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1. INTRODUCTION

We consider the binding energies of A hypernuclei (HN), in particular the single-
particle (s.p.) energy data, which have been obtained for a wide range of HN with mass
numbers A < 89 and for orbital angular momenta £, <4 [1]. We briefly review some of
the relevant properties of A hypernuclei. These are nuclei 4Z with baryon number A in
which a single A hyperon (baryon number = 1) is bound to an ordinary nucleus Az
consisting of A - 1 nucleons = Z protons + N neutrons. The A hyperon is neutral, has spin
1/2, strangeness S = -1, isospin I = 0 and a mass Mp = 1116 MeV/c2. Although the A
interacts with a nucleon, its interaction is only about half as strong as that between two
nucleons, and thus very roughly VAN = 0.5 VNN. As a result, the two-body AN system is
unbound, and the lightest bound HN is the three-body hypertriton 3H in which the A is
bound to a deuteron with the A-d separation energy being only = 0.1 MeV corresponding to
an exponential tail of radius = 15 fm! In strong interactions the strangeness S is of course
conserved, and the A is distinct from the nucleons. In a HN strangeness changes only in
the weak decays of the A which can decay either via "free" pionic decay A — N + & or via
induced decay A + N — N + N which is only possible in the presence of nucleons.
Because of the small energy release the pionic decay is strongly suppressed in all but the
lightest HN and the induced decay dominates. However, the weak decay lifetime = 10-10s
is in fact close to the lifetime of a free A. Since this is much longer than the strong
interaction time ~ 10-22s we can ignore the weak interactions when considering the binding
of HN, just as for ordinary nuclei.

In our work we consider the A separation energies By defined by -B, =4E—A-1E,
where 4E is the total energy of the HN and A-1E is the ground-state energy of the "core”
nucleus. For orientation consider a medium to heavy HN: A $ 20. The A-nuclear g%f? [%Sagw ﬁm R
interactions generate a A-nucleus potential which roughly follows the density distribution J 4 £
p(r) of the core nucleus, with an approximately constant value Dy in the interior. This well
depth Dy is identified with the A binding in nuclear matter. Then for the ground sp states
for which the A is in an s state: B = D - Ta where the A kinetic energy Ta ~ A-2/3 since
the radius of the A-nucleus potential is approximately that of the core nucleus (Ra ~ Al/3).
Figure 1 shows the experimental B vs. A-2/3, in particular the s.p. energies obtained from ?J’
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the n* +AZ —AZ+K" reaction [1]. Extrapolation to A — o, i.e. A2 0, in particular
also for the sp states gives DA = 30 = 3 MeV, a value which has been known for a long
time.

Our aim in this and previous work [2,3] is to learn about the A-nuclear interactions
as well as the structure of HN from the B data, making appropriate and adequate few- and
many-body calculations. Here the emphasis is on the s.p. BA data.
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Figure 1 The experimental B are shown with errors. The curves depict the
calculated Bp. The solid curve is for the first interaction of Table 2; the second
interaction of Table 2 gives a very similar fit. The dashed curve is for a purely
dispersive ANN potential: Vo = 6.2 MeV, W =0.016 MeV, Cp =0.

2. A-NUCLEAR INTERACTIONS
Our interactions are in large part phenomenological but are generally consistent
with and suggested by meson-exchange models, and are such that they can be used in few-
and many-body calculations.

2.1 AN Potential

A basic difference between the AN and NN potentials is that one-pion exchange
(OPE) is not allowed between a A and a nucleon since the A has isospin I = 0 and hence
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there is no (strong) AAT vertex. However, the £ hyperon also has S =-1 but has I =1 and
there is thus a AXT vertex. Since the X is only about 80 MeV heavier than the A, the two-
pion-exchange (TPE) potential is a dominant part of the AN potential being dominated by
the strong tensor OPE component acting twice. There will also be K,K* exchange
potentials which will in particular contribute to the space-exchange and the AN tensor
potential. The latter is of quite short range because there is no long range OPE and also
quite weak because the K and K* tensor contributions are of opposite sign [4]. Also there
will be short-range contributions from ®, quark-gluon exchange, etc. which we represent
with a short-range Saxon-Wood repulsive potential which - somewhat arbitrarily - we take
to be the same as for the NN potential [5].

We then use an Urbana-type central potential [5] with space exchange and a TPE
attractive tail which is consistent with Ap scattering. For the present work we need only
the spin-average potential which is

Van(@)=V(@)+Vy,  Vy=—eV(r)({1-Py). )

Py is the AN space exchange operator, Vx is the space-exchange potential with €
determining its strength relative to the direct potential which is

V(r)=Wo/[l+exp{t-R)/a}|-Var,  Var=VoT(), )

where Wo =2137 MeV, R = 0.5 fm, a = 0.2 fm and r is in fm. The strength of the spin-
average AN potential consistent with Ap scattering is Vg = 6.15 = 0.05 MeV. (In terms of
the singlet and triplet strengths Vo = (Vg + 3Vy/4). Tr(r) is the one-pion exchange tensor
potential shape modified with a cut off:

Tr(r)=(1+3/x+3/x2)(e7* I x) (1—e—cr2)2 ®3)

with x = 0.7r and ¢ = 2.0 fm-2. The space-exchange parameter, € = 0.1-0.38, is quite poorly
determined from the Ap forward-backward asymmetry. For our fits to the s.p. data we take
€ to be a free parameter. This determines the odd-state potential, in particular the p-state
potential to be

Vv, =(1-2e)V(r). @

In Table 1 we show some results for the ground state By calculated with our AN
potential. Five-body variational Monte Carlo (VMC) calculations [6] were made for iHe
in which a A is bound to an o particle [2]; for %Be for which a 2a + A model was used
implemented by appropriate VMC calculations [3], and for the well depth D for which the
Fermi hypernetted chain (FHNC) method was used [2,7]. The space-exchange contribution
for the s-shell HN (A < 5) and for %Be was recently obtained with the VMC method [8].
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For 3, He for all our interactions (mcludmg ANN potentials, see below) we obtain Ey = 0.5
MeV repulsmn for € = 0.3. For 2 Be more limited calculations give Ex = 1.3 MeV.

Table 1. Experimental and calculated Bp (in MeV) of selected hypernuclei. The
errors in the calculated B are due to the uncertainties in the strength Vg of Van.

Calculated Calculated
HN Exp. BA By for e=0 B for £=0.3
f\ He 3.12+£0.02 611 56x1
?\Be 6.71+0.04 =12+2 =107+2
Dp 30+3 744 60+ 4

It is clear that with only a AN potential fitted to Ap scattering, and even with rather
large space exchange, the HN for A > 5 are strongly overbound relative to the experimental
values. This is an ancient result which has been sharpened over time. Furthermore, we
shall show that the s.p. data will not permit a fit with only a AN potential even if the
requirement that this fit the scattering data is relaxed. These results imply that many-body
effects are very large.

2.2 ANN Potential - Many-Body Effects

Many-body effects can arise for a central VAN through changes in the AN
correlation function gan due to the presence of other nucleons. Related, are modifications
(suppression) by other nucleons of an effective interaction due to e.g. a tensor force which
must act at least twice. Such tensor-force suppression of the NN force is a very important
contributor to nuclear saturation. (A AN tensor force is suppressed much less because of its
short range and weakness). For the TPE AN potential Vor a closely related suppression
effect arises from the modifications of the propagation of the intermediate % or N by other
nucleons (Fig. 2). Such effects have been calculated in a coupled-channel reaction-matrix
approach and can give a large repulsive contribution because of the large couplings
together with the small >—A mass difference [9]. We represent such suppression effects by
a phenomenological (repulsive) "dispersive” ANN potential of the form

VRN = WTZ (114 ) T2(r25) - ®

where 1jp are the A-nucleon separations. A strength W = 0.02 MeV gives a repulsive
contribution which is roughly consistent with the suppression obtained in coupled-channel
reaction matrix calculations.

The other type of three-body ANN force (Fig. 2) arises from TPE, appropriate to a
p-wave pion interaction of the A with two nucleons (1 and 2), and has the form [10]
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V3% =—(Cp / 6)(F1- %) {[(61-84) ¥(r1a) +S1aT(r1) ] [ (62-84) ¥(r24) + 82T (r24 )] }

(6)

where {A,B}=AB+BA, Y(x) = exp(-x)(l-exp( -cr2))/x and T(x) is g1ven by Eq. (3). Sjis
the tensor operator for particles i,j and G; and T; are the spin and isospin Pauli operators
for particle i. Theoretical estimates give Cp = 1-2 MeV [10].
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Figure 2 Diagrams for dispersive and TPE ANN potentials.

Thus, finally our A-nuclear interactions are

A-1 A-1
2 VAN + X, (VANN +VANN) )
i=1 i<j=1

where the strengths of VAN are chosen as described below.

3. FITS TO THE s-SHELL HN, ESPECIALLY iHe
3.1 The s-Shell HN

Previously we have made VMC calculations of the s-shell HN: 3H, 4H and {He
(both T =0 and 1), and 3 1He. We used a Mafliet-Tjon central NN potentlal [11] which fits
both the energies and fms radii of the core nuclei: 2H, 3H and 4He. The calculations
included AN, NN and ANN correlations: fAN, fNN, fANN= f R\ f4%p - The most pertinent
result for our present work is that V4T alone cannot prov1deﬁ;lgrepu1smn needed for
5 1He to compensate the overbinding obtained with only a AN potential, and that
consequently a strongly repulsive ANN dispersive potential VR AN is required. This is
because the ANN correlations £3%, reduce the contribution of V{fy from an appreciably
repulsive one to one which is only slightly repulswe or even attractlve, whereas the effect
of correlations on the repulsive contribution of VR is much less.
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3.2 AN + ANN Potentials Fitted to 3 He

For our calculations of the s.p. energies we consider three families of AN + ANN
potentials of the type discussed above. These are - mostly - constrained as follows:

1. The experimental value of B A(iHe)z&l MeV is reproduced for an exchange
parameter € = 0.3. This value of € is consistent with the s.p. data and also the Ap scattering
and gives an exchange contribution = 0.5 MeV for iHe.

2. The s-wave Ap scattering is fitted (i.e. Vo =6.15 £ 0.5 MeV).
Our interactions are then:

I. A AN potential VAN only, with Vg = 5.98 MeV. This gives the experimental
B A(iHe) for & =0, but gives too little scattering.

II. AN plus ANN dispersive potentials: V zn + VRyn. The strength Vg of VAN covers
the values allowed by AN scattering (6.1, 6.1%1,\l 6.2 MeV) and the strength W of
VR is adjusted accordingly to give the experimental By iHe , with more
repuision needed for more attractive VAn (W = 0.007, 0.011, 0.016 MeV).

M. AN plus dispersive plus TPE ANN forces: V gy + VR + V3T with fixed V3T
(Cp = 2 MeV). Again Vp (6.1, 6.16, 6.2 MeV) covers the values allowed by
scattering and W is adjusted accordingly (W =0.006, 0.01, 0.013 MeV).

4. CALCULATIONS OF THE S.p. ENERGIES

The s.p. energies B are obtained from a Schrodinger equation with a A-nucleus
potential Uy and an effective mass m’f\ which are obtained in the local density
approximation using the FHNC method [2,7]. This is used to calculate the A binding
D(p.kp) for nuclear matter of density p and for a A momentum of kp. Thus for A —> ee:

(p@p@]e®) (reDfEeee)
(w(8),w(8)) (¥@aD,9(AD)

—D(p.kp) = ®

where H(A), ¥(A) are the Hamiltonian and wave function of the HN and Hg\?—l), Y(A-D
those of the core nucleus. The (variational) FHNC wave functions are

- A-1 A1
P(A) = e ETA PP(A-1) with F = {Hfm (rm)HfANN(fm,fjA"fij)} ©)
i=1 i<j
and
A-1
P(A-1) = TT e (rg) @A D(1,2,- A-1) . (10)
i<l

e




®(A-1) is the uncorrelated Fermi gas wave function for nuclear matter of density p. The
factor F includes both AN and ANN correlations. Details of the correlation factors fon,
fnN and £ANN as well as of the calculational method are given in Ref. [2]. The effective
mass m’y (p) is obtained from a quadratic fit in kx to D(p,ka)-D(p,kp = 0).

We also allow for a "fringing field" (FF) due to the finite range of the AN and ANN
potentials, but do not discuss the details here, in particular since our procedure is
approximate and subject to uncertainties; also the effects of a FF are relatively small and
vanish for A — oo, Without a FF one has

U (r) =D(p(A-D(r),k =0), (11)

where the densities p(A-1) of the core nuclei are obtained from electron-scattering data.
Similarly, the effective mass as a function of r is given by

m} (r) =m} (pA-1(r)). (12)

Finally, Bp is obtained as the lowest eigenvalue of the appropriate radial Schrodinger
equation for an orbital angular momentum £,,

[—rﬂ a2 B2 (y +1)

2m} (r) dr2 r2 *Ua (r)}WA =~Babe, - (13)

5. THE A BINDING AND EFFECTIVE MASS IN NUCLEAR MATTER

We summarize the expressions for D(p) and m), (p) obtained with the FHNC
method. We define (always for a given density p of nuclear matter)

D=D(k, =0)=DAN 4+ DANN | (14)
where DAN and DANN are the AN and ANN contributions respectively. Furthermore

DAN =DAN L DAN | (15)
where the direct contribution is

h2
4UAN

D)N =DAN(g=0)= PJ‘ |:gAN V() - Vi Lafa(rg )](d3x)5— top - (16)




gAN is the AN correlation function, f3 is the AN correlation factor, and pAN is the AN
reduced mass. Typically to(p=0) = 400 MeV fm3; and to(p) decreases somewhat with p.
The exchange contribution is proportional to ek%p F; where kg is the Fermi momentum and
Fi is a form factor. Thus

" 3 (372 23
Dx =gA, A= —E(—z'—') bop5/3F1 ’ amn
where
1 243
bo=3 J 8anVanrdx. (18)

The effective mass m’, is given by

x=24 1= "Cheb oF, (19)

F1(p), Fa(p) are form factors which represent finite range effects of VAN (relative to k;l);
F1, F2 = 1 for p = 0, or equivalently for a zero-range VaN. Finite range effects are much
more important for ¥, i.e. m), , than for DQN . Note that exchange contributes both through
DAN and therefore through the A-nucleus potential Up as well as through m’ . Fore >0,
D%N is repulsive (odd state potential less attractive than even state) and m, <m, thus
giving a larger kinetic energy relative to that for mp and therefore also an effective
repulsion.

The ANN contribution to the A binding is

DANN = t3PZFANN R 20)
where FANN(P) is a form factor such that FANN = 1 for p = 0 and equivalently for a zero-
range ANN potential. Fann depends on various correlation functions [2] and varies by
roughly a factor of two or less, depending on the specific interaction, over the density range
considered (p < 0.23 fm-3). The dominant p dependence therefore comes from the p2
factor.

We define
D, =D(e=0)=DAN +DANN | 21

which is the sum of the direct AN and of the ANN contributions, i.e. the A binding without
the exchange contribution. The total A binding at p is then

D=D,+DAN. (22)




6. FITS TO THE S.p. ENERGIES

We attempt fits to the s.p. BA with our three families of interactions I-III. The
exchange parameter € is the only parameter varied for a given interaction. The well depth
is given by Dp = D(po) where po = 0.165 fm-3 is the density of normal nuclear matter. We
recall that DA = BA(A =o0) forall Z4.

Before we discuss details of our fits we emphasize the general requirements on D(p)
and m’, needed for a fit to the s.p. data. These requirements have been pointed out by
Millener et al. Ref. [12], and will also be demonstrated in the following discussion. Thus,
for a satisfactory fit to the s (£, =0) data, D(p) must have the following "saturation"
properties: Dp = D(po) = 30 MeV in order to allow a satisfactory fit for large A. On the
other hand for a fit for small A, D(p)/p must be larger for small p < po, implying a
maximum in D(p) with pmax not very different from po. Further, to give the separation
between the B for different £, requires quite generally that m), = 0.7 mp which in turn in
our approach requires € = 0.3-0.35.

Fits with interaction I: AN potential VAn only. This fits B A(iHe) for e =0 but
gives too little scattering.

1. With only a direct AN potential (¢ = 0 and thus m, =m,): DAN =DAN = 370 p
MeV, with the nonlinear dependence on p only a few % for p < 0.23 fm3 as a
consequence of the slight dependence of gan and f2 (Eq. (16)) on p. Thus Dp =
DAN(p,) = 60 MeV. All the s.p. states and in particular the s states are then much
too strongly bound, even for quite low A. If V, were adjusted (without any
justification) to give DA = 30 MeV so as to fit the By for the heaviest HN, then
conversely the Bp for even medium heavy HN would be much too small (and the AN
scattering would be very much too small). Thus a direct AN potential cannot fit the
S.p. energies.

2. With AN space exchange: DAN = DAN + DAN, To obtain DAN(Po) = 30 MeV requires
a large and repulsive exchange contribution DE'}N = -30 MeV which is obtained for € =
0.88. This implies a correspondingly small value of mZ /m, =048 atpy. The A
binding D(p), shown in Fig. 3, then has a maximum = 35 MeV at ppax = 0.215 fm-3,
The results for the sp states are then reasonable for large A as expected, but the large A
kinetic energy (small mf\) gives too small By for smaller A and also much too small
B for the £, >0 states. In fact, no even tolerably adequate fit to the s.p. data can be
obtained with a AN potential with space exchange.

If purely phenomenologically, we use mz =m, together with DQN for an
appropriately chosen &, i.e. we relinquish the common origin of DQN and m} in exchange
forces, then a quite adequate fit to the sy states can be obtained for € = 0.98. However for
£, >0 although the fits are now much better, the calculated B are somewhat too large
(too small TA) and the fit is of only moderate quality. There is of course no justification for
taking m’, =m,, especially since the effects of exchange on both DAN and m’, depend
on quite basic many-body features and are already fully manifest in HF. Thus a central AN
potential with and without exchange is ruled out by the s.p. data.

Fits with interactions II: AN plus dispersive ANN forces. We recall that for a given
VAN the strength W of VRNN is chosen to fit BA(iHe) for € = 0.3, and that for more
attractive VAN the value of W is larger since more repulsion is then required. We find that
no adequate fit to the s.p. energies can be obtained for these interactions, the "fit" being
worst for the smallest Vo, = 6.1 MeV consistent with scattering, corresponding to the least
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repulsive VD Ann- This inability to fit the s.p. energies is directly related to an 1nsufﬁc1ently
repulsive contribution DANN(p,) from VR . Thus for Vo = 6.2 MeV, which gives the
most attractive VAN consistent with scattermg and hence to the most repulsive VANN, we
obtain DANN(Po) = -26 MeV. This together with the direct contribution DAN ~ 74 MeV
g1ves Do(po) = 48 MeV. To obtain D(p,) = 30 MeV, needed to fit By for large A, then
requires a rather large exchange contnbutlon DAN = -18 MeV which in turn requires € =
0.44. This implies a rather small m), (po) = 0. 66 mp which although it allows an adequate
fit to the sp states gives a mediocre fit for £, >0 as depicted in Fig. 1. The situation is
much worse for smaller V (< 6.2 MeV) for which VD is correspondingly less repulsive.

If we 1gnore the repulsive exchange contribution for 3 He (i.e. if € = 0) then a more
repulsive V is needed to fit B A(iHc Now V, =6.2 MeV gives a VD (W =0.02
MeV) just su iciently repulsive for a satisfactory fit to the s.p. data. However for smaller
Voa sausfactory fit is still not possible. The repulsive exchange contribution = 0.5 MeV in
3 1 He is thus necessary if purely dispersive ANN forces are to be completely ruled out. Our
conclus1ons for a dispersive ANN force seem quite firm since the appropnate correlations
have a relatively small effect in reducing the repulsive contribution of VR in 3 He.

Table 2. The A binding D(p,) and its components (in MeV), and m’, A =mp,allat
po = 0.165 fm-3 for two interactions III which fit the s.p. data for the stated values of €.

Interaction

Vo W € DAN —Dann -DAN D m)y /my

6.16 0.01 0.34£.015 70.5 30.5 12.3+6 27726 0.71£.015
620 0.013  0.31+.015 71.9 34.5 11.3+6  26.1+6  0.73%£.015

Fits with 1nteract10n§ ITT: AN plus dispersive plus TPE ANN forces, with V3%
fixed. As for II, V is again adjusted for any given VAN to give Bp Hc For these
interactions we obtam excellent fits to all the s.p. data for Vo2 6.15 Me (W 2 0.1 MeV)
as shown in Fig. 1 for the 1st interaction in Table 2. This shows results for our best fits for
two such interactions. All the A binding energies are for py. Figure 3 shows D(p) and its
components vs. p for the first interaction. D(p) has the characteristic saturation features
needed for a fit to the s.p. data: Dy = D( g)o) 27 MeV required to fit By for large A, and a
maximum = 28 MeV at pmax = 0.14 fm—. Since ppayx is quite close to po the uncertainties
in the predicted Dp due to uncertainties in po are quite small (= 0.5 MeV) for a given
interaction.

A combination V ANN + V3% AN Permits a fit to the s.p. data because the ANN
correlations f %‘m 3 A He strongly reduce the repuls1on due to VA% and can even give
attraction, whereas th13 is not so for nuclear matter, i.e. for D. Thus a sizable V A’IE\IN which
gives a small repulsive or even an attractive contribution in f\He can give a large repulsive
contribution in nuclear matter. This together with the repulsion from VR, (which is
required for iHe and for which there is no such dramatic change between A =5 to A = co)
provides sufficient overall repuls1on DANN = -30 MeV needed for the s.p. data. More
generally it seems clear that what is required for our family of interactions 1s that the effect
of correlations for VD Ann does not change too much with A, whereas for V3T Ay the effect
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of f%E{N should depend quite strongly on A in such a way as to give relatively much more
attraction for small A.
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Figure 3 The A binding D(p) and its components vs. p for the first interaction of
Table 2. Also shown is D(p) for interaction I (only VAN) with € = 0.88.

7. CONCLUSIONS - WHAT HAVE WE LEARNED?

1. The s.p. data require the A binding in nuclear matter D(p) to have the "saturation”
features shown in Fig. 3 and which have been discussed by Millener et al. [12] and also
obtained by us with our microscopic FHNC approach. With our interactions we obtain
DA =27 £ 1 MeV, consistent with earlier results, and required to fit Bp for large A.
The “saturation" of D(p) requires a large repulsive many-body contribution, depending
nonlinearly on p, which is identified with ANN forces in our approach. To account for
the s.p. data for all £, further requires m*A /m, = 0.7 (at py) which implies an
exchange parameter € = 0.32 &+ .02. This value is expected to depend only slightly
(through the form factor F2) on the details of VAN if this is of reasonable range and
shape. The value of € is consistent with that obtained from scattering but is much more
precisely determined by the s.p. data, and implies a p-state potential (Eq. (4)): Vp =
(0.35 £.05)V;. These results depend only on the s.p. data and not on the s-shell B and
the Ap scattering.

2. Ap scattering fixes the spin-average VAN which then determines the direct contribution
to Dp to be DgN (po) =70 MeV. Many-body effects (nonlinear with p) are small.
Even with a AN tensor potential such effects are quite small because of the short range
and weakness of V1, [4], and probably reduce DAN by not more than a few MeV
[13]. The large value of DAN(p,) and the approximate proportionality of D4N with p
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imply that a direct AN potential cannot fit the BA data - even when a AN tensor force is
included. With a space-exchange component, a very large € = 1 is required to fit the sp
states for large A, and no reasonable fit to all the s.p. data is possible. Thus a AN
potential with or without exchange seems excluded.

Combining the values at p of DAN =70 MeV, obtained by making use of scattering,
with D =27 MeV, DAN =-12 MeV obtained from the s.p. data gives DANN = - DAN
- DQN = -32 £ 2 MeV. This large value is consistent with that required by just the s.p.
data only and seems fairly well determined. Since many-body effects associated with
VAN, in particular due to a tensor force, are expected to be small, DANN mygt be
identified almost entirely with other components of the interaction such as TPE ANN
forces and suppression of the AN - ZN coupling. Itis a challenge to many-body theory
to account for DANN,

3. The results just discussed do not depend on the s-shell HN, in particular not on
BA(f\He). If we use this to fix the strength of Vann then, with an exchange
contribution = 0.5 MeV for iHe, the s.p. data excludes a purely dispersive ANN
potential since this is insufficiently repulsive to give DANN = -30 MeV. However, a
combination of dispersive and TPE forces can give an excellent fit, since the effects of
correlations makes the contribution of V%ﬁm much less repulsive for iHe than for
nuclear matter.

There are of course many outstanding questions although we believe that the results
discussed above in 1 and 2 as well as the elimination of purely dispersive ANN forces
discussed in 3 are reasonably secure. However, the detailed nature of the ANN forces, in
particular the relative strengths of VR and V3% is largely uncertain. Further
elucidation requires, in particular, complete microscopic calculations of the s-shell and
heavier HN which include 3-body tensor correlations for ViEy. Such calculations are in
progress in particular for 3He and YO [Ref. 14] and will greatly help to clarify the
character of the ANN forces. For heavier hypernuclei completely microscopic calculations
are not yet feasible. However there are possible improvements in the local density
approximation as used by us. Amongst these is the question of core distortion by the A.
This is addressed by Professor Usmani in his talk where the will show that - for spherical
nuclei - this distortion is very small even for quite light HN because the "forcing" action of
the A on the core is much reduced because of the saturation features of D(p). Other
questions relate to an adequate inclusion of the (nuclear matter) rearrangement energy and
to the adequacy of the local density approximation, in particular to a better treatment of the
fringing field.
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