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Abstract

Molecular interactions and molecular distributions are at the heart of the supercritical behavior
of fluid mixtures. The distributions, i.e. structures, can be obtained through any of the three
routes: (i) scattering experiments, (ii) Monte Carlo or molecular dynamics simulation, and (iii)
integral equations that govern the relation between the molecular interactions u(r) and the
probability distributions g;;(r). Most integral equations are based on the Omstein-Zemike re-
latdon connecting the total correlation to the direct correlation. The OZ relation requires a
"closure™ equation to be solvable. Thus the Percus-Yevick, hypernetted chain, and mean
spherical approximations have been proposed.

We outline the numerical methods of solution for these integral equations, including the Pi-
card, Labik-Gillan, and Baxter methods. Solution of these equations yields the solvent-solute,
solvent-solvent, and solute-solute pair correlation functions (pcf’s). Interestingly, these pcf’s
exhibit characteristical signatures for supercritical mixtures that are classified as "attractive" or
"repulsive” in nature. Close to the critical locus, the pcf shows enhanced first neighbor peaks
with concomitant long-range build-ups (sic attractive behavior) or reduced first peaks plus
long-range depletion (sic repulsive behavior) of neighbors,

For ternary mixtures with entrainers, there are synergistic effects between solvent and cosol-
vent, or solute and cosolute. These are also detectable on the distribution function level.

The thermodynamic consequences are deciphered through the Kirkwood-Buff fluctuation in-
tegrals (G;;) and their matrix inverses: the direct correlation function integrals (DCFI's).
These quantities connect the the correlation functions (microscopic quantities) to the chemical
potential derivatives (macroscopic variables) thus acting as "bridges" between the two Weltan-
schauungen. As a consequence, the partial molar volumes, the isothermal compressibility, and
the solubility can all be expressed in terms of the G;; and the DCFI's. Practical implications
of these connections are that in selecting and designing extractive supercritical agents, one can
predict the attractive or repulsive behavior, the appropriate solvent-solute pair, possible syner-
gism, and P-T-x ranges that are operable for the given extraction,

In addition, behavior of supercritical mixtures near an adsorbing wall can be analyzed by den-
sity profiles gencrated by the inhomogeneous Omnstein-Zernike type integral equations. This

has significance on supercritical fluid chromatography. " f iR N
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formulas; and (iii) these thermodynamic properties are used to characterize the supercritical mixtures.

In the following, the sections are structured to first introduce the integral equations. The distribution
functions are related o the thermodynamics through the Kirkwood-Buff solution theory. Then the
numerical methods for solving the integral equations are outlined. These techniques are applied to pro-
duce the solvent-solute and solute-solute pef and their characteristics are ascertained for attractive and
repulsive SCF. The thermodynamic properties arc examined using these pcf. We not only examine
binary supercritical mixtures, but also ternary systems. We exhibit the conditions under which cosol-
vent or cosolute can have cither cooperative effects, or interference with the solute. Due to the impor-
tance of supercritical fluid chromatography, we also lay the groundwork for a fundamental treatment of
the molecular distributions of components of supercritical mixtures at attractive and repulsive solid
interfaces.

2. Integral Equation and Molecular Distributions

We introduce first the terminology of statistical mechanics. For an N-body system, the Hamiil-
tonian Hy or the total energy of the system is

2

N .
e @ )= P Ve ra) @1
j=]

The classical canonical partition function is then

On
where the configurational integral, Oy, is defined as
Qv = [dr - dry expl-BVn(ry, ..., TN)) 23)

In terms of the configurational integral, the two-body density function or the pair density is given by
N(N-1
pA(ri, ) = -—(-5;—-)-] dry-dry exp[-BVp(ry, ... ,Tx)) (2.4)

The pair correlation function is then

@
girp= L ;;") 2.5)

In addition, the total correlation function A(r) is
h(rid=g(ri2) -1 (2.6)

The direct correlation function ¢ (7) is defined in terms of the Ornsiein-Zemike relation

DEFINITION: The Ornstein-Zernike Relation, The direct corrclation function, ¢ (r,ry), is defined in
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terms of the total correlation function 4 (ry,r,) through a convolution integral
h(rrp) ~c (1.02) = pf drs h(ryra)e (rar) .7

Knowing h(r;,r;) one can obtain the direct correlation function. In bipolar coordinates, the OZ equa-
tion assumes the form

r4s
he) - o) = 222 [a5 sc) [ aih) (28)

Ir-s|

Many integral equation theories for correlation functions are based on the OZ relation. Since the OZ
defines the dcf ¢ (r), it requires a second equation for unique solution of both ¢ (r) and A(r). This
second equation is called the closure relation. The closure is normally based on cluster diagrams (e.g.,
the hypernetted chain equation), functional expansions of a generating functional, or microscopic force
balances. The "exact" closure is given in terms of a bridge function B (r), i.e,,

g(r) = expl—Bu (r}+h(r)-c(rH8(r)] (2.9)

B (r) has well-defined, though difficult to evaluate, cluster diagrams. When B(r) is set (arbitrarily) to
zero, we have the approximate HNC closure.

HNC

g(r) = exp[~-Bu(ryh(ryc(r) (2.10)
For PY (another approximate closure),

B(r)=In(g(r)—c(r)) - h(r) +c(r) (211
Thus

PY
c(r) = g(r)-g@)exp (Bu(r) (2.12)

3. Distribution Functions and Thermodynamic Properties
The distribution functions are related to thermodynamic quantities through the well-known
energy, virial pressure, and isothermal compressibility (Ky) equations. However, for the study of SCF,

we are interested in the solubility, the partial molar volume (PMV), and Ky. To oblain these first two
variables, we choose another route: the Kirkwood-Buff (KB) factors, G op, defined as

Gop = Gpa = ! dr {[gua(r)—l]4nr2}= [dr hop(r) 3.1)

3.1, THE KIRKWOOD-BUFF THEORY OF SOLUTIONS

We first define the Jacobian A of the derivatives of the chemical potentials p; with respect to mole
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numbers N;, and its matrix inverse B:

AB=I 3.2)
where
V | OHa _ 1 | %a
Aap = kT [3<Np> ]r,vw,,b- kT [app ]T,p,’"‘ 33)
kT | O<N o> 0Pq
— 22 kT | e = 8 , g
Bop ™y [ Oup ]T-Vﬁnu ¢ {a”ﬂ ]“ﬁ-a PoPpCap * Paee G4

1 is the unit diagonal matrix, and 8, is the Kronecker delta. We note that the B matrix is related to the
number fluctuations in terms of G;; (thus also the name fluctuation integrals).

Kirkwood and Buff have shown that a number of thermodynamic quantities are related to these fluctua-

tion integrals: namely, partial molar volume, isothermal compressibility, and solubility. The partial
molar volume is given by (in a binary mixture of solvent 1 and solute 2)

1+ pxy(Gyy - Gy

PVa=—7 YR (3.5)
and the isothermal compressibility of the mixture
o 14+ px1Gyy + px:G o + px1X2(G11Gn = G )
piTKy = T+ prorad (3.6)
where
A=G“+Gn*2(}n. 3.7

For a binary solution of solute 2 at infinite dilution in solvent 1, x, — 0, Equations (8) and (9) simplify
to

pVs =1+pGH -Gp) (3.8)
and
pkTK7? = 1+ pPG{. (3.9

It is also possible to express the PMV and K70 (i.e., the isothermal compressibility of pure solvent) in
terms of the direct correlation function integrals (DCFI)

pIV3 = pPkTK:1 - C13) (3.10)

and
PLkTKr® = (1 - C)? (3.11)

In applications, it is convenient to define the Krichevskii parameter &,

oP

8§, = lim 3N,

N0 (3.12)

T.VN‘R2
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= pkTVy (Kr% = p%T(1 - C3)

It will also be convenient to use the dimensionless Krichevskii parameter 8," defined by
)
5, = —
prkT

(3.13)

The solubility of solute 2 in the supercritical fluid can be expressed in terms of the enhancement factor
E

P¥
= ——— 3,14
y2=E P (3.14)

The enhancement factor expresses the actual solubility over its ideal gas value. It is given in terms of
the fugacity coefficient ¢, of the vapor phase as

E = ¢;"explf dP pv5Vo, (3.15)

From thermodynamic relations, we know

In —Pa‘F Vi _ 1 (3.16)
%=[# |57 - F '
P

Or in terms of an integral over density

]
Ing, = - J-‘?&Ec;a - InZ? (3.17)

The configurational chemical potential ;" is accordingly

[
Bu’i‘=—£-4§Cf§ (3.18)

Since ¢ determines the solubility (or enhancement), it is interesting to see that according to the pres-
sure integral (eq.18), the enhancement is due to the divergence of the isothermal compressibility K7
(with a sign determined by 1-C3). But according to the density integral (eq.19), ¢ is determined by
the "short-ranged" integrand Cy; only! This is causing some current controversy on whether the solu-
bility anomaly is due to "long" or "short" range correlations,

It is appropriate here (o clarify the semantics used in literature for SCF. A thermodynamic quantity can
be "finiie" or "divergent” in the albeit narrow sense that it is free of or scaled by the isothermal
compressibility Kr, which of course diverges at the solvent CP. For example, eq.(3.10) says that the
PMV is a "divergent" quantity for SCF, since it scales as K. The chemical potential eq.(3.18) is
“finite", since it does not scale with Kz, A quantity is either "short” or "long" ranged depending on
whether it involves only short-ranged correlation functions (e.g., ¢12(r)) or it involves long-ranged
correlation functions (e.g., hyp(r)). Thus the KB factors Gi3 are long-ranged, while the DCFI are
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short-ranged quantities. Thirdly, the meaning of "local” vs. "global" quantities refers to the quantities
that are obtained by considering only the radial distance from one to two (or few) molecular diameters
(local), vs many (e.g., 20 to 50, eic.) molecular diameters (global). Thus the local density enhancement
(LDE) is a "local" quantity, because it is defined within 1 to 3 diameters of the solvent molecule. But
since the LDE involves the long-ranged h,y(r), it is actually, in our parlance, a "long-ranged"” quantity
(or better yet, quantity depending on long-ranged correlation functions). LDE is "finite", because it is
local and not scaled with Kr.

In light of our "new" definitions, what can we say about the solubility enhancement near solvent CP, a
prototypical supercritical behavior? We shall view this solubility question as a "solubility variation”
question, namely, how fast the solubility changes with respect to either pressure variations or tempera-
ture variations? because what is interesting in supercritical technology and extraction-separation is the
"rapid" change of solubilities with pressure, or tlemperature, when going across the CP. The the deriva-
tive of fugacity with respect to pressure, according to (3,16) is

din - 1
T <K= C) - % (3.19)

Or, the solubility variation is

A

5 =~ KrQ -Ci)=~Krd) (3.20)

(Note that the same result is obtained from eq.(3.17)). Thus the solubility change is driven by Kr, a
"divergent" quantity.
3.2. ATTRACTIVE, REPULSIVE & WEAKLY ATTRACTIVE MIXTURES

The affinity of solvent molecules for a solute nucleus (solvation or densification) is expressed by the
excess number, N

e« H 0 =nle=
NE' = limp] [dr hpr)=p0G33 (3.21)
This quantity can be related by matrix inverse to DCFI as
N = pkTKrC 3 (3.22)

Synthesizing these relations, we obtain for the partial molar volume and the excess number
V3 = plkTKr ~ N{* = K18 = pkTK &’ (3.23)

* =Kr (kT - 8) = plkTKr (1-8;") (3.24)

By splitting the total correlation hyy(r) = ¢32(r) + ¥y2(r), where y)5(r) is the indirect correlation func-
tion, Chialvo and Cummings have recently shown that the PMV can also entertain a "finite” contribu-
tion and a "divergent" contribution:

piVy = pVy/ 4 pfV e = (3.25)

= (1+C = CR)+pMkTKr (CP ~ C13)
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This is helpful in elucidating the solute-induced local effects when a solute molecule is introduced into
the predominantly solvent environment. Equations (3.23, 24) entail the definitions of three categories of
supercritical fluids: (i) attractive, (ii) repulsive, and (i) weakly attractive mixtures,

For negative Krichevskii parameter: 8,<0, eq.(3.23) says that V3 — ~oo as the CP of the solvent is
approached, while eq.(3.24) says that the excess number N{* —+eo. This is typically attractive behavior:
volumetric collapse upon solute addition, and large excess number buildup.

By the same reasoning, we can define the other two categories, The table below summarizes the
parameter ranges.

Table 3.1 Attractive, Repulsive and weakly Attractive Mixtures

Category [ lim V5 IimN
Attractive 058 — — oo - + 00
Weakly Attractive 158" 50 - + oo o 4 o0
Repulsive 8, >1 - + o0 - — oo

4. Numerical Solution of Integral Equations

We use the PY equation as an example for discussing the numerical techniques of solving
integral equations. In bipolar coordinates, the PY equation assumes the form

yoy=1+ 22 [assc) | aih) @

lr—s1

Eq. (4.1) coupled with the PY assumption
Cry=h(r)-yr)+1 4.2)

forms a complete set of equations sufficient for the determination of the radial distribution function
(rdf). For simple potentials (e.g., the hard-sphere potential), onc can solve (3.1) by Laplace transforms.
An analytical solution is obtained. For more complicated potentials, numerical solutions must be
sought. A number of schemes have been developed. We shall introduce four such methods below,

4.1, PICARD'S METHOD

Picard's method refers to the solution by iterations. An initial guess of the solution function is
substituted into the RHS of equation. An output function is calculated for the LHS., Next this output is
substituted into the RHS as a new input to yicld a second output. The process is repeated until certain
convergence criteria are satisfied. For PY, the convolution integral is evaluated in two parts:

y(ry =1+ 22 [ s €@ E@s)~Er=s1) “3)

and
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x

E(x)n{d: th(t) (4.4)

The direct and total correlation functions are related by
C(ry=h(r)-y(r)+1 (4.5)

The pair potential is known in advance. It enters (3.6) via the definition h(r) = y(r)exp[—Bu(r))l-1.
The algorithm of solution commences with an initial ]gucss h%r), iterating through equations (3.4-6)
until the so-called Neumann sequence A%, Al wt2 “nlr) | converges 1o a fixed point within
prescribed limits. The steps are:

1. Fix the pair potential u(r), temperature T, and density p.

2. Choose initia! guess h!%(r). The initial choice is important in the present method for numerical
convergence, especially at high densities. For dilute gas, a good guess is

g[O](r) = e-u(r)lk’f (4-6)

For dense fluids, there is no sure guidance, In practice, one builds up the densities from Jow to high,
using the previous rdf as input for the next higher density,

3. Obtain E(x) from (3.5). Here one can construct a table of E values at different x for a given h(r),
and store them in memory for later use. One may use any standard quadratures for numerical integra-
tion (or the usual trapezoidal and Simpson’s methods).

EO(x) = £ dt th'%(r) @

C(r) is obtained from

Cl(r) = yloUr e T - 1) “8)
where y[® = gClexp (u/kT)
4, Obtain y(r) from (3.4):

b
Yy =14 31:1?- [ ds sCTOUs)EQr+s) - EO1r =5 1)) .9)

Since we cannot go to infinity numerically, the upper limit b is chosen sufficiently large so that C (b) is
very small (= 1077). Normally, b = 60-100 is adequate for LJ molecules and 200 for Coulomb elec-
trostatic forces. (0 corresponds (o the molecular size).

5. To guarantee convergence, mix y!" with y!® before the the next iteration according to

Yk (r) = ay®%r) + (1 ~a)ylir) (4.10)
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where O< & <1 is the mixing parameter. In numerical analysis, this is called relaxation. For low den-
sity states, o is small (say, 0.4); for high density states, a is large (e.g., @=0.9 for p*=0.7). It is used to
insure numerical stability. The judicious choice could only be made from experience in working with
the equations.

6. This ylll is used as input in (3.8) and (3.9) to get EY and C™ (note that g!'(r)
= y I} (r Jexp[-u (r JKT1). Steps (iv) to (vi) are repeated. A sequence y!%, y!!) yB 'y " is gen.
crated. If the Neumann sequence is convergent, we shall have the solution y(r). Numerically, we
impose the Cauchy condition that if

Iy *ery — yIMryl < § for all r (4.11)

where 8 is a small number (e.g., & = 0.0001), we consider the sequence convergent and the solution
y(r) is set to y!**'(r), Other correlation functions are obtained from

g(r) = y(r)e M 4.12)
and

C(r)=g(r)-y(r) (4.13)
4.2. GILLAN'S METHQD

Gillan’s method consists essentially in dividing the pair correlation function into two parts, a
coarse part and a fine part, then applying the Newton-Raphson (NR) method to speed up convergence.
It has recently been refined by Labik et al. [3) and applied to the reference interaction site model by
Monson [4] and Enciso [5] for polyatomic molecules. A remarkable featre of Gillan's method is its
insensitivity to initial guesses for the numerical solution, a step critical in earlier methods. In addition,
for most state conditions, the convergence is fast. These advantages have made this method the prime
choice in solution of integral equations.

Earlier, Watts [6] has used a Newton-Raphson procedure on discretized integral equations. Gil-
lan divided the pcf in two parts: one slowly varying, the other small and rapidly oscillating. The out-
line of the method is given below. A computer program is also provided in the Appendices.

The iterative procedure is based on the indirect correlation function (icf) ¥(r) defined by

Xr)®mh(r)-C(r) 4.14)

(Note that the total correlation h(r) is the sum, h(r) = C(r) + ¥r), of the direct correlation C(r) and
the indirect correlation y(r)). The OZ relation in the Fourier space could be written as

2y = _PCk)?
Ytk) - pC () (4.15)

where tilde indicates Fourier transforms. In the new method the icf is divided into
Yr) =¥ (r)+ AYr) (4.16)

or in discretized form
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Yo=Y+ Ay, 417

where y; = Wr=idr), 1=0,1,2,3,...N, and 8- is the discretized grid size. ¥ is the coarse part of the icf
to be defined below, and Ay; is the fine part. The coarse part is expressed as an expansion (spectral
decomposition) in terms of a set of orthogonal basis functions P® a = 123,. with expansion
coefficients aq

Y = %: aaP® (4.18)
Thus

Y = § ag P2+ Ay, (4.19)
In addition

.Z PR Ay, =0, Vo (4.20)

In order to close the simultaneous set of equations, we need one additional relation between the icf and
the def. This is furnished by the usual integral equations. For example in the PY closure

Cry={1+¥r)f(r) (4.21)
or in HNC
C(r) = e Buirrrr) Kr) ~1 4.22)

For arbitrarily chosen initial guess ¥;, eqs. (3.23 and 29) might not be satisfied simultaneously. Thus an
iterative procedure commonly used in solving integral equations will be implemented. The procedure is
repeated until certain convergence criteria are satisfied. The iterations are a combination of the
Newton-Raphson steps (on the coarse part y; ©) and Picard steps (on the fine part Ay;). Each combina-
tion (Newton-Raphson + Picard steps) is called a refinement cycle. The final solution will be denoted
by asterisks: its expansion coefficients are {a*;,a*;,...}, and the fine part is Ay*;.

The coarse function subspace is spanned by a small number v = 10 of basis functions P, (these
functions will be specified later). Initially, we choose arbitrary but reasonable y(r) and {ag). If the
choice of {ay,a5,..) is the proper set, we have the final solution. Substitution into (3.23) and (3.29),
PY, for example, should give the same Y(r). Any difference indicates improper answer, A new sel
(ay.a3..] is to be produced via a Newton-Raphson procedure. The process is repeated until conver-
gence is achieved. Suppose that the output derived through (3.23 and 29) from the input of an initial Yi
is

Yi = § a’s PO + &Y, (4.23)

If v is the exact solution, we should have

dqﬂaa""'a’u: 0 (4.24)
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and
AY; = Ay, (4.25)

In most cases, first few iterations will not satisfy the above two conditions. To procend, we fix the Ay,
arbitrarily at the initial values and generate new expansion coefficients a, until they satisfy (3.32).
These new a's are obtained by a Newton-Raphson formula

dg=0qg ~ % (J"‘)uu dp (4.26)

where J is the Jacobian

ddg
Jop® Tar “.27)

evaluated at the old estimates {aq). The derivatives are taken at constant ay.s) and constant Ay,
These corrective iterations on the coarse part are called NR cycles. The cycles are continued until the
new a's do not change from their previous values (Cauchy condition). Let the primed quantities
represent outputs from an NR cycle, we have for the final a*'s

Y* = Z_‘,a"u P2+ AY; (4.28)

compared with the previous input

Y= a%y PP+ A, (4.29)

Note that the expansion coefficients stay the same after the NR cycle while the fine part AY changes.
These a*'s are consistent with the input Ay. However, these Ay do not yet satisfy (3.33). To obtain
the final solution we carry out Picard iterations on A, i.e. the output AY; is used as the new input for
the next NR cycle on a's. The entire procedwre looks like this

Series of refinement cycles = [fixed AY) — NR Cycles on a’s — [new AY)} = NR Cycles on
a's - [new AY'] - ...

The cycles continue until condition (3.33) is satisfied to with a small wlerance. After a number of
cycles (in practice, 6 to 7 refinements), the final solution is obtained.

Labik et al. [7]) used sine functions instead of the roof functions. They obtained threefold to
ninefold faster convergence than the Gillan scheme. This was made possible in part by avoiding
evaluating the Fourier transforms in the NR cycles,

4.3. LABIK'S METHOD

Labik et al. proposed to use the Fourier series as the basis functions instead of the roof function of Gil-
lan, Since in solution of integral equations, one iterates between the closure relation: ¢ (r)=f (h(r)), and
the OZ relation: ki (k)=F (C(k)), two Fourier transformations are needed for one iteration. (This is what
Gillan's method does). Despite the fast Fourier algorithm, it still saves considerable computer time if
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this could be avoided. Labik used first order Taylor's expansion of the closure relation:

0() = 0%+ %) [y - 1) (4.30)

where ¢°(r) is the derivative dQ/dT" at I, Q(r) = rc(r), and I'(r) = r(r). This derivative could be
based on the PY closure or the HNC (or any other) closure. The equation is Fourier transformed to
give

Q) =0°G) + WG 4) [f*(k) - i"(k)] @31)

The coefficient matrix  is given by

N~-1
b=y %o [eostmi G~ y-costri k) | (4.32)

Thus in the NR cycle, there is no need to transform back to r-space. Note that the OZ relation holds in
the Fourier space:

My = —OEY (4.33)

k — pkQ (k)
44 BAXTER'S METHOD

The Labik-Gillan method requires the discretization of Y;j(r) and ¢;;(r) into a set of N values
representing hy;(r;) and c;;(r;), where r; =iAr and i = 1, .., N. The Labik-Gillan method also
requires the assumption h;;(r) =0 for r 2R = NAr, A similar truncation is not always necessary for
cij(r), i.e., when using PY or MSA closures with finite-ranged potentials. >From the comparison by
Cummings and Monson between numerical and analytical solutions of OZ equations (31), it is clear that
any numerical scheme which requires that h;;(r) = 0 for r >R is unable to approach the CP closely.
This suggests that a method not dependent on r-space truncation of A;;(r) should be employed in the
vicinity of the CP.

Based on factorization of the OZ equation for a single component, Baxter (32) proposed a numerical
algorithm for the calculation of A(r) under the sole assumption that c(r) is finite in range. He showed
that if ¢(r) =0 for r>R (i.e., the direct correlation function is finite in range, as it is in the PY and
MSA approximations for finite potentials) then the OZ equation can be factored into two equations,

R
rh(r):—q'(r)+27tp£dtq(t)(r-r)h(lr—ll) (4.44)
R
re(ry=-q'(r)+2npfdt q't) qt 1) (4.45)
where
q(r)=0 for r <0 and r 2R (4.46)

Baxter suggested that the two equations (8) and (9) could be used, in conjunction with a closure
relation, to iterate on the function g (r), thus yielding a numerical method for solving the OZ equation
where the solution of A(r) at r2R is not required.
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An original version of such an algorithm for the single component case was derived by Baxter
(33), employing & single integral equation which coupled equations (8) and (9). It was solved by Watts
(34) with the PY closure using the NR method with grid 0.050 and with the potential cutoff varied
from 3.56 0 6.00. To approach the Ct, a series of runs with various densities around different isoth-
erms was required.

Recently a variant of this method was introduced by Cummings and Monson (31) which tuns
equations (8) and (9) into a DI scheme for function q(r).

They indicated that their DI method had the following difficulties: Small grids Ar = 0.005 were
required; so, a large number of points, N = 300, had to be used. When &7/ < 14, the DI scheme
encountered convergence problems. They also coupled equations (8) and (9) and solved using the NR
technique. When they applied the NR algorithm, it was computationally intensive when N > O(10?),
and a good initial guess was necessary to ensure convergence. When we tried to extend this method to
typical, binary supercritical solutions, very dissimilar molecules were encountered, and the above prob-
lems became worse. When the solute molecule has large size (07, << Oy), we needed a large number
of points N to cover the solute potential. Direct application of the NR method became harder because
of the need to handle four times as many variables and a larger matrix to solve the simultancous equa-
tions. For typical supercritical solutions the solute molecules have large €5, values compared to the
solvent &;;. When we reach the solvent CP, kT'/e; is approximately 1.3; so, we encounter very low
reduced temperatures with respect to solute molecules (kT/exn < 1), These difficulties led us to seek a
more delicate algorithm to solve the OZ equations for binary solutions near the solvent CP.

44,1, METHOD QF CALCULATION

Baxter reformulated the OZ equations of mixtures into two sets of equations given by
R

re; (Ir ) =—q'.-,-<r>+2n§pk:[dr Qs (1) @'k (r + 1) 4.47)
ki
for R"j 2r 2 S,'j and
Ry
rhi(Ir 1) =-q";(r) + 27TZPdef G Xr =)y (Ir =1 1) (4.48)
k A

for r ZS"J'. In these equations R;j =(R; +R,')/2, S,'j = (R; —Rj)/2, and R, =min (RH'RU -r).
The R, are range parameters chosen such that ¢;;(r) = 0 for r > R;; and ¢;;(r) = O forr 2 R;;.

Our method for the numerical solution of integral equation approximations in supercritical solutions is
as follows:

Step 1. By using the Labik-Gillan method to solve the OZ equations of mixtures, we can approach the
CP to pkT Ky = 15. The solutions are 8ij(r), ¢;;(r) and hy;(r). The direct correlation functions are

used as input to solve functions g;;(r) in the next step.

Step 2. We use the integral form of equation (11)

Rl} Rm
Cyr)= [ drre;(r)=q; -2 Y pu J dt qut) qur + 1) (4.49)
r k I
The analytical solution of ¢’;;(r) for hard-spheres (35) is used as an initial guess
q',-,-(r) =a;r + b" for S,'j <r< R,‘j (450)
g =(1-8&+3R&) / (1- &) (4.51)
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bi = -3R%%,; 1 2(1 - &3)? (4.52)

& = X0 R @53)

€= %Fﬁ. R? 4.54)
and

4y() =3 6 (>~ RP+ b = Ry) @55)

We discretize the functions ¢,,(r), ¢’y (r), ¢;(r), and h;(r) into g;;(r.), q'y(ry), c;;(ru), and
hij(r,), where r, = uAr, with Ar = 0.040y;. To simplify the calculation, we use R, = 2.56¢,, and
Ry =2.5602 + ( O — 0Oy; ). Using the trapezoidal rule, we write equation (13) in discrete form

Rﬂ
Cijr) = qy(r) = 2n ot 3, qu(tp)anru + 1,06, u=01,..., R,/ Ar). (4.56)
k 'P = Su
with §, = 1/2, when 1, is at the upper or low limit, else {, = 1.
Then we applied the NR method to solve equation (18). The Jacobian of equation (18) is
aEij(ru)
OGma(ry)

The the terms which survive inside the square brackets are as follows:

= Sbnsjnauv - 2n At z Pk [Cvsbnaiuqkj(ru +r)+ CVsbnainqb'(rv M) 4.57)
k

The first term is nonzero when

Ry —ry2r, 28y, ifr, >Ry ~ Ry) (4.58)
or

Ry 2r, 28y, if r, <Ry - Ry) (4.59)
and the second term is nonzero when

Ryj2r, 2 8g+r,, ifry >Ry — Ru) (4.60)
or

Ry +r,2r,28; +r, ifr, SRy ~Ry) (4.61)

and §, = 1/2 if r, is at the upper or lower limit, else {, = 1.
To save time, we used Ar = 0.040y, and a short truncated potential to get an approximate solu-
tion of g;;(r). As a measure of convergence of the NR cycles, we define the variable 7, as

2 2
Y X X [(ag;)

im] jml r.l\S'U
n = 7 (4.62)

2 2
¥ 3 ()

i=] j=1 Y.QSU

The NR iteration is stopped when 7, is less than 1074,
Step 3. We interpolate ¢;;(r,) from step 2 to small grid Ar = 0.020),, and extend it to the desired

cutoff potential ¥.,, = 5.120y;. Since g;;(r,) is already a good approximation, direct iteration of equa-
tion (20) converges quickly to the final solution. We differentiate functions g,;(r) to get ¢";(r).
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It takes a long way to reach this point, but these three steps guaraniee accurate solutions of A;;(r),
ciy(r) and ¢°;(r). This set of solutions is then used as a starting point to approach the CP.

Step 4. Using Ay (r,) and c;;(r,) from step 1 and q°;;(r,) from step 3, we have a set of solutions satis-
fying equations (9) and (10). We proceed with direct iteration of equations (7), (11) and (12). Suppose
that ¢/j(r.), hj(r.) and ¢;(r,) are the n® iterates for the functions cij(r) hj(r) and ¢’;(r). The PY
closure, equation (5), yields

rah§UT(re) = £y (ra) I b(r) + 1y = rucl )l = ra (4.63)
where
fij(ra) = expl-u;; (r, YkT]. (4.64)
The (n+1)" approximations for A}E¥(r,) is given by damping functions of hj(r,) and KV7(r,).
RYE¥(r.) = o hQUT(r) + (1 = @) A3(r,) (4.65)

where o is a mixing parameter designed to ensure convergence. The damping is only required for fol-
lowing region,

o srslé Oij (466)

Using equation (10) to solve hJ*'(r,).
Ry

re k3R ) = ~q ) + 27!5;’. Pk![ dt g3(t) (ru = 1) WUy — 1 1) (4.67)
(]

The functions ¢;/*'(r,) are updated by adding the difference of r, hJ*'(r,) and r, h}F¥(r,) with
the damping factor B.

@' (ry) = Blrhl* (r) - rhlE¥(r)) + g () (4.68)
Then we can integrate ¢;**'(r) to get g/*(r).
The ci*!(r,) are solved by equation (9)

kﬂ
ru e ) = =) + 23 pu sj dr gb*'(t) g (ru + 1) (4.69)
& "
We checked the quantity n,, defined by
2 2 N ”
Z 3 X [Ag )P
e |5 % (4.70)
g /Zl 21 [Q'U(’u)]z

The DI cycle was stopped when m, was less than 107, If equation (34) is not satisfied, then we
return {0 equation (4.63).

In 1992, Busigin and Phillips[8) proposed an implicit Euler’s method for the Newton-Raphson algo-
rithm, Their method is particularly suited to "stiff" equations, thus affording high stability.

5. Solute-Solvent Correlation in Attractive and Repulsive Mixtures

The solvent-solute (solvation) structure is central (o supercritical behavior, In this section, we examine
the integral equation results for attractive and repulsive SCF. We use Lennard-Jones potential to model

the solvent and solute interactions, This representation gives correct qualitative behavior (but not quan-
titative information), But this is what we are interested in,
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3.1, ATTRACTIVE MIXTURES

Petsche and Debencdetti (27) carried out computer simulation for both attractive and repulsive
solutions, with paramelers simulating the Ne-Xe system,

Paramelers for ncon and xcnon used in simulation *

i = Neon  Xenon
Size ratio ¢,/0y, 1 1.435
Energy ratio €,/0y, 1 7.04

* The MD used 864 panticles with 863 solvent molecules and 1 solute molecule.
We have solved the HMSA closurc for the attractive Ne-Xe case at the followiny, conditions:

T =14  p* =035
T =14  p* =08

Figures 5.1 and 5.2 show the solvent-solute correlation functions g14(r). Onc observes that at T* = 1.4
and p* = 0.35 (near the solvent CP), g,z decays very slowly from above unity. (exhibiting a persistent
tail >1 for r > 46,,). This slow decay is called a long-range buildup. This buildup disappears at a
higher density (p* =0.8). This behavior has been alluded to earlier [9). We have also made calcula-
tions using the RHNC closure [10) for the carbon dioxide-pyrene mixture studied by Brennecke et al,
[11] The solute pyrenc is very dilute in CO, (mole fraction 3% 10°7). The results for the three correla-
tion functions: solvent-solvenl, solvent-solute, and solute-solute are shown in Fig. 5.3. Again we clearly
see the long-range buildup of the solvent-solute correlations. This buildup translates into a large value
for the fluctuation integral (3,5, We note that G, is closely related to the excess coordination number
N$* (now depending on the range of intcgration L. See also eq.(3.21)).

L
M@y = of [dr 4w fgtr) - 1] (5)

This number gives the excess of solvent molecules 1 radially surrounding the central solute molecule 2
up to a radial distance of L. For randoin distributions, N{, (L =) = 0, meaning that there is no e¢xcess
of solvent molecules around the center, The density of solvent molecules is given simply by the uni-
form density p, and its radial number is given by (4r/3)p,L3, L being the coordination distance from
the center. When Nex 1 or G, is greater than zero, there is posilive correlation of 1 around 2; less than
zero, negative correlation of 1 around 2. Figure 5.4 shows the G; for three types of fluids: (A) atirac-
tive mixture Gy, (P) pure solvent G, and (R) repulsive mixture G;; at T* = 1.35 and p* =04 (all
variables reduced according to solvent parameters). The curves represent the excess numbers of solvent
neighbors at increasing coordination distance L for the solvent-solute corrclation. Clearly, for case A,
G2 becomes very large (-~ 110), indicating substantial clustering of solvents around the solute
molecule. This value ~ould be compared with the pure solvent-solvent Gy, of ~ 8, and "repulsive”
solvent-solute Gy, ~ -6. We note that the major contribution to excess number comes from long range
buildups. Namely, large clusters did not derive from first neighbors alone. Upon refiection on
geometry, this stands to reason since there is only so much room in the first neighbor shell for packing
molecules. For clusters of size approaching 100, they must come from second, third, and higher neigh-
borhoods.

2.2, REPULSIVE MIXTURES

Similar calculations are carried out for the “repulsive" mixtures. This time, infinitely dilute neon
is dissolved in supercritical xenon, The following conditions are used:
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T*=14 p* =35
T*=20 p* =035
T*=14 p* =080
Te= 134 p* =027

The results are plotted in Figs. 5.5(a) and (b). At high density p* =0.8, the pcf g,, is oscillatory. Near
the CP of xenon, g,5(r) becomes suppressed in magnitude after the first peak. The second peak barely
makes above unity (~ 1,007). At a lower temperature (T* = 1.34), the second peak is less than 1 (see
Fig. 5.5(b)). Thenceforth, the correlations do not rise above 1, representing undercorrelation between
the neon solute and the xenon solvent. This behavior is exactly the opposite of the attractive case dis-
cussed above, The solvent molecules instead of densifying around the solute molecule, stay away (cav-
flate) from neon. This behavior is cicarly seen in G3. Figure 5.6 gives the G, for four "repulsive”
mixtwes, The deficit in solvent molecules as the critical point of xenon (in PY approximation,
T.* =129, p.* =0.27) is approached reaches ~ ~12 for the lowest temperature studied. Again, the
deficit is made out of both the short-range local density depletion and long-range debit, with the major
part coming from long-range solvent-solute undercorrelation. We have compared our PY calculation
with the simulation data of Pstsche et al. (27)(Fig. 5.7). While there is statistical scatter in the simula-
tion data, the two results reinforce each other in the height of the first peak and locations of the peaks
and valleys.

By using integral equations, solved for model supercritical mixtures, we are able to show on the
molecular level the densification and cavitation of solvent molecules around the solute molecules
depending on whether the mixture is "sttractive" or "repulsive”. The story does not end here. Further
interesting structural manifestations are found for the solute-solute correlations and are discussed next

6. Solute-Solute Aggregation

Not only do solvent molecules tend 10 cluster about solute molecules in attractive mixtures, we
also find a high degree of solute-solute aggrogation near the CP of the solvent. We shall discuss the
auractive case first, then the repulsive case next. Both cases show interesting solute-solute correlations,

6.1, ATTRACTIVE MIXTURES

Figure 6.1 shows the correlation function gx(r) for the LJ mixwre simulating the carbon
dioxide-naphthalene system which is inaccessible by computer simulation and has been obtained only
by integral equation methods. For the attractive mixture, the solute-solute pair distributions exhibit
increased height of the first peak near the CP, indicating increased short-range solute concentration
about a solute molecule, consistent with interpretations of the excimer fluorescence spectra by Bren-
necke and Eckert (25,26) (see also Bright). This short-range solute-solute pair structure is similar to but
larger in magnitude than the short-range solute-solvent structure presented earlier. Likewise, the long-
range solule-solute pair structure increases near the CP suggesting a solute-solute cluster commingled
with the solvent-solute cluster, Because the solute concentration is very small, the solute-solute cluster
is only a statistical association. Despite the low mole fraction, this statistical solute-solute cluster could
be expected 1o exhibit macroscopic effects, for example, in solute-solute dimerization reactions, near the
CP. In cases when the rrelation length becomes large (i.e., near the CP) the notion of dilute solutions
being approximated as infinitely dilute must be employed with great caution since despite the rarefac-
tion of solutes, detcclable aggregates do occur,

In addition to showing increased height of the first maximum ncar the CP, the short-range solute-
solute pair distributions for attractive mixtures (Fig. 6.1) show a much shallower minimum between the
first and second maxima, this is similar to the behavior of the solute-solvent pair distributions near the
CP but much exaggerated. As mentioned earlier, the fluorescence spectroscopic experiments of Bren-
necke and Eckert (25,26) indicated significant excimer formation for very dilute pyrene dissolved in
supercritical cthylene and carbon dioxide. We shall report now some additional integral equation calcu-
lations for the carbon dioxide-pyrene system. The following Lennard-Jones paramelers are used:
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Parameier kK ©A
C0,-CO, 2253 31794
Pyrene-pyrene 6628  7.14
CO,-pyrene 3864 5467

The pressure used is 82.5 bar (or 1197.1 psia), concentration y,,, = 3.0 x10~7, and density (pure CO>) =
0.8059 lbmole/cuft. The RHNC equations (39) were solved for this case. The three pair correlation
functions g,,, &2, and g are shown in Fig. 5.3.

The solute-solute correlation function shows a curious double peak with a shallow minimum
between. We shall infer that this feature (first minimum greater than unity) characterizes the affinity of
pyrenc molecules for onc another. To determine the origin of this shallow minimum, we need to exam-
ine the geometry of packed molecules. For this casc the radial packing geometry is shown in Fig. 6.2.
The first pcak of gx(r) represents the dircct contact between a pair of pyrene molecules (direct
pyrene-pyrene correlation). The second peak represents the geometry of a pair of pyrene molecules
sandwiching 8 CO, molecule in between (pyrene-pyrene correlation mediated via a solvent molecule:
i.e., pyrene-CO 5-pyrene). There is a perceptible shoulder afler the second peak. It is the normal loca-
tion for triplet pyrene correlations (concatenations such as: pyrene-pyrene-pyrene). Far from the CP,
the first minimum in correlation functions usually falls below 1.0 because of the volume excluded by an
intervening solvent molecule. This does not happen here, In this case at r = 2,76y, where normally a
CO, molecule would intervene between the pyrene molecules, the usual gap with g2 < 1.0 fails to
occur. Cenainly, this is not due to scarcity of solvent molecules (as pyrene is infinitely dilute in CO ).
This could be explained by the aggregation of pyrene molecules at this state necar the CP, in such a way
that causes exclusion of CO, and simultancously relative enrichment of pyrene molecules. This
behavior is consistent with and strengthens the picture of excimer formation,

To determine how dilute is dilute, we have also calculated a case at a smaller concentration of
pyrene (same temperature and pressure) y,,, = 2.35 x 107!!. Very similar g;;(r) are obtained. In fact,
the differences in the numerical valucs o(?,-,(r) from the two concentrations are in the fourth decimal
place.

We also examined the temperature effect on radial structure. Figures 5.3 and 6.3 (a) (b) show the
three radial distribution functions gy, 812 8nd g7 at three temperatures — T = 1,37, 1,50, and 2.00.
Besides the ordering of peak heights, the other noticeable feature is the deepening first minimum of g
as the temperature is increased. Starting at g,; = 2,0 (enrichment), the value at the minimum finally
drops 10 g2, = 1.0 at the highest temperature (T* =2). Thus, the aggregation (detected by lack of exclu-
sion of CO, molecules) of pyrene molecules is reduced at higher temperatures when conditions are
farther removed from the CP.

We find that these solute-solute correlations show intriguing isomorphism to the corrclation func-
tions observed for diatomics (while we want 1o make the distinction here that excimers are definitely
not covalent dimers). To contrast the structural idiosyncrasies with the diatomics, we carried out RISM
calculations for dimer-monomer mixtures. For the monomers (CO,) and dimers, the following LJ
paramelers are used

Parameter kK oA
monomer-monomer mm 2253 3.794
dimer site-dimer site 8$ 253 5691
monomer-dimer site ms 2253 4743

The bond length between the sites of the dimer is taken to be | = 0.660,,, = 2.5 &.

Figure 6.4 shows the site-site correlation funclions, gmm, 8w, 8nd g,, (sitc refers to an atom in
the dimer). The first peak occurs at the collision diameter of the sites in two dimers (=1.680,.,). The
second peak is due to one site of the first dimer with the other (farther) site of a second dimer, r = 2.34
Omm. We shall designate one site of the first dimer as the "host", the close-by site in the second dimer
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as the "guest”, and the farther site in the sccond dimer as the "companion™ of the guest. In this
language, the the second peak is duc to the corrclation between the host and the other companion. The
increment in distance is, of course, thc bond length 0.660,,,. Actually, this peak occurs at a shorter
distance because of all possible nonlinear angular approaches which have a tendency to reduce the dis-
tance from 2.34 to about 2.20,,,. The third peak comes from a pair of sites mediated by a monomer
molecule, and occurs at =280y, .

The interesting part is the similarity in the qualitative features of g,, with those of the low tem-
perature pyrene-pyrene gz, The first minimum is shallow and much greater than unity. This
phenomenon has been explained geometrically carlier, 1f we focus our attention on the correlation
between the site called the host in the first dimer and the companion in the second dimer, then it is
clear that in between these two, there is the neighbor site of the second dimer that intervenes and
excludes a solvent molecule from entering, This explains the probabilistic "enrichment” that forms the
shallow first minimum; i.e,, probabilistically, it is highly likely to have a neighbor — from a site in the
second dimer -— localized here, with a probability density above and beyond the average density of
dimers, The same was observed for the Jow temperature L] mixtures modeling CO;-pyrene. If pyrene
and pyrene tend to aggregate, then there is a increased likelihood of having a third pyrene molecule
sandwiched between a host pyrene molecule and a companion pyrene molecule. This third pyrene
molecule is tied to the companion pyrene molecule because of aggregation, There are of course
differences between the structures of the monomer-dimer case and the CO,-pyrene case. The three
peaks in the former are due to host-guest, host-companion, and host-solvent-guest correlations; whereas
the peaks for CO,-pyrene are due to corrclations of host-gu:st, host-solvent-guest, and host-guest-
second guest.

6.2, REPULSIVE MIXTURES

It is of interest to investigate the solute-solute interactions in the repulsive mixtures discussed
above. We have seen the cavitation of the solvent molecules away from the solute molecule in the
Ne-Xe sysiem. How do the solute molecules (in this case neon) behave toward each other? We have
calculated the g, for the four state conditions lisied in Section 5.2, The behavior is shown in Figs. 6.5
(a) and (b). As the density of solvent (xenon) is lowered from 0.8 to 0.35, the oscillations in Ne-Ne
correlations are damped. 1f we calculate the excess number (eq.(6.1), see Fig. 6.6), we note that there
is enrichment of excess numbers when the critical condition of xenon is approached. At high tempera-
tures, T* = 2.0, there is deficit in ncon-neon correlations (G < 0). At high densities, G o, rises above
zero. Namely, ncon molecules tend to "separate” out of the mixture. Near the critical point of xenon,
the "separation” increases rapidly. Since neon molecules are "rejevted” by the xenon solvent, evidenced
by the solvent cavitation discussed earlier, Ne¢ tends to form aggregates 100, By analogy with nonpolar
molecules dispersed in aqueous medium, this aggregation is caused by xenon-phobic attraction (cf. sic
hydrophobic atiraction). If we compare the solute-solute aggregation in repulsive mixtures with that in
the attractive case, our calculations show that the former is several orders of magnitude smaller than the
latter. The excess Gy, for the attractive case is on the order of 10° near CP.

The algorithm we have used for solving the OZ equations of mixtures ncar the CP has proved to
be robust and efficient compared with other methods we have tried. The results have been shown to
agree closely with results from the efficient Labik-Gillan method, but the new method can approach the
CP much more closely. The CP for dilute LJ mixtures can be Jocaied quite precisely, The algorithm is
applicable quite gencrally to mixtures the components of which may be modeled as interacting with a
pair potential which is finite in range,

Using integral equation theories, we are able to demonstrate here the detailed microscopic
behavior of the interesting repulsive supercritical mixtures proposed erstwhile by Debenedetti (28). The
results of the correlation functions have proved helpful in gaining understanding of the distribution of
molecules surrounding a central solute molecule in dilute supercritical solutions. These results are con-
sistent with observed macroscopic properties which are sensitive (o the short-range structure —- particu-
larly spectroscopic results, The long-range solute-solvent structure for attractive mixtures near the CP
from integral equation calculations is consistent with the thermodynamic properties which depend on
the solute-solvent fluctuation integral — solute partial molar volume and solubility, Long-range
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structure is inaccessible by computer simulation techniques.

The solute-solute distributions for attractive mixtures from integral equation calculations are also
consistent with the observation of & high proportion of solute excimers near the CP in very dilute super-
critical solutions. To date there are no solute-solute distributions near CP from molecular simulation
calculations (which have been performed at infinite dilution). Nor are there results with which to com-
pare the long-range solute-solute pair distributions. Judging by the integral equation results, one mig't
expect dramatic effects on other applications such as chemical reactions in supercritical media,

7. Thermodynamic Behavior of Attractive/Repulsive SCF

In previous sections, we have exhibited the structural changes g,; and gj; accompanying the
attractive and repulsive mixtures, In this section, we shall look into the consequences as reflected in the
partial molar volumes and excess numbers for both mixtures. (The third class, the weakly attractive
mixtures of Debenedetti (7], will not be examined here.)

L1 ATTRACTIVE MIXTURES

We first look at the partial molar volumes, We observe that near the CP, K is large and positive.
However, for attractive mixtures, N{* also increases rapidly. When N overtakes pkTKy, v
becomes negative according to eq.(3.23). The values could reach -8000 cc/gmol (for naphthalene in
carbon dioxide). This behavior has been observed experimentally [2]). Concomitant with the negative
PMV, there is an incrcase of the solubility of naphthalene in CO,. This could be deduced from
€q.(3.19) or from the enhancement factor, £, Cochran, Pfund, and Lee [12] showed that

,
1n£-m(y,mp")=—*-’;va(l’—p.)+-ff [ arG; +inz 1)
Py

Thus when the solute-solvent factor, G2, increases, the solubility will also increase,

We have used the Lennard-Jones (L) potentials to model the solute naphthalene and the solvent
CO; [13). The pef's gy and gy, were determined by the PY equation. For this patently attractive mix-
ture, the results are shown in Fig.7.1 for different densities (p* = pof, from 027 to 0.50, and T*
=kT/€)) = 1.415). Note that for PY, the critical temperature of LJ fluids in molecular units is ~ 1.29,
and critical density is ~ 0.27. (This can be compared with the simulation critical data of LJ potential
1.31 and 0.31, respectively). Clearly, there is increase of the first peak as the density is lowered from
0.42 downward toward the critical value 0,27. Secondly, beyond the first peak, g,2 becomes enhanced
and exhibits a persistent long-range tail (with values above unity). These are the two characteristics for
attractive supercritical mixtures mentioned earlier.

In sum, the evidence shows that (i) there is local enhancement of solvent molecules, as judged
from the higher first peak of g,5; however, (li) the major bulldup in G13, and thus N{*, comes from ~

20 neighborhoods'.- long range buildups (see Fig.5.4). This buildup contrasted with the pure neon fluid

(Curve P) is quite dramatic. The excess number of pure ncon only reaches ~ 7.4 overall? (cf. 110 for
curve A), (We shall discuss the repulsive case, R, later.)

For a similar attractive mixture, dilute naphthalene (mole fraction = 107%) dissolved in CO,, we
have calculated V3" (eq.(3.8)) with the Lennard-Jones potential model. Results are compared with the
data of Eckert (2] in Fig. 7.2, For the potential parameiers given, the low density branch is well
predicted. The high density branch shows some discrepancies. Similar obscrvations are given by
McGuigan and Monson (6). Clearly, the LJ potential is not a good model for CO, and naphthalene.

!About 20 molecular diameters.

The excess number in pure neon is due to purely solvent-solvent correlations. At the given state condition, there is a net
L] L]
gain",
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PY also introduces some errors. However, model potentials give qualitatively universal behavior for
rcal mixtures and are worth further study. To determine the PMV behavior at different temperatures,
we plot five isotherms in Fig. 7.3(b). (T* = 1,642, 14685, 1.382, 1,342, and 1.334), We see a continu-
ous growth of the negativity of the PMV, as the critical temperature (T* = 1.29) is approached. We
also plot N{* in Fig. 4(a). There is a corresponding growth in N§*. Eq.(3.23) indicates that for nega-
tive PMV to happen, the difference between pikTKy and N{* must be negative (or Cf3 > 1), The
excess number of solvent molecules surpasses the compressibility, Adding a solute molecule 10 the
solution will attract more solvent molecules (condensation) than increasing the bulk volume (expan-
sion).

1.2, REPULSIVE MIXTURES

For repulsive mixtures, the excess number of solvent molecules about the solute becomes negative
(a deficit). The conditions for this behavior were given in Petsche and Debenedetti [14). For dilute
neon dissolved in a xenon solvent, we have the repulsive behavior, The strength of interaction for
neon-xenon (g;2 < €yy) is weaker than the xenon-xenon (1-1) interaction (2.65 times Jess). When the CP
is approached, the influence of this encrgy disparity on solvent structures is magnified. Xenon
molecules are pulled away from the neon solutes due to cohesion, and leaving a correlation hole (we
call it here cavitation), Since there is depletion of solvent molecules around the solute, the excess
number becomes negative. The curve R in Fig.5.4 shows that N§* ~ -6,

From ¢q.(3.8), we see that the PMV will be positive. Fig. 7.4(b) gives the V3 for dilute neon (=2)
in a xenon solvent (=1) at three emperatures (T* w 2.0, 1.4, 1,34), They are all positive. There is a
direct correspondence between the N{* and v3' values. The case is in vivid contrast (o the attractive
mixtures of Figs. 7.3 where the N{* is positive and PMV negative. (For the weakly attractive mixtures,
N{* is positive but small, thus the PMV remains positive.) We note that in Fig.7.4, the size of p,v3 (+
15) for repulsive mixtures is an order of magnitude smaller than the attractive case Fig.7.3
(p,Vi' = ~150).

We have demonstrated, using integral equation theories, that the cavitation and/or condensation of
solvent molecules around the solute molecules are responsible for the repulsive or attractive behavior of
supercritical mixtures. This work provides added proof to earlier simulation and theoretical studies.
We have examined the behavior through the molecular distribution functions, especially with respect to
the long-range contributions to the solvent-solute KB factor G{3. The macroscopic manifestation of
negative partial molar volume near the critical point is due, for the most part, to long-range persistent
solvent.solute correlations. Observations on the repulsive mixtures show that cavitation of solvent
molecules over long distances is responsible for their unusual behavior, The distinction between attrac-
tiveness and repulsivencss can be gauged in the case of Lennard-Jones potentials by employing similar
analyses given by Pelsche and Debenedetti (PD) [13) for van der Waals gas, Near the critical point of
the solvent (7, = 1, p, = 1), the mixture exhibits attractive behavior if

all!

o TTaona
The parameters @ and y can be estimated in the LJ case by a = (€250 / £,,067)), and v = (64, / o})).
For the parameiers used for e CO,-naphthalene mixture, ¢ = 1,545, greater than 1. 'The behavior is
atractive. For dilute xenon (the solute) dissolved in neon (the solvent), ¢ = 2.76 >1. Again, we have
attractive behavior, However, for repulsive mixtures,

3a'”

(1+-{)---_§’-<l (1.3)

1 (7.2)

Y.

Applying this to dilute neon (the solute) dissolved in xenon (the solvent), y = 0.654 <1, We have
repulsive behavior, as predicted by the PD rules, We note that the a value of xecnon over neon is very
large, about 20.8, mostly due o the encrgy ratio (7.04). Thus the Ne-Xe mixture behavior is accounted
for essentially by energy disparity. Stronger solvent-solute affinity promotes aggregation of solvent
molecules around the solute molecules (solvation). On the other hand, stronger solvent-solvent affinity
promoles self-association (cohesion) among the solvent molecules and exclusion of the solute
molecules.
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8. Synergistic Effects of Entrainers: Ternary Systems

When methanol, as a cosolvent, is added 10 the CO;-2-naphthol mixture, the solubility of 2-
naphthol is increased fivefold (see Fig. 8.1) over the solubility in the binary CO ,-2-naphthol sysiem.
This greatly enhanced solubility of 2-naphthol is what we refer to as synergism of the cosolvent
methanol for the solute. Not all cosolvents entail synergism, there are ones causing "interferences”:
namely, addition of cosolvents or cosolutes depresses the solubility, In this section we shall present the
formulas for treating temary SFC,

We define a solution, solutes 2 in the solvent 1, as infinitely dilute if x4 is strictly zero; as dilute, if the
first order dependence on x5 is valid (i.e., Henry's law region). For ternary systems with solvent 1,
solute 2, and cosolvent (or cosolute) 3, same definition applies to species 3. We generalize the results
for binaries as given by Debenedetti-Kumar and Cochran-Lee to iernaries. In the dilute range, the fuga-
city coefficient for species 2 has been given by Jonah-Cochran as

Indy = Indy™ +x2 Kp + X3 Ky 8.1

where the parameters K;; arc defined as the Taylor expansion cocfficients:

olnd,
K” = --é;,—' (8.2)
which has been shown (o be equal to the second derivative
ding, 0%Ing,
K | B e oemr— 803
» Bx, TRY axza.l; TrX @3
Cochran and Lee have shown that the K;; can be expressed in terms of the KB factors; e.g.
Kn=-p?[Gh + G5 - 263 a4
Kn=-pf (6% +G5 - 65 - 63 5
Chialvo [15) has expressed these quantities in terms of the DCFI:
Kn=1-C3 - plkTKr(1 - C3)? (8.6)
Similarly,
Kan=1-Cq = pkTKr(1 - Ci3)(1 - Cf3) @.7)

Thus the solubility of 2 in the SCF in the presence of a pure condensed phase (solid phase of 2) is

PoaxexplKpxz + Knaxs) = f4 (8.8)

And for 3

P oyxacxplK yaxy + Kaax3] = f§ (8.9)

Thus il K3 < 0, addition of solute 3 will increase the solubility of 2 (compared to the binary 142).
There is "synergism” between the solute and the cosolute, On the other hand, if K23 > 0, then additions
of 3 depresses the solubility of 2. This is due to the "interference” of the cosolute. The results of Fig.
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8.1 show that methanol, the cosolvent, clearly belongs w the "synergistic” category. Kumnik and Reid
have shown that the cosolute 2,3-dimethylnaphthalene in the CO2-phenanthrene mixture gives "nega-
tive" synergy, reducing the solubility of phenanthrene: an "interference” effect

We note that these analyses are valid only in the "dilute" (Henry's law) region. For more concentrated
solutions, higher order Taylor's terms are needed. If we consider the x; — 0 limit (i.e., infinite dilu-
tion) as the primary contribution to SCF, where most studics in SCF mixtures belong, then the analyses
represented by the K;; terms are secondary contributions, disappearing when x,—0,

9. Adsorption from SCF: Fluid Structure near Solid Surfaces

Adsorption of supercritical fluids is used in a number of separation processes such as adsorption
from a SCF solution or desorption into a SCF solution in regeneration of sorbents with SCF, SCF
chromatography, and SCF extraction of hazardous chemicals from contaminated soils. The work
described in this section was motivated by the importance of adsorption and desorption in these separa-
tion processes, The fundamental understanding of adsorption of SCF can be achieved by examining the
molecular distributions near a wall.

Fundamental, molecular study of adsorption has employed the techniques of density functional theory
(c.g. Ebner et al.), integral equation theory or molecular simulation. In the present work, techniques
based on integral equation thcory will be employed. In the simplest techniques for application of
integral equation theory, due to Henderson, Abraham, and Barker (HAB), the wall(W)-particle(A)
Omstein-Zemike equation

aw (2) = caw (@) + 204 [t caw () | d5 5 haa(s) ©.)
. ]

is solved (with an appropriate closure approximation) under the approximation that hy,(s) in (9.1) is
taken as equal to the homogeneous total correlation function for the bulk fluid. The HAB integral equa-
tion approach is known (Finn and Monson) to produce results with important qualitative and quantita-
tive failures. In contrast, the Henderson-Plischke-Sokolowski (HPS) approach (9.4) solves the inhomo-
geneous Ornstein-Zernike equation for the wall-particle system in Fourier space

h@ia2k) = E(21,22k) + [de'p( 2 (2 1,2k )R (2 22k) (92)
where
faiaak) = [d* f (2220)expliker]

= 2nfdr r f (21,23, W olkr) 9.3)

with an appropriate closure approximation plus one of several exact expressions for the inhomogeneous
density in terms of the correlation functions. Solution of the inhomogeneous HPS equation is a much
more demanding computation in terms of required memory and CPU cycles, but is much more accurate
than solution of the HAB equation.

For solute B at infinite dilution in the solvent A, the HPS equation takes the form (A+B/W):

ha (2122k) = Ea (11,22K) + [’ (2 Vg (21,20 Yo (232K ) (9.4)
and

Fap (21.22k) = Eag (21,23k) + [d2'pp (2 Via (21,2 )Ean (22200 (9.5)

In the present work we have applied the HPS approach to study adsorption equilibrium in systems
where the fluid phase is either a pure SCF or a dilute solution of a solute in a fluid near the critical
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point of the pure solvent. Earlier work in this area (Plischke and Henderson) was limited in the number
of grids used in the numerical algorithm by the fast memory on the available computer. In the present
work, we have extended the number of grids and tested the sensitivity of our results to this numerical
parameter. After thus testing the numerical algorithm, we have studied several cases of adsomtion
equilibrium between & surface and a SCF.

2.1, CALCULATION METHOD

In numerical calculations it is often desirable to replace the variable h by the variable
¥n h - ¢\ in this form equations (9.4) and (9.5) become

Yaa (31:22.k) = [d2'Dy (8 Faa (21,25 )Eaa (2'22K) 9.6)

+ [ds'pa (28w (21,20 K JEan (2 22k )
and
Yan (21,22k) = [d2p (2 Wan (21,2 )Eag ('224) an

+ [dr'oa (2)Eun (21,2 Youa (2 224)

There are several possible choices for an exact relation between the inhomogeneous density p(z) and
the correlation functions, We have chosen the one due to Wertheim and to Lovett, Mou, and Buff. The
WLMB relation is

alnp(z;) aﬂw(‘l) T . ople '
31 o B e P

For mixtures (A+B/W), WLMB assumes the form:

dlnpy (2 1) aBWA () % aPA (1 )
31, 3, + t[d £ —= Eaa (2,,2'.0) 9.9)
and
olnpp (2 1) BBW (1)) aPA ()
. E” l[ =T (112'0) 9.10)

In our numerical calculations it has proven advantageous (o rewrite the WLMB relation in terms of the

cavity function y,w where guw = haw + 1 = yaweswand eaw = expl-wa/kT] so that equations (9.9)
and (9.10) become

Ayaw (27) aw (2)

"‘_5';"‘“' Yaw(z 1)1[0'3 o eaw Eaa (2,2°,0)
a ’
+ Yaw (@) t[a!z Vaw ";‘; @) '0) ©.11)

and

a (z - ' a ' 4
D) Jor 2 ) s 40)
a'l az
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P | .
+ yaw (2)) {dl Yaw ""e'éa"';'a(zlfu (22 ,0) 9.12)

For the approximate closure relation (to obtain ¢ from y or & and u) we chose 10 use the Percus.
Yevick closure.

c(r)=[1+%r)explu(rYkT) - 1) 9.13)
Tests on Lennard-Jones fluids indicate that this choice is quite accurate.

The set of equations (9.6), (9.7), (9.11), (9.12), and (9.13) for mixtures is solved by the method of suc-
cessive substitutions or Picard ilerations. The approach, then, is to make an initial guess of the density
profile and the pair correlation functions ¥; to transform y to Fourier space ¥; to solve the inhomogene-
ous OZ equations (9.6) and (9.7) for F; to transform back to real space; to use the closure relation
(9.13) to obtain a new estimate of ¢ to iterate (9.6), (9.7), and (9.13) to convergence; then, to substi-
tute & in (9.11) and (9.12) obtaining a new estimate of p(z,). The criterion for convergence of each
iteration loop is that the value of the n® iteration of the function shall differ at no point from the value
of the n - 1" iteration by no more than 1074, Generally, correlation functions and density profiles from
a previously converged case were used as initial estimates. For startup, low density limits of the correla-
tion functions were used (¢ssentially, the Boltzmann factors for & and ¢ ,as well as p(z)).

For numerical solution we discretize the three-dimensional equations (9.6) and (9.7) for ¥ and 7 such
that there are L, M, and N grids of Az,, Az, and Ak spacing, respectively,

Y(Umn) =Y A2, mAz, 0 Ak)

l=12Li m=12M; n=12-N (9.14)

Near the critical point of the solvent, the correlation functions ¥ become long-ranged. In carly work, we
used M > 80 with Azy = 0.030, L = B0 with Az, = 0.050, and N = 50 with Ak = 0.08 (L=M). In order
to conserve the use of memory and because both functions of the pairs c44 Tas) and (cas €4s) are not
required at the same time, these function pairs share the same memory locations (via the
EQUIVALENCE statement in FORTRAN). Thus, only six large arrayS—Yas, Yas» Yaz» Yaa» Cas, and
C4p —are required,

We have accurately calculated and tabulated the Hankel transform for Jo from 0 to several hundred, the
forward and reverse transformations agreeing to the ninth place,

The bulk fluid molecules were modeled to interact with the Lennard-Jones (LJ) 12:6potential, simulat-
ing argon and methane, The wall-fluid potential used is the LJ 9:3 potential,

9 3
2 |mo mo
w(z) pe[l5 [ ; ] [ " ] ] 9.15)
where p and m are numerical factors to modify the bulk fluid force constants € and @,

9.2. TEST CALCULATIONS

The first test we performed was reproducing one of the cases by Plischke and Henderson (9.6)
for a pure LJ fluid in contact with a hard wall. For the state T° = kT/e = 1.35 and p° = po® = 0.40 our
program reproduced Plischke and Henderson's density profile quantitatively. In all of the calculations
reported below, we have used finer grid spacing and longer range in the correlation functions than those
used by Plischke and Henderson.

The range of the pair correlation function grows without limit upon approach to the CP. This is a

significant issue because the value of £ (r) in equation (9.3) must be 0 at the maximum value of r to
perform the Hankel transform, We have tested the effects of the range of the numerical calculations for
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the parameters shown in Table 9.1,

Table 9.1 Numerical parameters for testing effect of range of calculations
max 2, AZ; Ny maxZ, AZ, Nz, maxR AR Ny

6.0 005 120 6.0 005 120 4.0 0.08 50
9.0 005 180 9.0 0.05 180 4.8 0.08 60
9.5 0.05 190 9.5 005 1% 4.8 0.08 60

Figure 9. 1 shows the cffecl of range on results for the wall-solvent pair correlation function, gw, (2), for
a state (T° = 1,35 and p" = 0.35) close 1o the critical point. The maximum range used in earlier (9.4)
work (120,120,50) is evidently inadequate for quantitative results, The agreement between results with
the range used in the present calculations (180,180,60) and those with still longer range (190,190,60)
indicates that the present results are the first quantitatively valid application of the HPS approach in the
PY approximation,

One of the failings of the simpler HAB (9.3) approach is the inability to produce the pre-wetting transi-
tion that is exhibited by density functional theory and Monte Carlo simulations. The more accurate HPS
(9.6) approach has not previously been tested for this capability. We have atiempted w0 test this ques-
tion, but, unfortunately, the tests have not been conclusive. The calculations are difficult because at the
transition the range becomes unbounded; nevertheless, we attempted to observe signs of the onset of the
transition. An additional dﬂﬁculty with the calculations results from the fact that the location of the
preweiting transition, T " ,p ™, is very close to the bulk vapor-liquid phase boundary, Indeed, it was
only by careful attention to this detail, that Finn and Monson (9.7) were able to first observe the transi-
tion in simulations after earlier failures by others. Figure 9.2a shows their result clearly demonstrating
the prewetting transition with increasing bulk density. We were hindered in the present calculations by
the fact that the location of the bulk vapor-liquid phase boundary for the L-J fluid in the PY approxima-
tion is not accurately known. Despite the difficulties and imperfections of the test, we show results in
Figure 9.2b that are quite suggestive of the onset of a possible prewetting transition; note, in particular,
the appearance of shoulders representing second and third adsorbed layers.

We have drawn the following conclusions from testing the HPS (9.6) integral equation approach to
studying adsorption equilibrium: e Although we have seen suggestions of a prewelting transition, we
have been unsuccessful so far in demonstrating that the HPS theory can exhibit this phenomenon, ¢ We
have presented the first quantitative results with the HPS approach, using finer grids and longer range
than previous calculations and presenting daunting computer memory requirements.

9.3. ADSORPTION FROM SCF

We have studied several cases of adsorption from SCF solution. We have studied adsorption of
the solvent (A) and the attractive solute (B) on a hard wall (HW) for temperatures approaching the bulk
CP from above. These results are presented in Section 9.3.1. We have studied adsorption of the solveni
(A) and both the attractive solute (B) and the repulsive solute (also B) on a LJ wall for a near critical
state. These results are presented in Section 9.3.2. Table 9.2 presents the parameters of the interaction
potentials used in this work. With the HW, the solvent (A) parameters model argon; the attractive and
repulsive solutes (B) have the same size as A with an arbitrarily greater or smaller interaction encrgy
parameter. With the LJ wall, again the solvent (A) parameters model argon; the solvent-wall parameters
model argon with solid CO,; the attractive solute (B) models methane; and the repulsive solute (also B)
has the same size as the methane mode! but has interaction energy proportionately smaller than that of
argon as methane is larger.
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Table 9.2. Parameters of interaction potentials used

pair e/k(K) o (A) material approximated
Hard Wall

A-A 119.80 3.400 argon-argon

A-B(repulsive) 10024 3.400 argon-repulsive solute

A-B(attractive) 143,16 3400  argon-attractive solute
LJ:9-3 Wall

A-A 119.80 3400 argon-argon
A-B(repulsive) 107.82 3.606 argon-repulsive solute
A-B(attractive) 13445 3.606 argon-methane solute
W-A 15300 3.727 solid CO ,-argon
W-B(repulsive)  297.69  3.957 solid CO ,-repulsive solute
W-B(attractive)  297.69  3.957  solid CO,-methane solute

9.3.1 Adsorption at a Hard Wall. Figures 9.3a and 9.3b show density profiles near a HW for a SCF LJ
solvent and an infinitely dilute, repulsive LJ solute, respectively, for density p* = 0.40 and tempera-
tures, T" = 5.00, 3.00, 2.00, and 1.35. For the HW system, the 2 = 0 intercept of the solvent-wall den-
sity profile is a measure of the bulk fluid pressure P° = Po/e = g(0)p" T". Of course, the pressure at
constant density increases with increasing temperature. It is interesting to note, however that, for the
solvent, there is a net deficit at the wall at the near-critical state and for the attractive solute the deficit
is substantially greater. The near-critical solvent has a higher affinity for the attractive solute (and even
for other solvent molecules) than does the HW,

9.3.2 Adsorption at a Lennard-Jones Wall. Figures 9.4a, 9.4b, and 9.4c show the effect of the wall
strength on the density profiles near an attractive LJ:9-3 wall (the HW profiles are also shown for com-
parison) for the state p* = 0.35 and T" = 1.35 for the LJ solvent, the repulsive solute, and the attractive
solute, respectively. The parameter shown for each of the profiles is the percent of the full LJ:9-3
potential used by Finn and Monson (9.7) to model argon adsorption on solid carbon dioxide. It is evi-
dent that, compared to the HW, the LJ:9-3 wall attracts considerable adsorption, the degree of adsorp-
tion increasing with the strength of the wall. Accompanying the increased adsorption is an increase in
the structure near the wall, showing clear first and second, and even third, maxima in the profile,

Figures 9.5a, 9.5b, and 9.5¢ replot some of the previous results in such a way as to emphasize the rela-
tive adsorption of the solvent, the repulsive solute, and the attractive solute as the strength of the wall
interaction increases. The SCF solvent draws the attractive solute into solution and away from the wall
so that its adsorption on the HW is less than that of the solvent In contrast, the repulsive solute is
expelled from the SCF solvent so that its adsorption on the HW is relatively greater than that of the sol-
vent.

The LJ:9-3 wall with 50% of the wall strength of the Finn-Monson (9.7) system attracts the solvent,
attractive solute, and repulsive solute so that the adsorption of all three is increased. But the adsorption
of the auractive solute has increased most so that it has approximately equaled that of the solvent. Here
we see compelition between the SCF solvent and the wall for the attractive solute. At 75% of the Finn-
Monson wall strength the adsorption of the attractive solute has overtaken that of the solvent and
approaches that of the repulsive solute.

In figure 9.6a we examine the radial distribution for the solute-solvent correlation hag (r) for different
values of z, the distance from the wall for the attractive solute at the state p° = 0.35 and 7" = 1.35.
The wall-particle profile shown in figure 9.6b gives a measure of the relative fluid density at the various
distances z from the wall. At z = 0.00, haz (r) shows a single broad peak dropping monotonically to
the bulk value; such structure is similar to that of a low density gas. Note in Figure 9.6b that the den-
sity at z = 0.0c is low. At z = 1.00, the structure looks more like that of a liquid with a distinct second
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maximum. In Figure 9.6b, one can see the correspondingly high density at this distance from the wall,
The variation in the structure with distance from the wall is qualitatively similar to that seen by
Plischke and Henderson (9.6).

9.4, DISCUSSIONS

Ours are the first attempts, 10 our knowledge, to undertake a molecular-based study (using the
inhomogencous Omnstein-Zemike equation) of adsorption equilibrium between a solution (mixwre of A
and B) and a surface (W) and the first time such study has been focused on SCF solutions, This exten-
sion of the integral equation method of Plischke, Henderson, and Sokolowski (4-6) has presented
significant challenge, and study of interesting problems has aggravated the large memory requirements.
Approach to the bulk CP requires long range; approach to surface wetting also requires long range;
strong (realistic) wall forces require fine grid spacing; and large solute-solvent asymmetry also requires
fine grid spacing. The nested iterations of the inhomogeneous solvent-solvent and solute-solvent
Omstein-Zemike equations and the Wertheim-Lovett-Mou-Buff equations required long runs.

Because of these computational challenges, there was difficulty in performing calculations for states
very close to the CP or very close to the prewetting transition; there was also difficulty in performing
calculations with strong wall potentials, Even so, the range was longer and the grid finer than in previ.
ous studies by this method.

Adsorption from SCF solutions on a realistic (but weak) wall exhibited expulsion of a repulsive solute
from SCF solvent to the wall and competition for an attractive solute between the solvent and the wall,
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Figure 6.1 Solute-solute pair correlation functions gyo(r) at T* =
1.415 = 1.096T.* and different densities. Pyrene—carbon dioxide
mixture. PY closure. Solute mole fraction = 1075,
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Table III. Lennard-Jones Parameters

O

¢e/k, K s A
monomer—monomer, mm 225.3 3.794
dimer site—dimer site, ss 225.3 5.691

monomer—dimer site, ms 225.3 4.743
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Flgure 6.3 Pair correlation functions for solute-solute (squares), solute-solvent (stars), and solvent-solvent
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