
' WAPD-T-2937

N0V! 0 1993

OSTI

A SECURE FILE MANAGER FOR UNIX

BY

R. G. DeVRIES

BETTISATOMIC POWER LABORATORY
P. O. BOX 79, MAIL STOP 37U

WEST MIFFLIN, PA 15122
TELEPHONE: 476-5413

WESTINGHOUSE COMPUTER SYMPOSIUM
FOX CHAPEL YACHT CLUB

FOX CHAPEL, PENNSYLVANIA
OCTOBER 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any ef their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring b) the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

WAPD-T.2937
,ii

A SECURE FILE MANAGER FOR UNIX

BY

R. G. DeVRIES

BETTIS ATOMIC POWER LABORATORY
P. O. BOX 79, MAIL STOP 37U

WEST MIFFLIN, PA 15122
TELEPHONE: 476-5413

ABSTRACT

The development of a secure file management system for a UNiX-based computer facility
with supercomputers and workstations is described.

Specifically, UNIX in its usual form does not address:

1. operation which would satisfy rigorous security requirements.

2. online space management in an environment where total data demands would be many
times the actual online capacity.

3. making the file management system part of a computer network in which users of any
computer in the local network could retrieve data generated on any other computer in
the network.

The characteristics of UNIX can be exploited to develop a portable, secure file manager
which would operate on computer systems ranging from workstations to supercomputers.
Implementation considerations making unusual use of UNIX features, rather than requiring
extensive internal system changes, are described, and implementation using the Cray
Research Inc. UNICOS operating system is outlined.

11

WAPD-T-2937

I. INTRODUCTION

It is increasingly apparent that UNIX is becoming a way of life for many computer
installations. Practically all computer professionals entering the field today have at
least some knowledge of UNIX, and many have absorbed the UNIX philosophy to the
extent that creativework is based on what could be called the "UNIX way of doing
things." UNIX has penetratedall cornersof the computer Industry,from personal
computers to supercomputers. As a result,many installations,includinggovernment
and commerciallaboratories,are installingUNIX but stillhave to deal with the
traditionalproblems of data securityand space management. In addition, users
demand file compatibilityso that data generated on one systemcan be processedon
another.

UNIX has as a basic assumptionthe free and open accessof its usersto data. In
some governmentor commercial facilities,thisopenness must be limitedon a need.to-
know basis. As described in this paper, a file management systemcan be installedon
top of UNIX to act as the only access method to an entire file system. This "secure"
file system can be the basis for ensuringthat only authorizedusers can access
restricteddata.

Also, onlinespace is a limitedresource. On a supercomputer,demands can greatly
exceed the availabledisk space. Usersexpect onlinespace to be managed
automaticallyor by operationspersonnel. A file may be automaticallyremovedfrom
disk at any time with full confidencethat a copy of the file is available offlineor on an
automated mass storage device.

Such file systems exist on various scientific computing systems, but not in UNIX. This
paper describes how one file manager was developed for Cray UNICOS (developed by
Cray Research, based on ATC UNIX System V) and how the code was ported to a
workstation UNIX environment. The requirements addressed were: security, online
space management, and portability.

I1. ADAPTING A FILE MANAGEMENT SYSTEM FOR UNICOS

Simply stated, the File Manager (call it FM for short) stands between the user and the
system; it is the only way for the user to access files within a certain well-defined set.
FM can use file access mechanisms provided by the system vendor, but since it
stands between the user and the file system, the user cannot access files without
passing FM's validity checks. In addition to basic file access, FM provides other
desirable features, such as:

The use of access lists by which a user can specify a need-to-know group of users
to be granted access to a particular file.

The ability for the user to specify on which kind of medium or group of volumes a file
will be stored.

III

WAPD-T-2937
, Page 2

File migration is important in an overall file management system. In a dynamic
system, file turnaround is _ast,and online space demands are large. Therefore,FM
has an automaticmigrationstrategy. The migrationstrategyis designed to incorporate
future mass storagetechnologicalimprovements. The migrationfunctionis designed
to be transparentto the user: he or she can retrieveany file withoutconcern for the
actualresidenceof the file.

III. FM CHARACTERISTICS

In order to make such a file manager work in UNICOS, several drastic stepsare
necessary:or at least, the steps seem to depart from typical UNIX systems.

First,and probably most unusual, is that a user's home directoryis empty at job
initiationand is completely purged at termination. Thisfeature is incorporatedfor a
number of reasons:

- Online space limitationsare so severethat it would be impracticalto expect usersto
manage their own space to preventdata overflowand system gridlock. By removing
all files from the home directory at Iogoff time, space is reclaimed immediately.
Only those files specifically given to FM for storage will persist, and only within
directories owned and managed by FM. In this way, FM can manage its own space
by running migration and disk wiping utilities as needed.

- There is less chance of intentional or accidental compromise of data if it resides in a
more secure place than a user's home directory. In normal UNIX systems, a user's
directory is open to attack. With FM, the user's HOME directory is populated with
files only while the user is logged on, That greatly limits the chance for access by
an unauthorized person.

The case can be made that this strategy enhances user convenience. In a large
scientific environment, many temporary files are created during a job session.
These flies are a nuisance to clean up afterward, and they contribute to the waste of
valuable online space. With FM, all files are removed except for those files which the
user explicitly directs FM to save.

Second, certain commands which users of normal UNIX systems expect to be
available are disabled or severely restricted. Such commands are few in number, and
they constitute obvious security weaknesses or loopholes. The disabled commands
are:

- chmod. It is not permitted to set group or world permission on any file. Users can
set owner access on their own files, however, since they need the ability to set
execute permission.

- su. Users can have more than one Iogon ID, with different classification levels. "su"
makes it possible for a user to switch to his or her other ID (possibly at a different
classification level) and pass data back and forth, effectively giving data an
inappropriate classification. Thus it is necessary to disable the "su" command
except for the "superuser" or authorized system administrator.

WAPD-T-2937

• Page 3

Third, the concept of "media sets" is introduced. A media set is a logical coliection of
volume numbers so that a user can specify that the files he or she stores are
transferred to a volume within a specific media set. To the user, a media set is an
amorphous entity used as a basis for file collection. In actual implementation, a media
set can refer to one of several kinds of storage medium or even a combination of
media. The real value of media sets is seen at file retrieval time. It is not unusual for
a large scientific job to retrieve hundreds of files for processing. Media sets allow for
the files to be spread among a relatively small set of volumes, statistically reducing the
number of volume mounts necessary to retrieve a large number of files. Since FM
maintains the vsn of residence for each file, the user does not need to specify the
volume number at retrieval time.

Fourth, it is necessary that all files being fetched for a job must be available to a job
before it gets into execution. The reason is that large production jobs tie up
considerable resources during execution. An obvious example is scratch disk space.
If, as on some systems, a file is not retrieved from secondary storage until it is opened,
the system resources remain assigned to the job while the file is retrieved. Such
retrievals could take minutes. Since the fetched files could number into the hundreds,
the chosen approach is to fetch all the files before execution of the production code,
while minimal system resources are assigned to the job.

Fifth, access to director es is severely restricted. In fact, a user does not have write
access into his or her own home directory. Rather, a directory is created under the
home directory and an FMHOME variable is created to point to this new directory.
The new directory and other specially created directories are the only directories the
user can write into. (The other special directories are created under file systems other
than the one containing the FM system, such as the SSD on a Cray system. The
directories give the user access to those other file systems.) The FMHOME directory
and the other special directories are removed at job termination.

Sixth, all user jobs are initiated in the "C" shell. The reason is that the "C" shell
provides for scripts that are executed at both Iogin and Iogout. These scripts are used
for the special functions such as creation of the job-duration directories at Iogin, and a
forced FM wrapup followed by removal of the job-duration directories at Iogout. A
simple automatic mechanism is provided for the user if he or she desires to operate in
the Bourne shell after the initial Iogin is completed. A small side effect of the special
Iogin mechanism is that jobs are already two shells deep at the time the user gets
control. Interactive users have to exit twice to leave the system.

IV. USER INTERFACE

To interact with the File Manager, the user calls a special program in UNICOS. (We
can call it "fm" for convenience, staying with the UNIX convention of using lower-case
letters.) The "fm" program expects a seriesof directives,which can be entered
interactivelyor in batch. In batch, the set of directivescan be given by redirectedinput
or in a "here document", both of which are familiarconcepts to UNIX users. The
important point is that there is a seriesof directivesconcerningfiles needed by or
generatedby the user.

J

i

WAPD-T-2937

• Page 4

FM operates in two modes: directive processing and wrapup. An "fm' command with
a singleparameter specifiedon the command linecalls for an FM "wrapup', whichwill
be discussed later.

A basic set of directivesis as follows:

fetch: retrievea file from FM and make it availableto the user in the currentworking
directory or in a directory specifiedby the user.

store: flag a file for store. The file may or may not already exist, but must exist at thn
time an FM wrapup is performed.

merge: fetch a file and read itscontentsfor additional FM directives.

erase: remove a file from FM.

The parameters are identifiedby key letters followed by equal signsand values and
are separ_ltedby commas. The parametersare as follows:

FM Command Parameters (global identifiers)

- P: Prefix, or the identificationof the owner of a file. The creator of the file is
indicated separately at creation time so that files can change owners without
losing information about their creation. The prefix for each user is assigned by
the FM administrator. The default for the P parameteris the user ID for the job.

I: File ID, or the computer independentglobal FM identifierfor the file.

T: Data type. This field is usedto identify categoriesof files to make their
management easier for usersand programmers.

- V: Version: an integer field assigned by the user or application programand used
to distinguishbetween differentversionsof the same file. The defaultis 1.

- G: Generation. Frequently,userswant to run a sequence of jobs to study
variations(generations) of a scientificmodel. The generation field providesa
convenientway to assign a name to the set of outputfiles representingone variation
without havingto change all of the FM directivesin each job. This can be done by
defining a generationname for the job in a UNICOS variableand by usingthe
variable in the generation field of the storedirectives. If variableXYZ is set by the
user to the string "GEN1", a G=$XYZ parametercauses GEN1 to be enteredas the
generation name.

FM Command Parameters (fileattributes)

- A: Access codes. Values for the accesscodes are used to specifythe granularity
of access for both fetch and alter. A granularityof 0 gives all userspermission. A
granularityof 4 gives accessonly to the owner, interme¢tlatevalues specifyan
access group of successivelevelsin an organizationalhierarchy. In addition,a
wildcard group or individualoutsidethe hierarchychain can be specified. This

WAPD.T-2937
, Page 5

discussion applies to an organizational chain of height 4. The access code range
can be easily extended for chains with more vertical steps.

- M: Media, i.e., the name of a media set (as described above) into which the file is to
be placed. The name of the media set may be contained in a UNICOS variable
which can be referred to in an FM directive.

. R: Reel number (or vsn) for those directives which refer to a specific volume of tape.

S: Synonym. The S parameter specifies the name the file will have for the duration
of the job

W: Working Jirectory pathname. This provides for the file to be fetched into or
stored from a pathname other than current directory.

The global identification of an FM file consists of the P, I, T, V, and G parameters.
There are default values for P (the user iD for the job), V (version one), and G (null). If
the G field is used on the store, the corresponding G parameter is required on the
fetch.

All other parameters are FM file attributes that cannot be used to distinguish between
files on an FM directive. In particular, the A, M, and R parameters provide information
for the FM directory which might be used by a utility program, but is not part of the file
identification.

V. DISCRETIONARY ACCESS CONTROL LISTS

Discretionary access control consists of two stages. The first stage is based on the
hierarchical structure reflecting the organization of users at the installation. The code
(explained in detail above under the A parameter) applies separately to read and to
write/erase.

The second stage of access control takes the form of access permission lists which
are examined whenever access is denied by the first stage. Utilities are available to
allow users to specify exceptions to the first stage access controls. A file owner can
specify lists of users who are to be given access to a file even though access is denied
by the first stage. In both stages of access control, access can be controlled
separately for read and write/erase.

Access list entries can be created by any user. They can be modified only by the list
creator or system administrator. The access lists are maintained by FM in a separate
file. The access lists convey access for certain files to one or more users for a limited
period of time. This period is a fixed length (set by the installation), but can be easily
renewed by the access list creator. A file whose FM directory entry refers to a certain
access list is accessible to the users named in that list in addition to the users
embraced by the hierarchical access code (the first stage discussed above).

i

d,

WAPD-T-2937
• Page 6

Vl. FILE AND DIRECTORY SECURITY

In the FM implementation for UNICOS, no permanent user files are permitted outside
of FM. The key to security is that all permanent directories in the system (those that
persist between jobs) are established with no write permission. This Includes each
user's actual home directory. The fm program Is a 'setuid' program owned by the
superuser and is the only program with permission to write into permanent directories.

All of the permanent user data files on the system are owned by FM and are
inaccessibleto all but the superuser. Access to the files through FM causesa copy or
a link to be established for the user'sjob-durationdirectories. Actual residenceof the
FM files is under FM control. The files may be on disk, or they may be retrievedfrom
another level of storage over the networkor from tape. Since all of the files belongto
FM, space can be made availableon the disks for large overnightproblems by
migratingfiles to other storageor by discarding local copies of previouslymigrated
files.

Files to be stored in FM must be created under the directory indicated in the
corresponding store directive. Such files are copied to FM directories at FM wrapup;
the user copies are destroyed at job termination.

VII. FM WRAPUP PROCESSING

The term "wrapup" in this context refers to an action taken by FM to dispose of files
under FM cognizance (those files referred to by the user via an FM directive). Wrapup
options are discussed below.

FM wrapup is clone automatically at session termination or Iogoff to move any files
marked for storage out of user directories and into FM directories and to delete all
temporary user directories. There are times when a user may want to invoke a
wrapup during a session; this can be done at any time by adding a parameter after the
fm program name:

fm .p

The "fro" statement parameter .p can be used to denote the level of the wrapup. The
value of "p" can be s, r, or w.

-s: Store all files designated for store that have been written by the user, but leave all
files in place under the user's directories.

-r: Store all files designated for store that have been written by the user, and remove
them from the user's directories, leaving fetched files in place.

-w: Wrapup. or store all files designated for store that have been written by the user,
and renlove all FM files from the job-duration directories (both fetched and stored).

Stores are accomplished by creating files under an FM subdirectory assigned to the
owner-user. The simplest case is a file in the user's FMHOME director,/. That
directory is under the same UNICOS file system as the FM system, so a UNICOS

i,

WAPD-T-2937
" Page 7

move ('mv') can be used to remove the file from the FMHOME directory and make a
new entryunder FM. The FM name of the file is computed from a seed inthe user's
directory,which is updated at each storeto ensure uniquenessof the names.

If the level of wrapup is -s, a link ('In') is done insteadof a move, to keep the file in the
user's job-durationdirectory. Writeaccess for the file is removedat this time.

If the file is in a differentfile systemfrom the systemwhere FM resides,a 'cp' UNICOS
command is done to make a copy of the file inthe FM file system. If the wrapup level
is -r or -w, the copy is followed by a remove ('rm').

VIII. FM COMMUNICATION FILE PROCESSING

A file is needed for FM to keep track of each file directiveprocessed by FM during a
job. We can call the file FMCOM for convenience. The FMCOM file is also the
communicationlink between FM and user programs;a program can Interrogate
FMCOM to determine what files are assigned to the job. The processingof each FM
directive resultsin at least one record being added to FMCOM. At the end of the set
of directives,FM makes a pass throughthe FMCOM file, resolvingall unprocessed
records.

The FMCOM file is scanned firstfor merges. Any merge directive is processed
specially: the merge file is fetched, its directives are parsed, and the recordsare
added to the FMCOM file. After a merge file has been processed, the pass through
FMCOM startsagain. The processcontinues until a complete pass is made without
finding an unprocessed merge directive. Then FM knowsthe totality of filesto be
processed for the user, and fetches and storescan be processed as described below.

For fetches, the appropriate user directoriesare searched and accessvalidated.
(These directories are not UNICOS directories but UNICOS files belonging to FM.) If
the access check passes, a UNICOS link is made into the user's FMHOME directory.
If the user wants the file fetched to a different directory, the file is copied. Obviously, it
is more efficient to do the link, but there may be other reasons (such as performance)
to do the copy. The user selects an alternative directory via the W parameter on the
"fm" directive or by being under a different current directory at the time of Issuingthe
directive.

IX. EXAMPLES

The following are typical but simplified examples of user jobs using FM. The examples
are in batch; similar calls to FM can be made interactlvely.

fm < <fmeof
merge,i=gener
fmeof

myprog

i

WAPD.T.2937

• Page 8

The above job causes FM to fetch a specialfile calledgener and processfurtherFM
directivesfound therein. The gener file might containdirectiveslike:

fetch,i=design file,t= 101,v= 1-lOOh,s= infile
store,i= design file,t= 101,v= l-lOOh,s =ouffile
fetch,i= myprog,t=62,s = myprog

The fetch is for the highest version in the range 1.100 of file "design file" with data type
101. The storedirective is for the highest unoccupiedversion in the range !-100. The
program "myprog" is coded to read a file withthe name "inflle" and writea file named
"outfile". Repeated runsof the job will read the latestversionof "designfile' and store
the resultingfile as the next greaterversion. When the job is finished,an automatic
"fm -w" willcause the generated "outfile"to be stored under the Identifiersgivenin the
"store"directive.

The user may want a current listingof the files after each new one is generated by
"myprog". The followingslightlymore complex job willaccomplishthis.

fm< <fmeof
merge,i=gener
fmeof

myprog
fm -w
fmlist

The userforcesan FM wrapupratherthanrelyingon theautomatlcwrapup,so that
thesubsequent"fmlist"command willlistalloftheuser'sFM filesincludingthose
storedbythisjob.

X. IMPLEMENTATION CONSIDERATIONS

Ina largescientificenvironment,onlinestoragemay be dividedmany ways. For
discussion,letus considerthefollowing:

(I)userspace,whichcontainsalltheuserhome directories,

(2)temporaryspace,usedforhigh-volumescratchstorage,and

(3)SSD space,a high-performancebutlimited-capacitysolidstatestoragedevice.

FM mustprovidecontrolledaccesstoallthesespaces.

One ofthekeystotheimplementationofFM isspecializedcode inthe/etc/cshrc
script,familiartoany UNICOS programmer.ThisscriptisalwaysexecutedatInltlatlon
timeforeveryjobforwhichtheuserisenteredasa "C"shelluser.Inaddition,Ineach
user'shome directory,thereisa ".logout"scriptwhichisexecutedwhen anyjobexits
thesystem.Thesetwo scriptsrespectivelysetup and clearFM directoriesusecl
duringthejob.

i

WAPD.T-2937
• Page 9

The/etc/cshrc script sets shell variablesSSD, TMP, and FMHOME, which contain the
pathnames of the three directories(in the SSD, scratch, and user spaces respectively)
to whichthe user has access for the currentjob. The pathnames are constructedfrom
the job's process ID to assureuniquenessof the pathnames. The 'fro' program Is
then executed, for two purposes: to create the actual directories referred to by the
SSD, TMP, and FMHOME variables,and to fetch a 'loginscript' file belongingto the
user. The user's home directorypermissionsare set to give read and search
permissionto the user only. Write permissionIs withheldto this directory;he or she is
expected to write into the FMHOME, SSD, or TMP directories. Next the current
directory is set to FMHOME, and the newly fetched 'loginscript' (residingunder
FMHOME) is executed. At this pointuser-suppliedcode is executed, typicallyto
execute additionalFM operationsto populate the user's directories withfiles needed
during job execution.

It is the "loginscript"which givesthe user the appearanceof operatingin a more typical
UNIX environment. If the user puts appropriateFM fetches into the "loginscript',
requiredfiles will be availableat completionof the Iogin process. The last command in
a "loginscript"could be, for example, a command to enterthe Bourneshell.

The ".logout" scriptperforms an "fro-w" operationwhich stores in FM all filesso
designated by the user by a "store"directive. FM then removes all FM files from the
three directories. Then commands in the ".logout' scriptremove the three directories
and their entire contents. Afterwardthe user's UNICOS HOME directoryis intact but
empty.

The FM online space is defined withinthe same file systemas all the user 'home"
directories. This facilitatesassigningof files to usersat fetch time and storingof files
into FM at wrapup time. A simple "link" assignsthe file to the user after FM
establishesaccesspermission. A "mv" at wrapup time removes the file from the user
directory and adds it to the appropriatesubdirectoryunder FM. The FM directory is a
special path name in UNICOS. Under the FM directory is a UNICOS directoryfor
each user. Under these directoriesare the actual files. There is one special UNICOS
file, UCDIR, that servesas an FM directory. Each UCDIR contains informationon each
FM file belonging to the user. The other files under the individualuser directory are the
actualdata files. The UNICOS names of the files are constructedfrom the
classification,u_er name, and a seed in the directory header which ensures
uniqueness.

The FM directories (UCDIR's) consistof a header and a number of entries. From a
systems standpoint, one of the more importantfields in a directoryentry is the
residences field, which showswhere the file can be found.

There are three other importantfiles under the FM directory. One is the media file. It
containsinformationon each media set. Anotheris a UNICOS directorycalled
tapemanager. Under tape_manager are files with names matching the vsn's of the
individualvolumes known to FM. The files are indicesof the actual contentsof the
corresponding tapes. Finally,the "access lists"file containsall the access liststhat
users have established to control individualuser accessto files.

b

WAPD.T-2937
" Page 10

There are operator utilities which can be run as needed to migrate files to offline
storage. There are two types"

mandatory: stored FM files which the user has designated to reside on specific
volumes or media sets must be collectedperiodically.

i
i

discretionary: whenever necessary, the disks are wiped of files in order to create
space. Files are selected based on age and size. If a file selected for removalis
not already on an offlinevolume, it Is copied offline before removal.

XI. FM APPLIED TO WORKSTATIONS

To make FM a complete system,users on workstationsmust be able to retrieve
and/or store FM files on workstations. UNIX lends itself to file transportsince it
treats all files as bit strings. There are network faclUtleswhich transfer files
between UNIX systems. It remains,then, to supply the FM securityfeatures to a
workstationenvironment.

The configurationwhichbest supportsa securefile management applicationon
workstations is a server-basednetwork. One or more servers have several Individual
stationsattached to them via a local network. An individualstationcan have its own
privatedisk pack;the owner is responsiblefor its security. For public files, there is a
need for accesscontrols. To accomplishthis, a filesystem can be maintained on the
server. A feature of server-based systems is that stationscan be downloadedfrom
the server. If that feature is made mandatory,then only softwaremaintainedon the
server is availableto individualstations. An "fm" program similar to "fro" on UNICOS is
invoked to process directivessimilarto those on UNICOS. Files are maintained on a
file system on the server with permissionsrestrictedas on UNICOS.

Network files can be pure character files which need no conversion,or files containing
binary data, which must be convertedto reflect differencesin architecturebetween
systems. Such binary files contain informationwhich drivessuch a conversion.

Parameterson store directivesinformFM whether a generated file is to be passedon
to centralizedfile store. Thus, the user has the option of making the file available
network-wideor keeping it on just the server. Likewise,on a fetch, if FM fails to find
the file, the centralizedfile storecan be searched, and if found, the file can be
transferredto the server,

Standardized networkservicesbetween UNIX based systemsfor transferof files can
be used by FM in its file management task. Designconsiderationssee to it that an FM
file is transferredonly by an FM program. The key to secure operation is that users
are preventedfrom transferringfiles themselves. The preventioncan be done two
ways: either disallowingall transfersexcept by an FM program, or (lessrestrictively)
allowinggeneral transferof files but not to or from the FM file system.

As in UNICOS, file migrationis a majorpart of FM. The FM file system on a serverwill
become full, and it is the task of the systemadministratorto invoke utilitieswhich
transterold files to centralizedstore. The exact natureof these utilitiescan be tailored
to the installationor even to individualservers.

i

'b

WAPD-T-2937
" Page 11

Xll. CONCLUSION

This paper outlines a file management system that was implemented on Cray
UNICOS and ported to a workstation environment. The system provides need.to-know
access control as well as automatic file migration• The system is self-contained and
can coexist with other file access methods on the same system.

i
T29,37.WPS/D9

