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1. Abstract In the introduction, we discuss reasons for
The aim of this paper is to show how certain placing identification, optimization, and

diverse andadvanced techniques of information modeling at the fore of this evolving
processing and system theory might be integrated methodology. To provide a focus for our
into a model of an intelligent, complex entity investigation, we ask the obvious question:
capable of materially enhancing an advanced "What is an intelligent system?" Although no
information management system. To this end, we concise answer is forthcoming, tentative answers
first examine the notion of intelligence and ask can indicate a direction for the ensuing research.
whether a semblance thereof can arise in a system The remaining sections address the issues of
consisting of ensembles of finite-state automata, identification, optimization, modeling, and
Our goal is to find a functional model of control with examples of ongoing work at Oak
intelligence in an information-nlanagement Ridge National Laboratory, (ORNL) that have
setting that can be used as a tool. The purpose of practical impact for Intelligent system
this tool is to allow us to create systems of construction. Much of this work is on the level of
increasing complexity and utility, eventually signals, data, and information; but it provides
reaching the goal of an intelligent information experience in carrying out the needed low-level
management system that provides and anticipates modules, the opportunity to observe interactions
needed dataandinformation, between the modules, and can provide a

We base our attempt on the ideas of general touchstone to the reality of intelligent systems.
system theory where the four topics of system
identification, modeling, optimization, and 2.1. What isan lntelligent System?
control provide the theoretical framework for At this point, it is not clear that intelligence
constructing a complex system that will be can be adequately defined, although there are
capable of interacting with complex systems in many candidate definitions ranging from thethoughtful and involved to the glib and terse. The
the real world. These four key topics are subject seems to be as slippery as a definition ofdiscussed within the purview of cellular
automata, neural networks, and evolutionary life from a linguistic point of view. For our
programming. This is a report of ongoing work, purposes, it may not be necessary to have a

definition as everyone will know an intelligent
and not yet a success story of a synthetic system when they see one (or will they?). As an
intelligent system, adjective applied to toasters, software, and other

gadgets of a useful but simplistic nature, the word
2. Introduction is overworked to the point of having lost all

However valuable for computational meaning. Accordingly, an attempt will be made
psychology, we are not attempting to create a here to restore some value to the currency of
system that merely mimics intelligence_no "intelligent."
matter how clever, but rather one that can become A property of intelligence that is by no means
the basis for a tool set to construct an complete but serves as a point of departure for
intelligence, even though initially limited in further thought is "an (artificially) intelligent
scope and ability. To this end, we need to system is one that has the capacity to surprise its
exanaine some attributes of intelligence that are maker." Some further consideration leads us to
desirable in a construct built for utilitarian suggest the following minimum set of properties
purposes of information management, that an intelligent system should possess. This list
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is merely a starting point: necessary, but certainly movement [Langton, 1992] based on the
not sufficient: linguistic label "complexity." Physicists have

applied this label metaphorically to certain
• ability to discriminate between self and nonlinear behaviors of simple physical systems.

environment, Biologists have also used this term in their
• ability to improvise, descriptions of organisms and associated

behaviors. A case can be made that a unified
• ability to surprise, mathematical description underlies both uses of
• goal-possessing (establish, plan, and the word--this provides the basis for a unifying

reach goals), and synthesis in science [Anderson, i988]. However,
• self-awareness (if only at the stimulus- there is a danger in ignoring the very real

response level), differences between simple physical systems and
complex biological ones by loading the term

An intelligent system cannot be created in "complexity" with more that it can handle.
vacuo. Such creation is at best a painstaking With these caveats in mind, we borrow a
process replete with advances and retreats,
successes and failures. Theory must advance central idea from the Complexity School:
beyond ct_rrent practice to break new ground, and ensembles of finite-state machines can self-organize to produce complex behavior [Wolfram,
practice must catch up to and st_rpass (in 1988]. The goal is the emergence of somecapacity, t_t least) the theory to inspire the next
intellectual advance. It has been suggested that properties of intelligence. We do this without
hardware will (somehow) always "catch up" and proof or other substantiation than a hope born of
so not need be consider_d. This narrow view necessity that our present tools will be sufficient.

overlooks tt_e psycholt_gical need for people to 2.2. The Modeling Relationship
see some hint of the actualization of their ideas. The minimum set of properties listed above is
Current hardware must be capable of executing best realized if certain identifiable and well-
the best available code at a speed that does not understood techniques are used in the
discourage further development. On the other construction of the intelligent system. Before we
hand, potential future advances in intelligent can discuss such details, however, we require a
systems must be foremost in the minds of those methodology for expressing those details.
engaged in implementing their ideas on advanced Foremost among these methods is the concept of
hardware, a modeling relationship between a natural system

An intelligent information or knowledge and a formal system [Rosen, 1985]. We take a
system is, at the very least, a complicated system particular instance of the modeling relation by
of interacting hardware and software modules, including a second formal model, the computer
The more "intelligent" such a system is the closer simulation. Figure 1 shows schematically the
this complication will approach complexity, relationships between the systems being modeled
Here, we distinguish between complicated and indicates the role of the scientific method in
systems (ones that have many interacting parts, the encoding-decoding processes, where formal
requiring perhaps pages of diagrams for hypotheses about a natural system are encoded
representation) and complex systems that from observations and measurements. The
incorporate some notion of self, however ensuing predictions within the formal system are
primitive, and goals that are inherent to the generated by the rules of inference (or the
system. A complicated system is in some sense computer program) and verified or falsified
equivalent to the sum of its parts (example: a subsequent to decoding.
modern telephone exchange), while a complex This formalization of the modeling process
system [Hubermann, 1988.1is more than just the serves as a framework for the simulation as well
sum of its parts (example' any living organism), as a conceptual aid for distinguishing the model
How can we identify complexity, if we can't (whether mathematical or computer code) as
define it? separate from the process being modeled. At a

Chaotic behavior is an objective indicator of a later stage, we hope that the simulation itself
complex system, although that it is not sufficient becomes the intelligent system; but, given our
may be seen from the many simple mathematic.'d current understanding of intelligence, we need to
and physical systems that exhibit deterministic keep the process of simulation separate from the
chaos. Indeed, there is a compelling intellectual idea and goal o" intelligence.
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Figure 1. Modeling relationships between tile natural, lbrmal, and simulation systems. The encoding
process establishes the behavior of the natural system to be captured in formal models, the decoding
process allows verification of l'ornmi predictions.

Tile simulation as a model of the intelligent are not appropriate, lead to consideration of
system conlprises a large number of functions clustering and pattern recognition approaches.
and processes expressed as modules. The purpose
of each module is transduction of a data stream 2.2.2. Clusteringand Classification
that subsequent modules can accept as Clustering is the first step in concept
meaningful. The entire simulation requires formation and, as such, is an essential capability
coordination and this coordination can be brought of any proto-intelligent system. The clusters,
about by applying standard control technology, based on some measure of similarity, form the
aided by estimation, identification, and basis of class discrimination and structure.
optimization, We now turn to a discussion of Formally, the similarity measure arises in
some of these enabling techniques, defining a norm on a suitable vector space, The

familiar Euclidean norm is only one of many, and
2.2.1. Eptsodtc Processing may be inappropriate for most of the event

Episodes in sensory input--not merely clustering required by intelligent perception.
stationary data streams--lead us to consider the Furthermore, the formal idea of a Cauchy
use of wavelet transforms for ensuring channel sequence, leading to the notion of a Banach space
independence and dimensionality reduction. [Debnath and Mikusinski, 1990] and thence to
Examples of such episodes may be user query of that of a Hilbert space (so useful in signal
a database system, access attempts to a secure processing theory) is perhaps too restrictive for
system, or receipt of a requested data packet by the kinds of sets that comprise the clusters for our
an information management system. Episodes incipient intelligence.
occur in the continuous realm as well as in the A particularly effective method of inducing
discrete_voice access and intrusion detection are clusters on a data set is provided by the finite-
examples. Timely processing of episodesenables state machine (discussed below). Here, the
our system to respond intelligently to events, selection of the set of internal states and the

One obvious constraint demanded by episodic mapping of the input set to the state set is crucial.
processing is the requirement for real-time Most of the clustering algorithms developed over
techniques so that the responses may be interrupt the last five decades can be recast as such
driven. The dimensionality reduction provided by automata and can thus provide the first stage of
wavelet signal processing can help ensure real- perceptual processing.
time capability. Some of the successes we have
had using wavelet transforms for processing 2.2.3. Pattern Recognition

acoustic episodes (voice and aircraft) are Once the proto-concepts are established as
mentioned below. Both discrete episodes (events) clusters, the process of pattern recognition
and symbolically coded episodes, where wavelets provides the next stage in perceptual processing.
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That pattern recognition is a mature discipline This theorem has far-reaching consequences
with a large body of techniques ranging from tile for our models and tile complexity of the systems
formal ideas of a primal sketch developed by that curl be modeled by that ubiquitous FSM, the
Marr [1982] to the latest applications of neural digital computer. It also injects a note of caution'
networks, greatly eases our task. However, the the partitions of the input space may be too
many methods to choose fi'om natty give rise to coarse to allow adequate modeling of
confusion or incompatibilities in the system we intelligence. The theorem is the foundation upon
wish to construct. There are two methodologies which the discriminatory capability of our
for overcoming this problem: look to biology for intelligent system is to be built. If two crucially
inspiration (e.g., insect vision) or allow tile many distinct states of the environment are placed in
methods to compete in an evolutionary approach tile same equivalence class by the relation {S, B},
to computer programming, the FSM and our intelligent system will be totally

unaware of the distinction. Selection of the
2.3. AutomataTheory and FiniteStateMachines correct internal states becomes crucial for the

As long us we are restricted to the FSMs we need to employ: an incorrect set of
mechanisms of modern digital computers for input states entails a functionally inadequate
realizing our systems, we need to examine the FSM.
concepts provided by automata theory. Finite

automata or finite-state machines provide a 3. Modeling The lntelligent Systempowerful theoretical framework for discussing
those intelligent information systems that we can
potentially construct with present-day hardware. Some recent models of intelligent systems

rely on nearly exact correspondences with what is
Formally, a finite-state machine (FSM) currently known about the mammalian and

IKalman, Falb, and Arbib, 19691 is a quintuplet human brain structure and function, e.g., [Albus,
{1, O, S, B, ¢_}where I is the set of input symbols, 99 view here is not so grandiose: weO the set of output symbols, a_cl S the set of 1 1]. Ourwould be satisfied with an architecture that
internal states. We restrict the set S to be finite, behaves intelligently no matter what its
giving the machine its name. I._is a mapping fi'om metaphorical correspondence with the human
I x S _>S determining the next state of tile brain. As a partial justification, consider the
machine, and 0 is a mapping from I x S _>O process of a putative futuristic evolution of a
determining tile output of the machine. It may machine intelligence. Given the crude raw
seem that the sets I and O, are not restricted as materials that exist today (sensors, CPUs, RAM,
the inputs may originate in tile external world and ROM, tranducers, etc.), there is no compelling
the outputs natty effect actions or events in the reason that an intelligence evolving from such an
external world. However, it is easy to see that the assortment would have either an architecture or
mappings 13and ¢_are severely restricted by the function resembling that of the human nervous
set S to operate on equivalence classes of system. Quite the contrary, this intelligent
possibly continuous input and output symbol machine would perceive its world through
spaces. Consider the ordered pair {i, s} that sensors specific to its teleologically defined tasks,
belongs to the domain of 13,and s to its finite and its structure would appear quite alien to a
range. A simple assumption for 15(namely that it human neurobiologist.
is surjective) implies that I is really tile set of Otherwise stated, we do not wish to impose
equivalence classes of possibly continuous inputs form before function but rather let form follow
partitioned by the mapping 15and tile structure of
tile finite set S A similar argument shows that secondarily from the desired function. This• means that behavior is paramount and the means
the mapping t_ likewise induces an equivalence of obtaining that behavior is of concern onlyrelation on the set O. Thus the finiteness of tile
internal state set implies, from tile point of view much later in the design process. Thus, when
of the FSM itself, that tile input and output spaces efficiency, performance, size, weight, mobility,
are likewise finite. A different FSM would induce cost, and so on, become important, the particular

issues of implementation, architectural details,
a different partition of the externally continuous and execution hardware will be addressed. For
input and output states and consequently exhibit a
different behavior: tile structure of the machine now, it is enough that complexity can arise from

ensembles of relatively simple modules (thedetermines its perception of tile world. FSMs).



3.1. CellularAulomalti control of some of the complex interactions
Cellular autonaata (CA) are special cases of among modules of our intelligent simulation. At

the FSM defined above, and can be made to their worst, they often over fit the approximated
simulate a large nulnber of physical and function thereby producing useless
informatic processes IDress, 19931. As noted in generalizations of new domain vectors (patterns),
that reference, the CA is a computationul system or merely converge during their "training" or
that operates on locally available information, but optimization stage to sub-optimal solutions_they
can respond to global circutnstances by changing approximate the wrong function.
its rule set or its neighborhood function. The
latter describes which machines communicate 3.3. GeneticProgramming
with which. As an example, a neural network, as In several instances throughout this
implemented in silicon or simulated on a serial discussion on intelligent systems, we defer the
computer, is a special case of a CA, having a choice of a particular technique (e.g., the choice
particular neighborhot_d function and (as of optimization method) because not enough is
traditionally inaplementect) a very simple state set, known about a method's behavior under
a trivial input mapping (usually raw data sets), conditions that cannot be adequately prespecified.
and a simple output mapping (e,g., the sigmoid An outgrowth of genetic algorithms, known as
function), genetic programming, can help us make those

choices as well as assemble the entire intelligent
3.2. NeuralNetworks system into a functional and efficient whole.

Neural networks comprise a restricted class of Genetic programming (GP) [Koza, 1992] is a
FSM ensembles with an extension of the direct descendent of the genetic algorithm, but
properties of the CA as mentioned above. A without the bit-string representation. Instead,
directed neighborhood function and a single state, programs or procedures are represented as parse
namely the sum over all the inputs to a cell, trees, and the genetic operators are defined as tree
define the most commonly used network operations.
architecture. As shown by Poggio and Girosi Unfortunately, GP suffers from the same
[19901, a neural network can be thought of as a drawbacks as the genetic algorithm: slow
means to synthesize an approxitnation to a multi- convergence to a generally sub-optimal solution.
din'tensional mapping. This synthesis is usually However, it is one of the best and certainly the
obtained from a limited set of sample pairs drawn most thoroughly explicated of methods for
fi'om the range and domain of the function being obtaining reasonably effective computer
approximated. In this light, neural network programs from a high-level behavioral
technology merely provides an alternate set of specification. It certainly has a role to play in
methods and its own specialized vocabulary to constructing intelligent information systems and
the field of statistical and functional may undergo a needed evolutionary process itself
approximation, if enough researchers start to use it on a wide set

'She unknown mapping is parameterized in a of problems.
special way as it set of linear combinations of the
"input vector" components that are sampled from 4. Optimizing The Intelligent System
the domain of the unknown function. The

corresponding sampled value of the range of the Since intelligence cannot exist without
function serves as the domain of a cost function perception (and, of course, an environment to
(usually sum of the squares of the differences perceive), a proper starting point for intelligent-
between the range samples and the current systems design is to identify the environment and
approximation determined by the parameters), those things in the environment that are important
The quality of the approximation to the to the designel" and potential user of the system,
(unknown) mapping depends on the "training set" Taking a clue from our own sensory perception,
used and the particular optimization techniques we note two crucial facts: (1) the environment is
applied (most commonly a form ot" gradient continuously bombarding our senses with
descent in the parameter or"weight" space), relentless data streams, and (2) our perceptual

At their most useful, neural networks can system is somehow able to filter this > 200 MHz
serve as approximate representations of mappings data bandwidth (visual, auditory, tactile,
too cumbersome to represent exactly, thereby proprioceptive) to obtain useful information that
allowing efficient pattern recognition or effective the brain can process. (We do not yet consider the
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possibility of internal data streams that an "File above-mentioned work was in the
intelligence is able to generate for its own acoustic domain where aircraft types were
purposes,) recognized from their acoustic signatures, An

We should make provision for a system that extension of these methods of system
can continuously receive data streams from its identification, using a variation of auto-regressive
enviror_ment, transduce these data where modeling, has enabled us to identify certain
appropriate, and filter the ensuing bit streams for physical aspects of the signal source as well.
the purpose of converting "data" into These methods are applicable to voice
"information." These dat_l streams typically recognition and verification, as well as other
contain queries fl'om a local user or requests from episodic signal streams. We are presently
remote sources; the respo_lses are either stored as atternpting to produce a set of non-adaptive
local and distributed data or obtained from the models that yield certain feature vectors based on
physical environment via appropriate sensors, the notion of a receptive field [Hubel 1988].
The conversion process involves a dimensionality
reduction by means of appropriate digital 4,2, Wavelels|brlnformationTransduetion
transforms and perhaps pattern recognition and The process of extracting useful information

fi'om data streams can be viewed as a process of
classification, This process leads to the transducing the data into _nformation.
identification step that is essenti_fl in constructing Infbrmation here may be defined as any data that
any model, is useful to the task or process at hand. This scope

The process of optimization is not only can be narrowed to an information-theoretic
essential for producing an efficient system, but is aspect when the concept of novelty is introduced.
needed to find a correct one as well. The more The purpose of the signal processing is to
complex a system is, the more crucial the process perform the first stages of this information
of optimization to system performance. A system transduction. A particularly effective method is
of sufficient complexity is nonfunctional over provided by the wavelet transform_it is both
most of the "genetic" landscape awlilable to its efficient and has a firm foundation in the theory
descriptive parameters. Optimization of some of Hilbert spaces where the machinery of
kind is required, not only to locate those sp_rse orthornormal basis sets is fully applicable.
regions that are viable, but to optimize The underlying concept of the waveletperformance on those few viable regions. transform is almost 50 years old, but the field

Optimization depends on correct itself has been in existence for aboutadecade•
identification and estimation of system Gabor, in 1946, introduced what is now called
parameters, These disciplines are rooted in the the windowed Fourier transform, This technique
theory and techniques of signal processing, is quite useful but suffers from some serious

4.1. SignedProcessing mathenaatical defects that can both destroy its
At ORNL, we have had good success in utility and fool the user with spurious effects,

processing incoming signals with the wavelet Wavelets overcorne these drawbacks and greatly
transform (to obtain information about the extend the utility of Gabor's original ideas,
occurrence of an event as well as its relevant Recent work, primarily by the French school, has
scale), and the Fourier transform (when only the put the topic on a fim'l mathematical footing, For
frequency information is required), IKercel, an excellent introduction to the subject, see the
1992a, b]. These two transforms, when used in a recent review article by Rioul and Vetterli
complementary fashion, provide a set of 119921. Applications are appearing in data
descriptors for one- and two-dimensional signals cotnpression, signal and time-series analysis,
that preserve the relevant infornaation in the quantunl physics, as well as in certain areas of
analyzed event streams while reducing the tlpplied matt!ematics. A central reason for
amount of data subsequently handled by later considering wavelets as a preprocessing stage for
stages of pattern recognition and linguistic intelligent systems was given by Mallat [1989]: a
mapping. This reduction is often by several multifrequency channel decomposition (as
orders of magnitude and significantly reduces the produced by wavelet analysis) seems to occur in
computational burden for subsequent processing the human visual cortex. Thus, we can
stages, incorporate an approximation to a known feature

of mamnaalian sensory processing inexpensively
by using wavelets,

4



4.3. SimulatedEvolution& (;enelic Search so the entire space is effectively sampled at all
Over the past four decades, several methods tirnes.

of optimization have been developed by various We have obtained satisfactory results using
researchers. The "classical" methods may be Cauchy simulated annealing on certain
defined as those relying on gradient descent, polynomial delay systerns (ARMA and ARMAX
conjugate gradient methods, and the simplex models), with convergence being at least an order
approach. These methods are quite efficient for of rnagnitude faster than Boltzmann annealing.
well-behaved functions, but quickly become The standard gradient descent methods used for
ineffective or non optimal when noisy systems or rnany neural network applications may be
unpleasant functions are the target, The need for replaced by Cauchy annealing also, providing
optimization arises in the general intelligent both faster convergence and avoidance of local
system much as in its neural-net component minima.
discussed above, In particular, the simulation
becomes more efficient and more closely 4.3,2. Genetlcatgorithms
approximates the natural system being modeled When there is a good "natural" mapping
when properly optimized. Correct functionality of between the parameter space describing a natural
the system can rest on an optimization problenv system and a set of bit strings, the genetic
the correct set of states tbr the FSMs tire needed algorithna (GA) as developed by Holland [19921
for the system to function at the necessary level may prove most effective. The GA is defined by
of discrimination, its genetic operators on bit strings (crossover,

We discuss three methods of optimization inversion, and mutation) and its method of credit
that we have had occasion to use on particular allocation. The genetic operators take large steps
problems at ORNL. We found that each has its in parameter splice by exchanging sections of
own niche and none is generally applicable. Since each individual s descriptive bit string (the
the success of any of these methods is problem "ctaromosome"), inverting selections of a given
dependent and there is no sure way to choose the bit string, or mutating a bit string by altering one
best method for a particular problena (unless the or more bits. The credit-allocation scheme is
problem is well-understood), the only method left based on relative fitness over the entire
to the designer of the intelligent system is to popt_lation of solutions to the problem so that a
incorporate each of these optitnization technitlues given individual has a probability of entering into
into the "genetic pool" ol'the evolving system, the next generation (possibly altered by one of

the genetic operators) according to its relatwe
4.3.!. Sireulatectannealing fitness.

Simulated annealing is a recent method A particular advantage of the GA is its
shown to be effective for optimizing systems preference for discrete systems. There are more
described b.y large parameter sets. The notion is effective methods for functions described by
to parametrtze a search over a parameter space continuous parameter sets.
with an abstract tenaperature IKirkpatrick, et al,
19831 in a manner analogous to annealing a 4.3.3. Simulatedevolution
metallic or glass sample, t._irst used in signal The methods developed over the last three
processing for identification purposes by Geman decades by L. Fogel and D. Fogel IDavid Fogel,
and Geman 119841, it soon became a topic of 19911 under the descriptive term "simulated
some importance. The cooli_lg schedule proposed evolution" (SE) are also quite effective at
by these workers, however essential to their optimizing a large class of functions_including
convergence theorems, is too slow to be practical the ARMA model mentioned above, For a certain
in many cases. Harold Szu ISzu and l-lartley, large class of problems, simulated evolution
19871 recognized this drawback and proposed an otJtperfornls the standard GA in computational
algorithm based on the Cauchy distribution ability and has less of a probability of getting
instead of the Gaussian distribution. Both stuck on a local minimum of the cost function. A
algorithms base acceptance of an "t_p-hill move" defining charact,:ristic of SE is its relia,n'ce on
on a Boltzmann factor. The restllt ot' Sztl's small changes in parameter space. While
algorithm is convergence in reciprocal linear time excellent tit optimizing continuous functions, its

rather than in reciprocal logarithnaic time, with success t'or discrete problems is somewhatthe added benefit of preserving the capability o1' lacking. The other central characteristic of SE is
taking occasional long jtlrnps in parameter space as tin alternate to the credit allocation scheme
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used for theGA. SE holds a ;:ompetition bctwccl_ prt_vitlcd by fuzzy set theory give an
pairs of randomly selected individuals, atld the cxCCl)tion_Lllyefficient means of communication
population is ranked according to the total scores with a potentially intelligent construct. It may be
that each member attains iJ_the competitions, No th_lt the m_lchinery provided by fuzzy, sets is
selection is made according to the fitness of an insul'ficient for the task, However, as above, we
individual other than by this competition based will choose to embrace this method because it
on relative fitness scores. The top-scoring half of exists, is well known, and is simple to employ.
the population is allowed to gener_te offspring Should it prove inadequate, it can be amended or
(one each) by the method of small random replaced.
variations in each individual's parameter set, A small vocabulary can easily be defined for
while the bottom half is discarded. This selectiozl pttrposes of tltJery aild control. The next stage of
method is a valid driving force for evolutionary defilli_ag illiti_ll linguistic values and their
progress and performs effectively i11bt)th the corresl)ondi_g fuzzy sets is likewise a
discrete and continuous cases, str_ightforw,_rd task. At this point, a FSM or a

CA would be operationally responsible for each
5. Controlling The Inlellil_en! Syslen! of the fuzzy vtzri_lbles.The architectural design of

stlch _l system is a task best left to one of the
A simulation can be thought of as a model simulated evolutionary techniques discussed

residing in a computer. If the model is above.
sufficiently complex, it must be stlpplied with
either internal or extermtl control to be uscftll. A _.3. Time St,rit,s Modeling &Prediction

If we need to extend our list of properties
neural network can provide needed input to the pos,css,.ds+,,,++ by intelligent systems, the idea ofcontrol section by monitoring the state of the

predictive +lbility has high priority. An appealing
entire complex system. Additiontll ctmtrol ix to be vicv¢ t>fct>rllplexity IFogel, op. tit., p 21] holds
provided at the top level by httmtln i_tet'ttctiota th+tt it w+ls itlvelated by the evolutionary process
with tile system. An effective w;ly of obt_tinitag "becattsc it is _ecessary to discriminate between,such control is tlarottgla the use of fuzzy set
techniques, recognize, _nd predict environmental 'strings' of

incre_singly longer sequence, ultimately to the
The culmination of till the technitittes we h_ve level of environmental noise." Our intelligent

discussed so far is embodied in the concept of an infortu_tion system must able to predict not only
anticipatory system. A high-level t'e_ture of _ny st_ch relatively easy things as system utilization
intelligent system, from insect to sm_ll m_nnnaal und relate each user to possible information
and beyond, is that of at+ticipatio_+. This request categories, but tictually aid the user much
anticipation is intiwmtely cow,netted w,ith the _ts_ it_telligent companion or servant would. An
environment (lbr the organism) or the context t)t' expert system with this type of interactive
the stimulus (for the inform_tio_ syste_), ct_p_it_ship, The Scholar's Companion, is
5,1, Neurtd Netwm'ks tl_tlcr dcvulopl_acnt by Park and Wood 11993].

A novel set of neural network technitittcs for As _n ex_mple ot' a predictive subsystem,
complex system monitori_g t_nd t'tlull detcctio_ cow,sider the nervous system of the horse shoe
have been developed i_ a coll_tboration between crab, Triggered by waning twilight, its brain

ORNL and the University of Tennessee, [Uhrig, i_iti_tes a series of chemical reactions that
1991 I, ITsoukalas, et al, 1991 I, iGao t_nd Uhrig, enhance the t_nimal's photoreceptors by many
19921. The key features of Uhrig's work lie in its orders of m_gnitt_de, preparing the creature for
applic_tion to complex systems, ira this cruse, the essential business of species propagation by
nuclear power plants. He has addressed I)l;_t tut_t)nlight [Bat'low, 1990l. Not only is this a
monitoring, performance analysis, _d f_ilt_re predictive process, but it is anticipatory in that the
modes. Each of these techniques h_s a p_rt to _t_im_l's c_p_city for behavior is altered
play in acomplex intelligent system. _ccol'di_g to an i_ternal model of the

etavirotamc_t, _amely the dramatic change in
5.2. Fuzzyl.,_glcSystems iilu_nita_tion levels that correspond to the diurnal

Conamun_cation with tl_e intelliget_t cycle _'e anticipated many hours before they
information system is as essential as controlling actu_tlly occur.
it. The linguistic mappings and ct_lcul_tiol_s on
linguistic variables with linguistic v_ltles
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5.4, AntlcipiztoryS_'stems intelligence can be attained. Taking a hint from
The culmination of these technitltZCso1"model nature, intelligence must be assembled from a
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developed for time series is the anticipatory we can devise. As engineers and scientists, we
system IRosen, 19851, In its essentials, Itn feel we can provide some measure of structure as
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environment. At its core, it possesses a model of carefully, and perhaps leave the structure to the
itself, its own behltvior, and _l model of its evolutionary process itself. Our job will then be
environment. It also has the Itbility to adjust the to assemble tile raw material of the simulated
states of its internal models given informlttion evolutionary process and provide a clear measure
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with its nlodel of the environment faster thornre_l
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