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On Modeling and Controlling Intelligent Systems*
W, B, Dress
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1. Abstract

The aim of this paper is to show how certain
diverse and advanced techniques of information
processing and system theory might be integrated
into a model of an intelligent, complex entity
capable of materially enhancing an advanced
information management system. To this end, we
first examine the notion of intelligence and ask
whether a semblance thereof can arise in a system
consisting of ensembles of finite-state automata,
Our goal is to find a functional model of
intelligence in an information-management
setting that can be used as a tool. The purpose of
this tool is to allow us to create systems of
increasing complexity and utility, eventually
reaching the goal of an intelligent information
management system that provides and anticipates
needed data and information.

We base our attempt on the ideas of general
system theory where the four topics of system
identification, modeling, optimization, and
control provide the theoretical framework for
constructing a complex system that will be
capable of interacting with complex systems in
the real world. These four key topics are
discussed within the purview of cellular
automata, neural networks, and evolutionary
programming. This is a report of ongoing work,
and not yet a success story of a synthetic
intelligent system.,

2. Introduction

However valuable for computational
psychology, we are not attempting to create a
system that merely mimics intelligence—no
matter how clever, but rather one that can become
the basis for a tool set to construct an
intelligence, even though initially limited in
scope and ability. To this end, we need to
examine some attributes of intelligence that are
desirable in a construct built for utilitarian
purposes of information management.

In the introduction, we discuss reasons for
placing identification, optimization, and
modeling at the fore of this evolving
methodology. To provide a focus for our
investigation, we ask the obvious question:
“What is an intelligent system?” Although no
concise answer is forthcoming, tentative answers
can indicate a direction for the ensuing research.

The remaining sections address the issues of
identification, optimization, modeling, and
control with examples of ongoing work at Oak
Ridge National Laboratory (ORNL) that have
practical impact for intelligent system
construction. Much of this work is on the level of
signals, data, and information; but it provides
experience in carrying out the needed low-level
modules, the opportunity to observe interactions
between the modules, and can provide a
touchstone to the reality of intelligent systems.

2.1, What is an Intelligent System?

At this point, it is not clear that intelligence
can be adequately defined, although there are
many candidate definitions ranging from the
thoughtful and involved to the glib and terse. The
subject seems to be as slippery as a definition of
life from a linguistic point of view. For our
purposes, it may not be necessary to have a
definition as everyone will know an intelligent
system when they see one (or will they?). As an
adjective applied to toasters, software, and other
gadgets of a useful but simplistic nature, the word
is overworked to the point of having lost all
meaning. Accordingly, an attempt will be made
here to restore some value to the currency of
“intelligent.”

A property of intelligence that is by no means
complete but serves as a point of departure for
further thought is “an (artificially) intelligent
system is one that has the capacity to surprise its
maker.” Some further consideration leads us to
suggest the following minimum set of properties
that an intelligent system should possess. This list
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is merely a starting point: necessary, but certainly
not sufficient:

+ ability to discriminate between self and
environment,

» ability to improvise,

» ability to surprise,

+ goal-possessing (establish, plan, and
reach goals), and

+ self-awareness (if only at the stimulus-
response level).

An intelligent system cannot be created in
vacuo. Such creation is at best a painstaking
process replete with advances and retreats,
successes and failures. Theory must advance
beyond current practice to break new ground, and
practice must catch up to and surpass (in
capacity, at least) the theory to inspire the next
intellectual advance. It has been suggested that
hardware will (somehow) always "catch up" and
so not need be considered. This narrow view
overlooks the psychological need for people to
see some hint of the actualization of their ideas.
Current hardware must be capable of executing
the best available code at a speed that does not
discourage further development. On the other
hand, potential future advances in intelligent
systems must be foremost in the minds of those
engaged in implementing their ideas on advanced
hardware.

An intelligent information or knowledge
system is, at the very least, a complicated system
of interacting hardware and software modules.
The more "intelligent" such a system is the closer
this complication will approach complexity.
Here, we distinguish between complicated
systems (ones that have many interacting parts,
requiring perhaps pages of diagrams for
representation) and complex systems that
incorporate some notion of self, however
primitive, and goals that are inherent to the
system. A complicated system is in some sense
equivalent to the sum of its parts (example: a
modern telephone exchange), while a complex
system [Hubermann, 1988] is more than just the
sum of its parts (example: any living organism).
How can we identify complexity, if we can’t
define it?

Chaotic behavior is an objective indicator of a
complex system, although that it is not sufficient
may be seen from the many simple mathematical
and physical systems that exhibit deterministic
chaos. Indeed, there is a compelling intellectual

movement [Langton, 1992] based on the
linguistic label “complexity.” Physicists have
applied this label metaphorically to certain
nonlinear behaviors of simple physical systems.
Biologists have also used this term in their
descriptions of organisms and associated
behaviors. A case can be made that a unified
mathematical description underlies both uses of
the word—this provides the basis for a unifying
synthesis in science [Anderson, 1988]. However,
there is a danger in ignoring the very real
differences between simple physical systems and
complex biological ones by loading the term
“complexity” with more that it can handle.

With these caveats in mind, we borrow a
central idea from the Complexity School:
ensembles of finite-state machines can self-
organize to produce complex behavior [Wolfram,
1988]. The goal is the emergence of some
properties of intelligence. We do this without
proof or other substantiation than a hope born of
necessity that our present tools will be sufficient,

2.2, The Modeling Relationship i
The minimum set of properties listed above is

best realized if certain identifiable and well-
understood techniques are used in the
construction of the intelligent system. Before we
can discuss such details, however, we require a
methodology for expressing those details.
Foremost among these methods is the concept of
a modeling relationship between a natural system
and a formal system [Rosen, 1985]). We take a

articular instance of the modeling relation by
including a second formal model, the computer
simulation. Figure 1 shows schematically the
relationships between the systems being modeled
ana indicates the role of the scientific method in
the encoding-decoding processes, where formal
hypotheses about a natural system are encoded
from observations and measurements. The
ensuing predictions within the formal system are
generated by the rules of inference (or the
computer program) and verified or falsified
subsequent to decoding.

This formalization of the modeling process
serves as a framework for the simulation as well
as a conceptual aid for distinguishing the model
(whether mathematical or computer code) as
separate from the process being modeled. At a
later stage, we hope that the simulation itself
becomes the intelligent system; but, given our
current understanding of intelligence, we need to
keep the process of simulation separate from the
idea and goal 0" intelligence.
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Figure 1. Modeling relationships between the natural, formal, and simulation systems, The encoding
process establishes the behavior of the natural system to be captured in formal models, the decoding

process allows verification of formal predictions.

The simulation as a model of the intelligent
system comprises a large number of functions
and processes expressed as modules. The purpose
of each module is transduction of a data stream
that subsequent modules can accept as
meaningful. The entire simulation requires
coordination and this coordination can be brought
about by applying standard control technology,
aided by estimation, identification, and
optimization. We now turn to a discussion of
some of these enabling techniques.

2.2.1. Episodic Processing

Episodes in sensory input—not merely
stationary data streams—Ilead us to consider the
use of wavelet transforms for ensuring channel
independence and dimensionality reduction,
Examples of such episodes may be user query of
a database system, access attempts to a secure
system, or receipt of a requested data packet by
an information management system. Episodes
occur in the continuous realm as well as in the
discrete—voice access and intrusion detection are
examples. Timely processing of episodes enables
our system to respond intelligently to events,

One obvious constraint demanded by episodic
processing is the requirement for real-time
techniques so that the responses may be interrupt
driven. The dimensionality reduction provided by
wavelet signal processing can help ensure real-
time capability. Some of the successes we have
had using wavelet transforms for processing
acoustic episodes (voice and aircraft) are
mentioned below. Both discrete episodes (events)
and symbolically coded episodes, where wavelets

are not appropriate, lead to consideration of
clustering and pattern recognition approaches.

2.2.2. Clustering and Classification

Clustering is the first step in concept
formation and, as such, is an essential capability
of any proto-intelligent system. The clusters,
based on some measure of similarity, form the
basis of class discrimination and structure.
Formally, the similarity measure arises in
defining a norm on a suitable vector space. The
familiar Euclidean norm is only one of many, and
may be inappropriate for most of the event
clustering required by intelligent perception.
Furthermore, the formal idea of a Cauchy
sequence, leading to the notion of a Banach space
[Debnath and Mikusinski, 1990] and thence to
that of a Hilbert space (so useful in signal
processing theory) is perhaps too restrictive for
the kinds of sets that comprise the clusters for our
incipient intelligence.

A particularly effective method of inducing
clusters on a data set is provided by the finite-
state. machine (discussed below). Here, the
selection of the set of internal states and the
mapping of the input set to the state set is crucial.
Most of the clustering algorithms developed over
the last five decades can be recast as such
automata and can thus provide the first stage of
perceptual processing.

2.2.3, Pattern Recognition

Once the proto-concepts are established as
clusters, the process of pattern recognition
provides the next stage in perceptual processing.



That pattern recognition is a mature discipline
with a large body of techniques ranging from the
formal ideas of a primal sketch developed by
Marr [1982] to the latest applications of neural
networks, greatly eases our task. However, the
many methods to choose from may give rise to
confusion or incompatibilities in the system we
wish to construct. There are two methodologies
for overcoming this problem: look to biology for
inspiration (e.g., insect vision) or allow the many
methods to compete in an evolutionary approach
to computer programming.

2.3. Automata Theory and Finite State Machines

As long as we are restricted to the
mechanisms of modern digital computers for
realizing our systems, we need to examine the
concepts provided by automata theory. Finite
automata or finite-state machines provide a
powerful theoretical framework for discussing
those intelligent information systems that we can
potentially construct with present-day hardware.

Formally, a finite-state machine (FSM)
[Kalman, Falb, and Arbib, 1969] is a quintuplet
{1,0,8, 8B, ¢} where I is the set of input symbols,
O the set of output symbols, and S the set of
internal states. We restrict the set S to be finite,
giving the machine its name. B is a mapping from
I'x § —>8 determining the next state of the
machine, and ¢ is a mapping fromI x § —>0
determining the output of the machine. It may
seem that the sets I and O, are not restricted as
the inputs may originate in the external world and
the outputs may effect actions or events in the
external world. However, it is easy to see that the
mappings B and @ are severely restricted by the
set § to operate on equivalence classes of
possibly continuous input and output symbol
spaces. Consider the ordered pair (i, s} that
belongs to the domain of B, and s to its finite
range. A simple assumption for 3 (namely that it
is surjective) implies that I is really the set of
equivalence classes of possibly continuous inputs
partitioned by the mapping 8 and the structure of
the finite set S . A similar argument shows that
the mapping ¢ likewise induces an equivalence
relation on the set Q. Thus the finiteness of the
internal state set implies, from the point of view
of the FSM itself, that the input and output spaces
are likewise finite. A different FSM would induce
a different partition of the externally continuous
input and output states and consequently exhibit a
different behavior: the structure of the machine
determines its perception of the world.

This theorem has far-reaching consequences
for our models and the complexity of the systems
that can be modeled by that ubiquitous FSM, the
digital computer. It also injects a note of caution:
the partitions of the input space may be too
coarse to allow adequate modeling of
intelligence. The theorem is the foundation upon
which the discriminatory capability of our
intelligent system is to be built. If two crucially
distinct states of the environment are placed in
the same equivalence class by the relation (S, B},
the FSM and our intelligent system will be totally
unaware of the distinction. Selection of the
correct internal states becomes crucial for the
FSMs we need to employ: an incorrect set of
inSput states entails a functionally inadequate
FSM.

3. Modeling The Intelligent System

Some recent models of intelligent systems
rely on nearly exact correspondences with what is
currently known about the mammalian and
human brain structure and function, e.g., [Albus,
1991}. Our view here is not so grandiose: we
would be satisfied with an architecture that
behaves intelligently no matter what its
metaphorical correspondence with the human
brain. As a partial justification, consider the
process of a putative futuristic evolution of a
machine intelligence. Given the crude raw
materials that exist today (sensors, CPUs, RAM,
ROM, tranducers, etc.), there is no compelling
reason that an intelligence evolving from such an
assortment would have either an architecture or
function resembling that of the human nervous
system. Quite the contrary, this intelligent
machine would perceive its world through
sensors specific to its teleologically defined tasks,
and its structure would appear quite alien to a
human neurobiologist.

Otherwise stated, we do not wish to impose
form before function, but rather let form follow
secondarily from the desired function. This
means that behavior is paramount and the means
of obtaining that behavior is of concern only
much later in the design process. Thus, when
efficiency, performance, size, weight, mobility,
cost, and so on, become important, the particular
issues of implementation, architectural details,
and execution hardware will be addressed. For
now, it is enough that complexity can arise from
ensembles of relatively simple modules (the
FSMs).



3.1, Cellular Automata

Cellular automata (CA) are special cases of
the FSM defined above, and can be made to
simulate a large number of physical and
informatic processes [Dress, 1993]. As noted in
that reference, the CA is a computational system
that operates on locally available information, but
can respond to global circumstances by changing
its rule set or its neighborhood function. The
latter describes which machines communicate
with which. As an example, a neural network, as
implemented in silicon or simulated on a serial
computer, is a special case of a CA, having a
particular neighborhood function and (as
traditionally implemented) a very simple state set,
a trivial input mapping (usually raw data sets),
and a simple output mapping (e.g., the sigmoid
function).

3.2, Neurul Networks

Neural networks comprise a restricted class of
FSM ensembles with an extension of the
properties of the CA as mentioned above. A
directed neighborhood function and a single state,
namely the sum over all the inputs to a cell,
define the most commonly used network
architecture. As shown by Poggio and Girosi
[1990], a neural network can be thought of as a
means to synthesize an approximation to a multi-
dimensional mapping. This synthesis is usually
obtained from a limited set of sample pairs drawn
from the range and domain of the function being
approximated. In this light, neural network
technology merely provides an alternate set of
methods and its own specialized vocabulary to
the field of statistical and functional
approximation.

"The unknown mapping is parameterized in a
special way as a set of linear combinations of the
“input vector” components that are sampled from
the domain of the unknown function. The
corresponding sampled value of the range of the
function serves as the domain of a cost function
(usually sum of the squares of the differences
between the range samples and the current
approximation determined by the parameters).
The quality of the approximation to the
(unknown) mapping depends on the “training set”
used and the particular optimization techniques
applied (most commonly a form of gradient
descent in the parameter or “weight” space).

At their most useful, neural networks can
serve as approximate representations of mappings
too cumbersome to represent exactly, thereby
allowing efficient pattern recognition or effective
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control of some of the complex interactions
among modules of our intelligent simulation. At
their worst, they often over fit the approximated
function thereby producing useless
generalizations of new domain vectors (patterns),
or merely converge during their “training” or
optimization stage to sub-optimal solutions—they
approximate the wrong function.

3.3. Genetic Programming

In several instances throughout this
discussion on intelligent systems, we defer the
choice of a particular technique (e.g., the choice
of optimization method) because not enough is
known about a method’s behavior under
conditions that cannot be adequately prespecified.
An outgrowth of genetic algorithms, known as
genetic programming, can help us make those
choices as well as assemble the entire intelligent
system into a functional and efficient whole.
Genetic programming (GP) [Koza, 1992] is a
direct descendent of the genetic algorithm, but
without the bit-string representation. Instead,
programs or procedures are represented as parse
trees, and the genetic operators are defined as tree
operations.

Unfortunately, GP suffers from the same
drawbacks as the genetic algorithm: slow
convergence to a generally sub-optimal solution.
However, it is one of the best and certainly the
most thoroughly explicated of methods for
obtaining reasonably effective computer
programs from a high-level behavioral
specification. It certainly has a role to play in
constructing intelligent information systems and
may undergo a needed evolutionary process itself
if enough researchers start to use it on a wide set
of problems.

4. Optimizing The Intelligent System

Since intelligence cannot exist without
perception (and, of course, an environment to
perceive), a proper starting point for intelligent-
systems design is to identify the environment and
those things in the environment that are important
to the designer and potential user of the system,
Tuaking a clue from our own sensory perception,
we note two crucial facts: (1) the environment is
continuously bombarding our senses with
relentless data streams, and (2) our perceptual
system is somehow able to filter this > 200 MHz
data bandwidth (visual, auditory, tactile,
proprioceptive) to obtain useful information that
the brain can process. (We do not yet consider the
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possibility of internal data streams that an
intelligence is able to generate for its own
purposes.)

We should make provision for a system that
can continuously receive data streams from its
environment, transduce these data where
appropriate, and filter the ensuing bit streams for
the purpose of converting "data" into
"information." These data streams typically
contain queries from a local user or requests from
remote sources; the responses are either stored as
local and distributed data or obtained from the
physical environment via appropriate sensors.
The conversion process involves a dimensionality
reduction by means of appropriate digital
transforms and perhaps pattern recognition and
classification. This process leads to the
identification step that is essential in constructing
any model.

The process of optimization is not only
essential for producing an efficient system, but is
needed to find a correct one as well, The more
complex a system is, the more crucial the process
of optimization to system performance. A system
of sufficient complexity is nonfunctional over
most of the “genetic” landscape available to its
descriptive parameters. Optimization of some
kind is required, not only to locate those sparse
regions that are viable, but to optimize
performance on those few viable regions.

Optimization depends on correct
identification and estimation of system
parameters. These disciplines are rooted in the
theory and techniques of signal processing.

4.1, Signal Processing

At ORNL, we have had good success in
processing incoming signals with the wavelet
transform (to obtain information about the
occurrence of an event as well as its relevant
scale), and the Fourier transform (when only the
frequency information is required), |Kercel,
19924, b]. These two transforms, when used in a
complementary fashion, provide a set of
descriptors for one- and two-dimensional signals
that preserve the relevant information in the
analyzed event streams while reducing the
amount of data subsequently handled by luter
stages of pattern recognition and linguistic
mapping. This reduction is often by several
orders of magnitude and significantly reduces the
computational burden for subsequent processing
stages.

The above-mentioned work was in the
acoustic domain where aircraft types were
recognized from their acoustic signatures, An
extension of these methods of system
identification, using a variation of auto-regressive
modeling, has enabled us to identify certain
physical aspects of the signal source as well,
These methods are applicable to voice
recognition and verification, as well as other
episodic signal strcams. We are presently
attempting to produce a set of non-adaptive
models that yield certain feature vectors based on
the notion of a receptive field [Hubel, 1988].

4.2, Wavelets for Information Transduction

The process of extracting useful information
from data streams can be viewed as a process of
transducing the data into information,
Information here may be defined as any data that
is useful to the task or process at hand. This scope
‘an be narrowed to an information-theoretic
aspect when the concept of novelty is introduced.
The purpose of the signal processing is to
perform the first stages of this information
transduction. A particularly effective method is
provided by the wavelet transform—it is both
efficient and has a firm foundation in the theory
of Hilbert spaces where the machinery of
orthornormal basis sets is fully applicable.

The underlying concept of the wavelet
transform is almost 50 years old, but the field
itself has been in existence for about a decade.
Gabor, in 1946, introduced what is now called
the windowed Fourier transform. This technique
is quite useful but suffers from some serious
mathematical defects that can both destroy its
utility and fool the user with spurious effects,
Wavelets overcome these drawbacks and greatly
extend the utility of Gabor's original ideas.
Recent work, primarily by the French school, has
put the topic on a firm mathematical footing, For
an excellent introduction to the subject, see the
recent review article by Rioul and Vetterli
[1992]. Applications are appearing in data
compression, signal and time-series analysis,
quantum physics, as well as in certain areas of
applied mathematics. A central reason for
considering wavelets as a preprocessing stage for
intelligent systems was given by Mallat [1989]: a
multifrequency channel decomposition (as
produced by wavelet analysis) seems to occur in
the human visual cortex. Thus, we can
incorporate an approximation to a known feature
of mammalian sensory processing inexpensively
by using wavelets.



4.3, Simulated Evolution & Genetic Search

Over the past four decades, several methods
of optimization have been developed by various
researchers. The "classical” methods may be
defined as those relying on gradient descent,
conjugate gradient methods, and the simplex
approach, These methods are quite efficient for
well-behaved functions, but quickly become
ineffective or non optimal when noisy systems or
unpleasant functions are the target. The need for
optimization arises in the general intelligent
system much as in its neural-net component
discussed above. In purticular, the simulation
becomes more efficient and more closely
approximates the natural system being modeled
when properly optimized. Correct functionality of
the system can rest on an optimization problen:
the correct set of states for the FSMs are needed
for the system to function at the necessary level
of discrimination.

We discuss three methods of optimization
that we have had occasion to use on particular
problems at ORNL. We found that each has its
own niche and none is generally applicable. Since
the success of any of these methods is problem
dependent and there is no sure way to choose the
best method for a particular problem (unless the
problem is well-understood), the only method left
to the designer of the intelligent system is to
incorporate each of these optimization techniques
into the “genetic pool” of the evolving system.

4.3.1. Simulated annealing

Simulated annealing is a recent method
shown to be effective for optimizing systems
described by large parameter sets. The notion is
to parametrize a search over g parameter space
with an abstract temperature |Kirkpatrick, ef al,
1983] in a manner analogous to annealing a
metallic or glass sample. First used in signal
processing for identification purposes by Geman
and Geman [1984], it soon became a topic of
some importance. The cooling schedule proposed
by these workers, however essential to their
convergence theorems, is too slow to be practical
in many cases. Harold Szu |[Szu and Hartley,
1987] recognized this drawback and proposed an
algorithm based on the Cauchy distribution
instead of the Gaussian distribution. Both
algorithms base acceptance of an “up-hill move”
on a Boltzmann factor. The result of Szu’s
algorithm is convergence in reciprocal linear time
rather than in reciprocal logarithmic time, with
the added benefit of preserving the capability of
taking occasional long jumps in parameter space
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so the entire space is effectively sampled at all
times.

We have obtained satisfactory results using
Cauchy simulated annealing on certain
polynomial delay systems (ARMA and ARMAX
models), with convergence being at least an order
of magnitude faster than Boltzmann annealing.
The standard gradient descent methods used for
many neural network applications may be
replaced by Cauchy annealing also, providing
both faster convergence and avoidance of local
minima.

4.3.2. Genetic algorithms

When there is a good “natural” mapping
between the parameter space describing a natural
system and a set of bit strings, the genetic
algorithm (GA) as developed by Holland [1992]
may prove most effective. The GA is defined by
its genetic operators on bit strings (crossover,
inversion, and mutation) and its method of credit
allocation. The genetic operators take large steps
in parameter spiace by exchanging sections of
each individual’s descriptive bit string (the
“chromosome”), inverting selections of a given
bit string, or mutating a bit string by altering one
or more bits. The credit-allocation scheme is
bused on relative fitness over the entire
population of solutions to the problem so that a
given individual has a probability of entering into
the next generation (possibly altered by one of
the genetic operators) according to its relative
fitness.

A particular advantage of the GA is its
preference for discrete systems. There are more
effective methods for functions described by
continuous parameter sets.

4.3.3. Simulated evolution

The methods developed over the last three
decades by L. Fogel and D. Fogel [David Fogel,
1991] under the descriptive term “simulated
evolution” (SE) are also quite effective at
optimizing a large class of functions—including
the ARMA model mentioned above. For a certain
large class of problems, simulated evolution
outperforms the standard GA in computational
ability und has less of a probability of getting
stuck on a local minimum of the cost function. A
defining characteristic of SE is its reliance on
small changes in parameter space. While
excellent at optimizing continuous functions, its
success for discrete problems is somewhat
lacking. The other central characteristic of SE is
as an alternate to the credit aliocation scheme



used for the GA. SE holds a competition between
pairs of randomly selected individuals, and the
population is ranked according to the total scores
that each member attains in the competition. No
selection is made according to the fitness of an
individual other than by this competition based
on relative fitness scores. The top-scoring half of
the population is allowed to generate offspring
(one each) by the method of small random
variations in each individual’s parameter set,
while the bottom half is discarded. This selection
method is a valid driving force for evolutionary
progress and performs effectively in both the
discrete and continuous cases.

5. Controlling The Intelligent System

A simulation can be thought of as a model
residing in a computer. If the model is
sufficiently complex, it must be supplied with
either internal or external control to be useful, A
neural network can provide needed input to the
control section by monitoring the state of the
entire complex system, Additional control is to be
provided at the top level by human interaction
with the system. An effective way of obtaining
such control is through the use of fuzzy set
techniques.

The culmination of all the techniques we have
discussed so tar is embodied in the concept of an
anticipatory system. A high-level feature of any
intelligent system, from insect to small mummal
and beyond, is that of anticipation. This
anticipation is intimately connected with the
environment (for the organism) or the context of
the stimulus (for the information system).

5.1, Neural Networks

A novel set of neural network techniques for
complex system monitoring and fuult detection
have been developed in a collaboration between
ORNL and the University of Tennessce, |Uhrig,
1991], [ Tsoukalas, er al, 1991], |Guo and Uhrig,
1992). The key features of Uhrig’s work lie in its
application to complex systems, in this case,
nuclear power plants. He has addressed plant
monitoring, performance analysis, and tailure
modes. Each of these technigues has a part 1o
play in a complex intelligent system.

5.2, Fuzey Logie Systems

Communication with the intelligent
information system is as essential as controlling
it. The linguistic mappings and calculations on
linguistic variables with linguistic values

)

provided by fuzzy set theory give an
exceptionally efficient means of communication
with a potentially intelligent construct. It may be
that the machinery provided by fuzzy sets is
insufticient for the task. However, as above, we
will choose to embrace this method because it
exists, is well known, and is sim;éle to employ.
Should it prove inadequate, it can be amended or
replaced.

A small vocabulary can easily be defined for
purposes of query and control. The next stage of
defining initial linguistic values and their
corresponding  fuzzy sets is likewise a
straightforward task. At this point, a FSM or a
CA would be operationally responsible for each
of the fuzzy variables. The architectural design of
such a system is a task best left to one of the
simulated evolutionary techniques discussed
above,

5.3, Time Series Modeling & Prediction

I we need to extend our list of properties
possessed by intelligent systems, the idea of
predictive ability has high priority. An appealing
view of complexity |Fogel, op. cit.,, p 21] holds
that it was invented by the evolutionary process
“because it is necessary to discriminate between,
recognize, and predict environmental ‘strings’ of
increasingly longer sequence, ultimately to the
level of environmental noise.” Our intelligent
information system must able to predict not only
such relatively easy things as system utilization
and relate each user to possible information
request categories, but actually aid the user much
das an intelligent companion or servant would. An
expert system with this type of interactive
companionship, The Scholar's Companion, is
under development by Park and Wood | 1993].

As an example of a predictive subsystem,
consider the nervous system of the horse shoe
crab. Triggered by waning twilight, its brain
initiates a series of chemical reactions that
enhiince the animal’s photoreceptors by many
orders of magnitude, preparing the creature for
the essential business of species propagation by
moonlight |Barlow, 1990]. Not only is this a
predictive process, but it is anticipatory in that the
animal’s capacity for behavior is altered
according to an internal model of the
environment, namely the dramatic change in
illumination levels that correspond to the diurnal
cycle ure unticipated many hours before they
actually oceur,
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5.4. Anticipatory Systems .

The culmination of these technigues of model
building with finite-state machines as elementary
building blocks and the predictive methods
developed for time series is the anticipatory
system [Rosen, 1985]. In its essentials, an
anticipatory system is a model of a natural system
having a means of communication with its
environment. At its core, it possesses a model of
itself, its own behuavior, and a model of its
environment. It also has the ability to adjust the
states of its internal models given information
from the environment, interact its model of self
with its model of the environment faster than real
time, and thereby obtuin a predictive anticipation
of the future state of the entire system. Such
anticipation is a salient feature of uny intelligence
capable of coping in a complex environment,

6. Summary

In this paper, I have discussed & number of
seemingly disconnected ideas, methods, and
techniques with a view of forming a synthesis.
The object is to show that such disciplines as
signal processing, wavelet transforms, pattern
recognition, and anticipatory systems, are all
pieces of the same puzzle: a perceptual uppratus
for the intelligent system. The glue holding these
pieces together is to be found in the ideus of
genetic programming and the various
optimization methods mentioned.

An essential aspect of intelligence that was
neglected in the above discussion concerns the
role of concepts and the process of concept
formation. The perceptual model put forth here
has the necessary “hooks’ for concept formation
based on clustering and pattern recognition, No
information management system can be an
adequate intelligent companion until it possess a
set of functional concepts recognized by both the
system and its human users. The treatment of
concepts, even in the broad view laken here,
requires at least as much attention as given above
to the consideration of perception.

Although no intelligent construct exists other
than those created by natural evolution, there are
many ongoing attempts ranging from
sophisticated efforts to realize formal models of
the human brain as functional software modules,
to naive assemblies of neural networks. The
argument presented here is that a technique by
itself cannot produce intelligence—it is merely
one component among many that must be
assembled into a complex system before

intelligence can be attained. Taking a hint from
nature, intelligence must be assembled from a
myriad of methods und techniques using as close
an approximation to the process of evolution that
we can devise. As engineers and scientists, we
feel we can provide some measure of structure as
long as we are not prohibiting necessary
interactions or processes: here we must tread
arefully, and perhaps leave the structure to the
evolutionary process itself. Our job will then be
to assemble the raw material of the simulated
evolutionary process and provide a clear measure
of the goul to be attained.
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