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Abstract

Molecular interactions and molecular distributions are at the heart of the supercritieal behavior ] _ ._ _, [
of fluid mixtures. The distributions, i.e. structures, can be obtained through any of the tl'm_¢ _ ,..._. _ ._,_

routes: (i) scattering experiments, (ii) Monte Carlo or molecular dynamics simulation, and (iiii) 1_ o _integral equations that govern the relation between the molecular interactions u (r) and the ._ _' g

probability distributions gij (r). Most integral equations are based on the Ornstein-Zernike re- _ .,..__"lation connecting the total correlation to the direct correlation. The OZ relation requires a _ [
"closure" equation to be solvable. Thus the Percus-Yevick, hypemetted chain, and me_m "_ _" '" _" _ =_
spherical approximations have been proposed. _ _ _

."
We outline the numerical methods of solution for these integral equations, including the Pi. _ _o_ _ _

card, Labik.Gillan, and Baxter methods. Solution of these equations yields the solvent-solute, ._ _ =_.= _ ,_

solvent-solvent, and solute-solute pair correlation functions (pcf's). Interestingly, these pcf's _ _!_exhibit characteristical signatures for supercritical mixtures that are classified as "attractive" or _ _ ,_

"repulsive" in nature. Close to the critical locus, the pcf shows enhanced first neighbor peaks _ _" °="f"_with concomitant long-range build-ups (sic attractive behavior) or reduced first peaks plus _ _ _ = "d
long-range depletion (sic repulsive behavior) of neighbors. _ _ _ _ _=

vent, or solute and cosolute. These are also detectable on the distribution function level. ,, .

The thermodynamic consequences are deciphered through the Kirkwood-Buff fluctuation in- '_ _ ;itegrals (Gij) and their matrix inverses: the direct correlation function integrals (DCFI's). _

These quantities connect the the correlation functions (microscopic quantities) to the chemical _ _,g__ ,,_=oE'_
potential derivatives (macroscopic wviables) thus acting as "bridges" between the two Weltan-

schauungen. As a consequence, the partial molar volumes, the isothermal compressibility, and _ z i

the solubility can all be expressed in terms of the GO and the DCFrs. Practical implications t:: "= _ _._.a _ a._ e _ _ _

of these connections are that in se,ectlr_gand desiguing extractive supercritica, agents, one can t'_ _ _'i__predict the attractive or repulsive behavior, the appropriate solvent-solute pair, possible syner. _i '_'_gism, and P-T-x ranges that are operable for the given extraction.

In addition, behavior of supercritical mixtures near an adsorbing wall can be analyzed by den-
sity profiles generated by the inhomogeneous Ornstein-Zernike type integral equations. This
has significance on supercritical fluid chromatography. , _ .....

...... _ _ ,,
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formulas; and (iii) these thermodynamic provertJes are used to characterize the supercritical mixtures.

In the following, the sections are structured to first introduce the integral equations. The distribution
functions are related to the thermodynamics through the Kirkwood-Buff solution theory. Then the
numerical methods for solving the integral equations are outlined, These techniques are applied to pro-
duce the solvent-solute and solute-solute pcf and their characteristics are ascertained for attractive and
repulsive SCF. The thermodynamic properties are examined using these pcf. We not only examine
binary supercritical mixtures, but also ternary systems. We exhibit the conditions under which cosoi.
vent or co,lute can have either cooperative effects, or interference with the solute, Due to the impor-
tance of supercritical fluid chromatography, we also lay the groundwork for a fundamental treatment of
the molecular distributions of components of supercritical mixtures at attractive and repulsive solid
interfaces.

2. Integral Equation and Molecular Distributions

We introduce first the te.mfinology of statistical mechanics. For an N-body syslem, the I-t_ur_il-
tonian tl/v or the total energy of the system is

N p:_

i=l

The classical canonical partition function is then

Q/v
Z/v = N !A-----.---_ (2.2)

where the configurational integral, Q/v, is defined as

Q/v _. f dr1''' dr/v exp[-13V/v(r2..... r/v)] (2.3)

In terms of the configurational integral, the two-body density function or the pair density is given by

p_)(rl,r2) e N(N-1)Q/Vjfdr3'..dr/v exp[-13_.%(r_,..., r/v)] (2.4)

The pair correlation function is then

Pc2)(r_z)
g (r _2)m p2 (2.5)

In addition, the total correlation function h (r) is

h (r lz) _ g (rlz) - 1 (2.6)

The direct correlation function c (r) is defined ir, terms of the Omstein-Zemike relation

DEFINITION: The Ornsteln-Zernlke Relation. The direct correlation function, c (rl,r2), is defined in
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terms of the total correlation function h (rl,r2) througha convolution integral

h (rl,rz) -c (rl,rz) " p_ drs h (rl,rs)c (rs,rz) (2.7)

Knowing h(rl,rz) one can obtain the direct correlation function. In bipolar coordinates, the OZ equa-
tion assumesthe form

r4_

h(r)-c(r)= 2_r I ds sc(s),,_,dt th(t) (2.8)

Many integral equation theories for correlation functions are based on the OZ relation. Since the OZ
defines the dcf c (r), it requires a second equation for unique mlution of both c (r) and h (r). This
second equation is called the closure relation. The closure is normally based on cluster diagrams (e.g.,
the hypemetted chain equation), functional expansions of a genea'ating functional, or microscopic force
balances. The "exact" closure is given in terms of a bridge function B (r), i.e.,

g (r) = exp[-13u(r)+h (r)--c (r)+B (r)] (2.9)

B (r) has well-defined, though difficult to evaluate, cluster diagrams. When B(r) is set (arbitrarily) to
zero, we have the approximate HNC closure.

HNC

g (r) = exp[-_u (r)+h (r)--c (r)] (2.10)

For PY (another approximate closure),

B(r) = ln(g(r) - c(r)) - h(r) + c(r) (2.11)

Thus

PY

c(r) = g(r)- g(r)exp[_u(r)] (2.12)

3. Distribution Functions and Thermodynamic Properties

The distribution functions are related to thermodynamic quantities through the well.known
energy, virial pressure, and isothermal compressibility (Kr) equations. However, for the study of SCF,
we are interested in the solubility, the partial molar volume (PMV), and K r. To obtain these first two
variables, we choose another mute: the Kirkwood-Buff (KB) factors, G_, defined as

GaB = G_a = I dr c_(r)--1 4_r 2 ,= _ dr h_(r) (3.1)

3,|__THE=K_KW__.QQD-BUF'F THEORY OE3_O_L_U_ILONS

We first define the Jacobian A of the derivatives of the chemical potentials It,. with respect to mole
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numbers Nj, and its matrix inverse B:

A.B=I (3.2)

where

A_,_= -ff r.v._T, _ = k'T , ._ _r'P_,_
(3.3)

I is the unit diagonal matrix, and 8o_is the Kronccker delta. We note that the B matrix is related to the
number fluctuations in terms of Go (thus also the name fluctuation integrals).

Kirkwood and Buff have shown that a number of thermodynamic quantifies are relat_l to these fluctua-
tion integrals: namely, partial molar volume, isothermal compressibility, and solubility. The partial
molar volume is given by (in a binary mixture of solvent 1 and solute 2)

_ I+ px_(Gll- G12)

pV2 = 1 + pxlx_ (3.5)

and the isothermal compressibility of the mixture

1 + pxtG12 + px2G_ + p2xlx2(GllG_a - G_2)

pkTKr = 1 + px ix_ (3.6)

where

,_ = G 11+ G_a- 2G 12. (3.7)

For a binary solution of solute 2 at infinite dilution in solvent 1, x2 _ 0, Equations (8) and (9) simplify
to

= 1+ - (3.8)
and

p°kTKr°= 1 + p°G°1. (3.9)

It is also possible to express the PMV and Kr ° (i.e., the isothermal compressibility of pure solvent) in
terms of the direct correlation function integrals (DCFT)

pO_'_ = pOkTKr0(1 _ CG) (3.10)

and

p°kTKr ° = (1 - cO )-1 (3.11)

In applications, it is convenient to define the Krichevskii parameter

N=._ T.V,tVI_,2 (3.12)
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=pOkrf p°kr(1-

It will also be convenient to use the dimensionless Krichevskiiparameter_' defined by

p_k--"_ (3.13)

The solubility of solute 2 in the supercritical fluid can be expressed in terms of the enhancement factor
E

Y2 = E -._- (3.14)

The enhancement factor expresses the actual solubility over its ideal gas value, It is given in terms of
the fugacity coefficient _ of the vapor phase as

E = (i)2_''uaexp[_dP f_v_'_]/¢2 (3.15)

From thermodynamic relations, we know

In(h2= I a_ (3.16)

" [KT l=I -Cr2l--f

Or in terms of an integral over density
p

ln*2=-Id--_ C_-lnZ ° (3,17)

The configurational chemical potential la'_"is accordingly
p

Since ¢2 determines the solubility (or enhancement), it is interesting to see that according to the pres-
sure integral (eXl.18), the enhancement is due to the divergence of the isothermal compressibility Kr
(with a sign determined by 1--C_). But according to the density integral (eq.19), _ is determined by
the "short-ranged" integrand C_ onlyl This is causing some current controversy on whether the solu.
bility anomaly is due to "long" or "short" range correlations.

It is appropriate here to clarify the semantics used in literature for SCP. A thermodynamic quantity can
be "fini_'e" or "divergent" in the albeit narrow sense that tt is free of or scaled by the isothermal
compressibility Kr, which of course diverges at the solvent CP. For example, eq.(3.10) says that the
PMV is a "divergent" quantity for SCF, since it scales as KT. The chemical potential eq.(3.18) is
"finite", since it does not scale with Kr. A quantity is either "short" or "long" ranged depending on
whether it involves only short-ranged correlation functions (e,g., c l2(r)) or it involves long-ranged
correlation functions (e.g., h12(r)). Thus the KB factors G l'_ are long-ranged, while the DCFI are
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short.ranged quantities. Thirdly, the meaning of "local" vs. "global" quantities refers to the quantities
that are obtained by considering only the radial distance from one to two (or few) molecular diameters
0ocal), vs many (e.g., 20 to 50, etc.) moleculardiameters (global). Thus the local density enhancement
0_oDE)is a "local" quantity, because it is defined within I to 3 diameters of the solvent molecule. But
since the LDE involves the long.ranged h I2(r), it is actually, in our parlance, a "long-ranged"quantity
(or better yet, quantity depending on long.rangedcorrelation functions). LDE is "finite", because it is
local and not scaled with Kr.

In light of our "new" definitions, what can we say about the solubility enhancementnear solvent CP, a
prototypical supercritical behavior? We shall view this solubility question as a "solubility variation"
question, namely, how fast the solubility changes with respect to either pressure variationsor tempera-
ture variations.'?because what is interestingin supercriticaltechnology and extraction-separationis the
"rapid" change of solubilities with pressure,or temperature, when going across the CP. The the deriva-
tive of fugacity with reslxmt to pressure,accordingto (3,16) is

_ - T (3.19)

Or, the solubility variation is

_Y2 - Kr(1 - C_) =- Kr_'_-'F= (3.20)

(Note that the same result is obtained from eq.(3.17)). Thus the solubility change is driven by Ifr, a
"divergent" quantity.

3.2, ATTRACTIVE. REPULSIVE & _AKLY ATTRACTIVE MIXTURES

i The affinity of solvent molecules for a solute nucleus (solvation or densification) is expressed by the
excess number, N Ia

NI_ = limpO I dr hl2(r) = pOG_ (3.21)
N l.-.d)

This quantity can be related by matrix inverse to DCFI as

Nr "p°krrrC _ (3,22)

Synthesizing these relations, we obtain for the partial molar volume and the excess number

poff_ = pOkrKr_ NI_ = l(r_--- p_krXr_" (3.23)

N_"= Kr (p°kr - 82)= p°krXr (1 - _') (3.24)

By splitting the total correlation h12(r) = c12(r) + 712(r), where _q2(r) is the indirect correlation func-
tion, Chialvo and Cummings have recently shown that the PMV can also entertain a "finite" contribu-
tion and a "divergent" contribution:
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This is helpful in elucidating the solute-induced local effects when a solute molecule is introduced into
the predominantly solvent environment. Equations (3.23, 24) entail the definitions of three categories of
supercriticalfluids: (1)attractive, (ii) repulsive, and (i) weakly attractive mixtures,

For negative Krichevskii parameter: _<0, eq.(3.23) says that __' _ _ as the CP of the solvent is
approached, while eq.(3.24) says that the excess number N_ -++.**. This is typically attractive behavior:
volumetric collapse upon solute addition, and large excess number buildup.

By the same reasoning, we can define the other two categories. The table below summarizes the
parameter ranges.

Table 3.1 Attractive, Repulsive and weakly Attractive Mixtures

CategorY _' lim__V_2V" limN
Attractive 0 > _" _ - ** _ + **
Weakly Attractive 1 > _* > 0 _ + ,,, _ + ,,
Re.pulsive fh" > 1 _ + ** _ - ,,.

4. Numerical Solution of Integral Equations

We use the PY equation as an example for discussing the numerical techniques of solving
integral equations. In bipolar coordinates, the PY equation assumes the form

t4-/

y(r)= 1 + _r I ds sC(s) ,,_,_ dt th(t) (4.1)

Eq. (4.1) coupled with the PY assumption

C(r) = h(r) - y(r) + 1 (4.2)

forms a complete set of equations sufficient for the deternlination of the radial distribution function
(rd0. For simple potentials (e.g., the hard-sphere potential), one can solve (3.1) by Laplace transforms.
An analytical solution is obtained. For more complicated potentials, numerical solutions must be
sought. A number of schemes have been developed. We shall introduce four such methods below.

4_,1,PICARD'$ ME_OD

Picard's method refers to the solution by iterations. An initial guess of the solution function is
substituted into the RHS of equation. An output function is calculated for the LHS. Next this output is
substituted into the RHS as a new input to yield a second output. The process is repeated until certain
convergence criteria are satisfied. For PY, the convolution integral is evaluated in two parts:

Ill

y(r)= l + _r I ds s C(s) [E(r+s)- E(Ir-s l)] (4.3)

and
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It

E(x) ,_I dt t h(t) (4.4)

Thedirect andtotal correlationfunctionsarc relatedby

C(r) = h(r)- y(r) + 1 (4,5)

The pair potential is known in advance. It enters (3.6) via the definition h(r),,, y(r)exp[-_u(r)]-l.
The algorithm of solution commences with an initial guess ht°](r), iterating through equations (3.4-6)
until the so-called Neumann sequence h t°], htl], ht2Y,,.,,h t'],.., converges to a fixed point within
prescribed limits. The steps are:

1. Fix the pair potential u (r), temperature T, and density p.

2. Choose initial guess h[°l(r). The initial choice is important in the present method for numerical
convergence, especially at high densities. For dilute gas, a good guess is

gl°l(r) = e "_('vkr (4.6)

For dense fluids, there is no sure guidance. In practice, one builds up the densities from low to high,
using the previous rdf as input for the next higher density.

3. Obtain E (x) from (3.5). Here one can construct a table of E values at different x for a given h (r),
and store them in memory for later use. One may use any standard quadratures for numerical integra-
tion (or the usual trapezoidal and Simpson's methods).

,g

Et°l(x) = I dt thl°](t) (4.7)

C (r) is obtained from

Cl°}(r) = yl°l(r)[e "C'y_r- 1] (4.8)

where y[01= g lOlexp (u/kT)

4. Obtain y(r) from (3.4):

yt_l(r) = 1 + _ ids sCt°l(s)[Et°l(r+s)- El°l(Ir-s I)] (4.9)r o

Since we cannot go to infinity numerically, the upper limit b is chosen sufficiently large so that C(b) is
very small (_ 10-7). Normally, b = 6_-10t_ is adequate for LJ molecules and 20<_for Coulomb elec-
tmstatic forces. (<:rcorresponds to the molecular size),

5. To guarantee convergence, mix ytl_ with ytol before the the next iteration according to

y t_ (r) = ayt°](r) + (1 -a)ytll(r) (4.10)
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where 0< o_<1 is the mixing parameter. In numericalanalysis, this is called relaxation. For low den.
sit), states, a is small (say, 0.4); for high density states, tz is large (e.g., w=0.9 for p*=0.7). It is used to
insure numerical stability. The judicious choice could only be made from experience in working with
the equations.

6. This ,,,m"lUis used as input in (3.8) and (3.9) to get E I11 and CI13 (note that 8[13(r)
=yl_m_](r)exp[-u(r)/kT]). Steps (iv) to (vi) arc repeated, A sequence y{O],ylll, y_},.., y[,_),,., is gen-
erated. If the Neumann se.quenceis convergent, we shall have the soluUony(r), Numerically, we
impose the Cauchy condition that if

ly{"+t}(r) - yt"](r)l < 8 forall r (4.11)

where 8 is a small number (e.g., 8 = 0.0001), we consider the sequence convergent and the solution
y(r) is set to yt"+li(r). Other correlationfunctions areobtained from

g (r ) = y (r)e"*('vkr (4.12)

and

C(r)=g(r)-y(r) (4.13)

.4_2,O_LAN'S _THOD

Gillan's method consists essentially in dividing the pair correlation function into two pans, a
coarse pan and a fine pan, then applying the Newton-Raphson (NR) method to speed up convergence.
It has recently been refined by Labik et al. [3] and applied to the reference interaction site model by
Monson [4] and Enciso [5] for polyalomic molecules. A remarkablefeature of GiUan's method is its
insensitivity to initial guesses for the numericalsolution, a step critical in earlier methods. In addition,
for most state conditions, the convergence is fast. These advantages have made this method the prime
choice in solution of integral equations.

Earlier, Watts [6] has used a Newton-Raphson procedure on discrctized integral equations. Gil-
lan divided the pcf in two pans: one slowly varying, the other small and rapidly oscillating. The out-
line of the method is given below. A computer program is also provided in the Appendices.

The iterative procedure is based on the indirect correlationfunction (ic0 7(r) defined by

"Kr),, h(r) - C(r) (4.14)

(Note that the total correlation h (r) is the sum, h (r) = C (r) + 'Kr), of the direct correlation C (r) and
the indirectcorrelationy(r)). The OZ relation in the Fourier space could be writtenas

i- p_(k) (4,15)

where tilde indicates Fourier transforms, In the new method the icf is divided into

7(r) = "/_(r) + Ay(r) (4.16)

or in discretized form
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= + (4.17)

wherey,m V(rffiiSr),i=0,I,2,3,...,N,and8r isthediscreUzedgridsize._ isthecoarsepartoftheicf
to be defined below, and AZ is the fine part. The co_ part is expressed as an expan,_ion(spectral
decomposition) in terms of a set of orthogonal basis functions pa ot= 1,2,3,.., with expansion
coefficientsOa

'Y:" _ aaP¢* (4,18)GI

Thus

7,'"-"_ aaP_*+ A'y_ (4.19)

Inaddition

p a A't'_= 0, Va (4.20)i

Inordertoclosethesimultaneousset ofequaUons,we needoneadditional relationbetweentheicf and
thedef.Thisisfurnishedby theusualintegralecpmUons.ForexampleinthePY closure

C(r) --.[I + _r)] f(r) (4.21)

orinHNC

C(r) = e"-_'(')'_') - _r) -1 (4.22)

For arbitrarilychosen initial guess Z, eqs. (3,23 and 29) might not be satisfied simultaneously.Thus an
iterative procedure commonly used in solving integralequationswill be implemented, The procedureis
repeateduntilcertainconvergencecriteriaaresatisfied.The iterationsarea combinationof the
Newton-Raphsonsteps(onthecoarsepart7_c)andPicardsteps(onthefinepartATI).Eachcombina.
tion(Newton-Raphson+ Picardsteps)iscalleda refinementcycle.The finalsolutionwillbcdenoted
byasterisks:itsexpansioncoefficientsare{a*s,a*2,...},andthefinepartisAT*i.

Thecoarsefunctionsubspaceisspannedbya smallnumberv = 10ofbasisfunctionspa,(these
functionswillbc specifiedlater).Initially,we choosearbitrarybutreasonable7(r)and {aa}.Ifthe
choiceof {al,a2,...}istheproperset,we havethefinalsolution.Substitutioninto(3.23)and(3.29),
PY, forexample,shouldgivethesame 7(r).Any differenceindicatesimproperanswer,A new set
{ai,a2....} istobc producedviaa Newton-Raphsonprocedure.The processisrepeateduntilconver-
genceisachieved.Supposethattheoutputdexivedthrough(3,23and29)fromtheinputofan initial7,
is

7'i= _ a 'a p a + A7'i (4.23)ct

If 7' is the exact solution, we should have

da " aQ - a'Q = 0 (4.24)
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and

AT'; = ,_,, (4,25)

In most cases, first few iterations will not satisfy the above two conditions, To proc='zLwe fix the AZ
arbitrarily at the initial values and genemm new expansion coefficients ao until they satisfy (3.32),
These new a's are obtained by a Newton.Raphson formula

_n = an - ]_ (J'l)c_ dD (4,26)

where J is the Jacobian

8da

Jal_m _)a"-_ (4,27)

evaluatedattheoldestimates{aa}.The derivativesam takenatconstanta._@)andconstantAT,,
Thesecorrectiveiterationson thecoarsepanarecalledNR cycles.The cyclesarecontinueduntilthe
new a's do notchangefromtheirpreviousvalues(Cauchycondition).Lettheprimedquantities
representoutputsfromanNR cycle,wc haveforthefinala*'s

T'*i = _.a* ,","+ AT'_a (4.28)
Cl

compared with the:previous input

"l#i= _ a*aPia + AT_ (4.29)
Q

NotethattheexpansioncoefficientsstaythesameaftertheNR cyclewhilethefinepan AT'changes.
Thesea *'sareconsistentwiththeinputAT. However,theseA7 do notyetsatisfy(3.33).To obtain
thefinalsolutionwe carryoutPicarditerationson Ay,i.e.theoutputAT'_isusedasthenew inputfor
thenextNR cycleona 's.Theentireprocedm'elookslikethis

Seriesof refinementcycles= [.fixedAy]--_NR Cycleson a's_ [newAT']_ NR Cycleson
a's_ [newAT"]_ ...

The cyclescontinueuntilcondition(3.33)issatisfiedto witha smalltolerance.Afw..ra numberof
cycles(inpractice,6 to7refinements),thefinalsolutionisobtained.

Labiketal.[7]usedsinefunctionsinsteadoftherooffunctions,Theyobtaine_Ithreefoldto
ninefoldfasterconvergencethantheGiIlanscheme,Thiswas made possibleinpartby avoiding
evaluatingtheFouriertransformsintheNR cycles,

Labik et al. proposed to use the Fourier series as the basis functions instead of the roof function of Oil.
lan. Since in solution of integral equations, one iterates between the closure relation: c (r )=f (h(r )), and
the OZ relation: /i(k)=F _C(k)), two Fourier transformations are needed for one iteration. (This is what
Gillan's method does). Despite the fast Fourier algorithm, it still saves considerable computer time if
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thiscouldbc avoided.Labikuse,d firstorderTaylor'sexpansionoftheclosurerelation:

Q(r)= Q°(r)+ ¢°(r)IF(r)- F°(r)] (4.30)

where ¢°(r) is the derivative dQ/dF at F°, Q(r) E re(r), and F(r) m r_r). This derivative could be
based on the PY closure or the HNC (or any other) closure. The equation is Fourier transformed to
give

The coefficient matrix _g is given by

_g,,"= -'N1N-'_,o [cos(rd(k-j)/N)--cos(rci(k+j)/N)] (4.32)

Thus in the NR cycle, there is no need to transform back to r-space. Note that the OZ relation holds in
the Fourier space:

r"(k ) = p_. (k)2 ..... (4.33)
k - (k)

4.4. BAXTER'$ METHOD

The Labik-Gillan me_od requires the discretization of _lij(r) and co(r ) into a set of N values
representing hij(ri) and c0(rl), where ri = i Ar and i = 1..... N. The Labik-Gillan method also
requires the assumption ho(r ) = 0 for r a R = NAr. A similar truncation is not always necessary for
co(r), i.e.. wl_;n using PY or MSA closures with finite-ranged potentials. >From the comparison by
Cummings and Monson between numerical and analytical solutions of OZ equations (31), it is clear that
any numerical scheme which requires that ho(r) = 0 for r >R is unable to approach the CP closely.
This suggests t/tat a method not dependent on r-space truncation of ho(r) should be employed in the
vicinity of the CP.

Based on factorization of the OZ equation for a single component, Baxter (32) proposed a numerical
algorithm for the calculation of h (r) under the sole assumption that c(r) is finite in range. He showed
that if c (r) = 0 for r>R (ire., the direct correlation function is finite in range, as it is in the PY and
MSA approximations for finite potentials) then the OZ equation can be factored into two equations.

R

rh(r) = -q'(r) + 2rcpl dt q(t)(r - t) h(Ir - t l) (4.44)

rc (r) = -q '(r) + 2n pf dt q '(t) q (t - •) (4.45)
r

where

q(r)=O for r <0 and • _R (4.46)

Baxter suggested that the two equations (8) and (9) could be used, in conjunction with a closure
relation, to iterate on the function q(r), thus yielding a numerical method for solving the OZ equation
where the solution of h(r) at r>R is not required.
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An original version of such an algorithm for the single component case was derived by Baxter
(33), employing a single integral equation which coupled equations (8) and (9). It was solved by Watts
(34) with the PY closure using the NR method with grid 0.050 and with the potential cutoff varied
from 3.5a to 6.0_. To approach the CI-, a series of runs with various densities around different isoth-
em_s was required.

Recently a variant of this method was introduced by Cummings and Monson (31) which tm'ns
equations (8) and (9) into a DI scheme for function q (r).

They indicated that the'it DI method had the following difficulties: Small grids Ar = 0.005 were
required; so, a large number of points, N = 300, had to be used. When kT/¢ < 1.4, the DI scheme
encountered convergence problems. They also coupled equations (8) and (9) and solved using the NR
technique. When they applied the NR algorithm, it was computationally intensive when N > O(102),
and a good initial guess was necessary to ensure convergence. When we tried to extend this method to
typical, binary supercritical solutions, very dissimilar molecules were encountered, and the above prob-
lems became worse. When the solute molecule has large size (¢hl << ¢_22),we needed a large number
of points N to cover the solute potential. Direct application of the Nit method became harder because
of the need to handle four times as many variables and a larger matrix to solve the simultaneous equa-
tions. For typical supercritical solutions the solute molecules have large t:22 values compared to the
solvent _1_. When we reach the solvent CP, kT/¢tl is approximately 1.3; so, we encounter very low
reduced temperatures with reslxx:t to solute molecules (kT/e.22 < 1). These difficulties led us to seek a
more delicate algorithm to solve the OZ equations for binary solutions near the solvent CP.

4.4.1. METHOD OF CALCULATION

Baxter reformulated the OZ equations of mixtures into two sets of equations given by
RM

rcq(Ir I) = --q'q(r) + 27t_pi_dt q_.(t) q'kj(r + t) (4.47)

forR O > r 2S O and
Ra

rhi_(Ir l)=-q'q(r) + 2n_pkJdt qa(tXr -t) k./(Ir - t I) (4.48)

for r > S0. In these equations RO = (Ri + Rj)/2, So = (Ri - Rj)2, and R,, = rain {Rk,.,Rkj - r }.
The Ri are range parameters chosen such that co (r) = 0 for r > Rq and qq (r) = 0 for r > Rq.

Our method for the numerical solution of integral equation approximations in supercritical solutions is
as follows:

Step 1. By using the Labik-Gillan method to solve the OZ equations of mixtures, we can approach the
CP to pkTKr = 15. The solutions are gq(r), co(r ) and hq(r). The direct correlation functions are
used as input to solve functions qq (r) in the next step.

Step 2. We use the integral form of equation (11)

Rq RM

C_j(r) = I dr rcq(r)=qo - 2re_.,p, Jdt q_(t) qkj(r + t) (4.49)

The analytical solution of q 'q (r) for hard-spheres (35) is used as an initial guess

q 'q (r) = ai r + bi for Sq < r < Rq (4.50)

ai = (1 - _3 + 3Ri_2) / (1 - _3)2 (4.51)
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bi= -3Ri2_2/2(I- _3)2 (4.52)

_2= _ ,._OiR;2 (4.53)

= R? (4,54)
and

1 _ R,2)
qu(r) ='_ ai (r 2 ' + bi(r- Ri) (4,55)

We discredze the functions qi/(r), q'o(r), cii(r), and ho(r ) into qo(r,), q'u(ru), cii(r,), and
h_j(ru), where r, = uAr, wifh Ar = 0.04at1. To simplify the calculation, we use R 1= 2.56atl and
R2 = 2.56a22 + ( a22 - all ). Using the trapezoidalrule, we write equation (13) in discreteform

RM

_.j(ru) = qo(ru)- 2x_".ptAt _ qti(tp)qkj(ru + tr) _, u = 0,1 ..... (RO I Ar). (4.56)
k ip-s_

with _,, = 1/2, when tp is at the upperor low limit, else _,, = 1.

Then we applied the NR method to solve equation (18). The Jacobian of equation (18) is

a_/(ru! = 6_8j,,8_ - 2n At Y'.Pk [_f)t,,,f)i_qkj(r_ + r,) + _f_6_qti(rv - r.)] (4.57)(r,) k

The the terms which survive inside the square brackets are as follows:

The first term is nonzerowhen

Rk;- r.> r_> S_, ifr.> (Rk;- R_) (4.58)
or

R_ > r,> $_, ifru< (Rkj- R_) (4.59)

andthesecondtermisnonzerowhen

Rkj _ rv _ S_+r,,, if r, > (R_,j- R_) (4.60)
or

R_ + r,> r,_ S_ + r.,fir,< (Rkj- R_) (4.61)

and_,= I/2ifr,isattheupperorlowerlimit,else_,= I.

To save time, we used M = 0.04all and a short truncatedpotential to get an approximate solu-
tion of qo (r). As a measureof convergence of the NR cycles, we define the variableTh as

I._ 2 RIJ I/2

Z Z [aqo(r.)]2
i j-1 r.=S0

"ql_ 2 "_lj (4.62)
_._ _ [qij(ru)] 2

L s=),.%
The NR iterationis stoppedwhen 'q_is less than 10-4.

Step 3. We interpolateqi/(ru) from step 2 to small grid Ar = 0.02a_), and extend it to the desired
cutoff potential %u: = 5.12ff_. Since qo(r,) is already a good approximation,direct iteration of equa-
tion (20) converges quicklyto the finalsolution. We differentiate functionsq;j(r) to get q'o(r).
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It takes a long way to reach this point, but these three steps guarantee accurate solutions of h_j(r),
co (r) and q 'q (r). This set of solutions is then used as a startingpoint to approach the CP.

Step4. Using hq (ru) and cq (ru) from step 1 and q 'q(ra,) from step 3, we have a set of solutions saris.
fying equations (9) and (10). We proceedwith direct iterationof equations (7), (11) and (12), Suppose
that c_(rk), h_(r=) and q_)'*(r=)are the n = iterates for the functions cq(r), h,j(r) and q'q(r). The PY
closure,equation (5), yields

ruhi°trr(ru) = f q(ru) [ruh,_(r) + ru - ruc_(r,,)] - ru (4.63)

where

f q(r. ) = exp[-uij (r,)/kT]. (4.64)

The (n+ly n approximationsfor h_W(ru) is given by dampingfunctions of h:/(ru) and hi°_(r,).

h_VV(ru)= czhi_u'r(r)+ (I- a)h_(r,) (4.65)

wherea isa mixingparameterdesignedtoensureconvergence.The dampingisonlyrequiredforfol-
lowingregion.

aq < r _ 1.6 aq (4.66)

Usingequation(10) to solveh[_*l(r,,).
Ra

ra, h_+_(Ir=l)--qq(ru)+ 2n_pk dt q,_(t)(ru - t) h_"(Ir= -tl) (4.67)
k

The functions qi)'+l(ru) are updated by adding the difference of r_,hi_.l(r=) and r,h_:W(r,) with
the dampingfactor 13.

'M4.| *n
qq (ru) = _[rhi_+l(r=)- rh/_(ru)] + qq (ru) (4.68)

Then we can integrate qi?+l(r) to get ,,,lqij (r).

The.c_4.1(ru)aresolvedby equation(9)
Rm

ruc_*1(r,)= -.,qij'+1(r,,)+ 2n _, Pt_ dtq_,+1(t)q;':+2(ru + t) (4.69)
k s_

We checkedthequantity_2,definedby

2 2 N 11/2

7.,7_.,7_., =
i-i j'=] u"l

112'=I- 2 2 ,v.... (4.70)

[ i_ _u_ [q'o (ru)]'

The DI cycle was stopped when r12was less than 10_. If eqlkqtion(34) is not satisfied, then we
returnto equation (4.63).

In 1992, Busigin and Phillips[8] proposed an implicit Euler's method for the Newton-Raphson algo.
rithm. Their method is particularlysuited to "stiff" equations, thus affording high stability.

5. Solute-Solvent Correlation in Attractive and Repulsive Mixtures

The solvent*solute (solvation) structureis central to supercritJcalbehavior. In this section, we examine
th_ integral equation results for attractiveand repulsive SCF. We use Lermard.Jonespotential to model
the solvent and solute interactions. This representationgives correctqualitative behavior ('butnot quan.
titative information). But this is what we are interested in.
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5,1. A'V!,RA_ MIXTURES

Petsche and Debenedetti (27) carried out computer simulation for both auractive and repulsive
solutions, with parameters simulating the Ne.Xe system.

Parameters for neon and xenon used in simulation *

i = Neon Xenon

Size ratio oiloN, 1 1.435
En_.__gy_fio _i/on, _ 1 7.04

• TheMDuteri864panicle,with863solventmoleculesand1 )olutemolecule.

We have solved the HMSA closure for the attractive Ne.Xe case at the followinb conditions:

T* = 1.4 O* =0.35
T* = 1,4 p* = 0.8

Figures5,1 and5.2 showthesolvent-solutecorrelationfunctions,gs2(r), Oneobservesthatat 1"*= 1,4
and p* = 0,35 (nearthe solventCP),g 12decaysvery slowlyfromaboveunity, (exhibitinga persistent
tail >1 for r > 4als), This slowdecayis calleda long.rangebu//dup. This buildupdisappearsat a
higherdensity(p* =0,8), This behaviorhasbeenalludedto earlier[9], We havealsomadecalcula.
tionsusingthe P-.HNCclosure[10] for the carbondioxide.pyrenemixture studiedby Brenneckeet al,
[11] The solute pyren¢ is very dilute in CO2 (mole fraction3x 10"7). The results for the three correla.
tion functions: solvent.solvent, solvent.solute, and solute.solute are shown in Fig. 5.3. Again we clearly
see the long-range buildup of the solvent-solute correlations. This buildup translates into a large value
for the fluctuation integral G12. We note that G _2is closely related to the exce,ss coordination number
NT" (now depending on the range of integration L. See also eq.(3.21)).

/.

N_'(L), p°ll dr 4if,r2 [gi2(r) - l] (5,1)

This number gives the excess of solvent molecules 1 radially surroundingthe central solute molecule 2
up to a radial distance of L. For ranclo;ndistributions, N_2(L=,_) = 0, meaning that there is no excess
of solvent molecules around the center. The density of solvent molecules is given simply by the uni.
form density Ps and its radial number is given by (4n/3)psL 3,L being the coordination distar_e from
the center. When Nex 1 or G 12L_greaterthan zero, there is positive correlationof 1 around 2; less than
zero, negative correlation of 1 around 2. Figure 5.4 shows the G# for three types of fluids: (A) attra¢.
tire mixture Gn, ('P) pure solvent G_s, and (R) repulsive mixture Gs2 at T* = 1.35 and p* =0.4 (all
variables reduced according to solvent parameters), The curves represent the excess numbersof solvent
neighbors at increasing coordination distance L for the solvent-solute correlation. Clearly, for case A,
Gs2 becomes very large (- 110), indicating substantial clustering of solvents around the solute
molecule. This value _ould be compared with the pure solvent-solvent Gss of- 8, and "repulsive"
solvent.solute G s2 - -6. We note that the major contribution to excess number comes from long range
buildups. Namely, large clusters did not derive from first neighbors alone. Upon reflection on
geometry, this stands to reason since there is only so much room in the first neighbor shell for packing
molecules. For clusters of size approaching 100, they must come from second, third, and higher neigh-
borhoods.

gL_8£P__XTUR_S

Similar calculations are carriedout for the "repulsive" mixtures. This time, infinitely dilute neon
is dissolved in supercritical xenon. The following conditions are used:

paper/NATO/befw6 17 Lee and Cochran



1"*" 2.0 p* " 0,35
1"*=1.4 p* = 0,80

1"*= 1.34 p* = 0.27

The results arc plotted in Figs. 5.5(a) and (b). At high density p* =,0.8,the pcf g _2is oscillatory. Near
the CP of xenon, 8 z2(r) hermes suppressed in magnitude after the firstpeak. The second peak barely
makes above unity (-- 1.007), At a lower temperature(I"*= 1.34), the second peak is less than l (see
Fig, 5.5('o)), Thenceforth,the correlationsdo not rise above1, representingundea_orrelationbetween
theneonsoluteandthe xenonsolvent. This beJuwioris exactlythe oppositeof tic attractive_ dis.
cussedabove. Thesolventmoleculesinsteadof densifyingaroundthe solutemolecule,stayaway(cav-
irate) from neon, This behavioris clearlys_n in G12. Figure5.6 givestheG12 for four "repulsive"
mixtures, The deficit in solvent moleculesas the critical point of xenon (in PY approximation,
To* = 1,29, p=* = 0,27) is approachedreaches- -12 for the lowestternperaturestudied.Again,the
deficit is madeout of both theshort.rangelocaldensitydepletionand{ong.rangedebit,with the major
pan coming from long.rangesolvent.soluteunducorrelation,We have comparedout PY calculation
with the simulationdataof Pstscheet al. (27)(Fig.5.7). While thereis statisticalscatterin thesimula-
tion data, the two re.suitsreinforce each other in the height of the firstpeak and locations of the peaks
and vaUcys.

By using integral equations, solved for model supcrcriticalmixtures, we are able to show on the
molecular level the densffication and caviti_on of solvent molecules around the solute molecules
dependingon whetherthe mixtureis "attraclJve"or "repulsive".The storydoesnotendhere, Further
interestingstructuralmanifestationsarefoundfor the solute-solutecorrelationsand arediscussednext.

6. Solute-Solute Aggregation

Not only do solvent molecules tend to cluster about solute molecules in attractive mixtures, we
also find a high degree of solute-solute aggregation near the C? of the solv_t. We shall discuss the
au.ractivecasefirst,thentherepulsivecasenext, Both casesshowinterestingsolute-solutecorrelations.

6.!,A_&Cn_V_F__I_]_S

Figure6,1shows thecorrelationfunction{?mm(r)forthel.Jrr,i_turesimulatingthecarbon
dioxide.naphthalenesystemwhichisinaccessibleby computersimulatio,_andhasbeenobtainedonly
by integTa]equationmethods.For theattractivemixture,thesolute.solutepairdistributionsexhibit
increasedheightof thefirstpeakne,mr theCP, indicatingincre_t_sed_ort-rang¢soluteconcentration
about a solute molecule, consistent with interpretations of the excimer fluorescence spectra by Bran.
necke and Ecken (25,26) (see also Brigh0. This short-rangesolute-solutepair structure is similar to but
larger in magnitude than the short-rangesolute.solvent structurepresented cadie,r. Likewise, the long.
range solute-solute pair structureincreases near the CP suggesting a solute-solute cluster commingled
with the solvent.solute cluster. Because the solute concentrationis very small, the solute-solute cluster
is only a statistical association. Despite the low mole fraction, this statistical solute-solute cluster could
be expezted to exhibit macroscopic effects, for example, in solute-solutedimerizationreactions, near the
CP. In cases when the : _rrelstion length becomes large (i.e., near the CP) the notion of dilute solutions
being approximated_s infinitely dilute must be employed with great caution since despite the rarefac.
tion of solutes, detectable aggregates do occur.

In addition to showing increase.dheight of the firstmaximum near the CP, the short-rangesolute.
solute paif distributionsfor attractive mixtures (Fig, 6.1) show a much sha]{ower minimumbetween the
first and second maxima',this is similar to the be.haviorof the solute-solvent pair distributionsnear the
CP but much exaggerated. As mentioned earlier, the fluorescence spectroscopic experiments of Bren-
necke and Eckert (25,26) indicated significant excimcr formation for very dilute pyrene dissolved in
supercritical ethylene and carbon dioxide. We shall report now some additionalintegralequation calcu-
lations for the carbon dioxide-pyrene system. The following Lennard-Jonesparametersare used:
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K o^
C02".C02 225,3 3.794
Pyrtne.pyrcne 662,8 7.14
C02-pymne 386.4 5,467

The pressureu._dIs82.5bar(or1197,1psia),concentrationyp,/,= 3.0xl0"7,anddensity(pureC02)=
0.8059Ibmole/cuft.The RHNC equations(39)wez¢solvedforthisca_. The throepaircorrelation
functionsg11,g12,andg2aareshowninFig.5.3.

The solute.solutecorrelationfunctionshowsa curiousdoublepeakwitha shallowminimum
bctwoen.We shallinferthatthisfcaturc(firstminimumgreamrthanunity)characmriz_theaffinityof
pyrencmoleculesforoneanother,To de.tcrminetheoriginofthisshallowminimum,we needtoexam.
inethegeometryofpackedmolecules.ForthiscasetheradialpackinggeometryisshowninFig.6.2.
The first _ of gz2(r) mpre.sents the direct contact between a pair of pymne molecules (direct
pyrcne-pyTcnecorrelation).The secondpeakrcprese.ntsthegeometryofa pairof pyrencmolecules
sandwichinga C02 moleculeinbetween(pyrene.pyrenecorrelationmediamdv/aa solve.ntmolecule:
i,e.,pyrene.CO2-pyrcnc).The'reisa perceptibleshoulderafterthesecondpeak.ItisthenormalIota.
tionfortripletpyrcnecorrelations(concatcnatlonssuchas:pyreae.pyreae.pyrene).FatfromtheCP,
thefirstminimum incorrelationfunctionsusuallyfallsbelow1.0bemuseofthevolumeexcludedbyan
interveningsolventmolecule,Thisdoesnothappenhorn.Inthiscaseatr = 2.7o11,wherenormallya
C02 moleculewouldintervenebctwoenthepymne molecules,theusualgapwithg22< 1,0failsto
occur.Certainly,thisisnotduetoscarcityof.solventmolecules(aspyrcneisinflnimlydiluteinC02).
Thiscouldbcexplainedby theaggregationofpymn¢moleculesatthisslateneartheCP,insucha way
thatcause.sexclusionof C02 and simultaneouslyrelativeenrichmentof pyr_nemolecules.This
behaviorisconsiste.ntwithandstrengthensthepictureofexcimerformation.

To determinehow dilumisdilute,we havealsocalculateda caseata smallerconcentrationof

pyrcne(sametemperatureandpressure)y_,_,,= 2.35x I0"ql.V_'ysimilarg+j(r)areobtained.Infact,
the differe.nccs in the numerical values of gq(r) from the.two concentrationsare in the fourth decimal
place,

We also examine.d the temperatureeffect on radialstructure. Figures 5.3 and 6.3 (a) Co)show the
three radial distribution functions g_l, g12 and g2 at throe tcmpcrmures T'= 1.37, 1,50, and ZOO,
Besides the ordering of peak heights, the other noticeable feature is the doepening first minimumof g=
as the temperature is increased. Staving at g2 = 2,0 (enrichment), the value at the minimum finally
drops to g 22= 1.0 at the highest temperature (3"*=,2), Thus, the aggregation (det_md by lack of exclu-
sion of C02 molecules) of pyrene molecules is reduced at higher mm_rature.s when conditions are
farther re.movedfrom the CP.

We find that the,s¢ solute.solute correlations show intriguing isomorphism to the correlation func-
tions observed for diatomics (while we want to make the distinction hem thai excimers arc definitely
not covalent dimers). To contrast the structuralidiosyncrasies with the diatomics, we carried outRISM
calculations for dimer-monomer mixtures. For the monomers (COD and dimers, the following LJ
parameters arc used

Parameter Uk K o A
monomer.monomer mm 225.3 3.794
dimersite-dimersite ss 225.3 5.691
monomer-dimersite ms 225.3 4,?43

The bond length bctw_n the sims of the dimer is taken to bc I = 0,66o,,,,,, = 2.5

Figure 6.4 shows the site.site con'¢lation functions, g,,_, g,,u, and g. (site refers to an atom in
the dimcr), The first peak occurs at the collision diameter of the sites in two dimers (=1,68o,.,,,), The
second peak is due to one sire of the firstdimcr with the other (farther) site of a second dimcr, r = 2,34
cr,,_. We shall designate one site of the first dimer as the "host",the close.by site in the second direct
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as the "guest", and the farther site in the second dimer as the "companion" of the guest. In this
language, the the second _ is due to the correlationbetweenthe host and the other co_on. The
increment in distance is, of course, the bond length 0,66ffM. Actually, this peak occurs at a shorter
distance because of all possible nonlinear angular approacheswhich have a tendency to reduce the dis-
lance from 2,34 to about 2.2o,M, The third peak comes from a pair of sites mediated by a monomer
molecule, and occurs at -'--"2.8omm,

interesting pan is the similarity in the qualitative featuresof &#+with those of the low tem-
perature pyrene.pyrene 8,o. The first minimum is shallow and much _ter than unity. This
phenomenonhas beenexplainedgeometricallyearlier. If we focusour attentionon the correlation
between the site called the host in the first dimer and the companion in the second dimer, then it is
clear that in between these two, there is the neighbor site of the second dime+ ,hat intervenes and
excludes a solvent molecule from entering, This explains the probabtlistic"enfichm_mt"that forms the
shallow first minbnum; i.e,, probabHisticaUy,it is highly likely to have a neighbor-- from a site in the
second dimer -- localized here, with a probability density above and beyond the average density of
dimers, _ same was observed for the low temperature1.2 mixtures modeling C02.pyrene, If pyrene
and pyrene tend to aggregate, then there is a increa._d likelihood of having a third pyrene molecule
sandwiched between a host pyrene molecule and a companion pyrene molecule. This third pyrene
molecule is tied to the companion pyrene molecule because of aggregation, There tee of course
differences b¢,tween the structures of the monomer-dimer case and the C02-pyrene case, The three
peaks in the former are due to host-guest, host-companion,and host-solvent.guest correlations;whereas
the peaks for CO2-pyrene are due to correlations of host.gu;st, host.solvent.guesl, and host-guest-
secondguest.

6.2.REPULSIVE __

It is of interest to investigate the solute-solute interactions in the repulsive mixtures discussed
above. We have seen the cavitation of the solvent molecules away fi'om the solute molecule in the
Ne.Xe system. How do the solute molecules (in this case neon) behave towardeach other7 We have
calculated the &_ for the four state conditions listed in Section 5,2, The behavior is shown in Figs. 6.5
(a) and (b), As the density of solvent (xenon) is lowered from 0,8 to 0.35, the oscillations in Ne.Ne
correlations are damped. If we calculate the excess number(eq,(6.1), see Fig. 6.6), we note that there
is enrichment of excess numbers when the critical condition of xenon is approached. At high tempera-
tures, T* = 2.0, there is deficit in neon-neon correlations(G22< 0), At high densities, G22ri._.,sabove
zero, Namely, neon molecules tend to "separate"out of the mixture. Near the critical point of xenon,
the "separation" increases rapidly. Since neon molecules are "reich:ted"by the xenon solvent, evidenced
by the solvent cavitation discussed earlier,Ne tends to form aggregates too. By analogy with nonpolar
molecules dispersed in aqueous medium, this aggregationis caused by xenon.phobic attraction (cf. _ic
hydrophobic attraction), If we compare the solute.solute aggregationin repulsivemixtures with thatin
theattractivecase,ourcalculationsshowthatthe formeris severalordersof magnitudesmallerthanthe
latter. TheexcessG_,,for theattractivecaseis on theorderof 1_ nearCP.

The algorithmwe haveusedfor solvingtheOZ equationsof mixturesnearthe CP hasprovedto
be robustand efficientcomparedwith othermethodswe havetried. The resultshavebeenshownto
agree closely with results from the efficient Labik-Gillanmethod, but the new method can approachthe
CP much more closely, The CP for dilute 1.2 mixturescan be located quite precisely,The algorithm is
applicable quite generally to mixtures the components of which may be modeled as interacting with a
pairpotential which is finite in range.

Using integral equation theories, we are able to demonstrate here the detailed microscopic
behavior of the interesting repulsive supercriticalmixturesproposed erstwhile by Debenedetti (28). The
results of the correlation functions have proved helpful in gaining understandingof the distributionof
molecules surroundinga central solute molecule in dilute supercriticalsolutions.These results are con-
sistent with observed macroscopic properties which are sensitive to the short.range structure -- particu-
larly spectroscopic results, The long.range solute-so!vent structure for attractive mixtures near the CP
from integral equation calculations is consistent with the thermodynamic properties which depend on
the solute.solvent fluctuation integral -- solute pardal molar volume and solubility, Long.range
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structureis inaccessibleby computersimulationtechniques,

The solute-solutedistributionsforattractivemixturesfrom inm_ equationcalculationsare also
Consistentwith the observationof a high proportionof solute excimers nearthe CP in very dilute super.
critical solutions, To clam there are no solute.solute distributions near CP from molecular simulation
calculations (which have been performedat infinite dilution). Nor are there results with which to com.
pare the long.range solute.solute pair distributions, Judging by the integralequation results, one mix'it
expect dramaticeffects on other applications such as chemical reactions in supercriticalmedia,

7. Thermodynamic Behavior of Attractive/Repulsive SCF

In previous sections, we have exhibited the s_tural changes 812 and 8_ accompanying the
attractive and repulsive mixtures, In this section, we shall look into the consequences as reflected in the
partial molar volumes and excess numbers for both mixtures, (The third class, the weakly attractive
mixtures of Debenedetti [7], will not be examined here,)

_. c- ....

We first look at the partial molar volumes, We observe that nearthe CP, Kr is large _d positive,
However, for attractive mixtures, Nf' also increases rapidly, When 77_u overtakes p_kTKr,
becomes negative according to eq.(3,23). The values could reach -8000 co/stool (for naphthalene in
carbon dioxide), This behavior has been observed experimentally [2]. Concomitant with the negative
PMV, there is an increase of the solubility of naphthalene in COa. 'I'nis could be deduced from
eq.(3,19) or from the enhancementfactor,E, Cochran,Pfund, and Lee {12]showed that

P4t ill

(7,i)
M,J

Thus when the solute-solvent factor, G 12,increases, the solubility will also increase.

We have used the L.cnnard.Jones_ po_ntials to model the solute naphthaleneand the solvent
C02 [13]. The pcf's &11and 812 were determinedby the PY equation. For this patently attractive mix-
ture, the results arc shown in Fig.7.1 for different densities (p* -PoP1 from 0.27 to 0.50, and T*
_kT/¢11, 1.415). Note that for PY, the critical temperatureof LJ fluids in molecular units is - 1.29,
and critical density is -. 0.27. (This can be compared with the simulation critical data of Lj potential
1.31 and 0.31, re.spectively). Clearly, there is incre.as¢of the firstpc.akas the density is lowered from
0,42 downwardtowardthecriticalvalue0.27. Secondly,beyondthe firstpeak,&n becomesenhanced
and exhibitsa persistentlong-rangetail (with valuesaboveunity).Thesearethe two characteristicsfor
attractive supercriticalmixtures mentioned earlier.

In sum, the evidence shows that (1) there is local enhancement of solvent molecules, as judged
from the higher first peak of &n; however, (it) the major buildupin G _, and thus Np, comes from -
20 neighborhoods1., long range buildups (see Fig.5,4), This buildup contrastedwith the pure neon fluid
(Curve P) is quite dramatic. The excess number of pure neon only reaches - 7,4 overall2 (cf, 110 for
carve A), (We shall discuss the repulsive case, R, later,)

For a similar attractive mixture, dilute naphthalene (mo!e fraction ,,, 10"*) dissolved in C02, we
have calculated _ (eq.(3,8)) with the Lennard-Jonespotential model, Results are compared with the
data of Eckert [2] in Fig. 7.2, For the potential parameters given, the low density branch is well
predicted, The high density branch shows some discrepancies, Similar observations are given by
McOuigan and Monson [6], Clearly, the LJ potential is not a good model for C02 and naphthalene,

JAbout 20 molecular diamelen.

:lThe exceaa nmnberin pureneon is due to purely wlvent.tolvqmt oorrelationi. At the given |tare condition, there is a net
"gain",

paper/NATO/befw6 21 Lee and Cochran



PY alsointroducessome e_, However,modelpotentialsgivequalitativelyuniversalbehaviorfor
realmixturesand areworthfurtherstudy,To determinethePMV behavioratdifferenttemperate,
we plotfiveisothermsinFig,?.3Co),(T*. 1,642,1,46S,1.382,1,342,and i,334),We seea continu-
ousgrowthofthenegativityofthePMV, a._thecriticaltemperature(T*= 1,29)isapproached,We
alsoplotN T'inFig,4(a),Thereisa correspondinggrowthinNp. Eq.(3.23)indicatesthatfornega.
livePMV tohappen,thedifferencebetweenplkTKrand N|" mustbe negative(orC_ > I),The
excessnumberof solventmoleculessurpassesthecompressibility,Addinga solutemoleculetothe
solutionwillattractmore solventmolecules(condensation)thanincreasingthebulkvolume(expan-
sion),

Forrepulsivemixtures,theexcessnumberofsolventmoleculesaboutthesolute_mes negative
(adeficit),The conditionsforthisbehaviorwezegiveninPel.scheand Dd_ned_ti[14],Fordilute
neondissolvedina xenonsolvent,we havetherepulsivebehavior,The strengthor interactionfor
neon-xenon(e12< tji)iswe,_certhanthexenon.xenon(1.1)interaction(2,65timesloss),When theCP
isapproached,theinfluenceof thisenergydisparityon solvents_.Ictur_ismagnified,Xenon
molecules are pulled away from the neon solutes due to cohesion, and leaving a correlation hole (we
call it here cavitation), Since the,re is depletion of solvent molecules around the solute, the excess
numberbecomesnegative,ThecurveR inFig,5,4showsthatN_ - -6,

From eq,(3,8),we seethatthePMV willbepositive,Fig,7,4('0)givesthe_ fordiluteneon(=2)
ina xenonsolvent(-I)atthroetemperatures(T*= 2,0,1.4,1,34),Theyareallpositive,Thereisa
directcorre,spondencebetweentheNT" and9"_'values,The caseisinvividcontrasttotheattractive
mixturesofFigs,7.3wheretheN_' ispositiveandPMV negative,(Fortheweaklyattractivemixtures,
N_ ispositivebutsmall,thusthePMV remainspositive,)We notethatinFig.7,4,thesizeofPlP'_'2(+
15) forrepulsivemixturesis an orderof magnitudesmallerthanthe attractivecaseFig,?,3

=-IS0).
We havedemonstrated,usingintegralequationtheories,thatthecavitationand/orcondensationof

solventmoleculesaroundthesolutemoleculesareresponsiblefortherepulsiveorattractivebehaviorof
supercriticalmixtures,Thisworkprovidesaddedprooftoearliersimulationand theoreticalstudies.
We haveexaminedthebehaviorthroughthemoleculardistributionfunctions,especiallywithrespectto
thelong.rangecontributionstothesolvent-soluteKB factorG_. The macroscopicmanifestationof
negativepartialmolarvolumenearthecriticalpointisdue,forthemostpart,tolong.rangepersistent
solvent.solutecorrelations,Observationson therepulsivemixturesshow thatcavitationof solvent
moleculesoverlongdistancesisresponsiblefortheirunusualbehavior,Thedistinctionbetweenattrac-
tivenessandrepulsivenesscanbe gaugedinthecaseofLennard-Jonespotentialsbyemployingsimilar
analysesgivenby PetscheandDebenedetti('PD)[13]forvanderWealsgas,Nearthecriticalpointof
thesolvent(T,= I,p,= I),themixtureexhibitsattractivebehaviorif

(11/2

The parametersa andy canbe estimatedintheLJ caseby ¢x= (cz_ /_,Io_i),andy = (o_/o_i),
Fortheparametersusedforti,_'CO2.naphthalenemixture,4)=1,545,greaterthanI. The behavioris
attractive,Fordilutexenon(thesolute)dissolvedinneon(thesolvent),¢ = 2,76>I. Again,we have
attractivebehavior,However,forrepulsivemixtures,

3a I_

W = _ < I (7,3)

Applyingthistodiluteneon(thesolute)dissolvedinxenon(thesolvent),¥ = 0,654<I, We have
repulsivebehavior,aspredictedby thePD rules,We notethatthea valueofxenonoverneonisvery
large,about20,8,mostlydoetotheenergyratio(7,04).ThustheNe.Xemixturebehaviorisaccounted
foressentiallyby energydisparity,Strong_rsoivent._luteaffinitypromotesaggregationofsolvent
moleculesaroundthesolutemolecules(salvation),On theotherhand,strongersolvent.solventaffinity
promotesself.association(cohesion)among the solventmoleculesand exclusionof the solute
molecules.
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8. Syner_stlc Effects of Entralners: Ternary Systems

When methanol, as a cosolvenk is added to the CO2.2.naphthol mixture, the solubility of 2-
naphthol is in_ flvefold (see FiB. 8.1) over the solubility in the binary CO2-2-naphthol system.
This grea0y enhanced solubility of 2-rmphthol is what we refer to as synergism of the cosolvent
methanol for the solute. Not all cosolvents entail synergism, there are ones causing "interferences":
namely, addition ofcosolvents or cosolutes depresses the solubility. In this section we shall present the
formulasfor treating tenma'ySI_.

We define a solution, solutes 2 in the solvent I, as infinitely dilute if x2 is strictly zero; as dilute, if the
first orderdependence on x2 is valid (i,e., Henry's law region). For ternary systems with solvent 1,
solute 2, and cosolvent (or cosolute) 3, same definition applies to species 3. We generalize the results
for biru_es as given by De_nedetti.Kumar and Cochran.Lee to ternaries, in the dilute range, the fuga-
city coefficient for species 2 has been given by Jonah-Cochranas

InCa= In_ +x2Kz2+ x_f_ (8,1)

where the parametersf 0 are defined as the Taylor expansioncoefficients:

_In_

K_., _xs (8,2)

which has been shown w be equal to the second derivative

in,,] <8.3)ax3 r.#.,, az_x3 rj..,"

CochranandLeehaveshownthattheK0 canbeexpressedintermsoftheKB factors;e.g.

Chialvo[15]hasexpressedthesequantitiesintermsoftheDCFI:

#= = ]-c_ -p°krKr(]-¢;37 (8,6)
Similarly,

K. = 1 - C_ - p°krKr(l - C_)(l - C_) (8,7)

Thusthesolubilityof2 intheSCF inthepresenceofa purecondensedphase(solidphaseof2)is

P¢2z2explK2ax2+ Kz_x3] = f_ (8.8)

And for 3

e_,:r3exptg3:::,+ gz.,,x3]=ft (8.9)
Thus if K_ < 0, addition of solute 3 will increase the solubility of 2 (compared to the binary 1+2),
There is "synergism" between the solute and the cosolute, On the other hand, if K_ > 0, then additions
of 3 depresses the solubility of 2. This is due to the "interference" of the cosnlute. The results of Fig,
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8.1 showthat methanol,the cosolvenl.,clearlybelongsto the "synergistic"category. Kurntkand Reid
have showntluu the cosolute2,3-dimethylnaphlhalenein the CO2.phenanthrenemixturegives "nega.
live" s_erg_,,reducingthesolubilityof phenanthr,,..ne:an "inteKercnce"effect

We notethat theseanalysesarevalidonly in the "dilute"(Henry'slaw) region.For moreconcentrated
solutions, higher orderTaylor's terms are needed. If we consider the x_ -., 0 limit (i,e,, infinite dilu-
lion) as the primarycontributionto SCF, where most studi_ in SCF mixtures belong, then the analyses
representedby theK_ termsaresecondarycontributions,disa_ng whenxz--g),

9. Adsorption fromSCF: Fluid Structure near SolidSurfaces

Adsorptionof supercflticalfluidsis usedin a numberof separationprocessessuchas adsorption
from a SCF solution or desorptton into a SCF solution in regeneration of sorbents with $CT, SCF
chromatography, and SCF extraction of hazardous chemicals from contaminated soils. The work
described in this section was motivated by the importance of adsorption and desorption in these separa.
tion processes. The fundamentalunderstandingof adsorption of SCF can be achieved by examining the
molecular distributionsnear a wall.

Fundamental, molecular study of adsorption has employed the techniques of density functional theory
(c,g, Ebner et al,), integral equation theory or molocular simulation, In the present work, techniques
based on integral equation theory will be employed. In the simplest techniques for application of

i integral equation theory, due to Henderson, Abraham, and Barker 0-1AIl), the wall(W)-particle(A)
Omstcin.Zemlke equation

IS

h_w(,)=cA_,(,)+2npA..J'dtc,lw(t) ,f ,_ s h_(s) (9.1)
is solved (with an appropriateclosure approximation) under the approximation that k,,_(8) in (9.1) is
taken as equal to the homogeneous total correlation function for the bulk fluid. The HAB integral equa-
tion approach is known (Finn and Monson) to produce results with important qualitative and quantita.
live failures, in contrast, the Henderson-Pliscl_¢.Sokolowski 0ff'S) approach (9.4) solves the inhomo.
geneous Omstein.Zernike equation for the wall.particle system in Fourierspace

g(z lJ2_ ) = _'(zl,za_ ) + fdz'pO')_'(zl,x,J_)g(x',z2J:) (9,2)
where

./'-(zz,z2,k)= _d2rf (zl_z,r)exp[ik.r]

ffi2nfdr r f (_l,z2,r)Jo(kr) (9,3)

with an appropriateclosure approximationplus one of several exact expressions for the inhomogeneous
density in terms of the correlationfunctions, Solution of the inhornogeneousHPS equation is a much
more demandingcomputation in terms of required memory and CPU cycles, but is much more accurate
than solution of the HAB equation.

For solute B at infinitedilution in the solvent A, the kIPS equation takes the form (A+B/W):

g,u,(z1,*':Z,/(:) = _,,u,(z1,*=,k) + J'dz'p,_(z')h'_ (z l,z,,k)_,,,A(Z'4z,k) (9.4)
and

_,_(,s,)=,k) =_',u(zs,,=_)+ fd,'p,,(z')h-_(,s,_,,k)_A_)(*',Z=,k) (9,5)

In the present work we have applied the lIPS approach to study adsorption equilibrium in systems
where the fluid phase is either a pure SCF or a dilute solution of a solute in a fluid near the critical
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point of the pore solvent._lier work in this area (Plisc_e and Henderson) was limited in the number
of gri_ used in the numerical algorithm by the fast memory on the available computer. In the present
work, we have extended the numberof grids and tested the sensitivity of our results to this numerical
parameter. After thus tcstin8 the numerical algorithm, we have studied sev_ cases of adsorption
equilibriumbetween a surface and a SCF.

9.1.C__ATIO_

In numericalcalculationsit is oftendesirable to replace the variable h by the variable
7'_h - c;inthisformequations(9,4)and(9.5)become

" Z *_,,_(zI,,_.t)=_#,'p,_(,')_(,1.,,,k)_,_(,,2.*) (9.6)

+_#_'pA(z')y,._(:1.:,d:)Y,._(:'.:2.t)
and

_ (,_,,2,k)=]#:'p,_(,')_(,_j,,k)_'_(,',,:.k) (77)

.j'_'p^(:')_'.(:l,:,#t)Y_(:',:2,k)
[

i

Them arescvezalpossiblechoicesforan exactrelationbetweentheinhomogencousdensityp(:)and
thecorrelationfunctions,We havechosentheoneduetoW_'_eim andm Lovett,Mou,andBuff.The
WI.,MBrelationis

T(:|J #'90) (9.8)

For mixtures (A+B/W), WI.,MBassumes the form:

_InpA(z t) _3w,_(z _) = _}p,_(x') ,

------------ _ - --.--.------ + I dZ' ,----.---_: _ _z_ B, Y,,._(z_,: ,0) (9,9)

and

--_..___"__,_)+" _,,<,')_inpa(:_)_ f_'

InournumericalcalculationsithasprovenadvantageoustorewritetheWLMB relationintermsofthe
cavityfunctionY^w wheregAw '=haw + I,=y_we^wande,_w= exp[-w,_/kT]so thatequations(9.9)
and(9.10)become

•"_._yAw(,')

-+ y_w(zl)Idz'yAw Y_ (: _',0) (9.11/

and

_y_('_) "f _y,_w(,') .
_z_ = y_w(zl)_d:'_, e,_wT,@(:,:,0)
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+ Ynw(:1)IdzYAw Fxa(:_',0) (9.12)

For the approximate closure relation (w obtain c from y or h and u) we chose to use the Percus.
Yevick closure,

c(r)= [I+ "f(r)][exp{u(r)/kT)- I] (9,13)

Tests on L_nnard.Jonesfluidsindicatethatthischoiceb quite accurate.

The set of equations (9.6), (9.7), (9.11), (9.12), and (9.13) for mixtures is solved by the method of suc.
cessive substitutions or Picard iterations. The approach, then, is to make an_initial guess of the density
profile and the pair correlation functions 7; to transform_'to Fourier _ 7; to solve the inhomogene.
ous OZ equations (9.6) and (9.7) for Z";to transform hack to real space; to use the closure relation
(9.13) to obtain a new estimate of c; to iterate (9,6), (9.7), and (9.i3) to convergence; then, to substi.
tute F in (9.11) and (9.12) obtaining a new estimate of P(:1). The criterion for convergence of each

i iteration loop is thatthe value of the a _ iteration of the function shall differ at no point from the value
of the n - 1" iteration by no more than 10"e. Oenentlly, correlation functions and density profiles from
a previously converged case were used as initial estimates. For startup, low density limits of the correla.
tion functions were used (essentially, the Boltzmann factors for h and c ,as well as O(:)).

For numerical solution we discretize the three.dimensional equations (9.6) and (9.7) for '_ and _"such
that there areL, M, and N grids of At 1, Ata and At spacing, respectively.

7(I.m.n) = 7(IA_l,mAzZn_ )

I = 1,2,...,L; m ffi1,2,...,M; n ffi1,2,...,N (9.14)

Near the critical point of the solvent, the correlation functionsVbecome long-ranged.In early work, we
used M > 80 with At2 = 0.03o, L = 80 with At z " 0.050, and N = 50 with At = 0.08 (/.,_M). In order
to conserve the use of memory and bemuse both functions of the pairs c,_ _ ) and (c,_ _ ) are not
required at the same time, these function pairs share the same memory locations (v/a the
EQUIVALENCE statement in FORTRAN). Thus, only six large arrays---7,_, 7_, Y,_, 7,_, c_, and
c,_ --are required.

We have accurately calculated and tabulated the Hankel transformfor Jo from 0 to several hundred,the
forward and reverse transformationsagreeing to the ninth place.

The bulk fluid molecules were modeled to interact with the Lennard.Jones (LJ) 12:6potential, simulat.
ing argon and methane, The wall.fluid potential used is the LJ 9:3 potential.

= pe - "--- (9,15)

wherep and m arenum_cal factors to modify the bulk fluid force constants _ anda.

_ST.CAL_ATIONS

The first test we performed was reproducingone of the cases by Plischke and Henderson (9,6)
for a pure LJ fluid in contact with a hard wall. For the state T" = kTl¢ = 1.35 and p° = pa 3 = 0.40 our
programreproducedPlischke and Henderson's density profile quantitatively. In all of the calculations
reported below, we have used finer grid spacing and longer range in the correlation functions than those
used by Plischke and Henderson.

The range of the pair correlation function grows without limit upon approach to the CP. This is a
significant issue because the value of f (r) in equation (9.3) must be 0 at the maximumvalue of r to
perform the Hankeltransform. We have tested the effects of the range of the numericalcalculations for
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the parameters shown in Table 9.1.

Table 9.1 Numerical parametersfor testing effect of range of calculations

max Z1 _Zl Nz_ max Z2 AZ2 Nz2 max R AR N,_
6.0 0.05 120 6.0 0,05 120 4.0 0.08 50
9.0 0.05 180 9.0 0.05 180 4.8 0.08 60
9.5 0.05 190 9.5 0.05 190 4.8 0.08 60

Figure 9.1 shows the effect of range on results for the wall-solvent pair correlation function, gwA(z), for
a state (T" = 1,35 and P' = 0.35) close to the critical point. The maximum range used in earlier (9.4)
work (120,120,50) is evidently inadequate for quantitative results. The agreement between results with
the range used in the present calculations (180,180,60) and those with still longer range (190,190,60)
indicates that the present results are the first quantitatively valid application of the lIPS approach in the
PY approximation.

One of the failings of the simpler HAB (9.3) approach is the inability to produce the pre-wetting transl.
lion that is exhibited by density functional theory and Monte Carlo simulations. The more accurate lIPS
(9.6) approach has not previously been tested for this capability. We have attempted to test this ques-
tion, but, unfortunately, the tests have not been conclusive. The calculations are difficult because at the
transition the range becomes unbounded; nevertheless, we attempted to observe signs of the onset of the
transition. An additional difficulty with the calculations results from the fact that the location of the
preweuing transition, T '_, p'_, is very close to the bulk vapor-liquid phase boundary. Indeed, it was
only by careful attention to this detail, that Finn and Monson (9.7) were able to first observe the transi-
tion in simulations after earlier failures by others. Figure 9.2a shows their result clearly demonstrating
the prewetting transition with increasing bulk density. We were hindered in the present calculations by
the fact that the location of the bulk vapor-liquid phase boundary for the L-J fluid in the PY approxima-
tion is not accurately known. Despite the difficulties and imperfections of the test, we show results in
Figure 9.2b that are quite suggestive of the onset of a possible prewetling transition; note, in particular,
the appearance of shoulders representing second and third adsorbed layers.

We have drawn the following conclusions from testing the HPS (9.6) integral equation approach to
studying adsorption equilibrium: • Although we have seen suggestions of a prewetting transition, we
have been unsuccessful so far in demonstrating that the HIS theory can exhibit this phenomenon. • We
have presented the first quantitative results with the HPS approach, using finer grids and longer range
than previous calculations and presenting daunting computer memor), requirements.

9.3, ADSORPTIONFROM SCF

We have studied several cases of adsorption from SCF solution. We have studied adsorption of
the solvent (A) and the attractive solute 03) on a hard wall (HW) for temperatures approaching the bulk
CP from above. These results are presemed in Section 9,3.1. We have studied adsorption of the solvent
(A) and both the attractive solute 03) and the repulsive solute (also B) on a LJ wall for a near critical
state. These results are presented in Section 9.3.2. Table 9.2 presents the parameters of the interaction
potentials used in this work. With the HW, the solvent (A) parameters model argon; the attractive and
repulsive _lutes 03) have the same size as A with an arbitrarily greater or smaller interaction energy
parameter. With the LJ wall, again the solvent (A) parameters model argon; the solvent-wall parameters
model argon with solid CO2; the attractive solute 03) models methane; and the repulsive solute (',alsoB)
has the same size as the methane model but has interaction energy proportionately smaller than that of
argon as methane is larger.
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Table 9.2. p_eters of interactionpotentials used ,,, , ,,,

pair _k _(K) a (A) materiai'approximatezl
Hard Wall

A-A 119.80 3.400 argon-argon
A-B(repulsive) 100.24 3.400 argon-repulsive solute
A-Bf_attractive)143.16 3,400 argon-attractivesolute

LJ:9-3 Wall
A- A 119.80 3.400 argon-argon
A-B(repulsive) 107.82 3.606 argon-repulsive solute
A.B(attractive) 134.45 3.606 argon-methane solute
W-A 153.00 3.727 solid CO 2.argon
W-B(repulsive) 297.69 3.957 solid CO 2.repulsive solute
W-B(a_tive) 297.69 3.957 solid CO a-methanesolute

9.3.1 Adsorption at a ltard Wall. Figures 9.3a and 9.3b show density profiles near a HW for a SCFLJ
solvent and an infinitely dilute, repulsive I.J solute, restxx:tively, for density p° = 0.40 and tempera-
tures, T ° = 5.00, 3.00, 2,00, and 1.35. For the HW system, the z = 0 intercept of the solvent.wall den-
sity profile is a measure of the bulk fluid pressure P° = Po_/¢ = g(0)p° T . . Of course, the pressure at
constant density increases with increasing temperature. It is interesting to note, however that, for the
solvent, there is a net deficit at the wall at the near-critical state and for the attractive solute the deficit
is substantially greater. The near-critical solvent has a higher affinity for the attractive solute (and even
for other solvent molecules) than does the HW.

9.3.2 Adsorption at a Lennard.Jones Wall. Figure.s 9,4a, 9.4b, and 9.4c show the effect of the wall
strength on the density profiles near an attractive LJ:9-3 wall (the HW profiles are also shown for com-
parison) for the state p" = 0.35 and T' = 1.35 for the LJ solvent, the repulsive solute, and the attractive
solute, respectively. The parameter shown for each of the profiles is the percent of the full LJ:9-3
potential used by Finn and Monson (9.7) to model argon adsorption on solid carbon dioxide. It is evi.
dent that, compared to the HW, the LJ:9-3 wall attracts considerable adsorption, the degree of adsorp-
tion increasing with the strength of the wall. Accompanying the increased adsorption is an increase in
the structure near the wall, showing clear first and second, and even third, maxima in the profile.

Figures 9.5a, 9.5b, and 9.5c replot some of the previous results in such a way as to emphasize the rela-
tive adsorption of the solvent, the repulsive solute, and the attractive solute as the strength of the wall
interaction increases. The SCF solvent draws the attractive solute into solution and away from the wall
so that its adsorption on the HW is less than that of the solvent. In contrast, the repulsive solute is
expelled from the SCF solvent so that its adsorption on the HW is relatively greater than that of the sol-
venL

The LJ:9-3 wall with 50% of the wall strength of the Finn-Monson (9.7) system attracts the solvent,
attractive solute, and repulsive solute so that the adsorption of all three is increased. But the adsorption
of the attractive solute has increased most so that it has approximately equaled that of the solvent Here
we see competition between the SCF solvent and the wall for the attractive solute. At 75% of the Finn-
Monson wall strength the adsorption of the attractive solute has overtaken that of the solvent and
approaches that of the repulsb,e solute.

In figure 9.6a we examine the radial distribution for the solute.solvent correlation h_(r) for different
values of z, the distance from the wall for the attractive solute at the state p" = 0.35 and T" = 1.35.
The wall-particle profile shown in figure 9.6b gives a measure of the relative fluid density at the various
distances z from the wall. At z = 0.0_, h,@(r) shows a single broad peak dropping monotonically to
the bulk value; such structure is similar to that of a low density gas. Note in Figure 9.6b that the den-
sity at z = 0.0a is low. At z = 1.0cr, the structure looks more like that of a liquid with a distinct second
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" maximum. In Figure 9.0o, one can see the correspondinglyhigh density at this distance from the wall,
The variation in the structure with distance from the wall is qualitatively similar to that seen by
PlischkeandHenderson(9,6).

_.4. DISCUSSIONS

Ours are the first attempts, to our knowledge, to undertakea molecular.based study (using the
inhomogeneous Omstein.Zemike equation) of adsorptionequilibrium between a solution (mixture of A
and B) and a surface (W) and the first time such study has been focused on SCI::solutions. This exten.
sionof theintegralequationmethodof Piischke,Henderson,and Sokolowski(4.6)haspresented
significantchallenge,andstudyofinterestingproblemshasaggravatedthelargememoryrequirements.
ApproachtothebulkCI'requireslongrange',approechtosurfacewettingalsorequireslongrange;
strong(realistic)wallforcesrequirefinegridspacing;andlargesolute-solventasymmetryalsorequires
finegridspacing.The nestediterationsof theinhomogeneoussolvent.solventand solute.solvent
Omstein-ZernikeequationsandtheWertheim.Lovett-Mou.Buffequationsrequiredlongruns.

Becauseof thesecomputationalchallenges,therewas difficultyinperformingcalculationsforstates
veryclosetotheCI:'orveryclosetotheprewetfingtransition;therewas alsodifficultyinperforming
calculations with strong wall potentials, Even so, the rangewas longer and the grid finer than in previ.
ous studies by this method.

Adsorption from SCF solutions on a realistic (butweak) wall exhibited expulsion of a repulsive solute
from SCF solvent to the wall and competition foran attractivesolute between the solvent and the wall.
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Table III. Lennard-Jones Parameters

/k,K o',k
,u Ul i,in i , ............ , , |mira, , m I II II • II II IN II II I Ul

monomer-monomer, mm 225.3 3.794
dimer site-dimer site, ss 225.3 5.691
monomer-dimer site, ms 225.3 4.743
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