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Abstract

Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic

constants for polycrystals composed of crystals having orthorhombic symmetry have been known for

about three decades. However, these methods are underutilized, perhaps because of some perceived

difficulties with implementing the necessary computational procedures. Several simplifications of

these techniques are introduced, thereby reducing the overall computational burden, as well as the

complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent

estimates of the effective elastic constants are very robust, involving a quickly converging iteration

procedure. Once these self-consistent values are known, they may then be used to speed up

the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the

resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-

consistent estimates for polycrystals of higher symmetry tetragonal, hexagonal, and cubic (but

not trigonal) materials. The self-consistent results found this way are shown to be the same as

those obtained using the earlier methods, specifically those methods designed specially for each

individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code

are either the same or (more typically) tighter than those found previously for these special cases

(i.e., tetragonal, hexagonal, and cubic). The improvement in the HS bounds is presumably due to

the additional degrees of freedom introduced into the available search space.
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I. INTRODUCTION

Although it is well-known that isotropic elastic materials have compressional/extensional

modes measured typically by a bulk modulus as well as distortional modes measured typically

by a shear modulus, the majority of elastic materials have more complicated behavior than

that observed in the isotropic case. In general there may be as many as five shear-like modes

and just one bulk-like mode. But for anisotropic media the coupling among shear and bulk

modes is nontrivial, and can lead to complexities in the analysis of elastic data, whether

laboratory or field measurements, and whether the data are derived from quasi-static or

dynamic measurements, as is often the case when acoustic or seismic waves are used to

probe such media.

There are basically seven types of elastic crystal symmetries (see Nye1) usually considered:

cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and triclinic. Of these

seven, cubic symmetry is the only one that has a simply defined bulk modulus, since the

bulk modulus in this case can be precisely determined and will give the same value whether

the measurement is made in compression via uniformly applied external pressure, or in either

extension or compression if the sample can be uniformly strained. In all other cases, the

measured results can differ depending on whether they are obtained using applied strains,

applied stresses, or combinations of these. Furthermore, the shear behavior of anisotropic

media can be quite complex since there are three independent twisting shears that can

be applied to any material sample, as well as three quite different shearing forces that

result (for example) from applying a uniaxial compression in any of the three principal

orthogonal directions. These cases do not exhaust all the possibilities for shearing motions,

but the others can normally be found by considering linear combinations of the ones already

mentioned.

It is because of these complexities that Voigt2 and Reuss3 studied elastic systems and

determined that there were two sets of constants that seemed to capture much of the nature

of a linear elastic material. These results were then called the Voigt and Reuss averages of

shear and bulk behavior until Hill4 showed that these same averages were actually rigorous

bounds on the possible responses and behaviors of these complicated systems. Since Hill’s

work, the Voigt and Reuss estimates of elastic response have become known as the Voigt

and Reuss (rigorous) bounds on elastic system behavior.
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Subsequently, Hashin and Shtrikman5 also studied the problem of finding bounds on

elastic constants and determined that it was possible to do somewhat better than these

early bounds of Voigt and Reuss. They established general procedures for computing such

bounds and carried the work through themselves for some of the simpler cases, including

cubic materials. Other workers continued to elaborate the theory, including first Peselnick

and Meister,6 Watt and Peselnick,7 and also Watt8 alone, who subsequently published a

series of papers on methods for many of the crystal classes of common interest.

Another line of thinking on such problems arose around the same time as the work of Pe-

selnick and Meister,6 and was focused on effective-properties estimates, rather than rigorous

bounding methods. This work was based in part on early scattering theory approaches by

Soven9 and Taylor10 via the coherent potential approximation (CPA), and then carried fur-

ther for elastic constants by Gubernatis and Krumhansl11, and also by Willis,12 who based

some of his ideas on earlier work in this area by Hill.13

The present study has grown out of a need to understand more clearly, while also quan-

tifying more precisely, the relationships among the bounding and estimation methods, and

to try to make these threads of the theory both easier to understand and to apply to the

harder problems (such as orthorhombic, monoclinic, and triclinic) that continue to arise in

current practice.

This work concentrates mainly on establishing some useful refinements of the work by

Watt,8 and others,14 and at the same time incorporating ideas related to CPA and/or self-

consistent estimates of the same elastic properties of polycrystals. The work is restricted

to orthorhombic systems, and/or more symmetric systems including tetragonal, hexagonal,

and cubic elastic polycrystals, which in fact will all be viewed here as special cases of

orthorhombic symmetry. We also take advantage of this fact in the choices of examples to

be considered.

II. ELASTIC PROPERTIES OF CRYSTALS AND POLYCRYSTALS

If the dimensionless second rank tensor of strain for an elastic body in three dimensions

is εij, with i, j = 1, 2, 3 being the three spatial dimensions in some convenient choice of

coordinate system, and the second rank tensor of stress (having dimensions of pressure) of

the same body is σij in the same coordinate system, then the stress is related to the strain
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(see Landau and Lifshitz15) by the fourth rank tensor Cijkl according to: σij = Cijklεkl,

assuming the Einstein convention of summation over repeated indices k, l = 1, 2, 3. It is

often convenient to simplify the mathematics of these relationships by replacing tensor with

matrix notation. In this case, the Cijkl’s are replaced by the matrix cij, while the stress and

strain tensors are replaced by vectors according to the well-known (see Ting16 for extensive

discussion) Voigt prescription:
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The example shown in (1) is that for orthorhombic symmetry, which is the most general

case that will be considered in the present work. The elastic constants c44, c55, c66 are elastic

moduli for the twisting shear strains: ε23, ε13, ε12, and their related stresses. For isotropic

elastic materials, c11 = c22 = c33 = λ + 2µ, c44 = c55 = c66 = µ, and c12 = c13 = c23 = λ,

where λ and µ are the two Lamé constants, and the isotropic bulk and shear moduli are

given (in this very special case) by K = λ + 2µ/3 and G = µ, respectively.

For orthorhombic media, there are three simple eigenvectors and eigenvalues, and these

are the ones associated with the twisting shear modes and the stiffnesses, namely c44, c55,

and c66. There will also be three eigenmodes associated with the 3 × 3 submatrix in the

upper lefthand corner of the full elastic matrix. But these modes will not generally be simply

related either to pure compression/extension or pure shear modes. Thus, information about

effective moduli such as effective bulk and shear modulus of polycrystals has a rather complex

relationship to the simpler ideas of a bulk modulus for pure compression or extension, and

a shear modulus for one of the five potentially distinct shear moduli of any elastic material.

It is this mixing of the modes that makes the problem of analyzing the effective modal

behavior of (assumed) isotropic polycrystals difficult, and therefore necessitates the use of

the methods to be discussed here. Analysis of these systems is usually designed to quantify

the behavior of random polycrystals, where the use of the word “random” in this context

normally implies that the polycrystals are composed of a sufficiently large number of small

crystallites oriented randomly in space so the overall polycrystalline behavior is close to
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isotropic. The effective isotropic constants can therefore be taken to be effective bulk K and

shear G moduli.

III. BOUNDS AND ESTIMATES OF ELASTIC CONSTANTS FOR POLYCRYS-

TALS

Results of Watt8 for bounds on K±

HS and those of Middya and Basu14 for self-consistent

estimates K∗

SC of bulk modulus can both be written in the same form:

K±

HS = K± +
3B±

1 + 2B±

2

3 + α±(3B±

1 + 2B±

2 )
, (2)

where

3B±

1 + 2B±

2 =
9(KV − K±) + 2β±(d± + e± − c±) + 3β2

±
Ω±

1 − a±β± − 9γ±(KV − K±) + D±

. (3)

The corresponding results for shear modulus are presented in Appendix A. The denominator

of expression (3) is the same as the denominator of the first term in (17), and D± is defined in

(18). Other terms not defined here already are also found in Appendix A. The corresponding

equation for the shear modulus is again given in Appendix A, equation (7). In particular,

B±

2 is itself defined in (17). [The significance of the various ± subscripts and superscripts –

related to upper and lower bounds – is also clarified following Eq. (25) in Appendix A.]

As is explained in more detail in Appendix A, these equations can sometimes be simplified

by taking advantage of certain analytical structures that typically occur.13 In particular, if

we add the quantity 4G±/3 to both sides of (2), substitute the value of α± from (9), and

then rearrange the resulting equation, we find that:

1

K±

HS + 4G±/3
=

1 − (B±

1 + 2B±

2 /3)/(K± + 4G±/3)

K± + 4G±/3
. (4)

which should be compared to the analogous shear formula in (13), being analogous forms

for the bulk and shear moduli respectively

As first stated, these equations are for the upper and lower bounds K±

HS on the bulk

modulus. These bounds are found when the constraints are optimal, meaning that [as the

Ω± are defined in Appendix A, Eqn. (24)] we must have Ω± = det(X±) ≡ 0. And where

X± is a 3 × 3 positive- or negative-semi-definite matrix, as defined in (23). This required

vanishing of det(X) is necessary because then, and only then, have we found either the
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greatest lower bound, or the smallest upper bound. [Clearly, non-optimal bounds can also

be found, but these are never our target values.]

As already shown by Middya and Basu,14 these same equations can be used as well to

determine the self-consistent estimates, as well as the bounds. These self-consistent values

are determined instead specifically by the overall conditions: B2 = 0 and 3B1 + 2B2 = 0.

Both conditions must apply simultaneously for the self-consistency conditions to be satisfied.

And so, it must also be true that B1 = 0; but we never need to consider B1 separately. The

self-consistency conditions are therefore (obviously) given by:

KSC = K∗ and GSC = G∗, (5)

where the conditions that determine the values of K∗ and G∗ are exactly the ones that cause

B1 and B2 to vanish simultaneously. Although this simultaneity condition might sound hard

to achieve, actually it is very easy to obtain by applying an iterative process wherein some

initial K0 and G0 values are first chosen and substituted into (4) and (7) for the K± and G±

values. The results that are then obtained for the left-hand-sides of both these equations

next become the new trial values for K0 and G0. Repeating this process has always been

found to converge quickly as long as some reasonably intelligent choices are made for the

initial values of K0 and G0. In any case, this part of the overall procedure is actually very

easy in practice.

Determining the HS bounds from this same set of equations is comparatively harder,

but some tricks were developed in the course of this work that made the process easier to

complete, as will be elaborated in the following discussion. In particular, Section IV. D.

provides an overview of a useful “shooting method of optimization” developed here.

IV. EFFECTIVE ELASTIC CONSTANTS FOR ORTHORHOMBIC MATERIALS

The results and methods described in the preceding sections and the Appendices were

applied to 10 examples of orthorhombic materials. Tables 1 and 3 provide the input data

used for these 10 materials. Tables 2 and 4 contain the results found from the bounding

and self-consistent estimation procedures. Sources of all the single-crystal data used in the

paper are listed in Appendix C.
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A. Materials considered

The first five cases include: Aragonite – an orthorhombic polymorph of calcite

(CaCO3), Danburite (CaB2Si2O8), Enstatite (MgSiO3), Forsterite (Mg2SiO4), and Topaz

(Al2(F,OH)2SiO4). Some of these materials were purposely chosen because they had been

studied by previous authors (in order to provide baseline comparisons), while others have

apparently not been treated before.

The second set of five cases includes two examples of OsN2 (having marcasite crystal

structure), where these first two sets of values are taken from two different computations

based, respectively, on the generalized gradient approximation (GGA) and the local-density

approximation (LDA). The remaining cases include Rochelle Salt (KNaC4H4O6 · 4H2O),

Sulfur (S), and α-Uranium (U).

Of the final four materials considered (results summarized in Tables 5-8), three were

cases treated previously by the author – one each of tetragonal (urea), cubic (copper), and

hexagonal (water ice). The remaining example (Table 8) is cubic methane hydrate, which

had not been treated previously.

B. Discussion of the bound optimization method

It should be clear from the detailed mathematical structure presented here that the

self-consistent calculations are straightforward, while the bound evaluation methods require

some careful choice of search procedure. For self-consistency, we require B±

2 = 0 = B±

1 ,

which might seem like a hard condition to achieve, but in practice it is quite easy to reach

by establishing a straightforward iteration scheme. It only takes a very few iterations to find

that the values of B1 and B2 approach numerical values on the order of 10−12 and below,

having started at values comparable to the input stiffness values. On the other hand, the

main requirement for the HS bounds themselves involves finding values such that the key

constraint matrix [found in Eq. (24)] Ω± ≡ 0. The difficulty with this is certainly not

that zeroes are hard to find, but rather that there are multiple zeroes. This fact does not

mean that the optimal solution is nonunique, but rather that it is important to choose the

right zeroes corresponding to the best choices of upper and lower bounds, which are unique.

This process goes smoothly if we have the proper information at hand: in particular, we
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need to know what the signs are of the various quantities previously defined that need to be

positive or negative semi-definite. These quantities are the six principal minors [see (26)] of

the appropriate 3 × 3 matrices X±. If we find a region in which these minors are all (say)

positive and then some of them become negative as we pass a certain boundary, then we

have found a candidate for one of the HS bounds (and it is necessary that this transition

occurs simultaneously for both K±

HS and G±

HS). Similarly, if the values of these principal

minors are all negative and some become positive at some boundary, then we have found

another pair of candidates for values for the bounds. As we scan through these sign changes,

it becomes clear that the best choices for the bounds are the ones that happen closest to

the well-defined self-consistent values K∗

SC and G∗

SC . It can and does happen that there

are several of these sign changes near the vicinity of the self-consistent values; and then the

algorithm for choosing the best bounds is also clear: the ones that occur closest to K∗

SC and

G∗

SC without violating the constraints are the values we want.

C. Discussion of results

Two examples considered in Tables 1 and 2 were also considered by Watt,8 although

the data sources were not the same as the data used here. For comparison, Watt’s Voigt-

Reuss-Hill values (in GPa) for Danburite were Kvrh = 91.7 and Gvrh = 64.1, whereas

the corresponding values presented here in Table 1 are Kvrh = 91.7 and Gvrh = 64.2.

Similarly, for Forsterite, Watt’s Voigt-Reuss-Hill values (in GPa) were Kvrh = 129.1 and

Gvrh = 81.6, whereas the corresponding values presented here in Table 1 are Kvrh = 129.5

and Gvrh = 81.1. So Watt’s values and ours agree quite well, despite the use of somewhat

different values for the input constants. Middya and Basu14 also considered Forsterite, and

found the self-consistent estimates (in GPa) to be KSC = 128.8 and GSC = 81.5. Our

results for Forsterite are also comparable, being KSC = 128.5 and GSC = 80.4 GPa. The

only differences anticipated between these calculations of the self-consistent estimates in

the previous work and the present work are those due to differences in input values of the

elastic constants themselves. However, there are anticipated to be some more significant

differences in results for the HS bounds between Watt’s approach and our approach, due

to the introduction here of the additional comparison moduli x1 and x2 (Appendix B) that

were not considered by Watt.
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Although the two OsN2 (osmium nitride with marcasite crystal structure) examples (GGA

and LDA) in Tables 3 and 4 are nominally for the same material, the results differ substan-

tially. We can quantify these differences by considering first the percentage discrepancies

between input values for the cij’s: LDA results are higher than GGA results in all cases.

The differences for c11, c22, c33 ranged from 12–14%; differences for c12, c13, c23 ranged from

17–19%; while differences for c44, c55, c66 ranged from 6–12%. Computed polycrystal values

for bulk moduli differed by about 15%; for the shear moduli by 9–11%; for the auxiliary

constants (i.e., Gr
eff , Gv

eff , x1, x2), the range was about 11–12%. Thus, the range of the in-

put (data) differences was about 6–19%, while the range for the output (averaged) constants

was narrower, being about 9–15%. So the averaging process does tend to narrow the range

of these differences by about a factor of 2 for this particular set of input elastic constants. It

would obviously be of some practical concern if the averaging process made these difference

larger, rather than smaller.

D. A restatement and evaluation of the methods developed

Voigt and Reuss bounds are determined by simple formulas depending only on the stiffness

(cij) or compliance (Sij) matrix elements of the anisotropic rock crystals. These easy-to-

compute Voigt (19)-(20) and Reuss (21)-(22) bounds on both bulk (K) and shear (G) moduli

can be viewed as establishing a rectangle in the two-dimensional space (G, K), since — if the

point (GR, KR) falls at the lower left-hand corner of a rectangle — then the point (GV , KV )

lies at (and defines) the upper right-hand corner of this rectangle. All the modulus values of

interest in this paper must always fall inside this rectangle. In particular, the self-consistent

estimator (G∗, K∗) falls somewhere in the middle, but seldom (if ever) lies exactly at the

center of this rectangle. In fact, the center point of the rectangle is exactly the Hill estimator

(GH , KH) based on the arithmetic means of the shear and bulk moduli. But this point is

only a very crude estimate of the points of most interest – both of the Hill averages GH and

KH , both typically being somewhat too high in value.

The next easiest point to compute is actually the self-consistent estimator (G∗, K∗). This

point will also always fall within the Voigt-Reuss rectangle, but again not necessarily exactly

in the middle. Virtually the same equations that determine these self-consistent estimators,

also determine the Hashin-Strikman bounds on G and K. However, these equations for the
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HS-bounds actually may be used to determine many effective constant estimates, depending

on exactly what algorithm is used to explore the values within the Voigt-Reuss rectangle

already defined. So one method (which is NOT the one used here) would be to evaluate

all points on some fine grid within this rectangle, and then choose the values that produce

the best results for the Hashin-Shtrikman bounds. Although this is clearly another viable

searching approach, it was not the one pursued in the present work.

Other researchers have used more complicated search routines, instead of the simplified

method proposed and employed here, which we will term (for presumably obvious reasons)

a “shooting method.” The method as in outline first finds the self-consistent values G∗

and K∗, which are themselves easily and uniquely determined. The self-consistent values

must also by their nature also fall within the smaller HS rectangle determined by the points

(G−

HS, K−

HS) and (G+
HS, K+

HS).

The entire Hashin-Shtrikman rectangle itself must also necessarily lie within the Voigt-

Reuss rectangle. So, if we shoot towards the self-consistent point (G∗, K∗) from anywhere

on the boundary of the Voigt-Reuss rectangle, we must cross the HS-rectangle boundary

somewhere along the way. When we cross such a boundary, sign changes occur in the

factors that we monitor, indicating that the values of the functionals of interest are passing

through zero. Hence, we can map out this boundary defined by Hashin-Shtrikman bounds

while taking a relatively small number of “shots” towards the self-consistent point near the

middle of the Voigt-Reuss rectangle.

We need to make several of these shots to be sure that we have located the four HS

boundaries — i.e., G−

HS, G+
HS, K−

HS, K+
HS — in this two-dimensional space, and not some

spurious solution of these equations. (This reasonable concern did not ever appear to be-

come a problem in actual practice.) Other researchers who have attempted to find the

HS-boundaries have typically used global searching techniques, and these methods – while

certain to locate the boundaries eventually – are not usually as efficient as the shooting

method proposed and used here. Furthermore, if these searching methods are terminated

too soon, they may in fact miss the optimal bounds. So it is the existence of the uniquely

defined and quite easily determined point (G∗, K∗) that makes the present shooting method

both viable and attractive.
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V. SUMMARY AND CONCLUSIONS

A modification of earlier methods has been developed for determining effective elastic

constants in polycrystals composed of crystalline grains each of which has orthorhombic sym-

metry or higher. The methods employed are in fact fairly well-known, since the main ideas

used are based on the early work of Hashin and Shtrikman,5 Hill,13 Peselnick and Meister,6

Gubernatis and Krumhansl,11 Watt and Peselnick,7 Willis,12 Watt,8 Middya and Basu,14

and Berryman.17 There were however two innovations added to the known approaches to

be found in these references. The first innovation was to introduce the concept of two effec-

tive shear moduli for the comparison materials needed by the Hashin-Shtrikman approach

(see Appendix B) in orthorhombic polycrystals. These two effective shear moduli are nei-

ther eigenvalues, nor normal shear moduli in any usual sense, but they nevertheless supply

reasonable comparison numbers for use in the search routines that are necessary to deter-

mine (i.e., piece together) the complicated boundaries of the Hashin-Shtrikman bounding

construction for orthorhombic materials.

In particular the smaller of these two comparison shear moduli is typically much smaller

than all the other pertinent shear moduli present, and thus widens the search region for the

HS lower bounds. Similarly, the other comparison shear modulus is sometimes larger than

all the other shear moduli in the system, which then widens the search region for the HS

upper bounds.

The second innovation revolves around the fact that some of the more symmetric elastic

materials, including hexagonal, tetragonal, and cubic symmetries (but not trigonal), can be

considered special cases of orthorhombic symmetry. Therefore, just one (for the orthorhom-

bic case) routine can be used to determine constants for all these four types (including

orthorhombic itself of course) of elastic polycrystalline media. It has then been shown ex-

plicitly in these case studies that this approach never leads to worse HS bounds, and can

actually lead to somewhat tighter bounds for some of the materials considered. All the other

constants found, including the self-consistent estimates and the Voigt and Reuss averages,

are not altered by using the orthorhombic code for these purposes. In three cases stud-

ied, direct comparisons were made to previously published results of the present author on

tetragonal, cubic, and hexagonal media. Results were found always to be consistent, and

often identical (to a precision consistent with the available experimental input data on the
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elastic constants themselves).

One overall conclusion reached is that the self-consistent results always lie within the

bounds, as would normally be expected. This result, together with the fact that the self-

consistent iteration process for these estimates is itself always very robust and quickly con-

verging, has suggested that these same self-consistent values can be used to simplify the

search routines used for locating the HS bounding values and/or curves. This approach

was the one used here and was found to be a very effective tool for speeding up the search

processes for the HS bounding curves and limiting modulus values.
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Appendix A: Simplified results needed for special cases, including tetragonal,

hexagonal, and cubic elastic materials

In earlier work the author has discussed the Peselnick and Meister6 and the Watt and

Peselnick7 bounds for hexagonal, trigonal, tetragonal, and cubic symmetries. It seems worth-

while to make note of some simplifications in these bounding methods that can be understood

now, especially since similar simplifications apply to the main case being studied, which is

the orthorhombic class of elastic symmetry.

Parameters needed to optimize Hashin-Shtrikman bounds can be taken to be K± and G±,

where the ± symbols designate the best comparison material values for the upper bounds

+ and lower bounds −, with the K± being bulk moduli and G± being shear moduli of the
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comparison materials needed in the Hashin-Shtrikman approach. Normally K+ and G+ are

used together, and K− and G− are used together, without mixing of the subscripts in the

same formulas. An exception is the limit of the self-consistent estimates in which case only

one set of constants applies, and we typically label the starting values as K0 and G0, and

the final results as K∗ and G∗, although KSC and GSC or some variant thereof may also be

used by some authors. The HS bounds themselves will be labelled K±

HS and G±

HS, although

other labels are sometimes also used to give credit to the workers who obtained bounding

results for specific crystal symmetries.

Formulas for the Hashin-Shtrikman bounds in the notation of Peselnick and Meister6 take

the form:

K±

PM = K± +
KV − K±

1 + 2β±(G± − Gv
eff )

(6)

and

G±

PM = G± +
B±

2

1 + 2β±B±

2

. (7)

The Hashin-Shtrikman bounds themselves are then given exactly by K±

HS ≡ K±

PM and

G±

HS ≡ G±

PM . Here KV is the Voigt average of bulk modulus, and the remaining constants

are defined carefully in Appendix B. Definitions of Gv
eff depend specifically on the crystal

symmetry, and examples will be provided later in this Appendix.

It is worthwhile noting that two additional quantities that essentially always play a role

in the HS bounds and also in the self-consistency conditions are the quantities 4G±/3 and

the combinations:

ζ± ≡
G±(9K± + 8G±)

6(K± + 2G±)
. (8)

These quantities have been shown by Hill,13 Willis,12 and others (including Olson and

Avellaneda18) to be important factors specifically for comparison materials having spher-

ical shapes. Such spherical shapes are the ones typically assumed, whether explicited or

implicitly, in such work on polycrystals. The source of these contributions can probably

be most easily understood by considering Eshelby’s work19 on elasticity of composites con-

taining ellipsoids. In such cases, it is again exactly such factors that play the same type of

role in the formulas for effective elastic constants.17 If the comparison materials have other

shapes, then other combinations20 of constants can come into play, but the spherical shapes

have been the only ones usually considered for polycrystal studies to date.
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Parameters α± and β± that appear repeatedly in the PMW (Peselnick-Meister-Watt)

works6,7 can be related to the Eshelby results by rewriting them in the form:

−
1

α±

= K± + 4G±/3 (9)

and

−
1

2β±

= G± + ζ±. (10)

Another combination of these two that also frequently appears in the formulas is

γ± =
α± − 3β±

9
. (11)

The reason for pointing out this similarity across the different applications is that the

resulting rather complicated formulas often collapse in unexpectedly simple ways if we look

for formulas of the right type. For example, the Hashin-Shtrikman bounds for bulk modulus

found by PMW can be rewritten as:

K±

PM =
KV (Gr

eff + ζ±)

Gv
eff + ζ±

, (12)

which is valid for hexagonal, tetragonal, and also trigonal (not otherwise considered here)

crystal structures. The quantities Gv
eff (Gr

eff ) are the uniaxial shear energies per unit volume

for a unit applied shear strain (shear stress), whose main compressive strain (stress) is applied

to the grains along their axes of symmetry [also see Berryman17 for more discussion]. (Note

that cubic symmetry is special in this regard, since it has a well-defined bulk modulus – so

neither bounds nor estimates are required for bulk modulus in this case.) Similarly, if we

add ζ± to both sides of (7), then we find that this result can be simplified to read:

1

G±

PM + ζ±
=

1 − B±

2 /(G± + ζ±)

G± + ζ±
, (13)

which is valid for the same three crystal symmetries. After determination of the B±

2 factors,

these results imply for hexagonal crystals that

1

G±

hex + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
2

c44 + ζ±
+

2

c66 + ζ±

]

, (14)

where Gv
eff = (c11 + c33 − 2c13 − c66)/3. For tetragonal crystals, we have

1

G±

tetr + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
1

µ3 + ζ±
+

2

c44 + ζ±
+

1

c66 + ζ±

]

, (15)

14



where µ3 ≡ (c11−c12)/2, and Gv
eff = (c11+2c33+c12−4c13)/6. And similarly, for polycrystals

of cubics, we have that

1

G±

cub + ζ±
=

1

5

[

2

Gv
eff + ζ±

+
3

c44 + ζ±

]

, (16)

where Gv
eff = µ3 = (c11 − c12)/2.

For the main results of the present paper, we also need the formulas for the shear modulus

of orthorhombic media. The general forms shown in (7) and especially (13) hold without

change for orthorhombic media, but the formula for the main factor B±

2 for shear modulus

bounds and estimates is now given by

15B±

2 = a±−b±+β±(2d±−2c±−e±)+3γ±(d±−c±+e±)+α±β±Ω±

1−a±β±−9γ±(KV −K±)+D±

+ 3(G± + ζ±)2
(

3
G±+ζ±

− 1
c44+ζ±

− 1
c55+ζ±

− 1
c66+ζ±

)

.
(17)

The constants α±, β±, and γ±, appearing here, were defined earlier in (9), (10), and (11).

The term D± is given by

D± = β±(β± + 2γ±)(c± − d±) − 2e±β±γ± −
α±β2

±
Ω±

3
. (18)

The Voigt average of the bulk modulus is

KV =
1

9
[c11 + c22 + c33 + 2(c12 + c23 + c13)] . (19)

Similarly, the Voigt average of the shear modulus is

GV =
1

15
[c11 + c22 + c33 − c12 − c23 − c13 + 3(c44 + c55 + c66)] . (20)

For completeness, we also note that the corresponding Reuss averages21 for orthorhombic

crystals are determined by

1

KR

= (S11 + S22 + S33) + 2 (S23 + S31 + S12) (21)

and
15

GR

= 4 (S11 + S22 + S33) − 4 (S23 + S31 + S12) + 3 (S44 + S55 + S66) , (22)

where the Sij’s are the compliance matrix elements, related to the stiffness matrix elements

by the matrix equation S = C−1.
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Some of these constants are defined in terms of the comparison matrices X± having

matrix elements:

X±

11 = c11 − K± − 4
3
G±, X±

12 = c12 − K± + 2
3
G±,

X±

22 = c22 − K± − 4
3
G±, X±

13 = c13 − K± + 2
3
G±,

X±

33 = c33 − K± − 4
3
G±, X±

23 = c23 − K± + 2
3
G±.

(23)

Then the determinant of this matrix is given by

Ω± ≡ det (X±) = X±

11X
±

22X
±

33 +2X±

12X
±

23X
±

13 −X±

11

(

X±

23

)2 −X±

22

(

X±

13

)2 −X±

33

(

X±

12

)2
. (24)

The remaining constants appearing in (17) are given by

a± = X±

11 + X±

22 + X±

33, b± = X±

12 + X±

23 + X±

13,

c± = X±

11X
±

22 + X±

22X
±

33 + X±

33X
±

11, d± =
(

X±

12

)2
+
(

X±

23

)2
+
(

X±

13

)2
,

e± = X±

12X
±

13 + X±

13X
±

23 + X±

23X
±

13 −X±

11X
±

23 − X±

22X
±

13 − X±

33X
±

12.

(25)

[Notational clarification: The symbol ± always appears here as a subscript for scalar quan-

tities, except for the scalar Hashin-Shtrikman bounds themselves, where the bound label is

used as a subscript. The symbol ± appears as a superscript for all quantities that are them-

selves matrix elements (therefore having additional subscripts), and for quantities that are

combinations only of such matrix elements. For scalar quantities that are themselves com-

binations of scalars and also quantities derived from matrix elements, the subscript version

is again used – except as already noted for the scalar bounds themselves.]

The pertinent conditions on the matrix elements of X± come from the requirement of

either positive semi-definiteness or negative semi-definiteness. (Positive or negative definite-

ness implies that zero is never attained; positive or negative semi-definiteness means that

zero limiting values are permitted.) These requirements mean that all the principal minors of

the determinant Ω± must be either simultaneously positive semi-definite, or simultaneously

negative semi-definite. Thus, the requirements are for positive semi-definiteness are:

X+
11 ≥ 0, X+

11X
+
22 − (X+

12)
2 ≥ 0

X+
22 ≥ 0, X+

22X
+
33 − (X+

23)
2 ≥ 0

X+
33 ≥ 0, X+

33X
+
11 − (X+

13)
2 ≥ 0

, (26)

and Ω+ ≥ 0. For negative semi-definiteness, all the superscript pluses are replaced by

superscript minuses, and the ≥ symbols are replaced by ≤’s.
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Appendix B: Two effective shear moduli for comparison materials in granular poly-

crystals of orthorhombic elastic materials

Elastic materials generally have six modes (which we treat as eigenvalues in this dis-

cussion), one of which may be viewed approximately as a bulk mode (i.e., an eigenvector

whose elastic response is dominated by pure compression or extension, but may still have

a small component of shear) while the other five modes are mostly dominated by shearing

responses of the elastic system. The Voigt and Reuss averages for overall shear response for

orthorhombic media may be defined by:

GV =
1

5

[

2Gv
eff + c44 + c55 + c66

]

(27)

and
1

GR

=
1

5

[

2

Gr
eff

+
1

c44

+
1

c55

+
1

c66

]

. (28)

We are using these forms as the first step in a process of defining two effective composite

shear constants for polycrystals of orthorhombics:

Gv
eff ≡

1

6
[c11 + c22 + c33 − c12 − c13 − c23] (29)

and
3

Gr
eff

≡ 2
∆

[c11(c22 + c33) + c22(c33 + c13) + c33(c11 + c12)

− c13(c13 + c12) − c12(c12 + c23) − c23(c23 + c13)],
(30)

where the factor ∆ is given by

∆ = c11c22c33 + 2c12c23c13 − c11c
2
23 − c22c

2
13 − c33c

2
12, (31)

which is the pertinent determinant of the upper-left 3 × 3 segment of the elastic constant

matrix. Equations (27) and (28) are exactly the usual definitions of the Voigt2 and Reuss3

averages for shear if we substitute the expressions (29) and (30) into these formulas. Formula

(30) could also be written more simply in terms of compliances, but to do so requires

inversion of the stiffness matrix, and this has already been accomplished explicitly by using

the expressions in the present equation. We will follow Watt7,8 in this regard, while trying

to simplify the notation somewhat as we go by introducing these two useful combinations

of shear stiffness constants: Gv
eff and Gr

eff .
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The two constants are not however our ultimate goal in this process. Instead they provide

an intermediate step in the task of finding useful comparison values for the Hashin-Shtrikman

bounding process. From the structure of equations (27) and (28), we see that these two

constants each play the role of a different type of average of two other shear moduli. We will

call these two moduli x1 and x2. They are not intended to represent typical shear moduli,

and should not be interpreted as such. Instead, they are helpful constructs that can be used

in the process of determining Hashin-Shtrikman bounds on shear modulus for the polycrystal

systems of interest. We need them, because without them we are not able to explore the full

region that should be spanned by comparison materials. These two quantities are defined

by the following statements:

2Gv
eff ≡ x1 + x2, (32)

while
2

Gr
eff

≡
1

x1

+
1

x2

. (33)

Thus, we are treating Gv
eff and Gr

eff , respectively, as the Voigt and Reuss averages of the

two unknown shear-like quantities x1 and x2. We will call these two constants “effective

comparison shear moduli.” We find that their values are significantly different from each

other and also from the two quantities from which they are derived in all cases considered

here (see the examples in Tables 2, 4–8). Thus, they provide usefully different measures of

the possible range of shear modulus to be explored in the process of locating the boundaries

needed ultimately to determine the Hashin-Shtrikman bounds themselves. This feature helps

to expand the search region for the optimal Hashin-Shtrikman bounds.

To determine the values of x1 and x2, we also need to solve the quadratic equation found

by multiplying (32) and (33) together, giving:

4
Gv

eff

Gr
eff

= 2 +
x1

x2
+

x2

x1
. (34)

Then, with the definitions R ≡ Gv
eff/G

r
eff and r12 ≡ x1/x2, while also defining the quantity

C ≡ 2(2R − 1), so we have

r12 = C ±
√

C2 − 1. (35)

It is easy to see that R ≥ 1 always holds and also that C ≥ 2, so the argument of the radical

is always non-negative, and r12 ≥ 0 for either choice of the sign in front of the radical (since

C ≥
√

C2 − 1). Thus, we have

x2 ≡ 2Gv
eff/(1 + r12) (36)
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and

x1 ≡ r12x2. (37)

The roles of x1 and x2 are reversed by making different sign choices in (35), but we are

interested in both these quantities, so this freedom actually makes no difference to us.

Examples of the values determined this way are shown in all the Tables of examples (i.e.,

Tables 2, 4-8).

As is discussed more fully in the main text, the values of x1 and x2 have been found to

differ substantially from the values of both Gr
eff and Gv

eff , thus providing more insight into

the total range of behaviors being experienced by the orthorhombic system in the presence

of applied shear stress.

Appendix C: Sources of single-crystal elastic data

The elastic data for orthorhombic materials considered in Tables 1 and 2 for Aragonite,

Danburite, Enstatite, Forsterite, and Topaz were all taken from Bass.22 The data for Rochelle

salt, Sulfur, and α-Uranium in Tables 3 and 4 were also taken from Bass.22 The same values

can also be found in Musgrave23 and Huntington.24 The two examples of OsN2 having

marcasite crystal structure considered in Tables 3 and 4 were the results of first-principles

physics calculations using the GGA (the generalized gradient) and LDA (the local-density)

approximations in work by Wang et al.25

In three cases (Tables 5, 6, and 7), the examples were purposely chosen from among the

cases studied previously by the author.17 These cases include: tetragonal Urea for which the

data came from Fischer and Zarembowitch,26 cubic Copper for which the data were taken

from the original paper by Hashin and Shtrikman,5 and hexagonal H2O ice for which the

data were obtained from Simmons and Wang.27

The data for Methane Hydrate (Table 8) were taken from Shimizu et al.28

Appendix D: Significance of self-conisistent estimates

There are two main issues concerning the worth of self-consistent estimates of the overall

elastic constants. The first issue is whether or not any special significance should be accorded

such estimates, and in particular should we presume that the self-consistent estimates are
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actually the best possible estimates of the overall bulk and shear moduli of the polycrystals

studied here. The answer to this question may not be universal, but the more general

answer in our present context is surely that the self-consistent estimates, while good and

definite estimators, should NOT be viewed as the “true values” of the effective bulk and

shear moduli of such polycrystals. They are very reasonable estimates (lying always between

the known rigorous bounds — as will be shown next), but should not be given any more

special interpretation than this. Indeed, if the self-consistent estimates were always the

true values, there would clearly be no practical reason to study the bounding methods.

However, by combining the information contained in the self-consistent estimates and the

bounds, we have not only these estimates themselves, but we can also put rigorous error bars

around these estimates using the bounds. In general, we expect that different polycrystalline

realizations of the same material may have a range (though perhaps not a very wide range)

of behavior due to differences in the random microstructural arrangements that have not

been explicitly accounted for in these models. There can be significant consequences of local

ordering that affect the overall response even through the resulting polycrystal behavior

nevertheless remains macroscopically isotropic.

A second question concerning the significance of the self-consistent estimators is whether

or not they are actually unique, and also the related question of whether or not they are in

fact guaranteed to lie between the rigorous bounds. The answers to both these questions

are: yes they are unique, and yes they always lie between the bounds.14,17

To demonstrate these facts in a case that is simple enough to analyze (but also easily

generalized to the other cases studied in this paper), we will now consider only simple cubic

materials. This choice is most convenient from the point of view of simplifying the math,

because polycrystals of grains of the same cubic elastic materials all have uniquely defined

average bulk moduli, which are determined by the identity 3K = c11 + 2c12. So all the

bulk modulus bounds collapse to this constant K value for polycrystals having well-bonded

simple cubic grains of the same type, and therefore need not be analyzed further. To see

how this works out in the equations, note again that

K±

PM =
KV (Gr

eff + ζ±)

Gv
eff + ζ±

. (38)

But since we always have KPM → KR as ζ → 0 and KPM → KV as ζ → ∞, while

KR = KV = K, we must also have (which is easy to verify) that Gr
eff = Gv

eff = (c11−c12)/2.
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So the bulk modulus bounds and estimates all collapse to the same constant K, while at

the same time we have the shear modulus bounds:

1

G±

PM + ζ±
=

1

5

[

2

Gv
eff + ζ±

+
3

c44 + ζ±

]

(39)

where 0 ≤ 3
2
G− ≤ ζ± ≡ G±(9K + 8G±)/6(K + 2G±) ≤ 2

3
G+ ≤ ∞. The next-to-final

inequality follows in the limit when G+ → some large, but still finite value.

Now it is also known12,17,29 that the self-consistent shear modulus G∗ for simple cubic

materials satisfies the cubic equation:

8(G∗)3 + (9K + 4Gv
eff)(G

∗)2 − 3c44(K + 4Gv
eff)G

∗ − 6c44KGv
eff = 0. (40)

In fact, it is straightforward to show that this result follows from (39) by replacing G±

everywhere (including within the definition of ζ±) by G∗. This cubic equation has three real

roots. Because the coefficient of (G∗)2 is positive while the final constant term (independent

of G∗) is negative, it follows that these three eigenvalues cannot all have the same sign. The

final term also shows then that only one of the eigenvalues is positive, while the other two

are necessarily negative. Thus, it is important to recognize that the only positive root is

also the only physically pertinent root of (40), as well as being the one consistent with (39)

for 0 ≤ ζ± ≤ ∞.

In particular, we can rearrange (39) into the form:

G±

PM = Γ(ζ±), (41)

where

Γ(ζ±) ≡

[

1

5

(

2

Gv
eff + ζ±

+
3

c44 + ζ±

)]−1

− ζ±. (42)

This rearrangement is useful to us because

d

dζ
Γ(ζ) =

6

25
[Γ(ζ) + ζ]2

(

1

Gv
eff + ζ

−
1

c44 + ζ

)2

≥ 0, (43)

and also because, as the argument ζ± goes to 0 or ∞, the results are, respectively:

Γ(ζ−) →

[

1

5

(

2

Gv
eff

+
3

c44

)]−1

≡ GR, as ζ− → 0, (44)

and

Γ(ζ+) →
1

5

(

2Gv
eff + 3c44

)

= GV , as ζ+ → ∞, (45)
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according to the definitions given in (28) and (27), since here c66 = c55 = c44.

Thus, for cubic symmetry, we find that the only pertinent functional Γ(ζ) is a monotonic

function of its argument, and ranges from the Reuss average GR for small arguments to

the Voigt average GV for large arguments. We can infer from these facts that there exists

one unique ζ corresponding to each value of shear modulus G in the range GR ≤ G ≤ GV .

The equations already quoted therefore guarantee that there exists a value of G = G∗ at

which ζ(G∗) = ζ∗. Proving this kind of result in more general cases12,29 is considerably more

difficult than for the cubic example because the resulting polynomial can be of much higher

order than 3. But nevertheless it is straightforward to check these facts numerically, as has

been done repeatedly in the examples presented in this paper.
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Table 1. Elastic stiffness constants and Voigt-Reuss-Hill averages of the bulk (K) and

shear moduli (G) for the orthorhombic crystals: Aragonite (CaCO3), Danburite

(CaB2Si2O8), Enstatite (MgSiO3), Forsterite (Mg2SiO4), and Topaz (Al2(F,OH)2SiO4).

References for the data are found in Appendix C. All constants are in units of GPa.

CaCO3 CaB2Si2O8 MgSiO3 Mg2SiO4 Al2(F,OH)2SiO4

c11 160.0 131.0 224.7 328.0 281.0

c22 87.2 198.0 177.9 200.0 349.0

c33 84.8 211.0 213.6 235.0 294.0

c12 37.3 50.0 72.4 69.0 108.0

c13 1.7 64.0 54.1 69.0 132.0

c23 15.7 34.0 52.7 73.0 131.0

c44 41.3 64.0 77.6 66.7 125.0

c55 25.6 59.8 75.9 81.3 84.0

c66 42.7 74.9 81.6 80.9 88.0

Kvrh 46.9 91.7 107.8 129.5 167.4

Gvrh 38.5 64.2 75.7 81.1 114.8
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Table 2. Computed effective elastic constants for the orthorhombic crystals: Aragonite

(CaCO3), Danburite (CaB2Si2O8), Enstatite (MgSiO3), Forsterite (Mg2SiO4), and Topaz

(Al2(F,OH)2SiO4). All constants are in units of GPa.

CaCO3 CaB2Si2O8 MgSiO3 Mg2SiO4 Al2(F,OH)2SiO4

G−

HS 37.56 63.50 75.52 80.352 114.73

GSC 38.31 64.27 75.70 80.354 115.06

G+
HS 38.35 65.06 75.71 80.888 115.09

K−

HS 45.56 91.37 107.65 128.489 167.37

KSC 46.36 91.89 107.83 128.493 167.46

K+
HS 46.41 92.40 107.83 128.493 167.73

Gr
eff 40.11 58.23 70.95 86.18 102.21

Gv
eff 46.22 65.33 72.83 92.00 104.50

x1 77.07 108.00 116.30 149.34 165.56

x2 15.36 22.66 29.37 34.66 42.44
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Table 3. Elastic stiffness constants and Voigt-Reuss-Hill averages of the bulk (K) and

shear moduli (G) for the orthorhombic crystals: OsN2-GGA with marcasite crystal

structure, OsN2-LDA also with marcasite crystal structure, Rochelle Salt (where RS =

KNaC4H4O6 · 4H2O), Sulfur (S), and α-Uranium (U). References for the data are found in

Appendix C. For OsN2, the constants were obtained by numerical methods: GGA =

generalized gradient approximation; LDA = local-density approximation. All constants are

in units of GPa.

GGA LDA

OsN2 OsN2 RS S α-U

c11 744.0 835.0 25.5 24.0 215.0

c22 913.0 1038.0 38.1 20.5 199.0

c33 581.0 663.0 37.1 48.3 267.0

c12 178.0 212.0 14.1 13.3 46.0

c13 277.0 323.0 11.6 17.1 22.0

c23 88.0 105.0 14.6 15.9 107.0

c44 134.0 142.0 13.4 4.3 124.0

c55 340.0 381.0 3.2 8.7 73.0

c66 175.0 189.0 9.8 7.6 74.0

Kvrh 364.2 418.3 19.7 19.1 112.9

Gvrh 225.0 247.2 8.2 6.7 84.3
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Table 4. Computed effective elastic constants for the orthorhombic crystals: OsN2-GGA

and OsN2, both having the marcasite crystal structure, Rochelle Salt (RS =

KNaC4H4O6 · 4H2O), Sulfur (S), and α-Uranium (U). GGA = generalized-gradient

approximation; LDA = local-density approximation. All constants are in units of GPa.

GGA LDA

OsN2 OsN2 RS S α-U

KR 359.0 412.6 19.3 17.56 111.3

K−

HS 363.4 417.9 19.7 18.76 112.5

KSC 364.5 418.6 19.7 18.85 112.7

K+
HS 365.4 419.6 19.8 18.87 113.1

KV 369.3 424.0 20.1 20.60 114.6

GR 207.2 225.6 7.2 6.17 80.7

G−

HS 221.8 243.6 8.4 6.61 83.6

GSC 224.1 246.2 8.5 6.64 84.1

G+
HS 227.3 250.1 8.6 6.66 84.9

GV 242.8 268.8 9.3 7.22 87.9

Gr
eff 249.5 277.6 9.6 6.03 74.9

Gv
eff 282.5 316.0 10.1 7.75 84.3

x1 468.4 524.9 16.2 13.32 139.6

x2 96.6 107.1 3.9 2.18 29.1
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Table 5. Measured and computed effective elastic constants for the tetragonal crystals

and polycrystals of urea [CO(NH2)2]. References for the data are found in Appendix C. All

constants are in units of GPa.

Urea CO(NH2)2

Elastic Previous Present

Constants Results Results

c11 21.7 KR 11.6 KR 11.6078

c12 8.9 K−

HS 12.6 K−

HS 14.8104

c13 24.0 KSC 16.5 KSC 16.4761

c33 53.2 K+
HS 18.7 K+

HS 17.5505

c44 6.26 KV 23.4 KV 23.3778

c66 0.45 GR 1.67 GR 1.6707

K 16.5 G−

HS 2.51 G−

HS 3.4755

G 3.91 GSC 3.91 GSC 3.9137

G+
HS 4.33 G+

HS 4.1640

GV 5.24 GV 5.2406

µ3 6.40 Gv
eff 6.83 Gr

eff 4.4348

Gv
eff 6.6167

x1 11.7309

x2 1.5025
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Table 6. Measured and computed effective elastic constants for the cubic crystals and

polycrystals of Copper (Cu). References for the data are found in Appendix C. All

constants are in units of GPa.

Cu Copper

Elastic Previous Present

Constants Work Results

c11 171.0 KR 138.0 KR 138.3

c12 122.0 K−

HS 138.0 K−

HS 138.3

c44 69.1 KSC 138.0 KSC 138.3

K+
HS 138.0 K+

HS 138.3

K 138.0 KV 138.0 KV 138.3

G 45.6 GR 40.0 GR 39.98

G−

HS 44.8 G−

HS 46.23

GSC 46.3 GSC 46.30

G+
HS 47.2 G+

HS 46.32

GV 51.3 GV 51.26

µ3 24.5 Gv
eff 24.5 Gr

eff 24.51

Gv
eff 24.60

x1 38.87

x2 10.33
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Table 7. Measured and computed effective elastic constants for the hexagonal crystals

and polycrystals of H2O ice. References for the data are found in Appendix C. All

constants are in units of GPa.

H2O Ice

Elastic Previous Present

Constants Work Results

c11 13.85 KR 8.89 KR 8.8966

c12 7.07 K−

HS 8.89 K−

HS 8.8966

c13 5.81 KSC 8.89 KSC 8.8966

c33 14.99 K+
HS 8.89 K+

HS 8.8966

c44 3.19 KV 8.89 KV 8.8967

c66 3.39 GR 3.48 GR 3.4871

K 8.89 G−

HS 3.52 G−

HS 3.5180

G 3.52 GSC 3.52 GSC 3.5194

G+
HS 3.52 G+

HS 3.5231

GV 3.55 GV 3.5540

Gv
eff 4.61 Gr

eff 4.6099

Gv
eff 4.6100

x1 9.2200

x2 2.4705
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Table 8. Measured and computed effective elastic constants for the cubic crystals and

polycrystals of Methane Hydrate (ideally CH4 · 5.75H2O) at P = 1 atm and T = 270 K.

References for the data are found in Appendix C. All constants are in units of GPa.

Methane Hydrate

Elastic Previous Present

Constants Method Method

c11 12.8 KR 8.41 KR 8.41

c12 6.215 K−

HS 8.41 K−

HS 8.41

c44 3.6 KSC 8.41 KSC 8.41

K+
HS 8.41 K+

HS 8.41

K 8.41 KV 8.41 KV 8.41

G 3.54 GR 3.470 GR 3.470

G−

HS 3.474 G−

HS 3.474

GSC 3.474 GSC 3.474

G+
HS 3.474 G+

HS 3.474

GV 3.477 GV 3.477

µ3 3.293 Gv
eff 3.293 Gr

eff 3.293

Gv
eff 3.293

x1 5.19

x2 1.39

31



DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or The Regents of 
the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
 


