 v_volts_div
character*4 v_var_sens
character*s v_polarity
character*8 v_position
character*8 tbase_plugin
character*8 vert_plugin

logical¥*4 cal_option
integer*4 trace_width
integer*4 time_tolerance
integer*4 vert_tolerance

Sandia National Laboratories

Channel number (octal).
Channel record type (24).
Record use;

0 - For experiment data.

1 - For laser calibration,

2 - For cable compensation.

WGENERAL" Information follows:

Channel number in ASCII.

Date of last edit.

Information for plot header to
enable use of TA668 i.e. '7912-1'.

width of data sample in bits,

sample interval start time.

Sample interval stop time.

Number of subchannels.

"SETUP" Information follows:

DRC operation code.

GPIB address.

Interface message digitize.
Main intensity.

Focus,

Time per division.
Horizontal sweep position.
Sweep magnifier.

Trigger mode.

Trigger signal coupling.
Trigger slope.

Trigger source,

Trigger holdoff period.
Trigger level.

Vertical coupling.

Vertical volts per division,
Vertical variable sensitivity.
Vertical polarity.

Baseline vertical position.
Time Base Plug-In type.
Vertical Amplifier Plug-In type.

"CALIBRATION" Information follows:
Calibrate this channel;

.true. means calibrate.
Optimum trace width,

Timebase tolerance.
Vertical tolerance.

Underground Testing

A-47

Data Collection System

real*4 baseline_toc
real*s trace_start
integer*4 num_cal_levels
integer*4 cal_size
logical*s cal_ext_trig
logical*4 cal_take(8)
logical*4 cal_use(B)
logical*4 cal_brief(8)
real*s cal_level(8)
integer*4 cal _top
integer*4 cal_bottom
integervé cal_diff_check
integer*4 cal_order(8)
integer*s4 nun_cal_pulses
logical*4 pulse_take(4)
logical*4 pulse_use(4)
logical*4 pulse_brief(4)
real*4 pulse_period(4)
real*4 pulse_delay(4)
real*4 trig_delay(4)
real*4 pulse_width(4)
reat*4 pulse_rise(4)
real*4 pulse_fall(4)
real*s pulse_v_high(4)
real*4 pulse_v_low(4)
logical*4 pulse_double(4)
logical*4 pulse_invert(4)
real*4 mid_sine_freq
real*4 base_sine_freq
real*4 mid_sine_amp
real*4 base_sine_amp
integer*4 min_cycles

character*4 sig_in_spdt
character*4 sig_in_sp8t
character*4 sig_dist_sp4t
character*4 src_sel_spt(4)
character*4 dc_atten_spdt
character*4 rf_atten_spdt
character*4 pu_atten_spdt
character*4 trig_sw_spdt

integer*4 dc_gpib_addr
integer*s4 rf_gpib_addr
integer*s4 pu_gpib_addr
integer*4 hp_gpib_addr
integer*4 tr_gpib_addr
integer*4 vax_channel

character*8 mid_vert_pos

character*12 sim_ts_node
integer*4 las_cal_cntr
integer%4 las_sig_cal

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

Baseline {ocation,

Trace start position,

Number of OC calibration levels.
Number of bytes per trace.
External trigger;

.true. means use external trigger,
Cal levels to take; .true. means take.
Cal levels to use; .true. means use.
Cal levels to take at t-2 hours;

(max of 3 can be .true.)
Calibrator levels in volts,

Top cal level to use.

Bottom cal level to use.

Minimum acceptable difference
between cal top and cal bottom

in counts.

Order of calibration levels.
Number of calibration pulses.
Pulses to take; .true. means take.
Pulses to use; .true, means use.
Pulses to take at t-2 hours;

(max of 2 can be .true.),

Pulse period,
Pulse delay.
Trigger delay.
Pulse width,
Pulse rise time.
Pulse fall time.
Pulse high volts,
Pulse low volts.
Double pulse; .true, means double pulse.
Invert putse; .true. means invert pulse.
Midscreen sine frequency.
Baseline sine frequency.
Midscreen sine amplitude.
Baseline sine amplitude.
Minimum number of complete
sine cycles.

Should be identical to sig_in_spdt.

DC attenuator address
RF attenuator address
Pulse attenuator address

DC voltage source GPIB address,

RF sinewave source GP|B address.

Pulse source GPIB address.

HP3852A GPIB address.

Trigger source address.

VAX GPIB channel number.

Setting for midscreen vertical position.

"LASER" Calibration information follows:
Terminal server node name,

Switch Controller address.
Gage signal / Laser cal address.

Underground Testing

A-48

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers

integer*4 las_freq | 50 MHz / 1 MHz address.

{nteger*4 las_ext | Laser input; Internal / External address.
integer*4 las_lcl_rmt | Local / Remote address.

integer*4 las_lckout | Laser lockout address.

integer®4 las_trig | Laser closure trigger address.

integer*s las_power | Laser Cal ON/OFF power address.

end structure

the following structure describes the Tektronix 7912 subchannels. There
will be one record of this type present for every Tek 7912 subchannel.
Each Tek 7912 subchannel is associated with one unique event experiment,
There will also be one record of this type designated subchannel 0, which
represents the raw data for the entire channel.

structure /T7912_SUB_DESC/

integer*?2 chan_num | Main channel number,
byte sub_rec_type | Subchannel record type (25).
byte sub_num ! Subchannel number.

| HGENERAL" Information follows:

Channel number in ASCII.

Date of last edit,

SNL Experiment number,

Experimenter name.

Experimenter organization, or
acronym if non-Sandia,

Experimenter plot annotation,

Plot option;
Acceptable entries are:
'NONE', 'COUNTS', 'LINEAR',
'NONE' requests no plot, 'COUNTS’
requests a plot in percent of full scale.
"LINEAR! requests a plot of engineering
units in the linear form "ay+b".

Y-axis label for linear plots.

character*16 sec_desc
character*24 last_edit
character*12 expmt_id
character*20 expmtr_name
character*8 expmtr_org

character*16 expmtr_note
character*8 plot_option

character*12 y_label

real*4 conv_factor Conversion factor in
engineering units per volt,
integer*4
real*4 expmt_delay signal delay inserted for multiplexing.
real“4 expmt_atten Signal attenuation which results from
the inserted signal delay.
integer*4 expmt_left Experiment left bound in counts.
integer*4 expmt_right Experiment right bound in counts,
logical¥4 use_start_stop Use the plot start and stop time which follow;
.true. means use plot_start and plot_stop,
.false, means the plot start and stop time
will come from other sources.
real*8 plot_start Plot start time in seconds;
valid only if use_start_stop above is .true.
real*8 plot_stop Plot stop time in seconds;
valid only if use_start_stop above is .true.
logical*4 use_min_max Use the y-min and y-max values which fallow;

Sandia National Laboratories

|
|
'
|
!
|
!
!
|
|
!
|
|
!
|
!
|
expmt_order ! Experiment order of occurrence.
|
t
|
t
!
|
!
|
!
|
|
!
|
!
|
|
|

.true, means use y_min and y_max,
.false. means the plot y min and max value
will come from other sources.

Underground Testing

A-49

Data Collection System

real*4

real®4

real*8

character*4

character*s

logical*s
real*4
real*4
character*80
logical*4
character*48
logical*4
real*4
real*4
real*4

real*4
real*4

togical*4

integer*4

character*16
real*8

real*4
real*4
real*4

integer*4
character*16
integer*4

y_min

y_max

relative_delay

tero_ref

arad_file

apply_kfactor
ktactor
kfactor_atten
kfactor_method
equal ize
equalize_file
normalize_time
normalz_factor
sig_atten
s1g_term_res

sig_prop_time
trg_prop_time

#im_option

num_simulators

sim_unique_id(4)
sim_pp_volts

insert_atten
fanout_atten
cable_atten

sim_switch
sim_unique fo
sim_fo_switch

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

Minimun y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.
Maximum y value to plot;
valid only {f use_min_max above in .true.,
units must agree with y label or alt_y_label,
Relative delay in seconds, a correction
added to time values before plotting.
lero refaerence; used to identify on plota the
basis for the relative_delay correction above,
Currentiy 'COMP!'(ton), ‘FIDU’, ' ' are
acceptable. Use of this field MAY classify
the resulting plot.
Indicates whether or not to produce
an SRAD file while generating a plot,
Acceptable entries are 'NONE', and /SRAD'.

“K-FACTOR, EQUALIZATION,
NORMALIZATION, and TREND* Information follows:

Apply K- factor to this channel;
.true. means apply.
Measured K-factor.
Late change affecting K-factor,
Description of how K-factor was
meusured,
Apply equalization to this channel;
.true. means equalize.
Filename of the equalization
function,
Normalize the time axis;
.true. means normalize.
Normalization factor.
Signal attenuation for TREND.
Signal termination resistance.
Total signal propogation time.
Total trigger propogation time.

"SIMULATION" Information follows:

External simulation;

.true, means simulation applied.

Number of simulators used to
generate the simulation signal,
four maximum.

Simulator unique identification
for each simulator used,

Simulated signal voltage, peak-to-peak
being inserted for this experiment.

Attenuator inserted after fanout.

fanout attenuation.

Sum of all cable attenuation between
the simulation signal generator and
this experiment,

Simutator switch number.

Fiber Optic ID code.

Fiber Optic switch number,

Underground Testing

A-50)

Data Collection System

character*8 est_tek atten

integer*4
end structure

picosec_atten

I The
it mist be present as a placeholder.

structure /UNUSED 26 _DESC/
integer*2 struct_rec_num
byte struct_rec_type
byte

end structure

I The
ft must be present as a placeholder,

structure /UNUSED_27_ODESC/

integer*2 struct_rec_num
byte struct_rec_type
byte dummy

end structure

| The following structure describes the Tektronix 7103 channels.

following structure is presently unused, it

Instrument Control File for
Tektronix RTD720 Digitizers

Estimated attenuation needed to avoid
over driving the Tek 11801,
Attenuation setting, Picosecond generator.

is here for future expansion,

Structure record number,

| Structure record type (26).

following structure is presently unused, it

Dummy field (not used).

is here for future expansion,

Structure record number,
Structure record type (27).
Dummy tield (not used).

There should

I be one record of this type present for every 7103 channel,

structure /17103 _CHAN_DESC/
integer#? chan_num
byte chan_rec_type
byte rec_use

character*1é
character*24
character*8

sec_desc
last_edit
source_loc

integer*4
real*8
real*8
integer+4

data_width
start_time
stop_time
num_sub_chans

character*8
character*4
character*12
character*8
character®*4
character®s
character*4
character*é
character*4

intensity
focus
time_div
h_position
magnifier
trig_mode
trig_coupling
trig_slope
trig_source

Sandia National Laboratories

Channel number (octal),
Channet record type (28).
Record use;

0 - For experiment data.

1 - for laser calibration.

2 - For cable compensation,

"GENERAL" Information follows:

Channel number in ASCII,

Date of last edit.

Information for plot header to
enable use of TA668 i.e. '7103-1/,

Width of data sample in bits,

Sampte interval start time,

Sample interval stop time.

Number of subchannels,

WSETUPY Information follows:

Main intensity.

Focus.

Time per division,
Horizontal sweep position.
Sweep magnifier,

Trigger mode.

Trigger signal coupling.
Trigger slope.

Trigger source.

Underground Testing

character*s4
character*8
character®4
character*i2
character*4
character®*s
character“8
character*8
character*8
character*4
character*s
character*4
character®s
character*s
character*4

logical®s

integer*4
integer®s
integer®é
real*s

real*4

integer*4
integer®4
logical*s

logical®4
logical®4
logical®*4

real*s

integer*4
integer*s
integer*4

integer*4
integer%4
logical®4
logical®4
logical*é

real*4
real*4
real*4
real¥4
real*4
real*4
real“4
real“
logical*4
logical*4
real"4
real*4
real*4
real*4

Data Collection System

trig_holdott
trig_level
v_toupling
v_volts div
v_var_sens
v_polerity
v_position
tbase_plugin
vert_plugin
readout
readout _gate
grat_gete
grat_illum
mf_trig _src
mf_vert_mode

cal_option

trace_width
time_tolerance
vert_tolerance
baseline_loc
trace_start
num_cal_levels
cal_size

cal _ext_trig

cal_take(8)
cal_use(8)
cal _brief(8)

cal_level(8)
cal_top
cal_bottom

cal _diff_check

cal_order(8)
num_cal_pulses
pulse_take(4)
pulse_use(4)
pulte brief(4)

pulse_period(4)
pulse_delay(4)
trig_delay(4)
pulse_width(4)
pulse_rise(4)
pulse_fall(4)
pulse_v_high(4)
pulse_v_low(4)
pulse_double(4)
pulse_invert(4)
mid_sine_freq
base_sine_freq
mid_sine_amp
base_sine_amp

Sandia National Laboratories

Instrument Control File tor
Tektronix RTD720 Digitizers

Trigger holdoff period.

Trigger level.

Vertical coupling.

Vertical volts per division,
Vertical variable sensitivity.
Vertical polarity,

Baseline vertical position,

Time Base Plug-In type.

vertical Amplifier Plug-in type.

WCALIBRATION'" Information follows:

Calibrate this channel;

.true. means calibrate.

Optimum trace width,

Timebase tolerance,

Vertical tolerance.

Baseline location,

Trace start position,

Number of DC calibration levels.
Number of bytes per trace,
External trigger;

Jtrue, means use external trigger.
Cal tevels to take; .true, means take,
Cal levels to use; .true. means use.
Cal levels to take at t-2 hours;

(max of 3 can be .true.)
Calibrator levels in volts,
top cal level to use.

Bottom cal level to use.
Minimum acceptable difference
between cal top and cal bottom

in counts,

Order of calibration levels,
Number of calibration pulses.
Pulses to take; .true. means take.
Pulses to use; .true, means use,
Pulses to take at t-2 hours;
(max of 2 can be .true.),
Pulse period,
Pulse delay.
Trigger delay.
Pulse width,
Pulse rise time.
Pulse fall time.
Pulse high volts,
Pulse low vaolts,
Double pulse; .true. means double pulse.
Invert pulse; ,true. means invert pulse.
Midscreen sine freguency.
Baseline sine frequency.
Midscreen sine amplitude.
Baseline sine amplitude.

Underground Testing

Data Collection System

integer*4 min_cycles
charscter®s sig_in_spdt
character*s sig_in_splt
character®s aig dist_spat
character®s arc_sel _spat{é)
character*s dc_atten_spdt
character*s rf_atten_spdt
character*s pu_stten_spdt
character*s trig_sw_spdt
integer*s dc_gpib_addr
integer*s rf_gpib_addr
integerts pu_gpib_addr
integer®4 hp_gpib_addr
integer®4 tr_gpib_addr
integer®4 vax_channel
character*8 mid_vert_pos
character®12 sim_ts_node
integer®s las_cal_cntr
integer®4 laa_sig_cal
integer®s las_freq
integer*4 las_ext
integer®s las_Llcl_rmt
integer*é tas_lckout
integer*4 las_trig
integer*s4 Las_power

end structure

structure /17103 _SUB_DESC/
integer*2 chan_num
byte sub_rec_type
byte sub_num

character*1é
character*24
character*i2

sec_desc
last_edit
expmt_id

character*20 expmtr_name
character*8 expmtr_org

character®16 expmtr_note
character*8 plot_option

Sandia National Laboratories

- - — — - —— o - — - -

Instrument Control File for
Tektronix RTD720 Digitizers

Minimum number of complete
sine cycles.

Should be identical to sig_in_spdt,

DC attenuator address
RF attenuator address
Pulse attenustor address

DC voltage source GPIB address.

RF sinewave source GPI8 address.

Pulse source GPID address.

HP3BS2A UPIB address.

Trigger source address.

VAX GP18 channel number.

Setting for micacreen vertical poaition,

WLASER' Calibration information follows!:

Terminal server node name.

Switch Controller address.

Gage signal / Laser cal address.

50 MN2 / 1 MH2 address.

Laser input; Internal / External address.
Local / Remote address.

Laser lockout address.

Laser closure trigger address,

Laser Cal ON/OFf power address.

The following structure describes the Tektronix 7103 subchannels. There
will be one recard of this type present for every Tek 7103 subchannel.
Each Tek 7103 subchannel is associated with one unique event experiment.
There will also be one record of this type designated subchannel 0, which
represents the raw data for the entire channel.

Main channel number.
Subchannel record type (29).
Subchannel number.

WGENERAL" Information follows:

Channel number in ASCII,

Date of last edit.

SNL Experiment number.

Experimenter name.

Exper imenter organization, or
acronym if non-Sandia.

Experimenter plot annotation,

Plot option;
Acceptable entries are:
'NONE', 'COUNTS', 'LINEAR’,
'NONE' requests no plot, ‘COUNTS/
requests a piot in percent of full scale.
'LINEAR' requests a plot of engineering
units in the linear form “ay+b".

Underground Testing

A-53

Data Collection System

character®12
reat*é

integer®4
real*s
real®s
integer®s

integertsy
logical®é

real®8
reai*8

logical®s

real*4

resl®

real*8

charecter®s

character*s

logical*4

real*4
real®s
character*80

logical*s
character*48
logical*s
real*4
real*s
real*é

real"4
real*4

y_label
conv_factor

expmt_order
enpmt_delay
expmt_atten

expmt_left

expmt_right
use_start _stop

plot_start
plot_stop

use_min_max

y_min
y_max

relative_delay

tero_ref

srad_ftile

apply_kfactor

kfactor
kfactor_atten
kfactor_method

equal {ze
equalize_file
normalize_time
normalz_factor
sig atten
sig_term_ res

aig_prop_time
trg_prop_time

Sundia National Laboratories

!

- —— - —— — - ——— -

Instrument Control File for
Tektronix RTD720 Digitizers

Y-anis label for linear plots,

Conversion factor in
engineering unita per volt,

Experiment order of occurrence,

Signal delay inserted for multiplening.

Signal attenuation which results from
the inserted signal delay.

Experiment Left bound in counts,

Experiment right bound n counts.

Use the plot start and stop time which follow;
Jtrue, means use plot_start and plot_stop,
false. means the plot start and stop time
will come from other sources.

Plot start time in seconds;
valid only {f use_start_stop above is .true.

Plot stop time in seconds;
valid only |f use_start_stop above is .true.

Use the y'min and y-max values which follow;
true. means use y min and y_max,

.false. means the plot y min and max value
will come from other sources,

Minimm y value to plot;
valid only if use_min_max above is .true,,
unite must agree with y_label or ait_y_label,

Maximmm y value to plot;
valid only {f use_min_max above is ,true.,
units must agree with y_label or alt_y_Label.

Relative delay in seconds, a correction
sdded to time values before plotting.

2ero reference; used to identify on plots the
basin for the relative _delay correction above.
Currently 'COMP‘(ton), 'FIDU', ' ' are
accoptable. Use of this field MAY classify
the resulting plot.

Indicates whether or not to produce
an SRAD fila while generating & plot.
Acceptable entries are 'NONE', and 'SRAD’,

“K-FACTOR, EQUALIZATION,
NORMALIZATION, and TREND" Information follows!

Apply K-factor to this channel;
Jtrue, means apply.
Measured K- factor,
Late change affecting X-factor,
Description of how K-factor was
measured,
Apply equalization to this channel;
.true, means equalfze,
Filename of the equalization
function,
Normalize the time axis;
.true. means normalizoe.
Normalization factor.
Signal attenuation for TREND,
Signal termination resistance.
Total signal propogation time,
Total trigger propogation time,

Underground Testing

A-54

Data Collection System

loglcat*e sim_option

integer®s rum_simulators

character®16 sim unique_id(4)

real*d sim_pp_volts
real*s insert_atten
real® fanout_atten
real®4 cable_atten
integer®s sim_switeh

charscter®16 sim_unique_fo

integer®s sim_fo_switch

character®8 est_tek_atten

integer®s plcosec_atten
end structure

t The following structure describes the RTD 720 device.

I record of thiv type for every R1D 720 device,
structure /RTD_DEV_DESC/

integer®? v_num
byte dev_rec_type
byte rec_use

character®2 last _edit
cheracter®12 editor

character®8 source_loc
integer*s data_width

character"8 node_name
character”8 port id

character®s vmode

character*8 acq mode

Sandia National Laboratories

- - - ———— -

—

Instrument Control File for
Tektronix RTD720 Digitizers

HEIMULATION® Information follows!

External aimulation;
Jtrue, mesns simulation applied.
Number of simulators used to
generate the simulation signal,
four maximm,
Simulator unique fdentification
for sach simulator used.
Yimulated signal voltage, pesk-to-peak
being inserted for this experiment.
Attenuator inserted after fanout,
Fanout attenuation.
sum of all cable attenuation between
the simutation signal generator and
this enperiment.
Simulator switeh mnumber.
Fiber Optic 1D code.
Fibar Optic switch number.
Estimated attenustion needed to avoid
over driving the Tek 1180,
Attenuation setting, Plcosecond generator.

There should be one

Device number (a decimal number
that (s identical to the GPIB
bus address).

R1D 720 device record type (30).

Record use;

0 - for experiment dets.
1 - For laser calibration,
2 - For cable compensation,

WOENERAL" device information follows!

Date of {ast edit.

Neme of RYDTEST editor,

Rack identification which appears on
the plot,

width of data semple in bits.

GPIS transiator Node name,

GPI® transiator GPIB port (D,

UWERTICAL" commands follow:
Vertical mode;

CN1, DUAL, or QUAD for

1, 2, or & hardware channels.
YACQUIRE" commands follow:

Mode;
NORMAL or ADVANCE.

Underground Testing

A-55

Data Collection System

character®8 acq atate

charscter*8 atq intervel
integer*4 acq_length
integer*s acq nrecord

character*8 acq clock

character*d arm
character*8 trig_mode
character*8 trig_coupling

real*é trig_level

character®d trig_typelevel

real 4 trig_position

character*8 trig_typepos
character*d trig_slope

character®8 trig_source

character*d wftx_mode

character*8 wftx_intrieave

integer*s data_cnt_rec
integer®4 data_count
integer*s data_start
integer*s data_strecord

character*s hado_state

integer®é hsda_txmode

Sandia National Laboratories

- — - -

|
|

- - — - - -

— - - - —— - - -

Instrument Control File tor
Tektronix RTD720 Digitizers

State;
$10P, RUN, or HLONXT,
Acquire interval {n seconds;
SO0K-12, 1E-9, 2E-9 or 4E-9,
Record Length;
$12 to maximum memory for each
channel .
Number of consecutive records
to f1ll in ADVANCE mode;
1 to a maximum of 1024,
Acquire clock source;
INTRNAL or EXTERNAL .,

YARM and TRIGGER" commancs follow!

Arming source;

INTRNAL or EXTERNAL,
trigger mode;
AUTO or NORMAL.

Trigger coupling;

AC, DC, or HFREJ.

trigger level in percent of full
scale or volts as determined
by type.

Trigger Level type;

PERCENT or VOLTS,

Trigger position in counts,
time, or percent »¢ record
Length as determineu oy type.

Trigger ponition type;

PERCENT, POINT, or SECOND.
frigger «lope;
PLUS or MINUS,

Trigger source;

CHY, CH2, CH3, CH4, or EXTERNAL.

“WAVEFORM PREAMBLE" commands follow:

Waveform transfer format;
DL at this time.

Waveform transfer interisave;
ON or OFF,

YDATA and WAVEFORM" commands fol low!:

Number of records in waveform transfer.
Number of points in waveform transfer,
Data transfer starting point.

Selects first record to be transferred.

"HIGH-SPEED DATA OUTPUT" commands follow!:
High speed port selection;

ON - Data (s sent to HSDO port,

OFF - Data ia sent to GPISB port,

H8DO port's handshake mode;
1 or 2,

Underground Testing

A-56

Data Collection System

character*12 hado_dump

character*s ras

character®s srq_abstouch

character®s arq cmderr
character®s arq_exerr
character® arq_exwarn
charscter®s srq_idprobe
character®s arq_inerr
character®s srq_imwarn
character*s srq_opcmpl
character*s srq usr!
character*é srq_usr2
character*12 uld

charactert80 {dent

character*8 abatouch

character*s debup_gpib
character*8 dt
charscter*8 init
character*s longform
character*s path

character*12 useri(2)
character*12 user2(?)

character*s crsl_loctn
character*s crs2_loctn
integer®*s cral_xpoint
integer®4 cra2_xpoint
character*8 cref
character*8 crad_typetime
character*s cursors

integer®4 pt_off

integer*4 xzero
integer*4 yoff

Sandia National Laboratories

— o ————— — o —— - —— - —— o — - — o~ — - -

Instrument Control File for
Tektronix RTD720 Digitizers

HSDO charp mode;
CONTINUOUS or OFF.

"gTATUS and EVENT" commands follow:

Enable/Disable 8RO Line;
ON or OFF,

Enable/Disable SR on the
following status or error
conditions;

ON (Enable) or OFF (Disable).
ON or OFF.

A string that assigns & name to
device.
Space for response to the [D? query.

“GPIB RELATED" commands follow:

CLEAR or a string representing
%,y coordinates of a simulaeted
button push.

Sets the state of GPIB debugping;
ON or OFF.

sets the acquisition state;

RUN, 8TOP, HLDNXT, or OFF.

Inftiation source;

PANEL, GPIB, or ALL,
Longform command;
ON or OFF.
Path command;
ON or OFF,
Quoted stringa to be displayed.
Quoted strings to be displayed.

“CURSOR" commands follow:

WiNx, where x = (1,2,3,4),
WiNx, where x = (1,2,3,4).
0 to record_length-1,

0 to record_length-1,
FIRST or SAME,

H2 or SECOND.

ON or OFF,

Preamble dats from the device:
Number of pointa between trigger
and firat point transmitted,

Horizontal zero point (always 0).
vertical binary offset (always 128).

Underground Testing

A-57

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers

real*s xiner | Horizontal sample interval (seconds).
| Wavaform data from the device:
real*s triract | Fraction of sample interval in which trigger

end structure

structure /RTD_CHAN_DESC/

| oceurred. Poasible values are as follows;
| CH1t O; OUAL: 0., .3; QUAD: O., .2%, .9, .78,

The following structure describes the RYD 720 channels, There should

be one record of this type present for every RTD 720 channel. It a

RTD 720 digitizer in operating in “QUAD' mode with four channels (traces),
then there will be four of these records for that digitizer,

{ntager*? chan_num | Channel number (combination of the
| decimal GPIB bus address and the
t RTD 720 channel number).
byte chan_rec_type | Channel record type (31).
byte rec_use | Record use;
! 0 - For experiment detas.
I 1 - For laser calibration,
| 2 - For cable compensation,
| “GENERAL" Information follows:
character®16 sec_desc | Channel number n ASCII,
character*24 last_edit | Date of last edit.
character®i2 editor | Neme of RTDTEST editor,
integer®s num_sub_chans | Number of subchannels for this
I hardware channel (»al),
| YWERTICAL SETUPY commands follow!
character*8 ch_range I Full scele vertical range setting;
I 0.25 to 20.0 v,
character*8 ch_offset | Input offset in percent of full
| scale or volts as determined
I by type;
| ¢/ 1,0V to+/- 10.0 Vv,
character*8 ch_typeoffset | Ofvset type;
| PERCENT or VOLTS,
character®*4 ch_coupling | Vertical coupling;
| AC, DC, or OFF,
character*8 ch_bwlim | Bandwidth Limiting filter;
| FULL, HUNDRED, or TWENTY,
| YDATA and WAVEFORM" commands follow:
character*s data_ch | Waveform data from this channel;
| ON or OFF,
| Preamble data from the channel:
reai*s ymult | Vertical scale factor (volts per count),
real*s yiero { Vertical offset of the wave form (volts),

Sandia National Laboratories

Underground Testing

A-58

Data Collection System

character*12 sim_ts_node

integer*4 las_cal_cntr
integer*4 las_sig_cal
integer*4 las_freq
integer*4 las_ext
integer*4 tas_ltcl_rmt
integer*4 tas_lckout
integer*4 tas_trig
integer®4 Las_power

end structure

structure /RTD_EXP_SUB_DESC/

integer*2 chan_num
byte sub_rec_type
byte sub_num
character*16 sec_desc
character*24 last_edit
character*12 editor
character*12 expmt_id
character*20 expmtr_name
character*8 expmtr_org
character*16 expmtr_note
character*8 plot_option
character*12 y_label
real*4 conv_factor
integer*4 expmt_order
real*4 expmt_delay
real*6 expmt_atten
integer*4 expmt_left
integer*4 expmt_right
logical*4 use_start_stop
real*8 plot_start

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

WLASER" Calibration information follows:

Terminal server node name.

Switch Controller address.

Gage signal / Laser cal address.

50 MHz / 1 MHz address.

Laser input; Internal / External address.
Local / Remote address.

Laser lockout address.

Laser closure trigger address.

Laser Cal ON/OFF power address.

The following structure describes the RTD 720 Experiment subchannels.

There will be one record of this type present for every RTD 720 subchannel.
Each RTD 720 subchannel is associated with one unique event experiment.
There will also be one record of this type designated subchannel 0, which
represents the raw data for the entire channel.

Channel number (combination of the
decimal GPIB bus address and the
RTD 720 channel number).

Subchannel record type (32).

Subchannel number.

YGENERAL" Information follows:

Channel number in ASCII,

Date of last edit.

Name of RTDTEST editor.

SNL Experiment number.

Experimenter name.

Experimenter organization, or
acronym if non-Sandia.

Experimenter plot annotation.

Plot option;

Acceptable entries are:

fNONE'’, 'COUNTS', 'LINEAR’.

'NONE' requests no plot, 'COUNTS’
requests a plot in percent of full scale.
'LINEAR' requests a plot of engineering
units in the linear form "ay+b".

Y-axis label for linear plots.

Gage conversion factor in
engineering units per volt.

Experiment order of occurrence.

signal delay inserted for multiplexing.

Signal attenuation which results from
the inserted signal delay.

Experiment left bound in counts.

Experiment right bound in counts.

Use the plot start and stop time which follow;
.true. means (se plot_start and plot_stop,
.false. means ‘he plot start and stop time
will come from other sources.

Plot start time in seconds;
valid only if use_start_stop above is .true.

Underground Testing

A-59

Data Collection System

real*8

logical*4

real*4

real*4

real*8

character*4

character*4

logical*4
real*4
real*s
character*80
logical*4
character*48
logical*4
real*4
real*4
real*4

real*4
real*4

logica .*4

integer*4

character*16
real*8

real*4
real*4

plot_stop

use_min_max

y_min

y_max

relative_delay

zero_ref

srad_file

apply_kfactor
kfactor
kfactor_atten
kfactor_method
equal ize
equalize_file
normal ize_time
normal z_factor
sig_atten
sig_term_res

sig_prop_time
trg_prop_time

sim_option

num_simulators

sim_unique_id(4)

sim_pp_volts

insert_atten
fanout_atten

Sandia National Laboratories

!
!

Instrument Control File for
Tektronix RTD720 Digitizers

Plot stop time in seconds;
valid only if use_start_stop above is .true.

Use the y-min and y-max values which follow;
.true. means use y _min and y_max,

.false. means the plot y min and max value
Will come from other sources.

Minimum y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y label.

Maximum y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.

Relative delay in seconds, a correction
added to time values before plotting.

Zero reference; used to identify on plots the
basis for the relative_delay correction above.
Currently 'COMP’(ton), 'FIDU’, ’ ' are
acceptable. Use of this field MAY classify
the resulting plot.

Indicates whether or not to produce
an SRAD file while generating a plot.
Acceptable entries are 'NONE’', and 'SRAD’.

“K-FACTOR, EQUALIZATION,
NORMALIZATION, and TREND' Information follows:

Apply K-factor to this channel;

!
!
|
!
!
!
!
!

.true. means apply.

Measured K-factor.

Late change affecting K-factor.

Description of how K-factor was
measured,

Apply equalization to this channel;
.true. means equalize.

Filename of the equalization
function.

! Normalize the time axis;

.true. means normalize.
Normalization factor.
! Signal attenuation for TREND.
Signal termination resistance.
Total signal propogation time.
Total trigger propogation time.

WSIMULATION" [nformation follows:

External simulation;
.true. means simulation applied.
Number of simulators used to
generate the simulation signal,
four maximum.
Simulator unique identification
for each simulator used.
Simulated signal voltage, peak-to-peak
being inserted for this experiment.
Attenuator inserted after fanout.
Fanout attenuation.

Underground Testing

A-60

Data Collection System

real*4 cable_atten

integer*4 sim_switch

character*16 sim_unique_fo
integer*4 sim_fo_switch
character*8 est_tek_atten

integer*4
end structure

picosec_atten

structure /RTD_LC_SUB_DESC/

integer*2 chan_num
byte sub_rec_type
byte sub_num

character*16 sec_desc
character*24 last_edit
character*12 editor
character*12 expmt_id
character*20 expmtr_name
character*8 expmtr_org

character*1é expmtr_note
character*8 plot_option

character*12 y_label

real*4 conv_factor
integer*4 expmt_order
real*4 expmt_delay
real*s expmt_atten
integer*4 expmt_left
integer*4 expmt_right
logical*4 use_start_stop

real*8 plot_start

real*s plot_stop

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

sum of all cable attenuation between
the simulation signal generator and
this experiment.

Simulator switch number,

Fiber Optic ID code.

Fiber Optic switch number.

Estimated attenuation needed to avoid
over driving the Tek 11801,

Attenuation setting, Picosecond generator.

The following structure describes the RTD 720 Laser Calibration subchannels.
There will be one record of this type present for every RTD 720 subchannel.
There will also be one record of thi-. type designated subchannel 0, which

represents the raw data for the entire channel.

Channel number (combination of the
decimal GPIB bus address and the
RTD 720 channel number).

Subchannel record type (33).

Subchannel number.

"GENERAL" Information follows:

Channel number in ASCII].

Date of last edit.

Name of RTDTEST editor.

SNL Experiment number.

Experimenter name.

Experimenter organization, or
acronym if non-Sandia.

Experimenter plot annotation,

Plot option;

Acceptable entries are:

'NONE’, 'COUNTS’, 'LINEAR'.

'NONE' requests no plot, 'COUNTS’
requests a plot in percent of full scale.
'LINEAR’ requests a plat of engineering
units in the linear form “ay+b",

Y-axis label for linear plots.

Gage conversion factor in
engineering units per volt.

Experiment order of occurrence.

Signal delay inserted for multiplexing.

Signal attenuation which results from
the inserted signal delay.

Experiment left bound in counts.

Experiment right bound in counts.

Use the plot start and stop time which follow;
.true. means use plot_start and plot_stop,
.false. means the plot start and stop time
will come from other sources.

Plot start time in seconds;
valid only if use_start_stop above is .true.

Plot stop time in seconds;
valid only if use_start_stop above is .true.

Underground Testing

A-61

Data Collection System

logical*4

real*4

real¥*4

real*8

character*s

character*4

logical*s
real*4
real*4
character*80
logical*4
character*48
logical*4
real*4
real*4
real*4

real*4
real*4

logical*4

integer*4

character*16
real*8
real*4

real*4
real*4

integer*4

use_min_max

y_min

y_max

relative_delay

zero_ref

srad_file

apply_kfactor
kfactor
kfactor_atten
kfactor_method
equalize
equalize_file
normal ize_time
normalz_factor
sig_atten
sfg_term_res

sig_prop_time
trg_prop_time

sim_option

num_simulators

sim_unique_id(4)
sim_pp_volts
insert_atten

fanout_atten
cable_atten

sim_switch

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

Use the y-min and y-max values which follow;

.true,

means use y_min and y_max,

.false. means the plot y min and max value
will come from other sources.
Minimum y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.
Maximum y value to plot;
valid only if use_min_max above is .true.,
units must agree with y_label or alt_y_label.
Relative delay in seconds, a correction
added to time values before plotting.
2ero reference; used to fdentify on plots the
basis for the relative_delay correction above.
Currently 'COMP!(ton), 'FIDU’, ' ! are
acceptable. Use of this field MAY classify
the resulting plot.
Indicates whether or not to produce
an SRAD file while generating a plot.
Acceptable entries are 'NONE’, and ’'SRAD’.

"K-FACTOR, EQUALIZATION,
NORMALIZATION, and TREND" Information follows:

! Apply K-factor to this channel;
.true. means apply.
Measured K- factor.
Late change affecting K-factor.
Description of how K-factor was
measured.
Apply equalization to this channel;
.true, means equalize.
Filename of the equalization
function.
Normalize the time axis;
.true. means normalize.
Normalization factor.
| Signal attenuation for TREND.
Signal termination resistance,
Total signal propogation time.
Total trigger propogation time.

"SIMULATION" Information fol lows:

External simulation;

.true, means simulation applied.

Number of simulators used to
generate the simulation signatl,
four maximum.

Simulator unique identification
for each simulator used.

Simulated signal voltage, peak-to-peak
being inserted for this experiment.

Attenuator inserted after fanout.

Fanout attenuation.

Sum of all cable attenuation between
the simulation signal generator and
this experiment,

Simulator switch number.

A-62

Underground Testing

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers

| Fiber Optic ID code.

| Fiber Optic switch number.

| Estimated attenuation needed to avoid

| over driving the Tek 11801,

| Attenuation setting, Picosecond generator.

character*16 sim_unique_fo
integer*4 sim_fo_switch
character*8 est_tek_atten

integer*4
end structure

picosec_atten

The following structure describes the RTD 720 Cable Compensation subchannels.
There will be one record of this type present for every RTD 720 subchannel.
There will also be one record of this type designated subchannel 0, which
represents the raw data for the entire channel.

structure /RTD_CC_SUB_DESC/

integer*2 chan_num | Channel number (combination of the
| decimal GPIB bus address and the
{ RTD 720 channel number).
byte sub_rec_type | Subchannel record type (34).
byte sub_num ! Subchannel number.
| “GENERAL" Information follows:
character*16 sec_desc Channel number in ASCII,
character*24 last_edit Date of last edit.
character*12 editor Name of RTDTEST editor.
character*12 expmt_id SNL Experiment number.
character*20 expmtr_name Experimenter name.
character*8 expmtr_org Experimenter organization, or

character*16 expmtr_note
character*8 plot_option

character*12 y_label

real*4 conv_factor
integer*4 expmt_order
real*4 expmt_delay
real*4 expmt_atten
integer*4 expmt_left
integer*4 expmt_right
logical*4 use_start_stop

real*8 plot_start
real*8 plot_stop
logical*4 use_min_max

Sandia National Laboratories

acronym {f non-Sandia.

Experimenter plot annotation.

Plot option;
Acceptable entries are:
'NONE', ‘COUNTS’, 'LINEAR',
'NONE' requests no plot, 'COUNTS'
requests a plot in percent of full scale.
'LINEAR’ requests a plot of engineering
units in the linear form 'ay+b".

Y-axis label for linear plots,

Gage conversion factor in
engineering units per volt,

Experiment order of occurrence.

signal delay inserted for multiplexing.

Signal attenuation which resuits from
the inserted signal delay.

Experiment left bound in counts.

Experiment right bound in counts,

Use the plot start and stop time which follow;
.true. means use plot_start and plot_stop,
.false. means the plot start and stop time
will come from other sources.

Plot start time in seconds;
valid only if use_start_stop above is .true.

Plot stop time in seconds;
valid only if use_start_stop above is .true.

Use the y-min and y-max values which follow;
.true. means use y_min and y_max,

.false. means the plot y min and max value
will come from other sources.

Underground Testing

A-63

Data Collection System

real*4

real*4

real*8

character®s

character*4

logical*4
real*4
real*s
character*80
logical*4
character*48
logical*4
real*4
real*4
real*4

real™4
real*4

logical*4

integer*4

character*16
real*8

real*4
real*4
real*4

integer*4
character*16
integer%4

y_min
y_max

relative_delay

zero_ref

srad_file

apply_kfactor
kfactor
kfactor_atten
kfactor_method
equal ize
equalize_file
normal ize_time
normal2_factor
sig_atten
sig_term_res

sig_prop_time
trg_prop_time

sim_option

num_simulators

sim_unique_id(4)

sim_pp_volts

insert_atten
fanout_atten
cable_atten

sim_switch
sim_unique_fo
sim_fo_switch

Sandia National Laboratories

Instrument Control File for
Tektronix RTD720 Digitizers

| Minimum y value to plot;

! valid only {f use_min_max above is .true.,

I unfts must agree with y_label or alt_y_label.
| Maximum y value to plot;

t valid only if use_min_max above is .true.,

! units must agree with y_label or alt_y_label.
| Relative delay in seconds, a correction

| added to time values before plotting,

| 2ero reference; used to identify on plots the

| basis for the relative _delay correction above,
t Currently ‘COMP!(ton), 'FIDU', ! ! are

| acceptable, Use of this field MAY classify

! the resulting plot.

| Indicates whether or not to produce

! an SRAD file while generating a plot.

| Acceptable entries are 'NONE', and 'SRAD’.

| “K-FACTOR, EQUALIZATION,

| NORMALIZATION, and TREND" Information follows:

| Apply K-factor to this channel;
| .true. means apply.
| Measured K-factor,
| Late change affecting K-factor.
! Description of how K-factor was
I measured.
| Apply equalization to this channel;
| .true. means equalize.
| Filename of the equalization
| function.
| Normalize the time axis;
! .true, means normalize.
{ Normalization factor.
| signal attenuation for TREND.
| Signal termination resistance.
! Total signal propogation time.
! Total trigger propogation time.

t MSIMULATION" Information follows:

External simulation;

.true. means simulation applied.

Nunber of simulators used to
generate the simulation signal,
four max imum.

Simulator unique identification
for each simulator used,

Simulated signal voltage, peak-to-peak
being inserted for this experiment.

Attenuator inserted after fanout.

Fanout attenuation.

Sum of all cable attenuation between
the simulation sighal generator and
this experiment.

Simulator switch number.

Fiber Optic ID code.

Fiber Optic switch number .

Underground Testing

A-64

Instrument Control File for

Data Collection System Tektronix RTD720 Digitizers
character*8 est_tek_atten ! Eatimated attenuation needed to avoid
| over driving the Tek 11801,
integer*4 picosec_atten | Attenuation setting, Picosecond generator.

end structure

f End of TABLE_STRUCTS Listing.

Sandia National Laboratories Underground Testing

A-65

Instrument Control File for
Data Collection System Tektronix RTD720 Digitizers

Sandia National Laboratories Underground Testing

A-66

Instrument Control File
Data Collection System (Table) Utility Routines

APPENDIX B

INSTRUMENT CONTROL FILE
(TABLE) UTILITY ROUTINES

Sandia National Laboratories Underground Testing

Instrument Control File
Data Collection System (Table) Utility Routines

Sandia National Laboratories Underground Testing

B-2

Instrument Control File
Data Collection System (Table) Utility Routines

APPENDIX B
INSTRUMENT CONTROL FILE (TABLE) UTILITY ROUTINES

B.1 INTRODUCTION

The files that were called tables are now called Instrument Control Files or ICFs.! The ICFs
are implemented as standard RMS keyed-access indexed files containing variable length records.
This file organization was chosen because it allows both random access and true variable length
records. The first four bytes of each record are reserved for a numeric key that is used to index
into the file. ‘These routines require that the ICF exist. To create the file, which is then
expanded into an ICF, use the utility program CREATE_TBL, described in B.4.9.

B.2 ICF UTILITY ROUTINES

There are ten routines available for use with the ICFs, Only five of them are intended for
general use by application programs. They are:

(1) OPEN_TBL - opens an existing ICF.

(2) READ_TBL_REC - reads u record from an ICF,

() MODIFY_TBL_REC - rewrites a record to an ICF,

(4) TBL_CHAN_DIR - returns a directory of the channels in this ICF.
(5) CLOSE_TBL - closes an ICF.

They are described in this section. Three other routines are used to add records to an ICF,
They are:

(6) ADD_TBL_REC - adds a new record to an ICF.
(7 DELETE_TBL_REC - deletes an existing record from an ICF,
(8) GET_TBL_INFO - returns information about fields and records in the ICF,

' Much of this document and all of the routines described herein were written by Jon
Anspach when he worked for Orgunization 9321, These routines have been modified
when necessary and documentation updated by Peter Kaestner of Department 9321,
The files that were called tables are now Instrument Control Files (ICFs).

Sandia National Laboratories Underground Testing

B-3

Instrument Control File
Data Collection System (Table) Utility Routines

The remaining two routines are SANDUS specific and are not described in this document. They
are:

(9) CNV STATUS TBL - converts SANDUS status bytes to ICF entries.
(10) CNV TBL QTAT(S converts ICF entries to SANDUS status bytes.

All of the routines are implemented as integer*d functions that return status values to a longword
(integer*4) in the calling program. The status values indicate whether the functions succeeded
or falled. For more information on return status values, see the Implementation paragraph, B.S

B.3 STRUCTURE NAMES

When a structure name is requested as an argument, it must be a character variable (or literal)
whose value is a valid structure name. Valid structure names come from the file
TABLE STRUCTS.DEF. The names of the record types are the same as the structure names
in TABLE STRUCTS . DEF. Structure names that start with UNUSED. .. are place holders and
are for future use only. Currently valid structure names are:

(1) STRUCT _DESC - keeps an internal description of the ICF in the ICF.
(2) GEN_ DESC - contains general information about the table, test, and source.
(3) STREAM_DESC - describes a stream coming from the source.

(4) MI\LDESC describes @ Mass Memory input stream.

(5) HDDR_DESC - describes an HDDR input stream.

(6) GEAR _DESC - describes a GEAR collection system.

() SOURCE _DESC - describes the data source,

(8) UNUSED 08 DESC - currently unused, exists as a placeholder.

(9) UNUSED 09 DESC - currently unused, exists as a placeholder.

(10) UNUSED 10 DESC - currently unused, exists as a placeholder.

(I UNUSED 11 m SC - currently unused, exists as a placeholder.

(12) MMULATORMDESC - describes a family of simulation sources.

(13) S_TRIG_DESC - contains the time mapping of the trigger sources.

(14) UNUSED _14 _DESC - currently unused, exists as a placeholder.

(15) UNUSED_15 _DESC - currently unused, exists as a placeholder.

(16) UNUSED_16_DESC - currently unused, exists as a placeholder.

(17) PRLTYPE_DESC - names the channel type for all the source channels.
(18) TRIGGER_CHAN_DESC - describes a trigger counter channel.

(19) S_ALOG_CHAN DESC - describes a SANDUS ANALOG channel.

Sandia National Laboratories Underground Testing

B-4

Instrument Control File
Data Collection System (Table) Utility Routines

(200 S _DIG_CHAN_DESC - describes a SANDUS DIGITAL channel.

2h S DIG_ QUB DESC - describes a SANDUS DIGITAL subchannel.

(22) S AMUX CHAN DESC - describes a SANDUS ANALOG MUX channel.
23) S AMUX SUB DESC - describes a SANDUS ANALOG MUX subchannel.
(24) T7912_CHAN_DESC - describes a Tektronix 7912 channel.

(25) T7912 SUB _DESC - describes a Tektronix 7912 subchannel.

(26) UNUS!:.D 26 DESC - currently unused, exists as a placeholder.

(27) UNUSED 27 DESC - currently unused, exists as a placeholder.

(28) T7103MCHAN*DE9C describes a Tektronix 7103 channel.

(29) T7103_ SUB DESC - describes a Tektronix 7103 subchannel.

(30) RTD_DEV_DESC - describes a Tektronix RTD720 device.

(31) RTD CHAN DESC - describes a RTD720 channel.

(32) RTD EXP_ DESC - describes a RTD720 data subchannel.

(33) RTD LS SUB DESC - describes a RTD720 laser calibration subchannel.
(34) RTD_“CCWSUB‘*DE.SC describes a RTD720 cable compensation subchannel.

For example, in order to read a Tektronix 7912 channel record from an ICF, the user must
supply the string "T7912_ CHAN_DESC' as the 'rec_name' argument.
B.4 USER CALLABLE ROUTINES
B.4.1 Open Thl
Open_Thl is an integer*d function that opens an ICF. Tt will not create a new ICF, so the ICF
must already exist. Open Thl returns as the function value a status code that indicates success
or failure. Open_Tbl and the variable to receive the return status must be declared in the calling
program as integer*d variables.
The calling format for Open_Thl is:

status = Open_Tbl (file_spec,

lun,
access)

Sandia National Laboratories Underground Testing

B-5

Instrument Control File
Data Collection System (Table) Utility Routines

where the arguments are:
(1) file_spec
name: file_spec
type: character string

access: read only

File specification of the ICF. If the file type is not specified, it defaults to TBL. There
is no default for the file name.

(2) lun

name: lun
type: integer longword
access: read only

Logical unit number to assign to the ICF. The logical unit number is used by the other
routines.

(3) access

name: access
type: character string
access: read only

File access mode. If the user wants to write to the ICF, the access argument must be
'WRITE." Specify 'READ’ to only read the file. The ICFs are read-shareable; that is,
they can be read by more than one program simultaneously. However, they are not
write-shareable, so only one program at a time can write to an ICF.

B.4.2 Read_Tbl_Rec
Read_Tbl_Rec is an integer*4 function that reads a record from the ICF. The user's FORTRAN

record variable name must be one of the record structures in the file TABLE_STRUCTS.DEF.
Include the file TABLE_STRUCTS.DEF file in the program and declare a record variable for

Sandia National Laboratories Underground Testing

Data Collection System

Instrument Control File
(Table) Utility Routines

each type of record to be written from the ICF. For example, to read 7912 channel records,
use the following lines (substituting the appropriate record variable name for t7912_rec):

include 'INCLUDESINCLUDE:TABLE STRUCTS.DEF’
record /T7912 CHAN_DESC/ t7912 rec

where INCLUDESINCLUDE has been defined as:

$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever the files are

maintained)

Only SANDUS ANALOG channels have NO subchannels associated with them. Each type of
subchannel has its own record structure, and each subchannel has its own record in the ICF.
In order to read a subchannel record, the user must specify a subchannel number in the call to

Read Tbl Rec.

Finally, since there may be more than one record in the ICF that matches the record type to be
read, the aser must also supply an index number that indicates which record of that type is to
be read. In the case of a channel description record, the index is simply the channel number.
Read Tbl Rec returns as the function value a status code that indicates success or failure.
Read Tbl Rec and the variable to receive the return status must be declared in the calling

program as integer*4 variables.
The calling format for Read_Tbl_Rec is:

status = Read _Tbl Rec (lun,
rec_name,
rec_index,
sub_rec,
rec_var)

where the arguments are:

(1) lun
name: lun
type: integer longword

access: read only

Sandia National Laboratories

Underground Testing

Instrument Control File
Data Collection System (Table) Utility Routines

Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Tbl.

(2) rec_name

name: rec_name
type: character string
access: read only

Name of the record (or structure) type to read. This name must be the name of a
structure definition in TABLE_STRUCTS.DEF or Read_Tbl_Rec will return an error

code.
(3) rec_index

name: rec_index
type: integer longword
access: read only

Record index to use. If there are multiple occurrences of some record types in an ICF,
Read_Tbl Rec uses rec_index to find the desired record. If there can only be one
occurrence of the record in the ICF, rec_index is ignored.

(4) sub_rec

name: sub_rec
type: integer longword
access: read only

Subchannel record number. This argument is applicable to SANDUS DIGITAL and
ANALOG MUX channels, and to Tektronix 7912, and 7103, and the RTD 720 channels.
It does NOT apply to SANDUS ANALOG channels. For all other records, this
argument should be zero.

Sandia National Laboratories Underground Testing

B-8

Instrument Control File
Data Collection System (Table) Utility Routines

(5) rec_var

name: rec_var
type: record variable
access: write only

FORTRAN record variable to receive the ICF record. 'rec_var’ must be declared using
one of the structures defined in TABLE_STRUCTS.DEF.

B.4.3 Modify_Tbl Rec

Modify_Tbl Rec is an integer*4 function that writes a modified record into the ICF. The user’s
FORTRAN record variable must be declared, using the name of one of the record structures in
the file TABLE_STRUCTS.DEF. Include the TABLE_STRUCTS.DEF file in the program and
declare a record variable for each record type to be written to the ICF. For example, to write
SANDUS channel records, use the following lines (substituting the appropriate record variable
name for sandus_rec):

include 'INCLUDESINCLUDE: TABLE_STRUCTS.DEF’
record /S ALOG_CHAN_DESC/ sandus_rec

To use Modify Tbl Rec, supply the name of the record type (or structure) to be written. The
names of the record types are the same as the structure names in TABLE_STRUCTS.DEF. For
example, in order to read a SANDUS ANALOG channel record, supply the string
'S ALOG_CHAN_DESC" as an argument. Certain channels have subchannels associated with
them. Each type of subchannel has its own record structure, and each subchannel has its own
record in the ICF. In order to read a subchannel record, specify a subchannel numbes in the

call to Read_Tbl_Rec.

Finally, because there may be more than one record in the ICF that matches the record type
needed, supply an index number that indicates which record of that type to write. In the case
of a channel description record the index is simply the channel number.

Modify Tbl Rec returns as the function value a status code that indicates success or failure.
Modify Tbl Rec and the variable to receive the return status must be declared in the calling
program as integer*4 variables.

Sandia National Laboratories Underground Testing

B-9

Instrument Control File
Data Collection System (Table) Utility Routines

The calling format for Modify_Tbl_Rec is:

status = Modify_Tbl_Rec (lun,
rec_name,
rec_index,
sub_rec,
rec_var,
audit)

where the arguments are:

(1) lun
name: lun
type: integer longword

access read only

Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Thbl.

(2) rec_name
name: rec_name
type: character string

access: read only

Name of the record (or structure) type to write. This name must be the name of a
structure defined in TABLE_STRUCTS.DEF or Modify_Tbl_Rec will return an error

code.
(3) rec_index
name: rec_index

type: integer longword
access: read only

Sandia National Laboratories Underground Testing

B-10

Instrument Control File
Data Collection System (Table) Utility Routines

Record index to use. If there are multiple occurrences of a certain record type in an
ICF, Modify_Tbl_Rec uses rec_index to find the desired record. If there can only be
one occurrence of the record in the ICF, rec_index is ignored.

(4) sub_rec
name: sub_rec

type: integer longword
access: read only

Subchannel record number. This argument is applicable to SANDUS DIGITAL and
ANALOG MUX channels, and to Tektronix 7912, and 7103, and the RTD 720 channels.
It does NOT apply to SANDUS ANALOG channels. For all other records, this
argument should be zero.

(5) rec_var
name: rec_var
type: record variable

access: read only

FORTRAN record variable to receive the ICF record. rec_var must be declared, using
one of the structures defined in TABLE_STRUCTS.DEF.

(6) audit
name: audit
type: logical longword

access: read only

Flag that indicates whether or not to write audit trail information to the ICF. Under
most circumstances, this argument should have the value TRUE.

Sandia National Laboratories Underground Testing

B-11

Instrument Control File
Data Collection System (‘Table) Utility Routines

B.4.4 Tbl_Chan_Dir

Tbl_Chan_Dir is an integer*4 function that returns a directory of channels contained in the ICF.
The directory is in the form of an integer array with values that are channel numbers existing
in the ICF. There may be up to 512 values returned in the directory array; one for every
possible channel record in the ICF.

The user may specify a channel type in the argument list. Thl_Chan_Dir will return only the
channels that match that channel type. If the user does not specify a channel type, all channels
in the directory will be returned. The channel types are defined in TABLE _STRUCTS.DEF
within the PRI TYPE DESC record structure. The following types are currently defined:
overhead, trigger, dummy, SANDUS ANALOG, SANDUS DIGITAL, SANDUS ANALOG
MUX, Tektronix 7912, Tektronix 7103, and RTD 720.

Tbl_Chan_Dir returns as the function value a status code that indicates success or failure.
Thl_Chan_Dir and the variable to receive the return status must be declared in the calling
program as integer*4 variables.

The calling format for Tbl Chan_Dir is:

status = Tbl Chan_Dir (lun,
chan_type,
dir,
dir_size,
num_chans)

where the arguments are:

(1) lun
name: lun
type: integer longword

access: read only

Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Thl.

Sandia National Laboratories Underground Testing

B-12

Instrument Control File

Data Collection System (Table) Utility Routines

2)

chan_type

name: chan_type
type: integer longword
access: read only

Channel type to match. If the value is negative, Tbl_Chan_Dir returns all existing
channels without matching channel types.

(3) dir
name: dir
type: longword array
access: write only
Channel directory to return. Each element contains a channel number that exists in the
ICF. If a nonnegative chan_type argument is specified, then the channels match that
channel type.

(4) dir_size
name: dir_size
type: integer longword
access: read only
Size of channel directory array. An ICF can contain as many as 512 channels, so this
argument should be at least 512. Tbl_Chan_Dir does not return an error if the directory
is too small to hold all the channels; it only returns as many channels as fit in the
directory.

(5) num_chans
name: num_chans
type: integer longword
access: write only

Sandia National Laboratories Underground Testing

B-13

Instrument Control File
Data Collection System (Table) Utility Routines

Number of channels Tbl_Chan_Dir returned in dir. This number will never be more
than dir_size.

B.4.5 Close_Thl

Close_Tbl is an integer*4 function that closes the ICF. Close_Tbl returns as the function value
a status code that indicates success or failure. Close_Tbl and the variable to receive the return
status must be declared in the celling program as integer*4 variables.
The calling format for Close_Tbl is:

status = Close_Tbl (lun)

where the argument is:

(1) lun
name: lun
type: integer longword

access: read only

Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Tbl.

B.4.6 Add_Tbl_Rec

Add_Tbl_Rec is an integer*4 function that is used to add a record to an existing ICF. It is used
only by a routine that is building an ICF.

The calling format would be:
status = Add_Tbl Rec (lun,
rec_name,
rec_index,

sub_rec,
byte_array)

Sandia National Laboratories Underground Testing

B-14

Instrument Control File

Data Collection System (Table) Utility Routines

where the arguments are:

(1) lun
name: lun
type: integer longword
access: read only
Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Tbl.
(2) rec_name
name: rec_name
type: character string
access: read only
Name of the record (or structure) type to write. This name must be the name of a
structure definition in TABLE_STRUCTS.DEF or Add_Tbl_Rec will return an error
code.
(3) rec_index
name: rec_index
type: integer longword
access: read only
Record index to use. If there are multiple occurrences of a certain record type in an
ICF, Add_Tbl_Rec uses rec_index to identify the desired record. If there can only be
one occurrence of the record in the ICF, rec_index is ignored.
(4) sub_rec
name: sub_rec
type: integer longword
access: read only
Sandia National Laboratories Underground Testing

B-15

Instrument Control File

Data Collection System (Table) Utility Routines

(5)

B.4.7

Subchannel record number. This argument is applicable to SANDUS DIGITAL and
ANALOG MUX channels, and to Tektronix 7912, and 7103, and the RTD 720 channels.
It does NOT apply to SANDUS ANALOG channels. For all other records, this
argument should be zero.

byte_array
name: byte _array
type: byte array

access: read only

This is the record to be entered into the ICF. Note that it is a byte array.

Delete_Thl_Rec

Delete_Thl_Rec is an integer*4 function that deletes an existing record from an ICE. It would
only be used by a routine building an ICF. To change an existing record, use Modify Thl Rec.

The call to Delete_Thl_Rec is:

status = Delete_Tbl Rec (lun,
rec_name,
rec_index,
sub_rec)

where the arguments are as follows:

(1) lun
name: lun
type: integer longword
access: read only
Logical unit number of the ICF. This is the same logical unit number supplied to
Open_Tbl.
Sandia National Laboratories Underground Testing

B-16

Instrument Control File

Data Collection System (Table) Utility Routines

2)

3)

(4)

B.4.8

rec_name

name: rec_hame
type: character string
access: read only

Name of the record (or structure) type to write. This name must be the name of a
structure definition in TABLE_STRUCTS.DEF or Delete_Thl_Rec will return an error

code.
rec_index

name: re¢_index
type: integer longword
access: read only

Record index to use. If there are multiple occurrences of a certain record type in an
ICF, Delete_Tbl_Rec uses rec_index to identify the desired record. If there can only be
one oceurrence of the record in the ICF, rec_index is ignored.

sub_rec

name: sub_rec
type: integer longword
access: read only

Subchannel record number. This argument is applicable to SANDUS DIGITAL and
ANALOG MUX channels, and to Tektronix 7912, and 7103, and the RTD 720 channels.
It does NOT apply to SANDUS ANALOG channels. For all other records, this
argument should be zero.

Get_Thl_Info

Get_Tbl_Info is an integer*4 function that returns information about the fields and records in
an ICE. All of the information except the record key is stored in the ICF itself, in a record
described in STRUCT_DESC.

Sandia National Laboratories Underground Testing

B-17

Instrument Control File

Data Collection System (Table) Utility Routines

The call to Get_Tbl_Info is:

status = Get_Tbl_Info (rec_name,
rec_index,
sub_rec,
rec_key,
rec_length)

where the arguments are:

(n

rec_name

name: rec_name
type: character string
access: read only

Name of the record (or structure) type to write. This name must be the name of a
structure definition in TABLE_STRUCTS.DEF or Get_Tbl_Info will return an error
code.

(2) rec_index
name: rec_index
type: integer longword
access: read only
Record index to use. If there are multiple occurrences of a certain record type in an
ICF, Get_Tbl_Info uses rec_index to identify the desired record. If there can only be
one occurrence of the record in the ICF, rec_index is ignored.
3) sub_rec
name: sub_rec
type: integer longword
access: read only
Sandia National Laboratories Underground Testing

B-18

Instrument Control File
Data Collection System (Table) Utility Routines

Subchannel record number. This argument is applicable to SANDUS DIGITAL and
ANALOG MUX channels, and to Tektronix 7912, and 7103, and the RTD 720 channels.
It does NOT apply to SANDUS ANALOG channels. For all other records this argument
should be zero.

(4) rec_key
name: rec_key
lype: integer longword

access: write

This is the RMS record key. The structure of the key is defined in Get_Tbl_Info and is
similar to the first four bytes of each record.

(8) rec_length
name: rec_length
type: integer longword

access: write

This is the record length in bytes,

B.4.9 CREATE_TBL.FOR

Create_Tbl is a stand alone utility used to create an empty ICF named WORK.TBL. The source
file is in TOOLSSLIBRARY:CREATE_TBL.FOR, where the symbol TOOLSSLIBRARY is

defined:

$ DEFINE TOOLSSLIBRARY LD:[TOOLS] (or wherever the file is maintained)
WORK.TBL is either renamed as required, or copied to the desired directory with a new file
name. It must be populated with the necessary records before being useful, but it does contain
record lengths and record names in its only record STRUCT_DESC.

CREATE_TBL must be run, as the OPEN_TBL routine verifies that the named ICF exists. An

OPEN TBL call is executed by the INGRES database administrator. CREATE_TBL.FOR must
be recompiled when any change is made to TABLE_STRUCTS.DEF. The structure

Sandia National Laboratories Underground Testing

B-19

Instrument Control File
Data Collection System (Table) Utility Routines

STRUCT DESC contains an upper bound on the number of unique structures that are currently
allowed in TABLE STRUCTS. This is currently 40, and is casily changed.
CREATE _TBL.COM exists, and may be used to compile and link CREATE_TBL.EXE.

B.4.10 ANALYZE _STRUCTS.FOR

CREATE_TBL.FOR contains a subroutine ANALYZE_STRUCTS that has been modified and
used to prepare the DUMP... . FOR subroutines in REPAIRSLIBRARY . The program is called
DUMPREP, and is documented in Appendix 1. This subroutine has also been modified to create
a program that will take a CHN file from test A, modify the header, and create a CHN file for
test B

B.S IMPLEMENTATION

As mentioned above, all of the ICF utility routines return status values to the calling program
that indicate the success or failure of the routines. The status codes are defined in such a way
that success codes are odd values and failure codes are even values. In VAX FORTRAN
numeric values can be tested as logical expressions; odd values test TRUE and even values test
FALSE. The return status should always be tested and appropriate actions should be taken. If
the routine fails, the user should at least write out an error message. There is a routine named
Bad_Status that will convert a status code to an ASCII error message and print it out on the
terminal. It can be called as a subroutine with three arguments. The arguments are:

(1) calling_name
name: calling_name
type: character string

access: read only

Name of the calling routine, This name gets printed out in order to show which routine
the program was in when it tried to call the ICF utility routine,

Sandia National Laboratories Underground Testing

B-20

Instrument Control File
Data Collection System (Table) Utility Routines

(2) called_name
name: called_name
type: character string

access: read only

Name of the called routine. This name gets printed out in order to show which utility
routine returned the error status.

3) status
name: status
type: integer longword

access: read only

Status code returned by the called routine. The status code is converted to a
system-supplied error message and the error message is printed out.

A typical example is:

program Main
integer*4 Open_Tbl, status

status = Open _Tbl (...)
if (status) then ! Success

else ! Failure
call Bad_Status ("Main’, 'Open_Tbl’, status)

end if

Sandia National Laboratories Underground Testing

B-21

Instrument Control File
Data Collection System (Table) Utility Routines

Bad_Status and the ICF routines (along with other useful routines) are in the object library
UTILITY.OLB, or its companion for use while debugging, UTILITY.DBG_OLB. Before you

can run a program that calls these routines, you must link them with your program. To do that,
use the following command (or your own variation):

$ DEFINE UTILITYS$LIBRARY LD:[UTILITY] (or "directory containing
UTILITY.OLB")

and either

$ LINK YOUR_PROG, UTILITY$LIBRARY:UTILITY/LIBRARY

or

$LINK/DEBUG PROG,UTILITYSLIBRARY:UTILITY.DBG_OLB

Sandia National Laboratories Underground Testing

B-22

Data Collection System BIG File Format

APPENDIX C
BIG FILE FORMAT

Sandia National Laboratories Under ground Testing

Data Collection System

Sandia National Laboratories

BIG File Format

Underground Testing

Data Collection System BIG File Format

APPENDIX C
BIG FILE FORMAT

C.1 INTRODUCTION

This document describes a BIG file. BIG File is a generic phrase describing file types that
contain data from one or more channels, that are created by FETCH, DECOM, or REALIZE,
and that are processed by either PROCESS or ANALYZE into CHN files. Certain other
software tools, such as AUTOSIM, RTDTEST, and DHTEST, create BIG files.

BIG files contain information about their channels, and contain data from a specific recording
device, i.e., ACE data channels, or data of a specific type, i.c., realtime data. The BIG file is
in a very cryptic format and is best used with a suite of utility routines that handle all aspects
of the BIG files creation and use.

C.1.1 BIG File Creation by FETCH/DECOM and REALIZE

The software programs FETCH and DECOM, among other tasks, pull the data from a collection
point, demodulate it as required, and pack the data, along with records from the Instrument
Control File (ICF), into a BIG file. Documentation for FETCH and DECOM exists, but not
in this Manual.

REALIZE is a program created for the RTD 720 device that collects data from one or more
RTDs, prefixes the data along with information from the ICF, and packages the data into a BIG
file. For additional information on REALIZE, see Section 4 of the Operators Manual, and
Section 2 of the Maintenance Manual.

C.1.2 BIG File Use by PROCESS and ANALYZE

The program PROCESS processes the BIG files created by FETCH/DECOM into CHN files.
ANALYZE serves the same function for BIG files created by REALIZE. The BIG file, with
calibration information from the CHNCAL file, contains all the information necessary to create
a CHN file. Documentation for PROCESS exists, but not in this manual. For further
information on ANALYZE see Section 5 of the Operator's Manual and Section 4 of the
Maintenance Manual.

Sandia National Laboratories Underground Testing

Data Collection System BIG File Format

C.1.3 Working with BIG Files

Because of the very specialized nature of BIG files, there is a special set of utility routines that
all programs use. Appendix E describes this set of utility routines. These utility routines are:

(a) OPEN _BIG - opens an existing file or creates a new file.
(b) BIG_DIR - returns a directory of the channels in a file.
(c) READ_BIG - reads channel data from a file.

(d) READ_BIG HDR - retrieves a channel header from a file.
() WRITE_BIG - writes channel data to a file.

(H CLOSE BIG - closes a file.

All of the above routines are implemented as integer functions that return status values to a
longword (integer*4) in the calling program. The status values indicate whether the functions
succeeded or failed.

C.14 File Format

The BIG data files do not use standard VMS Record Management Services (RMS) file formats
or control information. They appear to the operating system to be simply a stream of bytes
without any structure or organization. They do have an organizaticn, but it is meaningful only
to the BIG routines listed in paragraph C.1.3.

Each RIG file contains a file header, channel headers, and data. The file header appears at the
beginning of the file and is followed by the first channel header, then the data for the first
channel, then the second channel header and channel data, and so on. Every header and every
data section starts on a block boundary. There are no terminators to separate, or control fields
to distinguish one channel from another. The only way to tell where a channel begins and ends
is with the information stored in the file header.

There may be up to 512 channels in each BIG file. The channel numbers must be in the range
0 to 511, and a channel may only occur once in the file. Each channel may contain up to
2,147,483,646 bytes of information.

Sandia National Laboratories Underground Testing

C-4

Data Collection System BIG File Format

C.2 BIG FILE NAMING

BIG file names have the following form:

sssBIGtnnx.DAT, where:

(a) sss - indicates the type of data in the file, where:

(1)
()
3)
“4)
(5)
(6)
(N
8

BAS - for baseline data (not currently used)
CAL - for calibration data

FST - for data from HDDR "fast" channels
MEM - for Mass Memory channel data

REL - for realtime data

RTD - for RTD720 data

SLW - for data from HDDR "slow" channels
T48 - for Tektronix 7912 early calibrations

The data may be further qualified by the BIG file header variables DATA TYPE and

USE_INDEX.

(b) tnn - indicates the specific recording device type and number, i.e., R12 for GPIB
bus number 2 on RMV 10, S03 for SANDUS 503, and A21 for ACE 21.

(©) x - indicates the stream source (L for live, T for tape, S for source).

BIG File Name Prefixes from a Sotrlrce nd/or a Collection Point

Data Source

Tektronix
Data Collection Point SANDUS 7912 7103 RTD720
HDDR BAS, CAL, FST, SLW, REL FST FST None
MASS MEM BAS, CAL, MEM, REL MEM MEM None
SOURCE BAS, CAL, FST, SLW CAL, T48 None RTD
Sandia National Laboratories Underground Testing

Data Collection System BIG File Format

C.3 REFERENCES AND SUGGESTED READING

The following three paragraphs list some related documentation, and some very important files
which contain source code with a documentation. Users are advised to become familiar with
this documentation.

C.3.1 Documentation

(N REALIZE - creates the RTDBIG file with RTD720 data and is documented in
Section 5 of the User's Manual and Section 2 of this Manual.

2) ANALYZE - reads the RTDBIG file written by REALIZE and creates the
individual CHN files used by DSP and PRELEWD. ANALYZE is described
in Section § of the User's Manual and Section 4 of this Manual.

(3) BIG File Utility Routines are describe in Appendix E of this Manual.

(4) The CHN Data File Format is described in Appendix D of this Manual.

C.3.2 INCLUDE Files

INCLUDE files are so named because they are captured into the source code by the use of the
FORTRAN INCLUDE statement. These files are maintained in INCLUDESINCLUDE, which

is defined as:
$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever these files are maintained)
(1) BIG_STRUCTS.DEF

This file defines the structures and fields for BIG files. Each BIG file contains one BIG
file header and a channel header for each channel in the file. The header will consist of
records extracted from the ICF combined with supplemental information. This file
includes TABLE_STRUCTS.DEF and BIG_STRUCTS.PRM.

Sandia National Laboratories Underground Testing

Data Collection System BIG File Format
(2) TABLE_STRUCTS.DEF

This file defines the structures and fields for the ICF, BIG, and CHN file headers. It
assumes that each data source will have one control file associated with it which will
contain information common to all channels of the source, and will have channel-specific
information. This file is included in BIG_STRUCTS.DEF.

(3) BIG_STRUCTS.PRM

This file defines parameters that determine the maximum number of subchannel records
in the BIG file. These parameters are named xxx_SUB_MAX, where XX is a source
device name, (i.e., T7912 or S_ALOG).

C.3.3 A Brief Explanation of Records and Structures

For a detailed description of the DEC's nonstandard implementation of records and structures,
see both the VAX FORTRAN Language Reference Manual Order Number AA-DO34E-TE, dated
June 1988, and the VAX FORTRAN User Manual Order Number AA-DO3SE-TE, dated June
1988. Later editions exist.

Those who choose not to delve deeply into records and structures can think of a structure as a
description of a collection of variables, a plan, and a record as the structure’s realization in
memory. The structure is the architect’s plan, while the record is the construction company’s
building; other buildings may be built using the same set of plans. The variables described in
the structure may be any legal FORTRAN type in any order. In a record, the variables are
stored in structure order with no blank space. A record statement assigns a variable name to
a structure. A structure description may contain record statements.

The variable name defined in a record statement can be used in much the same way that usual
variable names are used, but the name refers to all the elements contained in that record. The
structure defined by a record statement may be dimensioned. An individual element in a record
is referenced by prefixing its name with the name of each record it is a member of, working
outward. Thus the variable name: "A.B.C(i).X" is element "X" of the ith record "C" in record
"B" in record "A". There is a difference between a structure and a record; however, authors
tend to use the two words interchangeably.

Sandia National Laborataories Underground Testing

Data Collection System BIG File Format

C.4 BIG FILE HEADER DESCRIPTION RECORD

The file header contains information that describes the file to the utility routines. It currently
occupies nine blocks. It is defined by the following structure in the file BIG STRUCTS.DEF.

structure /BIG_FILE_HDR_DESC/
integer*4 start_block(0:511)
integer*4 byte count(0:511)
character*24 date
character*16 col_name
integer*d use_index
integer*4 data_type
integer*4 subcom_depth
integer*4 frame _length
integer*4 trig_cnts(6)
integer*4 %fill(3)
record /GEN_DESC/ gd
record /PRI_TYPE_DESC/ pt
record /S_TRIG_DESC/ st

end structure

With the exception of the start_block field, the contents of the file header may be used by the
calling program. Several structure elements must be supplied by the program when creating a
new file.

(1) START BLOCK

The start_block field is an array that contains the starting block number for each channel.
This field is intended to be used only by the BIG file access routines. A channel header
always starts on a block boundary.

(2) BYTE_COUNT
The byte_count field is an array the contains the number of data bytes for each channel.

This field will need to be used by the calling program when reading data from the file.
A user’s program may not change this field.

Sandia National Laboratories Underground Testing

C-8

Data Collection System BIG File Format

(3) DATE
The date field specifies the date and time that the file was created. The calling program
may read, but not write, this field.

(4) COL_NAME
The col_name field gives the name of the collection point or subsystem that collected the
data. The program that creates the data file must supply a value for this field.

(5) USE_INDEX
The use_index field specifies the purpose of the data. Acceptable values are 0, which
implies normal gauge data, 1, which implies laser calibration data, and 2, which implies
cable compensation data. This field must be supplied by the program creating the BIG
file.

(6) DATA_TYPE
The data_type field specifies the type of data that is contained in the file from the
following categories: memory data, realtime data, standard or late calibration data, and
early calibration data. The program that creates the data file must supply a value for this
field.

(7) SUBCOM_DEPTH
The subcom_depth field specifies the maximum subcommutation depth of the data stream
format. The program that creates the data file must supply a value for this field.

(8) FRAME_LENGTH
The frame_length field specifies the length, in bytes, of the data stream’s major frame.
The program that creates the data file must supply a value for this field.

(99 TRIG_CNTS(6)
The trig_cnts field is an array of trigger counts. The program that creates the data file
must supply values for this field. It is meaningful only for the SANDUS.

Sandia National Laboratories Underground Testing

Data Collection System BIG File Format

(10) %FILL(3)
The %fill field hasn't been defined yet. %fill reserves space in the structure, but does
not create a variable name for that space.
(11) RECORD /GEN_DESC/ GD
The GD record is simply a copy of the GEN_DESC record from the ICF, and has the
same structure. It supplies information such as the test name, source code, trigger
channels, etc. The GEN_DESC record structure is defined in TABLE_STRUCTS.DEF.
(12) RECORD /PRI_TYPE_DESC/ PT
The PT record is simply a copy of the PRI_TYPE_DESC record from the control file,
and has the same structure. [t contains values that specify the primary types of all the
channels. The PRI_TYPE DESC record structure is defined in
TABLE_STRUCTS.DEF.
This byte array enables the utility program BIG_DIR to return the primary channel type
description value of each channel in the BIG file. This value is equal to the record type,
which appears in the third byte of all structures defined in TABLE_STRUCTS.DEF.
These values, described in the following list, are used in virtually every program in the
NTS Instrumentation System, and should not be changed without careful thought. The
values are listed in the form Value/Description/Corresponding Structure Name.
(1) 0 = Overhead or Dummy not af plicable
(b) 18 = Trigger /TRIGGER_CHAMN_DESC/
(¢) 19 = SANDUS Analog /S_ALOG_CHAN_DESC/
(d) 20 = SANDUS Digital /S_DIG_CHAN_DESC/
(e) 22 = SANDUS Analog Mux /S_ AMUX _CHAN_DESC/
(24 = Tektronix 7912 /T7912_CHAN_DESC/
(g) 28 = Tektronix 7103 'T7103_CHAN_DESC/
(h) 30 = RTD 720 Device /RTD_DEV_DESC/
(i) 31 = RTD 720 Channel /RTD_CHAN_DESC/
Sandia National Laboratories Underground Testing

C-10

Data Collection System BIG File Format
(13) RECORD /S_TRIG_DESC/ st

The ST record is simply a copy of the S TRIG_DESC record from the control file, and
has the same structure. It contains values that define triggers for SANDUS operations.
The record structure is defined in TABLE_STRUCTS.DEF.

C.§ BIG FILE CHANNEL DESCRIPTION RECORDS

The following structures define the BIG file channel headers. Each channel header consists of
a channel description record from the ICF, plus various additional fields, depending on the
channel type. There is one channel header for each channel, and it is this record that is returned
by the utility routine READ_BIG_HDR.

For all channel headers except the RTD channel header, FETCH/DECOM will derive the value
for the COM_RATE field from the stream format file. The COM_RATE field is not meaningful
for the RTD. The NUM_RT CHANS and RT_CHANS fields are only applicable to the
SANDUS. They tell PROCESS how many realtime channels are grouped «zother and what the
individual realtime channel numbers are. The order of the realtime chu. el data within the
group is the same as the order of the channel numbess. The TAPE_RATIO is only meaningful
for data (hence sources) processed by FETCH.

C.5.1 Current Source Devices

A BIG file may contain data from any one of four types of source device. The short name of
the device is shown parenthetically. They are:

(A) SANDUS - which has three possible configurations,
(a) SANDUS ANALOG (S_ALOG)

(b) SANDUS DIGITAL (S_DIG), with S_DIG_SUB_MAX data subchannels/
channel

(c) SANDUS ANALOG MUX (S_AMUX), with S_AMUX_SUB_MAX data
subchannels/channel (configuration probably obsolete)
(B) Tektronix 7912 (T7912)

(C) Tektronix 7103, with attached CCD camera (T7103) (obsolete)

Sandia National Laboratories Underground Testing

c-1!

Data Collection System BIG File Format

(D) RTD 720. The RTD may be configured with one or more channels, which can depend
on what is being recorded, A description of its header is more complex.

C.5.2 SANDUS ANALOG Channel Header

This structure is used for SANDUS ANALOG channels. The variables NUM_RT_CHANS and
RT _CHANS are only used if this channel is a realtime channel; they indicate how many
channels are grouped with this channel and the channel numbers.

structure /S ALOG_HDR_DESC/

real*4 com_rate ! Commutation rate

integer*4 num_rt_chans ! Number of realtime channels
integer*4 rt_chans(8) ! Realtime channel numbers in order
real*4 tape_ratio ! Playback speed / record speed
integer*4 %fill(4) ! Unused (to be defined)

record /S_ALOG_CHAN_DESC/ sa ! Defined in Table_Structs.def
end structure

C.5.3 SANDUS DIGITAL Channel Header
This structure is used for SANDUS DIGITAL channels. There are no realtime digital channels.
These variables have the same meaning as before. Note that there are always

S_DIG_SUB_MAX sds records in this header, even though they may not all be used.

structure /S_DIG_HDR_DESC/

real*d com_rate ! Commutation rate

integer*4 num_rt_chans ! Number of realtime channels
integer*4 rt_chans(8) ! Realtime channel numbers
real*4 tape_ratio ! Playback speed / record speed
integer*4 %fill(4) ! Unnsed (to be defined

record /S_DIG_CHAN_DESC/ sd ! Defined in Table_Structs.def

record /S_DIG _SUB_DESC/ sds(1:S_DIG_SUB_MAX)
! Defined in Table_Structs.def
! Parameter in Big_Structs.prm

end structuve

Sandia National Laboratories Underground Testing

C-12

\ .0

"I 25

ers—
p—
_—
—_—

e

3 3 g2z

.

e [l22

e

s

Data Collection System BIG File Format
C.5.4 SANDUS ANALOG MUX Channel Header

This structure is used for SANDUS ANALOG MUX channels. There are no realtime analog
mux channels. This particular channel type has not been used often, and may never be used
again. The variables have the same meaning as above. Note that there are always
S AMUX_SUB_MAX sms records in this header, even though not all may be used.

structure /S AMUX_HDR_DESC/

real*4 com_rate ! Commutation rate

integer*4 num_rt_chans ! Number of realtime channels
integer*4 rt_chans(8) ! Realtime channel numbers
real*4 tape ratio ! Playback speed / record speed
integer*4 %fill(4) ! Unused (to be defined)

record /S AMUX CHAN_DESC/ sm ! Defined in Table_Structs.def
record /S AMUX_SUB_DESC/ sms(1:S_AMUX_SUB_MAX)
! Defined in Table Structs.def
! Parameter in Big_Structs.prm

end structure

C.5.5 T7912 Channel Header

This structure is used for Tektronix 7912 channels. 7912 channels are connected to the ACE
recording devices. The variables have the same meaning as before. Note that in contrast to the
SANDUS subchannels, there will be not more than T7912_SUB_MAX +1 t7912s records in this
header. Only those actually needed will be here.

structure /T7912_HDR_DESC/

real*4 com_rate ! Commutation rate
real*4 tape_ratio ! Playback speed / record speed
integer*4 %fill(4) ! Unused (to be defined)

record /T7912_CHAN_DESC/ 17912
! Defined in Table_Structs.def

record /T7912_SUB_DESC/ t7912s(0:T7912_SUB_MAX)
! Defined in Table_Structs.def
! Parameter in Big_Structs.prm

end structure

Sandia National Laboratories Underground Testing

C-13

Data Collection System BIG File Format

C.5.6 T7103 CHANNEL HEADER

This structure is used for Tektronix 7103 channels. These devices will probably never be used
again. The variables have the same meaning as before. Note that in contrast to the SANDUS
subchannels, there will be not more than t7103 sub_max +1 t7912s records in this header. Only
those actually needed will be here.

structure /T7103_HDR_DESC/

real*4 com_rate ! Commutation rate
real*4 tape ratio ! Playback speed / record speed
integer*4 %fill(4) ! Unused (to be defined)

record /T7103_CHAN_DESC/ t7103
! Defined in Table_Structs.def
record /T7103_SUB_DESC/ t7103s(0:t7103_sub_max)
! Defined in Table_Structs.def
! Parameter in Big_Structs.prm
end structure

C.5.7 RTD720 Channel Header

This structure is used for an RTD720 channel. The RTD720 device can have either one, two,
or four channels. Each channel will have a header, which includes the device record; the device
record is repeated for each of the device’s channels. The appearance of this structure is further
complicated by the intent of the data, which is determined by the variable USE_INDEX in the
BIG file header. The "UNION" operator acts as an "or" for each map/end map group, either
the map/end map group for USE_INDEX =0, or for USE_INDEX=1, or for USE_INDEX =2,
Again, note that only ...SUB_ DESC+1 rec records actually required are present and that there
cannot be more than the number indicated.

structure /RTD_HDR_DESC/
integer*4 %fill(5) ! Unused (to be defined)
integer*4 fill ! =1 ==> TBL_STREAM_MIS=bad (F)
! =0 ==> TBL_STREAM_MIS=good (T)
record /RTD_DEV_DESC/ rtd
! Defined in Table_Structs.def

record /RTD_CHAN_DESC/ rtdc
! Defined in Table_ Structs.def

Sandia National Laboratories Underground Testing

C-14

Data Collection System BIG File Format

union
map ! USE_INDEX = 0
record /RTD_EXP _SUB_DESC/ rtdes(0:RTD_EXP_SUB_MAX)
! Parameter in Big_Structs.prm
end map ! Defined in Table_Structs.def

map ! USE_INDEX =1

record /RTD_LC_SUB_DESC/ rtdls(0:RTD_LC_SUB_MAX)
! Parameter in Big_Structs.prm

end map ! Defined in Table_Structs.def

map ! USE_INDEX = 2
record /RTD_CC_SUB_DESC/ rtdcs(0:RTD_CC_SUB_MAX)
! Parameter in Big_Structs.prm
end map ! Defined in Table_Structs.def
end union
end structure

C.6 DATA DESCRIPTION
The data format of the RTDBIG file is quite different than the original format developed for data
streams that are processed by FETCH/DECOM (SANDUS, Tektronix 7912, and 7103).
C.6.1 SANDUS/T7912 Data Description
Each Big file data word is a two byte integer. Each 16 bit word consists of an op-code (bits 12
to 15) and a data value (bits O to 11). The first ten words contain information to assist in data

processing. The actual data starts with the eleventh word.

(a) Op-code 15 (octal) denoting start of data, with the data portion of the word
containing the channel number. (1st word)

(b) Op-code 11 (octal) word containing error messages. (2nd word)

(c) Three sync words (3rd through 5th words)

Sandia National Laboratories Underground Testing

C-15

Data Collection System BIG File Format

d) Five status words containing set-up parameters applicable to the run. (6t
through 10th words). These can be translated to ICF entries by the
CONVERSION routines. They are not documented here.

After the final data value for a channel, an op-code 14 data word is inserted to denote end of
channel data. The op-code 11 error messages are also repeated at the end of channel data.
Various other op-codes may be includes within the channel data stream to indicate one of the
following:

(a) Loss of data - generally only needed for realtime data and by the 7912. This
is different from data at one of the band edges. It shows as a message on the
plot and as a break in the graph line.

(b) Data compression - hardware data compression only; all software data
compression is done in PROCESS. See the discussion of data compression in
Appendix D.

(c) Loss of context - FETCH and DECOM must decommutate the data that is sent

out in the stream; FETCH uses hardware and DECOM uses software. For
twelve bit data, DECOM must piece together two consecutive bytes. If a byte
is missing or an extra byte has been inserted, DECOM recognizes the omission
or addition, but it will not repair the data. This, very briefly, is a context
error.

The content and interpretation of the data depends both on the source of the data and the type
of file. T48 files only occur for Tektronix 7912 sources; in the SANDUS family, CAL files
occur only for the SANDUS ANALOG sources. CAL files also occur for the Tektronix 7912.
These are described in Appendix D.

For a complete description of all SANDUS op-codes and their information content, please refer
to SANDUS (MA164) COMMAND SYSTEM MESSAGE AND DATA FORMAT, SAND86-
1398, UC-37 (Ebinger, 1988).

C.6.2 Tektronix 7103 Data Description

This digitizer is obsolete, and will be deleted.

Sandia National Laboratories Underground Testing

C-16

Data Collection System BIG File Format
C.6.3 RTD720 Data Description

This Big file is in byte format. Each 8 bit data value retrieved from the RTD720 occupies a
byte of storage. The ANALYZE program moves this data into an integer*2 array in CHN files

fer input to the PRELEWD plotting program. The length of the data record is a function of the
device setup values.

Sandia National Laboratories Underground Testing

C-17

Data Collection System BIG File Format

Sandia National Laboratories Underground Testing

C-18

——

Data Collection System

Channel Data File Format

APPENDIX D
CHANNEL DATA FILE FORMAT

Sandia National Laboratories Underground Testing

Data Collection System

Sandia National Laboratories

D-2

Channel Data File Format

Underground Testing

Data Collection System Channel Data File Format

APPENDIX D
CHANNEL DATA FILE FORMAT

D.1 INTRODUCTION

This document describes a CHN file. CHN File is a generic phrase describing the three types
of channel data files created from a BIG file by either PROCESS or ANALYZE, It is a
stand-alone file that, when used with PRELEWD or DSP, contains sufficient information to
generate a fully annotated time/answer plot.

D.2 CHN FILE NAMING

A CHN file name is inherited, in part, from the BIG file name that fathered it. Hunters Trophy
BIG files are described in Appendix C. CHN file names have the following form:

nnnxxxyzzz-ww. DAT, where:

nnn is a prefix describing the type of data in the file; it is one of the three strings:
(a) CHN, which implies dry run or event data,
(b) CAL, which implies dry run or event calibrations, or

(c) T48, which implies early calibrations (only for a Tektronix 7912).

xxx is a source device code, e.g., A32 for ACE 32, S04 for SANDUS 504, or R12 for
GPIB bus number 2 on RMV 10. Source means the primary recording station.

y is a collection device code, e.g., M for Mass Memory, L for HDDR (live), and S for
Source. Collection device is that piece of hardware where the data is stored for further
processing. An RTD is both a source and collection device. Many of the modern
digitizers do both tasks.

zzz is the channel number, e.g., 000, or 177. For the SANDUS and ACE, channel
numbers are in octal. For the RTD, channel numbers are decimal.

-ww identifies the subchannel; -00 is for the entire channel. A subchannel may be all or

part of a channel. A subchannel is always used, and only meaningful, for non-SANDUS
devices.

Sandia National Laboratories Underground Testing

D-3

Data Collection System Channel Data File Format

The sequence xxxyzzz-ww is the historical source-collection-channel number sequence by which
the provenance of the data is known. The source and collection codes and channel numbers vary
for each event, e.g., SO3M001, A32T011-00, A61L032-03, or R11S012-01.

D.3 CHN FILE DEVELOPMENT
D.3.1 REALIZE/FETCH/DECOM

REALIZE, a program created for the RTD 720 devices, collects data from one or more RTDs
and packages the data into a BIG file. For a detailed description of REALIZE, see Section 4
of the Operators Manual. and Section 2 of this manual.

The software programs FETCH and DECOM, among other tasks, pull the data from a collection
point, demodulate it as required, and pack the channel data and information from the Instrument
Control File (ICF) into a BIG file. FETCH and DECOM are documented elsewhere and are
not necessary to understanding the CHN file.

D.3.2 ANALYZE/PROCESS

The program ANALYZE processes the BIG files created by REALIZE into CHN files, prefixing
the data with records both from the BIG file and from ANALYZE. PROCESS serves the same
function, but for BIG files created by either FETCH or DECOM. In either case, the resulting
CHN file contains all the information necessary to decode the data into a signal versus time
format. For further information on ANALYZE, see Section 4 of this manual, and Section 5 of
the Operator’s Manual. PROCESS is documented elsewhere and is not necessary to this
discussion.

D.4 EXPLAINING RECORDS AND STRUCTURES
For a detailed description of the DEC’s nonstandard implementation of records and structures,
see both the VAX FORTRAN Language Reference Manual Order Number AA-DO34E-TE and

the VAX FORTRAN User Manual Order Number AA-DO35E-TE, both dated June 1988. Later
editions exist.

Those who choose not to delve deeply into records and structures can think of a structure as a
description of a collection of variables, a plan, and a record as the structure’s realization in

Sandia National Laboratories Underground Testing

D-4

Data Collection System Channel Data File Format

memory. The structure is the architect’s plan, while the record is the construction company’s
building; other buildings may be built using the same set of plans. The variables described in
the structure may be any legal FORTRAN type in any order. In a record, the variables are
stored in structure order with no blank space. A record statement assigns a variable name to
a structure. A structure description may contain record statements.

The variable name defined in a record statement can be used in much the same way that usual
variable names are used, but the name refers to all the elements contained in that record. The
structure defined by a record statement may be dimensioned. An individual element in a record
is referenced by prefixing its name with the name of each record it is a member of, working
outward. Thus the variable name 4A.B.C(i).X is element X of the ith record C in record B in
record A. There is a difference between a structure and a record; however, authors tend to use
the two words interchangeably.

D.4.1 CHN HEADER Structure
The following is taken from CHN_HEADER.DEF; it is the structure that describes the CHN

file header. The user who examines and understands this stmicture will have no problem with
any other structure. The lines have been numbered to facilitate explanation.

01 structure / CHN FILE_HDR_DESC /

02 union

03 map

04 record / GENERAL CHAN / gc

05 record / GEN_DESC / g

06 union

07 map

08 record / S_ALOG_CHAN DESC / sa

09 record / CAL S_ALOG / sa_cal

10 end map

11 map

12 record / $_DIG_CHAN DESC / sd

13 record / S_DIG_SUB_DESC / sds(1:S_DIG_SUB MAX)
14 record / CAL S _DIG / sd_cal

15 end map

16 map

17 record / S_AMUX_CHAN DESC / sm

18 record / S_AMUX_SUB_DESC / sms(1:S_AMUX SUB_MAX)
19 record / CAL_S_AMUX / sm_cal

20 end map

21 map

22 record / T7912_CHAN DESC / t

23 record / T7912_SUB_DESC / ts

24 record / CAL 7912 / t_cal

25 end map

26 map
Sandia National Laboratories Underground Testing

D-5

Data Collection System Channel Data File Format

27 record / T7103_CHAN DESC / c

28 record / T7103_SUB DESC / cs

29 record / CAL _T7103 / c_cal

30 end map

31 map

32 record / RTD_DEV_DESC / r

33 record / RTD_CHAN DESC / rc

34 union

35 map

36 record / RTD_EXP_SUB_DESC / res
37 end map

38 map

39 record / RTD_LC_SUB_DESC / rls
40 end map

41 map

42 record / RTD_CC_SUB_DESC / rcs
43 end map

44 end union

45 record / CAL RTD / r_cal

46 end map

47 end union

48 end map

49 map

50 byte Z(512,6)

51 end map

52 end union

53 end structure

Note that this structure has both variables (Z, line 50) and records as elements. Some of the
records are dimensioned (lines 13 and 18). The parameters S_DIG_SUB_MAX and
S AMUX _SUB MAX give the upper bounds of these dimensions, found in
BIG_STRUCTS.PRM. For every STRUCTURE, there is an END STRUCTURE; for every
UNION, an END UNION; and for every MAP, an END MAP.

Starting at the right-most indentation levels, the UNION/END UNION of lines 34-44 includes
three MAP/END MAP groups, lines 35-37, 38-40, and 41-43. A UNION/END UNION is
similar to a FORTRAN equivalence statement, and the MAP/END MAP groups define the
elements that are equivalent. The records named RES, RLS, and RCS will start at the same
location; the longest will define the space taken by this UNION/END UNION group.

Now consider the UNION/END UNION group, lines 6-47. It has the 6 MAP/END MAP
groups, lines 7-10, 11-15, 16-20, 21-25, 26-30, and 31-46. Each of these 6 groups is specific
to a specific source device, and each defines the layout of the CHN file header for that source
device. Lines 31-46 define the RTD720 specific part of the header.

Now look at the UNION/END UNION group, lines 2-52. It covers two MAP/END MAP

Sandia National Laboratories Underground Testing

Data Collection System Channel Data File Format

groups, lines 3-48, and 49-51. Lines 4 and 5 define the two records that are PHYSICALLY and
LOGICALLY first in the header (and in ALL headers). The MAP/END MAP group at line
49-51 defines a byte variable Z dimensioned (512,6). Z and the MAP/END MAP group, lines
3-48, occupy the same address space. 6 is the length in physical records of the longest device
header and 512 is the byte length of a physical record. This construction allows the user to read
the first physical record from the file, using an ordinary binary file read, and then to use the
variable CHN.GC.LEN_HEADER in the record GC to determine how many more physical
records need to be read from this CHN file. See module HEADER _READ for details.

The STRUCTURE/END STRUCTURE statements, lines 1-53, complete the structure definition.
CHNHEAD.CMN declares this structure to be a record named CHN. There may be several
record statements, each declaring this structure to have a locally unique name.

The structure definition files TABLE_STRUCTS.DEF, CHN_HEADER. DEF, and the parameter
file BIG_STRUCTS.PRM are all in INCLUDESINCLUDE, where that
symbol is defined:

$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever ‘the files are
maintained)

D.5 CHN FILE FORMAT

All CHN files are similar in format. They are unformatted direct access files where each of the
file’s physical records is exactly 512 bytes (one VAX/VMS page) long. They consist of two
parts, a header and data, each part beginning a new physical record. A vocabulary problem
exists here because of the necessity to use the word "record" both in connection with structures

and in connection with files. It should be clear from the context which meaning is intended,
however; "record” without a nearby "file" or "physical" always ties to structures.

D.6 CHN FILE HEADER

D.6.1 Type of Information Contained

The header is one record consisting of several physical records; it contains the following three
distinct types of information:

(1) General file information about the test, the source, and about the entire file.

Sandia National Laboratories Underground Testing

Data Collection System Channel Da:a File Format

(2) Source-specific information about this device and channel from the ICF.

3) Source-specific calibration information gathered by PROCESS and used to calibrate the
raw data. ANALYZE does not have this information available, but passes along a
dummy structure.

D.6.2 Current Source Devices

There are currently four types of source devices:

(1) SANDUS, which has three possible configurations:

(@) SANDUS ANALOG (S_ALOG)
(b) SANDUS DIGITAL (S_DIG), with S_DIG_SUB_MAX data channels/channel

(© SANDUS ANALOG MUX (S_AMUX), with S AMUX SUB_MAX data
channels/channel (configuration probably obsolete)

2) Tektronix 7912 (T7912)
(3) Tektronix 7103, with attached CCD camera (T7103) (probably obsolete)

(4) RTD 720. The RTD may be configured with one or more channels, depending on what
is being recorded. A description of its header is more complex.

D.6.3 Header Structures Table

This is an expansion of the terse header structure described in paragraph D.6.1.

The Names of Structures in the Header for SANDUS
--------------------- SOURCE DEVICE---==-=sm=smcmmmemnn-

Device S_ALOG s_DIG S_AMUX

General = = me-smemmee-oo-o--ao- GENERAL_CHAN* ----cocommomooeonan

(same for all) --------v--merenono- GEN _DESC** -wc-meceocommenen e
Source S_ALOG_CHAN DESC** S_DIG_CHAN_DESC** S_AMUX_CHAN_DESC**
Specific S DIG_SUB_DESC(n)** S_AMUX_SUB_DESC (n) **
Calibration CAL_S_ALOG* CAL_S _DIG* CAL_S_AMUX*

Source Specific

Sandia National Laboratories Underground Testing

Data Collection System Channel Data File Format

The Names of Structures in the Header for Other Sources

--------------------- SOURCE DEVICE-----==cmmemmmammnonn=

Device T7912 T7103 RTD 720

General = = = c-cscecececeeeccaan- GENERAL_CHAN* ----wc-cecomccm e

(same for all) ----c-w-mcemmuenano- GEN_DESC#*#% --r-vecmmmcmmccmanaan

Source T7912_CHAN DESC** T7103_CHAN_ DESC** RTD_DEV_DESC*+*

Specific T7912_SUB_DESC** T7103_SUB_DESC** RTD_CHAN_DESC** and
one of the
following:

RTD_EXP_SUB_DESC**
RTD_LC_SUB_DESC*+
RTD_CC_SUB_DESC**

Calibration CAL_7912* CAL_T7103* CAL_RTD*
Source Specific

NOTE

The first two records in the header are common to
all source devices; they supply the length of the
header in physical records. This allows for a
bootstrap file reading technique. These records
supply the source device type, because the rest of
the header is source-specific.

* For the current definition of this structure, see the ASCII file:
"CHN_HEADER.DEF".

** For the current definition of this structure, see the ASCII file:
"TABLE_STRUCTS.DEF".

Sandia National Laboratories Underground Testing

Data Collection System Channel Data File Format
D.6.4 A Short Description of the Structures

The files containing these structures are heavily documented and should be understood before
any changes are made. A very brief description of the contents of each record follows:

(1) GENERAL_CHAN

This record is generated by PROCESS or ANALYZE,; it contains necessary information not
otherwise available from any record in the header, such as error flags, and information captured
by PROCESS or ANALYZE. The error flags are logical variables, and if an error occurs, it
is noted on the first title line of the plot. It is identical for all sources.

(2 GEN_DESC

This record comes from the ICF via the BIG file; it contains the source name and code, the test
name, and the reference trigger number. It is identical for all sources.

(3) RTD_DEV_DESC

This record comes from the BIG file and is specific to the RTD 720. [t contains the RTD
device setup values, such as the VMODE command and the acquire commands. The original
comes from the ICF,

(4) xxxx_CHAN_DESC

This record comes with the BIG file and contains values for the source equipment. It includes
instrument settings, calibration information, plot specifications, and channel specific data. The
original comes from the ICF.

(5) S_xxxx_SUB_DESC

This record ONLY occurs for SANDUS DIGITAL and ANALOG MUX channels, with one
structure for every possible subchannel, whether or not they are used. It contains data that is
specific to the subchanne]. If this channel is a DIG channel, then all S_DIG_SUB_MAX records
are present, whether used or not. If this channel is a MUX channel, then all
S_AMUX_SUB_MAX records are present, whether used or not. These parameters are defined
in BIG_STRUCTS.PRM

Sandia National Laboratories Underground Testing

D-10

Data Collection System Channel Data File Format
(6) xxxx_SUB_DESC

This record describes the subchannel information, such as where in the data the subchannel
record lies. It is specific to the 7912 and 7103.

(7) RTD_EXP SUB_DESC

This record holds dry run and experiment information about the specific subchannel, i.e.,
plotting information.

(8) RTD_LC_SUB_DESC

This record holds laser calibration information about the specific subchannel, i.e., plotting
information.

(99 RTD_CC_SUB_DESC

This record holds cable compensation information about the specific subchannel, i.e., plotting
information.

(10) CAL_xxxx

This record is created by PROCESS working with CAL BIG file; it is passed on in the header
of all CHN files. It contains source-specific flags and calibration information. ANALYZE
creates this record for the RTD720s, but it is not —eaningful, and exists only for future
expansion,

D.7 DATA DESCRIPTION

The data consists of 1 or more physical records, each containing 256 sixteen bit words. A
sixteen bit word is further broken into an op-code, the high order 4 bits, and the data, the
remaining low order twelve bits, which depend on the op-code for interpretation. If the low
order twelve bits are meaningful, they are assumed to be a positive integer; thus, the largest
integer that can be sent is (2**12)-1, or 4095. If the data can have negative values, a bias is
added to all data values so that all values are positive, and that bias appears in the CAL_xxx
record; the bias must be subtracted from all data before use. Currently, the Tektronix 7103 is
the only device with a data offset. Data values are bounded between 0 and 4095 inclusive.

Sandia National Laboratories Underground Testing

D-11

Data Collection System Channel Data File Format
D.7.1 Op-Codes

There are currently four meaningful op-codes. They are:

(1) 00’ octal ('O’ hex) signals ordinary data.

This op-code indicates that the low order twelve bits contain a nonnegative twelve bit integer
data value.

2) '07" octal ("7’ hex) signals compression repeat factor.

This op-code indicates that the low order twelve bits are a repeat factor. To understand "repeat
factor," it is necessary to understand data compression. There can be both hardware and
software data compression, which PROCESS incorporates into this op-code.
REALIZE/ANALYZE does NOT use any kind of data compression.

In an effort to make the channel files as small as possible, PROCESS puts the last data value
into reg A and compares each following data value (in reg B) with A until abs(A-B) .ge.
compression factor, while counting the number of values put into B, and including A. This
count becomes the "repeat factor" in the low order twelve bits. Both the hardware and software
compression factors are in the header record. The compression factor is normally 1.
Compression factors greater than 1 are possible, but very unusual. Data compression occurs
only on SANDUS signals.

Consider the following string of data values:

...24 23 23 23 23 25 25 26 27 30... becomes

...24 23 '7’4 25 '7°2 26 27 30 ... (compression factor=1), or

...24 '7'7 26 '7°2 30 ... (compression factor=2).
A compression factor of 1 will not lose any information. It is not meaningful for the first word
of data to have a '7’ op-code. Because of the twelve bit limitation on the magnitude of repeat
factors, several consecutive *7° op-codes may occur. If op-code *7' is repeated, then the repeat

factors are summed to obtain the correct repeat factor, It is meaningful for the last data word
to have a '7’ op-code. A repeat factor of 0 is not valid.

Sandia National Laboratories Underground Testing

D-12

Data Collection System Channel Data File Format
3) 11’ octal (B’ hex) signals end-of-data.

This op-code indicates that the previous word was the last valid word. The first word of data
should not have an op-code 'B’. If the data ends on a block boundary requiring an additional
block be written just to signal end-of-data, the end-of-data is omitted. This is specially true for
7912s, which always write 512 pieces of uncompressed data. The low order twelve bits are not
used.

(4) '16’ octal CE’ hex) signals loss of data.

This op-code indicates that the source instrument did not have data and the low order twelve bits
may contain a repeat factor indicating the total number of missing data values. Here, a repeat
factor of O has the same meaning as a repeat factor of 1. Loss of data is different from a O or
full scale value, both of which are legal values. It is common in 7912 data. The first data word
may have an 'E' op-code. If op-codes are repeated, then the repeat factors are summed to
obtain the correct repeat factor.

D.7.2 Data by Device and File Type

The content and interpretation of the data depends on both the source of the data and the type
of file. T48 files only occur for Tektronix 7912 sources; in the SANDUS family CAL files
occur only for the SANDUS ANALOG sources. CAL files also occur for the Tektronix 7912.
The data always starts with the first word of the first physical record following the header
record. The header contains a count of the number of words written to the file, as well as the
number of words of data before compression.

The Sandus Family

Currently the bulk of the data recorded during any event is from a SANDUS ANALOG source.
The SANDUS has a number of documents characterizing it. A large number of variables are
necessary to properly interpret the data; they are all contained in the record header. The number
of data values is a function of the channel and is generally either 8K (K=1024) or 16K,
however, real time channels may have thousands of physical blocks of data at 256
samples/block.

Sandia National Laboratories Underground Testing

D-13

Data Collection System Channel Data File Format

(a)

(b

(c)

SANDUS ANALOG source (S_ALOG)

0))

2

CHN file type

S_ALOG data is always compressed, usually with a compression factor of 1.
There is only one waveform in the data part of the file.

CAL file type

Calibration data consists of four DC levels, each level beginning a new physical
record. The header contains the number of the physical record where each level's
data starts. An integer array in the header establishes a correspondence between
the levels as they occur in the file, and in the header.

SANDUS DIGITAL source (S_DIG)

Data from this source device is often called binary data. Though the header
variables allow for data widths of more that 1 bit, this option has never been
used. In this document, the data is referred to as binary data.

(1

(2

CHN file type

Twelve bits are available for data, of which S_DIG_SUB_MAX are used. The
bit position and data width (1 bit) for each subchannel is available from the record
header. Data compression can occur. Only cne waveform is in this file type.
There is no correspondence between the sub-channel number and the bit position
in the data word. That information is called out in the subchannel record.

CAL file type

A CAL file does not exist for this SANDUS configuration.

SANDUS ANALOG MUX source (S_AMUX)

This source configuration resembles a SANDUS ANALOG source, except that
it may have up to 32 subchannels multiplexed together. The number of
subchannels is obtained from the header record. Because this source has not been
used for several tests, the current maximum number of subchannels is 1, and is

Sandia National Laboratories Underground Testing

D-14

Data Collection System Channel Data File Format

defined by the parameter S_AMUX_SUB_MAX. PROCESS demuitiplexes the
channel into subchannels, writing the data for the subchannels in a serial manner,
each starting a new physical record. The record header contains both the number
of samples in each subchannel and the number of the physical record where the
data for the subchannel starts.

(1) CHN file type

The header record supplies the number of subchannels in this "channel."
There are a maximum of S_AMUX_SUB_MAX waveforms in this file

type.
(2) CAL file type

A CAL file does not exist for this SANDUS configuration.

Tektronix 7912 (T7912)

A 7912 waveform consists of 512 upper trace Y values in two physical records, followed
by 512 lower trace Y values in two physical records. The upper Y trace and the lower
Y trace each start a physical record. An end-of-data op-code will not appear in 7912
CHN files. 7912 data is never compressed.

(a) CHN file type
There is only one waveform in this file type. The CHN file from a 7912 is
always two blocks longer than expected, because of a readout of the instrument,
which is passed along with the data. If serious questions about the instrument
setup arise, this is the final authority. These extra two blocks do not appear on
T48 or CAL files.

(b) CAL file type

The CAL file type contains the following eight waveforms in the order given
(AUTOCAL creates these files):

)] 1 baseline for "baseline" sine wave,

Sandia National Laboratories Underground Testing

D-15

Data Collection System Channel Data File Format
(2) 1 "baseline" sine wave,
(3) three DC levels,
(4) two pulses, and
(5) 1 experiment system baseline.

These eight waveforms are a subset of the set of 17 waveforms done for the T48
file type (also created by AUTOCAL).

(c) T48 file type

This file type contains the following 17 calibration waveforms, recorded about 48
hours prior to the event, in the order given here.

(1) 1 baseline for "midscreen" sine wave,
(2) 1 "midscreen" sine wave,

(3) 1 baseline for "baseline" sine wave,
(4) 1 "baseline" sine wave,

(5) eight DC levels,

(6) four pulses, and

N 1 experiment system baseline.

Tektronix 7103 source (T7103)

This is a new source type. The number of data points/waveform is 10240, where the first, and
last, 64 data points are not used. The data is not compressed and, because there are exactly 40
blocks of data/waveform, there is no end-of-data op-code.

Sandia National Laboratories Underground Testing

D-16

Data Collection System Channel Data File Format
(@) CHN file type
There is one waveform/file.
(b) CAL file type

A CAL file for this device does not exist.

RTD 720 source type

This device is one of the newer digitizers; it has a great many programmable features. The
number of samples can vary between 512 and 512K, depending on how the device and channel
are configured. The data is not compressed. It generally does not contain missing data,
(a) CHN file type
The header contains one waveform, which may consist of one or more segments,
with each segment having its own trigger. The subchannel records must direct
ANALYZE to the correct segment.
(b) CAL file type

Currently a CAL file for this device does not exist.

Sandia National Laboratories Underground Testing

D-17

Data Collection System Channel Data File Format

Sandia National Laboratories Underground Testing

D-18

Data Collection System BIG File Utility Routines

APPENDIX E
BIG FILE UTILITY ROUTINES

Sandia National Laboratories Underground Testing

Data Collection System BIG File Utility Routines

Sandia National Laboratories Underground Testing

Data Collection System BIG File Utility Routines

APPENDIX E
BIG FILE UTILITY ROUTINES

E.1 INTRODUCTION

The data acquisition and processing operations performed on SANDUS, ACE, and RTD
channels involve fetching raw data from hardware devices and writing it out to data files, then
reading the files and processing the data into a graphical form. The raw data files are known
as BIG files because they can contain data for many channels.’

There is a set of utility routines available that are general enough to be used by any program that
needs to work with the files. They are:

(1) OPEN_BIG - opens an existing file or creates a new file.

(2) BIG_DIR - returns a directory of channel numbers from a file.
(3) READ BIG - reads data for a particular channel from a file.
(4) READ BIG_HDR - retrieves a channel header from a file.

(5) WRITE BIG - writes data for 2 particular channel to a file.
(6) CLOSE_BIG - closes a file.

All of the routines are implemented as functions that return status values to a longword
(integer*4) in the calling program. The status values indicate whether the functions succeeded
or failed. For more information on return status values, see the Implementation section, E.4.

The headers used by the BIG files, along with some of the arguments for these routines, use
FORTRAN record structures. For a detailed description of the DEC’s nonstandard
implementation structures, see both the VAX FORTRAN Language Reference Manual Order
Number AA-DO34E-TE and the VAX FORTRAN User Manual Order Number AA-DO35E-TE,
both dated June 1988. Later editions exist.

' Much of this document and all of the routines described herein were written by Jon
Anspach when he worked for Organization 9321. These routines have been modified
when necessary and documentation updated by Peter Kaestner of Department 9321.
The files that were called tables are now Instrument Control Files (ICFs).

Sandia National Laboratories Underground Testing

E-3

Data Collection System BIG File Utility Routines
E.2 FILE ORGANIZATION

The BIG files do not use standard RMS file formats or control information. They appear to the
operating system to be simply a stream of bytes without any structure or organization. They do
have an organization, but it is meaningful only to the routines described in this document.

Each BIG file contains a file header, channel headers, and data. The file header appears at the
beginning of the file and is followed by the first channel header, then the data for the first
channel, then the second channel header and channel data, and so on. Every header and every
data section starts on a block boundary. There are no terminators to separate, or control fields
to distinguish one channel from another, The only way to tell where a channel begins and ends
is with the information stored in the file header.

There may be up to 512 channels in each BIG file. The channel numbers must be in the range
0 to 511, and a channel may only occur once in the file. Each channel may contain up to
2,147,483,646 bytes of information.

The file header contains information that describes the file as a whole. It currently occupies nine
blocks. It is defined by the following record structure, which is taken from the file
BIG_STRUCTS.DEF.

structure /BIG_FILE_HDR_DESC/
integer*4 start_block(0:511)
integer*4 byte_count(0:511)
character*24 date
character*16 col_name
integer*4 use_index
integer*4 data_type
integer*4 subcom_depth
integer*4 frame_length
integer*4 trig_cnts(6)
integer*4 %fill(3)
record /GEN_DESC/ gd
record /PRI_TYPE_DESC/ pt
record /S_TRIG_DESC/ st

end structure

Sandia National Laboratories Underground Testing

Data Collection System BIG File Utility Routines

With the exception of the start_block field, the contents of the file header may be used by the
calling program. Several structure elements must be supplied by the program when creating a
new file.

(1) START BLOCK

The start_block field is an array that contains the channel’s starting block number. This
field is intended to be used only by the BIG file access routines.

(2) BYTE_COUNT

The byte_count field is an array the contains the number of data bytes for each channel.
This field will need to be used by the calling program when reading data from the file.
The program may not change this field.

(3) DATE

The date field specifies the date and time that the file was created. The calling program
may read but not write this field.

(4) COL_NAME

The col_name field gives the name of the collection point or subsystem that collected the
data. The program that creates the data file must supply a value for this field.

(5) USE_INDEX

The use_index field specifies the purpose of the data. Acceptable values are: 0 implies
normal gauge data; 1 implies laser calibration data; and 2 implies cable compensation
data. This field must be supplied by the program creating the BIG file

(6) DATA_TYPE
The data_type field specifies the type of data that is contained in the file from the
following categories: memory data, realtime data, standard or late calibration data, and

early calibration data. The program that creates the data file must supply a value for this
field.

Sandia National Laboratories Underground Testing

Data Collection System BIG File Utility Routines

(7) SUBCOM_DEPTH

The subcom_depth field specifies the maximum subcommutation depth of the data stream
format. The program that creates the data file must supply a value for this field. It is
not meaningful for RTD BIG files

(8) FRAME _LENGTH
The frame_length field specifies the length, in bytes, of the data stream’s major frame.
The program that creates the data file must supply a value for this field. It is not
meaningful for RTD BIG files.

(9) TRIG_CNTS(6)
The trig_cnts field is an array of trigger counts. The program that creates the data file
must supply values for this field. This field in only meaningful for BIG files containing
SANDUS data.

(10) %FILL(3)

The %fill field hasn't been defined yet. %fill reserves space in the structure, but does
not create a variable name for that space.

(11) RECORD /GEN_DESC/ GD
The GD record is simply a copy of the GEN_DESC record from the ICF. It supplies
information such as the test name, source code, trigger channels, etc. The GEN_DESC

structure is defined in TABLE_STRUCTS.DEF.

(12) RECORD /PRI_TYPE_DESC/ PT

The PT record is simply a copy of the PRI_TYPE DESC record from the ICF. It
contains values that specify the primary types of all the channels. The
PRI_TYPE_DESC structure is defined in TABLE_STRUCTS.DEF.

Sandia National Laboratories Underground Testing

E-6

Data Collection System BIG File Utility Routines
(13) RECORD /S_TRIG_DESC/ ST

The ST record is simply a copy of the S_TRIG_DESC record from the control file and
has the same structure. It contains values that define triggers for SANDUS operations.
The record structure is defined in TABLE_STRUCTS.DEF.

The channel headers only contain information that describes the configuration of the hardware
that produced the data. They do not contain any information about the file or how the channel
data appear in the file. Most of the contents of the header consists of the corresponding channel
description record from the control file. The channel description records are defined in
TABLE_STRUCTS.DEF.

The calling program has complete access to the channel header and is responsible for supplying
the fields to the header before writing the channel data.

E.3 USER CALLABLE ROUTINES
E.3.1 Open_Big

Open_Big opens a BIG data file for proceccing. You must call it to open a file before you do
any other operations on the file. It can either open an existing file or create a new file. When
an existing file is opened, Open_Big returns the file header to the calling program. When a new
file is to be created, Open_Big returns an empty file header. The calling program must then
supply values for some of the file header fields before closing the file. Open_Big returns as the
function value a status code that indicates success or failure. The calling program can access
the information in the file header by declaring a local file header record and then calling
Open_Big. To declare a local copy of the file header the program should include
BIG_STRUCTS.DEF and use the following statement:

record /BIG_FILE_HDR_DESC/ file_hdr

Open_Big and the variable to receive the return status must be declared in the calling program
as integer*4 variables.

Sandia National Laboratories Underground Testing

Data Collection System BIG File Utility Routines

The calling format for Open_Big is:

status = Open_Big (filename,
default_directory,
file_status,
new_alloc,
access,
file_header,
lun)

where the arguments are:

(1

()

(3)

filename

name: filename
type: character string
access: read only

Specifies the name of the file to open or create. The filename argument may contain any
or all parts of a full file specification. It may be blank if the default_directory argument
contains a valid file name.

default_directory

name: default_directory
type: character string
access: read only

Default directory specification to apply to the filename argument. The default_directory
argument supplies any fields in the full file specification that are not supplied by the
filename argument. Any fields specified in the filename argument override
corresponding fields supplied in the default_directory argument. The default_directory
argument may be blank.

file_status
name: file_status

type: character string
access: read only

Sandia National Laboratories Underground Testing

E-8

Data Collection System BIG File Utility Routines

Status of file to open. The file_status argument must be 'OLD’ if you want to open an
existing file, and '"NEW" if you want to create a new file. Any other value results in an
error being returned. If the value is 'NEW,’ then the new_alloc argument must be
nonzero.

(4) new_alloc

name: new_alloc
type: integer longword
access: read only

New file allocation size. The new_alloc argument specifies the number of disk blocks
to allocate to a new file. It must be nonzero if the file_status argument is 'NEW'. If
the file_status argument is 'OLD,' the new_alloc argument is ignored.

(5 access

name: access
type: character string
access: read only

File access mode. The calling program must supply the string "WRITE' in this argument
if the file is to be opened for write access. 'READ’ specifies that the file will be opened
for READ ONLY access. If the program specifies 'READ’ and then tries to write to the
file, an error will result.

(6) file_hdr
name: file_hdr
type: record
access: write only
Record to receive the file header. After opening the file, Open_Big reads the file header

and returns it the file_hdr argument. If the file is new, the header will be empty except
for the date field.

Sandia National Laboratories Underground Testing

E-9

Data Collection System BIG File Utility Routines
(M lun

name: lun

type: integer longword

access: read only

Logical unit number to assign to the file. The logical unit number is used in subsequent
file operations.

EJ3.2 Big_Dir

Big_Dir returns the number of channels that have been written to a BIG data file, and an array
that specifies which channels are in the file. The first value in the array is the number of the
channel that appears first in the data file; the second array value is the second channel, and so
on.

Big_Dir returns as the function value a status code that indicates success or failure. Big_Dir and
the variable to receive the return status must be declared in the calling program as integer*4
variables.

The calling format for Big_Dir is:
status = Big_Dir (lun,
directory,
dir_size,
num_chans)
The arguments are:
() lun
name: lun
type: integer longword

access: read only

Logical unit number assigned to the file. This is the logical unit number used to open
the file in the call to Open_Big.

Sandia National Laboratories Underground Testing

E-10

Data Collection System BIG File Utility Routines

()

(3)

4)

E.3.3

directory

name: directory
type: integer word array
access: write only

Directory of channel numbers contained in the file. Big_Dir writes the channel numbers
to the directory in the same order as they appear in the file. The number of channel
numbers returned in the directory array is the lesser of dir_size and num_chans.

dir_size

name: dir_size
type: integer longword
access: read only

Size of the directory in words. The calling program must provide a large enough array
for the directory to hold all possible channel numbers. If the directory Is not large
enough to hold all the channel numbers contained in the file, Big_Dir will only return
enough channel numbers to fill the array.

num_chans

name: num_chans

type: integer longword

access: write only

Number of channels returned in the directory array. Big_Dir returns this value to the
calling program.

Write_Big

Write_Big writes a channel header and channel data out to a BIG file. It also updates the
start_block and byte_count fields in the file header. The channel header must be initialized by
the calling program and supplied to Write_Big as an argument.

Sandia National Laboratories Underground Testing

E-11

Data Collection System BIG File Utility Routines

The data for a channel need not all be written out in one call to Write_Big, but may be split into
multiple buffers and sent to the routine with multiple calls. In that case, the channel header is
only written on the first call.

There Is a restriction on the use of Write_Big if you wish to send more than one buffer of data
for a channel. Write_Big and Read_Big both use Block 1/0 mode to read and write data. One
characteristic of writing in Block 1/O mode is that complete §12-byte disk blocks are written
with every write operation. If the buffer to he written is not a multiple of 512 bytes, then the
write operation will add enough garbage bytes to the file to fill out the disk block.

For example, if you call Write_Big with a buffer that contains 300 bytes of data, then after the
write operation, the file will contain the 300 data bytes followed by 212 bytes of garbage. If
you then call Write_Big again with another buffer for the same channel, the second buffer will
be written after the 212 bytes of garbage, in effect, causing the garbage to be interspersed with
the data. For that reason, the number of bytes in the data buffer sent to Write_Big should be
a multiple of 512 bytes, unless it is the last buffer for the channel. If the buffer is the last one
or the only one for the channel, then it can be of any size with no problems.

There is no limit to the size of the buffer you can send to Write_Big (aside from the limit of
2.147.483,646 total bytes per channel), so you can always write a complete channel in one call.

Write_Big returns as the function value a status code that indicates success or failure. Write_Big
and the variable to receive the return status must be declared in the calling program as integer*4
variables.

The calling format for Write_Big is:

status = Write_Big (lun,
channel,
chan_type,
new_chan,
buffer,
buffer_size,
chan_hdr,
bytes_written)

Sandia National Laboratories Underground Testing

E-12

Data Collection System BIG File Utility Routines

The arguments are:

(H

lun

name: lun
type: integer longword
access: read only

Logical unit number assigned to the file. This is the logical unit number used in the call
to Open_Big.

(2) channel

(3)

(4)

name: channel
type: integer word
access: read only

Channel number associated with the data. For realtime channels that are grouped
together, channel should be the first channel number in the group.

chan_type

name: chan_type
type: byte
access: read only

Channel type. This is a number that indicates the primary type of the channel. It is the
same as the pri_chan_type field in the PRI_TYPE_DESC structure of the control file.

new_chan
name: new_chan

type: boolean longword
access: read only

Sandia National Laboratories Underground Testing

E-13

Data Collection System BIG File Utility Routines

Indicates whether or not to start writing a new channel. If new_chan is TRUE,
Write_Big initializes the start_block and byte_count fields in the file header and writes
the channel header to the file, If new_chan is FALSE, Write_Big assumes that the buffer
is a continuation of the channel data and starts writing at the block where the previous
write operation finished.

(5) buffer
name; buffer
type: array of arbitrary type
access: read only
Data buffer to write. Write_Big treats buffer as an array of contiguous bytes. The type
declared by the calling program is unimportant.
(6) buffer_size
name: buffer_size
type: integer longword
access: read only
Size of buffer in bytes. Although Write_Big doesn't care how the buffer was declared
in the calling program, buffer_size must give the size in bytes.
(7) chan_hdr
name: chan_hdr
type: record
access: read only
Channel header. The calling program must initialize the channel header fields and then
supply the channel header to Write_Big via the chan_hdr argument.
(8) bytes_written
name: bytes_written
type: integer longword
access: write only
Sandia National Laboratories Underground Testing

E-14

Data Collection System BIG File Utility Routines

Number of bytes actually written to the file. Write_Big returns in this argument the
number of bytes it actually wrote to the file, not including the channel header. The value
should be the same as the buffer_size argument if the write operation completed
successfully. If it encountered an error, bytes_written will indicate the number of bytes
Write_Big was able to write before the error occurred.

E.3.4 Read_Big_Hdr

Read_Big_Hdr reads a channel header from a file into a header record supplied by the calling
routine. The calling routine may then do whatever it wants with the information in the header.
The use of Read_Big_Hdr is optional, in the sense that a program does not need to know the
information in the header in order to successfully read channel data from a file. However, it
may need to know some of the information in order to be able to process the data, The channel
header structure is defined in the file BIG_STRUCTS.DEF.

The calling program can access the information in the channel header by declaring a local
channel header record and then calling Read_Big_Hdr. To declare a local copy of the channel
header, the program should include the BIG_STRUCTS.DEF file, then use the following

statement:
record /BIG_CHAN_HDR_DESC/ chan_hdr

Read Big_Hdr returns as the function value a status code that indicates success or failure.
Read_Big_Hdr and the variable to receive the return status must be declared in the calling
program as integer*4 variables.

The calling format for Read_Big_Hdr is:
status = Read Big_Hdr (lun,
channel,

chan_type,
header)

Sandia National Laboratories Underground Testing

E-15

Data Collection System BIG File Utility Routines

The arguments are:

(1) lun
name: lun
type: integer longword
access: read only
Logical unit number assigned to the file. This is the logical unit number used in the call
to Open_Big.
(2) channel
name: channel
type: integer word
access: read only
Number of the channel from which header is read.
3) chan_type
name: chan_type
type: t te
access: read only
Channel type. This is a number that indicates the primary type of the channel. It is the
same as the pri_chan_type field in the PRI_TYPE DESC structure of the control file.
(4) header
name: header
type: record
access: write only
Local record variable to receive the channel header. The structure of the record variable
must match the structure of the channel header.
Sandia National Laboratories Underground Testing

E-16

Data Collection System BIG File Utility Routines
E.3.§ Read_Big

Read Big reads channel data from a BIG file. The data for a channel need not all be read in
one call to this routine, but may be read into multiple buffers using multiple calls.

The user should be aware of a situation that occurs when Read_Big is used to read the data into
more than one buffer with multiple calls. Read_Big and Write_Big both use Block I/0 mode
to read and write data. One characteristic of reading in Block 1/0 mode is that complete
512-byte disk blocks are read with every read operation. For example, if the user wants to read
300 bytes of data from a file using Block I/0, the system will read a complete 512-byte block
from the file, but only load the buffer with the first 300 bytes. Subsequent read operations for
the same channel would start on subsequent blocks, so that the 212 bytes that didn't get loaded
into the first buffer would never be transferred. If the requested number of bytes included all
the data for the channel, then there would be no problem, but if the data were split into multiple
buffers and the buffers were not multiples of 512 bytes, then some of the data would not be
transferred.

Read_Big avoids this problem by automatically sizing the buffer if the number of bytes requested
is not a multiple of 512 and if the number does not account for all the data in the channel. For
example, if there were 2000 bytes of data for the channel and the calling program requested
1200 bytes, then Read Big would trim the request to 1024 bytes. Read_Big also trims the
request if it is more than the amount of data left to be read for the channel. For example, if
there were 2000 bytes of data and the calling program requested 2500, bytes Read_Big would
return 2000 bytes.

Read Big returns two arguments besides the data buffer, the number of bytes actually read and
the number of bytes left to read for a channel. If the calling routine supplies a buffer that is a
multiple of 512 and no errors occur during the read, then the number of bytes actually read
should be the same as the requested number. If Read_Big trims the requested number, then the
two counts will not agree, which is a normal condition.

There is no limit to the size of the buffer you can send to Read Big (aside from the limit of
2,147,483,646 total bytes per channel), so you can always read a complete channel in one call.

Read_Big returns as the function value a status code that indicates success or failure. Read_Big
and the variable to receive the return status must be declared in the calling program as integer*4
variables.

Sandia National Laboratories Underground Testing

E-17

Data Collection System

The calling format for Read_Big is:

status = Read_Big (lun,
channel,
chan_type,
new_chan,
buffer,
buffer_size,
bytes_read,
bytes_left,
start_block)

The arguments are:

(1

(2)

(3)

lun

name: lun

type: integer longword

access: read only

BIG File Utility Routines

Logical unit number assigned to the file. This is the logical unit number used in the call

to Open_Big.

channel

name: channel

type: integer word
access: read only
Channel number to read.
chan_type

name: chan_type

type: byte
access: read only

Sandia National Laboratories

E-18

Underground Testing

Data Collection System BIG File Utility Routines

4

&)

(6)

(M

Channel type. This is a number that indicates the primary type of the channel. It is the
same as the pri_chan_type field in the PRI_TYFE_DESC structure of the control file.

new_chan

name: new_chan
type: boolean longword
access: read only

Indicates whether or not to start reading a new channel. If new_chan is TRUE,
Read_Big considers the request to be the first read operation on the channel data, so it
will start reading at the first block. If new_chan is FALSE, Read_Big assumes that the
buffer is a continuation of the channel data and starts the read from the point at which
the previous read left off.

buffer

name: buffer
type: array of arbitrary type
access: write only

Buffer to read data into. Read_ Big treats buffer as an array of contiguous bytes, so the
type that the calling program declares it to be is unimportant.

buffer_size
name: buffer_size
type: integer longword

access: read only

Size of buffer in bytes. Although Read Big doesn’t care how the buffer was declared
in the calling program, buffer_size must give the size in bytes.

bytes_read
name: bytes_read

type: integer longword
access: write only

Sandia National Laboratories Underground Testing

E-19

Data Collection System BIG File Utility Routines

8)

9

E.3.6

Number of bytes actually read. This argument will always be less than, or equal to,
buffer_size. A disagreement between the two values does not necessarily mean an error
occurred.

bytes_left

name: bytes_left
type: integer longword
access: write only

Number of bytes left to read for a channel. This argument will always be greater than,
or equal to, zero.

start_block

name: start_block
type: integer longword
access: write only

Number of block in the BIG file where this read started. This argument will always be
greater than zero.

Close_Big

Close_Big closes a BIG file. Its use is optional, but recommended. Close_Big returns as the
function value a status code that indicates success or failure. Close_Big and the variable to
receive the return status must be declared in the calling program as integer*4 variables.

The calling format for Close_Big is:

status = Close_Big (lun)

The argument is:

(1) lun
name: lun
type: integer longword
access: read only
Sandia National Laboratories Underground Testing

E-20

Data Colleciion System BIG File Utility Routines

Logical unit number assigned to the file. This is the logical unit number used in the call
to Open_Big.

E.4 Implementation

As mentioned above, all of the BIG file utility routines return status values to the calling
program that indicate the success or failure of the routines. The status codes are defined in such
a way that success codes are odd values and failure codes are even values. In VAX FORTRAN
the user can test numeric values as logical expressions; odd values test TRUE and even values
test FALSE. The user should always test the return status and take appropriate actions. If the
routine failed, write out an error message. There is a routine named Bad_Status that will
convert a status code to an ASCII error message and print it out on the terminal. Bad_Status
is called as a subroutine with three arguments. The arguments, in order, are:

(1) calling_name
name: calling_name
type: character string

access: read only

Name of the calling routine. This name gets printed out in order to show which routine
the program was in when it tried to call the BIG file utility routine.

(2) called_name
name: called_name
type: character string

access: read only

Name of the called routine. This name gets printed out in order to show which utility
routine returned the error status.

3) status
name: status

type: integer longword
access: read only

Sandia National Laboratories Underground Testing

E-21]

Data Collection System BIG File Utility Routines

Status code returned by the called routine. The status code is converted to a
system-supplied error message, and the error message is printed out.

A typical example is:

program Main
integer*4 Open_Big, status

status = Open_Big (...)
if (status) then ! Success

else ! Failure
call Bad_Status (‘Main', 'Open_Big’, status)

end if

There is a program named BIGREAD in the directory LD:[REPAIR] that uses Open_Big,
Big_Dir, Read_Big_Hdr, Read_Big, and Close_Big. It reads a channel header and, optionally,
data from a raw data file; then, it formats and writes the information out in readable form to the
terminal and in an output file. The user may want to run it on any of the BIG data files (there
are many scattered around the system). By looking at the program itself, the user will become
familiar with how it uses the various routines.

Sandia National Laboratories Underground Testing

E-22

Data Collection System BIG File Utility Routines

The BIG routines and Bad_Status are kept in an object library named UTILITY.OLB in the
directory UTILITYSLIBRARY, along with other useful utility routines. There is an alternate
library, UTILITY.DBG_OLB, that has the identical routines as UTILITY.OLB, but with the
difference that it has been compiled /DEBUG. Before you can run a program that calls these
routines, you must link them with your program. To do so, use the following command (or
your own variation):

$ DEFINE UTILITYSLIBRARY “directory holding the UTILITY libraries"
$ LINK PROG,UTILITYSLIBRARY :UTILITY/LIBRARY

OR
$ LINK/DEBUG PROG,UTILITYSLIBRARY:UTILITY.DBG_OLB/LIBRARY

Sandia National Laboratories Underground Testing

E-23

Data Collection System BIG File Utility Routines

Sandia National Laboratories Underground Testing

E-24

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

APPENDIX F

MAINTENANCE OF ICF (TABLE), BIG, AND
CHANNEL FILE UTILITY ROUTINES

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

APPENDIX F

MAINTENANCE OF ICF (TABLE), BIG, AND
CHANNEL FILE UTILITY ROUTINES

F.1 INTRODUCTION

This Appendix describes the changes that must be made in the ICF Utility Routines if
TABLE_STRUCTS.DEF, BIG_STRUCTS.DEF, BIG_DEF.PRM, and/or BIG_STRUCTS.PRM
are changed.'! Changes in any one or all of these files will affect most of the Nevada Test Site
(NTS) Instrumentation System programs. A change in CHN_HEADER.DEF will affect only
ANALYZE, PROCESS, PRELEWD, and DSP. Because of this dependency, the user must look
carefully at all the source code and understand records and structures before doing anything.
It is best if only one person has responsibility for maintenance of all the ICF routines and their
utility programs.

The above five files are in INCLUDESINCLUDE, which is defined a«
$ DEFINE INCLUDESINCLUDE LD:[INCLUDE] (or wherever they are maintained)

There have been two changes that have occurred in these files. The first, and most significant,
is the addition of a new digitizer. This requires additions to every one of the above files and
to CHN_HEADER.DEF. The steps necessary for this are described in paragraph 2. The
second change ls the addition (or deletion) of elements from existing structures, which requires
only a record length determination. The subset of steps necessary for this are listed in paragraph
3.

The first step, regardless of what is to be changed, is to verify each and every addition and
deletion with ALL interested parties. When the ICF creator and all interested parties have
approved every change and the user has backed up all files to a neutral directory, changes may

be made.

' Much of this document and all of the routines described herein were written by Jon
Anspach when he worked for Organization 9321. These routines have been modified
when necessary and documentation updated by Peter Kaestner of Department 9321,
The files that were called tables are now Instrument Control Files (ICFs).

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

F.1.1 Record Type

Without a great deal of thought, the user should NOT change the x_REC_TYPE variable
associated with every structure. The value of this variable is unique, and identifies the structure
to the table routines and most other programs. The value is determined from the structure's
position in TABLE_STRUCTS.DEF; it must not be greater than the dimension of the variables
REC_NAME and REC_LEN (currently 40) in the structure STRUCT _DESC. This dimension
can be changed.

All the major NTS Instrumentation System programs test this value to determine the data's
source, Each program has its own parameter file defining the significant values. The structures
named UNUSED... in TABLE_STRUCTS.DEF may be used for new structures without causing
problems, but the STRUCT _REC_TYPE variable value should not be changed.

F.2 ADDING A NEW DIGITIZER

BACKUP ALL FILES!!!

Regardless of what else is going on,
ALWAYS backup these files to a neutral
directory before editing them.

Adding a new digitizer will require defining the necessary structures in TABLE_STRUCTS. DEF
and a new CAL structure in CHN_HEADER.DEF. This work can be done by the person(s)
responsible for integrating the digitizer into the NTS Instrumentation System. The changes
described here must be done after that work is done.

F.2.1 Additions to BIG_STRUCTS.DEF
Adding a new digitizer will cause many significant changes to a host of programs.
The following is part of BIG_STRUCTS.DEF showing the form of the header description for

an RTD720 channel. Any new digitizer will need a similar header description created for it in
BIG_STRUCTS.DEF.

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

... fragment from BIG_STRUCTS.DEF . .

! This structure is used for a RTD720 channel.
structure /RTD_HDR_DESC/
integer*4 %fill(S) ! Unused (to be defined)
integer*4 fill ! =1 ==> TBL_STREAM_MIS=bad (F)
! =0 ==> TBL_STREAM_MIS=good (T)
record /RTD_DEV_DESC/ rtd ! Defined in Table_Structs.def
record /RTD_CHAN_DESC/ rtdc ! Defined in Table_Structs.def

union
map
record /RTD_EXP_SUB_DESC/ rtdes(0:rtd_exp_sub_max)
! Parameter defined in Big_Structs.prm
end map ! Defined in Table_Structs.def
map
record /RTD_LC_SUB_DESC/ ndls(0:rtd_lc_sub_max)
! Parameter defined in Big_Structs.prm
end map ! Defined in Table_Structs.def
map
record /RTD_CC_SUB_DESC/ rtdes(0:rtd_cc_sub_max)
! Parameter defined in Big_Structs.prm
end map ! Defined in Table_Structs.def
end union
end structure

... end of fragment . . .
F.2.2 Obtain Record Lengths
The next step is to obtain the lengths (in bytes) of all structures (hence records) in
TABLE_STRUCTS.DEF, BIG_STRUCTS.DEF, and in CHN_HEADER.DEF. This can bhe
done by counting the bytes, or by writing a small program that declares records for every
structure. By compiling this program with the qualifier /LIST and examining the .LIS file
produced, these lengths are available.

The following is an excerpt from an actual program. Notice how it gets the lengths of the
individual records as well as CHN file headers and BIG file headers.

Sandia National Laboratories Underground Testing

F-5

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

program chn_headtest
include ’include$include:big_structs.def/nolist’
include 'include$include:chn_header.def/nolist’

¢ RTD structures
¢ for the CHN file header with USE_INDEX =0, use in CHN_HEADER.DEF
structure / rtd_exp /
record / general _chan / gc
record / gen_desc / g
record / rtd_dev_desc / al
record / rtd_chan_desc / n
record / rtd_exp_sub_desc / ns
record / cal_rtd / oo
end structure
record / rtd_exp / re
¢ for the BIG file structure /RTD_HDR_DESC/, for use in BIG routines
c
record /RTD_HDR_DESC / nd

end

If you have access to the program FORTRAN-lint (FLINT), you can have it analyze a small
program that contains the include files describing the structures. FLINT will compute the record
lengths if the /XREFERENCE qualifier is present. There may be other source code analyzers
that do a similar job.

F.2.3 Changes to BIG_DEF.PRM

Edit BIG_DEF.PRM. Change, and add as necessary, param.eter statements that define BIG file
header record lengths to those determined in the previous step. Using the existing parameter

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

statements as a template, add similar statements for any new channel types. Modify existing
parameters to reflect the conditions for the next event. The following file fragment shows where
some of this needs to be done.

fragment from BIG_DEF.PRM . . .

The fcllowing parameters define the file and channel header sizes.
*kkkk TMPORTANT **ki+*

!
!
!
!
!
!
!
! THE FILE AND CHANNEL HEADER BYTE SIZES SPECIFY THE NUMBER OF BYTES TO

! READ OR WRITE FOR HEADER I/0 OPERATIONS. THEY ARE NOT NECESSARILY THE
! SAME AS THE HEADER LENGTHS. THE HEADERS CAN BE OF ANY LENGTH, BUT THE
! BYTE SIZES SPECIFIED HERE MUST BE EVEN NUMBERS. THEREFORE, IF THE

! ACTUAL HEADER SIZE IS AN ODD NUMBER OF BYTES YOU MUST ROUND UP TO THE

! NEXT EVEN NUMBER IN THE PARAMETER STATEMENTS BELOW. IN THAT CASE YOU

! SHOULD ALSO MAKE SURE YOU ALLOW SPACE FOR THE EXTRA BYTE IN ANY

! PROGRAMS THAT READ HEADERS; OTHERWISE, YOU MIGHT OVERWRITE PART OF YOUR
! PROGRAM BY ONE BYTE.

1

!

...

integer*4 B_FILE_HDR_BYTES
parameter (B_FILE_HDR_BYTES = 4980)

integer*4 B_FILE_HDR_BLOCKS
parameter (B_FILE_HDR_BLOCKS = (B_FILE HDR_BYTES +
1 BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK)

integer*4 B_RTD_HDR_BYTES
parameter (B_RTD_HDR_BYTES = 9180)

integer*4 B_RTD_ HDR_BLOCKS
parameter (B _RTD HDF. BLOCKS = (B_RTD_HDR_BYTES + BYTES_PER_BLOCK - 1) /
1 BYTES_PER_BLOCK)

...

..

end of fragment

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

F.2.4 Changes to CHN_HEADER.DEF

Edit CHN_HEADER.DEF. Modify the file as necessary to reflect the structure lengths obtained
in Paragraph F.2.2. Much of this editing is editing comment fields that guide the user through
CHN_HEADER.DEF, the determination of CHN header lengths in 512 byte blocks. Any
addition or deletion of a digitizer requires modification of the CHN_FILE_HDR_DESC structure,
which is in CHN_HEADER.DEF. See both Section 5, and Appendix D of the Maintenance
Manual.

F.2.5 Changes to the BIG File Routines

If a new digitizer was added to, or dropped from, BIG_STRUCTS.DEF and
TABLE_STRUCTS.DEF (which implies a change to structures in CHN_HEAD), then you must
edit the following four files:

(1) READ_BIG.FOR
(2) READ_BIG_HDR.FOR
(3) WRITE_BIG.FOR

(4) WRITE_BIG_HDR.FOR

Each source file contains comments indicating the changes to be made. It will consist of adding
and/or deleting an ELSE I[F(...) statement. [have included a fragment from the file
READ BIG.FOR to illustrate the nature of these changes.

... fragment from READ BIG.FOR ...

!
! **xx* This |[F statement must have a condition for every channel type. If
! **%%* 4 new channel type is added you must add a condition here to handle
| ***x* it The parameter constants used are defined in
I **xkx INCLUDESINCLUDE:BIG_DEF.INC.,

!

!

..

if (chan_type .eq. S_ALOG_TYPE) then
chan_hdr_blocks = B_S_ALOG_HDR_BLOCKS

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

else if (chan_type .eq. S_DIG_TYPE) then
chan_hdr_blocks = B_S_DIG_HDR_BLOCKS

else if (chan_type .eq. S_AMUX_TYPE) then
chan_hdr_blocks = B_S_AMUX_HDR_BLOCKS

else if (chan type .eq. T7912_TYPE) then
chan_hdr_blocks = B_T7912_HDR_BLOCKS

! deleted 5/20/1992 by PCK Device no longer in use
! else if (chan_type .eq. L6880_TYPE) then
! chan_hdr_blocks = B_L.6880_HDR_BLOCKS

else if (chan_type .eq. T7103_TYPE) then
chan_hdr_blocks = B_T7103_HDR_BLOCKS

else if (chan_type .eq. RTD_TYPE) then
chan_hdr_blocks = B_RTD_HDR_BLOCKS

else
Read Big =0
return
end if
... end fragment . ..
F.2.6 Recompile Object Libraries

Recompile all the TBL and BIG modules, and recreate the object libraries using the two
command files available. They are BIG_COMPILE_ALL.COM and
TBL_COMPILE_ALL.COM. Do not introduce the new libraries and structure definition files
until all interested parties are fully informed and indicate they are ready for this change.

Throughout the documentation, various symbols such as INCLUDESINCLUDE have been
defined. The purpose is now clear. During checkout, redefine the necessary symbols locally to
point to the latest set of files, while leaving the source code unchanged. Compile and debug, and
when everyone is ready, restore the original definitions.

Sandia National Laboratories Underground Testing

Maintenance of ICF (Table), BIG,
Data Collection System and Channel File Utility Routines

F.2.7 Recreate CREATE_TBL.EXE

Recompile and relink CREATE_TBL.FOR, which is used to create an empty [CF. It is located
in TOOLSSLIBRARY, which is defined as:

$ DEFINE TOOLSSLIBRARY LD:[TOOLS] (or wherever file maintained)

For more information on CREATE_TBL see Appendix B.

F.3 ADDITION/DELETION OF ELEMENTS FROM STRUCTURES

If it is necessary to add, or delete elements from existing structures, then the steps described in
paragraphs F.2.2, F.2.3, F.2.4, and F.2.6 should be followed.

F.4 CHANGES TO THE BIG_FILE_HDR_DESC STRUCTURE

If the structure BIG_FILE_HDR_DESC in BIG_STRUCTS.DEF is changed, then all the routines
described in the Appendix E of the Maintenance Manual must be examined for the impact of that
change. Specifically, CLOSE_BIG.FOR must be changed to make sure the changed field is
properly handled. This step depends on a through understanding of what is happening in these
routines and in the nature of the change. FETCH, DECOM, and PROCESS will have to be
modified in addition to REALIZE and ANALYZE. It would be unusual to modify this structure.
The instructions in paragraph F.2.3, and F.2.6 should be followed.

Sandia National Laboratories Underground Testing

F-10

Data Collection System Summary Log Utility (SLOG)

APPENDIX G
SUMMARY LOG UTILITY (SLOG)

Sandia National Laboratories Underground Testing

Data Collection System Summary Log Utility (SLOG)

Sandia National Laboratories Underground Testing

Data Collection System Summary Log Utility (SLOG)

APPENDIX G
SUMMARY LOG UTILITY (SLOG)

G.1 INTRODUCTION

The execution of each major piece of software in the Nevada Test Site (NTS) Instrumentation
System creates a log file. This file is very useful to the programmer and needs to be retained.
The NTS operations people need a summiary containing only significant entries from all the log
files.

The Summary Log Utility (SLOG) is a utility that runs on the NTS Instrumentation System after
all the activity associated with an event (or dryrun) has ended. It examines all LOG files known
to it for records containing a programmer-determined severity code below a known threshold.
This value, along with other coded values in a specific set of columns within the record, and the
text of the record are sorted and written to an editable/printable file, which is distributed to the
pertinent project leaders.

For each event, SLOG:
(1) reads each log file known to it,
(2) deletes column 1 carriage control information,
(3) extracts only tagged lines with a severity level less than some threshold, and
writes them to a sort file
(4) sorts this file, and
(5) prints the sorted file as a summary log file.
G.2 USING SLOG
There are three distinct operations necessary to use SLOG. They are:

(1 Determine where the desired LOG files will be located when the event activities are over
and write DCL to capture their name and location in a directory file.

(2) Parse the file thus generated to generate a second file in which the location of each log
file is defined, one log file per line.

3) Use this second file as command line paramcier pl to run SLOG.

Sandia National Laboratories Underground Testing

G-3

Data Collection System

G.2.1 Finding the LOG FILES

Summary Log Utility (SLOG)

Included are excerpts from the command file SLOGSLIBRARY:PREPARE_P2.COM, which has
been used to find the log files for an event, capture them in the directory file LOG_FILES.DAT,
run the program SLOGSLIBRARY :PARSE_FILE, and, finally, run SLOG. The important DCL
commands have been bolded.

$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$

.. excerpts from PREPARE_P2.COM . . .

PREPARE _P2.COM prepares a file for SLOG which

consists of [node::]disk:[directory]filename.type;ext

one file per line. This requires reworking log_files.dat,

which is created with the following directory request

$ dir/brief/col = 1/output =file.lis. The user needs to set up the
specific file type to be searched for, and the file names he may
wish to use. The summary.log file is left in the current directory,
and is set so the owner cannot, without thought, delete it.

dir/brief/col=1/output =log_files.dat/since =9:30 -
gear10::dd:[source.rmv11]*.log, -

nl4vax::dd:[hcid.r.‘san504]".log. -
nl4vax::dd:[mm.acel1]* log, -
nl2vax::dd:lm;1{.&;celllprelewd.log, .
nl2vax: :dd:[m}rl‘.gan504]prelewd.log, -
hddra: :dd:lhdd‘r.‘aécl 1]fetch.log, -

mm12c::dd:[mm.ace11]decom. log, -

.. end of excerpt .

Sundia National Laboratories

G-4

Underground Testing

Data Collection System Summary Log Utllity (SLOG)

It is important that the search be as carefully specified as possible, because no date/time
evaluation is done, and only the log files from the current event are meaningful. It requires a
slight change to pick up log files from an archived set.

The "/brief/col=1" form of the directory command generates a very nice format as shown
below:

Directory DD:[SOURCE.RMV11]

ANALYZE.LOG:1
INITIALIZE.LOG;!
PRELEWD.LOG:3
PRELEWD.LOG;2
REALIZE.LOG:1

Total of 4 files.
[EOB]

G.2.2 Parsing the Directory Lists

The file LOG_FILES.DAT then contains a collection of "Directory... Total of * groups, one
group for each directory searched. The program PARSE_FILE looks for a file of named
LOG_FILES.DAT (the name is a DATA statement).

PARSE_FILE opens the file READONLY and finds the string "directory”, picks up the
specification string and appends it to the beginning of each file, until a string "total.." is found.
Each full file specification is then written to a new file, in that case LOG_FILES.LIS (the name
is in a data statement). This sequence is repeated until an EOF is found.

LOG_FILES.LIS now looks as follows (using the LOG_FILES.DAT from above):
DD:[SOURCE.RMV11]ANALYZE.LOG:;;!
DD:[SOURCE.RMVI1]JINITIALIZE.LOG:;!
DD:[SOURCE.RMV11|PRELEWD.LOG;?
DD:[SOURCE.RMVI11]PRELEWD.LOG 2
DD:[SOURCE.RMVI1]REALIZE.LOG:1

.. resume PREPARE_P2.COM excerpt . . .

Sandia National Laboratories Underground Testing

G-5

Data Collection System Summary Log Utility (SLOG)

$! Now we take LOG_FILES.DAT and use it in PARSE_FILE to create
$! the file expected by SLOG.

$!

$ define slogSiibrary ld:[slog] ! or wherever file maintained
$!

$ run/nodebug slogSlibrary:parse_file

$!

$! Creates LOG_FILES.LIS from LOG_FILES.DAT, where L.LOG_FILES.LIS
$! s the output file for SLOG, but first define the command.
$!

.. end of excerpt . . .
G.2.3 Running SLOG
To use SLOG, enter the following DCL commands:
$ DEFINE SLOGSLIBRARY LD:[SLOG] (or wherever file maintained)

$ SET COMMAND SLOGSLIBRARY:SLOG_COMMAND_DEF
$ SLOG "filename"

"Filename" is a required command line parameter that is the name of a file containing one full
pathname:filename description for every LOG file SLOG is to examine.

The specifications for the LOG file are described in paragraph G.3.

SLOG has two optional command line qualifiers, /LEVEL and /QUEUE. LEVEL is the
threshold level below which the severity code is significant. Its default value is §, its range 0-9.
QUEUE directs the output to the specified queue, with the default queue being SYSSPRINT.
Because of the possibility of a pervasive error across the entire system, SUMMARY . LOG is not
printed. Large SUMMARY .LOG files are not useful, but should always be examined with a
text editor. It is always a good idea to protect SUMMARY .LOG against deletion, in order to
keep a history of problems should it become important. The file should be archived along with
the data. All LOG flles should be archived for a short period of time.

.. resume excerpt of PREPARE_P2.COM . . .

Sandia National Laboratories Underground Testing

Data Collection System Summary Log Utility (SLOG)

$ set command slog$library:slog_command_def

$!

$ slog log_files.lis

$!

$!

$ write sysSoutput "A summary.log file has been written, and should”
$ write sysSoutput "be printed if not too long (> 600 blocks). "
$!

$!

s set protection =o:rwe summary.log;*

$!

.. end of excempt . . .

G.3 SPECIFICATIONS FOR THE LOG FILE

To implement SLOG, it Is necessary that each log file processed have a format consisting of
a header (repeated on each page) and the body. The file is writien in ASCIL, with carriage
control information in column 1. Each record consists of not more than 113 characters, where
columns 2-100 are used for log file messages and columns 101-113 are optional, and, if
included, are formatted as described later.

Each page of the log should have a header consisting of the following information in columns
2-100 (columns 101-113 should not be present for the header):

(a) page number

(b) a date-time stamp

(¢) the node the log was created on
(d) the datw source and collection point
(¢) the program generating the log file.

The body will consist of messages similar to those now generated, but limited to columns 2-100
inclusive. A message requiring multiple lines is possible, the sort will be done preserving the
original order.

Sandia National Laboratories Underground Testing

G-7

Data Collection System Summary Log Utility (SLOG)

Columns 101-113 are present for SLOG. This field is created by the program generating the
log file and will require some judgment by the programmer. If this field is missing, the record
is ignored. If present, the record is important enough to be included in the summary. What is
important is determined by either the programmer or the operations people.

If columns 101-113 are present, column 101 is blank and columns 102-113 are a tag, which can
be sorted in a number of ways. To insure a consistent sort, all tag alphabetic characters should
be in upper case. In the CHN file name CHNsnnrmmm-kk.DAT, the snnrmmm part may be
lifted out to fill positions 1-7 in the tag. This thirteen character tag is coded as follows:

Position 101 is currently blank, and should not be used.

Position 102-104 contains a three character alphameric source designation (the snn in
CHNsnnrmmm-kk.DAT), i.e., R21, for RMV 21, All for Ace 11, or S04 for Sandus
504,

Position 105 contains the new one character collection point designation (the r in
CHNsnnrmmm-kk.DAT), i.e., S for source, M for Mass Memory, T for HDDR tape.

Position 106-108 contains a three character numeric channel designation (the mmm in
CHNsnnrmmm-kk.DAT).

Position 109-110 contains a two character numeric subchannel designation that may be
blank for single experiment channels or when the subchannel designation is not
meaningful (the kk in CHNsnnrmmm-kk.DAT).

Position 111 contains one alphabetic character that identifies the specific collection point,
ie., (currently A, B, C, or D, as in MASS MEM B or HDDR C).

Position 112 contains the one character originating program designation, ie., A for
AUTOCAL, C for INITIALIZE, AND R for REALIZE. The choice of designation
letter is dictated by the sorting sequence, with the idea that programs that are run first
should sort first. For a complete list see the DATA statement in module INTERP.
Position 113 contains a one character numeric severity level designation.

Any field may be left blank when it is not applicable, ie., REALIZE and FETCH/DECOM do
not know about subchannels. Subchannels are not meaningful in CAL files.

Sandia National Laboratories Underground Testing

G-8

Data Collection System Summary Log Utility (SLOG)

SLOG discards messages with a severity level greater than some value m (currently S but can
be changed on the command line). The SUMMARY Log listing for a channel would go from
the most significant error to the least significant error. Channel messages from both collection
points would sort together. Positions containing a blank would sort to the top of the file, which
is where general messages should appear.

G.4 MAINTAINING SLOG

All the SLOG source code is maintained in one file SLOGSLIBRARY :SLOG.FOR. It consists
of the following modules:

(1) SLOG - This is the main program and controls the logic. It OPENs and CLOSEs each
LOG file found in the file of LOG files, command line parameter pl.

(2) NEXT_LINE - Extracts the next record (line) from the ASCII file on the logical unit
supplied as an argument. It detects READ errors, and EOF, and passes the information
to the calling program.

(3) LOGFILE - Rearranges the tag field (cols 102-113) into a form more suitable for
sorting.

(4) ENVIRONS - OPENSs the output files SLOG.LOG, and SUMMARY.LOG, and puts
the preliminary information in the LOG file.

(5) GET_COMMAND LINE - Evaluates the current command line.

(6) START_SORT - Maintains the sort parameters and keys that define how the extracted
lines will be sorted, the primary and secondary sorts, etc. It names a reference to the
VAX/VMS SORT Routines.

@) RECOVER - Recovers the sorted records, one at a time, and calls modules that format
the record for output to the SUMMARY.LOG.

(8) FOUND - Is a standard routine that writes to the LLOG file. For a complete discussion
of FOUND, see Section 5 of the Maintenance Manual,

(9 INTERP - takes the sorted record and creates a SUMMARY.LOG record, where the
coded tag has been expanded.

Sandia National Laboratories Underground Testing

Data Collection System Summary Log Utility (SLOG)

(10) RITE_SUMMARY - Write the record created by INTERP, counting the lines, and
making a tidy document.

(11) CLI - Uses the Command Language Utility to parse the command line.
(12) INDIRECT - Parses the parameter p!, which is a file containing filenames.

(13) SUBSTITUTE - Any character found in a specified string that matches one of the
characters in a second specified string is replaced with a specified character.

(14) LIMITED - Any character found in a specified string that is not one of the characters
in a second specified string is replaced with a specified character.

There are two command files that are useful. SLOGLIB.COM compiles a module with the
/DEBUG/NOOPT options and puts the object in the object library SLOG.OLB. SLOG.COM
uses SLOGLIB.COM to compile modules, then links two executable files, SLOG.EXE, and
DEBUG SLOG.EXE. The link requires two external libraries, PRELEWD.OLB and
UTILITY.OLB or UTILITY.DBG_OLB.

Sandia National Laboratories Underground Testing

G-10

Data Collection System Utility Library

Appendix H

UTILITY LIBRARY

Sandia National Laboratories Underground Testing

Data Collection System Utility Library

Sandia National Laboratories Underground Testing

Data Collection System Utility Library
H.0 UTILITY LIBRARY

H.1 INTRODUCTION

A good, well-documented, utility library is a valuable addition to any software project. This
appendix documents all the FORTRAN modules in the utility library in alphabetical order
except the screen management utilities, They are used only by the SUPERMON software and
are documented there, Each module header is listed and contains the module’s purpose, and
the input and output arguments. The source software often contains additional detail about
the purpose or technique used.’

H.2 USEFUL COMMAND FILES

Five command procedures in this library can be used to compile part or all of the library.
Each module is compiled two ways, with or without the /NOOPT/DEBUG options. In both
cases, the object module is placed in an object library, UTILITY.DBG_OLB and
UTILITY.OLB, respectively.

H.2.1 UTILITY_COMPILE.COM

This command procedure requires only one argument, the filename of the file to be compiled.
If it is not present, a prompt is issued. The object module inserted into UTILITY.OLB is
compiled with the following command:

$ fortran/list 'P1’ -
/nocheck -
/extend_source

! Most of the routines described hereia were written by Jon Anspach when he worked for
Organization 9321. A number of these routines are described in more detail in Appendixes B and
E. The two utility libraries, UTILITY.OLB and UTILITY.DBG_OLB, are used by all NTS

instrumentation software.

Sandia National Laboratories Underground Testing

Data Collection System Utility Library

The object module inserted into UTILITY.DBG_OLB is compiled with the following
command:

$ fortran 'PI’ -
/check -
/debug -
/d_lines -
fextend_source -
Mist -
/nooptimize

H.2.2 UTILITY_COMPILE_ALL.COM

This command procedure deletes then recreates the two libraries, and uses
UTILITY_COMPILE.COM on each .FOR file in the directory.

H.2.3 UTILITY_BATCH.COM

This command procedure sets the default to the UTILITY directory, and then executes
UTILITY_COMPILE_ALL.COM.

H.2.4 TBL_COMPILE_ALL.COM

This command procedure is similar to UTILITY_COMPILE_ALL.COM, but only compiles
files whose name matches the wildcard file specification *TBL* . FOR. The compilation is
done using UTILITY_COMPILE.COM.

H.2.5 BIG_COMPILE_ALL.COM

This command procedure is similar to UTILITY_COMPILE_ALL.COM, but only compiles
files whose name matches the wildcard file specification *BIG*.FOR. The compilation is
done using UTILITY_COMPILE.COM.

Sandia National Laboratories Underground Testing

Data Collection System Utility Library

This is file LD:TUTILITY)ABORT_PROG.FOR; 17

NN NN RN N NN R N AN R R RN NN RN NN NN RN RN NN NN NN NN NN AT
NAME : Abort_Prog
FUNCTION: This routine writes out an error message ard aborts the program.
The error message is based on “code', and "{un" is the unit
to which it is written.

COMPILER: VAX/VMS FORTRAN

e e v rem e i e - — e ———— e - - -

ARGUMENTS:
integer*4 lun | (read only) Logical unit to write messages to
integer*4 code t (read only) Status code of error
DATE: June 10, 1987
AUTHOR : Jonathan P, Anspach
EG&G Energy Measurements, Inc.
in support of:
Sandia National Laboratories
Division 7121
Albuquerque, NM
R R RCEE LR T E PP PP RECORD OF UPDATES -comeremmneecnnnnn.
!
[] DATE REASON
| soe tasscens seamcmssciasemenssacesmscmsseebvenemnnavmaeaanmSnane e,
i
NN NN RN NN NN NN NN R N NN NN RN NN NN AN NN NN NRNR R
Sandia National Laboratories Underground Testing

Data Collection System Utility Library

This is file LD:[UTILITYJADD_TBL_REC.FOR;16

PEERELLE R et e e b e et e ettt
NAME : Add_tbl_Rec
FUNCTION: This routine adds a record to a table.
For additional information see ld:({doc]table_routines.doc
and File_routines_maint.doc

COMPILER: VAX/VMS FORTRAN

|

|

|

|

|

|

!

!

|

!

| ARGUMENTS:

{

I Name Access Description

. “aes sesess 2 wsemeessssan

I lun Read Logical unit number of table

| rec_name Read Name of record to write

! rec_index Read Array index if the record is an array element

| sub_rec Read Sub-record number

! byte_array Read Input argument for the record

!

| DATE: December 23, 1987

|

) AUTHOR: Jonathan P, Anspach

| EG&G Energy Measurements, Inc.

t in support of:

! Sandia National Laboratories

! Division 7121

| Albuquerque, NM

|

(RN RN NN NN N RN N RN NN N NN NN N NN NN R RN NN N RN NN N N R RN NN NN RN RNNANARY
Sandia National Laboratories Underground Testing

Data Collection System Utility Library

This is file LD:[UTILITYIASSIGN_CHAN.FOR;S

AR RN NN RN NN RN RN R NN RN AR RN RN RN R R R AR

!

| NAME ¢ Assign_Chen

{

I FILENAME: Assign_Chan, for

|

| FUNCTION: Assign _Chan assigns an 1/0 channel to a device and returns the

| channel number.

|

| COMPILER: VAX/VMS FORTRAN

|

I INPUT: device - (read only) Device to assign the channel to

|

| OUTPUT: Channel number of device is returned as the function value

)

| CALLS: Bad_Status - Reports a bad return status from a system cail

| Sys$Assign - Asgigns an 1/0 channel to a device

|

! DATE: January 21, 1986

)

| AUTHOR! Jonathan P, Anspach

| EGAG Energy Measurements, Inc,

] In support of:

! sandia National Laboratories

! Divigion 7129

! Albuquerque, NM

|

]

| CHECKER:

|

| reremccncinncn PRI RECORD OF UPDATES ™

|

! 1D DATE REASON

' Mee sEmawEEr ewnmme L T N D A R L R R R R I I I

|

RN RN RN RN AR R R R A N N RN R RN R RN RN N NN NN AR R RN RN R NN RN A RN NN RN AR
Sandia National Laboratories Underground Testing

Data Collection System Utility Library

This is file LO:(UTILITYIBAD_STATUS.FOR;?7

PEERRRERRE RS R e ettt tine e n

NAME ¢ Bad_Status

FILENAME 3 UTL_Bad_Status.for

FUNCTION: fad_Status reports a bad return status from a system call. The
first two arguments specify traceback information about the
calling routine.

COMPILER: VAX/VMS FORTRAN

INPUT: routine - Character string specifying the name of the
calling routine
tracer - Character string specifying any information
the calling routine deems necessary to locate
the error
sys_err_code - Return status from the system catl
QUTPUT Messages written to SYSSOUTPUT
CALLS: Lib$Sys_Oetmsg - Gets the text message associated with an error
code
DATE: May 6, 1986
AUTHOR Jonathan P, Anspach

EGAG Energy Measurements, Inc,
In support of:

Sandia National Laboratories
Division 7121

Albuquerque, NM

T mn e e e e v e - - o — - — - — o — —— - o~ — o_— - — v

CHECKER:

I L L LR PR PP PP RECORD OF UPDATES sororseocnnuancenns
I

(] DATE REASON

| “we emsesure eammesesvessvresmsesancssmmw brrdvsshesnam s a s eb e teecnannune
|

NN RN R R NN RN NN RN NN R NN NN NN NN NN NN NN RN R RN RN RN NY]

Sandia National Laboratories Underground Testing

H-8

Data Collection System

f
|
!
{
{
[
!
!
|
!
t
!
)
!
|
|
!
!
!
!
|
!
!
|
|
!
t
|

Thig fs file LD:IUTILITYIBIG DIR.FOR; 19

NAME :
FUNCTION!

COMPILER:
INPUT:

oUTPUT:

AUTHOR

PERERER R R e b R i e e b e i iy

Bigir

819 0ir provides & directory of the channels in s big date
file, The directory ia in the form of an integer array that
contatins channel numbers in the order they appear in the
file. The total number of channeis in the file is also
suppl ied through ar argument,

For additional {nformation see ld:{docibig_routines.doc

VAX/VMS FORTRAN

dir_size - §ize of directory

Lun - Logical unit number of the BIG file
dir - Directory to return

num_chans * Number of channels in the file

January 6, 1986

Jonathan P, Anspach

EGAG Energy Measurements, Inc.
In support of:

Sandis National Laboratories

Division 7121

Albuquerque, NM

R N RN RN NN NN NN N RN RN NN N N AR R RN RN RRRA N

Sandia National Laboratories

Utility Library

Underground Testing

Data Collection System Utility Library

—— e — o ——— o — - —— - — o - — - - -~ — - - -

this is file LOt{UTILITYINEEARCH_C.FOR;S

(AR AR R RN NN NN RN NN RN NN NN NN N NN NN NN RN RN AR RN RN R R AR RN N RRNY]
NAME: Ssearch ¢
FILENAME: Sseareh _c.for

FUNCTION! Ssearch_c conducts & binary search on an array of character
strings, [f the target atring is foudd its index in returned
as the function viue., [f the string (s not found & tero is
returned. Bsearch_c ssaumes that the array is sorted in
ascending order.

COMPILER: VAX/VMS FORTRAN
INPUT character®(*) array(size) array to be searched

integer®s sige Dimension of that array
character®(®) atring string to be searched for

OUTPUT integer*s bassarch ¢ 0 se> atring not found
«ne. 0 s> index of atring in array
CALLS: n/a
DATE: November 3, 1986
AUTHOR: Jonathan P, Anspach
EGAG Energy Messurements, Inc,
In support of:

Sandia National Laboratories
Division 7129

Atbugquerque, NM

CHECKER:

| seevsnnsvsannns esssses RECORD OF UPDATES «ocvorrens ceansarans

|

I 10 DATE REASON

| saw saxesass et ernssane retasensnasenne sensenue erranes PP TP sessannne
|
RRR RN RN RN N R R RN N R RN R RN NN RN R NN N N N RN RN R R RN RN RN R RRRRRRRNNAY
Sandia National Laboratories Underground Testing

H-10

Data Collection System

this is $1le LDIIUTILITYIOSEARCH L. FOR;&

i!!"'9!Q!!’!l!"!Q!'!!!l'!!!lb!!l!!!|l!!"!"!QID!Qlt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>