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Abstract

Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic
constants for polycrystals composed of crystals having orthorhombic symmetry have been known for
about three decades. However, these methods are underutilized, perhaps because of some perceived
difficulties with implementing the necessary computational procedures. Several simplifications of
these techniques are introduced, thereby reducing the overall computational burden, as well as the
complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent
estimates of the effective elastic constants are very robust, involving a quickly converging iteration
procedure. Once these self-consistent values are known, they may then be used to speed up
the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the
resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-
consistent estimates for polycrystals of higher symmetry tetragonal, hexagonal, and cubic (but
not trigonal) materials. The self-consistent results found this way are shown to be the same as
those obtained using the earlier methods, specifically those methods designed specially for each
individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code
are either the same or (more typically) tighter than those found previously for these special cases
(i.e., tetragonal, hexagonal, and cubic). The improvement in the HS bounds is presumably due to

the additional degrees of freedom introduced into the available search space.
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I. INTRODUCTION

Although it is well-known that isotropic elastic materials have compressional /extensional
modes measured typically by a bulk modulus as well as distortional modes measured typically
by a shear modulus, the majority of elastic materials have more complicated behavior than
that observed in the isotropic case. In general there may be as many as five shear-like modes
and just one bulk-like mode. But for anisotropic media the coupling among shear and bulk
modes is nontrivial, and can lead to complexities in the analysis of elastic data, whether
laboratory or field measurements, and whether the data are derived from quasi-static or
dynamic measurements, as is often the case when acoustic or seismic waves are used to
probe such media.

There are basically seven types of elastic crystal symmetries (see Nye') usually considered:
cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and triclinic. Of these
seven, cubic symmetry is the only one that has a simply defined bulk modulus, since the
bulk modulus in this case can be precisely determined and will give the same value whether
the measurement is made in compression via uniformly applied external pressure, or in either
extension or compression if the sample can be uniformly strained. In all other cases, the
measured results can differ depending on whether they are obtained using applied strains,
applied stresses, or combinations of these. Furthermore, the shear behavior of anisotropic
media can be quite complex since there are three independent twisting shears that can
be applied to any material sample, as well as three quite different shearing forces that
result (for example) from applying a uniaxial compression in any of the three principal
orthogonal directions. These cases do not exhaust all the possibilities for shearing motions,
but the others can normally be found by considering linear combinations of the ones already
mentioned.

It is because of these complexities that Voigt? and Reuss® studied elastic systems and
determined that there were two sets of constants that seemed to capture much of the nature
of a linear elastic material. These results were then called the Voigt and Reuss averages of
shear and bulk behavior until Hill* showed that these same averages were actually rigorous
bounds on the possible responses and behaviors of these complicated systems. Since Hill’s
work, the Voigt and Reuss estimates of elastic response have become known as the Voigt

and Reuss (rigorous) bounds on elastic system behavior.



Subsequently, Hashin and Shtrikman® also studied the problem of finding bounds on
elastic constants and determined that it was possible to do somewhat better than these
early bounds of Voigt and Reuss. They established general procedures for computing such
bounds and carried the work through themselves for some of the simpler cases, including
cubic materials. Other workers continued to elaborate the theory, including first Peselnick
and Meister,® Watt and Peselnick,” and also Watt® alone, who subsequently published a
series of papers on methods for many of the crystal classes of common interest.

Another line of thinking on such problems arose around the same time as the work of Pe-
selnick and Meister,® and was focused on effective-properties estimates, rather than rigorous
bounding methods. This work was based in part on early scattering theory approaches by
Soven? and Taylor!'? via the coherent potential approximation (CPA), and then carried fur-
ther for elastic constants by Gubernatis and Krumhansl!!, and also by Willis,'? who based
some of his ideas on earlier work in this area by Hill.!3

The present study has grown out of a need to understand more clearly, while also quan-
tifying more precisely, the relationships among the bounding and estimation methods, and
to try to make these threads of the theory both easier to understand and to apply to the
harder problems (such as orthorhombic, monoclinic, and triclinic) that continue to arise in
current practice.

This work concentrates mainly on establishing some useful refinements of the work by
Watt,® and others,'® and at the same time incorporating ideas related to CPA and/or self-
consistent estimates of the same elastic properties of polycrystals. The work is restricted
to orthorhombic systems, and/or more symmetric systems including tetragonal, hexagonal,
and cubic elastic polycrystals, which in fact will all be viewed here as special cases of
orthorhombic symmetry. We also take advantage of this fact in the choices of examples to

be considered.

II. ELASTIC PROPERTIES OF CRYSTALS AND POLYCRYSTALS

If the dimensionless second rank tensor of strain for an elastic body in three dimensions
is €;;, with ¢,7 = 1,2,3 being the three spatial dimensions in some convenient choice of
coordinate system, and the second rank tensor of stress (having dimensions of pressure) of

the same body is 0;; in the same coordinate system, then the stress is related to the strain



(see Landau and Lifshitz'®) by the fourth rank tensor Cj according to: oy = Cijki€rs,
assuming the Einstein convention of summation over repeated indices k,[ = 1,2,3. It is
often convenient to simplify the mathematics of these relationships by replacing tensor with
matrix notation. In this case, the Cj;x;’s are replaced by the matrix ¢;;, while the stress and
strain tensors are replaced by vectors according to the well-known (see Ting!® for extensive

discussion) Voigt prescription:

011 C11 C12 C13 €11
022 C12 Co2 C23 €22
033 C13 C23 C33 €33
- (1)
012 Ca4q €23
013 Cs5 €13
023 Ce6 €12

The example shown in (1) is that for orthorhombic symmetry, which is the most general
case that will be considered in the present work. The elastic constants cyy, cs55, cge are elastic
moduli for the twisting shear strains: es3, €13, €12, and their related stresses. For isotropic
elastic materials, c11 = o9 = ¢33 = A+ 24, c4q = €55 = Ce6 = W, and c1o = c13 = Co3 = A,
where A\ and p are the two Lamé constants, and the isotropic bulk and shear moduli are
given (in this very special case) by K = A+ 2u/3 and G = pu, respectively.

For orthorhombic media, there are three simple eigenvectors and eigenvalues, and these
are the ones associated with the twisting shear modes and the stiffnesses, namely cyy4, cs5,
and cgg. There will also be three eigenmodes associated with the 3 x 3 submatrix in the
upper lefthand corner of the full elastic matrix. But these modes will not generally be simply
related either to pure compression/extension or pure shear modes. Thus, information about
effective moduli such as effective bulk and shear modulus of polycrystals has a rather complex
relationship to the simpler ideas of a bulk modulus for pure compression or extension, and
a shear modulus for one of the five potentially distinct shear moduli of any elastic material.
It is this mixing of the modes that makes the problem of analyzing the effective modal
behavior of (assumed) isotropic polycrystals difficult, and therefore necessitates the use of
the methods to be discussed here. Analysis of these systems is usually designed to quantify
the behavior of random polycrystals, where the use of the word “random” in this context
normally implies that the polycrystals are composed of a sufficiently large number of small

crystallites oriented randomly in space so the overall polycrystalline behavior is close to
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isotropic. The effective isotropic constants can therefore be taken to be effective bulk K and

shear G moduli.

III. BOUNDS AND ESTIMATES OF ELASTIC CONSTANTS FOR POLYCRYS-
TALS

Results of Watt® for bounds on K¢ and those of Middya and Basu'? for self-consistent

estimates K¢ of bulk modulus can both be written in the same form:

3Bf + 2By
3+ a*(3Bf +2B5)’

Kig=Ki+ (2)

where
YKy — Ki) +284(d* +e* — &) +3820%

3
1 —aiﬂi —97i(KV—Ki)+Di ( )

The corresponding results for shear modulus are presented in Appendix A. The denominator

3Bf +2B5 =

of expression (3) is the same as the denominator of the first term in (17), and Dy is defined in
(18). Other terms not defined here already are also found in Appendix A. The corresponding
equation for the shear modulus is again given in Appendix A, equation (7). In particular,
B is itself defined in (17). [The significance of the various + subscripts and superscripts —
related to upper and lower bounds — is also clarified following Eq. (25) in Appendix A.]

As is explained in more detail in Appendix A, these equations can sometimes be simplified
by taking advantage of certain analytical structures that typically occur.'® In particular, if
we add the quantity 4G4 /3 to both sides of (2), substitute the value of ay from (9), and
then rearrange the resulting equation, we find that:

1 _ 1—(Bf +2B;/3)/(Ky + 4G4 /3)
Kig+4GL/3 Ky +4G1/3

. (4)

which should be compared to the analogous shear formula in (13), being analogous forms
for the bulk and shear moduli respectively

As first stated, these equations are for the upper and lower bounds Kﬁs on the bulk
modulus. These bounds are found when the constraints are optimal, meaning that [as the
OF are defined in Appendix A, Eqn. (24)] we must have QF = det(X*) = 0. And where
X% is a 3 x 3 positive- or negative-semi-definite matrix, as defined in (23). This required

vanishing of det(X) is necessary because then, and only then, have we found either the



greatest lower bound, or the smallest upper bound. [Clearly, non-optimal bounds can also
be found, but these are never our target values.]

As already shown by Middya and Basu,'* these same equations can be used as well to
determine the self-consistent estimates, as well as the bounds. These self-consistent values
are determined instead specifically by the overall conditions: By = 0 and 3B; + 2By = 0.
Both conditions must apply simultaneously for the self-consistency conditions to be satisfied.
And so, it must also be true that B; = 0; but we never need to consider B separately. The

self-consistency conditions are therefore (obviously) given by:
KSC =K~ and GSC = G*, (5)

where the conditions that determine the values of K* and G* are exactly the ones that cause
By and Bj to vanish simultaneously. Although this simultaneity condition might sound hard
to achieve, actually it is very easy to obtain by applying an iterative process wherein some
initial Ky and G values are first chosen and substituted into (4) and (7) for the K1 and G4
values. The results that are then obtained for the left-hand-sides of both these equations
next become the new trial values for Ky and Gy. Repeating this process has always been
found to converge quickly as long as some reasonably intelligent choices are made for the
initial values of Ky and Go. In any case, this part of the overall procedure is actually very
easy in practice.

Determining the HS bounds from this same set of equations is comparatively harder,
but some tricks were developed in the course of this work that made the process easier to
complete, as will be elaborated in the following discussion. In particular, Section IV. D.

provides an overview of a useful “shooting method of optimization” developed here.

IV. EFFECTIVE ELASTIC CONSTANTS FOR ORTHORHOMBIC MATERIALS

The results and methods described in the preceding sections and the Appendices were
applied to 10 examples of orthorhombic materials. Tables 1 and 3 provide the input data
used for these 10 materials. Tables 2 and 4 contain the results found from the bounding
and self-consistent estimation procedures. Sources of all the single-crystal data used in the

paper are listed in Appendix C.



A. Materials considered

The first five cases include: Aragonite — an orthorhombic polymorph of calcite
(CaCOg3), Danburite (CaBySisOg), Enstatite (MgSiOj), Forsterite (Mg2SiOy4), and Topaz
(Aly(F,0H),Si0y4). Some of these materials were purposely chosen because they had been
studied by previous authors (in order to provide baseline comparisons), while others have
apparently not been treated before.

The second set of five cases includes two examples of OsNy (having marcasite crystal
structure), where these first two sets of values are taken from two different computations
based, respectively, on the generalized gradient approximation (GGA) and the local-density
approximation (LDA). The remaining cases include Rochelle Salt (KNaC,4H4Og - 4H50),
Sulfur (S), and a-Uranium (U).

Of the final four materials considered (results summarized in Tables 5-8), three were
cases treated previously by the author — one each of tetragonal (urea), cubic (copper), and
hexagonal (water ice). The remaining example (Table 8) is cubic methane hydrate, which

had not been treated previously.

B. Discussion of the bound optimization method

It should be clear from the detailed mathematical structure presented here that the
self-consistent calculations are straightforward, while the bound evaluation methods require
some careful choice of search procedure. For self-consistency, we require BY = 0 = B,
which might seem like a hard condition to achieve, but in practice it is quite easy to reach
by establishing a straightforward iteration scheme. It only takes a very few iterations to find
that the values of B; and B, approach numerical values on the order of 1072 and below,
having started at values comparable to the input stiffness values. On the other hand, the
main requirement for the HS bounds themselves involves finding values such that the key
constraint matrix [found in Eq. (24)] 9f = 0. The difficulty with this is certainly not
that zeroes are hard to find, but rather that there are multiple zeroes. This fact does not
mean that the optimal solution is nonunique, but rather that it is important to choose the
right zeroes corresponding to the best choices of upper and lower bounds, which are unique.

This process goes smoothly if we have the proper information at hand: in particular, we



need to know what the signs are of the various quantities previously defined that need to be
positive or negative semi-definite. These quantities are the six principal minors [see (26)] of
the appropriate 3 x 3 matrices X*. If we find a region in which these minors are all (say)
positive and then some of them become negative as we pass a certain boundary, then we
have found a candidate for one of the HS bounds (and it is necessary that this transition
occurs simultaneously for both Kﬁs and Gﬁs). Similarly, if the values of these principal
minors are all negative and some become positive at some boundary, then we have found
another pair of candidates for values for the bounds. As we scan through these sign changes,
it becomes clear that the best choices for the bounds are the ones that happen closest to
the well-defined self-consistent values K§. and G%.. It can and does happen that there
are several of these sign changes near the vicinity of the self-consistent values; and then the
algorithm for choosing the best bounds is also clear: the ones that occur closest to K§. and

G without violating the constraints are the values we want.

C. Discussion of results

Two examples considered in Tables 1 and 2 were also considered by Watt,® although
the data sources were not the same as the data used here. For comparison, Watt’s Voigt-
Reuss-Hill values (in GPa) for Danburite were K,,;, = 91.7 and G,,, = 64.1, whereas
the corresponding values presented here in Table 1 are K., = 91.7 and G,., = 64.2.
Similarly, for Forsterite, Watt’s Voigt-Reuss-Hill values (in GPa) were K,,, = 129.1 and
Gy = 81.6, whereas the corresponding values presented here in Table 1 are K., = 129.5
and G,., = 81.1. So Watt’s values and ours agree quite well, despite the use of somewhat
different values for the input constants. Middya and Basu'# also considered Forsterite, and
found the self-consistent estimates (in GPa) to be Kgo = 128.8 and Ggo = 81.5. Our
results for Forsterite are also comparable, being Ko = 128.5 and Ggoc = 80.4 GPa. The
only differences anticipated between these calculations of the self-consistent estimates in
the previous work and the present work are those due to differences in input values of the
elastic constants themselves. However, there are anticipated to be some more significant
differences in results for the HS bounds between Watt’s approach and our approach, due
to the introduction here of the additional comparison moduli z; and z5 (Appendix B) that

were not considered by Watt.



Although the two OsNy (osmium nitride with marcasite crystal structure) examples (GGA
and LDA) in Tables 3 and 4 are nominally for the same material, the results differ substan-
tially. We can quantify these differences by considering first the percentage discrepancies
between input values for the ¢;;’s: LDA results are higher than GGA results in all cases.
The differences for c¢i1, ¢a9, ¢33 ranged from 12-14%; differences for c1o, ¢13, o3 ranged from
17-19%; while differences for cu4, cs5, cgs ranged from 6-12%. Computed polycrystal values
for bulk moduli differed by about 15%; for the shear moduli by 9-11%; for the auxiliary
constants (i.e., Gl;;, G¥sp, 71, T2), the range was about 11-12%. Thus, the range of the in-
put (data) differences was about 6-19%, while the range for the output (averaged) constants
was narrower, being about 9-15%. So the averaging process does tend to narrow the range
of these differences by about a factor of 2 for this particular set of input elastic constants. It
would obviously be of some practical concern if the averaging process made these difference

larger, rather than smaller.

D. A restatement and evaluation of the methods developed

Voigt and Reuss bounds are determined by simple formulas depending only on the stiffness
(¢ij) or compliance (S;;) matrix elements of the anisotropic rock crystals. These easy-to-
compute Voigt (19)-(20) and Reuss (21)-(22) bounds on both bulk (K') and shear (G)) moduli
can be viewed as establishing a rectangle in the two-dimensional space (G, K), since — if the
point (Gr, Kg) falls at the lower left-hand corner of a rectangle — then the point (G, Ky)
lies at (and defines) the upper right-hand corner of this rectangle. All the modulus values of
interest in this paper must always fall inside this rectangle. In particular, the self-consistent
estimator (G*, K*) falls somewhere in the middle, but seldom (if ever) lies exactly at the
center of this rectangle. In fact, the center point of the rectangle is exactly the Hill estimator
(Gu, Kg) based on the arithmetic means of the shear and bulk moduli. But this point is
only a very crude estimate of the points of most interest — both of the Hill averages G i and
Ky, both typically being somewhat too high in value.

The next easiest point to compute is actually the self-consistent estimator (G*, K*). This
point will also always fall within the Voigt-Reuss rectangle, but again not necessarily exactly
in the middle. Virtually the same equations that determine these self-consistent estimators,

also determine the Hashin-Strikman bounds on G and K. However, these equations for the



HS-bounds actually may be used to determine many effective constant estimates, depending
on exactly what algorithm is used to explore the values within the Voigt-Reuss rectangle
already defined. So one method (which is NOT the one used here) would be to evaluate
all points on some fine grid within this rectangle, and then choose the values that produce
the best results for the Hashin-Shtrikman bounds. Although this is clearly another viable
searching approach, it was not the one pursued in the present work.

Other researchers have used more complicated search routines, instead of the simplified
method proposed and employed here, which we will term (for presumably obvious reasons)
a “shooting method.” The method as in outline first finds the self-consistent values G*
and K*, which are themselves easily and uniquely determined. The self-consistent values
must also by their nature also fall within the smaller HS rectangle determined by the points
(Grs, Kns) and (Gg, Kipg).

The entire Hashin-Shtrikman rectangle itself must also necessarily lie within the Voigt-
Reuss rectangle. So, if we shoot towards the self-consistent point (G*, K*) from anywhere
on the boundary of the Voigt-Reuss rectangle, we must cross the HS-rectangle boundary
somewhere along the way. When we cross such a boundary, sign changes occur in the
factors that we monitor, indicating that the values of the functionals of interest are passing
through zero. Hence, we can map out this boundary defined by Hashin-Shtrikman bounds
while taking a relatively small number of “shots” towards the self-consistent point near the
middle of the Voigt-Reuss rectangle.

We need to make several of these shots to be sure that we have located the four HS
boundaries — i.e., Gy, Gg, Kgg, Kirg — in this two-dimensional space, and not some
spurious solution of these equations. (This reasonable concern did not ever appear to be-
come a problem in actual practice.) Other researchers who have attempted to find the
HS-boundaries have typically used global searching techniques, and these methods — while
certain to locate the boundaries eventually — are not usually as efficient as the shooting
method proposed and used here. Furthermore, if these searching methods are terminated
too soon, they may in fact miss the optimal bounds. So it is the existence of the uniquely
defined and quite easily determined point (G*, K*) that makes the present shooting method

both viable and attractive.
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V. SUMMARY AND CONCLUSIONS

A modification of earlier methods has been developed for determining effective elastic
constants in polycrystals composed of crystalline grains each of which has orthorhombic sym-
metry or higher. The methods employed are in fact fairly well-known, since the main ideas
used are based on the early work of Hashin and Shtrikman,® Hill,'® Peselnick and Meister,®
Gubernatis and Krumhansl,'! Watt and Peselnick,” Willis,'? Watt,® Middya and Basu,*
and Berryman.!” There were however two innovations added to the known approaches to
be found in these references. The first innovation was to introduce the concept of two effec-
tive shear moduli for the comparison materials needed by the Hashin-Shtrikman approach
(see Appendix B) in orthorhombic polycrystals. These two effective shear moduli are nei-
ther eigenvalues, nor normal shear moduli in any usual sense, but they nevertheless supply
reasonable comparison numbers for use in the search routines that are necessary to deter-
mine (i.e., piece together) the complicated boundaries of the Hashin-Shtrikman bounding
construction for orthorhombic materials.

In particular the smaller of these two comparison shear moduli is typically much smaller
than all the other pertinent shear moduli present, and thus widens the search region for the
HS lower bounds. Similarly, the other comparison shear modulus is sometimes larger than
all the other shear moduli in the system, which then widens the search region for the HS
upper bounds.

The second innovation revolves around the fact that some of the more symmetric elastic
materials, including hexagonal, tetragonal, and cubic symmetries (but not trigonal), can be
considered special cases of orthorhombic symmetry. Therefore, just one (for the orthorhom-
bic case) routine can be used to determine constants for all these four types (including
orthorhombic itself of course) of elastic polycrystalline media. It has then been shown ex-
plicitly in these case studies that this approach never leads to worse HS bounds, and can
actually lead to somewhat tighter bounds for some of the materials considered. All the other
constants found, including the self-consistent estimates and the Voigt and Reuss averages,
are not altered by using the orthorhombic code for these purposes. In three cases stud-
ied, direct comparisons were made to previously published results of the present author on
tetragonal, cubic, and hexagonal media. Results were found always to be consistent, and

often identical (to a precision consistent with the available experimental input data on the
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elastic constants themselves).

One overall conclusion reached is that the self-consistent results always lie within the
bounds, as would normally be expected. This result, together with the fact that the self-
consistent iteration process for these estimates is itself always very robust and quickly con-
verging, has suggested that these same self-consistent values can be used to simplify the
search routines used for locating the HS bounding values and/or curves. This approach
was the one used here and was found to be a very effective tool for speeding up the search

processes for the HS bounding curves and limiting modulus values.
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Appendix A: Simplified results needed for special cases, including tetragonal,

hexagonal, and cubic elastic materials

In earlier work the author has discussed the Peselnick and Meister® and the Watt and
Peselnick” bounds for hexagonal, trigonal, tetragonal, and cubic symmetries. It seems worth-
while to make note of some simplifications in these bounding methods that can be understood
now, especially since similar simplifications apply to the main case being studied, which is
the orthorhombic class of elastic symmetry.

Parameters needed to optimize Hashin-Shtrikman bounds can be taken to be K1 and G+,
where the 4+ symbols designate the best comparison material values for the upper bounds

+ and lower bounds —, with the K1 being bulk moduli and G+ being shear moduli of the
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comparison materials needed in the Hashin-Shtrikman approach. Normally K, and G are
used together, and K_ and G_ are used together, without mixing of the subscripts in the
same formulas. An exception is the limit of the self-consistent estimates in which case only
one set of constants applies, and we typically label the starting values as Ky and Gj, and
the final results as K* and G*, although Ksc and Gg¢ or some variant thereof may also be
used by some authors. The HS bounds themselves will be labelled K7 and G734, although
other labels are sometimes also used to give credit to the workers who obtained bounding
results for specific crystal symmetries.

Formulas for the Hashin-Shtrikman bounds in the notation of Peselnick and Meister® take

the form: . .
Ky = Kt 75 5:( o _iG:ff) (6)
and
+ By
Ghy = Gx + T (7)
The Hashin-Shtrikman bounds themselves are then given exactly by Kfls = KﬁM and

GT¢ = GF,,. Here Ky is the Voigt average of bulk modulus, and the remaining constants
are defined carefully in Appendix B. Definitions of G¢;, depend specifically on the crystal
symmetry, and examples will be provided later in this Appendix.

It is worthwhile noting that two additional quantities that essentially always play a role
in the HS bounds and also in the self-consistency conditions are the quantities 4G4 /3 and

the combinations:
_ G+ (9K +8Gy)

G+ = 6(K+ +2G2)
These quantities have been shown by Hill,'® Willis,!

(8)

2 and others (including Olson and
Avellaneda'®) to be important factors specifically for comparison materials having spher-
ical shapes. Such spherical shapes are the ones typically assumed, whether explicited or
implicitly, in such work on polycrystals. The source of these contributions can probably
be most easily understood by considering Eshelby’s work!'® on elasticity of composites con-
taining ellipsoids. In such cases, it is again exactly such factors that play the same type of
role in the formulas for effective elastic constants.!” If the comparison materials have other

shapes, then other combinations?® of constants can come into play, but the spherical shapes

have been the only ones usually considered for polycrystal studies to date.
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Parameters aq and (i that appear repeatedly in the PMW (Peselnick-Meister-Watt)

works®” can be related to the Eshelby results by rewriting them in the form:

1
—— =K. +4G4/3 9)
(O
and
1
——— =G . 10
5 ++C (10)
Another combination of these two that also frequently appears in the formulas is
-3
e = Lﬁi‘ (11)

9

The reason for pointing out this similarity across the different applications is that the
resulting rather complicated formulas often collapse in unexpectedly simple ways if we look
for formulas of the right type. For example, the Hashin-Shtrikman bounds for bulk modulus
found by PMW can be rewritten as:

L Kv(Gly 1 G)

, (12)

which is valid for hexagonal, tetragonal, and also trigonal (not otherwise considered here)
crystal structures. The quantities G, (G, ;) are the uniaxial shear energies per unit volume
for a unit applied shear strain (shear stress), whose main compressive strain (stress) is applied
to the grains along their axes of symmetry [also see Berryman!” for more discussion]. (Note
that cubic symmetry is special in this regard, since it has a well-defined bulk modulus — so
neither bounds nor estimates are required for bulk modulus in this case.) Similarly, if we
add (4 to both sides of (7), then we find that this result can be simplified to read:

I 1-By/(Ge+¢)

_ , 13
Goy + e G+ + (¢ (13)

which is valid for the same three crystal symmetries. After determination of the B factors,

these results imply for hexagonal crystals that

1 1 1 —Oé:t(KV —Ki) 2 X 2 (14>
Gi,+C b Glp+ G+ (Kv—Ki)  cut+Ce o coot (e
where GY;p = (c11 + ¢33 — 2¢13 — ¢6)/3. For tetragonal crystals, we have
1 1 1l—oar(Ky — K 1 2 1
= =By~ Ka) + + (15)
G + Ca 5 Glp+ Gt (Kv—Ky)  ps+Ce cutC oot (e
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where u3 = (¢11—¢12)/2, and Gipp = (c11+2¢c33+c12—4¢13) /6. And similarly, for polycrystals

of cubics, we have that

1 1 2 3

= - + ,
sz’*‘gﬂ: 5 GfoJrCi Cag + Cx

(16)

where Gpp = p3 = (c11 — c12)/2.

For the main results of the present paper, we also need the formulas for the shear modulus
of orthorhombic media. The general forms shown in (7) and especially (13) hold without
change for orthorhombic media, but the formula for the main factor By for shear modulus

bounds and estimates is now given by

15B;|: _aT—bT 4B (2dF —2¢F —eF) 43y (dF —cFfeT)far foQF
5 =

1—a*B+—9v+ (Kv—K+)+D+ (17)
+ + G++C+ caa+C+ cs55+C+ ce6t+C+ ) °

The constants aw, O+, and 74, appearing here, were defined earlier in (9), (10), and (11).
The term Dy is given by

+ + + OéiﬂiQi
Dy = Be (B + 274) (T —d¥) — 2eFBeyy — —s (18)
The Voigt average of the bulk modulus is
1

KV = § [011 + C29 + C33 + 2(012 + Co3 + 013)] . (19)

Similarly, the Voigt average of the shear modulus is

1

Gy = — [e11 + a2 + €33 — €12 — c23 — 13 + 3(caa + ¢35 + Co6)] - (20)

15

For completeness, we also note that the corresponding Reuss averages?! for orthorhombic

crystals are determined by

1
K— = (511 + 522 + 533) + 2 (523 + 531 + S12) (21>
R
and
15
G— =4 (Sll + 522 + 533) —4 (523 + 531 + S12) +3 (S44 + 555 + S66) ’ (22>
R

where the S;;’s are the compliance matrix elements, related to the stiffness matrix elements

by the matrix equation S = C~1.
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Some of these constants are defined in terms of the comparison matrices X* having

matrix elements:

Xii=cu— Ky — %G:b X3 =c2— Ki+ %Gi,
Xg =29 — Ky — 3G+, Xi5 = c13 — Ki + 2G, (23)
X;,E = C33 — K:t - %Gi, X;é = Co3 — K:t + %Gi

Then the determinant of this matrix is given by
OF = det (XF) = X35 X5 X5 + 2X5 X X1 — X5 (X5)" — Xa5 (X55)" — X5 (X5)* . (24)
The remaining constants appearing in (17) are given by

at = X+ X5+ X5, bt = X5+ X5+ XE,
= XEXE + XEXE + XEXE, d* = (X5)* + (X5)" + (X5)°, (25)
et = XEXE + XEXG + XEXE —XEX5 - XEXT, - XEXG.

[Notational clarification: The symbol + always appears here as a subscript for scalar quan-
tities, except for the scalar Hashin-Shtrikman bounds themselves, where the bound label is
used as a subscript. The symbol + appears as a superscript for all quantities that are them-
selves matrix elements (therefore having additional subscripts), and for quantities that are
combinations only of such matrix elements. For scalar quantities that are themselves com-
binations of scalars and also quantities derived from matrix elements, the subscript version
is again used — except as already noted for the scalar bounds themselves.]

The pertinent conditions on the matrix elements of X* come from the requirement of
either positive semi-definiteness or negative semi-definiteness. (Positive or negative definite-
ness implies that zero is never attained; positive or negative semi-definiteness means that
zero limiting values are permitted.) These requirements mean that all the principal minors of
the determinant QF must be either simultaneously positive semi-definite, or simultaneously

negative semi-definite. Thus, the requirements are for positive semi-definiteness are:
Xt 20, X{1X5 — (X7p)?
Xip 2 0, X5 Xg3 — (X55)°
Ny > 0, Xgg X — (X15)?

v

(26)

Vv
o o o

v

and QT > 0. For negative semi-definiteness, all the superscript pluses are replaced by

superscript minuses, and the > symbols are replaced by <’s.
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Appendix B: Two effective shear moduli for comparison materials in granular poly-

crystals of orthorhombic elastic materials

Elastic materials generally have six modes (which we treat as eigenvalues in this dis-
cussion), one of which may be viewed approximately as a bulk mode (i.e., an eigenvector
whose elastic response is dominated by pure compression or extension, but may still have
a small component of shear) while the other five modes are mostly dominated by shearing
responses of the elastic system. The Voigt and Reuss averages for overall shear response for

orthorhombic media may be defined by:

1
GV = g [QGfo —|— Cy4 + Cs5 —|— 066} (27)

and

1 2 1 1 1
e —+—+—. (28)
Gr 5 |Gy cuu G5 Ces

We are using these forms as the first step in a process of defining two effective composite

shear constants for polycrystals of orthorhombics:

1
and
3 _ 2
=— = %|C11(C22 + ¢33) + C22(C33 + ¢13) + c33(C11 + C12
Gers alen( ) ( ) ( ) (30)

— c13(c13 + c12) — c1a(c12 + €a3) — caz(cas + c13)],

where the factor A is given by
= (C11C22C33 + 2C12C93C13 C11Co3 C22C15 C33C19,

which is the pertinent determinant of the upper-left 3 x 3 segment of the elastic constant
matrix. Equations (27) and (28) are exactly the usual definitions of the Voigt? and Reuss®
averages for shear if we substitute the expressions (29) and (30) into these formulas. Formula
(30) could also be written more simply in terms of compliances, but to do so requires
inversion of the stiffness matrix, and this has already been accomplished explicitly by using
the expressions in the present equation. We will follow Watt”® in this regard, while trying
to simplify the notation somewhat as we go by introducing these two useful combinations

of shear stiffness constants: G¢;; and G .
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The two constants are not however our ultimate goal in this process. Instead they provide
an intermediate step in the task of finding useful comparison values for the Hashin-Shtrikman
bounding process. From the structure of equations (27) and (28), we see that these two
constants each play the role of a different type of average of two other shear moduli. We will
call these two moduli z; and x5. They are not intended to represent typical shear moduli,
and should not be interpreted as such. Instead, they are helpful constructs that can be used
in the process of determining Hashin-Shtrikman bounds on shear modulus for the polycrystal
systems of interest. We need them, because without them we are not able to explore the full
region that should be spanned by comparison materials. These two quantities are defined
by the following statements:

2GY;; = a1 + 79, (32)

while
1 1

2

@ = o + o (33)
Thus, we are treating G¢;; and Gy, respectively, as the Voigt and Reuss averages of the
two unknown shear-like quantities x; and x5. We will call these two constants “effective
comparison shear moduli.” We find that their values are significantly different from each
other and also from the two quantities from which they are derived in all cases considered
here (see the examples in Tables 2, 4-8). Thus, they provide usefully different measures of
the possible range of shear modulus to be explored in the process of locating the boundaries
needed ultimately to determine the Hashin-Shtrikman bounds themselves. This feature helps
to expand the search region for the optimal Hashin-Shtrikman bounds.

To determine the values of x; and x5, we also need to solve the quadratic equation found

by multiplying (32) and (33) together, giving:
el g4 Tl 22 (34)

Then, with the definitions R = G¢;,; /GE ppand 7 = 13 /o, while also defining the quantity
C =2(2R - 1), so we have

re=C£VC?—1. (35)
It is easy to see that R > 1 always holds and also that C' > 2, so the argument of the radical
is always non-negative, and ri5 > 0 for either choice of the sign in front of the radical (since
C > +/C% —1). Thus, we have

Ty = 2GYsp /(1 +112) (36)
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and

T1 = T1279. (37>

The roles of x; and x5 are reversed by making different sign choices in (35), but we are
interested in both these quantities, so this freedom actually makes no difference to us.
Examples of the values determined this way are shown in all the Tables of examples (i.e.,
Tables 2, 4-8).

As is discussed more fully in the main text, the values of x; and x5 have been found to
differ substantially from the values of both G[;; and G¢;;, thus providing more insight into
the total range of behaviors being experienced by the orthorhombic system in the presence

of applied shear stress.

Appendix C: Sources of single-crystal elastic data

The elastic data for orthorhombic materials considered in Tables 1 and 2 for Aragonite,
Danburite, Enstatite, Forsterite, and Topaz were all taken from Bass.?? The data for Rochelle
salt, Sulfur, and a-Uranium in Tables 3 and 4 were also taken from Bass.?? The same values
can also be found in Musgrave?® and Huntington.?* The two examples of OsN, having
marcasite crystal structure considered in Tables 3 and 4 were the results of first-principles
physics calculations using the GGA (the generalized gradient) and LDA (the local-density)
approximations in work by Wang et al.?®

In three cases (Tables 5, 6, and 7), the examples were purposely chosen from among the
cases studied previously by the author.!” These cases include: tetragonal Urea for which the
data came from Fischer and Zarembowitch,?® cubic Copper for which the data were taken

> and hexagonal H,O ice for which the

from the original paper by Hashin and Shtrikman,
data were obtained from Simmons and Wang.?"

The data for Methane Hydrate (Table 8) were taken from Shimizu et al.?®

Appendix D: Significance of self-conisistent estimates

There are two main issues concerning the worth of self-consistent estimates of the overall
elastic constants. The first issue is whether or not any special significance should be accorded

such estimates, and in particular should we presume that the self-consistent estimates are
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actually the best possible estimates of the overall bulk and shear moduli of the polycrystals
studied here. The answer to this question may not be universal, but the more general
answer in our present context is surely that the self-consistent estimates, while good and
definite estimators, should NOT be viewed as the “true values” of the effective bulk and
shear moduli of such polycrystals. They are very reasonable estimates (lying always between
the known rigorous bounds — as will be shown next), but should not be given any more
special interpretation than this. Indeed, if the self-consistent estimates were always the
true values, there would clearly be no practical reason to study the bounding methods.
However, by combining the information contained in the self-consistent estimates and the
bounds, we have not only these estimates themselves, but we can also put rigorous error bars
around these estimates using the bounds. In general, we expect that different polycrystalline
realizations of the same material may have a range (though perhaps not a very wide range)
of behavior due to differences in the random microstructural arrangements that have not
been explicitly accounted for in these models. There can be significant consequences of local
ordering that affect the overall response even through the resulting polycrystal behavior
nevertheless remains macroscopically isotropic.

A second question concerning the significance of the self-consistent estimators is whether
or not they are actually unique, and also the related question of whether or not they are in
fact guaranteed to lie between the rigorous bounds. The answers to both these questions
are: yes they are unique, and yes they always lie between the bounds.'*!7

To demonstrate these facts in a case that is simple enough to analyze (but also easily
generalized to the other cases studied in this paper), we will now consider only simple cubic
materials. This choice is most convenient from the point of view of simplifying the math,
because polycrystals of grains of the same cubic elastic materials all have uniquely defined
average bulk moduli, which are determined by the identity 3K = c11 + 2¢12. So all the
bulk modulus bounds collapse to this constant K value for polycrystals having well-bonded
simple cubic grains of the same type, and therefore need not be analyzed further. To see
how this works out in the equations, note again that

L Bv(Gp+ &)

(38)

But since we always have Kpy, — Kgr as ( — 0 and Kpy — Ky as ( — oo, while

Kr = Ky = K, we must also have (which is easy to verify) that G, = G¥;; = (c11 —c12)/2.
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So the bulk modulus bounds and estimates all collapse to the same constant K, while at

the same time we have the shear modulus bounds:

1 1 2 3

= +
Gpu+¢e 5 |Glr+C  cut (e

(39)

where 0 < %G_ < (4 = GL(9K + 8G41)/6(K +2G4) < %GJF < o0. The next-to-final
inequality follows in the limit when G, — some large, but still finite value.
Now it is also known!?'%2? that the self-consistent shear modulus G* for simple cubic

materials satisfies the cubic equation:
8(G*)? + (9K + 4G ;) (G*)? = Beau(K + 4G, 5)G* — 6cu KGYyy = 0. (40)

In fact, it is straightforward to show that this result follows from (39) by replacing G4
everywhere (including within the definition of (1) by G*. This cubic equation has three real
roots. Because the coefficient of (G*)? is positive while the final constant term (independent
of G*) is negative, it follows that these three eigenvalues cannot all have the same sign. The
final term also shows then that only one of the eigenvalues is positive, while the other two
are necessarily negative. Thus, it is important to recognize that the only positive root is
also the only physically pertinent root of (40), as well as being the one consistent with (39)
for 0 < (4 < 0.

In particular, we can rearrange (39) into the form:

Gy =T(¢), (41)
where .
1 2 3
r = |- + — (s 42
(C+) 5 (Ggff +Cx  cut Ci) Ci )
This rearrangement is useful to us because
d 6 1 1Y
() = — [T(¢) + ¢ — >0, 43
L0 = 500+ (GZ”H c44+<> > (13)
and also because, as the argument (1 goes to 0 or co, the results are, respectively:
12 3\
(¢ =+ — =G _—0 44
(C ) 5 (G:ff + C44>] R, as C — U, ( )
and
1
() — = (2GYs 4+ 3cas) = Gy, as (4 — o0, (45)
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according to the definitions given in (28) and (27), since here cg5 = 55 = Cua.

Thus, for cubic symmetry, we find that the only pertinent functional I'(¢) is a monotonic
function of its argument, and ranges from the Reuss average G'r for small arguments to
the Voigt average G for large arguments. We can infer from these facts that there exists
one unique ( corresponding to each value of shear modulus G in the range Gr < G < Gy.
The equations already quoted therefore guarantee that there exists a value of G = G* at

1229 ig considerably more

which ((G*) = ¢*. Proving this kind of result in more general cases
difficult than for the cubic example because the resulting polynomial can be of much higher
order than 3. But nevertheless it is straightforward to check these facts numerically, as has

been done repeatedly in the examples presented in this paper.
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TABLE 1. Elastic stiffness constants and Voigt-Reuss-Hill averages of the bulk (K) and
shear moduli (G) for the orthorhombic crystals: Aragonite (CaCO3), Danburite
(CaBySis0g), Enstatite (MgSiO3), Forsterite (MgeSiOy), and Topaz (Aly(F,0H)2Si0y).

References for the data are found in Appendix C. All constants are in units of GPa.

Ca003 CaB281208 MgSIOg Mg28104 AIQ(F,OH)28104

cn 160.0 131.0 2247 328.0 281.0
C2 87.2 198.0 1779  200.0 349.0
C33 84.8 211.0 213.6  235.0 294.0
C12 37.3 50.0 72.4 69.0 108.0
C13 1.7 64.0 04.1 69.0 132.0
Ca3 15.7 34.0 22.7 73.0 131.0
Ca4 41.3 64.0 77.6 66.7 125.0
Cs5 25.6 29.8 75.9 81.3 84.0
C66 42.7 74.9 81.6 80.9 88.0
Kyn 469 91.7 107.8  129.5 167.4
Gurn 385 64.2 75.7 81.1 114.8
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TABLE 2. Computed effective elastic constants for the orthorhombic crystals: Aragonite
(CaCO3), Danburite (CaB2SisOg), Enstatite (MgSiOj), Forsterite (MgySiO,4), and Topaz
(Aly(F,0H),Si0y4). All constants are in units of GPa.

C&COg CaB281208 Mg8103 Mg28104 Alg(F,OH)QSlO4

Gys 37.56 63.50 75.52  80.352 114.73
Gse  38.31 64.27 75.70  80.354 115.06
Gls 3835 65.06 75.71  80.888 115.09
Kyq  45.56 91.37  107.65 128.489 167.37
Ksc  46.36 91.89  107.83 128.493 167.46
Kfs 46.41 9240  107.83 128.493 167.73
Grpp 40.11 58.23 70.95  86.18 102.21
Gy 46.22 65.33 72.83  92.00 104.50

T 77.07  108.00 116.30 149.34 165.56

T2 15.36 22.66 29.37  34.66 42.44
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TABLE 3. Elastic stiffness constants and Voigt-Reuss-Hill averages of the bulk (K) and
shear moduli (G) for the orthorhombic crystals: OsNo-GGA with marcasite crystal
structure, OsN,-LDA also with marcasite crystal structure, Rochelle Salt (where RS =
KNaC4H4Og - 4H50), Sulfur (S), and a-Uranium (U). References for the data are found in
Appendix C. For OsN,, the constants were obtained by numerical methods: GGA =
generalized gradient approximation; LDA = local-density approximation. All constants are

in units of GPa.

GGA LDA
OsNy OsN, RS S a-U

cnn 744.0 835.0 25.5 24.0 215.0
c2 913.0 1038.0 38.1 20.5 199.0
c33  981.0 663.0 37.1 48.3 267.0
cie  178.0 212.0 14.1 13.3 46.0
ci3 277.0 323.0 11.6 17.1 22.0
Ca3 88.0 105.0 14.6 15.9 107.0
cae 134.0 142.0 134 4.3 124.0
¢ 340.0 381.0 3.2 &7 73.0
cee 175.0 189.0 9.8 7.6 74.0
Ky, 364.2 418.3 19.7 19.1 112.9

Gy 225.0 2472 82 6.7 84.3
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TABLE 4. Computed effective elastic constants for the orthorhombic crystals: OsNy-GGA
and OsNsy, both having the marcasite crystal structure, Rochelle Salt (RS =
KNaC,H4Og - 4H50), Sulfur (S), and a-Uranium (U). GGA = generalized-gradient

approximation; LDA = local-density approximation. All constants are in units of GPa.

GGA LDA
OsNy OsN, RS S a-U

Kr 359.0 412.6 19.3 17.56 111.3
Kj;q 363.4 417.9 19.7 18.76 112.5
Kgc 364.5 418.6 19.7 18.85 112.7
K} 365.4 419.6 19.8 18.87 113.1
Ky 369.3 424.0 20.1 20.60 114.6
Grp 20722256 7.2 6.17 80.7
Gpe 221.8 2436 84 6.61 83.6
Gsc 22412462 85 6.64 84.1
Ghe 22732501 8.6 6.66 84.9
Gy 2428 2688 9.3 7.22 87.9

rrp 249.5 277.6 9.6 6.03 74.9
GY;, 282.5 316.0 10.1 7.75 84.3
z1 4684 524.9 16.2 13.32 139.6

T 96.6 107.1 3.9 2.18 29.1
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TABLE 5. Measured and computed effective elastic constants for the tetragonal crystals
and polycrystals of urea [CO(NHz)s]. References for the data are found in Appendix C. All

constants are in units of GPa.

Urea CO(NH,),

Elastic Previous Present

Constants Results Results

en 217|Kgp 116 |Kg 116078
cn 89 |Kpy 126 |Kjg 14.8104
a3 240 |[Kge 165 |Kge 164761
css 532 |Kihg 187 |Kig 17.5505
ey 626Ky 234 |Ky 23.3778
cgs 045|Gr 167 |G  1.6707
K 165 |Ghe 251 |Gpg 34755
G 391|Gsc 391 |Gse 3.9137
Ghy 433 |Ghy 4.1640
Gy 524 |Gy 5.2406

v 6.6167
xy  11.7309
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TABLE 6. Measured and computed effective elastic constants for the cubic crystals and
polycrystals of Copper (Cu). References for the data are found in Appendix C. All

constants are in units of GPa.

Cu Copper
Elastic Previous Present
Constants Work Results

e 1710\ Kp 1380 |Kp 1383
c1y 122.0|Kp¢ 138.0 |Kj4 1383
cu 69.1|Kse 138.0 |Kse 138.3
Ky 1380 |Kjq 138.3
K 138.0|K, 1380 |Ky, 138.3
G 456|Gr 400 |Gr 39.98
Ghe 448 |Ghg 4623
Gsc 463 |Gse  46.30
Ghe 472 |GhLs 46.32
Gy 513 |Gy 51.26

v 24.60
vy 38.87
zp  10.33
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TABLE 7. Measured and computed effective elastic constants for the hexagonal crystals

and polycrystals of H,O ice. References for the data are found in Appendix C. All

constants are in units of GPa.

HyO Ice

Elastic

Constants

Previous

Work

Present

Results

C11 13.85
7.07

C12

C13 5.81

14.99

C33

Cq4 3.19

3.39

Ce6

K 8.89

G 3.52

Krp 8.89
Ky 8.89
Ksc 8.89
Kjg 8.89
Ky 8.89
Gr 3.48
Grs 3.52
Gsc 3.52
G 3.52
Gy 3.55

GYyp 4.61

Kr
Kys
Ksc
Kis
Ky
Gr
Grs
Gsc
Gus
Gy
eff

v
eff

xy

X2

8.8966
8.8966
8.8966
8.8966
8.8967
3.4871
3.5180
3.5194
3.5231
3.5540
4.6099
4.6100
9.2200

2.4705
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TABLE 8. Measured and computed effective elastic constants for the cubic crystals and
polycrystals of Methane Hydrate (ideally CHy - 5.75H,0) at P =1 atm and T' = 270 K.

References for the data are found in Appendix C. All constants are in units of GPa.

Methane Hydrate

Elastic Previous Present
Constants Method Method
cp 12.8 Kr 8.41 |Kr 8.41

¢y 6215 Kng 841 |Kyg 841
cu 36 | Koo 841 |Kgo 841
Kfy 841 |Kj, 841
K 841 | Ky 841 |Ky 841
G 354 | Gr 3470 |Grp 3470
Gps 3474 |Gpg 3.474
Gso 3474 |Gso 3474
Ghe 3474 |Ghg 3.474
Gy 3477 |Gy 3477

py 3203 GY, 3203 |Grp 3.293

GYyp 3.293
ro 1.39
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