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Abstract

The unconfined gravity flow of liquid with a free surface into a well is a classical
well test problem which has not been well understood by either hydrologists or petroleum
engineers. Paradigms have led many authors to treat an incompressible flow as compressible
flow to justify the delayed yield behavior of a time-drawdown test.

A finite-difference model has been developed to simulate the free surface gravity flow
of an unconfined single phase, infinitely large reservoir into a well. The model was verified
with experimental results in sandbox models in the literature and with classical methods
applied to observation wells in the Groundwater literature. The simulator response was also
compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore
pressure at late producing times.

The seepage face in the sandface and the delayed yield behavior were reproduced by
the model considering a small liquid compressibility and incompressible porous medium.

The potential buildup (recovery) simulated by the model evidenced a different phe-
nomenon from the drawdown, contrary to statements found in the Groundwater literature.
Graphs of buildup potential vs. time, buildup seepage face length vs. time, and free surface
head and sand bottom head radial profiles evidenced that the liquid refills the desaturating
cone as a flat moving surface. The late time pseudo radial behavior was only approached
after exaggerated long times. o
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1. Intrdduction

The main objective of this study is the development of a numerical simulator
to study the transient drawdown and buildup behavior of a liquid in a gravity drainage well
with a moving free surface boundary. The purpose of this work is to provide a tool to help
understanding the flow mechanism in the vicinity of the wellbore where the known methods
of interpretation fail to determine the transient pressure behavior or to establish physical
grounds for creating a method of interpretation of pumping gravity well tests.

In the last few years, much attention has been dedicated to depleted petroleum
reservoirs in the oil industry all over the world. The interdependency of oil and gas reserves,
price, demand, and politics is a major factor affecting interest in developing alternative
sources of energy and enhanced oil recovery from abandoned fields, heavy oil reservoirs, tar
sands, bitumen shales, etc.

Among the potential targets for enhanced oil recovery projects are many depleted
oil reservoirs, some with such a low pressure that the gas cap is at atmospheric pressure.
This is the case when gas solubility is low, or for water flooded shallow reservoirs which
have produced much of the oil, water and associated gas.

A common characteristic of such a reservoir is the lack of detailed information about
the formation properties necessary to plan an enhanced oil recovery project. Unfortunately,
the present petroleum well testing techniques do not consider the case of a well in a reservoir
with a phreatic liquid table. In hydrology, a phreatic aquifer is defined as an unconfined
reservoir with an air-water contact at atmospheric pressure. Pumping a well that penetrates
a formation with a phreatic gas-liquid contact develops a downward movement of the free
surface, under a gravity flow mechanism. Often, no other source of energy is present for
driving the liquid into the wellbore. An exception is capillary forces acting in the capillary
fringe above the phreatic line. A schematic view of the gravity well problem is presented
in the Fig. 1.1, representing a cross section of a fully penetrating open hole well in an
unconfined sandstone reservoir.

Until recently, most theory found in the petroleum literature about well test anal-
ysis has concerned confined flow of compressed fluid. However, the groundwater literature
contains many studies where phreatic aquifers are a common subject. On the other hand,
even hydrologists have not focused on pumping wells where the presence of a seepage face
along the sandface adds further difficuities to a moving boundary problem. Since unconfined



Figure 1.1: Unconfined free surface gravity drainage reservoir producing to a single well -
Muskat (1937)

aquifers are often shallow and the wells are easy and cheap to drill, methods of interpretation
often concerned interference tests.

The theory associated with the gravity flow mechanism with a variable free surface
started in the last century with the Dupuit (1862) approach, generalized by Forchheimer
(1886) in the so-called Dupuit-Forchheimer partial differential equation, which for radial
incompressible flow is:

9%h* 1 0h?

e P - (11

Eq. 1.1 concerns saturated flow in an incompressible radial system. Many assumptions were
made such as formation isotropy and neglection of vertical flow gradients. The Dupuit-
Forchheimer approach has become a standard reference for improved theories and interpre-
tation methods.

An early rigorous attempt to solve the steady-state gravity problem under several
different flow geometries using a hodographic transformation was made by Wyckoff et al.
(1932) and Muskat (1937). A hodographic transformation is a representation of the dynam-
ical system by coordinates that are the velocity components. This rather difficult method,
although supporting the Dupuit-Forchheimer theory, fails in producing the shape of the free
surface, as observed in Chapter 2 of this study. '

The classic transient solution for compressed liquid flow ( Theis, 1935) is often used

2
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Figure 1.2: Typical type curve for unconfined flow from the groundwater literature: dimen-
sionless potential drawdown vs. dimensionless time. - Neuman (1975-a).

today to represent the late time drawdown behavior in observation wells by well known
groundwater authors like Boulton, Neuman, Streltsova, among many others. Although the
hydrology literature is rich concerning this subject, there is a great deal of confusion about
the physical principles governing unconfined flow - see Chapter 2.

Regarding transient drawdown in observation wells near a well producing at a con-
stant pumping rate, there are three different flow regimes characterized by the S-shaped
curve illustrated by Fig. 1.2. That figure shows set of semilog type curves as a functicn
of a @ parameter, which is related to the inverse of the radial distance. Observation wells
located far from the producing well present a characteristic time-drawdown curve reflecting
three stages of flow in the reservoir. The first stage is attributed to a pure radial flow by
fluid expansion and compactation of the aquifer before the free surface starts a downward
movement. The Theis solution applies, according to many hydrologists. This period corre-
sponds to that dimensionless time defined as ¢, in Fig. 1.2. In this case, s stands for specific
yield. As the free surface responds to the well pumping, an intermediate stage is marked
by a reduction in the slope of the head drawdown, approaching zero in some circumstances.
This is the period of desaturation of the cone around the well. The last stage, character-
ized by a dimensionless time ?,, y standing for the delayed yield, would again follow radial
flow behavior because of stabilization of the free surface changes. The analytical methods
presented by Streltsova (1972-a, 1972-b, 1973) and Neuman (1972, 1975) considered elas-
tic and formation storage properties lumped into the specific yield parameter. To obtain
the analytical solution for the boundary problem (see Chapter 2), Neuman imposed such




conditions as the head drawdown must be much smaller than the initial head, the well was
a line-source well, wellbore storage and skin effects were neglected, and the seepage face
was neglected. As a result, analytical methods were not applicable to a pumping well or
its vicinity, and were insufficient to analyze the transient pressure behavior in the produced
wellbore.

Using the Dupuit-Forchheimer approach, Ramey et. al (1989) derived a partial
differential equation for incompressible radial flow into a single well located in an infinite
reservoir. In terms of pressure, instead of liquid head, the partial derivative equation takes
the form of Eq. 1.2, in Darcy units:

92p? 18p2 _ ou (p7t) 0P
T T T T Tk ot (1:2)

By analogy with the flow of ideal gas, the Aronofsky and Jenkins (1953) correlations were ap-
plied to obtain the approximate wellbore transient pressure solution, as follows in petroleum
field units:

B 0.000264kt s
2 - p2 = 3252 b llog [ ——— | + 0.351 + —— 1.3
p Dy k(h/p) g ¢u (p;l) 1"12‘) 1.151 ( )

This appears to be the first approach for gravity drainage well test analysis found in the
petroleum engineering literature since the classic studies of Wyckoff et al (1932) and Muskat
(1937).

From the many concepts and ideas related to unconfined flow into a well, it is
possible to consider the physical flow mechanism. First, start with the rest condition of
an unconfined, single-phase reservoir, like that represented in Fig. 1.1. Above the phreatic
surface, there is a partly-saturated region containing liquid called the capillary fringe where
the pressures are negative. As a consequence, the static potentials are constant and equal to
the potentials anywhere in the saturated region below the phreatic table, defined throughout
this report by ® = p + vh. The degree of liquid saturation in the capillary region and the
elevation of liquid above the free surface is dependent on the surface tension between the
liquid and the porous medium and the gas and the pore throats related to the shape and
grain size distributions. '

When the well is pumped at a constant rate in an infinite, unconfined reservoir, the
liquid level in the wellbore drops at a velocity that depends on the well storage capacity.
Due to the viscous forces in the formation, the potential drop in the well is not immediately




transmitted to the reservoir. This causes a discontinuity of potentials at the sandface. With
increasing time, the potential drops in the formation causing the liquid to start moving into
the well at increased rates as the potential differentials become large, and the pressure drop
is transmitted radially and vertically through the formation. During this period, called the
wellbore storage period, the withdrawal from the well is greater than the flow from the
formation.

Vertically along the sandface in the well, there are two different regions of flow: an
open face, where the liquid falls, and the liquid filled well region below the liquid level in
the hole. The seepage length is the difference between the liquid levels at the sandface
and in the well. Thus, at the sandface wall, the potentials vary from a maximum value at
the intersection point of the phreatic free surface down to the liquid level in the well, and
remain constant from there down to the bottom of the well.

Following an initial period of flow, the potential drawdown in the pumping well
decelerates, due to an increasing contribution of flow from the formation. The withdrawal
in the neighborhood of the well develops potential gradients driving the streamlines to
bend gradually, with decreasing slopes from the free surface down to the sand base. The
produced mass of liquid, considering a low compressibility system, leaves a desaturated
region behind the free surface. Neglecting for a while the capillary region, which is discussed
in Chapter 4.7, the desaturated region is a two-phase flow region where the liquid saturations
successively drop to an irreducible value. Due to the low velocity of vertical displacements
of the free surface, the resistance created to the gas entry into the porous spaces left by
the liquid under the gravity flow are of minor importance to create a delay in the process,
according to some authors, even around the wellbore. Also, the liquid retained by capillary
forces in the desaturated zone, though known to exist in small amounts, is not rigorously
considered in the present study.

After the wellbore storage effects cease and the desaturation cone starts developing
in the formation, the pressure in the well stabilizes at a certain level as a result of equilibrium
between the rates of pumping and the withdrawal from the surroundings. At this time, the
seepage face tends to shrink. The cone of depression develops radially from the wellbore. As
the depression of the free surface reaches remote regions, a small free surface displacement
corresponds to a large volume of liquid. In other words, the storage capacity becomes large
with increased radius.

Since an external boundary is not reached and the free surface presents a fairly
stable shape, the potential changes reflect a confined system behavior corresponding to a
third cycle of observed pressures in the well. During this period, one expects a slow, uniform
downward displacement of the free surface, and the seepage face changes at a much lower
rate,



The transmissivity has an important effect on the potentials and free surface profiles.
The velocity along stream lines at any radial location, a consequence of the transmissivity
and withdraw rates, is of interest. In other words, if we track two single stream flow lines
from a remote region to the sandface, vertically spaced by a certain difference in height, we
observe a reduction in the distance between them by the stream-line merging process. Since
the material balance condition for two consecutive stream flow lines to converge is to double
their velocities (case of incompressible flow), the viscous forces are the most responsible for
the shape of the free surface, and also for the seepage face length. By itself, the viscous
flow theory can explain the formation of the seepage face without invoking surface tension
effects. Those capillary end effects, although present in the very top of the seepage face
are of minor importance, according to some experimental sandbox models (Hall, 1955).
Wyckoff et al. (1932) explained the influence of the resistance forces to the vertical flow in
*he formation neglecting capillary forces by expressing the potential in the free surface as
a function of the average vertical velocity at some radial position:

VA
Zy = — .
s Fvg (1.4)
where:

Z, - sandface vertical distance from the sand bottom
Z - head of liquid at the bottom
T - average vertical velocity of the liquid
k - equivalent to the transmissivity
Y9 liquid gradient

In Appendix D, Eq. 1.4 is verified against & = p + A, verifying the free surface boundary
condition found in the literature.

The buildup process in gravity wells has been overlooked in most studies. Some
references in the groundwater literature takes buildup as a reversible process similar to
drawdown, but there has not been a careful investigation of the physical behavior during
this period. Ramey et al. (1989), analyzing a field case, concluded that the pressure buildup
is “essentially different” from the prior drawdown process, leading to a rapid establishment
of a semilog straight line. According to Ramey et al., radial flow occurs below the free
surface during the buildup, and the free surface is displaced up by radial flow into the cone
of depression. After pumping stops, the liquid flows into the wellbore, and starts refilling
the well. Section 7.1.2 presents considerations of the buildup analysis.

The first attempt to study the gravity well problem was to find a two-dimensional
numerical model that could answer most of the questions related to the real physics of the



mechanism. A moving boundary simulator was developed and named Stream Layer Model.
A stream layer is a set of stream flow lines in a vertical section of an axial flow into the
well. The next chapter presents a literature survey for gravity drainage well test analysis.



2. Literature Review

The mechanism of gravity drainage flow in a porous medium has not been
completely studied in either groundwater research or the oil industry. In this chapter, a
review of the main works in gravity drainage well test analysis is presented. Also, studies
of two-dimensional well model simulators are reviewed both in groundwater and petroleum
engineering.

Pumping tests are common in hydrologic evaluations, and gravity drainage evalua-
tion methods have been necessary due to the fact that many shallow aquifers (phreatic) are
free surface systems. Hence, the groundwater literature was the main source of information
for the present investigation. :

In most studies of unconfined radial flow, water is the only saturating fluid in the
porous medium, and the presence of other phases is not considered, except in a few studies
dealing with a desaturated region and/or a capillary fringe between the water table and the
air-filled pores above it. Generally, most models consisted of a well located in the center of
an infinite reservoir where the formation properties were sometimes considered anisotropic,
and the presence of a damaged region was neglected. Wellbore effects were some of the
major difficulties encountered in this study and only recent studies of wellbore effects have
been made by some authors.

A small difficulty is relating petroleum engineering terms to the reservoir properties
and parameters defined by hydrologists. A set of relationships and unit conversions between
the definitions employed in both branches of study is given in Appendix B.

2.1 Early History

Apparently, the first important contribution to the gravity flow problem was
the Dupuit (1863) analytical solution which assumed a radial, steady-state parabolic distri-
bution of head with the distance from the wellbore. A simplification of the mathematical .
steady-state problem was made by assuming that for a small slope of the water table, which
is also a streamline, the Darcy’s Law velocity vector is proportional to the tangent of the
angle the streamline makes with the horizontal, rather than the sin of the angle. Thus,



instead of:

kod k 0z k.
Vg = —;E‘; = —'-I;'a—s = —'; sme, (2.1)

sin 0 was replaced by tanf = %, where h = h(z) is the vertical coordinate of the water
table position. In the above, K is the maobility £. This assumption permitted a derivation
of the steady-state flow equation by Dupuit, which for radial flow is:

2 12
Qu = 27r-I£rh—aa-é o Tk ik —hy) (2.2)
pooor ulog | 22)

Forchheimer (1886) applied the Dupuit assumption to the continuity equation and
produced the partial differential equation for radial flow:

9%h? 1 9h?

or? T ar
Equation 2.3 is the well known Dupuit- Forchheimer partial differential equation for steady-
state gravitational radial flow.

= 0 (2.3)

2.2 Experimental and Analytical Models - Steady-State

Wyckoff et al. (1932) investigated gravity flow using an experimental 15° sector
sand box to simulate the radial flow of a single liquid (water) saturating the reservoir. Their
results provided important informations about the free surface and streamline behavior
along the reservoir and around the wellbore. The radial sector was laterally bounded by
glass walls which permitted visual inspection of the liquid level in the porous medium, and
streamlines traced by ink injected at points at the outer boundary. Eighteen complete
steady-state experimental runs were presented, varying initial heads and flow rates in order
to compare the results with the Dupuit model and other models. The capillary fringe effects
were important at the laboratory scale, and most of the the deviations from the Dupuit
model were attributed to the capillary fringe. The tables summarizing the results of each
experiment presented the liquid heads taken at the sand bottom, and the liquid level (free
surface position) profiles were graphed for runs No. 18 and 19 in the paper. There were no
direct seepage face length measurements, but visual inspections and the graphs presented
in the paper indicated the seepage face existence.



Muskat (1937) dedicated an entire chapter to the analysis of gravity flow systems.
His study of steady state flow for different configurations (Muskat, 1935, 1937) of porous
medium included physical experiments such as sandbox and electrical models (by other
investigators). He pointed out the weakness of the Dupuit assumptions, and raised the
concept of a seepage face along the downstream boundary that introduces a complication
to the problem once the water table causes a discontinuity in the wellbore. Since the
Dupuit equation depends only on radial distance, this equation fails to determine the head
distribution along the vertical coordinate in the vicinity of the wellbore. Far from the
well, horizontal flow dominates, and the Dupuit results are reasonable. Muskat concluded
the Dupuit equation, although based on incorrect assumptions, gives fortuitously accurate
results in the calcu'ation of the discharge of a well when the head values are taken at the
base of the formation.

Muskat (1935, 1937) solved the steady gravity flow problem analytically through
two methods: an exact solution using the hodograph method, and an approximate solution
by Fourier series expansion of the boundary conditions. These solutions are not simple even
for an isotropic medium. The method of hodographs, though powerful, is difficult to apply.
Analytical and experimental results were compared in several figures in the Muskat (1937)
book.

Babbit and Caldwell (1948) used one electrical and two sandbox models (small and
large scales) to corroborate the observations of Wyckoff et al. (1932) and Muskat (1937)
_ The effect of the capillary fringe was omitted in this work which generated an empirical
equation to locate the free surface as a function of the distance from the wellbore axis:

the (he - hz:)

Q 2.3C, logre/0.1h,

(2.4)

where hz and h. are respectively the free surface positions at distances rz and e from the
wellbore center, and Cy is an empirical constant obtained as a function of the dimensionless
radial distance.

The most valuable experimental work is a major reference in the groundwater liter-
ature by Hall (1955). Hall presented four series of sandbox experiments analyzing capillary
effects, the hysteresis due to air invading the desaturating cone, and changes in the surface
tension in the rock-fluid system. Figure 2.1 from the Hall paper shows a 15° sector and
the essential sandbox model dimensions. Series A of tests performed by Hall presented
eight steady-state steps of successive flow rates startirg from a completely water saturated
system with an average capillary fringe height of 3.5 inches. It is remarkable to observe the
behavior of the free surface as the flow rate increases. From run A-4 to A-8, the free surface
position at the sandface varied only -3.6%, while the wellbore liquid level dropped from half

10
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Figure 2.1: Essential dimensions of well model - from Hall (1955).

of the initial height to zero, and the production flow rate increased more than 32%. This
result is a difficult mathematical condition to be represented by only a few variables as in
the Dupuit formula. The streamline traces were qualitatively and quantitatively studied,
demonstrating the importance of the vertical position of a streamline related to the time
necessary to flow from the outer source to the inner boundary. See Fig. 2.2. The uppermost
streamline requires twice as long to reach the wellbore as the lowermost streamline. There
are two possible reasons for this phenomenon. First, the uppermost inner boundary poten-
tials are always greater than the lowermost potentials. See Ch. 3. Second, the uppermost
streamlines are much longer than the lowermost streamlines.

2.3 Transient Analysis

An early important study of compressible transient flow was presented by Theis
(1935). Previous groundwater hydraulic studies had been based on steady flow conditions.
Theis applied the theory of heat conduction in solids using the line-source solution adapted
to the flow of fluids in porous medium. In the paper, the limitations of the use of the
exponential integral, E;(—z), in analyzing unconfined flow were considered. Early time
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effects due to a finite radius wellbore and gravitational flow around the wellbore were
considered. Theis presented the technique later used by Horner (1951) to analyze the
pressure-time behavior in well recovery (buildup) analysis by plotting pressure-drawdown
versus the dimensionless time relation (t, + 6)/6.

A paper by Walton (1960), written in two parts, considered pumping test analysis
for both artesian and unconfined aquifers. The author pointed out that the true behavior
of water table models deviates from the line-source solution, mainly at early times. Three
different segments of the time-drawdown curve were recognized: a very early one in which
the well starts producing under decompression of the water and formation (as short as a
few seconds or minutes) followed by a gravity drainage period when vertical flow near the
wellbore controls and the free surface chauges rapidly, and finally a late period where the
rate of change of the water table is no longer important. In the first and last periods, the
so-called nonequilibrium formula ( Theis solution or its logarithmic approximation) could
be applied, because the flow is dominantly horizontal. However, when and where gravity
drainage is the most important mechanism, solutions like Boulton (1954-b) should be used.

In 1954, Boulton (1954-a) introduced a new approach to represent unconfined tran-
sient flow behavior. Using Darcy’s Law and the continuity equation for flow of incom-
pressible liquids, the following partial differential equation in terms of the liquid potential
® = p/y, + z was posed in the case of isotropic aquifers:

9*d 109 09?

2 bl Selhiel bl -
vi(@) or? r Or 0z2 0 (2.5)
where r is the radial distance, and z is the vertical coordinate.
The water table boundary condition was expressed by:
®(r,z,t) — 2z = 0 (2.6)

The differentiation following the motion of a particle located on the free surface streamline
was defined by the operador:

=@~z = 0 (2.7)

In Eq. 2.7:
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Applying the differential operator as defined, the following nonlinear equation was obtained:
0% 89?2 %\? 9%
- {(?a‘;) + (%) - ‘a“} (9)

Equaticn 2.9 was simplified by the assumption that the ® gradients are small, and when
z=h:

= =0 (2.10)

The inner boundary condition considered a line sink at a constant pumping rate per
unit length:

Q = 27rkher%‘i—); r—0; 0<z<h, (2.11)

A general solution of Egs. 2.6 to 2.11 and the boundary conditions was reached after
simplifying assumptions:

- Q9  [®J(Br) [, _ cosh(Bz) _k
he — ® = 27rk:he/o 3 {1 cosh (Ghe) exp( Stﬁ tanh(,@he)>}dﬁ

(2.12)

Further simplifications were made and a definite integral denoted by V(r,t) was introduced:

Vip,7) = /Ooo -J°—(,\’\L) {1 = exp[~ Ar tanh())]} dA (2.13)
s = 5%%"U“T) (2.14)

where p and 7 are dimensionless radius and time, respectively:

r
p= 5 (2.15)
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and:

T = (2.16)

kt
She
Values of the integral in Eq. 2.13 were tabulated, as well as corrections for deviations

due to the several simplifications. Boulton (1954-a) also handled modifications to consider
anisotropy and head recovery (buildup), and a correction for a finite wellbore radius.

The second Boulton paper (1954-b) contains a solution that became an important
reference in the groundwater literature during the subsequent 15 to 20 years, because it
introduced a new theory for unsteady radial flow in an unconfined isotropic aquifer. Two
different cases were considered, but the one that fitted the gravity drainage model best
assumed a delayed yield from storage caused by an idealized bed of fine-grained material
overlaying the aquifer with the stabilized water table within this section of low permeability.
The rate of delayed yield was empirically represented by:

6s o« & eolt-7) (2.17)
where a is an empirical constant, and §' is the delayed yield per unit area, per unit draw-

down. Neglecting the vertical components of flow, the final form of the partial differential
equation considering delayed yield was:

9%s 10s S Os aS’ [tds
-2 22 - 22 il i - aft-7)
or? + r Or T Ot t T Jo Ot =t at (2.18)

The following solution for Eq. 2.18 was obtained properly using the Laplace transform

technique:

_ Q /“ —ut une — uldu

s = 4rkh, 0(1 € )Joraa—u u+
o0 —ut una — u|du
/ (1 - e ) Jo |74/ = —_ (2.19)

where:

ac S+ 5 T af’

n = 1+ - = T @ = =, and ¢ = =

15 (2.20)



Some approximations to the solutions were prepared by assuming limiting values of 7.
Tables containing numerical values for differert approximations of Eq. 2.19 were provided.

The explanation used to justify the Boulton model was weak and had little physical
connection with the pure gravity flow mechanism. However, the mathematical formulation
was shown to match many sets of field data, and later Boulton (1963) presented the same
model, and a group of delayed yield type curves generated by a computer program - see
Fig. 2.3. The early and late time behaviors were analyzed, and two different sets of curves
were plotted on the same graph at two different dimensionless time scales. The shapes of
these curves, according to the author, show different flow patterns. Under the consideration
of the initial and internal boundary conditions at the very early time of pumping, the time-
drawdown curve follows the Theis solution for an artesian aquifer. Next, as the yield from
the water table becomes effective, the drawdown behavior deviates from the line-source
solution due to the contribution by the water table fall, and the curves bend to the right
(Type A curves), trending to an asymptotic behavior. After a time, the approximations of
the integral show flat curves which start to bend up (type B curves), merging into the Theis
solution. The dimensionless time at which the departure from Theis solution drawdown and
the calculated -pe B curve from the Boulton model equals 0.02 generates a new parameter
called the delayed index (-};) This delayed index is a characteristic of the formation and is
physically related to the gravity vertical flow around the wellbore. A¢ in the previous work
(Boulton, 1954-b), only isotropic formations were considered.

Prickett (1965) applied the Boulton (1963) solution to eighteen pumping tests and
found good agreement with the theory. The relationship obtained in the tests between the
delayed index and the grain size of sand demonstrated a physical correlation. Also, an
interesting set of graphs shows the individual variation of different parameters. Theoreti-
cal time-drawdown curves indicated the effects of changing only one variable of the basic
equation (such as 1/a, S, Sy,r, and T'), while all other coefficients remained fixed.

To consider the vertical flow around a well, Boulton (1970) presented, without deriva-
tion, an equation based on the delayed yield (Boulton, 1954-b and 1963) and the vertical
velocity-component of the flow (Boulton, 1954-a). However, this equation was not applied
in the 1970 study. Instead, some considerations were suggested in order to have “the most
reliable method of analyzing pumping test data for an unconfined aquifer”, using previous
theories:

(a) the use of matching distance-drawdown by type-curves based on a constant coefficient
of Storage (such as the Boulton V-function, Boulton 1954-a), and

(b) the application of the delayed yield analysis (Boulton, 1963).
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Figure 2.3: From Boulton (1963) paper: delayed yield type curves: dimensionless pressure
(W) vs. dimensionless time ()

A practical example of these methods applied to observation wells was given. There is
a comment on page 375, in which Boulton (1970) explains the deviation of the early time
behavior from the tvpe A (early Theis) solution, shown in his Fig. 2 by the need for a “type-
curve based on a differential equation which contains an additional term for the short-term
delaved vield”. He justified the simplification of the problem by stating that the parameters
involved in this early period of flow are “of small importance”.

In order to enhance the solution (Boulton, 1954-a, 1954-b, 1963) for drawdown of
an unconfined aquifer, an additional empirical term allowing for early time delayed yield
from storage was considered by Boulton and Pontin (1971). The new solution enabled one
to consider anisotropy and partial penetration, as well as to calculate the specific yield with
“greater confidence”. By considering a second delayed yield term, the new results at early
times were not associated with the previous early Type A curve. A practical example of
application was given, using the same pumping test reported in a previous paper (Boulton,
1970). The figures presented showed a better match of the theoretical solution with the
data, even at early times.

Dagan (1964, 1967) proposed a perturbation technique to linearize the equations of
unsteady flow toward a partially penetrating well in an unconfined aquifer which considered
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the velocity potential and Darcy’s Law to describe the motion of the liquid in an anisotropic
aquifer of infinite extent. The resulting first and second order linearized equations were
solved using Green’s Functions for different sink configurations, considered as point or
line sources. The restrictions requiring small drawdowns and vanishing sinks contained in
the Dagan solutions limit use in the neighborhood of the sandface. However, the Dagan
solutions have advantages over the Boulton (1963) solution, by the consideration of the
vertical component of velocities. At least, better results than the Theis approach would
be expected in the vicinity of a well. The problem posed by Dagan neglected compressible
effects in the unconfined aquifers, later included by Neuman (1974) by incorporating the
aquifer compressibility in the Dagan (1967) equations.

Streltsova (1972-a) and (1972-b) considered slow drainage as the delayed process of
vertical transfer, and not a delayed yield as did Boulton (1954b, 1963). She reduced the
tri-dimensional problem to a two-dimensional problem by considering an average head along
the vertical coordinates, given by the relationship:

-

ho
hoo= lf & (r,z) dz (2.21)
he Jo

Therefore, the unsteady radial free surface flow partial differential equation is:

92  10h oh , OR° .
T(E?I ?E) = S t+5 (2.22)

The specific rate of the vertical transfer of flow was assumed to vary linearly with the
difference between the average head h and the free surface h°:

oh°

N (2.23)

The relationship between o and other properties is:

a:——l—,@=

5 (2.24)

L
S

where k and b are the average value of the permeability coefficient and the thickness of
the vertical flow, respectively. and @ is the specific hydraulic conductivity. A constant rate
inner boundary condition given by the following equation was considered, as T — Ty!

Oh(r,t)

Q = 21rk:Hr< z

) = constant (2.25)
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and the initial condition is:

h(r,0) = &°(r0) = H. (2.26)

The combination of the differential equations permitted the partial differential equa-
tion (Eq. 2.22) to be represented in terms of h and the radial distance from the well axis
T

9%h 10k oh | .+ [tOh
oh 10k} _ Ok Oh 1y _ emalt-)
T(ar2 + rar) Sa; + S /O 1 - ] dr (2.27)

Equation 2.27 has a similar solution to the Boulton (1963) problem for which compressible
flow was neglected, i.e., S = 0:

F o H 2fT .[)oo Jo (f 2) {1 _ (—;%%)} dz (2.28)

z z2+le

A solution for h°, which is the position of the free surface with time, was also
obtained by assuming an exponential rate of discharge resulting from the discontinuity in
head at a well:

@ = Q(1-e™ (2.29)

and so:

o _ Q /°° Jo (§ 2) atz? ‘
h = H STRT Jo . 1 exp 771 dz (2.30)

In a subsequent paper, Streltsova (1973) analyzed the contribution of the unsat-
urated zone (capillary forces and additional retarded flow) above the free surface to the
head drawdown response in the wellbore, and concluded that the unsaturated zone contri-
butions were of minor importance compared with the vertical fall of the water table. An
important observation in this paper was the conclusion that the specific yield for vertical
flow is a constant property of the formation, and the relationship between the unsteady
water table heights and the flux at the water table averaged over the area is also constant.
However, the free surface and the flux have an exponential change with time. In this same
paper, Streltsova showed results from an experimental radial flow model using an analog
electrical resistance network for simulating unconfined flow around the well. These results
were compared with results of analytical solutions from the Boulton (1963) type-curves for
average drawdown, and with the Barenblatt et al.(1960) solution for a similar equation for
the free surface drawdown applied to unconfined flow. A good match between experimental
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and analytical results was used to verify the theory, and to show the degree of reliability of
assumptions of neglected flow from the unsaturated region and capillary pressure effects.

Complementing the previous work, Streltsova and Rushton (1973) presented a table
for the definite integral W,[r/B,u} defined in Eq. 2.30, and compared the Streltsova (1972-
b) solution based on the previous assumptions and the Boulton (1963) integral V|r/H,1]
given by Eq. 2.13. The basic difference between the two methods is that the former’s main
assumption is a finite difference approximation for the free surface condition (see Eq. 2.23),
whereas the latter makes an assumption of constant discharge per unit length over the
entire depth of the well and establishes an empirical relationship creating the delayed yield
parameter. The comparison is presented in both table and graph. A computer code for
the main part of a program to calculate the position of the free surface according to the
Streltsova approach is available from the author.

The elastic properties of the aquifer were considered by Streltsova (1974) in solving
the gravity drainage flow problem for a partially penetrating line-sink. Different boundary
conditions and a more rigorous mathematical approach were used, instead of the finite
difference approximation described before. In the conclusions, it was emphasized that the
elastic properties of the aquifer were essential during the early periods of pumping before
gravity drainage has started.

A new analytical approach was presented by Neumean (1972) which defined a set
of equations, considering formation anisotropy and constant values of specific storage and
specific yield with no empirical considerations. According to the author, this method elim-
inates the conceptual difficulties in the Boulton theory of “delayed yield” involved in the
early time flow behavior of an unconfined aquifer, and suggested calling the physical process
“delayed response”. Also, a comparison with the results from a.numerical solution using
the Cooley (1971) finite difference model showed the unsaturated region flow to be impor-
tant to the drawdown in a free surface aquifer. The Neuman model treated the unconfined
aquifer as a compressible system and the free surface as a moving boundary. One common
assumption in the Neuman theory as well as that of others is the treatment of the well as a
line sink. This simplification of the problem, using the author’s words, introduces “a certain
error in the solution near the well bore” by neglecting the presence of a seepage face. The
governing set of equations for the threhree-dimensional problem is:

0%s K, 0s . 0% oh
(0 < z < 5) K'-a—r_f + ;—--a—; + I(vb;—i = Ss—a-t— (231)
s(r,z,0) = 0 (2.32)
E(r,0) = 0 (2.33)
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s(c0,2z,t) = 0 (2.34)

0s 0s _ 9
K2+ Kagom, = (s,, = I) e at (&) (2.35)
£(r,t) = b - s(r,z1) (2.36)
. §¢ Os Q
r].llno A ré;-dz = - m (2.37)

Equations 2.31 and 2.37 were solved using a perturbation technique and Laplace and Hankel
transforms. The solution is given in the Appendix of Neuman (1972) and is:

s(r,2z,t) = Z% /:°4::Jo [z\/Tc;] [wo(z) + ilwn(z) dz (2.38)

where, w,(z) and w,(z) are expressions given by Eq. 15 in the original pdper. That
solution is a function of the coordinate z. In order to find an average solution over the
aquifer thickness in an observation well, the following expression was used:

s(ry2,t) = ! /z’ s(ry z,t)dz | (2.39)

22 =2 2

where z; and 2, are elevations of the open sandface in the observation well. For a well that
completely penetrates the aquifer, the final result for the average drawdown is calculated
from Eq. 2.38 after redefining w,(z) and w,(z) as in Egs. 20 and 21 in Neuman (1972). The
influence of each dimensionless parameter was studied and interesting graphs presented. See
Figs. 4 and 5 in Neuman, 1972, pp. 1037-1038. Neuman’s Fig. 4 suggests an approximate
linear relationship between the logarithm of water table drawdown and the logarithm of
time (curve corresponding to zp = 1), and Fig. 5 presents a dimensionless constant position
zp = 0.57 for the average drawdown over the entire aquifer. The Neuman (1972) solution
was supplemented by a subsequent paper (Neuman, 1973) whose main purpose was to
modify the original Eq. 27 (Neuman, 1972), allowing for anisotropy. The result presented
in Eq. 2.40 is similar to the Boulton (1954-b) solution:

s(r,z,t) = .4_;2? /Omzjo[y\/ﬁ] {1 — exp(-tyny tan(y)) %%}i-}%%?—)}%

a1 (2.40)



The new theory (Neuman, 1972, 1973, 1974) was applied to pumping tests for fully
and partially penetrating wells by Neuman (1975-a). Besides the general procedure of curve-
matching, this paper introduced a method of interpretation based on the semilogarithmic
relationship between drawdown and time. For type-curve analysis, the methodology follows
that previously described by Prickett (1965). The semilog interpretation is based on the lin-
ear behavior of drawdown with the logarithm of time at late times when the rate of change
in the free surface has become small. However, due to the assumption of a line-sink well,
the theoretical early time behavior is also supposed to fall on a semilog straight line since
the initial flow from the formation into the wellbore is essentially horizontal. The practical
exariple of application of this method in analyzing pump test data seems to be conclusive
with respect to the late time behavior, but not well fitted to the early time data points
for a pumping well. In describing this method, Neuman suggests deleting the early time
data amalysis if the slope of the straight line obtained differs noticeably from the straight
line fitted to the late time data points. In this case, the method of interpretation should
be complemented by matching of type-curves. Another important consideration made in
the paper by Neuman (1975-a) concerns recovery (buildup) tests. Because no flow from the
unsaturated region is considered in this method, and the unconfined aquifer is treated as
a compressible system, no hysteresis is expected. As a consequence, the same analytical
equations and interpretation methods should apply for both drawdown and buildup. How-
ever, Ramey et al. (1989) observed that the semilog graphs for drawdown and buildup show
much different times for the start of the straight line behavior for the same well test data.
This and similar physical observations make questionable the reversibility of the process of
gravity drainage under the free surface. In this same paper, Neuman (1975-a) relates the
Boulton reciprocal delay index a with aquifer properties by establishing a numerical rela-
tionship between Boulton type-curves expressed by the dimensionless parameter (r/B)%/b
versus sp. On semilogarithmic paper, a linear relationship was obtained by regression
analysis:

P
%@_ = 3.063 — 0.567 log 8 (2.41)

Using definitions of r/B, 3, and a, Eq. 2.41 becomes:

o« = 5 [3.063 — 0567 log( = )] (2.42)

Equation 2.42 represents a connection between the Boulton and Neuman theories. Neuman
also recognized the relationship of the a-parameter and physical properties of the aquifer
in the Streltsova study, but claims that the relationship exists only as a function of distance
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r (see Eq. 2.42), and not of time, as is clear from the dependence of s, in the following
Eq. 2.43 by Streltsova (1972-b):

3k,
= —_— 2.43
@ = 5= san) (243)

Streltsova (1976) believes that the Neuman boundary condition for the free surface
(Neuman, 1972) leads to a mathematical formulation equivalent to Boulton (1954-b, 1963)
and Streltsova (1972). Therefore, she concludes that the solutions are identical, and claims
that once the a-parameter is determined, it is possible to determine the degree of anisotropy
by calculating 4 from the relationship with a:

3k, 3u?
[0 = 3’—}10 = m—’ ’ (244)
where:
o ke
l“l - kr

This procedure yields a different k, from the Neuman theory due to the approximation in
the Streltsova model relating the average drawdown and the drawdown of the free surface
by a finite difference relationship given by Eq. 2.23. Plots of § and (r/B); versus sp
are matched to demonstrate the correlation between the dimensionless parameters. These
considerations were denied by Neuman (1976), asserting that the matching was “grossly
misleading”.

The discussions with respect to delayed yield are summarized in a paper ( Neuman,
1979) which compares the relevant theories on delayed yield. Neuman seems to have adopted
the term “delayed yield” to characterize the phenomena which he previously suggested
(Neuman, 1972) should be referred to as “delayed gravity response”. A brief speculation
about Boulton theory raises the possibility of delayed yield being caused by delayed air entry
in the high water saturation porous region above the free surface. However, referring to
several authors, and specifically to works by Kroszynski and Dagan (1975), Neuman (1975-
b) and Neuman et al. (1974), Neuman concludes that the unsaturated flow has a minor
influence on the time-drawdown response during gravity drainage of liquid. A justification
for large apparent ctorage coefficients S in unconfined aquifers compared to artesian aquifers
is explained by entrapped air bubbles or dissolved air in the saturated zone. Thus, the fluid
compressibility could have large values. Therefore, Neuman uses this argument against the
idea of Bouwer and Rice (1978) that the delayed air entry is due to the slow movement of
liquid in the unsaturated porous space above the free surface. The liquid in the capillary
fringe is drained slowly as a consequence of a negative pressure differential created when the
liquid surface moves vertically down. Neuman again referred to the rate of head recovery
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(buildup) as a fully-reversible mirror-image process, and, therefore, incompatible with the
theory of the air entry concept of Bouwer and Rice. Neuman criticized the idea that the
influence of radial distance on the Prickett (1965) and Gambolati (1976) theories that at a
certain time during the desaturating period the region around the wellbore may be divided
into three different sub-regions of different flow patterns. Neuman stated that “the cone of
depression is not distorted, and its slope varies monotonically with radial distance”.

The most important theories of gravity drainage flow so far reviewed do not consider
the flow in the unsaturated zomne rigorously. Even the Boulton (1954-b) model does not
consider the characteristics of the region above the free surface directly. Instead, the Boulton
model approximates this effect by creating the delayed yield parameter a. In the following
review, flow in the unsaturated zone will be considered in regard to the gravity flow problem.

A complete analytical solution reflecting the flow in the unsaturated region above
the free surface, an anisotropic formation, and a partially penetrating line-sink well were
considered by Kroszynski and Dagan (1975). According to Neuman (1979), this is “... the
most definitive study about the role of unsaturated flow ...” published so far. Using the same
original notation, the following equation is used to represent the flow in the unsaturated
zone:

D' df dd

TR Y (k(¥) V&) (2.45)

where D' is the initial saturated thickness of the aquifer, 6 is the volumetric moisture
content, ¥’ is the capillary head, k is the relative hydraulic conductivity (function of 6 or ¥
), and @ is the total head corresponding to the isolated sink solution. The other equations
and the analytical solution will not be presented here. The model was tested by comparing
results with numerical solutions from a modified program after Neuman (1975-b). The
results indicate little influence of the unsaturated flow on the time-drawdown response.
Only for special conditions of thin and low permeability aquifers were significant effects
observed at early times. Another important consideration is the finite wellbore radius used
in the numerical model to simulate wellbore storage effects. Unfortunately, Kroszynski and
Dagan did not apply this model to the producing well, and the closest observation well was
located at 4.4 ft from the symmetry axis.

Bouwer and Rice (1978) presented a physical basis for delayed yield response as
a restriction of the unsaturated zone to air entry due to the fall of the water table. As
the free surface moves down, air penetration into the rock pores is impeded by the high
initial water content of this region reducing the relative permeability to air. The initial
specific yield is small, but increases with time as vertical drainage occurs. This process
is important if the draining region contains layers of fine-textured materials which have
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high water retention. In this case, the entry capillary pressure retards the air movement
downward. Once started, the pressure directly above the water table varies from vacuum to
equilibrium at atmospheric pressure. The time lag is reflected in the variation of the specific
yield. Bouwer and Rice used these principles to run laboratory experiments to explore field
observations. Apparently, the typical inflection in the time-drawdown curve observed for
pumping tests could not be reproduced in the laboratory, and, according to Neuman (1979),
the results were not conclusive.

Another physical explanation for delayed yield is attributed to the hysteresis effect
on the capillary fringe and transition zone above the water-table, and also underneath the
free surface (Bouwer, 1979). According to Bouwer, pumping tests are often done in wells
that were previously operated. As a consequence, the region of the reservoir around the
wellbore, once drained by pumping the well, is not completely resaturated after the recovery
of the initial head after pumping is stopped. Hence, bubbles of air, entrapped in the initial
capillary fringe or in the previously saturated zone, will create a more compressible system
than the original one, causing a delay in releasing significant amount of water from the pores.
Therefore, the fall of the water-table will be retarded by an increase of the compressibility
in that region. In Bouwer’s opinion, the air compression effects could be a common cause of
delayed yield, in addition to the elastic response of the aquifer and the restricted air entry.
There was no mention of a reduction in transmissivity caused by the presence of another
phase.

Analyzing pumping tests for an unconfined aquifer in Canada, Nwankwor et al.
(1984) made a comparative study of their determinations of specific yield with results from
other methods. The tests were run in a pattern formed by a centered pumping well and
observer wells distributed into two perpendicular lines to monitor the drawdown at different
levels in the aquifer. Using the Boulton (1963) and Neuman (1972) theories, the authors
observed that at early times very low results for specific yield were calculated from both
methods. As time increased, specific yield increased slightly, but never approached the
values calculated from the volume-balance method or determined by laboratory measure-
ments. The volume-balance method consists of calculating the cumulative water produced
V, and dividing it by the volume of the cone of water-table drawdown V,, obtained from
observation well drawdown mapping. Despite that discrepancy, Nwankwor et al. concluded
the various methods of interpretation give similar results for transmissivity. The appar-
ent reasons for the differences in the long-term specific yield were attributed to neglecting
the delayed drainage from above the water table in the Neuman (1972) theory, and the
downward hydraulic gradients in the Boulton theory. Therefore, a more rigorous model
considering flow in the unsaturated zone and vertical flow processes simultaneously should
be more appropriate.

The large differences in the specific yield described before caused concerns about
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the reason for such deviations. A convincing explanation for this problem was given by
Neuman (1987). A superficial analysis of the Nwankwor et al. (1984) study shows an in-
valid assumption concerning the volume-balance method. The criteria used in performing
that balance is that the total volume of water produced by a well comes from the depressed
cone in the reservoir. Therefore, applying the ratio of volumes, the specific yield would
vary, and reach high values after a long time. Regarding laboratory results, one is sup-
posed to accept the concept of specific yield as the difference between the saturated core
and residual water in the pores of the rock. Apparently only a fraction of the produced
water comes from the depressed cone. Nwankwor et al. (1984) neglected the volume of
water that comes from the outer reservoir. Neuman (1987) demonstrated this idea in two
different ways: an approximate calculation based on the presented data ( Nwankwor et al.,
1984), and a theoretical approach. In other words, the water balance was not valid because
only a small fraction of the water comes from the observed cone of depression. Neuman'’s
theoretical analysis was also confirmed by the pumping test data from Nwankwor et al.,
and substantially supports the idea that the variation of the free surface “in response to
pumping is relatively insensitive to residual drainage in the unsaturated zone”.

2.4 Inner Boundary Condition

Until the middle sixties, the inner boundary condition had not been treated
adequately in hydrology, and only the line source well ( Theis, 1935) had been considered
in pumping tests. Wellbore storage and finite radius well effects were neglected, mainly in
shallow and unconfined aquifers where most of the pressure observations in pumping tests
were usually performed in shut-in observation wells, not in the producer. In petroleum
engineering, an early application of the finite well radius and well storage was presented by
Moore et al. (1933). This was a remarkable early study of transient flow which included an
example of field well test data interpretation. Sonic annulus liquid levels were measured and
sandface flow rates found by subtracting production from the wellbore storage. A variable
rate analysis was used to interpret the well test data. One of the authors, W. Hurst was
a co-author of the classic paper van Everdingen and Hurst (1949) which included both
finite-producting well radius solutions and defined wellbore storage and produced a log-log
storage type curve which is the basis of modern type curve data interpretation.

Wellbore conditions were completed defined in 1953 by the van Everdingen and
Hurst (1953) skin effect concept. The skin effect defined well condition quantitavely by-
adding a dimensionless resistance to flow at the sandface. In the following, a brief analysis
of selected studies of wellbore condition is presented.
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In 1964, Hantush reviewed solutions of the continuity equation for a well of finite
radius in a confined aquifer, without storage effects. Consideration of wellbore storage in
analyzing pumping tests for a confined aquifer was presented by Papadopulos and Cooper
(1967), who appeared to be unaware of the earlier study by van Everdingen and Hurst
(1949). The wellbore storage inner boundary condition can be represented by a material
balance equation:

|sandface flow rate| + | wellbore flow rate | = pumping rate |
(2.46)
0s(ryt) 208 (1) _
2771y T 5 Uirtayy = -Q (2.47)
The solution in Laplace space is:
i = Q Ko (gr) (2.48)

Tp [r2pK,(qry) + 21uTqKy(q7w)] ’

where, 3 is the Laplace transform of the drawdown, p is the Laplace parameter, and q =
1/2
PT§ / . The inversion, obtained from an analogous problem in heat flow (Carslaw and

Jaeger, 1959), gives the drawdown at any distance r from the well bore center:

2 2
s o= BB (1= B U8/ Y 9) - Vi (6)
dp
-Y, (ﬁ’l’/'f‘w) [ﬂJo (ﬁ) - 2aJ; (ﬂ)] } m (2-49)
where, a = r,25/r.%, and u,, = 7,25/4Tt. When r = r,,, Eq. 2.49 simplifies to:
v = e F(uwa), (2.50)
where
3207 oo (1 — eV /4
F(uw,a) = —r‘;- /0 ( NG )dﬂ. (2.51)
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In the Papadopulos and Cooper paper, Fig. 2 shows a set of type curves based on this
solution, and compares several results for parameters o (related to the well bore storage),
with the Theis and Hantush solutions. As an addendum to the previous work (Papadopulos
and Cooper, 1967), Papadopulos (1967) presented an additional logarithmic plot of s/Q /4pT
versus 725/4Tt for several dimensionless distances from the well.

Cooper et al. (1967) use a procedure similar to Papadopulos and Cooper (1967) to study
the “slug-test” in a confined aquifer. Equation 2.50 is used as an inner boundary condition,
and the final solution for the head in Laplace space has the same format as Eq. 2.48, here
represented by Eq. 2.53:

Oh(ry + 0,t) . 0H (t)
ar, T ———1= = (2:52)
P s S Ho Ko (q7) (2.53)

TqlrsqKo(qrs) + 20K1(qrs)]

where, ¢ and a have the same definition as before, and H, is the initial head increase in the
well. Analogously, the solution at the producing well, i.e., when r = r, is:

8H,a /°° e~ P /e
0

B ul (u)

du (2.54)

7|-2

Kipp (1973) presents another theoretical solution for the unconfined flow problem.
A homogeneous isotropic aquifer of infinite thickness and infinite lateral extent, partially
penetrated by a well of finite radius was assumed. Other important assumptions were single
*phase flow, an incompressible system and no surface of seepage in the well bore. A set of
boundary condition equations in terms of velocity potential was solved using a perturbation
technique. The approximations made restricted applications of the semianalytical results to
short times after pumping start-up. The line-sink solution by other authors ( Boulton, 1954-
a, and Dagan, 1967) was found to have reasonable agreement with the Kipp solution, at
radial positions greater than 15% of the well depth below the initial free surface. Although
some graphical comparisons were shown, no attempt to create dimensionless type curves was
made. There are some disadvantages of this solution with respect to analysis of well tests
besides limitations imposed by the initial assumptions and the solution method, namely a
“tedious trial and error search is necessary to determine the aquifer parameters”.

A simple procedure for estimating aquifer properties by a slug test is shown in
a paper by Bouwer and Rice (1976) using a modified Thiem (see reference in the paper)
equation and a resistance network analog computer. The method is based on the assumption
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that the nature of flow around the well is predominantly radial during a pressure recovery
after a fixed volume of water is instantaneously removed from the wellbore:

v
In(re/rw)
where y is the instantaneous position of the water level in the well, with respect to the
original water-table and r, is the effective drainage radius in which the slug volume is
dissipated. The drainage radius is obtained by empirical correlations from the electrical
model, and is expressed as a function of parameters which depend only on the geometry of
the system. The expressions for both a partially and fully penetrating well are given below.

Q = 2rKL (2.55)

partially penetrating well:

re 1.1 A+ B In[(D - H)/rw]]_l
In Tw [ln(H/rw) L/ry (2:56)
fully penetrating well:
Te 1.1 c \7!
h T <1n(H/rw) * L/rw> (2.57)

where A, B and C are empirical functions of L/r, obtained from Fig. 3 in the Bouwer
and Rice (1976) paper. To estimate the aquifer conductivity, Eq. 2.58 was derived from

integration of Eq. 2.55:
¢ = (’"—) In (y—) (2.58)
T 2KL rw/)® \w/ '

A semilog plot of the ratio y,/y: was used to determine K. According to Bouwer and
Rice, the approach used to determine In(r./r,) yielded values of K 10% to 25% in error,
depending on the genmetric characteristics of the system.

Dagan (1978) presented an approach for interpreting packer, slug and recovery tests
in unconfined aquifers in order to determine the permeability of low conductivity aquifers.
He did not consider variations of the free surface due to small volumes drained from the
system for those type of tests. The method consisted in integrating the source function
continuously through the open interval in the well bore:

L
0 = /Oq(z)dz, (2.59)
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where:

g = 2WTWK%%, T =Ty, 0<z< L (2.60)

Using a Green'’s function to define d¥(r, 2, 2) for an element along r = () centered at 2 = Z
with sources of strength ¢(Zz) distributed along the 2 axis, the solution produces the integral

V(r,2) = /()LQ%E)-G(r,z,E)dz (2.61)

The integral in Eq. 2.61 is discretized and a finite sum is used instead:

N =
Zg%Aij = By (2.62)
=1

The length L is divided in .V equal intervals of length AL = L/N and ¢(z2) is replaced by
¢:(i=1,2,...,N); B;(j = 1,2,...,N) is started from the boundary condition and stands for
B[z = (j = 0.5)AL] at the middle of the j** interval. The system composed of Eq. 2.62 is
solved for ¢;/K by a computer program. Therefore, the result from Eq. 2.55 is:

% = AL ‘; %- (2.63)
The hydraulic conductivity is:
where @ is generated from a computer program, and:
Q = l Q (2.65)

orLy[1 - (y/2L)] K

The main limitation of this method is that the length of the sandface open to flow must be
much larger than the wellbore radius.
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Rushton and Holt (1981) compared analytical and numerical solutions for gravity
drainage for aquifers and concluded that the numerical solutions were accurate in repre-
senting the phenomenon of unconfined flow. Rushton and Holt developed a finite difference
form to solve the partial differential equation, Eq. 2.66, and simulated the wellbore storage
effect by including a portion of the aquifer that represents the region within the well in the
model .

0%*s 180s S 9s

mtia T Ta (2.66)
The transmissivity was set to a very high value in the well partly to simulate the horizontal
water level in the well, while the storage coefficient (equivalent to the effective porosity)
was set to unity. The authors explained superficially that liquid level variations in the
saturated depth was handled by considering the transmissivity equal to the permeability
multiplied by the saturated depth, which was a function of the drawdown. Probably an
" iterative procedure was used if the drawdown was unknown. Figure 4 in Rushton and Holt
compared the numerical results with field data, and showed good agreement with the early
and late time drawdown. However, the intermediate period was poorly matched.

A kernel approach was used by Patel and Mishra (1983) for unsteady flow to a
large diameter well in a confined aquifer taking wellbore storage into consideration. Using
s(r,0) = 0 for the initial condition and s(oc0,0) = 0 for an external boundary condition, the
solution of Eq. 2.66 when a unit impulse quantity is withdrawn from the aquifer is given by
(Carslaw and Jaeger, 1959):

e—[r2/4ﬁt] _
S('I‘,t) = —Er-q-:t-— (261)

where § = T'/®. By defining a unit kernel function k(t) as the right hand side of Eq. 2.67,
the drawdown for a variable pumping rate Q 4(2) is:

s(ryit) = /:QA (e)k(t — ¢) de (2.68)

From discretizing and applying Eq. 2.68 to the sandface:

SA (n) = i QA(Z) 6.,-“, (n -2z + 1) (269)

z=1

where ér,,(m) is the discretized kernel coefficient at the sandface. For the wellbore, the
discretized drawdown for the time step n is:
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wn) = = 3040 (2.70)
1

2
T
¢ p=

The combination of Eqs. 2.69 and 2.70 through a material balance in the well @, =
Q4(n) + Qy(n) and the continuity of the drawdown through the sandface into the well (no
seepage face in the confined flow), S4(n) = Sy(n), the following solution was obtained in a
matrix form:

QW[ b =3 | H 0 - EU@ b (- 2+ 1)
= p=1 - z=
Qu(n) 1o @

(2.71)

Dimensionless curves were generated after calculating s(r,t) and s, from Eqgs. 2.68 and
2.70. The results match with those from Papadopulos and Cooper (1967).

A consideration of the seepage face was presented in a method of interpretation of
pumping tests by Rushton and Singh (1987). This method has an important restriction
because it assumed that the change in the saturated depth was negligible. Hence, the
superposition principle may be applied the same way as in the work of Patel and Mishra
(1983). The method also depended on empirical relationships between the height of the
seepage face and the withdrawal rate from the aquifer, @ 4. The suggested relationship was
of the form:

f = Gi1Qa + G2Q%4 . (2.72)

Rushton and Singh based their model on an unpublished report by Sakthivadivel
(1986), (see reference in the paper), and the parameters G; and G must be deduced from
field measurements. Coupling Eq. 2.72 with a material balance in the well (see Eq. 2.47),
the resulting set of discretized equations allowed the iterative calculation of the sandface
rates, and, consequently, the determination of the drawdown distribution. The paper also
presented a comparison of two different approaches: one considering the seepage face and
the other neglecting the seepage face. The results showed that the resulting transmissivity
could be underestimated by 25%, while the storage coefficient value could be of the order
of one-fifth of the true value in the simplified model neglecting the seepage face. The
example shown in Figs. 5a and 5b in Rushton and Singh (1987) shows Cartesian graphs
of drawdown and discharge from the aquifer versus time for both field data and computed
results. Our observation of the plot of drawdown versus time identifies a linear relationship
for the early time drawdown points. The early time recovery points also show the same
behavior, although for a different period of time. Such a linear period is analogous to the
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Figure 2.4: Cumulative Production for Small Values of &;/r.. - from Matthews and Lefkovits
(1956).

well bore storage effects in confined systems. However, fitting the calculated curves by a
theoretical approach is open to discussion.

2.5 Unconfined Flow in the Petroleum Industry

-

Although Muskat (1949) presented a brief discussion of the free surface gravity
flow well problem, there have been only a few works concerning gravity drainage well test
analysis in the petroleum literature. In 1956, Matthews and Lefkovits published a paper
presenting some approximate expressions to calculate the production rate decline for homo-
geneous reservoirs with a free surface pumped at a constant wellbore pressure (liquid level).
The flow dynamics were neglected in the derivations which were based on the drainage
radius and the Dupuit formula to get the following second order hyperbolic expression, not
valid in the early stage of production:

qg _ 1
g (14 7yt)*’
where g; is the rate of oil production at time t = 0 (f = 0 may be taken arbitrarily), and

v is given by the following expression, translated into the symbology used in the present
dissertation:

(2.73)

33



koApgH,

vy = (2.74)
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A scaled sandbox model was built to verify particular field data and used to validate
the theoretical approach. There were two important conclusions from this work: (a) a
completely pumped-off well produces at higher rates than a partially pumped well, and
higher flow rates may be obtained in completely pumped-off wells if the rates were reached by
small increases rather than through sudden well withdrawal, and (b) as shown in Fig. 2.4, the
time derivative of the cumulative production indicates flow rates increasing to a maximum
value in the early seconds of pumping (out of Eq. 2.73 validity range), probably due to the
potential gradient development in the vicinity of the well.

In recent years, there has been interest in evaluating depleted fields for enhanced oil
recovery projects. Many of these fields produce under a pure gravity drainage mechanism
and available methods of well test interpretation are not appropriate. Ramey et al. (1989)
was the first paper in many years to consider this sort of problem. Starting from a material
balance on an infinitesimal radial flow element, the Dupuit-Forchheimer partial differential
equation was obtained:

op* 109 _ (on(l) ) 0p’
o T ror (0.000264k o12 (2.79)

where p is the pressure at the bottom of the formation. In the formulation, both the system
compressibility and vertical velocity variations along the formation thickness were neglected.
By inspection, Eq. 2.75 resembles the ideal gas equation of Aronofsky and Jenkins (1953).
Since the simplifying assumptions are more appropriate at late times, the approximate
solution for Eq. 2.75 (also shown in Ch. 1 as Eq. 1.3) was presented:

By 0.000264kt s
2 -2 = 325200 dlog | ————| + 0351 + —— 2.76

Since vertical flow in the formulation was neglected, h/p could be considered constant
and equal to the liquid gradient for incompressible flow. The van Everdingen (1953) skin
parameter s was included in the inner boundary condition. From Eq. 2.76, a p? versus
time semilog graph should produce a straight line, with a slope m that may be used to
obtain the permeability - see Section 7.1. The Hamey et al. (1989) solution represented an
improvement with respect to the Theis (1935) approach in that variation in height and the
skin effect were considered. Also highlighted in the Ramey et al. paper is a discussion of
the role of compressible effects in gravity transient flow behavior. Also, the reversibility of
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the buildup pressure behavior was questioned because a different physical process occurred
during buildup, compared to drawdown. Those subjects are further discussed in Chapter 7.

Equations of the type of Eq. 2.75 were solved numerically in a broader context
including wellbore storage effects and a skin by Fligelman (1980) and is discussed in Ch. 7
and in Appendix C.2. -

2.6 Numerical Solutions

With the development of large, fast computing machines, numerical methods
became a powerful source of solutions for nonlinear problems, avoiding simplifications that
were used in approximate analytical solutions with relaxed constraints. Numerical solutions
have been an important tool to verify analytical methods when necessary, and to test
correlations in general.

In the groundwater literature, the main references on numerical methods dedicated
to the study of unconfined flow started in the 60’s. Cooley and Donohue (1969) developed a
numerical simulator to solve a finite-difference equation system for unsteady flow in a radial
flow problem using two-phase flow in the desaturating region based on classical methods
employed in the petroleum industry. This work was advanced by Cooley (1971) and presents
a radial model geometrically divided into cylindrical blocks in the radial direction. In the
vertical direction, constant thickness was allocated to each row. The potentials were the
unknowns in each equation, and the flow was divided into radial (horizontal) and vertical
directions ruled by the continuity equation coupled with Darcy’s Law. Multiphase air-liquid
flow was governed by capillary pressure. The posed problem did not establish a boundary
condition for the free surface. Instead, the model had a fixed grid and calculated the
potentials at every block, even those located in the desaturated region. The free surface
position could be obtained indirectly by interpolation by the relationship of ~ (head) and =2
(vertical coordinate of the node points). The model permitted the existence of two different
overlaying beds of sediments with different properties. Unfortunately, the inner boundary
condition did not consider wellbore storage, and the wellbore liquid level was obtained
by an iterative process. LSOR was the most general method used to solve the nonlinear
system, generating tridiagonal matrixes, and the time interpolation factor used was 0.5. The
model was verified using the Boulton approach applied to synthetic data of two observation
locations far from the pumping well. There were no verification runs for the pumping well
itself.

A similar method was described in a recent work by Narasimhan and Zhu (in press)
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who used the Agarwal et al. (1970) definition of wellbore storage constant in the inner
boundary condition and verified their finite difference model with a series of analytical
solutions and numerical experiments. A better verification of the same model applied to
radial flow into a gravity drainage well at steady conditions with respect to the inner
boundary seepage face was done by Shamsai and Narasimhan (1991), by comparing results
with the Hall (1955) experiments.

Szabo and McCaig (1968) created a general finite difference model to solve the
transient gravity flow problem which considered single-phase fluid and a moving boundary
free surface whose grid blocks presented adjustable triangular shapes between consecutive
time steps. An analog device was used to compare results with the numerical solutions
for a two-dimensional linear flow. Szabo and McCaig considerated a constant head inner
boundary condition.

Finite element methods have been widely used to simulate steady or unsteady flow
conditions such as by Neuman (1975-b), Neuman and Witherspoon (1970-a, 1970-b, 1971).
In the latter, a general transient gravity drainage model using a variational principle con-
sidered wellbore storage and had a Crank-Nicolson time interpolation method. The nodal
distribution was variable to adjust to the free surface at the end of each time step. No
wellbore solution or verification run was provided in the paper.

Two phase, one-dimensional flow was studied by Green et al. (1970) and Hornberger
and Remson (1970) who developed finite difference models using relative permeability and
capillary pressure relationships with liquid saturations to analyze moisture movement in
the porous medium. The results in the Green et al. paper were compared with experi-
mental measurements of the local saturations using neutron log devices. The importance
of hysteresis caused by residual air saturation was highlighted and caused concerns about
reversibility in the buildup analysis.

Special procedures in simulation are important to enhance the capability of numer-
ical solutions. As an example, logarithmic and geometric grid spacing have been used in
numerical simulation of radial flow into a centered well of accuracy and stability. A handy
algorithm to create an adjustable log radial spacing by Terdn and la Garza (1988) allows
one to specify the ratio between the first and last cylindrical block sizes keeping truncation
error in the same magnitude all over the grid. An advantage of this algorithm is to provide
control of the inner radial block storage capacity reducing the dependence of the number
of blocks in the radial direction, and also to provide different radial node distributions as
desired with minor consequences on the computational efforts.

Further techniques of numerical simulation in petroleum engineering are presented in
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many references, but most of the procedures in the development of the present dissertation
are summarized in the classical books by Peaceman (1977), Aziz and Setari (1979) and
Thomas (1982).

2.7 Centribution of the Present Work

As evidenced in the literature review, the lack of studies about the producing
well with a free surface under gravity drainage during drawdown and buildup periods mo-
tivated the present dissertation. In the groundwater engineering, evalutation methods were
developed only for observation wells. In the case of oil fields, however, the well distributions,
producing flow rates and reservoir properties are generally different, and operational time
constraints require different procedures for well test evaluations.

In the next chapters, a numerical solution for the radial semiconfined radial flow
into a well is developed. The results are compared with some experiments described in this
review, and also with analytical approaches.
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3. Mathematical Model

In the following, a complete finite difference formulation of a well test in a
gravity drainage unconfined reservoir is presented. The groundwater literature presents
several attempts to develop analytical solutions to this problem, and all attempts produced
equations that are applicable under limitations imposed by restrictive assumptions. One
common constraint requires the water table gradient and/or the water table fall to be small.
Therefore, high flow-rates should be avoided in pumping test analysis due to the resulting
steep gradient around the wellbore.

3.1 Basic Assumptions

The present numerical model consists of a discretization in time and space of
a cylindrical reservoir producing at constant flow rate under a gravity drainage drive from
a centered, open hole wellbore. The model formulates two-dimensional flow and comnsiders
the height variation of the liquid column in the reservoir as a consequence of the free
surface position change. Other important effects also considered in this model are wellbore
storage, skin effect, and the variation of the direction of the flow at each position (r,2) in
an anisotropic medium.

A single-phase flow model was developed using an adaptive grid based on a stream-
layer concept described next. The following considerations for an unconfined aquifer flow
will be assumed until otherwise modified:

- horizontal reservoir of finite, constant thickness

- anisotropy (ku, ky)

- Darcy’s Law

- conservation of mass and energy

- compressible system containing a single liquid phase with constant properties
- uniform undisturbed free-surface as initial condition

- constant outer boundary pressure

38



..,
€

C axis J.

desaturatin - . .
d=pg/g.H eregi:)n & C original top of capillary fringe
o —— T — — _%‘ B - - e
] 5| 1 he
£
Gb=pggH i free surface
| Ho
|
Hj

Figure 3.1: Representation of a cross section of an unconfined reservoir and definition of
some coordinate variables.

- finite wellbore radius

3.2 Partial Differential Equations and Boundary Values

In a two-dimensional gravity flow system, several distinct regions with appro-
priate characteristics of flow may be defined: a saturated region where the porous space is
completely filled by the liquid; a free liquid surface where the liquid table is in contact with
gas at atmospheric pressure; a desaturated region left behind the free surface on drainage
during production; the finite radius wellbore inner boundary; an impermeable lower bound-
ary layer; a constant potential outer boundary which is far enough from the producing well
to assure an infinite reservoir behavior. Also, a capillary fringe above the free surface is
considered in a separate chapter. See Fig. 3.1 for the definition of some coordinate variables.
For each one of these regions, a mathematical representation of the physical conditions are
posed in the following.

e Saturated Region:
The diffusivity equation is applied to a compressible system completely saturated
with a single liquid. From the combination of mass conservation and Darcy’s Law
principles:
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k 0%
v. [;] Ve = ¢Ct —a't- (3.2.1)
where the potential & is:
@ = p+ (%ﬁ) z (3.2.2)

e Free Surface Boundary:
The potential at the free surface is proportional to height. This is equivalent to
atmospheric pressure defined as p = 0 everywhere on the free surface of height z = H:

@(r,fi) = (pf:)H (3.2.3)

If the capillary fringe is to be considered, the following equation is valid:

e

®(rH) = @(nH) = (p2)H (3.2.4)

¢ Inner Boundary:
A constant flow rate inner boundary condition considering wellbore storage effects is
obtained from a material balance at the well by the following equation:

qByy = - mrl dz (3.2.5)

r=rw

6H, 27 Ty /H' k 0%
ot uwJo or

A complementary condition at the wellbore sandface must be defined. The potential
at the sandface is specified by the observation of the existence of a seepage surface,
characterizing the discontinuity of the positions of the free surface and the wellbore
liquid level. At the inner boundary r,y location, it is assumed that the potential is
constant and equal to the potential at r,,_ , when z,, < H,,. On the seepage surface
(Hy > 2y > H, ), the potential is proportional to the vertical coordinate, since the
point is on a stream-flow line at atmospheric pressure. Hence:

H, > z, > H, = b, = (p-i—) 2y (3.2.6)

2o < Hey > &, = (p&)Hu (3.2.7)

A detailed numerical treatment of the inner boundary condition is presented in Sec-
tion 4.8.
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¢ Infinite Reservoir Behavior:
Infinitely large reservoir behavior is obtained by assuming a large external radius.
Therefore, a constant pressure outer boundary condition is used:
& =9 = (pL)H, = r— 00 (3.2.8)

e Lower Boundary:
A no-flow lower boundary condition is used:

0d
-a—z =90 = z=0 (3.2.9)

or
ky, = 0 = z2=0 (3.2.10)

According to Muskat (1937) and several other authors, analytical solution of the
system of partial differential equations in this boundary problem is of insurmountable diffi-
culty. As seen in Ch. 2, not one of the analytical solutions surveyed was obtained without
restrictive assumptions, and none appeared to represent pumping well pressure behavior.
The numerical solution developed in the next chapter, although possessing the well known
limitations of a finite difference method, is intended to present a tool to solve the gravity
drainage well problem completely.

3.3 Dimensionless Parameters

Before modeling the numerical problem, a set of dimensionless constants and
variables is required. The relationships presented use Darcy units for the reservoir param-
eters.

(a) Dimensionless length or thickness:

F4 w Ha
zp = — Hp = — H = H = =2
D o ) D o ) wp Tw ) op o
T T
™D = —, Tep = = (3311)
Tw Tw

(b) Dimensionless pressure and potential:
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o
&p = W =
b pLH,
(c) Dimensionless static liquid gradient:
_ 1
70 - HoD
(d) Dimensionless production rate:
o = qp
27Ty kn p 3'1; H,
(e) Dimensionless time:
: kn p _gg: Ho
b dury

(f) Dimensionless liquid and total compressibilities:

L, = p-gq:HocL
ctp = p;qc-Hoct

In the next chapter, a finite difference model is considered in detail.
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4. Finit.e Difference Model

The partial differential equation that represents radial liquid flow in the reservoir
may be generated from a material balance in an infinitesimal element of porous medium,
based on the conservation of mass and Darcys flow law. The complexities of the boundary
conditions in the free surface gravity flow problem drive the present solution to a numerical
approach, making it possible to linearize the boundary equations. The discretized form of
these equations can be formulated from the same material balance criteria using a finite-
difference formulation described in this chapter.

Figure 4.1 represents a grid configuration of the problem, depicting a half cross-
section of a cylindrical reservoir with a free-surface developed from the original position
H,. The horizontal dimensions of the grid blocks can be scaled to provide accuracy around
the well bore, where the most important flow effects occur. The radial grid spacing used
the Multimodal method [Terdn and de la Garza, 1988], in which logarithmic spacing is a
particular case. -

In order to simulate the variable free surface position, an adaptive vertical grid
was conceived to group a set of streamlines, and referred to as the Stream Layer Model
(SLM) in the following. During a discrete time step, each block but the one containing the
free surface will keep its geometrical dimensions unchanged while the liquid flows through
the block boundaries in the vertical and axial directions. In this cross sectional model,
no angular flow normdl to the cross section is allowed, and the axial directions are not
necessarily horizontal, as can be seen in Fig. 4.1. The dimensions normal to the axial flow
are corrected by the average slopes of the block boundaries, according to Fig. 4.2.

In a separate section of this chapter, the capillary fringe is added to the model by
incorporating an additional layer with constant height on the top of the free surface layer,
or phreatic layer. Capillary flow is important for small scale sand-box experiments where
capillarity has a sensitive role in the results.

In the present model, the free surface layer is the only one that changes position
during a production or buildup time step period, because the free surface layer contains the
movable boundary. In the case of neglecting the capillary region above the free surface, the
free surface downward movement leaves behind a liquid saturation in the desaturating zone.
In the present model, no later flow from that region is allowed, and the liquid moves entirely
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Figure 4.1: The Stream Layer Model grid

within a specific period. The liquid saturation behind the free surface boundary is considered
residual. Based on groundwater studies - see Bouwer and Rice (1978) and Neuman (1979),
the air eatry effects in the desaturating region (two-phase flow) are neglected.

The technique used in calculations was the iterative solution of the block potentials,
concentrating the nonlirearities in the free surface and the wellbore potentials where the
boundary values are estimated in advance based on the previous time step. The conver-
gence method was the Newton-Raphson procedure which generates a diagonal Jacobian
matrix with special characteristics due to the non-zero coefficients corresponding to the
inner boundary blocks, as shown in Fig. 4.3.

A single step solution follows the sequence:
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Figure 4.2: Geometric corrections based in the slope of the flow axis.

(a) Calculate the inner boundary potential as a first approach
(b) Calculate the equation coefficients

(c) Calculate the Jacubian matrix elements

(d) Solve the matrix for the potentials

(e) Recalculate the inner boundary potential

(f) Check the results for convergence and iterate if necessary -

Since the layer containing the free surface is the only one moving during a discrete
time period, the block thicknesses are dependent on the free surface position, or dependent
on the block potentials. This loop dependency is responsible for the strong nonlinearity of
the gravity drainage problem.

Skin effect was considered in the model by assuming a cylindrical damaged region
around the well with an altered permeability, using Hawkins (1956) approach:

s = (7:% - 1) In (%) (4.1)
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Figure 4.3: Matrix representation of a 5x4 cross sectional grid

The finite difference treatment of the equations and the boundary conditions is
presented in the sections that follow. A detailed description of the computer model is given
in the Sec. 4.9.

4.1 Grid Distribution

The cross-sectional model is composed of a grid of M x N radial and vertical
blocks, numbered from the left to the right, and from the top to the bottom. The uppermost
layer corresponding to the position j = 1 contains the liquid-free surface. The inner blocks
are set at 1 = 1. Thus, the number of radial blocks is M, not considering the wellbore and
the external outer blocks with constant potential.

The radial grid distribution is a special kind of logarithmic spacing using the mui-
timodal method of discretization adopting the the block-centered scheme. In this method,
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the problems of stability are reduced by controlling the radial size of the blocks by fixing a
ratio R between the inner and the outer blocks. Hence, the critical conditions of potential
changes in the inner blocks, those containing the sandface, are decreased, reducing the sta-
bility problems that commonly happen in such radial flow models at late times. The usual
logarithmic scale is a particular case of the multimodal method.

In the cross-sectional view, the blocks embrace sets of streamlines with variable
slope depending on the block position and the time. However, the vertical flow between
consecutive layers allows some flow lines to move from a layer set to an adjacent layer
set during a period of time At. The stream layer is a geometric location containing the
streamlines moving through it. The only moving boundary within that time period will
exactly be the top of the first (uppermost) layer which contains the free surface, while all
other layers have the same uniform thickness over all time steps.

The time discretization uses a variable parameter # between 0 and 1, assigning a
variable degree of implicitness to the model. The nature of the gravity problem requires
analysis of ideal @ values, which is done in the model sensitivity analysis.

~ The coordinates are named in the following way, according to the figures presented
in this chapter:

r; = radial distance of the inner limit of the block 2, j to the wellbore axis
7; = radial distance of the block node to the wellbore axis !

z,; = vertical coordinate of the lower block ¢, j lower boundary at 7;, taken from the base
of the formation

Az; = vertically uniform thickness of the block 7,; at position 7;

Az; = thickness of the block i,j at the position 7‘,-1

H; = height of the free surface at the position 7;

Ah; = equivalent to Az;, referred to the free surface layer blocks

Ah; = equivalent to Az, referred to the position r;

H, = initial position of the free surface at rest, from the impermeable base

H, = liquid level in the well

'In the MULTIMODAL method, both ri and 7, are calculated implicitly - see [Terdn and de la Garza,
1988].
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H, = liquid level in the sandface
Zy; = lower inner block boundary position j at the sandface
Az, = inner block boundary thickness at the sandface

Ahy; = equivalent to Azy); referred to the free surface layer inner block

Fir ure 4.2 shows a special representation of a grid block (4,7) at a time ¢, containing
a set of streamlines and an adjacent block. Due to increased slopes of the streamlines around
the well, the geometric projections of the lengths and heights are based on angles calculated
on the following basis:

A mg + 3z~ (zo + RAu
Bi; = tg 1( e ( — ) : (4.1.1)
Ty = Ti-1
and the average slope of an individual block:
- ting + 30z — (s 18zi1,)
B, = ! — — . (4.1.2)
' Tit1 — Ti-l

The flow domain is divided into two main directions of flow, namely the vertical
(subscript v), and the axial (quasi-radial) (subscript z). The mathematical description of
such a flow can be formulated through the general finite difference equation for a single
liquid phase flowing in 2 low compressibility system:

A, (To0.8) + Ay(TAR) = éa,wm ©(4.13)

In gravity drainage flow, the direction of the streamlines change continuously, and
for that reason, the true transmissivity considers the geometry and also the permeability
tensor. In this work where anisotropy is considered, the pseudoaxial permeability (in the
streamline direction) is taken as an elliptic. function of the horizontal (radial) and vertical
permeabilities, according to the rule:

kh ku

k. .
Fia kn sin,@,-d + ky cosﬂg‘j

(4.1.4)

Each of the boundary conditions will define individual treatment for the transmissivity
terms, as well as the storage variation. In the next sections of this chapter, Eq. 4.1.3 will
be expanded and applied to the saturated region and the boundaries.
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4.2 Balance of Unknowns and Equations

Number of unknowns:

Reservoir block potentials . MxN
Free surface positions M
Position of the fluid level in wellbore 1

Total unknowns: M(N+1)+1

Number of equations:

Material balance for the blocks MxN

Free surface position M
Wellbore material balance 1
Total equations: MN+1)+1

4.3 Saturated Region

Equation 4.1.3 can be written for the saturated region and the inner and outer

boundaries.

4.3.1 Discretization of the Saturated Region Equations

Discretization of a block 7,7, for M > ¢ > 1,and N > j > 2:

Ar (T:A:9) = Tryy, (Rigry — ®45) = Tny, (Piy — ®icyj),

Ay (ToALR) = Tvi,,-1 (®ij-1 — ‘I’i,j) - Tv.‘,; (®i; - q’1',J'+1) )

and:
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Ay, Azidcy

— A, (¢V) At cos _ﬁi,j AVL (4.3.3)
where the typical transmissivity terms are:
T, n bz, Az cos B ; (4.34)
¥ In (,‘_l)
vi,j = ﬁ%‘- %z—:- (4.3.5)

The time interpolation used a parameter 6 to weight the old unknowns and the
unknowns within a time step. Thus, using the dimensionless parameters defined in the
Ch. 3.3, re-organizing, and collecting terms, the resulting equation may be summarized in
the following way:

Ai; Wij + Bij Wijo1 + Cij Wijna + Dij Wir; + Eij Winy; = Fij  (4.3.6)

where the coefficients of the unknown dimensionless potentials and the independent term
are:

Aij = _—0 |BAzpyy, + fai, fr B2, + kxi+1,,2ck<:8ﬁi+1,j AAzll;i

+ kzg+1,jf33,3i+l,j 6 i:—ﬂ-?;zitp b (4:3.7)
Bi = e (439
Cij = kziyr i::ﬂi:j Azp, (4.3.9)
Di; = 0fy;fr D% (4.3.10)
Ei; = 024z (4.3.11)
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_ kh Al‘ AZD‘.
kz;yy,; cosBis1,; cosp; ;Atp

{Bopi Wik - W] - fau, fBon, Wik - Wik, )

Fi;

W = (1-6) x

ky A3,
kziy1,,; €08Biv1,; Azp,

[W.J 1 2Wi.§ + W;’fj.}.l]} (4.3.12)

In these coefficients, the superscript & refers to the beginning of the present time step values.
Other parameters are:

Tita
A, = ff_lj_l_(_il__)_ (4.3.13)
! 2Tl
kx.-,, cosfB; ;
kz¢+1., cosfit1,j
Tit1 .
fi = m\H) (é_) (4.3.15)
r - ( - b

fa, (4.3.14)

The values of Azp are estimated by interpolation between nodes.

The Jacobian matrix elements for the block i,j were obtained using a Newton-Raphson
procedure.
The residue ¥ is:

;= Ai;Wij + BiyWijo1 + CijWijp + DijWicy; + EijWiga; — F; (4.3.16)

Differentiating Eq. 4.3.16 with respect to each variable W :

Cevy L B4y 9By 8Cij
DA = g, = At gy Wt g, Wt g, W
aD;; OBy  OF,
GW,J W, _ 1+ a5 6W y Wt+1'J - aWi,j (4.3.17)
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Since all the partial differentials are zero:

DAi; = Aij (4.3.18)

Similarly, other Jacobian coefficients are:

DB, = 5%;’-;{: = Bij (4.3.19)
DCi; = 53—[‘,1’7’; = Ciy (4.3.20)
DD;; = 5‘3—‘%—; = Dy (4.3.21)
DE,; = -(,’-"%—i—l = B (4.3.22)

4.3.2 Saturated Region Inner Boundary Equations

The blocks containing the sandface require a special treatment because of
their location. The transmissivity connected to the sandface can be estimated by geometric
extrapolation of thicknesses and slopes of the layers. The inner boundary potentials are
determined by the wellbore condition, as shown in the Section 4.8. Figure 4.1 presents a
schematic of the inner blocks around the wellbore and the extrapolated thicknesses. The
average thickness of a block flowing to the wellbore is taken half-way between the the node
and the inner face. If small radial spacing is used near the well, the geometric extrapolation
can be relaxed, and a constant thickness can be adopted for the whole block and its inner
boundary. To be general, the equations presented below used extrapolated thicknesses.

We now consider discretization of block 1,5 for N > j > 2. Following the same pro-
cedures as before and considering the proper symbology for the inner boundary parameters,
the resulting equation is:

where the coefficients of the unknown dimensionless potentials and the independent term
are:
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2kv All

Ay = =0 1Az F Ja, fu Bep e Ko,
kh Al; Ale
— 4.3.24
+ kz,,cosfs,; 6 cosP, ; Atp “to ( )
0k, A
By: = 1 4.3.25
1 kz,, cosPs,j Azp, ( )
0k, Ay
Ci. = ] 4.3.26
L kz,, cosPa,; Azp, ( )
Diy; = 0 ’ (4.3.27)
Ei; = 04z (4.3.28)

Fl.j = - fxl,; frl —A—EDI {0 W“’J - (1 - 0) [W,I{cj - Ww’;]}

ky, Ay, Azp, k — k k
- D = (1 - Wk _ .
kz,, cosPa; AtpcosBy ; e Wi = (1-6) {AZD’ ( 23 WLJ)

kv Al]
kz,,cosB2; Azp,

2w + Wk + wl’fm]} : (4.3.29)

In these coefficients, the superscript k refers to the previous time step value. Other param-
eters are:

Ay, In (2

kz,, cospy,;
= e 4.3.31
fxl,, kxzd Cosﬁ‘zd ( )

ln(l)
SN EY

n

‘ﬂpl

(4.3.32)

st

B
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Determine Jacobian matrix elements for the block 1, j using a Newton-Raphson procedure.
The residue V¥ is:

Uy, = AiiWij + B iWyia + CjWijm + EyjWej — R (4.3.33)

Differentiating Eq. 4.3.33 with respect to each variable W; ;:

DA, ; = g;/pv]ljj = Ai; + g‘ﬁ,:]] Wi + gg;’ Wij-1 + gg,lu Wi 41
+5‘?-V-If/l1"’jw2,,- - gl%ﬁ (4.3.34)
Except the last one, all the partial differentials in Eq. 4.3.34 are zero. Thus:
DA;; = A;; - (,%I%i]- = Aij + 0f, fr Azp, Z:‘V/ (4.3.35)
Similarly, the other Jacobian coefficients are:
DBy, = M = By + 0f., [ Bin, e 6W‘”’ (4.3.36)
oW1 ;1 9 oW, ;-
DOy = gl = iy + 00, 0, B, afvvijil (4.3.37)
DD,; = 0 (4.3.38)
DE,; = g“%])— = By, (4.3.39)

The partial differentiations of the inner boundary potentials (see App. A.1), calculated
individually, may be substituted above.
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4.3.3 Saturated Region Outer Boundary Blocks

The outer boundary condition is a constant potential at the external radius. The
index m is used to refer to the M block, and m + 1 is a dummy external block with
constant potential and geometry.

Now we consider discretization of the block m, j, for N > j > 2. Following the same
procedures and considering the proper symbology for the outer boundary parameters, the
resulting equation is:

Amvj Wm|J + Bmt] Wmlj_l + Cmy] Wm|j+l + + DmtJ Wm"lvj = me] (4'3'40)

where the coefficients of the unknown dimensionless potentials and the independent term
are:

_— —_— 2k, Ay,
Amvj = -4 [Asz-n + fxmd frm Asz + ’7‘:"’? '&;:
Al AZD
— 4.3.41
8 cosp, j Atp ‘o ( )
0k, A
= T 3.42
Bm,] kh Asz (4 3 )
o 0k Ay,

Cmv] - kh Asz | (4.343)
Dm; = 0fzp, frmB2D, (4.3.44)
Alm A‘sz k A - k

Fn; = - m eipWis — Azp,i [1 -(1-96) Wm,j] -
(1 - 0) {—fz'm,J f"m Z;Dm [WWI:,J - Wrr‘:—l,j]
ky Ay,
+ 7{5’55— [er,,-_l -2+ Wn,:.j—l]} (4.3.45)

At the external boundary, the flux is always normal to the external face, and so, cosfBm4+1,; =
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1. Thus, other parameters are:

A, = i (4.3.46)

fom, = e (4.3.47)
fr = liﬁ%—l) (4.3.48)
T

Determine the Jacobian matrix elements for the block m,j using a Newton-Raphson pro-
cedure. The residue V¥ is:

Wmvj = Ava Wm!J + BmiJ Wmij_l + Cm’] Wm)]+1 + Dmv] W"n"l»j - Fva (4'3'49)

Differentiating Eq. 4.3.49 with respect to each variable Wy, ;:

0¥, ;

DAm; = s = Am.j (4.3.50)
DBn; = a%;pfjj—i: = Bmj; (4.3.51)
DCm; = 5%‘;3;—1 - Crm. (4.3.52)
DDpm; = F%:":ﬁ? = Dm; (4.3.53)
DEn; = 0 (4.3.54)
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4.4 Free Surface Blocks

The free surface blocks are those containing the free nioving boundary on top
of them. In the present discretization, the capillary fringe is neglected and the no-flow
upper condition is applied. The free surface block thicknesses are the unknowns that cause
the nonlinearity in the problem and are calculated by an iterative process.

4.4.1 Free Surface Layer Equations

The principle of mass conservation associated with Darcy’s Law applied to
an element of reservoir containing the free surface was written in Darcy units according
to the conventions adopted in Fig. 4.4, which shows a representation of a block element
containing the free surface. In this study, the directions of flow and the transmissivities are
ruled by the streamline slopes. That characteristic of the model enables one to consider
the axial transmissivity terms as a function of the the direction of flow normal to the block
boundaries, similarly to the saturated region equations.

The condition that the components of velocity normal to the free surface are null
means there is no external flow through the free surface, neglecting the unsaturated flow.
Taking that observation and the condition given by Eq. 3.2.3, the expansion of Eq. 4.1.3 is
described in the next sections.

Discretization of a block 7,1, for M > ¢ > 1:

A (T:A:®) = Tppyyy (Pig1a ~ ®in) = Tpyy (951 — @ic1p) (4.4.1)
AU (TUAU@) = - Uy 1 (Qi‘] - th) (4.4.2)
1 AL ' k) [ Ahi + Ahf .
R &) = e [sg (Ahi - ARF) + ( 5 ) ctAt@] (4.4.3)

Typical transmissivity terms are:

57



a

D xrax
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Figure 4.4: Representation of a block containing the free surface. Convention of flow and
coordinate directions. '

2 k _—
Tz:m = = Ii'_l Az; cos ﬁ,‘|1 (4.4.4)
#n (525)
Ay, 2k
vi — 4.
T b Bz + Ak (4.4.5)

The usual procedures to develop the discretized equations taking the time relaxation
parameter 6 is synthesized by the general equation:

Aix Wip + +Cip Wip + Dig Wisin + Eiys Wis1n = Fia (4.4.6)

where the coefficients of the unknown dimensionless potentials and the independent term
are:

2k, Ay,

kri+1,1 COSﬂ,‘+1'1 AZD‘ + AhD‘

Ay = -0 PKEDH1+ foir fri BRD, +
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kn Ay Ahp, + Azp,

4.4.
+ kzip11€088i+1,1 20 cosﬂ, 14tp ‘o (4.4.7)
Bip = 0 (4.4.8)
20 k, Ay,
Cip = . 4.4.9
1 kx.'.',l.l COSﬂi-}-l,l (AZDi + Ah’Dn) ( )
Diy = 0 foyfri Ahp, (4.4.10)
Eiix = 0Ahp,, (4.4.11)
F., = - = Ahp, - AhY ) Sy - | —m = 2%
? kr.‘+1.1 cosfit1,1 COSﬂ,' 14Atp [< D D') 9 ( 2 Ctp¥in

(1= 8) {BRE o [Wikiy - W] = fuu S B, (Wi} = Wik

+ 2k, Ay [

1+ W 4.4.12
kzip1y €08Bit11 (Azp; + Ahp) 2]} ( )

These definitions of Ay;, fs;,, and f;;, are the same as given by Eqs. 4.3.13 through
4.3.15. Determine the Jacobian matrix elements for the block 4,1 using a Newton-Raphson
procedure. Let ¥ be defined as the residue:

‘I’i,l = Ai.l Wi,l + C:l WzZ + D11 1-1,1 + Ezl i+1,1 — F{|1 (4413)

The Jacobian elements are summarized in the following:

' 0 (1= a1+ oifzy fri
DA;, = 0¥y _ Ail'l:( +1 1 )

an'z - ' .’Yg

- Ciy ky Ay, Ctp .
(Ahp, + Azp;)7i kr.‘-n.x c08fi+1,1 27,-Atpcosﬂi_1 1

Ctl 0 (fz'.‘ll fr') a" 0(1 al+1)

B , 5 W“ + ——0 Wi- —_—— W

(Ahp, + Azp;)7; "2 7 i-1,1 + = i+1.1
i Ay, cip Wik

- '— S - : . .

kziy11 €08Bi1 Atpcosf;y 7 [ § 2 (4.4.14)
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DB;; = 0 (4.4.15)

DCiy = gf‘,“z = Ci (4.4.16)
ov; 0(1 — ai) fo;y Jr
DDy = gz = Dat ( viifz"f Wi-10 - Wiy (44.17)
0¥, 0 g1
DE; = — = F+ Wi Wi, 4.4.18
1 Wiera 5 Wig1,1 — Wiy] ( )

In these expressions, some parameters were introduced such as the dimensionless dynamic
average pressure gradient ¥; which can be approximated by the dimensionless static liquid
gradient, since the vertical grid sizes of the blocks are small.

1
7" = Yo = ?I- . (4419)

(o]

The average dimensionless gradient is used to find the dimensionless potential at the free
surface, according to the boundary condition expressed by the Eq. 3.2.2, discretized below:

Ah
Wit = ppiy + % (ZD.-,, + —-5&) ; (4.4.20)

Since pp, , is the pressure at the block node center, and considering that the free surface is
at atmospheric pressure, the above expression can simplified to:

hp,

- : 4.4.21
o (4.4:21)
Thus the uppermost layer properties become congruent to the free surface properties in
the discretized process.

Wiy =

Between nodes, the free surface elevation is interpolated by:

hp, = (1—-a) hp,,, + aihp, (4.4.22)
where the parameter ¢; is a linear function of the radial distance:

TD: — TD;
o = Dl D (4.4.23)
TDi — TDi.
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Since we define:

hp, = =zp;,;, + Ahp, (4.4.24)
hp; = Zp, + Ohp; (4.4.25)

and:
Zp, = (1-ow) 2p,_, + aizp; (4.4.26)

then:
Ahp, = (1~a;) Ahp,_, + a; Ahp, , (4.4.27)

the overbar indicating the values taken hetween two consecutive nodes.

4.4.2 Free Surface Inner Boundary Equation

Similar procedures are used to obtain the equation for the inner boundary
block containing the free surface, and the results are summarized below. A discretization
of the continuity equation gives the following material balance residue equation:

Yip = A Win + Ca Wi + By Woa - R (4.4.28)
where:
= AR AL 2kv Al;
Al,l = [ Ath + fz‘l,l fr1 AhD; + k$2,1 cosﬂg,l (Ath + Ale)
kh A 1; Ah’Dl + Ah’i)l
¥ kz,,, cosf2,1 20 Atp tp (4.4.29)
20k, Ay
¢ - 1 4.4.30
1,1 kz,, cosfz1 (Ahp, + Azp,) ( )
Eyy = 6ARp, (4431)
= kn Ay, k Ahp, + AR}, .
A= kz,1€08021 Atpcosp, . [(AhD1 Ahp, ) Sg = 2 e, Wiy
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_'fxm fr; [amewuu - (1 - 0) Hg] (Wlk,l - kal)] - (1 - 0) X

—k ko _ 2k, A1 _
{N‘D’ LR e (akb, + 201) [ Wx'fz]}

(4.4.32)

Consider Ahp,, the extrapolated thickness at the sandface, and the mean thickness:

_ Ah Ah
Ahp, = D’”; Dy (4.4.33)
Also:
@ = 2D (4.4.34)
TD, — TD,
7p, — 1
@ = B (4.4.35)
D, — ™D,
1
o = —-’L—za—Di. (4.4.36)

The differentiations of the residue equation give the Jacobian elements, as follows:

DAy = ggVLl.IT = A+ g;,”l W11 + gg}lt Wiz + 'g"v%'lf;WZl gf{}lz
(4.4.37)
The resulting differentiation produces: .
DAy = An - At -;lalfzm ) - (Ahp, 512231)71 k;ill 27?57:13} Wi
L {: N v grvllul (4.4.38)
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o; and a,; above were obtained from the differentiations of Ahp. Similarly, the other
Jacobian coefficients are:

DBy = 0 (4.4.39)
ov — W,

DCy,y = E-W-%l; = Cip + 0 fng frndh BWI; (4.4.40)

DDyy = 0 (4.4.41)
0¥y, f [a2+f’-'11 Jfry (1—011)] fa; .

DEy = - = B - = Wip + — W,

1 Wa 1,1 = 11 5,
1- Qaq _— ale

+ f.'l:l,l fr:o ( 72 le + AhD] 3W2‘1) (4.4.42)

Values of the derivatives of the inner boundary potentials can be obtained separately, and
the equations are presented in App. A.1.

4.4.3 Free Surface Outer Boundary Blocks

Following the same procedures, the final coefficients are:

Amq = -0 [‘A—hémﬂ + foma frnBADp + = A:;c:Ai"'Asz) (4.4.43)

Al'"QgAC:S%";‘: :hf"‘) ctD:| (4.4.44)
Cmi =+ ( Aiopi" _’:IZZD"‘) (4.4.45)
Dmni = 8fep; frmBhDWimo11 (4.4.46)
Fni = ngg—ﬁ; [(Ah}_)m - Akb) S, - <AhD"’ . Ah’f’m) et W,ﬁ‘l]
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“Bhp, [1- (1= WE] - (1-0) x

{—fzm,l frmmlgm [Wn{c,l - r:-l.l] -

2k, Ar,, . .
kn (Ah,’;m + Asz) [W’"'l - WM]} (4.4.47)

The Jacobian matrix elements for the block m,1 are determined using a Newton-Raphson
procedure:

Let:

Uni = Ama Wni +Cni Wina + Dyt Wit = Fn (4.4.48)

[

Differentiating Eq. 4.4.48 with respect to each variable W, , :

DAm g%':—ill Amy + gg/’;‘l Wmi1 + %:,1? Wina +
ggv’—:in-l.l - %%i. (4.4.49)
The resulting differentiation produces:
DAmy = Ama ~ [9 (a'"';r:‘f"") ~ (BAhp,, lezom)Tm * ¥ m 21;22;133?,” W
~ Bho. Snglzbm E = {x,:l e v+
" At c:s%"m‘l = { CtD ] (4.4.50)

In Eq. 4.4.50 the same definitions as those used so far are applied to the parameters. It is
helpful to define the outer boundary average thickness:
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BFpny, = (1= ams1) Dhp, + Ome1 AkDyy = (1= @mia) Ahp,, + Zmil

(4.4.51)
where:
Tep —Tm
Om4y1 = m- (4.4.52)
Similarly, the other Jacobian coefficients are:
DBpy = 0 (4.4.53)
a‘I’ml
o= Lmi o, 4.4.
DCpa s Cm.1 (4.4.54)
0V 0 (1-am) femy frm
DDpy = =—— = Dma + — ‘ W11 — W, 4.4.55
W1 aI/Vm—L], 1 1 [ 11 1] ( )
_ B‘I’mvl _
DEny = g = 0 (4.4.56)

4.5 Lower Boundary Blocks

The lower boundary is defined by the no-flow condition defined by Eq. 3.2.10.
The resulting discretization of Eq. 4.1.3 for each region, namely the inner boundary, the
outer boundary, and the main reservoir follows.
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4.5.1 Saturated Region Lower Boundary Equations

The residue in the block ¢, n is:

wi,n = Ai,n Wi,n + Bi,n Wi,n—l + Di,u Wi-—l,n + Ei,n Wi+1.n - Fi,n (4~5-1)

where the coefficients are:

— - k, Ay,
A;n = —0(Azp,,, + fz, frid2D, + :
tyn D41 fz , fr D kz‘“'" cosﬁ,-,n AZD.»
kn Ay Azp,
e 4.5.2
+ kzip1n €08PBin 8 Atp cosf; ctD] ( )
0 k, Ay,
Bin = kzip1n €0BindzD; (4.5.3)
Di.n = ofz.‘,n fr.‘ED.' (454)
Ein = 0A4zp,, (4.5.5)
o kn Ay Azp, k o k k
F1,n B kz‘i+1.n Cosﬁi,n Atp cosﬁi'n Ctp Wt’"’ (1 0) {AbD"“ [Wi+1'" Wz’”]
_— k Ay,
k k v 1 k k
- fz.’.n fr.‘AZD.' [Wi,n - Wi—l,n] + k-Ti+1,n cosﬂ;,n AZD.- [Wi,n—l - Wi,n]} .
' (4.5.6)

Jacobian matrix elements for the block i,n were determined using a Newton-Raphson pro-
cedure. Differentiating Eq. 4.5.1 with respect to each variable W:

6‘I'i n
Dhin = W,
6‘1’:' n
D N = -_—
B. Wen
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DCin = 0 (4.5.9)

DD, = F%\I,-,—j:_,; = Din (4.5.10)
DEi, = -5%%‘-"1‘7 = FEin (4.5.11)
4.5.2 Lower Inner Boundary Equation
The residue in the block 7,7 is:
Uyp = AaWin + BiaWino1 + E1nWon - P, (4.5.12)
in which the coefficients are:
din = =8 [0+ forn By + T B
+km,n lzzsﬂz,n 02;;‘2;%1'” @D (4.5.13)
Bin kmi fs ﬂ/:: Ao (4.5.14)
Ein 0Azp, (4.5.15)
Fin - i A1, A2p, Cip Wlk,n - 0fx1,,, fra 73_291 W,

ks, . €08P2n Atp cosﬁl,n

— (1= 0) {Ba, Wit = Wik = farn S B, (Wi = Wil

ky Ay, x L
+ ks, , cOSB2,n AZD, [Wl,n—l Wl,n] (4.5.16)
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Find the Jacobian matrix elements for the block 1,n using a Newton-Raphson procedure.
Differentiating Eq. 4.5.12 with respect to each variable W:

_ovy, OFi. _ — W,
DAl.ﬂ - awl‘n - Al,ﬂ - aW]‘n - Al,ﬂ + efxl,n f‘l‘] AZD1 3W1'n
(4.5.17)
6@1" —— aWw
By, = ——ln . n 5.
D l,ﬂ 6W]_,n,—l Blvn + of 1,n fl AZDI 6W1|n-l (4 5 18)
DCi, = 0 (4.5.19)
DDin = 0 (4.5.20)
DE,, = —3(%2—1 = E, (4.5.21)

The partial differentiations of the inner boundary botentia.ls (see App. A.1 ), calculated
separately may be substituted above.

4.5.3 Lower Outer Boundary Equation

The residue in the block m,n is:

Wm’n = Am|n Wm,n + Bm'n Wm‘n_l + Dm'n Wm_l'n - Fm,n (4-5-22)

in which the coefficients are:

kv Alm AlmAsz

Am = 4§ A— Z— N G
n ‘sz-I-l + fl‘m,nf"'m sz + kh Asz eAtD Cosﬂm'n CtD
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(4.5.23)

Bnpn = T (4.5.24)
Dm,n = 0 fa:m,,, frm KED,.-. (4.5.25)
Al AZD k
Frp = —2mZ%m . wk _ A
m Atp cosfp, , “tp W “Dms

~ (1=8) {~B2Dps Wik = fomn frm BDn Wik = WA ]

kv Alm

o Wann - W,,f,n]} - (4.5.26)

Determine Jacobian matrix elements for the block m,n using a Newton-Raphson procedure.

Differentiating Eq. 4.5.22 with respect to each variable W:

DAmyn = b@ﬁ =  Amn (4.5.27)
m,n
AV 1
DBpn = ——M%" = B 5.2
mn W mn (4.5.28)
DCpnpn = 0 (4.5.29)
Y
DDm,n -— an—l'n — Dm’n (4.5-30)
DEmn = 0 (4.5.31)

4.6 Second Layer Region Blocks

The second layer, the one immediately below the free surface layer, is a satu-
rated block. However, the vertical component of the discretized equation contains a variable

69



corresponding to the thickness of the free surface layer block above it. For that reason, the
equations are summarized below.

4.6.1 Second Layer Equations

The residue in the block 7,2 (1 < ¢ < m) is:

Uio = AigWia + BioWiy + CioWiz + DiaWis12 + EjagWipa - Fin (4.6.1)

in which the coefficients are:

Aiz = =0|B%pi + fuafrBep + kx.+,tvCﬁ;bi+l.2 (Aél-'D. * Azp, f‘AhD.)

+ kz¢+1.2::3ﬂi+1.2 02;;3?023%,"2 CtDJ (46.2)
Bia = 45— cosﬂ?fliv(iléa T ARD) (4.6:3)
Ciz = + — foi‘b:,z reTy (4.6.4)
Diy = +0fs, frB2p, (4.6.5)
E,-;z = +04zp,, (4.6.6)
Fiz = - Ezipr 2 fgsﬁiﬂ,z Af:; i:g:ﬂ o W"g - (1-9) {ED‘+1 [Wiil'z - W'E]

~ fai 2 friBZD; [W,Z - Wefl.z] + k&“.,cosﬂ.‘j’: FALZDi N Ath') [W"; - W.',g]

- Kzip1 Cl;;f::-il.z Azp, [Wi'g B W;,’f:,]} (46.7)

Find the Jacobian matrix elements for the block ¢,2 using a Newton-Raphson procedure.
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Differentiating Eq. 4.6.1 with respect to each variable W:

DAiy = g’v\l%% = Az (4.6.8)
DB = gt = Ba |t - Gt (469
DCiy = g;’—,i% = Cis | (4.6.10)
DD;; = 5‘%% = D, (4.6.11)
DEi; = 5%’?; = E (4.6.12)
4.6.2 Second Layer Inner Boundary Equation
The residue in the block 1,2 is:
Vi2 = A12Wig + BiaWig + CioWig + E1oWao — Fi (4.6.13)
in which the coefficients are:
Mo = =0 (Eip, + fo nBiny 4 o (ot )
Fzan ﬁﬁsﬁz,z 0211;?:3%1‘2 C“’} (4.6.14)
Ba = +k32_2cosﬁ33?2f;1+£}.h01) (4.6.15)
Ciz = + =~ foi’bj:‘mbl (4.6.16)
E\; = +0Azp, (4.6.17)
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— kn Ay, Azp
Fa = -6f;, 5AzpWe - L
LY ST 1 Wwn kz,, c0sP22 Atp cosp ,

k
cip Wiy

~(1-0) {Zzp, (W - Wih| = faa b Bep, (Wl - Wi

K k ,
2k, Ay, |2 (Wz,z - Wm) Wi - Wl{%]} (4.6.18)

Kz, €OS f2,2 zp, + Ah,’;1 "~ Azp,

Find the Jacobian matrix elements for the block ¢,2 using a Newton-Raphson procedure.

Differentiating Eq. 4.6.18 with izspect to each variable W:

) 6‘1’12 '9F12 _ 6Ww
7 = == = - = = z 2 6.
l/A1‘2 = 8W1,2 A1,2 8W1,2 A1‘2 + Hfi-‘l,z f,-1 A D, aW;{,z (4 6 19)
_ 0o _ [ Wip - Wi, ] — OW,,
PBiz = Gy = B (1= (8 T AR 7] T O e fn Bem g
(4.6.20)
0%y, _— O0W,,
DCyp = Wra = Ci2 + 0 fz,, fry Azp, W, s (4.6.21)
DDy, = 0 (4.6.22)
» ov
DEi; = awﬁ = Ei (4.6.23)

The partial differentiations of the inner boundary potentials (see App. A ), calculated
individually, may be substituted above.

4.6.3 Second Layer Outer Boundary Equation

The residue in the block m,?2 is:

\I,m.,Z = Am,2 Wm,2 + Bm,2Wm,l + Cm,Z Wm,3 + Dm_2 Wm—1,2 - Fm’2 (4624)

where the coefficients are:
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. — —_— k, A 1 2
Am,Z = —0 [Asz+1 + frm,Z ff‘m Asz + z 1m ( + >

kp, Azp,, Azp,, + Ahp,,
_____Aflt;mc‘jgrzz %] (4.6.25)
B2 = +%7 Azzii” leth) (4.6.26)
Cmz = + %’%’:— (4.6.27)
Duz = +8 foms fonBDn (4.6.28)
Frz = - -ﬁlﬁ%ﬁcw Wky = 682, = (1—68) {Kipn,, [L- W)
— foma frmBZDm [an,z - Wn’f—l,z] + 0 (Ajz:ilmAhﬁm) [Wrrf,l - ’nlf,zl
_ ﬁvrf“;;m; Wy~ W nfa]} | (4.6.29)

Find the Jacobian matrix elements for the block m,2 using a Newton-Raphson procedure.

Differentiating Eq. 4.6.24 with respect to each variable W:

MWy |
DAm,Z = an,2 = Am,2 (4630)
_ a‘pm‘z _ [ Wm,l - Wm,2 ]
DBnz = muE% = Bma |l = (G Ahpo)7, (4.6.31)
ov
Dcm,2 = an’Zl = Cm,2 (4.6032)
m,
_ 0¥pp2 _
DDm,2 = an—l,Z = Dm,2 (4633)
DEn, = 0 (4.6.34)
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4.7 Capillary Fringe

So far in this chapter, the existence of the capillary fringe in the mode] has been
neglected. The importance of the capillary fringe appears to be a matter of scale, because
in most field cases, the capillary layer is negligible compared to the total liquid height.
To verify the model against sandbox experiments, however, it is necessary to introduce
capillary effects. Due to this modification, the free surface concept must be reconsidered.
Thus, we will use the terminology of groundwater literature to denote as phreatic surface
the interface domain corresponding to atmospheric pressure in the saturated region below
the capillary fringe.

The capillary fringe is a layer immediately above the phreatic surface, partially
or completely saturated, possessing the particular characteristic of pressures below atmo-
spheric as a function of the capillary pressure. The uniformity of thickness and saturation
is essentially dependent on the uniformity of grain and pore throat size distributions, and
on the surface tension of the gas-liquid-rock system. At rest, the potentials in the fringe
have the same value as in the saturated region, but at dynamic conditions, the potentials
have the same value as in the phreatic line. According to the Wyckoff et al. (1932) and
Hall (1955) sandbox experiments, the capillary fringe is not a dead region, and downward
movement of the phreatic surface causes liquid to flow by the potential reduction generating
pressure gradients. In the radial model sandbox experiments, it is possible to observe the
tracks of the stream lines in the capillary fringe leaving the outer boundary in an upward
direction, then following the phreatic surface, and bending downward in the vicinity of the
wellbore.

4.7.1 Description of the Physical Mechanism of the Capillary Flow

A description of the physical behavior and the causes of the capillary flow is
presented next, with the purpose of creating a mathematical representation to be added
to the Stream Layer Model. We start by assuming an anisotropic formation saturated
with a single liquid, presenting a uniform capillary layer of thickness h. at rest, above the
original static level H,. The potential and pressure distributions at any radial position in
the formation is represented by Fig. 4.6. The pressures above H, are negative due to the
capillary pressure vh., which pulls the gas-liquid contact out, normal to the surface. The
phreatic line at rest corresponds to atmosphe. .c pressure.

When pumping starts, the potentials below the phreatic surface decrease, and the
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Figure 4.5: Representation of the capillary fringe layer.

surface travels downward producing a pressure reduction in the capillary layer. Since there
is a variable potential distribution along the phreatic surface, an equivalent distribution
should exist above it. The liquid in the fringe starts moving accordingly. In the gas liquid
contact, the pressure reduction forces a movement of the meniscus and gas entry in a typical
two-phase flow leaving a decreasing liquid saturation above the gas-liquid contact decreasing
to the irreducible value Sy.. The capillary fringe tends to maintain the thickness h., but,
in a transient flow it may be possible that k. will become variable due to the resistance
to the air entry by the lower relative permeability to gas, at high liquid saturations in the
desaturating region. However, it is also possible that the capillary fringe presents a residual
gas saturation in cases of sandbox experiments, and two-phase flow should be considered in
this region. It is reasonable to expect expansion of the capillary fringe mainly around the
wellbore at early times where the vertical velocities of the free surface drawdown are higher
than those of the air entry before reaching steady conditions.

The potential variation in the capillary layer generates flow in that region, which,
neglecting the temporary expansion described before, may be considered of constant stora-
tivity. So, the capillary fringe acts as an additional source of flow into the phreatic surface,
close to the well. However, due to the constant storativity, the liquid change through the
phreatic interface varies in direction and intensity. It was observed experimentally that
there were stream lines moving upward across the phreatic surface feeding the capillary
layer. Hall (1955) pointed out that “the phreatic line is not a flow line in a case where a

75



Height

S () v Top of liquid
N i capillaryregion | h
it ¥l - - == ———- i -~ - Phreatic level
\‘\‘Pressure i
... Potentiali  Saturated region
s\~~ : Ho
o
- X Y >
®=7H, Pressure
or
Potential

Figure 4.6: Potential and pressure profiles at a radial position r, under static conditions.

capillary layer exists.” Hence, there must be a flux profile along the radial direction show-
ing maximum absolute values at the inner and outer boundaries, though with different
directions. Somewhere in between the flux is zero.

4.7.2 Mathematical Representation of the Capillary Layer Boundary

Based on the preceding flow concept, we could rewrite the free surface layer
equation incorporating a source term, which is the contribution of the capillary layer. Some
simplifications are often made in the capillary flow such as to consider constant dynamic
vertical gradient approaching the static gradient in t! ~ capillary fringe, as well as neglecting
the transient behavior of delayed air entry. The following mathematical relationships are
valid in the capillary layer where the pressures are negative (H, < z < H,+ h.):

B, (r,t) = G (1) (4.7.1)
& (1) = (pZ) h(n2) (4.7.2)
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S(rh+he,t) = (p&) h(ni) (4.7.3)

where the subscripts ¢ and ph refer to the capillary layer and to the phreatic surface, and h
represents the phreatic level. Equation 4.7.3 is a consequence of Eq. 4.7.1 and Eq. 4.7.2, and
does not constitute an additional condition. Eq. 4.7.3 limits the upper geometric boundary
of the system. A material balance for an incompressible system is translated by the Laplace
equation if we think of the capillary layer changing its position in space, but not the mean
pressure:

Vi, = 0 (4.7.4)

Assuming the discretization principles used before, Eq. 4.7.4 could be represented in the
following way, considering the entire capillary fringe integrated into a single layer:

(gin — %ut)iz + (gin — %ut)lv = 0 (4.7.5)

For convenience, Eq. 4.7.5 can be expressed as function of the potential in the phreatic
layer (the one immediately below the capillary layer). The notation used here is the same
as for the free surface layer developed in the previous chapter. In fact, it is only a matter
of nomenclature.

. 27 . , Bir1n — P .
Ging _’ka-‘«nA 08 Bi41,1 he ln(?%‘) (4.7.6)
and
27 d;1 ~ O,
Qout, = "-k;i, cos f;1 hc—i—:—m’ (4.7.7)
o In ()

In the vertical flow direction, the downward movement of the entire liquid column
leaves behind a volume equivalent to an average liquid saturation in the desaturated region.
We may consider that the liquid volume going out of the capillary layer through the top
boundary must be the same as the equivalent volume of liquid going into the capillary layer
through the lower boundary. This means that the capillary layer has no role on the liquid
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balance. Hence, the only vertical capillary layer in or out flow to be considered, named g,
is the net flow through the lower boundary, feeding the top of the phreatic surface. Since
there is no cross flow between stream lines, flow is not produced by potential differentials
between layers, but merely added to the top of the phreatic layer. Following the same sign
convention for flow direction, Eq. 4.7.5 becomes:

(q:'n -~ QOut)lz —q = 0 (4.7.8)

After substitutions, we may express g. for a discrete capillary layer block ::

2rhe |, ®i111 — P c Q1 ~Pi-1a
Qe; = 0 k!-'i+1,1 COSﬂi+1,1"—m——‘" :t:l) k-’”i.l cos ﬂ‘»lm
; Fie1

(4.7.9)

4.7.3 Mathematical Representation of the Phreatic Layer

The discretization of the phreatic layer will be handled the same way as the
free surface layer was handled previously. The difference in the material balance equation
is that the flow in is the source term g.. The same principle of variable thickness will be
employed to the phreatic layer as well, and the Eq. 4.1.3 becomes:

L

A (T:A:2) + Au(ToA®) + g Az

Discretization of a block ¢,1, (M > i > 1):

Following the same exact procedures as in section 4.4, the equivalent residue equation
coefficients are:

Aip = -6 [ cpky + MDHI + fx.',xfr.' (hCDkg + Z-ED.‘) +

2k, Ay, N ky Ay, Ahp, + Ahp, .
Kziyry €OS Big1,1 (Ahp; + Azp;) Kzi4y, €08 Bit1,1 20 Atp COSB;’,I o

(4.7.11)
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20k, Ay,
kziyy, COS Bit11 (Ahp, + Azp;)

(4.7.12)
+ 8 fary fri (hep K2 + BRp,)
(4.7.13)
8 (hep k2 + &Rpis )
(4.7.14)

kn, Ay,
kzip11 €08 Bit1,1 cos f;1 Atp

(é@.&%ﬁ’fﬁs) ¢t W,.j;] — (1= 6) {(hep k¢ + BFp,) Wik - W]
+ frm ff.' (hCD kf + ZEDk.) [Wifl.l - z,kI]

2k, Ar, (W - Wi }
kzif1a cos Bit+1,1 (Ah[’;i + AzD‘.)

[(ahp, - AhB) 5, -

+ (4.7.15)

where k7 = k7| SEzig1y = ks [k, is the relative permeability of the liquid in the
capillary fringe, at an assumed residual gas saturation.

We find the Jacobian matrix elements for the block ¢,1 using a Newton-Raphson procedure.
The coefficients determined for the Jacobian matrix are those of Eqs. 4.4.14 through 4.4.18,
because all the parameters related to the capillary fringe are constant in the present work.

4.7.4 Inner Boundary Phreatic Layer Equation

The capillary layer above the free surface does not produce to the wellbore

because of the capillary forces in the sandface. In terms of a discretized block, the equation
for the inner boundary blocks is developed using the same concept described in the previ-
ous sections for the capillary layer. Skipping the tedious algebraic manipulations, and by
analogy with the procedures in section 4.3.2, the resulting residue equation coefficients:
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. _— — 2k, Ay
Ay, = —0 lhepk® + Ahp, + fzy, fri AhD, + !
1,1 [ D™r D, f l,lfl D, KIQ,] (AhD1 + Ale)
Ah AhE
kndy 88D F 2D (4.7.16)
kz,, cosfBs,; cos 5 26 Atp
20k, A1,
C = L 4.7.17
b K.y, cosPa1 (Ahp, + Azp,) ( )
Eiy = 0 (hepk? + &Fkp,) (4.7.18)
K, = - g f-‘L'l.l fra ED1 Wy, +
b Au , Ahp, + 8RS\
— hp, — AhE ) Sy — | —m——— W,
kz,, cos 1 cos B Atp [(A o Dl) ‘ 2 €tp 10
o | Tk
— (1= 8){ (hepk? + BRp,) (Wi, - W]
-k 0 —k
+ fl')‘l f"‘l [AhD1WuIlc1 - (hCD kr + Ah’D]) Wl{cl]
2k, A
+ . (Wi, - W] (4.7.19)
kz,, cos B2 (Ath + Ale)

We find the Jacobian matrix elements for the block ¢, 1 using a Newton-Raphson procedure.

The coefficients determined for the Jacobian matrix are those of Eqs. 4.4.38 through 4.4.42,
because the parameters related to the capillary fringe are constant in the present work.

4.7.5 Outer Boundary Phreatic Layer Equation

At the outer boundary, the capillary layer is passive, and does not have an
external source feeding the capillary layer throughout. All liquid feeding the capillary layer
comes vertically from the free surface due to capillary forces. If the impermeable top of the
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formation allows for the existence of the capillary fringe at that position, that is the origin
of the uppermost stream flow lines. In terms of discretized block, the equation for the outer
boundary blocks is developed using the same concept described in the previous sections for
the capillary layer. Skipping again the tedious algebraic manipulations, by analogy with
the procedures in section 4.4.3, the resulting dimensionless equation coefficients are:

2knAv,,
kn (Ahm + Azp,,)

Am1 = -8 [Kﬁm+1 + fomp frm (hcpk;’ + 'A—hpm) +

A, (Akp,, + Ahf,) ] ]
tp

= 4.7.20
* 20 Atp cosf,, 1 ( )
2kpAq
C = = 4.7.21
™= T (Bhm + Azpn) (4.7.21)
Dmi = 0 fony frm (hepk? + BRp,,) (4.7.22)
Al k Ath - AhB k k
= —T — Ah - m -
Fna Atp cosf, 4 [(Ath & Dm) % 2 ctoWm| = AhD,
—_— -k 2knA; k
04— |BRE .+ forsfrm (Repk? + BRp_ ) + m w
{ [ Dma Ima1JT ( €D Dm) kh (AZDm + Ahlk)m> m,1
2 kh Alm

WE & fo foo (hepk® +BRp ) WE_ (4.7.23)
by (Azp, + ARE )T (b o) Wi

Again, the Jacobian coefficients are obtained from the partial derivatives. Since the
capillary height was the only additional term in Eqs. 4.7.20 - 4.7.23, and because capillary
height is considered constant in this study, the results for the derivatives are thé same as
presented by Egs. 4.4.50 to 4.4.56.

4.8 Sandface and Wellbore Conditions

The inner boundary conditions of the gravity drive problem are difficult to
handle due to the changes occurring on the free surface and stream-lines entering the well-’
bore. A basic condition presented is the potential along the sandface in a position ry4
which depends on the vertical location of the liquid level in the wellbore:
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®, = Hyp (9/9:) = 2,y < Hy (4.8.1)

Q= zr,, p (9/9c) = Hy, < 2z,, < H; (4.8.2)

Using dimensionless parameters, the conditions are:

Wy = 9oHup = 2yp < Hyp (4.8.3)

Wy = %Yozup = Hyp < 2zyp < Hyp (4.8.4)

In App. A.1, a discretization in dimensionless form of the preceding conditions is developed,
considering all possible relative positions of the liquid level in the wellbore and the grid
blocks adjacent to it.

A second relevant condition is given by a material balance on the well. Considering
the instantaneous mass flow rate of liquid measured at stock tank conditions as the result
of the mass of liquid flowing across the sandface minus the change of mass in the wellbore
due to storage, a general equation may be written:

2 AH 2rry, [He Op
B,, = -—4X—= = krmm d 4.8.
g Bu, At ) kg ds (4.8.5)

where k; is the permeability in the direction tangent to a stream-line at the sandface,
and B,, is the volume-formation factor corresponding to the average pressure of the liquid
column in the wellbore. Next, the material balance analytical equation Eq. 4.8.5 is converted
into dimensionless form. Multiplying both sides of Eq. 4.8.5 by 7 T Zop(g/gc)’ yields:

q i Bub M ARy T /”’ ks 9 [—p—'hop(g/gc) ] iz
27ty kn hop (9/9c) 2kn hop (g/g:) At e Jo ki or
(4.8.6)
Using dimensionless parameters defined previously:
AHy, Hsp k., Opp
0 Bu 2% btp b [ g den (4.8.7)
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Equation 4.8.7 is discretized using a time-relaxation parameter §. This process
follows the geometric characteristics of the stream-layer model. The integral representing
flow through the sandface is replaced by a summation of radial steady-state flow through
each layer cylindrical region from the geometric center to the sandface.

_ AHWD AED] {kZLI
2¢ Atp - In(7) kp

90 Bu, (1-6) (Wlfl - Wwﬁ) +

58 () - (- )]+ S g0

(4.8.8)

It is necessary to define some parameters introduced above. First, the formation-
volume factor is calculated based on a time average wellbore pressure taken at half the
distance from the top to the bottom of the liquid column:

By, = S» - L
" Vatd 1+ 5o (g/gc)cr
- . 4 (4.8.9)
2+ v HyocLo 4+ % (Hw,, + Hka) Ly

Most of the time, By b may be considered 1 due to the low liquid compressibilities. However.
B,b is considered here for complete theoretical formulation. The asterisk superscript in
Eq. 4.8.9 represents a time average liquid height. The average block thickness at the wellbore
may be taken as the mean of the block thickness at the center (Ahp, ) and the extrapolated
thickness at the sandface (Ahp, ):

Ahp, + Ahp,,

Ahp, = 5 ,

and AZp, = (4.8.10)

Also, the dimensionless radial distance 7p, from the inner block geometric center to the
sandface is used. The drop of the liquid column in the wellbore is:

AH,, = Hy, - HS (4.8.11)

The superscript k stands for the value at the beginning of the time-step.
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The discretization of the inner boundary potentials requires previous knowledge of
the liquid position in the wellbore. Figure 4.1 shows that the base position of each block is
an extrapolation of the coordinates expressed in dimensionless form as:

Zup, = (n—-17j) Azp, (4.8.12)

where the extrapolated thickness is obtained by:

Azp, = ay Azp, + (1-aw) Azp, (4.8.13)
and:
In (73) o
w = — = 4.8.14
@ Tn 72/ 71) (4.8.14)

A similar extrapolation is done to the layer containing the free surface:

Ahp, = ay Ahp, + (1-ay ) Ahp, (4.8.15)

Let j; be the position of the inner block adjacent to the liquid surface in the well-
bore. The j; value is initially unknown, and must be estimated before the calculations.
Fortunately, the variation of the liquid level in the wellbore is easy to follow, and this pro-
cedure becomes a minor iterative problem. Due to the dependence of the potentials at the
sandface on the liquid level in the wellbore, there is a particular way to calculate the aver-
age potential at the sandface of each inner block according to the respective stream-layer
position. Every case is detailed in App. A.l. It is possible to evaluate the liquid level H,,
in.the material balance equation by the appropriate substitution of the sandface potentials
using an iterative method, or a direct method by solving a quadratic equation.

The partial derivatives of the sandface potentials must be determined in order to
be substituted into the Jacobian equations required by the Newton-Raphson method. In
view of the changes in the inner boundary condition along the sandface, there is a need
for evaluating each case individually. In other words, due to the fact that in the material
balance equation all the inner block potentials and sandface p-itentials are present, a variety

of criteria must be considered in the differentiations. These procedures are summarized in
App. A.1.
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4.9

Computer Model

A general description of approximation of the numerical model described in

the preceding is presented in this section. The nonlinear nature of the problem of gravity
flow into a wellbore requires an iterative procedure to compute the potentials and the free
surface positions in the reservoir, as well as the wellbore potential. Some criteria used in
the simulator for a typical time-step calculation are described next:

[SV]

At the beginning of a time-step, the model assumes the dimensionless free surface
distribution as being the same as that at the end of the previous time-step. At
each radial position i, the same number N of vertical blocks is allocated which have
an initial uniform thickness calculated by dividing the total height by the constant
number of blocks N:

Azp, = N

(4.9.1)

As an intial guess, the thickness of a block containing the free surface, Ahp,, takes
the same value as Azp;:

Ahp, = AR}, (4.9.2)

. During a time-step, the variation of the liquid column Hp, will be the same as the free

surface displacement in the correspondent block in the first layer (j = 1). All other
blocks in the saturated region will not have a change in thickness during this period.
In other words, during the time-step loop calculations, Azp, remains constant while
Ahp, varies.

. The wellbore liquid height H,,, is initially estimated from the wellbore material bal-

ance equation developed in Appendix A.2, considering the initial potential distribution
around the wellbore for the present time-step. The quadratic equation approach was
the one preferred for accuracy and speed in the calculations.

. After calculating Hy,, the sandface potentials Wy, are determined according to the

inner boundary condition.

The equation and Jacobian matrix coefficients are calculated.

. The matrix system is solved for the dimensionless normalized potential wi“j*'l. The

matrix solver used in the model was developed by Brand et al. (1992) at Stanford
University. The iterative method of solution of the matrix allowed for a maximum of
30 iterations.

85



o

Il

I

N

Il

On

p——t
e

e 2

w 12 122

R

S

ll&

il fee






10.

11.

12.

13.

14.

. Convergence is verified for every i,j dimensionless potential and the wellbore liquid

height normalized by the initial height:

v+l
H;t' —H

D
Hop

Wit - Wil <o and <e  (49.3)

where ¢ is an arbitrary small number that may be choosen as an input in the program.

. If convergence is not achieved, Hp, is recalculated based on potential calculated in

the free surface layer:

Hp, = Wiy x H,p (4.9.4)

In this case, the liquid gradient is assumed to be static.

. The wellbore liquid level H,, and the dimensionless potential at the sandface W,,

are updated and all other matrix and Jacobian coeflicients are re-calculated.

The procedures from 2 to 9 are repeated until convergence is obtained. If convergence
is not achieved within a given maximum number of iterations, or if the matrix calcu-
lation algorithm requires more than the prescribed number of iterations, the program
reduces the time-step size and the calculations restart using the values calculated in
the previous time-step.

After convergence, new block thicknesses are calculated as follows:

Asp, = B (4.9.5)
n
Interpolate the potential distribution for the new blocks, and update the geometri-
cally dependent parameters such as permeabilities in the direction of flow, average
thicknesses, geometrical factors based on the slope corrections for transmissivity and
inter-layer distances.

The radial number of blocks included in the computation is checked for the necessity
of incorporating one more column of blocks. The blocks located at the last column
considered in that time step are verified to have a potential drop greater than an
arbitrary small number. An additional column of blocks is added if at least one outer
boundary block starts to be sensitive to the potential drops.

Restart a new time step following the procedures from 1.

In App. E, a detailed description of the computer program is presented, as well as

the code list. We turn now to operation of the Stream Layer Model and verification of
results in Chapter 5.
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5. Verification of the Numerical Model

The Stream Layer Model was compared with classical solutions in the ground-
water literature, and the results were consistent with available data and traditional methods
found in the literature. An appropriate way to verify the wellbore response was to compare
the simulator results with steady-state experimental model results performed by Wyckoff et
al. (1932) and Hall (1955). The transient response at observation wells far from the produc-
ing wellbore were checked by comparing the simulator results with a classical groundwater
method by Neuman (1972, 1974), and a numerical solution by Cooley (1971). Also, sim-
ulator results were compared with the Theis (1935) compressible flow line source solution
and the p? transient solution derived by Ramey et al. (1989) to approximate the gravity
drainage problem with a free surface. The analyses were done for an isotropic reservoir
(kn = k,) using original data from the references above.

5.1 Verification with Wyckoff, Botset and Muskat Experiments

Wyckoff et al. (1932) investigated the Dupuit solution for steady-state gravity
drainage flow into a well by means of an experimental sandbox apparatus which is briefly
described in Ch. 2. The experiments consisted of several runs at different steady state flow
conditions, in which measurements of the head potentials used manometers at the bottom
of the sand, and visual inspections of the liquid levels. In the experiments where the sand
levels were much above the original liquid levels at the outer boundary, the free surface
position was masked by the presence of the capillary fringe. The flow in the capillary fringe
was detected by tracing streamlines with ink.

When the capillary fringe was absent, the experimental results verified the Dupuit
equation to approximate the head distribution at the bottom of the sand, although there
were some errors involved in the following assumptions: (a) the liquid moves towards the
well in cylindrical shells, and (b) the slope of the free surface was so small that the square of
dh/dr could be neglected. Those errors seemed to compensate each other in such a way that’
Eq. 5.1.1, intended to give the free surface position distribution, was shown to approximate
the liquid head at the bottom of the sand:
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point | r (cm) | well head (cm) A

well 6.4 32.50 0.0700
T 10.2 33.50 0.0691
T 15.3 34.20 0.0663
T3 20.3 34.80 0.0654
T4 25.3 35.30 0.0651
Ts 30.5 35.85 0.0674
Te 35.6 36.20 0.0676
r7 40.6 36.60 0.0703
T8 45.7 36.80 0.0691
T9 50.8 37.00 0.0684
™ 66.0 37.60 0.0704
T12 76.2 37.80 0.0663
™13 86.4 38.10 0.0681
T14 96.5 38.30 0.0662
T1s 106.7 38.40 0.0581
™16 116.8 38.70 0.0662
17 127.0 39.10 0.1403
T8 137.2 39.10 0.0876
T19 147.3 39.30

T20 156.0 39.30

Table 5.1: Determination of the average constant “A” from the Wyckoff et al. (1932)
experimental Run No. 11, using the Dupuit approach.

2 2 _ q I
B2 - B = (ﬂkpi>lnre (5.1.1)

To compare with the Wyckoff et al. results, the Stream Layer Model was run from an
undisturbed initial condition until réaching steady-state. The permeability for the sandbox
experimental Run No. 11 was determined using Eq. 5.1.1 and a plot of (h2 — h2) versus
Inr/r.. To avoid capillary fringe effects in Run No. 11, the top of the liquid was set at
the top of the sand level in the sandbox, and the pumping flow rate was kept small enough
to avoid a large cone of depression above the free surface. Based on the Wyckoff et al.
observations, the Dupuit approach may be used to calculate the permeability by averaging
the values of a constant “A” (see Tab. 5.1) defined as:
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1o (32)
R - A2

n

(5.1.2)

from which the permeability k was calculated in mD with respect to the 15° sector (1/24%"
of a complete 360° cylinder):

, - (000)(24)p

L (5.1.3)

For the units used in the experiments, and assuming a liquid viscosity of 1 cp in view
of the lack of information about the temperature of the system, Eq. 5.1.3 simplifies to
k(mD) = 7,875,7094. From the average computations of Tab. 5.1, a permeability of
approximately 530,000 mD was calculated for the experiment of run No. 11.

To match Run No. 11, no capillary fringe (h. = 0) was considered in the SLM. The
results presented in Tab. 5.2 show good agreement of the liquid heads measured at the base
of the sand at a steady-state condition with the head potentials calculated by the simulator.

Runs No. 18 and No. 19 were selected to further verify the SLM, because of the
conditions of flow, where both capillary effects and high vertical velocities were present.
The permeability used in the calculations was the same obtained from the experiment Run
No. 11. In addition, the only informations available in the paper about the liquid levels
observed in the sandbox were those correspondent to Runs No. 18 and No. 19, shown
in Fig.” 3 in Wyckoff et al.. There was no information about the free surface position in
Wyckoff et al., but only about the liquid top level (including the capillary fringe) and the
‘liquid heads at the sand bottom. Table 5.2 shows the results of the experiments compared
to the results of the simulator. There are acceptable differences of no more of 8 % in the
worst case. A plot in Fig. 5.1 shows the observed liquid top position measured directly from
Fig. 3 in Wyckoff et al. paper, compared with the results from SLM.

In the runs presented in Table 5.2, the grid dimensions were those that provided the
best fit with the experiments within a reasonable computing time. Also, a no-flow sandface
region estimated at about 1 cm, located at the free surface intersection, was considered,
due to surface tension effects theoretically expected and confirmed by the Hall (1955) work.
The surface tension is responsible for this effect, and it happens where the pressure is not
enough for the liquid flowing into the wellbore. This reduction in the upper region of the
seepage face becomes important when the vertical scale is small, as in Run No. 19. In Run
No. 19, the no-flow region could represent 10% of the well liquid level in the reservoir at
the sandface.

89



H
(o]

1 Wyckoff et al.
] SLM
35 7] Sand base No. 18
1 Capillary fringe top
30
25 7
= ]
U -
o 20 ]
= ]
L) ]
15 ]
10 3
5 1 ,
] /
O-"'/‘I""l""l""l""l“"
0 10 20 30 40 50 - 60

Radial distance, cm

Figure 5.1: Liquid levels and heads in the sand model by Wyckoff et al. compared to the
SLM results of runs 18 and 19.

5.2 Verification with the Cooley and Neuman Solutions

Cooley (1971) solved a problem of gravity drainage dedicated to interference
testing numerically neglecting wellbore effects. He applied a finite difference method to solve
an integral of the nonlinear partial differential equation obtained by the divergence theorem.
Also, the Cooley model considered the influence of capillary pressure in the unsaturated
region in the capillary fringe. His results, compared with the Boulton (1963) convolution
integral solution, show that the influence of the capillary fringe is negligible at field scale.
The Cooley results used in the present comparison were obtained directly from the figures
in the paper.

Neuman (1972) used the same synthetic data as Cooley to verify his analytical
approach not considering the influence of the unsaturated region, and concluded that cap-
illarity “... has very little influence on the time-drawdown response of unconfined aquifers
during gravitational drainage”. Later, Neuman (1974) extended his work to partially pen-
etrating wells. A computer program related to the prior solution, kindly furnished to us
by Neuman, was applied to generate the present results for comparison. The Cooley data,
summarized in the following, were used to calculate the head drawdown response at two
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Run No. 11 Run No. 18 Run No. 19

Point | » (cm) || Wyc. | SLM % Wyc. | SLM % Wyec. | SLM %

well 6.4 32.50 | 32.38 | -0.34 5.80 | 5.80 0 +0.00 | 0.00 0.00
1 10.2 33.50 | 33.48 | -0.00 | 11.30 | 11.72 | +3.70 || 5.80 533 } -8.10
2 15.2 34.20 | 34.41 | +0.61 || 15.10 | 16.19 } +7.22 )} 7.30 7.47 | 4+2.33
3 20.3 34.80 { 35.05 | +0.71 |f 17.60 | 18.65 | +5.97 || 8.30 8.39 | +1.08
4 25.4 35.30 | 35.54 | +0.68 || 19.40 | 20.28 | +4.53 || 8.90 | 8.99 | +1.01
5 30.5 35.85 | 35.94 | +0.25 || 20.80 | 21.47 | +3.22 || 9.50 9.45 | -0.53
6 35.6 36.20 | 36.27 | +0.19 || 22.00 | 22.38 | +1.72 || 9.90 9.83 | -0.71
7 40.6 36.60 | 36.55 | -0.14 |l 22.80 | 23.11 | +1.36 || 10.30 | 10.14 | -1.55
8 45.7 36.80 | 36.80 0 23.60 | 23.74 | +0.59 || 10.60 | 10.42 { -1.70
9 50.8 37.00 | 37.02 | +0.00 || 24.10 | 24.28 | +0.75 || 10.90 | 10.66 | -2.25
10 55.8 37.20 | 37.22 | 40.00 || 24.40 | 24.74 | +1.39 || 10.90 | 10.87 | -0.27
q (bbl/D) 139.6 | 136.10 | -2.48 |} 284.3 | 283.9 { -0.14 75.5 75.4 | -0.13

Table 5.2: Heads (cm) at sand base from Wyckoff et al. experimental results compared
with the Stream Layer Model.

constant pumping rate, g 302 gpm (10,354 BPD)
original height, H, 59.5 ft

pumping wellbore radius, 7y, | 0.53 ft

storage coefficient, S 0.034 (dimensionless)
transmissivity, T 89,250 gpd/ft

specific yield, S, 0.23 (dimensionless)

Table 5.3: Data from Cooley (1971)

different radial positions far from the wellbore center. In the example, the two observation
points were selected at radial distances of 44.9 and 101.1 ft respectively, to avoid wellbore
storage effects, not considered in the Cooley, Boulton and Neuman solutions.

The reservoir parameters were estimated from this data - see App. B:

(a) Reservoir porosity ¢:

Sy & ¢ = Sy, = 0.23 = ¢ = ¢ = 023, for S, =0

(b) Total Compressibility c;:
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S = pgo(cw+ cf) = pgdc [Cooley (1971), Eq.2]

5 0034 _ o
Se = = G55 = 00006f

Using appropriate units: ¢; = 0.006 psi~?

(c) Reservoir permeability kj, = k, = k (single phase isotropic reservoir):

kh,
T== (pbg—) — 89,250 gpd/ft =  k=73D

The Stream Layer model (SLM) was run using the above set of data translated from ground-
water parameters to equivalent reservoir properties used in petroleum engineering. The
" mean radial drawdown 3(r) was computed by averaging the head potentials along the the
entire thickness at each radial position of the observation wells, while sy(r) and sp(r) were
the head drawdowns at the lower boundary and free surface, respectively. The results pre-
sented good fit and coherence as observed in the figures below. Also, the applications of
the Ramey et al. simplified analytical solution showed about the same results as the Theis
line source solutions at early times, but became closer to the Stream Layer Model as time
increased. At early times, both the p-squared and the line source solutions are not able
to reproduce the desaturating pressure behavior, as verified in the figures from 5.2 to 5.5.
However, since both Cooley (1971) and Neuman (1972) calculated the average potential for
a radial position, the best agreement was found with 3(r) from the SLM model. At late
times, a log-log plot correlates the points closely such that it is difficult for one to observe
any difference between all these methods. See Fig. 5.2 and 5.4. The semilog graphs in
Figs. 5.3 and 5.5 are appropriate for an accurate view of the late time potentials,
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5.3 Verification with Hall Sandbox Experiments

Another verification compared the SLM with the experiments by Hall (1955).
He performed measurements using a specially designed sandbox apparatus according to
Fig. 2.1 in the Literature Review chapter reproduced from the Hall (1955) paper. As
referenced in Ch. 2, there were four series of tests executed under different conditions,
summarized below:

e Series A:
Greatest cegree of saturation, close to an ideal condition; increasing flow rate, steady-
state steps.

o Series B:
Nonuniform distribution of air voids in the sand by natural resaturation; decreasing
flow rates at each steady-state step.

¢ Series C:
Tests executed in reverse order of series B; better saturation conditions.

o Series D:
Same conditions as in series C, but using reduced surface tension water by chemical
treatment.

The experiments of series A were selected to be compared with the SLM. The basic
data were:

(a) Permeability from direct measurements:

k= 0.460 cm/s = 453,000mD

(b) Water viscosity ! at the experiment conditions:

Test No. Temperature (°C) Viscosity (cp)

1 26.8 0.86
2 28.5 0.82
3 29.0 0.81
4 29.1 0.81
) 29.5 0.81
6 29.2 0.81
7 29.5 0.81
8 29.6 0.80

'Calculated by interpolation in Table 6-4 from Amyr et. al (1960).
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A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8
grid Mx N 12x20 | 12x20 | 12x20 | 12x20 | 12x20 | 12x20 | 12x20 | 12x20
H, (Hall),ecm | 106.4 | 91.2 76.0 60.8 45.6 30.4 15.2 0
H, (SLM), cm | 107.7 | 914 78.3 62.8 45.5 30.3 16.7 0
% Diff. +1.32 | +0.22 | +3.02 | +3.29 | -0.21- | -0.33 | +9.93 0
Q (Hall), BPD | 1082 | 2100 | 2960 | 3613 | 4160 | 4500 | 4773 -
Q (SLM), BPD | 1082 | 2100 | 2960 | 3613 | 4160 | 4500 | 4773 | 4849
% Diff. 0 0 0 0 0 0 0 -
H; (Hall), cm 110.7 | 104.3 | 94.5 90.2 86.4 84.8 83.3 83.3
H; (SLM), cm | 111.8 | 100.7 | 93.8 87.9 83.4 81.0 | 79.75 | 79.6
% Dift. +0.10 | -3.45( -0.74 | =5.10 | —3.47 | —4.48 | —4.26 | —0.84

Table 5.4: SLM results compared to the Hall series A experiments.

(¢) External radius: 7. = 197.6 cm

(d) Wellbore radius: r, = 11.4 cm

(e) Porosity: ¢ = 0.40

(f) Constant external liquid head: H, = 122 cm

(g) Capillary fringe thickness: A, = 8.9 cm

(h) Residual liquid saturation (assumed): 20%

The SLM steady-state runs were obtained by establishing both a constant rate, and
the corresponding measured wellbore liquid height. The vertical blocks were sized into 20
blocks, keeping the number of radial cylindrical blocks constant at 12. Each run started
from a rest (flat liquid table) condition and produced at a constant rate until reaching a

steady-state.

From the results of Table 5.4, acceptable agreement was found between the numerical
and the experimental methods. All the compared heads and flow rates were fitted with less
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Series A-6 Bottom Free Surface
Node | Dist., (cm) || Hall SLM | Diff.,(%) || Hall | SLM | Diff.,(%)
11.68 30.48 | 30.27 —0.68 84.8 | 81.00 —4.48
14.02 38.10 | 38.07 -0.79 86.9 | 81.15 —-6.62
19.20 52.83 | 51.39 -2.73 90.0 | 82.44 —8.40
26.52 66.29 | 64.63 -2.50 93.5 | 85.30 -8.77
36.58 78.74 | 76.89 -2.30 97.3 | 89.72 -7.79
51.51 89.92 | 88.78 -1.23 101.4 | 95.52 -5.80
71.63 99.06 | 98.75 -0.56 105.8 | 101.92 | -—2.08
96.62 106.43 | 106.76 | +0.31 110.7 | 108.04 | -—-2.40
121.92 111.76 | 11242 | +0.59 114.2 | 112.83 | -1.20
146.61 115.57 | 116.63 | +0.92 116.7 | 116.51 | -0.16
171.6 119.13 | 120.10 | +0.81 120.1 | 119.77 | = —0.33

"C‘,coooqoacn.uuwn-as

Table 5.5: Comparison of potential heads between the Hall sandbox experiments and SLM
(M =12, N = 24), series A, Test No.6

than 10% error in the worst case. The greatest differences were observed in calculated and
measured free surface positions along the radial distance, as shown in Table 5.5, for the series
A-6 experiment. Those positions in the experiment were obtained by interpolation between
the values given by gauges located in the sandbox. The best fit for the sink potentials were
obtained by including a restriction into the flow along the free surface, probably due to the
surface tension at the outlet. Those restrictions were reduced in the tests which the free
surface was more developed. As a conclusion, since the discrepancies were within acceptable
errors. the Stream Layer Model can be considered verified with the results contained in the
present chapter.

In the next chapter, the sensitivity of the Stream Layer Model to the grid and time-
step dimensions are studied.
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6. Sensitivity

In this chapter, some practical aspects of the SLM program regarding the
simulation approach in wellbore drawdown or buildup pressure behavior will be analyzed,
specially the model dimensioning of grid blocks and time-steps. A major difficulty is to
handle nonlinearities that occur throughout the reservoir, but are stronger around and at the
inner boundary sandface. In some previous models found in the literature, simplifications
were generally made to avoid this difficulty which limited applications to regions sufficiently
far from the well, or to small flow rates to assure compatibility with some assumptions.

The SLM is a finite-difference model that is able to simulate both pumping and
observation wells, even those cases that generate large free surface drops. Nevertheless,
widely-known restrictions of radial numerical models are still present and amplified by the
nonlinear characteristic of the mathematical problem. Stability, convergence and accuracy
criteria follow characteristics similar to those of standard confined two-dimensional radial
numerical models, tempered by difficulties introduced by the seepage face boundary condi-
tion.

6.1 Grid Block Dimensioning

The effects of grid sizing were determined by runs of several configurations of
grid dimensions, fixing one direction, and varying the other. A large number of runs was
performed from 20 to 60 radial blocks, and 60 to 100 vertical blocks, some results of which
are presented in Figs. 6.1 and 6.2. The reservoir and production characteristics were kept
constant throughout, and were selected for the present investigation from a field example
summarized in Table 6.1. For the radial grid spacing, the MULTIMODAL method ( Terdn
and de la Garza - 1988) was adopted, using a ratio of 4x10° between the first and last radial
block dimensions. This ratio was obtained by successive experimental runs in order to get
large storage for the first column of blocks (containing the'sandface) and keep a logarithmic
spacing. An infinite reservoir was simulated by setting the external radius far enough that
drawdown effects were not evident.

The numerical treatment of the partial differential equations in the gravity flow
problem introduces discretization errors in the potential solutions that normally tend to
decrease with grid refinement. Figures 6.1 and 6.2 show semilog plots of the wellbore
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pressure drawdown comparing the effect of grid sizing on the simulator response for a range
of grid sizes which produced acceptable computing times. In the range of meshes studied,
grid dimensions slightly affected the potential response only after the desaturating period
when unconfined flow behavior was no longer effective. In the examples of Fig. 6.1 and
Fig. 6.2, the potentials in the wellbore show no considerable differences for gross or fine
meshes.
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Figure 6.1: Radial mesh variation, 100 vertical grid blocks

The computing time for the drawdown period observed in Fig. 6.1 and Fig. 6.2
varied in the following way: for the horizontal mesh variation, the CPU time was increased
by a factor of 3.3 when the grid number varied from 20 to 60 in the radial direction; for the
vertical griding, a refinement from 60 to 100 blocks increased the computation time by a
factor of 2.7. An obvious but important umitation to grid refinement is computing time. For
a very fine grid mesh, the CPU time becomez prohibitive to reach long drawdown or buildup
times. Since we are concerned with the wellbore response, an additional difficulty is the fact
that the desaturating period is sometimes long requiring that wells reach pseudoconfined
behavior after months or years of pumping,.

Some reservoir property relationships in the groundwater literature, mainly the
Boulton parameter 8 = ky/kp(r/h,)?, are related to the time when the unconfined period is
followed by the pseudoconfined period, as observed from the Boulton (1963) and Neuman
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Figure 6.2: Vertical mesh variation, 60 radial grid blocks

(1975-a) type curves. According to these approaches, when the potential drawdown starts
following a pseudoradial solution, the dimensionless time increases as 3 decreases. In the
wellbore (r = r,,) for example, practical values of § are much smaller than 0.001, the lowest
value shown in the type-curves. As a consequence of the delay of the pseudoradial response,
simulation of the flowing period requires long production time, sometimes taking months
of producing time. However, at late times when the potentials near the well have large
changes, computations require long computing time for the reduced time-step required by
the numerical solution. Since the grid blocks around the well start having large variations in
the potentials, the combined effects of geometry and time-step sizes influence computation
performance.

To recall some calculation procedures of the program, the Jacobian matrix is solved
iteratively in the Newton method. Onlv part of the blocks are included in the simulation at
the beginning: those located in the reservoir region affected by the production. Since the
potential perturbation far from the wellbore is less than an arbitrarily small value, it is not
necessary to include distant grid blocks in the calculations, thus saving computing time.
The matrix solver requires approximately 80 to 93% of the computing time to calculate
a complete iteration loop depending on the number of vertical and horizontal grid blocks.
The number of vertical grid blocks is the most important factor due to the correspondence
with the bandwidth of the matrix, according to the formulation of the matrix solver.

100




flux flux
A A

L -——— Qo] == m=—————=

- \ - !

q | Areal 1 X

- ) i o g 1

Greal i | d _& H '

_——— | I i !

d [ | i | 9k | i !
v ! | P
v : i P
1 H i H

— - —> time - =% > time

tk U treal %+l t treal t U kel

Figure 6.3: Nonlinear flux variation in a block boundary during a time-step. Acceleration
and deceleration periods.

6.2 Time Weighting and Time Step Length

A major reason for errors in the numerical model is the linearization imposed
on the nonlinear problem. As a consequence, accuracy is related to the time-step size and the
time-interpolating parameter, besides the grid mesh size. The time-interpolating parameter
is important, and gives the degree of implicitness of the unknowns. In the mathematical
formulation of the present numerical approach, the potential variation during a time-step
is assumed linear. and the calculation of the material balance for an element considers a
constant time weighting factor 6:

AV

6 (gin — qout] + (1-96) {%}i - QOI:A] = _A—t

where k refers to the previous time-step.

(6.2.1)

Figure 6.3 shows the flux in or out of a grid block element during a time-step from t;
to tx + 1. Depending on the true shape of the curve and the time-step size, the flux approx-
imated by linear interpolation may be under or over-estimated. For example, since during
the drainage process the difference gin — Qout is almost zero (low compressibility systems -
saturated region) or negative ({ree surface region), the material balance error introduced by
the linearization may gradually increase when the flux through a block boundary is accel-
erating, and decrease when the flux is decelerating, as seen in Fig 6.3. At long times, the
errors in both directions may compensate or attenuate the apparent deviations from the
correct solution.

In the verification runs of the sandbox experiments, as steady-state conditions were

101



25

] 9=0.90
- J cereeerennennn 8 =0.51
2 20 3
=¥ ;
e 3
o 1
CRRE J_J
8 :
3 3
e 10 3
g ]
=
g 53
Q' J
O T I'I‘IVVIII T 111111‘] L) l||l‘1l| T lllllll| g lll"7‘l'( T 1lVl7'lr AR ﬁl’"l"’ LA A S B 4 I 4
102 10" 1 10 10? 103 104 10° 10°

Time, min
Figure 6.4: Effects of time interpolation parameter in the SLM results

reached, the Crank-Nicolson method (§ = 0.5) developed oscillating problems, and a very
large number of time-steps was required to avoid oscillations and a large number of low
convergence iterations. The fully-implicit scheme in time calculations (§ = 1) was then
tested, and after reaching steady-state conditions, stability and convergence were obtained
with any time-step size. In this case, the drawdown results were a little underestimated,
compared with the Crank-Nicolson scheme. Figure 6.4 shows a graph containing the same
data input run with different interpolation parameters §. For § = 0.5, the computing
CPU time was as high as 900 minutes to reach 10° minutes of production time due to
the exaggerated number of iterations generated by the oscillation in the results. These
oscillations were avoided automatically by reducing the time-step sizes as necessary.

Based on the observations reported in the preceding, practical conclusions are that
time-step dimensioning is important for convergence and accuracy, and that the interpola-
tion parameter § may vary from 0.50 to 1. However, for improving the computing time, the
Crank-Nicolson scheme should sometimes be avoided.

Bearing in mind that at a given time each particular region of the reservoir behaves
according to one of three possible flow regimes, namely wellbore storage, desaturating cone,
and pseudoconfined, the time-step sizes are dimensioned based on the most unfavorable
conditions caused by the rate of potential changes with time. Since small time-steps make

102



W
o

Fine time-step
............ Medium time-step

N
n

Drawdown potential, psi
G

[y ]
(=]
NTUREETE SN BTSN ST NS N A U S G N S

10
5
102 10! 1 10 102 10° 10* 10° 108
Time, min

Figure 6.5: Effects of time-step size in the wellbore potential drawdown

the computations long and expensive, some criteria were adopted in the program to set
time step sizes in a range such that time steps were maximum under an accuracy point of
view, and minimum to achieve a reasonable computing time.

At early time during the wellbore storage dominated period, the flow rate variations
through the blocks and into the wellbore were similar to that represented in Fig. 6.3-A. That
is, the linearization over-estimates the fluxes in the boundaries (7 > G,.q;). Noticeably gou:
is affected more than gin. As a consequence, the calculated drawdown pressures have a
tendency to increase further, due to a material balance error. As time increases, if the
deceleration process (Fig. 6.3-B) takes over, or a less nonlinear behavior starts, the error is
reduced. Inside the reservoir, as we go far from the wellbore, the process explained before is
repeated at different times and places, but it is really near the well where this phenomenon
is most important.

Figure 6.5 is a graph showing the effects of the time-step size in the results during
the drawdown period. Three different time-step sizes were compared. A very large time-
step size case did not converge after ¢tp = 100 (not on Fig. 6.5) when the wellbore storage
period had finished and the desaturating surface (free-surface downward movement) started -
to accelerate. A medium time-step size was used in a second run, and a fine time-step size
was used as a reference. The results observed in the plots of Fig. 6.5 were consistent with
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expectations.

The most critical problem with time-step dimensioning in the given examples starts
in the transition between the desaturating and the “pseudoconfined” periods. We define
“pseudoconfined” as the drawdown behavior that follows the period in which the free surface
downward movement becomes approximately uniform, after the formation of the desatu-
rating cone around the wellbore. In that transition, the pressure drawdown curve inflects
upward, and the linearization tends to over-estimate the fluxes (see Fig. 6.3), increasing the
pressure drawdown by material balance error accumulation as observed in Fig. 6.5. Con-
servative time-steps are recommended during the pseudoconfined period during drawdown
or buildup because of the grid block sizes related to the rate of potential change.

An empirical rule of thumb derived from an extensive number of runs is to start runs
with a tp = 0.01 for simulating field cases, and tp = 0.0001 for laboratory experiments, and
to increase the number of time-steps per log cycle by 10 or 100 at each new time log-cycle.
A key for this choice was to observe the sharpness of the vertical potential gradient in the
formation near the well, and the dimensionless block sizes compared to the fluxes. The
lower the mobility k/u, or the higher the production flow rate, the smaller the required
time-step sizes may be.

The time-step size can not be separated from the block sizes since large increases
in the time interval may cause stability problems. The blocks located around the wellbore
are those of concern, because they have low storage capacity. The SLM simulator has
an automatic time-step control that helps to guarantee a time-step size reduction at any
time when it is necessary. In other words, after a maximum number of iterations, because
of problems with matrix solver convergence, lack of convergence in the wellbore pressure
calculation, or exaggerated free surface movement, the time-step size control algorithm
changes time step sizes gradually until acceptable values dictated by the built-in convergence
criteria result. The maximum number of iterations, itermz, is generally input data, but can
also be a variable in the program. A variable number departing from 3 and increasing by 1
at each new time log cycling has proven to be efficient, avoiding exaggerated reductions in
the time-step sizes.

In terms of convergence, buildup behavior is poorer than drawdown behavior. As
seen in Ch. 7, the late time potential buildup behavior is more nonlinear than drawdown
behavior. Thus, the time-steps must be reduced. For example, computing time for 10°
minutes of a fine 80x100 grid drawdown followed by a same buildup period, as in Fig. 7.9,
took more than 1000 CPU minutes in an IBM RISC 6000/550, 50% of the time consumed
in the last buildup logarithmic time cycle.
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In the next chapter, a discussion of the effects of some reservoir properties on pro-
duction in a gravity drainage well test is presented.
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External dimensionless radius, re/Tw
Initial liquid level at rest

Isotropic permeability (single phase)
Liquid viscosity

Liquid compressibility

Skin

Formation compressibility

Liquid density

Formation volume factor

Production flow rate

Porosity

Residual saturation in the desaturated region

10°

189 ft

80 mD

lep
3x106psi~!?
0

0

62.4 1b/ ft
1.0 res vol/std vol
250 bbl/day
0.25

0

Table 6.1: Basic input data for the sensitivity runs
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7. Discussion

In attempts to analyze drawdown and buildup behavior for a low-pressure
production well, it became evident that free surface gravity drainage was a major factor,
Ramey et al. (1989). A literature review indicated no pertinent interpretative methods in
the petroleum literature, and contradictory methods for pumping well data interpretation
in hydrology, Boulton (1963) and Neuman (1975-a,b). There even appeared to be problems
with interference data interpretation. Although interference data matched the Theis (1935)
line source solution, the apparent storativity (or compressibility) from type curve matching
was hundreds of times larger than the known compressibility of water. This led some
authors to speculate that trapped gas increased apparent compressibility. It appeared to
Ramey et al. (1989) that using a confined system model was simply incorrect for free surface
drainage of an essentially incompressible flow system. It is easy to compute that maximum
production of water by expansion from a low pressure (100 psi) aquifer is less than 0.1% of
the water in place.

It also appeared to Ramey et al. (1989) that a solution of the Dupuit-Forchheimer
equation similar to an early natural gas flow problem by Jenkins and Aronofsky (1953) could
aid understanding. This study showed an incompressible liquid could match the line source
solution exactly. However the parameter which appeared in dimensionless times was not
compressibility, but the reciprocal initial head, which is much larger than the compressibility
of water for a low pressure system.

During analysis of the Dupuit-Forchheimer problem, review of the Wyckoff et al.
(1932) study convinced Ramey et al. (1989) that the Dupuit-Forchheimer model violated
physical principles and could not match the free surface behavior, or the existence of a
seepage face in a producing well. As Muskat (1937) clearly stated, analytical solution of the
nonlinear free surface problem was essentially hopeless. Thus it was decided to produce a
finite-difference computer model which could be used for investigation of behavior of both
producing and observation wells. The report concerns construction of a program capable
of solving this formidable nonlinear problem. ‘

To explore the characteristics of the Stream Layer Model to simulate a gravity
drainage well, drawdown and buildup pressure behaviors are presented in this chapter.
Also, influences of some parameters were investigated. Skin effect, permeability, flow rate,
permeability ratio (anisotropy) and the initial position ot the liquid level at rest have been
considered in the following sections. A basic set of data used during this study is presented
in Table 7.1.
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Dimension for horizontal grid (mdim) 60 or 80
Dimension for vertical grid (ndim) 100

Initial number of time-steps per cycle (ntd) 10

Initial dimensionless time (tdi) 10~ or 10~
Dimensionless external radius (7ep) 10° or 10°
Liquid compressibility (cL) 3 x 10~%psi~?
Total compressibility (¢;) 3 x 10~6psi~!
Original height of the free surface (H,) 189 ft

Initial pressure (p;) 81.9 psi
Well bore radius (7y) 3.18 in.
Porosity - fraction (¢) 0.25

Liquid viscosity (u): lcp

Liquid density (pg/gc) 62.4 1bf/ ft3
Formation volume factor (B,) 1

Skin effect parameter (s) 0

Horizontal permeability (k) 120 mD
Vertical permeability (ky) 120 mD
Constant production rate (q) 100 bbl/d
Time-relaxation parameter ( 1> 4 > 0) 0.9

Residual saturation in the desaturating region (Sr,) | 0

Capillary fringe thickness (k) 0

Error tolerance (¢) ) 108

Table 7.1: Basic data used as input to the SLM. Equivalent variables used in the program
are shown between parentheses.

The Stream Layer Model (SLM), unlike the available analytical methods in the
literature, is able to represent the wellbore and forri.tion pressure (head) behaviors during
drawdown and buildup periods, since the most important limitations of this single-phase
simulator is the discretization of a numerical solution, regardless of the consideration of
unsaturated two-phase flow. Other approaches, such as Theis (1935) and Ramey et al.
(1989), have been used in this chapter for comparison at late times. Two auxiliary programs,
namely FLIGRAM and PDE were used in some cases to consider wellbore storage and skin
effects in the Ramey et al. and Theis solutions (see Appendix C). These modifications
were not intended to represent the desaturating period, since both Theis and Ramey et al.
neglected vertical flow in the reservoir.

7.1 Transient Wellbore Pressure Analysis
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Figure 7.1: Wellbore flowing pressure and derivative log-log plot.

Using results of the SLM simulator, general observations of transient gravity
drainage flow into a well are considered in this section, including drawdown and buildup
behaviors of a typical oil field well. The basic reservoir properties are shown in Table 7.1.
A complete run of the SLM is described and analyzed in the next subsections.

7.1.1 Drawdown

Figures from 7.1 to 7.7 present results from the SLM simulator for a flow
period of 106 minutes (278 days) for a single well located in an infinitely large reservoir.:
As described in the groundwater literature, the SLM model results show three flow regimes
during the flow period, namely wellbore storage, desaturation, and the pseudoconfined or
pseudoradial flow. See Figs. 7.1 and 7.2.

Wellbore storage dominates during the first minute, according to the log-log plot
of wellbore potential vs. time in Fig. 7.1. The potential derivative %%ftﬁ is also shown in
the same graph. From the definition of the dimensionless wellbore storage coefficient in the
petroleum engineering literature (see van Everdingen and Hurst, 1949), we present a similar
definition based on the liquid level variation in the well:
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Figure 7.2: Wellbore flowing pressure semilog graph
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According to Agarwal et al. (1970), the early time dimensionless pressure in the wellbore
storage period is:

ip

Pup = Co (7.1.2)

In the following, we define a non-normalized p,, and rewrite the definition of tp in Ch. 3
in petroleum field units: '

kH, .
Pup (412)qB 5 Apy (7.1.3)
and: .
0.0002637) k ¢
tp (0.0002637) k ¢ (7.1.4)

pu(1/p)ry
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Using time in minutes, and defining the liquid gradient v = ﬁ:, we combine Egs. 7.1.3,
7.14 and 7.1.2:

(0.0002637)(141.2) vq t (min)

Cp = 60) 57 " Ap

(7.1.5)

In the log-log plot of p,, vs. time in Fig. 7.1, we identified a straight line at early times with
a unit slope as expected for a wellbore storage period. A given point at 0.1021 minutes
corresponds to a pressure drop of 0.0766 psi (values read on the output list of the program).
Using the input data of Table 7.1, the resulting dimensionless wellbore storage coefficient
was calculated as 0.51 from Eq. 7.1.5. This value is close to the theoretical value of 0.50.
Due to wellbore storage effects, the early time line source solution used by Boulton (1954-b,
1963) is not appropriate. Another qualitative observation is that the duration of the unit
slope straight line corresponding to wellbore storage effects in the log-log plot in Fig. 7.1 is
greater in the SLM solution than in either the FLIGRAM or PDE solutions.

As the wellbore storage effects are replaced by the formation response to pumping
the well, the potential in the wellbore becomes almost constant, as verified in Figs. 7.2
and 7.1. This is the period during which the desaturating cone is intensely developed
around the well, called the “delayed yield” period in the groundwater literature.

After the desaturating period, the semilog graph in Fig. 7.2 shows a potential behav-
ior in the wellbore similar to the Ramey et al. (1989) and Theis (1935) solutions obtained
from FLIGRAM and PDE programs. This is the pse.doradial flow or pseudoconfined radial
flow period. This behavior occurs when the formation of the desaturating cone is stabilized
and the flow regime becomes dominated by regions of the reservoir distant from the well
where the streamlines are almost horizontal. For a quantitative evaluation of the late time
potential response. and for a comparison of the SLM results with the Ramey et a/. (1989)
method. a p-squared vs. semilog time drawdown graph is presented on Fig. 7.3. In this
figure. a late time m-permeability slope value of 114 psi?/log-cycle was obtained graphically.
From the analytical approach, the difference was only 3%:

o 3B u
k(h/p)
In the traditional semilog Theis (1935) analysis, the late time pressure drawdown slope in

Fig. 7.2 of an apparent straight-line was 0.672 psi/log-cycle, 6.6% smaller than the theoret-
ical value of 0.716 psi/log cycle:

m = 325 117.4 psi%/cycle.

m = (162.6) %‘i = 0.716 psi/cycle.
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Figure 7.3: Wellbore flowing pressure-squared semilog plot

Another quantitative verification was made by calculating the derivative of dimen-
sionless pressure obtained from the dimensional asymptotic value in the graph of 0.32 psi.
Based on the input data, the conversion factor for the dimensionless pressure in Eq. 7.1.3
was 1.606 psi~!. The resulting partial derivative ?’hﬁ% was 0.51, close to the theoretical
value of 0.5.

A graph in Fig. 7.4 shows the flow rate distribution along the sandface blocks of the
SLM for the flow period. Relative flow rate profiles are shown for both the desaturating and
the pseudoconfined periods for 100 vertical grid blocks. There is always a concentration
of flow in the vicinity of the liquid level in the well indicating high flow velocities in that
region. In addition, the flow distribution is more uniform at late times. In all observations,
the contribution of the seepage face gradually increases from zero at the free surface position
to a maximum value at the wellbore liquid level. The flow variations are small below the.
liquid level in the wellbore, mainly at late times, as we go far radially from the liquid level
in the well. '

Figure 7.5 shows the seepage face behavior with time. This is an important result
from the present study which has not been found in any of the published papers in the
surveyed literature. The seepage face presents an interesting transient behavior, following
the three distinct periods of flow in a gravity drainage well. In this example, the seepage
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Figure 7.5: Seepage height vs. cumulative time for drawdown period

face starts developing after the pumping starts and reaches a maximum value of 8.3 ft at’
the end of wellbore storage effects. During the desaturating period, the seepage face length
reduces while the free surface moves downward. The shrinkage face length seems to stabilize
at about 3.7 ft as pseudoconfined behavior takes place.

An illustration of radial potential distribution, seepage face length and free surface
radial profile is presented in Fig. 7.6. In this figure, the head potential in the bottom of the
formation and the free surface position were normalized with respect to the original liquid
height, H,. Different flow regime periods are presented, starting at the end of the wellbore
storage effect period. The wellbore liquid level is also shown, and the seepage length may
be identified by the difference between the liquid level in the wellbore and the free surface
level at a dimensionless radius of 1.

Figure 7.6 gives important information about transient gravity flow into a well. The
formation of the desaturating cone at different times can be seen. In the profiles in Fig. 7.6
corresponding to 40 and 4,000 minutes of pumping, the bottom head potential distribution
presented the same values in this example as well as the liquid level in the wellbore, and the
only apparent difference was the free surface position. After the stabilization of the seepage
face length, the profile at 400,000 minutes shows the free surface head becoming uniformly
closer to the bottom potential head close to the wellbore. This is when the vertical flow,
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10% minutes for a 30 mD reservoir.

given by the difference between the heads at the same radial location become stabilized.
Based on the information obtained from Fig. 7.4 about the flow rate distribution along the
sandface and in an isopotential mapping given in Fig. 7.7, we infer that there is a region
immediately below the free surface where the potential gradients are steep near the wellbore.
Figure 7.7 was generated for a 30 mD permeability to produce more pronounced gradients
than in the case of a 120 mD reservoir.

7.1.2 Buildup

Contrary to the conclusion found in the groundwater literature that buildup
behavior is similar to production behavior, results from the SLM model have shown that
the pressure buildup process is different from drawdown in the case of a single well located
in the center of an infinitely large reservoir. To analyze the buildup period, we will use the
same set of data as in the drawdown run. The results are shown in Figs. 7.8 to 7.12.

A log-log graph of buildup pressure drop vs time in Fig. 7.8 may be compared with
Fig. 7.1 for an analogy between the flow regimes with the flow period. In this figure, the
pressure derivative g—ﬁ”—t was graphed versus time, as well as the pressure difference between
the buildup and the flowing pressure at shutin time. In both curves there is a unit slope
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Another investigatiop of the Pressure buildup behavior was performed by observing
the Seepage face length vs, time semilog graph ip Fig. 7.11. Comparing Fig. 7.11 with
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the seepage face in Fig. 7.5, drawdown and buildup behaviors are completely different. As
can be seen, the seepage face height drops to essentially zero within a few minutes after
shut in. This appears to be an original and unique finding of this study. Actually the free
surface height at the sandface appears to be negative 0.2 ft Jower than the liquid level in the
wellbore during most of the buildup. Similar behavior was found for other buildup cases.

A better understanding of the physical phenomenon of the pressure buildup mech-
anism in the gravity drainage well is obtained by inspection of the potential at the bottom
of the formation and the free surface head distributions along the radial distance at several
times in Fig. 7.12. The free surface profile indicates that the resaturation of the depressed
cone is done uniformly. A flat liquid surface around the wellbore is grown progressively up-
wards, while the free surface at long distances remains almost stable. The radial extension
of the flat free surface is increased with time as the liquid is replenished, and the liquid
level rises. It appears that the depression cone fills like a tank of incompressible liquid. At
the same time, the head potential in the wellbore is slightly higher than the free surface
head at the sandface. This difference may be related to viscous resistance of flow in the
vertical direction. The negative seepage face is gradually reduced as the vertical velocity
of the free surface is reduced at long times. The results shown in Fig. 7.12 also brought
some explanation for the excessive time step reductions resulting in very long CPU times
to simulate the buildup period. A possible reason may be found in steep potential gradient
development far from the wellbore, where the discretization is much less refined than close
to the well.
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As a conclusion, the approximate methods employed to analyze the drawdown period
in a gravity drive well problem appear useless for buildup analysis. This observation con-
tradicts Neuman (1975-a). According to Neuman, no hysteresis would be expected between
drawdown and recovery processes, and the same analytical equations and interpretation
methods should apply to both periods. Neuman based this assertion on the idea that no
flow from the unsaturated region was considered in his method, and the unconfined aquifer
was treated as a compressible system. However, as pointed out by Ramey (personal com-
munication - 1989) and Ramey et al. (1989), the semilog plots in the Neuman paper show
different times for the beginning of the apparent straight line behavior of drawdown and
recovery periods from well test data. Also, Ramey et al. compared drawdown and buildup
field data and concluded that there were “different physical mechanisms between drawdown
and buildup”. However, Ramey et al. (1989) did believe they identified a semilog straight
line immediately after wellbore storage during buildup. A semilog straight line was not
clear in SLM buildup runs. It appears that no thorough inspection of free surface recovery
has been presented prior to this study.

7.2 Permeability

The effects of isotropic permeabilities in the pressure response from the SLM
model studies are presented in two sets of drawdown curves for different formation perme-
abilities. Figs. 7.13 and 7.14. The permeability, as well as the flow rate, is a major factor
driving the potential distribution in the formation because of the streamline shapes, and
the consequent dynamic vertical pressure gradient development.

Two sets of permeability range were considered concerning the input data in Ta-
ble 7.1: a low permeability range varying from 30 mD to 120 mD, and a high permeability
range varyving from 120 mD to 480 mD. Those ranges were defined only with the objective
of graph scaling. In the low permeability range, Fig. 7.13 shows the same classical gravity
drive curves, with the same late time trend, following the Ramey et al. (1989) slope. There
is evidence from these results that the late time p-squared solution is somewhat closer to
the simulated results when the distance between the p-squared and the line source solutions
is enlarged. At early times, an apparent trend of the numerical solution to fit the analyti-
cal Theis (1935) solution can be explained by the discretization errors involved. All cases
presented in both Figs. 7.13 and 7.14 were run with a time interpolation parameter § =

0.9, which generally produced small drawdowns after a long production time, as observed
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under gravity drainage

in the Chapter 6.
In addition, the runs of the simulator for the case of a finite skin effect described

in Section 7.4 shows that the long time drawdown potential solutions are the same for the
SLM and the Ramey et al. solutions.

7.3 The Seepage Surface

In the process of gravity drainage through a porous medium, it is generally
recognized that a thin curtain of liquid falls along the inner production face, whatever the
geometry of the flow. This surface, called the seepage face, reflects the difference between
the maximum potential inside and outside the porous medium, and, in the case of water
or oil wells, the seepage face is not easily measurable in field experiments. The analytical
methods used so far neglect the existence of the seepage face phenomenon. This may be one
of the reasons that analytical models do not eproduce the well pressure (or head) behavior
accurately.

The SLM simulator used the same classical inner boundary condition as in most
formulations in the groundwater literature. The SLM results consistently produced the
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Figure 7.14: Wellbore pressure drawdown of intermediate to high permeability reservoirs
under gravity drainage

seepage phenomenon with a clear visualization of the physics of the problem. No surface
tension effect, though important in small scale sandbox experiments, was necessary to cause
the existence of the seepage face, which can be explained entirely by viscous flow theory,
and verified by the numerical model.

The seepage height should be related to the formation permeability at the wellbore,
the pumping rate and the original liquid height in the formation, because the seepage
height represents a difference between the maximum and the minimum potential at the
inner boundary. A skin effect should also be a contributing factor to the seepage face
development. Figures 7.15 and 7.16 illustrate how the computed seepage face height
changes with permeability, and Figs. 7.5 and 7.11 illustrate the seepage face behavior
during drawdown and buildup tests, already discussed in Section 7.1. The observed trend
in Figs. 7.15 and 7.16 for different sets of permeability is to reduce the seepage face length
as the permeability increases.

The existence of the seepage face is a consequence of the free surface position, which
is a function of the liquid velocity. When two streamlines converge while moving toward
the sink (well), the resulting streamline velocity increases to preserve a material balance.
Since there is enough voided pore space above the free surface, a fraction of that dynamic
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energy may be used by increasing the liquid column. Figure 7.6 shows an almost flat free
surface profile in a log radial scale in the vicinity of the well after a long drawdown period.

This natural phenomenon may be described by the following implicit equation,
Eq. D.1in App. D, representing the free surface height at a location r from the well center,
according to Wyckoff et al. (1932):

h(?‘) éb(r) 51!(7') u h(T),

= 4+ P

pL ko pk

(Eq. D.1)

The relationship between the free surface position and the head potential is verified in
App. D.

There is little general information on the seepage face height for a free surface
gravity drainage well. One conclusion in the groundwater literature is that the seepage face
height is about half the drawdown for cases where the drawdown is less than 10 percent
of the initial head. Some cf the figures presented in this chapter show that the seepage
face height increased during the drawdown period, then declined and became reasonably
constant near the end of the drawdown period. Comparison of the drawdown head and
the seepage face height shows that the seepage face height is rarely half the drawdown. No
obvious relationship for seepage face height was found in this study.

7.4 Skin Effect

To complement the preceeding analysis of the influence of permeability on the
well pressure response. the effects of a damaged annular region are now considered. Figure
7.17 contains a set of time-drawdowr curves for skin parameters of 0, 4 and 8. The same
basic reservoir properties in Table 7.1 were used in this analysis. The analytical solutions
by Theis (1935) and Ramey et al. (1989) were evaluated by numerical solutions using
FLIGRAM and PDE programs which include wellbore storage effects.

A thin region of reduced permeability around the wellbore keeps the liquid level high
in the sandface vicinity, and the free surface location and the potential distribution along
the reservoir become different. A change in the seepage face is another consequence, because
the seepage face length increases as skin increases. Figure 7.18 presents a radial profile of
the potential head around a damaged well, compared with an undamaged well. An increase
in skin effect does not appear to affect the bottom potential. The free surface is higher
around the wellbore in a damaged formation than in an undamaged formation. However,
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Figure 7.17: Pressure drawdown vs. time for different skin parameters.

at long distances from the wellbore, this situation is reversed, because the material balance
must be preserved. In the graph of Fig. 7.18, it is not possible to see a small difference
between the free surface positions due to the scale. From these results, we infer that the
presence of the damaged region reduces the slope of the stream-lines behind the damaged
annulus, the vertical head gradients are reduced, and the flow becomes proportional to the
liquid height, as idealized by Dupuit (1863). The time-drawdown cnurve of Fig. 7.17 also
supports this explanation.

7.5 Anisotropy

The free surface gravity drainage problem depends greatly on vertical perme-
ability. A set of different permeability factors fr (fx = ky/kn) ranging from 1 to 120 was
chosen to analyze the effects of anisotropy on producing well pressure. Results of SLM
runs were graphed together in Fig. 7.19 to make qualitative comparisons with isotropic
reservoirs. From the results, we observe that a high degree of formation anisotropy causes
a strong influence on the wellbore potential, since vertical flow gradients near the well are
steeper than in other regions.

In Fig. 7.19, the influence of vertical permeability is shown for several examples. In
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Figure 7.19: Results from SLM for a 120 mD horizontal permeability and different vertical
permeabilities

a case where kj of 120 mD is a fairly high permeability for a flow rate of 100 BPD, the
streamlines do not bend sharply, even near the well, as inferred from the profile in Fig. 7.18.
However, when the vertical permeability decreases to 1 mD, the wellbore liquid level drops
rapidly to zero at late times.

The effects of anisotropy are most important during the desaturating period. On
the other hand, the trend of late time potentials is to approximate the isotropic solution for
the horizontal permeability. This observation may be an important key for future study of
a method to obtain the vertical permeability.

7.6 Production Flow Rate

Figure 7.20 presents a pressure drawdown graph for four different production
flow rates ranging from 50 BPD to 400 BPD. The nonlinearity of the potential near the
wellbore and the flow rate variation is evident. A flow rate variation from 50 to 400 BPD
(8-fold increase) produced an increase from 1.75 to 16.7 (9.5-fold increase) in the drawdown
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Figure 7.20: SLM results for different production flow rates

during the flat desaturating potential period. A possible reason for the disproportional
drawdown is that the high flow rate causes the uppermost streamlines to reach the inner
boundary late, causing an additional potential drop. Figure 7.21 is a graph of the SLM
results for a 800 BPD flow rate case compared with the Ramey et al. (1989) approach. The
late time pseudoconfined behavior shows the same slope for both solutions. The absolute
values of the drawdown at long times are similar in the p-squared and the SLM numerical
approaches.

An interesting result is presented in Fig. 7.22 where two different runs for a constant
q/k ratio of 0.6 are compared. The shift in time in Fig. 7.22 is a consequence of real time
graph. From the Ramey et al. (1989) solution, the following equation (Eq. 11 in Ramey et
al. paper) applies at late times:

i

k
ou (p7) 72

In Eq. 7.6.1, the argument in the logarithmic term is a function of permeability
k and does not depend on the the production flow rate. As a consequence, a change in
permeability should produce a shift in the time proportional to the permeability-m. In the
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Figure 7.21: SLM result compared with Ramey et al. (1989) and Theis (1935) solutions for
a high flow rate case

runs shown in Fig. 7.22, m is constant for both cases, according to the following expression
‘also from Ramey et al. paper:

qBpu 2
m = 3252 =——— = 2349 psi‘/cycle.
k(h/p}
Both permeability and production flow rate produce the same nonlinear effects in
the problem. We learn from this result that for the same g/k ratio, the potential drawdown
will present similar behavior, displaced in time by a constant logarithmic factor.

7.7 Original Liquid Height and Transmissivity

The influence of the original height of the liquid column on the wellbore po-
tential drawdown is verified in the following. Five different original heights were selected
to run the examples in Fig. 7.23. Using the same set of basic data in Table 7.1, values of
the liquid original height were measured from 63 ft to 252 ft. The graph in Fig. 7.23 shows
that the potential drawdown was not directly proportional to H,. The run for H, = 63 ft
dropped the liquid level in the well abruptly during the wellbore storage period, reaching
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Figure 7.22: Comparison between SLM runs of two tests in formations with the same q/k
ratio

the bottom of the interval . However, increasing H, by a factor of 2 the potential drop
during the desaturating period was only approximately 6 psi.

Another verification was made by comparing two runs with the same transmissivity
k H,/u, but different permeabilities and original liquid heights. A 120 mD reservoir with
an original liquid height of 126 ft and an 80 mD reservoir with an original liquid height
of 189 ft were selected for this analysis. The transmissivity in both cases was 15,120 mD-
ft/cp. The results presented in Fig. 7.24 indicated that there was not a superposition of
the curves during the desaturating period. However, at late times, the drawdown potential
drops produced very close results with consistent slopes m, as compared with the Ramey et
al. (1989) solution. The desaturating period presented a smaller potential in the wellbore
(higher potential drop) in the case of smaller permeability.

An expected shift between the late time solutions was observed due to different initial
pressures in the p-squared plot of the same data, as seen in Fig. 7.25. In this example, the
effect of retarded development of velocity gradients in the formation at the beginning of
pumping is more pronounced in the lower permeability case. During the desaturating period
characterized by the flat shape in the time-drawdown graph, the velocity gradients become
larger and the drawdown potential in the well gradually reduces before the pseudoconfined
behavior.
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Figure 7.25: Potential squared drawdown results for the same transmissivity and different
permeabilities

7.8 Considerations About Well Test Projects

From the preceding analysis, a consistent understanding of the physics of
the problem allows us to reach conclusions about the use of the Stream Layer Mode!l in
planning a gravity drainage well test. We have seen the effects of the main variables that
determine the wellbore potential drop during drawdown and buildup periods. We have also
seen that for different combinations of those variables, the producing time required to start
pseudoconfined behavior was longer than one or two months of producing time. In addition,
a full log-cycle in the time drawdown graph necessary to define the m-permeability from the
slope of a straight line in a p-squared plot would require one or two years of production at a
constant pumping rate in the given examples. The preceding investigation did not include a
full range of possible variations of the parameters, but parameter ranges were within many
practical field value ranges.

To briefly extend the investigations, the SLM was run to simulate a short well test of
24 hours of pumping followed by a buildup period. The buildup period was set long enough
for the liquid level in the wellbore to equalize with the liquid level in the sandface, shrinking .
the seepage face to a minimum, and starting the resaturating period. Considering that in a
gravity drainage well the major unknowns are the permeability, the permeability ratio and
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the skin parameters, sets of different values of permeability and skin were tested. We did
not consider the effect of anisotropy in this study. In addition, other reservoir properties
such as porosity, residual saturation in the desaturating region, wellbore radius, original
liquid height at static condition, liquid viscosity and liquid density were known. The basic
data in Table 7.1 were used.

Figures 7.26 to 7.28 show results of several sets of tests with skin effect parameters
of 0, 4 and 8. Permeability ranged from 30 mD to 150 mD. A consolidation of the results
is presented in Fig. 7.29 where only a few limiting permeability values were included. The
drawdown potential drop and the buildup potential drop vs time plots were placed side-by-
side to characterize the differences between drawdown and buildup behaviors.

Important conclusions may be reached from the results shown in Figs. 7.26 to 7.29.
Some discoveries were described in previous sections of this chapter such as the degree
of nonlinearity of the formation permeability and the differences between the drawdown
and buildup process. What is remarkable in the results presented in this section is the
information about the free surface position at the sandface during the buildup period.
The inflection point in the buildup curve where the liquid level in the well reaches the same
position as the free surface at the sandface varies only a few feet for formation permeabilities
ranging from 30 mD to 150 mD. For usual field test accuracy, this information is not useful.
The time in which the liquid levels equalize, however, increases as the permeability decreases
with a large change as observed in Fig. 7.30.

In Fig. 7.31 the potential drops during the drawdown period are plotted for two
different pumping times. The times when the resaturating period starts in both cases are
very close, different only by 4 minutes for production times of 1 day and 10 days.

Figure 7.32 gives important information about the free surface at the sandface while
the liquid level travels in the wellbore during the 24-hour drawdown and buildup periods.
This example was run for a 30 mD formation permeability and no skin effect. The free
surface during the early buildup period remains immobile until the liquid level in the well-
bore reaches the same position. Then, the free surface at the sandface start gently moving
upwards during the resaturating period.

Based on the results of the series of runs described in this subsection, the graph of
Fig. 7.33 is presented. This is an example of a correlation obtained from the SLM for a
typical set of data as in Table 7.1, and for the short well tests.

In the next chapter, a summary of the most important conclusions from the results
of the SLM are presented, as well as some recommendations for future work.
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Figure 7.26: Combined 24-hour flowing and buildup test for a set of different permeabilities.

Skin = 0.
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Figure 7.27: Combined 24-hour flowing and buildup test for a set of different permeabilities.
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Figure 7.28: Combined 24-hour flowing and buildup test for a set of different permeabilities.

Skin = 8.
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8. Conclusions and Recommendations

8.1

Conclusions

The Stream Layer Model is able to reproduce free surface gravity flow well pressure
behavior and the formation response with accuracy, depending on the finite-difference
discretization in time and space. All three recognized transient flow periods in a
constant flow rate test, namely wellbore storage, growth of the desaturating cone, and
the pseudoradial flow periods, are reproduced by the model.

Steady-state flow was verified with the classical sandbox model experiments of Wyckoff
et al. (1932), and Hall (1955). The seepage face phenomenon was reproduced. Also,
verification runs compared interference test results for observation wells located far
from the wellbore with the Neuman (1972) analytical approach and Cooley (1971)
numerical solution.

Capillary fringe effects, though negligible on field scales according to previous works,
were important in the laboratory experiment verifications of SLM.

The delayed yield period of a flat pressure-time response following wellbore storage
was evident in all computer runs, with or without a capillary fringe. A capillary fringe
is not necessary to generate a delayed yield effect. The major cause of delayed yield
is vertical, viscous drainage. Analytical solutions without a vertical flow component
do not exhibit delayed yield.

The strong nonlinearities in the mathematical problem require a careful dimensioning
of the grid parameters and time step sizes to obtain accuracy from the Stream Layer
Model. Also, concerning the time interpolation parameter 8§, the Crank-Nicolson
method (8 = 0.5) should be avoided because of the large number of iterations required
for convergence.

During the transient drawdown period, the seepage face length reached a maximum
value at the end of wellbore storage which frequently masked the confined system-like
behavior reported in the groundwater literature in the initial phase of production. Af-
ter that, the liquid level in the formation adjacent to the wellbore starts to drop, as the
potential gradients begin to increase. The pseudoconfined behavior is characterized
by near stabilization of the potential gradients and free surface movement.

The petroleum formation and liquid properties and well parameters tested by the
Stream Layer Model caused the transient pressure drawdown behavior to persist longer
than two or three log-cycles during the desaturating period. The pseudoconfined flow
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8.2

behavior generally required weeks or months of production to be graphically repre-
sented in a logarithmic cycle. As a consequence, to use a logarithmic approximation
such as in the Ramey et al. (1989) p-square approach, a long term drawdown test
should be planned to assure correct application of the method.

As an approximate solution at late time, the method of Ramey et al. (1989) presented
slopes closer to the Stream Layer Model results than the Theis (1932) line source
solution. Low permeability reservoirs tend to present an accentuated inflection in the
p-squared analytical approach at late times, which.is similar to the numerical results.
High production flow rates also show the same trend.

Computer runs for pressure buildup also showed delayed yield. However the seepage
face disappeared within a few minutes, and it appeared that the free surface desatu-
rated region is refilled by radial flow, unlike the vertical drainage during production.

Contrary to the drawdown results, the buildup pressures in the producing well gen-
erally require a short time to reach the resaturating period (equivalent to the de-
saturating period in the drawdown). Late time buildup pressures, however, could
not be approximated by radial flow interpretation methods. The potential profiles
in the radial direction taken at increasing buildup times show the distribution of the
potential at the base with different slopes each time, tending to continuously reduce
the radial potential gradient. The free surface profile shows uniform height from the
wellbore into the reservoir during the buildup. This flat potential profile becomes ex-
tended with the shut-in time. The present study has shown that the buildup potential
behavior in the producing well is not the reverse process of drawdown.

Recommendations

The Stream Layer Model can be used for experimentation to aid developing a para-
metric correlation of dimensionless time and pressure drawdown in well test analysis,
similar to the Boulton (1963) and Neuman (1972) correlations developed for observa-
tion wells. The use of the simulator is recommended for planning well tests for gravity
drainage wells.

The SLM simulator can be used to solve the semiconfined reservoir well problem.
This simulator could be a useful tool to investigate the behavior of low pressure or
low permeability pumping wells with dynamic liquid level reaching positions below
the top of the formation and developing a free moving surface in the formation near

the well. The computer program requires small modifications for this application.

Wellbore pressure buildup analysis is a challenging matter remaining to be investi-
gated, and an interpretation method should be studied using the simulator response
for a physical understanding of the phenomenon. It is likely that computer aided
interpretation with regression will be necessary.
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e The observed anisotropic effects in the wellbore potential drawdown behavior by the
Stream Layer Model may be used to produce an evaluation method to find vertical
permeability of anisotropic reservoirs.
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Nomenclature

A = area

Ay = areal dimensionless factor

Ay = cross-sectional area of the vertical flow
Ai; = discretized equation coefficients

B = formation volume factor of the wellbore liquid
B;; = discretized equation coefficient

e = total compressibility

cL = liquid compressibility

Ci; = discretized equation coefficient’

DA;; = Jacobian matrix coefficient

DB;; = Jacobian matrix coefficient

DC;; = Jacobian matrix coefficient

DD;; = Jacobian matrix coefficient

DE;; = Jacobian matrix coefficient

DF;; = Jacobian matrix coefficient

DG,; = Jacobian matrix coefficient

D;; = discretized equation coefficient

Fi(x) = exponential integral

E:; = discretized equation coefficients

£, = discretized equation coefficients

fr = ratio of logarithms of radial distances

fz = ratio of axial permeabilities

g = acceleration constant of the gravity force
Je = dimensional conversion factor

Gi; = wellbore discretized equation coefficients
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It

vertical position of the free surface

original thickness at rest

vertical position of the liquid at the sandface
vertical position of the liquid at the wellbore
vertical location of the liquid level in the well
formation permeability

permeability in the flow direction

number of grid blocks in the radial direction
number of grid blocks in the vertical direction
pressure

flow rate

flow rate in the stream layer direction

flow rate into a grid block element

flow rate out of a grid block element

radial distance

wellbore radius

radial distance of the gravity center of a block
skin effect parameter

gas saturation above the free surface

liquid saturation

water saturation

specific yield

same as specific yield, Sy

transmissivity or transmissibility

time

volume of produced liquid at standard condition
volume of produced liquid at wellbore condition
dimensionless potential

fraction of the inner block j; thickness above H,,
vertical coordinate

vertical coordinate at the sandface
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horizontal position of a discretized block
vertical position of a discretized block
non-wet or seepage region of sandface
initial condition
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thickness interpolation parameter

Boulton dimensionless variable = K pr?/b?

Dirac delta

parameter: deltay =1 if k = 1, otherwise, deltax =0
parameter: 6;, = 1if j1 = 1§ otherwise, 6;, =0
finite difference operator

free surface block thickness at its gravity center
thickness of a free surface block at the sandface
free surface block boundary thickness

thickness of a saturated block at its gravity center
thickness of a saturated block at the sandface
saturated region block boundary thickness

small residual number

potential

porosity

dimensionless liquid gradient

liquid viscosity

time relaxation parameter

density of the liquid

residual equations
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Appendix A. Inner Boundary Condition

A.1 Partial Derivatives of the Sandface Potential

Potentials at the sandface are a function of the vertical coordinate and of the
liquid level in the wellbore. The criteria used to define the inner boundary conditions are
shown in dimensionless form:

W = Yotwp = Hup < 2up < Hp (A1)

A finite difference form of the equation and grid definitions of the reservoir requires
that the inner boundary be reordered into different regions, according to the position of the
liquid level in the wellbore at each time-step. A vertical grid parameter j was defined as
the grid position at the sandface adjacent to the wellbore liquid level. The potentials were
calculated:

Wy, = YoHup = J>n (A.1.2)
Ahp, ) .

"Vu,v) = Yo (3wD} + _“2‘—"> = l=7< 75 (A.1.3)
Az .

W, = %o (zwDJ + 2Dw> = 1#7< j (A.1.4)

Wy, = —’22 [(l + 2 ) Hup +(1-25) (‘zwz)]l + AZDw)] = j=n#l

(A.1.5)

where:

Hyp = zup
z;, = Ao Ll . (A.1.6)

Wy, = % [(1 + xil)HwD +(1 —.’Ejl) (Zwul + Ath)] = J=n=1
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(A.1.7)

where:

HwD - ZwD‘
T (A.18)

5 =

Partial differentials with respect to Wy, were calculated from the above definitions.

Initially, k is set different from 1:

(a) j > Jr:
oWy, 8H,,
W Yo Wy (A.1.9)
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(b)j <n
oW,

W = 0 (A.1.10)
(c)j=1landl < 5 _
Wu,  _ 0 A.1.11
W (A.1.11)
(d)j=j1andj; # 1 oW -
wy — . wp
e :cJ]'y,,————(,m/,l"c (A.1.12)
(e)i=n=1
Wo, 25,70 o (A.1.13)
6W1',< - Jl‘ranl’n o

Partial differentiations with respect to W; ; are particular cases in which there is a
dependence of several parameters on the potential:

(a) 7 > n - -
= =y, D Al.l4
AWy 4 " 5W,, (A.1.14)
(b)7 <7 oW
W,
S 0 (A.1.15)
(.C)j——- land 1 <j1
6Ww, '70 aw
: = —_—— A.l1.16
(9W1,1 2 71 ( )
(d)j =jiand j; #1 oW oH
W, — . wp [rd
Wi = x1170_—3W1,1 (A.1.17)
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(e)j=5=1

Wy,
8 2 _ 70 [le anD

_p2) S
Wi s+ (1-2]) ] (A-1.18)

27

In the last case, Ahp, is also directly dependent on W . Thus, another condition must
be considered when j = 1: .

(@)j=1landj; > 1

3Ww,- 70 (1 — aw)
= T o= A.1.19
W2, 27, ( )
(b)j = land j; = 1
aij anD . 1 - ay
Way [x“ oWs, . + (1“%) 27, (A.1.20)

A.2 Liquid level in the Wellbore from Material Balance Equation

From the material balance discretized equation and the substitution of the
sandface potentials, it is possible to determine the liquid level in the wellbore within a
time-step. Guessing the position j; and a global iterative procedure enable one to estimate
the value of Hy,, .

There are two ways to determine the liquid level in the well, starting from the
material balance equation represented by Eq.3.2.5 in the Ch. 3, presented below.

A.2.1 Quadratic Equation

A quadratic equation is obtained from the discretization of Eq. 3.2.5 starting
from the introduction of a time interpolation parameter as follows:
dz}
T=Tw

rri AH 2T hs hs
W W ] k. A® -9 AP
2¢ It + wln (71) [ /0 A%y, dz + (1-6) ./o kA2
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(A2.1.1)
Multiply by m to obtain the dimensionless expression:

HwD - H'UkID 1

H,

(1-6) /0 " e awH| dzD] (A.2.1.2)

A quadratic equation can be obtained isolating Hy,. The following parameter is
introduced in order to handle all possible positions of the liquid level in the wellbore with
a single equation:

{6 =1 as n=1
6=0 as n#1

Next, a proportionality factor z; is introduced to average the potential at the sand-
face position adjacent to the liquid surface in the wellbore:

HWD - ZDWJ1
§Ahp, + (1 -6) Azp,

z; = (A.2.1.3)

. Using the parameters 6 and z;, the integrals can be simplified by calculating average
permeabilities and factoring the average permeability out of the the integrands:

(-’l‘f krl,jl" + i (kz:l']>) Z—ZD,

- J+1
Rr o= H;kn (A.2.1.4)
=1 —
_ (1-25) kep T2 (e1,) | B2p, |
kL = T (A2.1.5)
' — — R n
zike, ,, [6BRp, + (1= 6)Azp,| +Bep, 3 (kzi,)
Fey = atl (A.2.1.6)

Hyp

P ___._.1__.._ (]. - Zj) kxl ) [6Kf—lp, + (1 - 6)_A_2D1] +ED1 jlz_:l (k‘x1 )
Ha - HwD 71 2 7

>
]

+ (1 - é)le + kIl,x}

157 (A2.1.7)



The superscript k¥ means the beginning of the time-step, and the subscripts nw and
wet represent the seepage face (non-wet) and the liquid submerged (wet) wellbore regions, .
respectively. A first decomposition of the material balance equation at the wellbore gives
the following:

H’”D - H‘fﬂ 1 emmo—
w Bus = ~ =55 & s {0 [BRpy 4 ke Wia
= H? _ H? - HZ _
- N wp _ s w
AZDI ; (kzanWIrJ) HoD kz‘w —-ﬁ;—l kxnw] +

— < K Hu{cz—k Hsﬁz—Hufz—k
(1-9) ZDaz;km.,Wm - =k, - ——27!5;;"'2— ke,

(A.2.1.8)

Rearranging the terms in the above expression, a quadratic equation is obtained in the
format:

AH? + BH,, + C = 0 (A.2.1.9)

in which the coefficients are easily identified. This equation gives two possible solutions.
Negative values are always neglected, and if there are two positive roots, some logical criteria
of analysis are introduced in the computer program.

)

0 1. _xnw 2 1 Hufp
H,,kp In(71) [kf‘" 2 ] Hup + 55215 Huo 26 Atp + a0 Bup -
n H2

1 — _ 2
E——h 11’1(?1) {0 [AhD]kII.l Wl,l +A2D1 E; (k:n,JWl.j) - Eﬁ:};kz"w] +

(1 - 0) Hop Tw 2 HOD Tnw

_— 3 HE?_ R - HEF?_
B, Y key Wi — SERES - Sl —wp TF =0
1

(A.2.1.10)
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A.2.2 Iterative Solution for the Wellbore Liquid Level

An alternative way to solve the wellbore liquid level equation is to use an
iterative process as the Newton-Raphson approach. This procedure gives only one of two
roots for Hy,, from the quadratic equation, and the initial guess to start the iterative process
is of fundamental importance for the usefulness of the result. The procedure starts from
the discretized material balance equation below: '
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A Az ks
fup , Dop fBns (o) wihy - wif] +

wBu = “33A, T n(m) \ ka
b o - o + G- -] +

KﬁDl kz‘n
W) R T W
(A.2.2.1)

Call the function:

F(H ) = @Bu + 26Alp (7)) \ ki
z 2 [g [, W, + (1-0) Wi Ww’;]]}
Z’E k
- ) ;“ 0 (W1 — W,
(A.2.2.2)
and its derivative:
0F (Hup) 0By 1 4
F'(H, = 2 WD. b
(Hup) 9H., D 5H Y 25 ap T ()
oWy, — _ oWy,
{A4D1 Z kl‘l, 6H R + [(l - 6)AZD1 ‘}'6A Dl] kz‘l,“ an }
n+1 D
(A.2.2.3)
where 6 is defined by the grid position of the liquid level in the wellbore j1:
§=1 = H=1 (A.2.2.4)
(A.2.2.5)

6=0 = j1>1

160



and:

0B
e = - Yo CLp Buy (A.2.2.6)
wp 4+ (B, + HE,) vocLs
From the definition of the inner boundary potentials:
1 4+ z; l-z; | .
Wy, = 70[ 5 L Hup + —-—2—“— (ZWD“—I)] (A.2.2.7)
and:
aI/Vw 1+ z; 1—-2z, oz
n - o i1 _ 5 1
S = v 2 [(1-6) e, + 8 Ahp,] ]
= Yo Th
(A.2.2.8)
Thus:
B 1 0~
f’ (H ) = _ gDYo CLp Pwy, + + —-—-—OT- %
wp 4+ (HJIJD + Hu’fp) YoCLp 2¢ Atp kp1n (71)
{Z\.‘EDl {zj,krl,“ (1-6) + > km} + bz, Ahp, krm} (A.2.2.9)
J1+1
From the Newton-Raphson iteration approach:
F\HY
AP = HY - —I(—-—D)— (A.2.2.10)
F (B,

where v is the iterative level. Convergence is achieved when the difference below becomes
small, compared to a residue €

HUPY - HY < € (A.2.2.11)
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A.3 Material Balance Equation Partial Derivatives

The discretized wellbore material balance equation in App. A.2 may be differ-
entiated with respect to each inner block potential Wi «, to evaluate the partial differentials
of the sandface potentials, which were written as functions of H,, and z,, in App. A.l.
Thus dH,,,/0W; x may be substituted into the equations presented in App. A.1. A step-

by-step development of the Jacobian equations is presented next.

The discretized material balance equation in App. A.2 is:

‘AfIwD 43‘21_)1 {kl‘l,l k k
sars * meg LR -0 -]+

ap Bwb =

In(7y) kn

Differentiating Eq. A.3.1 with respect to W) ,:

anb 1 8pr 0
gD oW = T 99 C T mmm
- o Atp OW, kn In (71)
L ' n W, oWy,
{" zp, (1 - 5&) kIl,n - Z k"*"l..v_a_{/{/_—lm'jc - 6‘” krl’” 6W1:
1+l
oW, dAhD
+ AhD; kz-“ {(5,; BWI'L] -+ ’C:m 1 (‘/Vl,l Ww]) BWL,: }
Also:
(03] = 1 +2 Qw

and:
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6Ah1 _ 6,.; (03]

W, = by W T (A.3.4)
From the derivatives in App. A.l:
ow,, 0H
-éV—V-lJ: = (1-6;) zj% —V—VWT%
YoQw fg. -6 — 2
+ O 27, [511 + (1-465) (1 ‘En)]
(A.3.5)
The parametersé, and 6;, are:
{6,¢=1-—->K=1 {61',—1 - J1 £ 1
6y =0 — Kk #1 6, = 0 - j;1 =1
(A.3.6)

Equation A.3.5 can be written as a function of H,, as the only unknown by differenting
B, and by using the relationships defined in App. A.1 for the potential differentiations:

qp Buwy, YoCLp OH., _ 1 8H,, 9

_ = - + — X
4 4+ 7 (HwD + Hu‘ip) cLp 3W1,,< 2¢ Atp aWI‘,; ky In (%)
— OHup 0H,

{ Azp, [(1 = 8x) kzy o = Yo mijgl ke, = 85Kz, Y0 mjlm,‘_;l'i‘

- dH,
+ Ahp, kx“ [&: - (1= 5]'1) 5, %o aWID +

5;\-70::) [5j1 + (1:— ;1) (1—1:121)}} +

b
ke, (Win = Wy,) ?}'} (A.3.7)
1

where z;, is the fraction defined in App. A.1. The general partial differentiation of Hy,, is:

0ks, . .

anD _ kn 1?1 [Fl (Jl,le) + (Wl.l - le) éb%_‘:'l}

oW, . 9D Buy, YoCL 1 96 . T
b T (Hap ¥ HEo)er, T 76810 T () F (31,25, F1)
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(A.3.8)

where:

. - =T Yo
Fi(jizjy) = (1-6s) AZp, + 6&Ap, [1 Sl CRRCEY (1-z,%)]]

(A.3.9)

and:

)33 (jl,le,k_x) = A'Z'D-,

n
Z kl'l,; + 65 kz‘x,;x zjl] + Ahp, kg, (1~ 65,) 25

N+l
(A.3.10)
Next, differentiate the same expression with respect to Wy 1:
0By, _ _ 1 O0Hy, _ ] 9
DW= T 2¢Atp OWp, | knln(my)
R n oW, oW, S ow,
A kg,  ——t , — IWur
{ 2Dy L%:l Ty, aWZ,l + 6Jxkxl.n 6W2,1 + Ahp, k:m,: BWQJ
dARp
—kzyy, (Wig — Wy,) 3W2,11} (A.3.11)
Also:
Bﬂ-pl 6Ah2 1- (631 1 - Qyy )
= l1—-« = = A.3.12
BVVQJ ( . 1) 3W2|1 ' 77-2 2-')-"2 ( )
OWW‘, anD . .
Wt = Y W = i< nh (A.3.13)
6Ww“ 6H1UD . .
W, - S, = Jj=hn#1 (A.3.14)
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aww, anD l—aw 2
s 70{(1—511)% . T o, [(1~5n)(1—%) +5j1]

= J = jl = 1 (A315)

Substituting the partial differentials and considering alternative positions for the liquid level
in the wellbore by taking j;:

—qD Bwb YoCLp aHUJD = _ 1 B-pr N 6 %
44 Yo (Hup + HE,) ez, Wan 20Atp OWz1  kyIn(Fy)
— = 0H,
Ale z kl‘l,) + 6]1 Ijl kl‘l’” 70 3‘/‘/ D
J1+1 21

J— aH (1 - ay) 1- aw)
+YoAhp, kl‘m {(1 - 6j ) (Ijl E_W%% + (1 - 2321) —_2—77:;—-) + 6.71( 25,

l -«
ke, (Wiy = Wy,) ——2#} (A.3.16)

After rearrangement:

0o kILJ (1 - Qw) - ) 2 ) Wl.l - Wy
8H1['D _ - kn In(Fy) 2;2 {Ath [(1 - 631) (1 - z]]) + 6]1} - “o }
0117 - — 9D Bwb Yo CLD 1 8 ~o . T

l 4+“(0(Hwb +H|5D)CLD + 26 atp + kn In(71) F2 <]1’IJI’L’1>

(A.3.17)
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Appendix B. Groundwater and Petroleum
Engineering Units

Although dealing with similar properties of fluids and rocks and the same math-
ematical description of the physical phenomena, the hydrology and petroleum engineering
literatures use different symbols. As an example, the groundwater transmissivity does not
have the same units as the transmissivity in petroleum engineering. A good reference to
have in mind regarding symbols is App. A in Earlougher (1977).

A short conversion set [ollows to help understanding and comparisons of units with
those in the groundwater references used in this dissertation. Most of the petroleum en-
gineering parameters can be directly measured in laboratories or in situ. Conversely, the
hydrologic terminology frequently uses lumped properties related to the diffusivity equation.
Thus, terms like storage coefficient, specific yield, specific storage, transmissivity, coefficient
of permeability, etc. are not familiar to many petroleum engineers.

The following partial differential equation is used in hydrology to represent the r-z
flow of liquid (water) in a porous medium in a cylindrical model:

K,g—i; + f‘%g—; + Kzg-Z—j = Ss%; (B.1)
where:
K., K. - coefficient of permeability in both‘ r and z directions, LT™!
8 - head drawdown, L
S - specific (elastic) storage, L™!
t - time, T
T2 - radial and vertical coordinates, L

The same Eq. B.1 in petroleum engineering symbols is:

A

op
u or? wor u 022 b at (B.2)
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where:

k. k, - permeability in r and z directions, L2
p - pressure, L"!MT?
p - viscosity, L-IMT™!
¢ - porosity, fraction
¢; - total system compressibility, LM~1T?
t - time, T
r,z - radial and vertical coordinates, L

Correspondence may be established by a dimensional analysis. Usual conversion of units
into field units follows {or a water saturated system (u = 1 cp):

Coefficient of permeability and permeability:

k g)
K = -—|[p= B.3
K (pgc ( )
Field units:
. - (k, mD ( g ,
K, gal/D/ft*) = 0.047339 ——— (p=, psi ft) B.4
(K, gal/D/f1?) ) Py o s/ (B.4)
Specific storage and diffusivity: '
_ g
Ss = o (p—) (B.5)
dc
Field units:
(S0 171 = (@) (eospivt) (oL, woiftt) (B.6)

Head drawdown and pressure drawdown:
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Po—D

ge

Field units:

= (po—p,ps) B8
I (o, psi/it) (%)

There are other important variables. Storage coefficient, transmissivity and specific
yield are:

Storage coefficient, S (dimensionless):

S = S.h = d)cth(p;:> = bap (B.9)

[

where h is the thickness of the formation in consistent units. In the unconfined flow theory,
h is the liquid height, and the pressure p may replace 4 (pg/g.). Some theories of unconfined
aquifers consider a constant S,, neglecting the unsaturated flow (Neuman (1972), Streltsova
(1972), and others). In this case, h should be the original liquid level at rest.

Transmissivity (L2T~1)

T = K.h (B.10)
Field units:
(k, mD)(h, ft) < g . )
T, gal/D/ft) = 0.047339 =, psi/ft B.11
(T, gal/D/ft) . <) a psi/ (B.11)

From the unconfined flow theory

Specific yield, S, (dimensionless):
This variable was introduced in the free surface boundary equation (see Neuman, (1972),
(1974), among others):

. 0Os . Os _ o0&
Ixrg;n, + Ixz-a—znz = (Syb_t - I)nz, at z

Il
m
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(B.12)

where:
nsyn, - component of unit normal in » and z directions
3 - free surface elevation from the aquifer bottom, L
I - recharge source rate at the free surface, LT ™!

Eqation B.12 may be related to the free surface boundary condition in the Chapter 3. .Sy
is related to the effective porosity:

S = &(1-5u) (B.13)

where S, is the residual water saturation in the unsaturated region. The term I may be
considered a net flow liquid left behind by the water table moving boundary as an effect
of capillarity. Generally, Sy has been considered constant and [ takes care of the recharge,
but in the Neuman (1972, 1974) studies the recharge I was neglected.

Usual dimensionless parameters

Dimensionless permeability:

K., gal/D/ft?
Kp =. ( 2) _ (k. mD) (B.14)
(k- , gal/D/ft?) (k, mD)
Dimensionless drawdown, constant producing flow rate - see Neuman (1972):
47 (T, gal/D/ft)
sp = s, Tt
= g, sa/Dy &M
k ho, 1t
= 0014164 F mDI(Bos 7)oy (B.15)

(1, cp)(Q, bbl; D)

Dimensionless time with respect to the specific storage §:
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ts = 557x1073 (T gal/D/ft) (t, hr)
S (1'2, ftz)

= 9637 x10~* (kr ’ mD) (t, hr)

8 (s op) (ce , psi™!) (r2, £2)

Dimensionless time with respect to the specific yield §y:

i, = 557x10-3 L8R
Sy (2, £t7)

= 2.637 x 1074 (kr, mD) (h,, ft) (¢, hr)

6(1= Su,) (n, cp) (r2, ft?)

(B-parameter:

_ . (7‘2., ftz) _ (kz, mD) (Tz, ftz)
b= BTy T (ke mD) (R 1)
o-parameter:
c = __S_ - (Ct ) pSi—l) (Po s péi)
Sy (1= Sur)
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Appendix C. Symplified Approaches

The analytical approximations of Theis (1935) and Ramey et al. (1989) used to
give late time approaches for the gravity well problem do not consider the vertical velocity
component in the reservoir, as well as wellbore storage effects. A need to incorporate
wellbore storage effects in those solutions required additional formulation, and two computer
programs were developed. These improvements in the approaches were not intended to
reproduce the unconfined flow behavior at early times, but only to reproduce a better
transient flow behavior, mainly when skin effects were considered. In this appendlx, a brief
description of each program is presented.

The Theis (1935) method has been used by hydrologists as a late time reference
solution for the unconfined flow of liquid in a gravity drainage well. The derivation of the
Theis solution did not consider either a skin effect nor a wellbore storage effect in the inner
boundary condition. Theis used a partial differential equation developed for heat transfer to
approximate the unconfined flow problem, but his solution is mainly applicable to confined
compressible flow. To incorporate wellbore storage and skin effects, a computer program
called PDE was developed. Details of this approach are described in App. C.1.

Recently, Ramey et al. (1989) developed an approximate method in which the flow
was proportional to the column of liquid, and considered skin effects. The transient p?
solution of the gravity problem proposed by Ramey et al. (1989) was an improvement to
the Theis (1935) solution, because the variable height of the liquid column in the reservoir
was considered in a partial differential equation. As a result, a nonlinear Forchheimer-type
equation in dimensionless form was obtained similar to the nonlinear partial differential
equation in the ideal gas problem studied by Jenkins and Aronofsky (1953). Jenkins and
Aronofsky correlated their numerical solutions with the van E.-rdingen and Hurst (1949)
liquid solutions to conclude that the later could be reasonably applied to solve for the
transient pressure at the wellbore, if an appropriate dimensionless pressure (in terms of p?)
were used. Using a late time logarithmic approximation, Ramey et al. included the van
Fverdingen and Hurst skin effect, but not wellbore storage effects. To consider storage effects
in the wellbore, a numerical model for ideal and real gas radial flow developed by Fligelman
(1980) was adapted te: the liquid gravity drainage well problem, since the nonlinear partial
differential equations ior ideal gas flow and the Dupuit-Forchheimer approach are exactly

the same when appropriate dimensionless parameters are used (see App C.2). This program
was named FLIGRAM.
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C.1 Wellbore Effects in the Theis Solution

Appropriate boundary conditions were applied to the diffusivity equation for
wellbore storage and skin effects for an infinitely large reservoir. Some results were compared
to the Theis (1935) line source solution.

The basic diffusivity equation for radial flow in Darcy units is:

d%p 1 9p duce Op
T T T Tk B (C.1.1)

Theis applied Eq. C.1.1 for a constant rate well to otain the pressure response at any radial
distance r and time t, for both a confined and an unconfined aquifer. Wellbore effects were
not considered. Based on the simplified assumption of a line-sink, the Theis approach had
no valid response close to the wellbore, where the storage effects are important. Eventually,
at late time, the pressure response approaches that of a confined reservoir, and the line
source solution becomes accurate enough. In terms of petroleum engineering nomenclature,
the Theis approach was expressed by:

gByu

p(rt) = o—= pp(rp:tD) , (C.1.2)
where:
_ 1 ducer?
pp(rpstp) = - 5 Ez( Tk ) (C.1.3) -

For a small argument, the exponential integral function E;(—z) may be approximated by:

0 g=U T :r2 :E3 OO
Ei(-2) = _/I . wo= [1” STt Ixa T o3xa t L
1 kt - |
~ E[In <¢>uctr2> + 0.80907]. (C.1.4)

Wellbore storage and skin effects were added to the solution of the partial differential
equation, Eq. C.1.1. The inner boundary condition was:
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= ¢%u _ 27kh (r@) (C.1.5)

and:
o bl e

where C is the wellbore storage parameter. The initial condition was:

p(r,0) = p;. (C.1.7)

As an infinite réservoir, the pressure approaches the initial value, as the distance from the
wellbore center becomes large:

p(ryt) = pi. (C.1.8)

T 00

It was convenient to introduce dimensionless variables as defined below. Both Darcy and
field units are given.

Darcy units: Field units:

D = L Tp = L (Clg)
Tw Tw

kt _(0.0002637) kt
= et b=t (€110

_ 2mkh(pi—p) kh (pi = p)
_Pp = a0 PD 412484 (C.1.11)
Cp = — Cp = — (C.1.12)

b= ope P = opie o
Substituting the dimensionless parameters into the diffusivity equation:
0%pp 1 dpp dpp

173



Initial Condition:

po(rp,0) = 0. (C.1.14)
Outer Boundary Condition:

po(rpytp) = 0. (C.1.15)

rD"Pw

Combined Wellbore and Sandface Conditions:

_ opp _ ., 9 (?_ezz)} ( f_’zp_)
1 = Cp 35 LT'DatD D — TD&‘rD roets (C.1.16)

-~

The solution for the dimensionless pressure in the wellbore in Laplace space is:

; _ Ko (V2) + sz K (V7)
wp z3/2 [Ky(vz) + CpVz K, (Vz) + 2Cps Ky (V7))

(C.1.17)

A computer program was written to calculate the wellbore pressures using Eq. C.1.17.
Inversion from the Laplace space was performed numerically using the Stehfest (1970) al-
gorithm. Early and late time approximate analytical solutions of Eq. C.1.17 were also
derived. An early time approximation (z — o00) inverted to real space after simplification
of the Bessel functions produced:

125)

Pwp = Cp (C118)

A late time approximation was similar to that expressed by Eq. C.1.4, including the skin
parameter:

1 .
Pup = 3 [In(tp) + 0.80907 + 2] . (C.1.19)

Figures C.1 and C.2 show the results in both semilog and log-log plots of the solutions
from the computer program PDE and the line source solution. Also, the buildup behavior
is shown in Fig. C.3. A perfect match between the solutions when the wellbore effects were .
no longer important verify the results from the program PDE.
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C.2 Wellbore Effects in the p? Solution

Wellbore storage effects were considered in the inner boundary condition for
a constant production rate well in an infinitely large reservoir. The wellbore storage coeffi-
cient was coupled with a partial differential equation (Eq. C.2.1 in Ramey et al., 1989) for
an approximate late time solution of a gravity drainage well. A resulting system of non-
linear equations similar to the ideal gas problem solved numerically by Fligelman (1980)
was adapted to a single phase liquid with a free surface. Transmissivity was taken to be
proportional to the liquid column in the reservoir, and vertical velocities were neglected.

Ramey et al. (1989) reintroduced the p? approach for the free surface gravity
drainage, rewriting the Dupuit-Forchheimer partial differential equation in terms of a vari-
able height A(r,t) converted into pressure. The partial differential equation presented a
pressure-factor in the diffusivity term, obtained for an incompressible system. Equation 1.2
in the Introduction Ch. 1, presented below as Eq. C.2.1, shows the proposed equation in
terms of pressure. This is the same as the ideal gas equation studied by Jenkins and
Aronofsky (1953). Notice the pressure-dependent diffusivity coefficient.

9% 19p* _ ou (p7h) 89
or? r or k ot

(C.2.1)

The fundamental assumption to obtain Eq. C.2.1 was that at given a time ¢ and a radial
position r the liquid pressure at the lower boundary was assumed to be proportional to
the column of liquid. The assumption of incompressible flow requires that pressure is
proportional to liquid height:

p(rit) = hp=. (C.2.2)

Jenkins and Aronofsky correlated the numerical solution of Eq. C.2.1 with the van
Fverdingen and Hurst (1949) solutions of the linear diffusivity problem. Ramey et al
adapted the Jenkins and Aronofsky correlations for a constant rate wellbore condition to
write an approximate analytical solution, not valid at early times:

2303 gByu kt .
2 _ 2
pr-p? = = logio | ———=—— | + 0.80907 + 2s3 . (C.2.3)
v ar ko { (¢u (n7) T%)

To consider wellbore storage effects, and to allow the Fligelman (1980) program
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to handle pressure buildup behavior as well as drawdown, a new simplified program was
written and named FLIGRAM. The mathematical procedure is described next.

First, a gravity drainage pseudo-pressure was defined:

k
m, = ;pz. (C.2.4)

The inner and outer boundary conditions were the same as those described in App. C.1, as
well as the initial condition. The dimensionless parameters were:

Darcy units: Field units:
T r
™ = = ™ = - | (C.2.5)
_ kpit _(0.0002637) kp; t
b = tp = il (C.2.6)
mp = Do~ Tp =p;2—-2p2 mp = mpe‘mp=Pi2—2P2
Mp; p; Mp; ©p]
(C.2.7)
1 1 4
= 9% = > '.2.8
Cp 5% Cp % (C.2.8)
ho - ho
ap = ‘}'L_ ap = Tl- (C.Q.g)
gBp L 282.41¢Bp L
g = = gp = ————— 2= (C.2.10)

T My, Mpi

Substituting the dimensionless parameters into the diffusivity equation (Eq. C.2.1) and into
the boundary conditions:

8*mp 1 omp omp
—é;g- D BrD = ap —6—{;- . (C.Q.ll)

Initial Condition:
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mp(0,7rp) = 0. (C.212)

Outer Boundary Condition:

mp (tD,TD) = 0. (C.2.13)
TpD—+C0
Wellbore Material Balance:
dmp k1 dmp
= Cpa : —rp —— , C.2.14
i pop dtD rp=1+ k P dTD rp=1+ ( )

where the subscript 1 stands for the damaged region around the wellbore. The skin effect
was translated into an equivalent permeability using Hawkins (1956) method (see Eq. 4.1).

Results from the FLIGRAM program are presented next and verified with the late
time Ramey et -al. approach. Figures C.4 through C.6 are graphs of drawdown pressure
vs. time for a typical set of data. Two skin values, 0 and 5 respectively, were used. At
late times, when wellbore effects have no significant influence on the pressure response, the
numerical method matches the analytical approach. In a semilog graph in Fig. C.4, the late
time behavior shows an approximate linear relationship between pressure drawdown and
the logarithm of time. Fig. C.5 is a log-log graph where the wellbore storage effects can
be clearly identified by the unit slope straight line at very early times. In the p-squared
vs. time semilog graph in Fig. C.6, the slope of the logarithmic behavior period calculated
from Eq. 10 in the Ramey et al. (1989) paper, 132.1 psi?/cycle, was matched.

Using the given example for a test, we calculated the m-permeability using an ap-
proximate late time semilog straight line obtained in Fig. C.4, and compared with the input
data of 240 mD. The semilog straight line slope was 0.89 psi/cycle, corresponding to a
permeability of 217 mD: '

, gBp (225) (1) (1)
Flow: k = 6=t _ gy e A L) )
Radial Flow 162.6 — (162.6) (0.89) (189) 2174mD

This rough solution is less than 10% lower than the p-squared solution, for the given exam-
ple. :
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Figure C.2: PDFE and the analytical Theis (1935) solution. Log-log plot.
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Buildup pressure, psi

Figure C.3: PDE and analytical Theis (1935) solution. Buildup pressure semilog plot.
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Appendix D. Verification of the Free Surface
Boundary Condition Relationship with the
Average Vertical Velocity

An interesting way of representing a relationship between the free surface
position and the vertical velocity can be found in the Wyckoff et al. (1932) work. Using
the symbology employed in the present study:

| 3 7
h(r) = ;;’) + %;f;—);q_ﬁh(r), (D.1)

where h(r) is the free surface vertical position at a radial location r from the well center,
®,(r) is the potential in the base of the reservoir at the same r, v,(7) is the average vertical

velocity of the liquid, u is the liquid viscosity, k, is the vertical permeability, and pg/9gc is
the liquid pressure gradient. If we define v, as:

dz , (D.2)

(D.3)

where f, refers to the free surface vertical position. Direct substitution of Eq.'D.3 vertical
velocity v, into the Wyckoff et al. expression gives:

d, '
h(r) = _;% (D.4)
ge

which is the free surface boundary condition in the current study.
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Appendix E. SLM Computer Program

In this Appendix, the SLM computer program is described in detail in Sec-
tion E.1, and the program code is presented in Section E.5. The computer program was
written in double precision FORTRAN. An exception was the subroutine that calculates
the liquid level in the wellbore which gives an appropriate accuracy using extended preci-
sion on IBM machines. In that subroutine, when calculating the production flow rate for
a constant-pressure inner boundary condition, a quadratic equation computes differences
of squared large numbers and divisions which require a large number of significant digits
in the operations. In Section E.3, an example of an input data file is given. Example of
output file is given in Section E.4.

E.1 Structure of the Program
The simulator is composed of a main program, 30 subroutines and 5 functions.
A flow chart is presented next to aid understanding of the program. Some controls, such as

the start of a buildup period or the start of constant flow rate in the well, were omitted in
the diagram.
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E.2 Description of some Characteristics

In this section, some important characteristics of the computer program are
summarized.

E.2.1 Radial Block Distribution

The radial mesh distribution uses a block-centered scheme given by a progres-
sive radial positioning of the block boundaries, according to the MULTIMODAL griding.
See Terdn and de la Garza (1988) for details of the algorithm. The log-spacing is a particular
case of the MULTIMODAL method. The parameter necessary to define the ratio between
the last and the first block radial size, A—Aﬂm is an input data, as well as a flag integer that
provides the selection of the MULTIMODAL of the standard logarithmic spacing.

Another important characteristic concerning the computer program is the progres-
sive number of radial blocks considered in the matrix set-up. The remaining blocks, far
from the inner boundary are added to the system as the external boundary is disturbed by
a small dimensionless potential drop (107° in the program). After several runs, a number
equal the half of the radial dimension (MM/2) was considered a good start.

E.2.2 Axial Permeability

The variable geometry of the problem required a calculation of directional
permeability. The permeability tensor for an anisotropic case is defined by an elliptic
equation as:

ky ky,
\/kf1 sin? 8 + k2 cos? 3

where (3 is the angle of the flow axis with the horizontal.

kz

(E.2.1)
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E.2.3 Sandface Block Transmissivity Control

The program contains a parameter part(j) which is an input data for each
sandface block. This parameter multiplies each transmissivity term of the inner boundary
blocks and can be set from 0 for a no-flow block to 1 for a fully transmissive block. Thus,
any block or set of blocks at any position in the wellbore can be partially or totally plugged
or partially plugged by this transmissivity control parameter.

E.2.4 Skin Effect

The skin effect was simulated by calculating a modified permeability for the
first block. Thus, both vertical and horizontal permeabilities should be affected. However,
the method used to determine the skin parameter was the Hawkins (1956) approach which
deals only with the horizontal permeability:

k T4
1 .
kd = mkh = .f‘,kh (E23)

where 7p, is the first block radial mesh location.

We must understand this expression. First, Eq. E.2.2 expresses effects in the ra-
dial direction only, and there is nothing in the Hawkins approach relating to the vertical
permeability, an important component of flow near wellbore. In the program. the vertical
permeability is not affected by the skin effect defined this way.

Another problem concerns negative skins. Since we the damaged (or stimulated)
region was set to be in the first block only, we are limited to a negative skin range defined
by the denominator of Eq. E.2.3:

1 +slnfp, > 0 (E.2.4)
s > 1 E.2.5
In FD]' ( 2.5)
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E.3 Input-Data File

A sample of the input-data file is presented next. The integer values are right
justified at column 64, and the decimal numbers are left justified at column 60. The blank
lines must be observed.
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ORIGINAL INPUT DATA FILE FOR DRAWDWON AND BUILDUP ANALYSIS IN CHAP. 7:

Number of horizontal grid blocks (M): 80
Number of vertical grid blocks (N): 100
Use MULTINODAL radial spacing? (mult) (no=0, otherw,1) 1
Maximum number of iterations (itermx): 05
Maximum number of matrix calculations (matmax) 6000000
Initial Number of time-step per cycle (ntdi) 10
Var. flowrate indx (iflow: O=const, 1=cont.var, 2=step.var) o]
Boundary limit dimensionless external radius - (red) 100000.
First and last blck ratio - multimodal (Rmult) 20000.
Liquid compressibility - 1/psi: 0.000003
Total compressibility - 1i/psi: 0.000003
Original heigth of the free surface - ft, (ho): 189.
Well bore radius - in, (rw): 3.18
Porosity - fraction, (pores): 0.25
Liquid viscosity - cp, (visc): 1.00
Liquid density times g/gc - lbf/cuft, (rho): 62.4
Volume formation factor - (Bo) 1.
Skin effect parameter - (skin): 0.
Horizontal permeability - mD, (permh): 120.
Vertical permeability - mD, (permv): 120.
Residual Saturation - (srw) 0.
Capillary Fringe thickness - hc, (ft) 0.
Constant Production rate - bbl/D, (q): 100.
Minimum Pressure - psi, (pmin) | 0.0
Small number to be used as residue (eps) 0.000001
Time-interpolation parameter ( 1>=teta>=0 ) 1.000000
Output control of wellbore dimless. press. (iprnti) 1
Output control of head profile (iprnt2) 1
OJutput control of total pressure dist. (iprnt3) 1
Output control: O=dimless., 1=field units (iprnt4) 1
Initial dimensionless time -~ (tdi) 1.000000e-04
Buildup time or recovery period - min, (tbuild) 1.000000e+06
Flowing or pumping time - (tflw) 1.000000e+06
Number of tdpr for pres. prof. line below - (ntpr) 8

1. 10. 100. 1000. 10000. 1.e+05 1.e+06 1.e+07
Number of observation wells - (nobs) )
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Distance from wellbore center, ft (dist(i))
1. 10. 100.‘1000. 10000.

Partial penetration factor - part(j)

1.1. 1. 1. 1.1, 1. 1. 4,201, 101010 1,
1.1. 1. 1.1.1. 1. 1. 1,11, 1.1, 1. 1.
1.1. 1. 1. 1. 1. 1.1, 1.1, 1, 1.1, 1. 1.
1.1, 1. 1. 1.1, 1. 1. 1.1.1, 1. 1. 1. 1.
1.1. 1. 1.1.1. 1,111, 1.1, 1.1, 1,
1.1. 1. 1.1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1.1, 1. 1. 1.1, 1.1. 1.2, 1,101 10 1,

Flow rate table: time - tq(i) (min) and qvar(i) (bbl/d)
Number of variable flow rates - (nqv)

0. 214.
1230. 242.
2640. 218.
4080. 191.
5520. 183.
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E.4 Example of the Program Output

The program has a main output file containing informations for each time step
selected for output printing. There are also some output files for specific applications such
as the sandface flow rate profile, the radial head distribution, observation wells, and others.
The following labels generate corresponding outputs:

Label 2 :
Normalized head potentials: sand base, vertically averaged, and free surface.

Label 3
Isopotential xy distribution at prescribed times.

Label 11
Main output table: time, wellbore pressure or drawdown, number of iterations in the
time step, cumulative number of matrix calculations, position J; of the block adjacent
to the liquid level in the wellbore, seepage face length, result from Ramey et al. (1989)
approach, result from Theis (1935) approach, cumulative CPU time in seconds.

Label 14
Sandface flow rate profile at prescribed times.

Label 21

Same as label 11 for observation wells. Each label starting on 21 corresponds to a
different locations or observation well.

Any output subroutine may be included by the user. If the user intends to have the
same oputput time step control as in the program, just add the new subroutine call line next
to the callings for PRINTA subroutine. A frequency of ten output data per logarithmic
cvcle of the dimensionless time was designed in the program, and controlled by a variable
ntprt. Another important information for the user is how the information are storaged.
At the end of each time step, the following variables are updated. In the next time step,
the vectors or scalar parameters are normally substituted by new values in the iterative
process. The notation of the variables is the same as that used in the program, regardless
capitalization.
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Hyp = wellbore dimensionless liquid level

H, = free surface dimensionless height at the sandface
H(1) = free surface dimensionless height at position 7
dh(i) = free surface block dimensionless thickness

dzd(i) = block dimensionless thickness

Ww(j) = normalized sandface potential

W(i,7) = normalized i, block potential

An example of the main output run is presented next.
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tmin= .4065E+400x td, Hc= .000ft, Red= 100000., MULTIMODAL, Rmult= .2000E+05

mm= 80, n=100 Ho=189.000 ft, Skin= .0, Kh= 120, Kv= 120., visc=1.000

POROS= .25 Ct= .30E-05psi-1, Cl= .30E-05psi-1, Q= 100.0 Swr= .000 Tetax=1.00
FIELD UNITS:

Time = minutes

Pw = psi

Iter = Number of iterations to complete the printed time-step

Matrix = Cumm. number of matrix calc. during the execution

J1 = Vertical grid position of the wellbore liquid level

Seepage = Seepage face length, ft

Ramey = Well pressure {from Ramey et al. (1989) solution, psi

cpul = CPU time to calculate the matrix once, sec.

cpu2 = Fraction of time: matrix solver / entire interation loop

cpud = Cummulative CPU time, sec,

Time Pw lter Matrix J1 Seepage Ramey Theis  cpul
.4065E-04" .00003%0* 1* 1™ .7182E.04* NaNQ*™ NaNQ* .33
.5117E-04* .00004%0* 2% 1* .9042E-04" NaNQ*™ NaNQ* 65
.6442E-04* .00005*0* 3% 1% .1138E.03" NaNQ* NaNQ* 97

.8110E-04" .00005™0" 4* 1* 1433E-03* NaNQ* NaNQ* 1.29
1021E-03* .00008™0" 5% 1™ .1804E.03* NaNQ* NaNQ* 1.62
.1285E-03* .00010*0* 6" 1* 2271E-03" NaNQ* NaNQ* 1.93
.1618E-03" .00012%0" 7" 1% 2859E.03" NaNQ™ NaNQ™* 2.25
.2037E.03* .00016*0™ 8* 1™ .3599E.03“ NaNQ™ NaNQ* 2.
.2565E-03* .00020"0" 9™ 1* 4531E.03" NaNQ* NaNQ* 2.89
.3229E-03" .00025"0" 10™ 1* 5704E.03" NaNQ* NaNQ™ 3
.4065E-03* .00031*0* 11* 1* .7180E-03* NaNQ*™ NaNQ* 3.53
.5117E-03* .00039%0" 22% 1* 9039E-03" NaNQ*™ NaNQ™ 6.96
.6442E-03" .00049%0" 33* 1* .1138E.02* NaNQ™ NaNQ* 10.36
.8110E-03* .00062"0" 44™ 1% 1432E-02" NaNQ™ NaNQ* 13.70
.1021E-02% .00078"D* 55% 1™ .1803E-.02* .0000E+00* .0000E400* 17.03
.1285E-02"® .00098™0* 66* 1* ,2270E-02" .0000E+00* .0000E+400*  20.37
.1618E-02® .00124%0" 77* 1* 2857E-02* .0000E+00™ .0000E 400"  23.84
.2037E-02* .00156"0" 88* 1™ 3596E-02* .0000E+00* .0000E+400* 27.32
2565E-02* .00196™0" 99* 1" 4527E-02* .0000E+00" .0000E400* 30.83
.3229E-02® .00247%0* 110" 1™ .5698E-02" .0000E+00* .0000E+00™ 34.33
4065E.02* .00311™0* 121" 1* .7171E.02" .0000E+400* (000E+400* 17.75
,5117E-02* .00391™0* 142" 1* .9025E.02* .0000E+00* 0000E+00™ 44.38
.6442E-02" .00492%0* 163™ 1* .1136E-.01* .0000E+00™ .0000E+00* 51.08
.8110E-02" .00619*0* 184™ 1* .1429E-01* .0000E+00™ .0000E-+00* 57.80
.1021E-01* .00779®0* 205* 1* .1798E.01™ .0000E+00" .0000E+00* 64.46
.1285E-01™ .00980*1* 242" 1* .2263E.01* .0000E+400* .0000E+400* 73.15
.1618E-01™ .01233*1*  284™ 1* .2846E.01" .7362E-04™ .7362E-04™ 82.56
.2037E-01® .01551%1" 326" 1* .3579E.01" .3673E-03™ .3673E.03* 92.09
\2565E-01* .01950*1* 368" 1* .4501E-01" .1236E-02™ .1236E-02" 101.27
J3229E-01*  .02452%1*  410* 1* .5658E.01* .3376E-02™ 3375E.02* 110.58
4065E-01* .03081"1"™ 452" 1® .7111E.01* .7761E-02* 7761E.02" 119.91
J5117E-01*  L02871*1*  514™ 1* B8932E.01* 1553E-01™ 1553E.01% 133.73
6442E.01™ .04860%1* 576" 1™ .1122E+400% .2778E-01* .277BE-01™ 147.74
8110E-01™ .06009"1™ £38™ 1= 140TE400* 4538E-01" 4537E-01% 161.47
1021E4-00* .0T648%1* 700" 1* .1765E+400™ 68B7E.01% .6884E.01" 175.32
.1285E400® .09581™1*  762* 1* .2211E+00™ .9842E.0 1™ 9836E-01* 189.21
1618E400" .11991*1* 824 1™ 2767E+400" .1339E400* .1338E+00™ 203.16
203TE400" .14987*1" 886* 1™ .3458E+00% .1749E+400" 174TE400™ 217.54
2565E400™ .18701%1*  948™ 1™ 4316E+00™ .2209E+00* .2206E400* 232.10
3229E-+00*  .23291"1* 1010* 1* .5375E+400™ .2714E+400" .2710E4+00™ 246.51
4065E+00® .28939*1* 1072™ 1™ 6678KE400* .3257E4+00* 2251E400* 26103
5117TE400® 35854™1" 1154™ 1™ 8273E400% 3833E+400* 3824E400* 280.22
6442E400™  .44271%1% 1236" 1* .1021E401"% 4436E+400" 4424E+400* 299.4%5
8110E400™ .54442"1™ 1318" 1™ .1256E+401* .5063E400™ .5047E400* 319.2%
1021E401™ .66632%1* 1400" 1* .1537E401® 5708FE400* .5688E+400% 339.10
[1285E+01*  .81097%1* 1482% 1™ .18T1E+401" .6369E 400" .6344E+400* 359.65
1618E401® 9B06B™1™ 1564 2% .2262E+01% 7042E+4C0™ T012E+400% 381.06
2027TE401% 1.17672%1% 1646~ 2* .2714E+401* .T726E+00* .7689E+00* 403.26
256SE401" 1.39892"1* 1728 2* 3226E+401™ .8418E400" 8375E+400* 426.21
.3229E+01™ 1.64503™1* 1810" 3* .3794E401* .9117E+00* .9067E+400* 449.10
4065E401" 1.91015%1% 1892™ 3" .4404E401™ .9823E+400™ 9764E+00* 473.17
.5117E+401™ 2.18646®1* 1994™ 3* 5041E401* .1053E+01" .1046E+01* 504.13
6442E4+01™ 2.46304%1* 2096™ 4* .5677E401™ .1125E+01* .1117E+01* 536.26
.8110E401™ 2.72711%1* 2198 4* .6285E+01™ .1196E401" .1188E+401* 569.27
1021E402* 2.96572%1* 2300* 4* 6833E+01" .1268E+01* .1258E+01* 604.10
.1285E+402* 3.16809%1* 2402* 4™ .7297E+401" .1340E+01™ .1320E+401* 639.60
.1618E 402" 3.32808%1™ 2504™ 5™ .7663E401* .1413E+401™ .1401E401* 676.88
.2037E 402" 3.44535%1™ 2606* 5* .7929E 401" .1485E 401" .1472E401* 714.77
.2565E 402" 3.52493*1™ 2708™ 5* .8106E+401" .1558E401™ .1543E401* 752.90
.3229E+402" 3.57402%1* 2810* 5* .8213E+401* .1631E+01* .1615E+401* 787.74
4065E402% 3.60342*1% 2912% 5 B8272E+401" .1704E+01™ .1686E+01* £22.62
.5117E+402* 3.61839%2* 3036 5* .8296E+401* .177TE+01" .1758E+401% 860.22
.6442E+02* 3.62777%1% 3210% 5" .8305E401* .1850E+401™ 1829E+01* 904.09
8110E+02" 3.63063%0" 3301™ 5* .8B304E+401* .1923E401* .1901E+401* 935.06
1021E+03* 2.63260%1* 3333% 5* .8298E+01* .1997E+401™ .1972E+401* 966.52
1285E+03* 3.63402™0™ 2484™ 5" .8289E+01™ .2070E401% .2044E+401* 998.12
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1618E 403" 2.63493*1*
.2037E+03% 3.63547*0"
.2565E4-03* 3.63602*2*
.3229E+403* 3.63658%2*
4065E 403" 3.63730%2*
5117E403* 3.63831"2*
.6442E 403* 3.63971"2"
8110E402" 3.64158"2%
1021E 404" 3.64404"2"
.1285E404™ 3.64737%2"
.1618E 404" 3.65164"2"
2037E+404™ 3.65708%2*
.2565E4+04™ 3.66391"2"
3229E+404* 3.67250%2*
4065E4+04* 2.68314%2*
5117E404* 3.69611*2*
.6442E4+04* 3.71164%2*
.8110E+404* 3.73009"2*
1021E405" 3 75200%2*
1285E 405" 3.77716%2"
1618E+05* 3.80586™2*
.2037TE+405" 3. 83828*2"
2565E 405% 3.87451%2*
J3229E 405 3.9146172%
4065E 405 3 95874"2"
5117E+05% 4.00701%2"
6442E405* 4.05929*3"
8110E405™ 4.11497"3"
J1021E406™ 4.17441%3%
.1285E 4+06™ 4.23695"5"
1618E+406* 4.20316*3"
.203TE4+06™ 4 37127%3*
\2565E4+06™ 4.44124%3"
3229E 406" 4.51289%4"
4065E+4+06* 4.58539™4"
.5117E406" 4 65862*5"
6442E 406" 4.73237%4"
8110E406* 4.806€0%4*
.1000E 407> 4.87286"2"
Buildup starting at td=
4065E-04" 77 02718%2"
5117E-04™ 77.02719*1*
6442E.04™ 77.02721*1*
8110E-04" 77.02723"1*
1021E-03* 77.02726"1*
1285E.03* 77.02729"1*
1618E-03% 77 .02733*1*
2027E-023" 02737"1"

I REschd 274271
2229E.02" 2749°1*
4065E.02" 27571
L117E-02" 2774%)"
6442E.03® 77 02797"1"
8110E.03* 02822"1"
1021E- 5

1285E. U2885%1"
1618E.02% 77 02924=1*
2027E.02% 7T 02970%1%
2565E- 0202471"
3229E. 02083"1"
1065E- e3i6cm1”
5117E.02% 77 03271"1*
6442E-02" 77 03238"1"
B110E-02% 77 025%2®1"
1021E-01% 77 03738"1"
12R5E-01% 77 03965"1*
1618E.01™ 77.04245™1"
2037E.01" 77 04589°1*
2565E-01% 77 05015"1*
3229E-01* 77 055441
4065E.01* 77.06201™1*
£117E-01* 77.07030"1*
€442E.01* 77.08060"1*
8110E-01" 77.09342"1"

7
1021E400™ 77.10936"1"
T

1285E400* 77.12919%1*
J1618E400% 77.15384%1"
2037TE 400" 77.18446*1"
2565E 400" 77.22242%1"
3229E400" 77 26926"1%
40C5E 400" 77 32724%1%
5117TE400" 77 39841™1"
€6442E 400" 77 48530"1*

3576 5*
3667" =~
3816* 5*
3999* 5*
4182* 5™
4395™ 5*
4608" 5*
4821" 5~
5034% 5*
5247" 5*
5460" 4*
5673" 4*
5886™ 4*
6099* 4*
6312% 4™
6555™ 4™
6798" 4~
T041™ 4%
7284% 4™
7527% 3™
T7TT0" 3*
8013" 3*
8256" 3™
R499% 2*
8742" 3*
9015™ 3*
0313% 3*
9677T™ 3*
10042* 3*
10433* 3*
10816* 3*
11185* 3*
11549~ 3*
11940* 3"
12395™ 3=
12900* 3*
13410~ 3*
13977~ 3"
14523" 3~

.8276E401"
8258E401"

8222E401*
B1T1IE401*
8110E401*
8039E401~
7956E401*
7860E+01*

TT49E+017

7621E401*

T4T6E401"
7313E401™
7130E401*

6928E+401"

6711E+401*

6477E 401"
6231E401*

.5978E401"

5723E401*

.5472E401"
.5231E401"

5007E 401"
4803E401*
4620E+01*

.4460E-+01*

4322E 401"
4205E 401"
4104E 401"
4021E+401°
3953E+01*
3898E+401*
3853E401"
.3918E 401"
3742E 4017
3771E401°
375TE401*
3746E+01"
.3738E+01"
3732E401*

2144F. 401"
2217E+4017
2291E401*
.2365E401™ .
.2439E 401"
?2512E4+01*
.25B6E401*
.2660E+401*
27350 401*
2809E401™
.2883E+401" .
.2957E4+01" .
.3032E401" .
3106E+401"*
3181E401* .
L3255E401" .
.3330E+01*
3405E+401" .
3480E+401" .
.3554E 401"
.3629E 401"
.3704E 401"
3780E+01*
.3855E401"
3930E401* .
.4005E401*

4081E401*

4156E401*

.4232E+01*

.4307E+01*

4383E+01™

4459E401"

4535E+401*

4611E401"

2116E+01* 1029.82
2187E+401* 1061.76

.2259E+401% 1103.62

2331E401* 1150.53

.2402E401* 1197.07
24T4E401* 1251.73
.2546E401* 1307.17
2617E401% 1362.15

2689E+01" 1417.98
2761E401% 1475.01
2832E401* 1535.08
2904E+01* 1595.93
2976E+401* 1658.26

.3047E+401% 1721.2%

3119E401* 1786.82
2191E401™ 1861.89

.3262E+401* 1927.09

3334E401* 2012.32
3406E401% 2089.22
347TE401* 2168.68

.3549E401% 2248.17
.3621E401" 2327.64

3692E401* 2407.06
3764E4+01" 2486.56
3836E+401* 2566.91
3907E+01* 2657.68
3979E401™ 2753.0%
4051E+401% 2859.26
4122E401™ 2965.61

.4194E401% 3078.18

4266E401™ 3197.40
4327E401* 3318.3%
4409E4 01" 3440.22
.4481E+01% 3571.83

4687E+01" 47.52E401™ 3719.49

4763E401"
.4839E401*
4915E401*
.4984E 401"

.4624E+401% 3880.04
.4696E+01" 4044.06
AT6TE+401* 422062
4833E+01* 4388.52

24601372E407 CPU(MTRX CALC.)= 2806.630

14526%°3°
14528* 3~
14530" 3*
14532% 3*
14534* 3*
14536™ 2*
145387 3"
14540 27
14542= 1=
14544= 2
14546% 2=
14568" 1=
14590 3~
14612* 3~
14634™ 3
14656% A
14678 2%
14700" 3"
14722% 2=
14744" 2
147C6" 2"
14808= 2=
14850 3"
14892" 2*
14934* 3"
14976" 2"
15018 3=
15060" 3*
15102" 3*
14144" 3"
15186* 3*
15248= 3~
15210™ 2*
15372% 2*
15434* 2%
15496™ 2=
15558"= 2*
15620* 2*
15682" 2=
15744% 2=
15806* 2*
15888* 2=
15970~ 2*

.3732E 401"
.3732E401*
3732E+401"
.3732E401*
.3732E+401*

3732E401"
3732E+01"
3732E+401*
27T31E401*
3731E401"
AT21E401™
3731E+01”
2730E401"
3730E+01*
3729E4+01"
3728E401*

372TE401"

3726E+01*
2T25E 401"
3722E+401*
3722E401*
3719E 401"
3716E401*
3713E+01*
JT0BRE401*
3703E+401*

.363TE+01"

3683E401"

.3679E+401"

3667E4+01"
3652E401°

.3632E+01"

3609E 401"
3579E401*
.3542E 401"
.3497E401"
.3440E401*
.3369E+01*
3281E+01*
.3173E401*
.3040E+01*
2875E 401"
2675E401*

NaNQ™
NaNQ*
NaNQ*

NaNQ*
NaNQ*
NaNQ*
NaNQ*
NaNQ*
NaNQ*
NaNQ™
NaNQ™
NaNQ™
T692E 402"
7692E 402"
T692E 402"
76927 402"
7692E 402"
7692E402*
.7692E+02"
7692F 402"
7692E+02"
7692E +02*
7692E 402"
7692E 402"
T692E4027 .
7692E 402"
7692E+02"
7692E402*
.7T692E 402"
7693E+02*
.7695E 402"
7T696E+02"
. 7699E 402"
7702E402*
7706 E+402"
7710E402*
.7715E+402"
7720E 402"
7726E+02"
7732E402*
7739E+402*

NaNQ* 4390.89
NaNQ™ 4391.54
NaNQ® 4392.18
NaNQ* 4392.84
NaNQ™* 4393.48
NaNQ* 4394.13
NaNQ* 4394.78
NaNQ® 4395.43
NaNQ® 4396.08
NaNQ* 4396.72
NaNQ® 4397237
NaNQ™* 4404.41
NaNQ* 4411.46
NaNQ* 4418.55
TTOTE+02% 4425 62
TTOTE+02* 443268
7TT0TE402" 4439.74
TTOTE+402" 4446.77
TOTE402" 4453 81
7O7TE+402" 4460 .88
TOTE+402% 4467.95

-
7

7
TTOTE402" 448).45
TTO7TE402® 4494 93
T707E+02* 4508.39
TTOTE 402" 4521.88
TT07E+402™ 4535.3¢
TTOTE402* 4548.82
7707TE+02% 4562.23

.TTO7E402% 4575.71

7707E402* 4589.19
7708E402* 4602.68
TTOBE-+02* 4622.60
7T10E+02% 4642.50
T7T11E402" 4662.40
77T14E+402™ 4682.28
7717E402* 4702.18
.7T720E402* 4722.24
T724E+402% 4743.02
.7729E+402% 4763.80
T734E402" 4784.57
TT29E+402"% 4805.3%
TT45E402" 4832.84
7791E+402% 4860.80
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.8110E 400"
.1021E+401*
.1285E401"
.1618E+01*
2037E401*
.2565E401*
.3229E+401*
4065E401*
.5117E401*
.6442E401™
.8110E+401*
.1021E402"
.1285E402*
.1618E+02"
.2037E402*
2565E 402"
.3229E 402"
.4065E402*
5117E402"
6442E+02"
.8110E402"
.1021E402*
1285E403"
1618E+03"
2037E403"
.2565E403"
.3229E 403"
4065E 403"
.5117E+403"
6442E403"
8110E+03*
1021E 404"
1285E 404"
1618E 404"
2037E404"
2565E 404"
3229E 404"
4065E 404"
5117E+04"
6442E 404"
8110E 4+04™
1021E405"
1285E 405"
1618E+05*
2037TE+05"
.2565E 405"
3229E 405"
4065E+05"
CI1TE4OL"
€442E+05"
B110E +05°
102(E+06"
1285E 406"
1618E +0€"
203TE 406"
2LELE4UE"
3229E 406"
4065E 406"
5117TE 406"
6442E +06™
R110E 406"
1000E 407"

77.59070"1*
TT.71747%1"
77.86841%1*
78.04573"1*
78.25007*1*
78.47962°1"
78.69617%1"
78.72456"1"
78.72773"1*
78.72983*1*
78.73177"1"
78.73368"1%
78.73568*1*
78.73782"1*
78.74020"1*
78.74291"1%
78.74613"1"
78.74809"0"
78.75044%0"
78.75332"0"
78.75682%0"
78.76143"0"
T8.76675%2"
78.77366"1%
7B 7TB447"0"
TR.TgT27"I"
78.81210%0"
78.82672"1*
76 8440T"0"
78.86435°0"
78.88643"1*
78 91654°2"
78 94909"0"
78.98664"°0"
79.03477"1"
79.08202%1"
79.13226%0"
79.18853%0"
79.25110"1"*
79.32016"1"*
79.39547%1"
79.47719°1*
79.56552%1*
79.65950%1"
79 76446°0"
79.93696"1"
80.12909"1™*
80.30233"%1*
%0 4LB2R"1™
R0 61T77TR*1*
Q. TE289% 1"
R0.8910%%1"
81.00219%1"
81 10225%0%
81 18916°0"
81.26615%1*
81 33407"1"
81.29435%0"
81.45667%0"
81 51197%0"
8] 56218%C*
81 £0293%0"

16052" 2*

16134 2% .
16216* 1*
16298* 1* .
16380" 1™ .
16462 1*
16544" 17-.
16626 1*-.
16728" 1*..
16830 1*-.
16932* 1*-.
17034" 1%,
17136% 1°..
17238" 1°..
17340 1°*-
17442% 1%,
17544" 1%,
17596% 1*-.
17657™ 1*..
17718% 1*-.
17779% 1%,
17858 1%..
17973% 1%,
18170 1%
1R566" 1°%-.
15681% 17,
19443% 1*.
20022" 1*.
20697" 1*
21549" 1°-
22€40" 1%
23855" 1%
25270" 1",
26701" 1°.
28463" 1=
30205" 1*-
320427 17
34080" 1°*..
36482% 1%,
39110® 1.
42046" 1*.
45278" 1*..
48845° 1*.
52744" 1°-.
57210" 1%,
£3403* 1*..
70565™ 1%
77763" 1"
R5102% 1%
93294" 1%
101424~ 17
109196* 1*%.
116481% 1°.
122486 1%

129%07™ 1°..

135905™ 1.
141455" 17
146586* 1°%.
152002% 1*.
157054% 1*.
161827% 1°.
165891" 1=

2432E4 01"
2139E401*

1791E+401*

1382E401*
9106E+00"

.3814E400"

1176E+00*
1820E 400*
1880E 400"
1912E+00"
1936E +00*
1954E400*
1969E 400"
1979E 400"
1986E+00*
1990E 400"
1992E400*
1992E 400"
1992E400®
1990E 4 00*
1988E 400"
1987E+00"
1985E 4 00%
1975E 400"
1966E 400"
1953E 400"
1940E 400"
1925E 400"
1908E 400"
1889E 400"
1866E 400"
1837E+00*
1806E 400"
1769E +00*
1722E 400"
1677TE 400"
1629E 400"
1575E 400"
1516E400*
1451E 400"
1382E 400"
1307E 400"
1228E400°
1145E 400"
1053E 400"

9085E.01* .

7561E-01*
6270E-01*
%181E.01"
4151E.01*
3292E-01*
2603E-01*
2061E.01*
1628E-01*
1285E.01"
1008E.01"
7942E.02"
£314E.02"
4809E-02*
3616E.02*
2692E.02*
2036E-02"

7745E+02"
7752E 402"
TT58E 402"
7766 E+402*
.7T73E+402"
.77T80E402*
.7788E+402*
.7T795E 402*
.7802E 402°®
.TB10E 402"
.7817E-+02"
.TB24E 402"
.7T832E 402"
_7B39E 402*
7847E 402"
.78S4E 402*
.7862E 402"
_7869E 402"
.7876E402*%
.7BB4E+402*
.7891E+402*
.7899E 402*
.7906E 402"
.7914E+402*
.7921E 402"
.7928E 402
7936E 402"
.7943E 402"
7951E 402"
_7958E 402"
7965E 402"
.7973E+402*
.T980E +02*
T98TE 402"
7995E 402"
.8002E 402"
.8009E +02”*
8017E+02"
8024E +02°
.8031E+402*
8038E 402"
8046E+02°
8053E+402°
8060E 402*
806TE 402"

.T75TE+02* 4889.51
.77€4E+402" 4918.25
.7TT7T0E402" 4946.99
TTTTE+402% 4977.08
.7784E 402" 5007.18
.77T90E+02* 5038.25
JT79TE+02* 5069.29
.7804E+02* 5100.31
.7811E+02* 5137.67
.7818E+02* 5175.03
.7825E4-02% 5212.42
.7833E+402" 5248.98
7840E+02* 5284.71
7847E 402" 5319.74
.7854E+402" 5353.53
.7861E+402" 5386.22
.786BE+02™ 5418.89
.7875E402% 5443.08
.7882E+402" 5471.80
.7890E+402* 5500.49
.7897E 402" 5529.18
.T904E 402" 5562.21
.7911E+02* 5600.73
.791BE+02* 5661.09
L7925E+402" 5783.74
.7933E+02* 5910.2%
7940E+02* 6048.07
7947E402" 6229.32
7954E+402" 6441.10
.7961E+02" 6695.08
.T968E+02* 7027.05
7976E+02* 7396.42
7983E 402" 7866.26
.7T990E+02" 8355.75
.7997E402° 8984.43
BOO4E+02" 9625.38
.8011E402" 10332.78
.8018E+02" 11103.29
8026E+402" 11985.15
8033E+02% 12946.05
.BO40OE 402" 14023.15
.8047E+402* 15206.34
8054E402* 16515.37
.8061E 402" 17960.86
.8068E 402" 19791.34

B074E 402" B0TS5E+402" 22075.74

80B81E+02*
80BBE 402"
8095E 402"
8102E+402¢
8109E+02*
8116E4+G2™
8122E 402"
8128E 402"
813tE+402"
8140E 402"
B146E 402"
8151E402* .
815€E 402"
8161E+02"
8165E 402"
8168E 402"

8082E 402" 24524.77
8089E<+02* 27008.05
8096E+02" 29623.3%
8103E+02® 32537.02
8109E 402" 35448.07
8116E+02" 38271.00
8122E+402" 41052.38
8129E 402" 43782.64
8125E 402" 463623 64
8141E 402" 48853.52
8146E 402" 51294.20
8151E 402" 53647.77
8156E 402" 56044.98

8161E 402" 58363.28

8165E+02" 60585.80
8168BE+02™ 62482.02
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NUMERICAL SOLUTION FOR A GRAVITY DRAINAGE PROBLEM INCLUDING
A FREE SURFACE AND SEEPAGE FACE IN A RADIAL FLOW INTO A WELL.

This program is written in FORTRAN.
LIST OF INPUT DATA AND COMMENTS

MM = Number of grid blocks in the radial direction. Typical
value still on study (sugested around 30 or 40);
N = Number of grid blocks in the vertical direction. Typi-
cal values around 60;
Note: the above parameter can be set in the subroutine
after conclusion of the SENSITIVITY ch.

Cl = Liquid compressibility, 1/psi. Sug. for water = 3.d4-06;
Ct = Total compressibility, 1/psi. Sug. for incompres. = Cl
Bo = Formation volume factor;

RHO Liquid density, 1b/{t3;

VISC =  Liquid viscosity, cp;

POROS = Porosity, fraction;

Ho = Qriginal liquid height in the formation, ft;
Rw = Wellbore radius, inches;

SKIN = Skin parameter;

PERMH = Horizontal permeability, mD;

PERMV = Vertical permeability, mD;

Q= Liquid production, bbl/day;

PWMIN = Minimum wellbore pressure allowed, psi;
TFLW = Flowing time, min;

TBUILD = Buildup time, min;

Swr = Residual liquid saturation, fraction.
ITERMX = Maximum number of iterations per time-step, set = 3;
{FLOW = Constant(0) or variable (1) flow rate, set = 0;

NQV = Number of flow rate steps, set = 0;
RED = External dimensionless radius, set = 1.d406;
EPS = Small residual number, set = 1.d.06;
NTPR = Number of times of pressure profile outputs, set = 0;
IPRNT1 = Output control of units of wellbore press., set = 1;
(=0, dimensionless; =1, field units)
IPRNT2 = OQutput control of units of head profile, set = 0;
IPRNT3 = Output control of units of total pres. dist., set = 1;
TDI = Initial dimensionless time-step, set = 1.d-02;
Note: This value rules the sucessive time-step sizes;
TDPR(1) = Dimensionless time for profile outputs. Must be included
in dados subroutine, just after NTPR.
NOBS = Number of observation wells, set = 0,
DIST(K) = Distance of obs. wells from wellbore center, ft; no data
TETA = Time relaxation param. (between 0. and 1.), set = 0.5;
MATMAX = Max. numb. of matrix calculation allowed, set = 100,000;
NTDI =  Initial number of time-step per log cycle, set = 10;
MULT =  Definition of MULTIMODAL radial spacing, set = I;
Nove: =1, Multimodal; =0, logarithmic spacing;
RMULT = Used in Multimodal mode, set = 400,000.
Note: it represents the ratio between the first and
the last radial grid size. WARNING: it must be
revaluated if red .ne. 10e+6.
PARTI(J) = Partial penetration parameter for each block. set = 1,;
Note: this value (between 0. and 1.) multiplies the
individual each block sandface permeability.
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* Author: F.R.COURI
* Characteristics of the program:
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1) Main program and several subroutines.

2) Variable grid block angles of flow.

3) Drawdown at variable flow rates (opt.).

4) Multimodal radial grid or standard logarithmic
spacing options.

%) Progressive grid region calculation: only blocks
within a perturbed cylindric region by the
production are considered.

6) Calculation of potentials at any degree of
implicitness in time.

7) lterative wellbore potential calculation
using explicit quadratic equation;

8) Mininum wellbore flow pressure allowed;

9) Analytical jacabian;

10) Matrix solver: CB-solver:

Matrix solver that calls MSILUM, which per-
forms incomplete factorization, and MSGRMN,
which does ORTHOMIN iterations.

11) Main output files:

52 =; Normalized {ree surface profile at tdpr;
s3 =; Normalized iso-potential curves at
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the shuttin time tfiw;
S11 =; Pres. drawdown, buildup pres., seepage

length, other control parameters vs. time;
512 =; Head profile of Wyckoff et al. experiment;
For each observation well "k" located at diffe-
rent positions dist(k) from the center, new
files "s*" (where * means "k" value) containing
head, seepage, Ramey et al.(1989) and Theis(1932)
solutions are generated. The "open” statements
need to be incremented.

LT

- -

% B OE R OE R E NS

PARAMETER(mcm=80,ncm=100)
IMPLICIT REAL*8(A-H,0.2)

common /alt/zd(mcm,ncm),zold(mem,ncm),hd(mem),hold(mem),zdw(nem),
& hdavg(mem+1),2zdavg(mem+1)

common /geom/u(mem),rd(mcm+1),al(mem),fr(mcm),permx(mcm,ncm),

& rbar(mem+1),fx(mem,ncm),part(ncm),alf(mem+1)

common /pres/w(mcm,ncm),wold(mem,ncm),ww(ncm),wwold(ncm),wo(ncm)
common /grd/pd(mem,ncm),grad(mem)

common /tempo/tdpr(10)

common /thick/dh(mcm),dhl(mem),dhold(mem),dzd(mem),dzavg(mem+1),
& dhavg(mecm+1)

common /coef/A(mem,ncm),B(mem,ncm),C(mem,ncm),D(mem,ncm),

& E(mem,necm),F(mcm,necm)
common /jacob/DA(mem,ncm),DB(mem,nem),DC(mem,ncm),DD(mem,nem),
& DE{mcm,ncm),DF(mcm,ncm),DG{necm,nem)

common /angle/ cosn(mcm,ncm)

common /[varfiw/tq(20),qvar(20),aq(20),bq(20),cq(20)
common /deriv/dww{ncm,ncm)

common /profl/dist(30)

common [logic/iwhfig,Iflow ktcnt ktfig,lgchs,ihw
common /iprnt/iprntl,iprnt2,iprnt3

common [pcte/qdold,tdb,tdnxt,istar

common [dado/poros,permh,permv,teta

common [dadol/ho,rw,visc

common /dimlss/td,dtd,hwd,hod,hs,dadw,dhw,qd,red
dimension wl(mcm,ncm),dzold(mem)

common /debg/tmin,iter

.Declaration of output files:
open(40, file="ramey' status="'unknown')

rewind(40)

open(41, file=='theis’ status='unknown')
rewind(41)

open(2, file='52"status="unknown’)
rewind(2)
open(3,file='53"statns="unknown')
rewind(2)
npen(11.file='s11',status="unknown’)
rewind(11)

open(12 file='s12",status="unknown’)
rewind(12)
open(]3‘ﬁ1e='s13‘.slan?s=‘unknown‘)
rewind(13)

open(14 file='s14"status="'unknown’)
rewind(14)

openy15.file='s15" status="unknown’)
rewind(15)
open(16 file='516",5tatus="unknown')
rewind(16)

= %= DATA INPUT

CALL DADOS (MM.N,ITMX,IFLOW NQV,RED,HO . RW ,POROS.VISC,RHO,BO
& . SKIN PERMH PERMV,Q.EPS,PWMIN NTPR,IPRNT1,IPRNT2,IPRNT3,IPRNT4,
&TDLTBUILD,TFLW,CL,CT,NOBS,SWR,HC,TETA,MATMAX ,NTDI,MULT RMULT)

Allowing for a varible teta in the program (just enter
teta ¢ 1in the input data)
This is not recommended for normal runs, only useful for tests
with the program
if (teta .gt. 1.) then
itet =1
tetai = teta
else
itet = 0
endif

= *»* PRELIMINARY CALCULATIONS OF CONSTANTS AND INITIAL VALUES

CALL PRECAL (mm,n,ho,hw,visc,rho,rw skin,q,pwmin,iflow,nqv,
& hc,Bo,tdi¢l,ct,nobs,FK,DU,CTIME, HWMIN,HCD,
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& HWOLD,CLD,CTD,FS,REDDU,RDU,Muit,Rmult)

- Dimensionless buildup (tdbld) and flowing (tdfiw) time
OBS.: nbuild is a logic parameter for the buildup period.
nbuild = 0
tdbld = tbuild/ctime
tdfiw = tfiw/ctime
if (tdbid .ge. eps) nbuild = 1

= »=* INITIAL VALUES

CALL INIT (mm,m,iter,iterh,itime ktist, mflag,
& matriz,nprat,ntd,ntdi,dzd(1),dtd1,el,
& tdi,grado,hwdi,tdfiw,tq(nqv) )

Set a parameter for the matrix solver (set the order of expansion)
ideg = 1 gives almost the same results as ideg = 2, although

ideg =1 ailows a much faster solution.

ideg =1

= »»x PREPARE TOPS OF INPUT DATA SUMMARY IN SOME OUTPUT FILES:
call title(mm,n,nobs,ho,rw,skin,q,cl,ct,he,
& visc,swr,ctime,Red,Mult,Rmult,iprntl)

- - START OF NEXT TIME-STEP CALCULATIONS

= mux CALCULATION OF THE FLOW RATE (WHEN VARIABLE RATE 1S EEING USED)
1 if (iflow .ne. 0) call FLWRT(iflow,nqv,td,tdfiw,QD)

* === MAXIMUM NUMBER OF ITERATIONS UPDATING: IT'S A FUNCTION OF THE
- DIMENSIONLESS TIME LOG CYCLE

itermx = dloglo(td)

if (itermx .It. 3) itermx = 3

if (itermx .1t. itmx) then

itermax = itmx

endif
- if (ktlst .gt. 10®itermx) ktlst = 10*itermx
- if (dabs{hwd-hwold) .le. 0.001) ktlst = 3

= === CHECK OUTER BOUNDARY EFFECTS AND EXTEND RESERVOIR EXTERNAL RADIUS
- IF NECESSARY

if (mﬂag .eq. 1) goto 3
do j = n,1,-1
arg = w(m,j) - wo(j)
if (dabs(arg) gt 1.d-09) then
mflag = 1
go to 2
endif
enddo

2 if (mflag .eq. 1) then
if(rd(m<1) .ge. red) then
When the outer boundary is reached
“{ (imfig.eq.0) print ®*, 'OUTER BOUNDARY REACHED AT TD = 'td
imflg =1
else
When external boundary isn’t reached, increase one additional
cilyndric annullus:
m=m+ 1
write(*,145) M, TMIN,ITER
endif
mflag =
endif
145 format('GRID INCREASE TO M='i3,' AT TMIN=',e10.4," ITER=",i3)

= »=* CALCULATION OF GEOMETRIC PARAMETERS
3 CALL GEOMET (m,n,{s,reddu,rdu,skin,eps,alfw,matriz,igchs)
- The following parameter is a reference for the first time that
- WHGH subrt. is called

iwhflg = 1

= ==# LABEL 2000: AUTO REDUCED TIMESTEP RESTART FROM HERE AFTER TDCOR
2000 tmin = ctime ™ td

mmmwmm - - LT - LI R TTY

call cputime(time0,kcode)
time0 = time0/1000000.

0 M O O O OO OO O OO 0 A 0O 0 0 0 0 OO

iter = 0
iterh =
idh = 0
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hwdl = hwd

* #x* PIRST GUESS FOR HWD, CALCULATED WITH OLD W.VALUES
if (istar .eq. 1) then
istar = 2
write(*,*) 'START CONSTANT PRESSURE 1.B.C. AT TMIN=',tmin
write(11,*) 'START CONSTANT PRESSURE 1.B.C. AT TMIN=",tmin

endif
- Subroutine WHGH is called for the first time in the time-step
CALL WHGH (n,hwold,eps,hwmin,tmin,iter,
& alfw,grado,cld,j1,hwd1,XJ,iWB,QDNW,QNW)
- if (ihw .ne.0) go to 500
hwdl = hwd
= START OF ITERATIVE PROCEDURE
0000000 0000 200 300 200 000 W0 00 0 300 00 20 00 0 0K 300 00T 30 00 00 20 90 000 00 08 0K "RmEN

® w»» KEEP POTENTIAL VALUES TO BE COMPARED IN THE NEXT CALC. LOOP
100 doi =1,m
doj=1,n
wi(i,j) = w(i,j)
enddo
enddo

* »** CALCULATION OF MATRIX COEFFICIENTS

* MATCAL is a logical to skip repeatition of same calculations
- of coefficients of the matrix which are not changed
- during the iteration process.
- MATCOF is the subrt. that calc. the matrix coefficients
- JACOBI is the jacobian coefficients subrt.
if (iter .eq. 0) then

matcal = 0
else

matcal =1
endif
CALL MATCO?2 (m,n,fk,rdu,ctd,awr,hcd,matcal)

CALL JACOBI {(m,n,j1,xj,Bwb,ctd,cld,hwold,
& grado,lgchs,matcal,alfw,Swr,dww2l)

TEMPORARY ONLY FOR DEBUGGING
if(tmin .ge. 9.999d0 .and. tmin .le. 1.000d1) then
if (matctl le. 12) then
call matdbg(m,n,iter,tmin,DA,DB,DC,DD,DE,DF,DG)
matctl = matctl 4+ 1
endif
endif

¥R R R R R

xoam= SOLVE THE JACOBIAN MATRIX

I O O 0 O O 0 OO 0 O R O OO

call cputime{timel kcode)

timel = timel/1000000.

if {timel .gt. 180000.) then
write(®,") 'CPU TIME EXCEEDED THE LIMIT OF 180000 MINUTES'
write(11,*) 'CPU TIME EXCEEDED THE LIMIT OF 180000 MINUTES'
stop

endif

LA R LRSS R AR A P R AR R T l:tl) LI Lt )
CALL SOLVE(m,n,ierr,ideg)
matriz = matriz + 1

if (ierr .ge. 3) then
mtxcnt = mtxcnt 41
if (mfixcnt .gt.100) then
write(™,999) cputot
write(®,*) '"ABEND: MATRIX SOLVER IS UNABLE '
stop
endif

hd TDCOR resets the initial time-step condition
CALL TDCOR (m,n,hwold, ktlst,tdbase)

~ Check for the last time step in the flow period:
arg = (td - tdfiw)/tdflw
if (dabs(arg) .gt. eps .and. Iflow. eq. 1) Iflow = 0
go to 2000
endif
MTXcnt = 0

TR0 O O OO OO
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call cputime(time2,kcode)
time2 = time2/1000000.
cpmat = time2 - timel
cputot = cputot + cpmat
1000 O O .

c *** CALCULATE THE NEW THICKNESSES OF FREE SURFACE LAYER BLOCKS
CALL THICKN (m,n,grado,iter,alfw,tmin,eps)

* wa» TIME-STEP CONTROL
he If thickness of free surface layer has shrinked too much, restart
e with smaller dtd
500 if (idh .ne. 0 .or. ihw .ne. 0) then
idhent = idhent 41
if (idhent .gt.100) then
write(®,999) cputot
write(®,*) "ABEND: NEGATIVE VALUES OF DH at i=',idh
write(*,*) 'or ABEND DUE TO NEG. DELTA IN HW CALC, IHW="'IHW
itop
endif

- TDCOR resets the initial time-step condition
CALL TDCOR (m,n,hwold,ktlst,tdbase)

- Check for the last time step in the flow period:
arg = (td - tdfiw)/tdfiw
if (dabs(arg) .gt. eps .and. lflow. eq. 1) Iflow = 0
go to 2000
endif
idhent = 0

= »*» RECALCULATION OF HWD, WW(J) AND J1

iwhflg = 2

CALL WHGH (n,hwold,eps,hwmin,tmin,iter,

& alfw,grado,cld,j1,hwd1,XJ,BWB,QDNW QNW})’
if (ihw .ne.0) go to 500

» #=s CHECK CONVERGENCE
iflag = 0
iflagh = 0
arg = (hwd - hwd1)/hod
if (dabs(arg) .gt. eps) iflagh = 1
doi=1m
doj=1,n
arg = wii,j) - w(i,j)
if (dabs(arg) .gt. eps) then
iflag = 1
go to 300
endif
enddo
enddo
- Check for the maximum number of matrix calculations
300 if(matriz .ge. matmax) then
hs = hsold
hwd = hwold
td = td - dtd
doi =1,m
hd(i)=hold(i)
dh(i) = dhold(i)
doj =1,n
w(i,j)=wold(i,j)
enddo
enddo . .
CALL PRINTA  (m,n iter,matriz,istar,itermx,ntprjiterh,tdfiw,
{k,tdbld,j1,tdi,visc,rw,qlast,rho,ctime,skin,
qdnw,qnw,nobs,hwold,xj,dww21,ctd.cpmat,cpudif,cputot)
write(11,9) matmax,time2
write(*,9) matmax,time2
9 format('Program interrupted, matriz =',i7,’ and cpu =',9.2)
go to 1001
endif

PR

Prepare next loop if iffag=1
if (iflag .eq. 1) iter= iter+41
if (iflagh .eq. 1) iterh = iterh 41
if (iflag .eq. 1. or. iflagh .eq. 1) then
if (iter .gt. itermx) then
if (jtermx .Je. 10) then
if (ktflg .ge. 5000) then
itermx = itermx + 1
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ktflag = 1
endif
endif
ISTAR = 1 detects the begining of constant wellbore press.
if (istar.eq.1) then
istar = 0
td = tdnxt
dtd = tdnxt - tdb
endif
CALL TDCOR (m,n,hwold,ktlst,tdbase)
if (1flow .eq. 1) Iflow = 0
if (ktflg. ge. 1000000) then
write(*,*) 'KTFLG = 10E+4+6, PROGRAM ABORTED, cpu=’,time2
go to 1001 ’
endif
go to 2000
else
hwdl = hwd
[T e
call cputime(time0,kcode)
time0 = time0/1000000.
000 A 00 R O T 2 0 O
go to 100
endif
endif
if (istar .eq. 1) then,
istar = 2
write(*®,*) 'START CONSTANT PRESSURE 1.LB.C. AT TMIN=",tmin
write(11,*) 'START CONSTANT PRESSURE 1.B.C. AT TMIN=",tmin
endif

if (td. gt. 10.) then
If there is any EHROR, reduce time-step
if (idh .ne. 0) then
idhent = idhent 41
write(6,®) '/EHROR.: hs.gt.hsold, ha=" hs,’ hsold=’,hsold
CALL TDCOR {m,n,hwold, ktist,tdbase)
if (idhent .gt.1000) then
write(*,999) cputot
write(*,*) 'ABEND DUE TO NUMERICAL PROBLEMS IN THE IBC'
stop
endif
go to 2000
else
idhent =0
idh =0
endif
endif

=== END OF ITERATIVE PROCESS

NSy e A e s S P PR P P P R T
call cputime(time3,kcode)
time3 = time3/1000000.

- Preparation of new wellbore flow rate in the const. press. case

qdold = qd*bwb

= Prepare some time step control parameters
arg = dabs(td - tdbase)
if (arg .le. eps) then

td = tdbase

kilst = kiflg

ktfig = 1

arg = tdbase - tdfiw

if (dabs(arg) .le. eps) then

td = tdflw
1low = 1
endif
endif

= Numeric dispersion control of hd(i) - round-off

doi=1m
if (dabs((hd(i)-hold(i))/hod) .le. 1.d-10) hd(i) = hold(i)
if (hd(i) .gt. hod) hd(i) = hed

enddo

= === PRINTOUT PROCEDURES
arg = (tdfiw - td)/tdflw

if (dabs(arg) .le. eps) td = tdfilw
if (kifig .eq. 1 .or. td .eq. tdfiw) then
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nprot = nprnt + 1

if (nprnt .eq. ntd/10 ,or, Iflow .eq. 1) then
if (1low .eq. 1) glast = qd
cpudif = time3d - time0

CALL PRINTA (m,n,iter,matriz,istar,itermx,ntpr,iterh,tdflw,
fk,tdbld,j1,tdi,visc,rw,qlast,rho,ctime,skin,
& qdnw,qnw,nobs,hwold,xj,dww21,ctd,cpmat,cpudif,cputot)
nprnt = 0
if (itet. eq. 1) call tetcti (hwd, td, tmin, teta, tetai)
endif
endif

* w=x TIME.-STEP CONTROL
if (ktflg .eq. 1) then
CALL TIM(tdi,td,dtd,tdbld,itime,dtd1,tdflw,
& qd,ntdi,ntd)
else
if (istar .eq.1) then
write(®,*) 'START CONSTANT PRESSURE 1.B.C. AT TMIN=',tmin
write(11,*) 'START CONSTANT PRESSURE L.B.C. AT TMIN=',tmin
istar = 2
dtd = tdnxt - td
td = tdnxt
else
¢ td = td 4 dtd
endif
endif
arg = (tdflw - td)/tdflw
if (itime .eq. 1 .or, arg. le. eps .and. nbuild .eq. 0) then
= Last time-step before stoping the program
CALL PRINTA  (m,n,iter,matriz,istaritermx,ntpr,iterhtdfiw,
& fk,tdbld,j1,tdi,visc,rw,qlast,rho,ctime,skin,
& qdnw,qnw,nobs,hwold,xj,dww21,ctd,cpmat,cpudif,cputot)
Go to 1000
endif

* »»x CONVERTING "OLD" INTO "NEW"
hwold = hwd

doi=1m
hold(i) = hd(i)
dzold(i) = dzd(i)
enddo

= »x» VERTICAL GRID REDEFINITION
- Numerical control to avoid dispersion
if (dabs(dh(i)-dzd(i})/hod .le. 1.d-10) dh(i) = dzd(i)
- VERGRD recalculates all the potentials and grid vertical
positions by interpolation, prior to the new time-step
CALL VERGRD(m,n,hod,dzold,tmin)

= x=x PREPARATION OF ITERATIVE PROCESS FOR THE NEXT TIME.STEP
doi=1m
Numerical control to avoid dispersion
if (dabs(dzd(i}-dzold(i)}/hod .le. 1.d-10) dzd(i) = dzold(i)
Initialization of a new time-step
dh1(i) = dh(i)
dhold(i) = dzd(i)
pd(i,1) = w(i,1) - grado * (zd(i,1)+dzd(i)/2.d0)
doj = 1,n
wi(i,j) = w(i,j)
wold(i,j) = w(i,j)
enddo
enddo
hs = hd(1)
hsold = hs
dhw = hs/n
dzdw = dhw

= ==« INNER BOUNDARY POTENTIAL DETERMINATION (App. 1)
doj = 1,n
zdw(j) = (n-j) * dzdw
if (zdw(j) .It. hwd. and .2dw(j)+dzdw .ge. hwd) j1 = j
enddo
if (1flow .eq. 2 .and. hs .It. hwd) J1 =1
x) = (hwd - zdw(j1))/dzdw
do 21l j=1,n
if (j- gt -)1 .or. hwd. gt. hs) then
wwald(j) = grado * hwd
go to 21
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endif
if (j .eq. j1) then
wwold(j) = grado/2.d0™ ((1.d0+xj)*hwd + (1.d0-xj) *

& (2dw(j) + dzdw))
else
wwold(j) = grado * (zdw(j) + dzdw/2.d0)
endif

21 continue
wwold(1) = wold(1,1)

call cputime(time4,kcode)
time4 = time4/1000000.
dif4 = time4 - tt4

- Restart a new time-step
go to 1
999 format('’PROGRAM INTERRUPTED AFTER CPUTOT='F6.1)
1000 WRITE(*,*) 'THE END'
1001 stop

end
0 A O OO OO R O 0020 D000 30 206 OO0 30 o 0K O o O 0 0 20 90 00 00 000 00RO 100 X O DO S O 0 30 0 0 U0 900 OO O 0020 0 30 0k
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subroutine dados(M,N,ITMX,IFLOW NQV,RED HO,RW,POROS,VISC,RHO,BO
& ,SKIN,PERMH,PERMV,Q,EPS,PWMIN NTPR,IPRNT1,IPRNT2,IJPRNT3,IPRNT4,
&TD!,TBUILD,TFLW,CL,CT NOBS,SWR,HC,TETA, MATMAX ,NTDI,MULT,RMULT)
PARAMETER(mcm=80,ncm=100)

- INPUT DATA READING SUBROUTINE

implicit real*8(a-h,0-2)

common /[tempo/tdpr(10)

common /profi/dist(30)

common [varfiw/tq(20),qvar(20),aq(20),bq(20),cq(20)

common /geom/u{mcm),rd(mcm+1),a1(mecm),fr(mem),permx(mecm,ncm),
& rbar(mecm+1),fx(mcm,nem),part(ncm),alf(mem+1)

®** Integer control parameters
read(®,1) m,n,mult,itmx,matmax,ntdi,iflow

*®% General fixed reservoir parameters
read(™,2) red,Rmult,cl,ct,ho,rw,poros,visc,rho,Bo

=== Qther reservoir properties and production data
read(*,3) skin,permh,permv,swr,hc

“u® Convergence checking and time.relaxation parameters
read(* 4) q,pwmin,eps,teta

®*® Qutput print control
read(™,5) iprntl,iprnt2,iprnt3,iprnt4

»

==* Time control parameters
read(™,6) tdi,tbuild,tfilw,ntpr
read(™,*) (tdpr(i),i=1,ntpr)

*=* Qutput profile
read(™,7) nobs
read("*,”)
read(®,*) (dist(i),i=1,nobs)

-

®=* Partial penetraticn parameters
read(*,8)
read(*,*) (part(j), j=1.n)

*** Number of variable flow rate - nqv
read(*,*)
read(®,7) nqv

.

=== Variable flow rates with time - tq(i), qvar(i)
do 100 i = 1,uqv
read(*.*) tq(i),qvar(i)
100 continue

format(7(/,160,i7))
format(10(/,160,{16.7))
format(5(/,160,e14.4))
format(4(/,t60,e14.4))
format(4(/,160,i5))
format(3(/,160,e12.4),/,160,i%)
format(/,160,i5)

format(/)

[ IR N

return

end
0C 0T OO O IO OO 0O O 00 O O 00 0 O O DO 00 O 0 a0
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SUBROUTINE INIT (mm,m,iter,iterh,itime,kt{st,mflag,
& matriz,nprnt,ntd,ntdi,dzd,dtd1cl,
& tdi,grado,hwdi,tdfiw,tq)
PARAMETER(mcm=80,ncm=100)

- SET UF INITIAL VALUES
implicit real™8 (a-h,0-2)
common /dado/poros,permh,permv,teta
common /dimlss/td dtd,hwd,hod, hs,dzdw,dhw,qd,red
common [logic/iwhfig,Iflow,ktcnt ktfig,Igchs,ihw
common/pcte/qdold,tdb,tdnxt istar

* ==« INITIAL VALUES

iter = 0
iterh = 0
itime = 0
istar = 0
ktent = 1
Iflow = 0
ktflg =1
ktlst = 1
mflag = 0
matriz = 0
nprnt = 0
lgchs =0
ntd = ntdi
dhw = dzd
did = tdi
didl = tdi
grado = 1.d0 / hod
hwdl = hwd
hs = hod

td = tdi

if (tdfiw It. tdi) tdflw = t

if (¢l .eq. 0) then

= 3*mm/4
else
m = mm/2
endif
if (red .Jt. 100) m = mm
return
end
TR IS LR SRR DRSS S S R 2 bt dt }) ANEEEW -
SUBROUTINE PRECAL (mm,n,ho,hw,visc,rho,rw,skin,q,pwmin,iflow,nqv,
& hec,Bo,tdi,cl,ct,nobs FK.DU,CTIME,HWMIN HCD,

& HWOLD CLD,CTD,FS,REDDU,RDU,Mult,Rmult)
PARAMETER(mcm=80.ncm=100)

Subroutine for preliminary calculations
implicit real*8(a-h,0-2)

common /dimlss/¢d.dtd.hwd hod,hs,dzdw dhw,qd,red

common /dado/poros,permh,permv.teta

common falt{zd(mcm,ncm).zold(mem,ncm),hd(mem),hold(mem),zdw(nem),
& hdavg(mem+1),zdavg(mem+1)

common /grd/pd{mcm,ncm),grad(mcm)

common [thick/dh(mem).dh1{mecm),dhold(mcm), dzd(mcm] \dzavg(mem+1),

& dhavg(mem+1)
common /geom/u(mecm),rd{mcm+1),al(mcm),fr(mecm),permx(mcm,ncm),
& rbar{mem+1),{x(mecm,ncm), part(nem),alf(mem+1)

common /pres/w(mcm,ncm),wold(mem,ncm) ww(ncm),wwold(ncm) wo(ncm)
common /[varfiw/tq(20),qvar(20),aq(20),bq(20),cq(20)
common /[profl/dist(30)

rw = rw [ 12.d0

- Dimensionless initial free surface position hod
hod = ho [rw

- Dimensionless Fluid position in the wellbore
hwd = hod

Dimensionless capillary fringe height

hed = he / tw

- Vertical to Horizontal Permeability ratio: fk

fk = permv/permh

Dimensionless flow rate qd

qd = 2.03328d4 * q * visc [/ (permh * ho * rw ® rho)
Dimensionless Liquid and Total Compressibility

cld = ho ™ rho * ¢l /144 d0

ctd = ho ® rho ® ct [144.d0

Geometric parameters
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-

*

du = 1.d0/mm

reddu = red ** du

arg = (reddu*reddu+1.d0)/2.d0
rdu = dsqre(arg)

Time Convertion factorfrom fron min.to dimensionless: t = ctime*td
ctitac = 144.60.d0™visc*poros®rw/(2.6368d-4"permh*hod®rho)
Minimum or constant wellbore dimensionless liquid heigh:
hwmin = 144.d0 * pwmin / (rw * rho)
Dimensionless time and variable flow rate
do 12§ = 1,nqv

tq(i) = tg(i) / ctime

qvar(i) = 2.03328d4 * qvar(i) * visc / (permh ® ho * rw * rho)
continue
if (qvar(nqv) .eq. 0.d0) then

nnn = nqv -1
eise

nnn = nqv
endif
if (iflow .eq. 1) call spline(nnn,tq,qvar,aq,bq,cq)

Vertical coordinate of the lower surface of each block zd(i,j):
do2i=1,mm
d2d(i) = hod / n
zdavg(i) = (n-1) ™ dzd(i)
dolj= 1,n
2d(i,j) = hod . ) * dzd(i)
zold(i,j) = zd(i,j)
continue
continue
zdavg(mm+1) = zdavg(mm)

Inner Radial coordinate of each block:
CALL RADIUS {mm,mult,red,du,Rmuit)

INICIO DA ANTIGA SUBROTINA INIT

hwd = hod
hwold = hod

INITIAL DIMENSIONLESS POTENTIAL AND THICKNESS DISTRIBUTION
LT

.d0
wwold(j) = 1.d0
2dw()) = 2d(1,))

do 5i = 1.mm
wtij) = 1.d0
wold(i,)) = 1.d0

continue

continue

do 7i = l.mm

xz = dzd(i)

dh(i) = xz

dhold(i) = xz

dhi(i) = xz

hd(i) = hod

hold(i) = hod

dhavg(i) = xz

dzavg(i) = xz

grad(i) = 1.d0 / hod

pd(i, 1) = w(i,1) - grad(i) * (2d(i,1)+dh(i)/2.d0)
Calculation of the geometric parameter alf(i)
alf(i) = 0.5d0

alf(i+1) = {(rd(i41) - rbar(i))/(rbar(i+1) - rbar(i))

continue

alf(1) = 1.d0

ali{mm+1) = 1.d0

Initial block thickness at the sandface
dhavg(mm+1) = xz
dzavg(mm+1) = xz
dzdw = xz

dhw = x2

alfw = 1.d0

* **» Dimensionless radial distances for pressure profile output
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do 11 k= 1,nobs
11 dist(k) = dist(k)/rw

= »»® Calculation of the radial geometric factor fr(i) (page 22)

Ddow = dlog(Rbar(1))
RARG = rbar(2)/rbar(1)
Dup = dlog(RARG)
fr(1) = Dup / Ddow

doi = 1,mm-1
RARG = rbar(i+2)/rbar(i+1)
Dup = dlog(RARG)
RARG = rbar(i+1)/rbar(i)
Ddow = dlog(RARG)
fr(i+1) = Dup / Ddow
argfr = dabs(fr(i+1)-1.d0)
if (argfr le. 1.d-09) fr(i+1) = 1.d0

b Calculation of the areal parameter A1(i) (page 22)
A1(i) = (rd(i+1)*rd(i+1)-rd(i)*rd(i))/2.d0*Ddow

enddo
Al(mm) = (red*red - rd(mm)*rd(mm))*Dup / 2.d0

return
end

subroutine fiwrt(iflow,nqv,td,tdfiw,QD)

implicit real*8 (a-h,0-2)
common /varflw/tq(20),qvar(20),aq(20),bq(20),cq(20)

if (iflow .eq. 1) then
qd = seval(nqv,td,tq,qvar,aq,bq,cq)
else
if (td. gt. tq(nqv) .and. td . It. tdfiw) then
qd = qvar(ngv)
else
do 11i = 1,nqv-1
if (td .le. 1q(i+1) .and. td .gt. tq(i)) then
qd = gvar(i)
return
endif
1 continue
endif
endif
if (1d .ge. tdfiw) qd = 0.d0

return
end

20 OO O O 0 O
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SUBROUTINE RADIUS(mm,mult,red,du.Rmult)
- RADIAL MESH DISTRIBUTION BASED ON THE MULTIMODAL METHOD BY
- TERAN and DE LA GARZA (1988)
PARAMETER(mcm=80,ncm=100)
IMPLICIT REAL"8 (A-H,0-2)
commeon /geom/u(mem),rd(mem+1),ai(mem),fr(mcm),permx(mcm,ncm),
rbar(mem+1),fx(mcm,nem),part(ncm),alf(mem+1)
real"8 lambda
- Inner Radial coordinate of each block:
if (mult .eq. 0) then
dod4i=1mm
u(i) = (i-1)"du
rd(i) = red ** u(i)
4 continue
rd(mm+1) = red
Rmult = (red - rd(mm))/(rd(2)-rd(1)}
endif
lambda = Rmult**(1.d0/(mm-1))
if (mult .ne. 0) then
rd(1) = 1.40
do i=2,mm
rd(i) = 1.d0+4(red-1.d0)*(lambda®*(i-1)-1)/(lambda®*mm-1)
enddo
rd(mm+1) = red
endif
* =%* Calculate rbar:
rbar(mm) = dlog(lambda) * red/(lambda-1.d0)
rbar(mm+1) = red
do 1l i=mm-1,1,-1
arg = (rd(i)"rd(i)+rd(i+1)*rd(i+1))/2.d0
rbar(i)=dsqri(arg)
do iter=1},100
F = rbar(i) - rbar(i+1) 4+ rd(i+1)*dlog(rbar(i+1)/rbar(i))
del = F/(1.d0-rd(i+1)/rbar(i))
rbar(i) = rbar(i) - del
if (dabs(del) .le. 1.d-6) go to 1
enddo
print®, 'NO CONVERGENCE ON RBAR CALCULATIONS’
stop
1 cantinue
print* 'MULT='MULT,'RMULT=' RMULT
do i=1,mm+1
write(*,2) i,rd(i)i,rbar(i)
enddo
2 format(’ rd('.i3,')="'e12.6,’ rbar(',i3,')=",e12.6)
return
end

C T e e T e e P e T P T L e T T T

SUBROUTINE GEOMET(m,n,fs,reddu,rdu,skin,eps,alfw,matriz Igchs)
PARAMETER(mcm=80,ncm=100)

irnplicit real®&(a.h.o-2)

common /dado/poros,permh,permv, teta

common /diml:s/td.dtd hwd hod.hs,dzdw dhw qd,red

common [alt/zd{mecm nem),zold(mem,ncm),hd(mem),hoid(mem),zdw(ncm),
& hdavg(mcm+1),2davg(mem+1)

common /geom/u(mcm},rd{mcm+1),al(mem),fr(mcm),permx(mcm,ncm),
& rbarimcm+1),{x(mcm,ncm ), part(ncm),alf(mem+1)

common fthick/dh(mem),dhl(mcm),dhold(mecm),dzd{mecm),dzavg{mem<+1},
& dhavg(mem+1)

common fangle/ coan(mcm.ncm)

dimension x(mcm+2),rold{mecm+1)

= we= Calculation of the axial permeability permx(1,j) (pages 13 and 22)

arg = 0.d0
permhv = permh ® permv
permh2 = permh * permh
permv2 = permv * permv
din = dlog(rbar(1))
{s = din/(skin 4 din}
do2)=1l.n
thet = ((n-))*1.d0 40.5d0)%arg
tbet2 = tbet * thet
cbet2 = 1.d0/(1.d0O+tbet2)
sbet2 = 1.d0 - cbet2
argl = permh2®sbet2 + permv2®cbet2
denom = dsqrt(argl)
permx(1,j) = part(j) ®* fs ® permh
2 continue
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tbet = ((n-1)*1.d0 40.5d0)"arg

tbet2 = tbet * tbet

cbet2 = 1.d0/(1.d0+tbet2)

sbet2 = 1.d0 . cbet2

argl = permh2®sbet2 4 permv2®cbet2
denom = dsqri(argl)

cbet = deqrt(cbet2)

permx(1,1) = part(1) ® cbet ®* fs * permh

« ==* Calculation of the axial permeability permx(i,j) (pages 13 and 22)
do4i= 1,ml
arg = (dzd(i+1) - dzd(i))/ (rbar(i+1)-rbar(i))
tbet = (1.d0*(n-1) + 0.5d0)*arg
if (tbet .gt. 1.d0) tbhet = 1.d0

tbet2 = thet ™ tbet
cbet2 = 1.d0/(1.d0+tbet2)
sbet2 = 1.d0 - cbet2

argl = permh2%sbet2 + permv2®cbet2
denom = dsqrt{argl)
cbhet = dsqrt(cbet2)
permx(i+1,1) = cbet * permhv / denom
fx(i,1) = permx(i,1) / permx(i+1,1)
dod3j)=1n
tbet = (1.d0%(n-j) 4+ 0.5d0)"arg
if (tbet .gt. 1.d0) tbet = 1.d0
tbet2 = thet ¥ tbet
cbet2 = 1.d0/(1.d0+tbet2)
sbet2 = 1.d0 - cbet2
argl = permh2“sbet2 4 permv2®cbet2
denom = dsqrt(argl)
cbet = dsqrt(cbet2)
permx(i+1,j} = cbet ® permhv / denom
fx(i,j) = permx(i,j) / permx(i+1,j)
3 continue

4 continbe

- Calculate new thickness

if (matriz .ne. 0)
& call newtkn(m,n hod,red,hs,alfw,dhw)

do5j=1,n
fx(m,j) = permx(m,j) / permh
5 continue

» x== COSINE OF EACH BLOCK SLOPE

do j = 1,n
doi = 2,m-1
tang = {zd(i+1,j)+dzd(i+1)/2.d0 - zd(i-1,})-dzd(i-1)/2.d0)
& / (rbar(i+1) - rbar(i.-1))

sec2 = 1.d0 4 tang * tang
sec = daqrt(sec2)
cosn(i,j) = 1.D0 / sec
enddo
cosn(m.)) = 1.d0
tang = (2d(2,))+d2d(2)/2.d0 - zdw(j) - dzdw/2.d0)
& / (rbar(2)- 1.d0) .
sec?2 = 1.d0 + tang * tang
sec = dsqri(sec2)
cosn(1,j) = 1.DO [ sec
enddo

return
end

N O O O 0 O 0

subroutine newtk1(m,n,hod,red hs,alfw.dhw,td,lgchs,rd,rbar)
PARAMETER(mcm=80,ncm=100)

IMPLICIT REAL®8(A.H,0.2)

common [alt/zd(mecm,ncm),zold(mem,nem),bd(mem),hold(mem),zdw(nem),
& hdavg(mem+1),2davg(mem+1)

common [thick/dh(mem),dhl(mem),dhold(mem),dzd(mecm),dzavg(mem+1),
& dhavg(mecm+1)

dimension x(mem+2),y(mecm+2),a(mecm+2),b(mem+2),c(mem+2)
dimension rd(mcm+1}, rbar(mecm+1)

doli=1m
x(i4+1) = rbar(i)
y(i+1) = hd(i)
1 continue
x(1) = rd(1)
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y(1) = hs
x(m+2) = red
y(m+2) = hod

do2i=2m
dif = hd(i) - hd(i-1)
if (dabs(dif) .1t. 1.d-8) then
xh = (hd(i) + hd(i-1))/2.d0
else
if (i.eq.2) then
xh = aval(m+2,rd(i),x,y,0)
else
xh = aval(m+2,rd(i),x,y,1)
endif
endif
dzavg(i) = xh/n
dhavg(i) = dzavg(i)
zdavg(i) = xh - dzavg(i)
continue

xh = (hs + hd(1))/2.d0
dzavg(l) = xh / n
dhavg(1) = dzavg(l)
zdavg(l) = xh - dzavg(l)

dhw = hs / n
dhavg(1) = dh(1)

return

d
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subroutine newtkn(m.n.hod.red.hmalfw,dhw)
PARAMETER(mcm=80,ncm=100)

IMPLICIT REAL"8(A-H,0.2)

common /geom/u(mcm),rd(mem+1 ),a.l(mcm).fr(mcm),permx(mcm,ncm).

& rbar(mcm+1 ).ix(mecm,ncm),part(ncm),alf(mem+1 )
common [alt/zd( mcm,nem),zold(mem,ncm), hd( mcm),hold(mecm),zdw(ncm),
& hdavg(mecm+1),2davg(mem+1)

common [thick/dh( mcm).dh1(mcdehnld(mcm),dzd(mcm),dzav;( mcm+1),
& dhavg(mcm+1)

do i=2,m
hdavg(i) = alf(i)®hd(i) + (1.d0-al(i))*hd(i-1)
xh = hdavg(i)
dzavg(i) = xh/n
dhavg(i) = dzavg(i)
2davg(i) = xh - dzavg(i)
enddo
xh = (hs + hd(1))/2.d0
dzavg(l) = xh / n

dhavg(1) = dzavg(l)
zdavg(1) = xh - dzavg(1l)
dhw = hs / n

dhavg(1l) = dh(1)

return

end

subroutine vergrd( m,n,hod,dzoid,tmin)

PARAMETER(mcm=80,ncm=100)

implicit real*8 (a-h,0-2)

common Iah/zd(mcm.ncm),zold(mcm,ncm).hd(mcm].hold(mcm).zdw(ncm],
& hdavg(mcm+1)zdavg(mem+1)

common /pres/w(mcm.ncm),wold(mcm.ncm),ww(ncm).wwold(ncmj,wo(nqm)
common /thick/dh(mcm],dh1(mcm),dhold(mcm).dzd(mcm),dzavg(mm+1).
& dhavg(mecm+1)

dimension xz(ncm+l),yw(ncm+l),dzold(l)

dimension alfal(ncm+1),alfa2(ncm+1 ),alfa3(ncm+1)

do20i=1m
dzd(i) = hd(i) / n
do 10 = 1,n
zold(i,j) = 2d(i,j)
zd(i,j) = (n-j) = dzd(i)
10 continue
20 continue

do %0 i = 1,m
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do 30 j = 2,n
yw(n-j+1) = w(i,j)
xz(n-j+1) = zold(i,j) + dzold(i)/2.d0
30 continue
yw(n) = w(i,1)
xz(n) = zold(i,1) + dh(i)/2.d0
call spline(n,xz,yw,alfal,alfa2,alfad)
do 40 j = 2,n
2z = 2d(i,j) + dzd(i)/2.d0
w(i,j) = aval(n,zz,x2,yw,j-2)
40 continue
w(i,1) = hd(i)/hod
50 continue

return
end

SUBROUTINE THICKN (m,n,grado,iter,alfw,tmin,eps)
PARAMETER(mcm=80,ncm=100)
- Calculate hd(i) first based on the variation of w(i,1) and then
- calculate the dh(i)

IMPLICIT REAL*8(A-H,0-2)

common /dado/poros,permh,permv,teta

common /dimlss/td,dtd,hwd,hod,hs.dzdw.dhw,qd,red

common [logic/iwhflg,1flow,ktcnt kiflg,1gchs,ihw

common /alt/zd(mcm,ncm),zold(mcm,ncm),hd(mcm),huld(mcm).zdw(ncm).
hdavg(mcm+1),2davg(mem+1)

common /prea/w(mcm.ncm),wold(mcm,ncm).ww(ncm),wwold(ncm),wo(ncm)

common /geom/u(mcm).rd(mcm-H).ai(mcrn).{r(mcm),permx(mcm.ncm),
rba.r(mcm+1).fx(mcm,ncm),put(ncm),all(mcm+1)

common [grd/pd(mem,ncm),grad(mcm)

common /Ihick/dh(mcm).dhl(mcm),dhold(mcm),dzd(mcm).dznvg(mcm-H),

& dhavg(mem+1)

dimension x(mcm+2),yh(mcm+2)

dimension ah(mcm+2),bh(mem+2),ch(mem+2)

dimension az(mcm+2),bz{mcm+2),c2(mcm+2)

- Numerical control
do2i=m2m
dolj=1,n
xcomp = w(i,j)-wold(i,j)
if (dabs(xcomp) .le. 0.1d-10) w(i,j) = wold(i,j)
1 continue
2 continue

= =xx QECALCULATE ALL HD(i) BASED ON W(i,1) AND WOLD(i,j)

doldi=1m
hd(i) = w(i,1) ™ hod
dh(i) = hd(i) - zd(i,1)
pd(i,1) = w(i,1) - grado * (2d(i,1)+dh(i)/2.d0)
2 continue

hsold = hs
hs = hd(1)
dhw = dh(1)
x(1) = 1.d0
yh(1) = hs
do i=1,m
x(i+1) = rbar(i)
yh(i+1) = hd(i)
enddo
x(m+2) = rbar(m+1)
yh(m+2) = hod

= =xx CALCULATE DHAVG(I) from node 2 on.

do i=2,m
hdavg(i) = alf(i) * hd(i) + (1.d0-alf(i))*hd(i-1)
dhavg(i) = hdavg(i) - zdavg(i)
arg = hd(i) - hd(i-1)

enddo

hdavg(1l) = hd(1)

dhavg(1) = dh(1)

dhw == dh(1)

return
end

O O O OO amm R

SUBROUTINE SHRINK (m,n,iter,eps,w,wo,tmin)

209



*

This subroutine shrinks the radial grid when the external
boundary values resume the initial values during the shuttin
period.
PARAMETER(mcm=80,ncm=100)
REAL*8 w(mcm,ncm),wo(ncm),eps
REAL™8 argl, arg2
epsl = 1.d-09
do j = n,1,-1
arg2 = w(m-2,j) - wo(j)
argl = w(m-1,j) - wo(j)
if (dabs(arg2) .gt. epsl .or. dabs(argl) .gt. epsl ) return
enddo
m=m-1
write(*,1) M,TMIN,ITER

format(‘GRID DECREASE TO M=',i3,' AT TMIN=',e10.4,' ITER=",i3)

return
end
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SUBROUTINE WHGH (n,hwold,eps,hwmin,tmin,iter,
& alfw,grado,cld,jl,hwd1,XJ,BWB,QDNW,QNW)
PARAMETER(mcm=80,ncm=100)

- THIS SUBROUTINE CALCULATES THE WELLBORE LIQUID LEVEL AND THE
- SANDFACE POTENTIAL FOR EACH BLOCK.
- THE QUADRATIC EQUATION IS CALCULATED BY THE SUBROUTINE WHEAD.

implicit real™8 (a-h,o-z)

common [dado/poros,permh,permv,teta

common /dadol/ho,rw,visc

common /dimlss/td,dtd,hwd,hod,hs,dzdw,dhw,qd,red

common /logic/iwhfig,Iflow,ktcnt, ktfig,igchs,ihw

common [alt/zd(mcm,necm),zold(mem,nem),hd{mem),hold(mem),zdw(ncm),
hdavg{mcm+1),zdavg(mem+1)

common /pres/w(mecm,ncm),wold(mem,ncm),ww(ncm),wwold(ncm),wo(ncm)

common /thick/dh(mecm),dh1(mecm),dhold(mem),dzd(mcm),dzavg(mem-1),

& dhavg(mem+41)

common /geom/u(mecm),rd(mcm+1),al(mem),fr(mem),permx(mem,ncm),

& rbar(mcm+1),{x{mcm,ncm),part(ncm),alf{mecm+1)

common/pcte/qdold,tdb,tdnxt,istar

ifif =
deps = eps
tetl = 1.d0 - teta

* === Geometrical parameters
dr = dlog(Rbar(1))
- Extrapolated thickness in the wellbore sandface

hs = hd(1)

lgchs = 0
hdavg(1l) = hd(1)
zdavg(l) = zd(1,1)
dhavg(1l) = dh(1)
dhw = dh(1)
dzavg(1) = dzd(1)

® **® Initial guess of Hwd:
hwd = hwd1l
hwdbf = hwd

* =w* Jterative calculation of hwd:
icont =1
itig =0
- Calculation of Bwb
i Bwb = 4 d0%hod /(4 d0*hod + cld*(hwd+hwold))
= [Find location of hwd
if (hwd le. hod .and. hwd .gt. 2dw(1)) then
i1 =1
del = 1d0
eise
del = 0 0dO
do2) =2n
if (hwd .le. 2dwi()-1) .and. hwd .gt. zdw(])) )l =)
2 continue
endif

x === Heigh of liquid in the formation at the sandface

- CALCULATE THE FRACTION Xj

if (j1. eq. 1) then

x) = (hwd . 2dw(1))/dhw
else

x) = (hwd . 2dw()1))/dzdw
endif
if (x) .gt. 1.d0) xj = 1.d0

= wxx CALCULATE THE WELLBORE DIMENSIONLESS LIQUID HEIGH
- THROUGH THE QUADRATIC EQUATION
CALL WHEAD (n,dei,hwold,dr,hwdl,eps,hwmin,grado,jl,xj,bwb,
& Qdnw,Qnw,tmin)
if (ihw .ne.0) return
if (istar .eq. 1) then
write(*,111) iwhfig,itfig,hwdbf hwd.dtd
write(®,112) iter,w(1,1),w(1,n)hs,hwold
fif = ifif +1
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if (ifif .ge. 100) stop
go to 25
endif
111 format(‘iwhfig=",i1,’ itfig=",i3," hwdbf{=',e14.8,' hwd=',e14.8,
&' did=',e12.8)
112 format(‘iter=',i2,’ w(1,1)=",e14.8, w(1,n)=",e14.8," hs=',
& e14.8," hwold=",e14.8)

argl = arg
arg = (hwdbf - hwd)/hod

if (dabs(arg) .gt. deps) then
itflg = itfig + 1
if (itflg .gt. 99) then
itlg =0
if (icont .gt. 1) then
write(®,*) 'Too much iteration in whgh'
call contri(n)
write(™,*) 'hwdbf=',hwdbf,’ hwd=',hwd,’ iwhfig=",iwhfig
write(®,*) 'zdw(j1)=",2dw(j1),’ j1=",j1,’ xj=",%j
stop
endif
icont = icont + 1
hwd = (hwd 4 hwdbf)/2.
write(®,*) '"WARNING:' icont,'st HWD ITERATION VALUE ',
& 'ASSUMED AFTER 100 ITERATIONS IN WHGH AT TMIN=", TMIN
go to 1
endif
hwdbf = hwd
gotol
endif

if (1flow .ne. 2) then
if (hwd .gt. hs) hwd = hs
endif

- Calculate wellbore pressure in front of each block (App. 1)

25 ww(l) = w(1,1)
do3j=2n
if (j. gt .j1 .or. hwd .gt. hs) then
ww(j) = grado * hwd
go to 3
else
if (j .eq. j1) ther
ww(j) = grado/2.d0® ((1.d0+xj)*hwd + (1.d0-xj) “
& (zdw(j1) + dzdw))
else

wwi(j) = grado * (zdw(j) + dzdw/2.d0)
endif
endif
3  continue

return
end
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subroutine wwder(n.;l.X),dtd,poros,;rado.bwb,qd,cld,permh.
& hwd,hwold,teta,alfw,DWW21)
PARAMETER(mcm=80,ncm=100)

- THIS SUBROUTINE CALCULATES THE DERIVATIVE OF THE INNER
- BOUNDARY POTENTIALS FOR THE JACOBIAN
implicit real®8 (a-h,0-2)

common /geom/u(mcm)Jd(mcm-H),al(mcm),fr(mcm),permx(mcm.ncm),
rbar(mcm+l),fx(mcm.ncm).pan(ncm).al!(mcm+1)

common /pres/w(mcm.ncm).wold(mcm,ncm),ww(ncm),wwold(ncm).wo(ncm)

common /grd/pd{mcm,ncm),grad(mem)

common /alt/zd(mcm.n(:m).zold(mcm.ncm),hd(mcm)hold(mcm).zdw(ncm),

& hdavg(mcm+1),zdavg(mem+1)
common /thick/dh(mcm).dh1(mcm).dhold(mcm),dzd(mcm).duvg(mcm+1 ),
& dhavg(mem+1)

commeon fderiv/dww(ncm,ncm)
common [logic /iwhfig,\flow ktcnt kifig,igchs ihw

dimension dhdw(necm+1)

dzdl = dzavg(1)
dhdl = dhavg(1)
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call hwder(n,j1,xj,dtd,poros,grado,bwb,qd cld,
& petmh,dzdl.dhdl,hwd,hwold,Leta,allw.lgchl,DHDW)

dolj=1,n
do 2k =2,n
if (j1. gt. j) then
dww(j,k) = 0.d0
else
if (j1 .1t. j) then
dww(j,k) = grado *dhdw(k)
else
dww(j,k) = xj ® grado * dhdw(k)
endif
endif
if(j.eq.1) dww(1,k) = 0.d0
2 continue
if (j .eq- 1) then
dww(1,1) = 1.d0
else
dww(j,1) = 0.d0
endif

1 continue
dww2]l = 0.d0

return
end

subroutine hwder(n,jl,xj,dtd,poros,grado,bwb,qd,cld,
& permh,dzdl.dhdl,hwd.hwold,teu.alfw,lgcha,DHDW)
PARAMETER(mcm=80,ncm=100)

- WELLBORE LIQUID HEIGH DERIVATIVE
implicit real®8 (a-h,0-2)
common /geom/u(mcm),rd(mcm-H),al(mcm),fr(mcm)|permx(mcm,ncm),
& rbar(mcm+1).1x(mcm,ncm),parl(ncm),al{(mcm+1)
common /pres/w(mcm.ncm),wold(mcm,ncm).ww(ncm),wwold(ncm),wo(ncm)

dimension dhdw(1)

- FINDING PARAMETER DELJI:
if (j1 .eq. 1) then

deljl = 0.d0
else

deljl = 1.d0
endif

- CONSTANT CALCULATIONS

denom) = . qd*Bwb*grado®cld / (4.d0 + grado®(hwd + hwold) * cld)
denom2 = 5.d-1 /(poros * did)

denom3 = teta /(permh * diog(Rbar(1)))

xloge = lgchs

xnuml = (deljl + (1.d0 - delj1) * (1.d0 - xj®xj))*(1.d0-xlogc)

xnum2 = w(1,1) - ww(1)

alfl = (1.d0 + alfw)/2.d0

xnum3 = dhd1*(1.d0-alfw/2.d0"xnum}i) + alfl*xnum2/grado

Sperm = 0.d0
dolj=)1l+1n
Sperm = Sperm + permx(1,j)

1 continue
denom4 = (1.d0 - delj1)*dhd1"permx(1,1) *xj
hd + dzdl *(Sperm + deljl ® xj *permx(1,j1))
denom = denom] + denom2 4 grado ® denom3 * denom4
dhdw(1) = 0.d0
do 2k =2n
dhdw(k) = denom3 ™ dzd1 ® permx(1,k) / denom

2 continue

xnum4 = dhdl * xnum! - xnum2/grado
dhdw(n+1) = 0.d0

return
end
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bUBROUTINF WHEAD (n,del,hwold,dr,hwd1,eps,hwmin,grado,jl,xj,bwb,
Qdnw,Qnw,tmin)
PARAMETER(mcm—BO.ncm-100)

- CALCULATION OF THE QUADRATIC INNER BOUNDARY EQUATION
implicit real*8 (a-h,0-2)
real®8 kxwol,kxnwol kxw, kxnw

- The extended precision is only required when calculating
- the wellbore flow rate in a constant pressure i.b.c.
bl It works only on mainframes or IBM RISC machines, not on DEC's.
- real®*16 a,b,c,delta,dois,quatr,hwda,hwdb,xhmin,c2,ecor,cl
common [dado/poros,permh,permv,teta
common /dadol/ho,rw,visc
common /dimlss/td,dtd,hwd,hod.hs,dzdw,dhw,qd,red
common [logic/iwhfig,iflow,ktcnt ktfig,Igchs,ihw
common /alt/zd(mcm,nem),zold(mem, :m),hd(mem), hold(mem),zdw(necm),
hdavg(mcm+1),2davg(mem+.)
common /geom/u(mcm),rd(mcm+1),al(mem),fr(mem),permx(mcm,ncm),
rbar(mem+1),fx(mem,nem),part(ncm),alf(mem+1)
common /pres/w(mcm,ncm),wold(mcm,ncm),ww(ncm),wwold(nem),wo(ncm)
common /thick/dh(mcm),dhi(mem),dhold(mcm),dzd(mcm),dzavi(mem+1),
& dhavg(mem+1)
common/pcte/qdold,tdb,tdnxt,istar °
dois = 2.d0
quatr = 4.d0
hsold = 2dw(1) 4 dadw
if (hsold. le. hs .and. Ifiow . ne. 2) then
theta = 1.d0
else
theta = teta
endif
if (hwold .gt. 2dw(1)) then
j2=1
else
do2j=2n
if (hwold .le. zdw(j-1) .and. hwold .gt. 2dw(j)) j2 =)
2 continue
endif

xj2 = (hwold - 2dw(j2))/dzdw
if (hwold .gt. hsold) xj2 = 1.d0

suml = 0.d0

sum?2 = 0.d0

sum3 = 0.d0

sumd = 0.d0

sumd = xj2 * permx(1,}2)

sumé = (1.d0-x)2) ™ permx(1,)2)

¢ *** CALCULATION OF SUMMATIONS:

do 1 j=1,n
if (j .gt. j1)suml = suml + permx(1,j)
if (j .ne. 1) sum2 = sum?2 + permx(1,j) * w(1,j)
if (j .1t. j1 .and. j .ne.1) sum3 = sum3 + permx(1,j)
sum4 = sum4 + permx(1,j) " wold(1,j)
if () .gt. )2) sum5 = sumb 4 permx(1,j)
if(j 1t. j2) sum6 = sum6 4+ permx(l,j)

1 continue .
. Calculation of average permeabilities at the sandface

il (hwold. le. eps) then
kxwol = 0.d0
else
xx = 1.d0%(n - j2) 4+ xj2
kxwol = sum5 / xx
endif
arg = hsold - hwold
if (arg .le. eps) then
kxnwol = 0.dD
else
kxnwol = sumé / (j2 * 1.d0 - xj2 )
endif
if (hwd .eq. 0.d0) then
kxw = 0.d0
else
if (hwd .1t. hs) then
kxw = ( dzdw * suml 4+ xj * (del*dhw 4 (1.d0-del) *
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& dzdw) * permx(1,j1)) / hwd
else
kxw = (dzdw * suml 4 dhw ® permx(1,1)) / hs
endif
endif
arg = (hs - hwd) * grado
if (arg .le. 0.d0) then
kxnw = 0.d0
else
kxnw = ((1.d0-xj)*permx(1,j1)*(del®dhw 4 (1.d0-del)*
& dzdw) + dzdw*sum3 + (1.d0-del)*dhw*
& permx(1,1)) / (hs - hwd)
endif
sum2 = dzavg(l) * sum2 + dhavg(1l) * permx(1,1) * w(1,1)

» *** FLOW RATE FROM THE SEEPAGE FACE

call qseep (n,j1,j2,teta,xj,xj2,dhavg(1),dzavg(1),
& permh,dr,Qdnw,Qnw)

* === COEFFICIENTS OF THE QUADRATIC EQUATION
= grado ™ theta / (dr ® permh) * (kxw - kxnw/2.d0)

5.d-1 [ (poros * dtd)

qd " bwb - B ®* hwold . 1.d0 / (dr * permh) *

(theta ™ { sum2 - kxnw-* hs ® hs * grado / 2.d0) +

& (1.d0 - theta) ® (sum4 * dzavg(1)- (hwold * hwold * kxwol
& 4 (hsold™hsold - hwold*hwold)}/2.d0 * kxnwol) * grado) )

A

B

C
&

* =e» CALCULATE NEW FLOW RATE FOR A CONSTANT WELLBORE PRESSURE
if (istar .eq. 2) then
hwd = hwmin
if (hwmin Je. 1.d-6) then
xhmin = 0.0d0
Cl = -1.d0/ (dr ™ permh)*

& (theta *( sum2 - kxnw * hs * hs * grado / 2.d0) +
& (1.d0 - theta) * (sum4 * dzavg(1l)-
& hsold®hsold/2.d0 * kxnwol * grado ))
else
xhmin = hwmin
ecor = xhmin - hwmin
xhmin = xhmin - ecor
Cl = -B*xhmin - 1.d0 / (dr ® permh) *
& {theta * ( sum2 - kxnw * hs * hs ® grado / 2.d0) +
& (1.d0 - theta) ® (sum4 ™ dzavg(1l)- (xhmin * xhmin * kxwol
£ + thsold*hsold - xhmin®xhmin)/2.d0 * kxnwol) * grado) )
endif '
qD = (-A*xhmin®"xhmin - B*xhmin - C1)/Bwb
return
endif

= === POSITIVE ROOT OF THE QUADRATIC EQUATION
- A HwD'2 4 BHwd 4C = 0

delta = B* B -quatr* A*C

arg = delta
thw = 0
if (dabs(arg) .le. eps) delta = 0.d0
if (delta .It. 0.d0) then
write(®,®) 'SQRT OF NEGATIVE VALUE IN whead, AT TD=",TD

thw = 111
write(®,*) 'delta= ' delta
return
endif
hwdA = (- B + dsqri(arg)) / (dois * A)

hwdB = (- B - daqrt(arg)) / (dois ® A)

if (hwda It. hwmin) then
if (hwdb .gt. hwmin .and. hwdb .It. hod) then

hwd = hwdb
else
100 argl = (hwdb - hwmin)/hod
101 arg2 = (hwda - hwmin)/hod
102 if (dabs(argl).le .eps .or. dabs(arg2).le. eps) then
102 istar = 2

write(®,*) 'START CONSTANT PRESSURE 1.B.C. AT TMIN=",tmin
write(11,")'START CONSTANT PRESSURE 1.B.C. AT TMIN=",tmin
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104 hwd = hwmin

105 return

else

print* 'CONSTANT PRESSURE T-STEP CORRECTION, TMIN=',tmin

106 call ctpre(n,dtd,td,a,b,c,hwmin,hwold,poros,qd)
107 hwd = hwmin

endif

endif
108 continue
else

if (hwdb .le. hwmin) then
if (hwda .gt. hs .and. Iflow .ne.2) then
if (hwda .gt. hod) then
call ctpre(n,dtd,td,a,b,c,hwmin,hwold,poros,qd)
hwd = hwmin
else
print*,’hwda=’,hwds,’ hwdb='hwdb
print*,'hwmin=",hwmin,’ hs='hs
pﬁn\'ﬁ""' .
print™,"WARNING: INSTABIL. IN THE WELLBORE HEAD CALC.
endif
else
' arga = hwdl . hwda
argb = hwdl - hwdb
xa = dabs(arga)
xb = dabs(argb)
if (xa .gt. xb) then

hwd = hwdb
else
hwd = hwda
endif
endif

else
arga = hwdl - hwda
argb = hwdl - hwdb
xa = dabs(arga)
xb = dabs(argb)
if (xa .gt. xb) then

hwd = hwdb
else
hwd = hwda
endif
endif
endif
return
end
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subroutine hscntl{hs,hdi,hsoid,IDH hod,eps,tmin)

THIS 1S A SUBROUTINE TO CONTROL THE TIME.STEP SJZE, ACCORDING
- TO THE VARIATION OF THE SEEPAGE TOP.
It is not in operation -
implicit real”8 (a-h,0-2)
common /[logic/iwhfig,!flow ktcnt, ktfig lgchs ihw
arg = thsold - hs)/hod
lgchs = 0
if (1low .eq.0 .or. |flow .eq. 1) then
if (arg .It. -eps) then
lgchs = 1
idh = 10
else
idh =0
Igchs = 0
endif
endif
return
end
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subroutine ctpre(n,dtd,td,a,b,c,hwmin,hwold,poros,qd)
- THIS SUBROUTINE IS USED TO SET AN ACCURATE TIME WHEN THE CONSTANT
- FLOW RATE INNER CONDITION BECOMES A CONSTANT PRESSURE CONDITION.

real®8 qdold,idb,tdnxt,dtd,td,hwmin,hwold,poros,qd
real®8 aux,dtds,idst
EXTENDED PRECISION ONLY FEASEBLE IN IBM RISC MACHINES
- reai®*16 a,b,c
real®8 a,b,c
common/pcte/qdold,tdb,tdnxt istar

aux = a*hwmin*hwmin + ¢ + hwold/(2.d0 * poros * dtd)
dids = (hwold - hwmin) / (2.d0 ® poros * aux)

tdst = td - dtd + dids

if (istar .eq. 0) then
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tdb = td - dtd

tdnxt = td
istar =1
endif
dtd = dtds
td = tdst
return
end
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subroutine qseep (n,jl1,j2,teta,xj1,xj2,dhavg,dzavg,
& permh,dr,Qdnw,Qnw)

CALCULATION OF THE FLOW RATES IN THE SEEPAGE FACE AND IN THE
WET FACE OF THE BOREHOLE.
IT IS USED ONLY AS OUTPUT INFORMATIONS.

PARAMETER(mcm=80,ncm=100)

implicit real*8 (a-h,o0-z)

common /geom/u(mem),rd(mem+1),a1(mem),fr(mcm),permx(mcm,ncm),
rbar(mecm+1),fx(mcm,ncm),part(ncm),alf(mem41)

common /pres/w(mcm,ncm),wold(mem,nem),ww(ncm),wwold(ncm),wo(ncm)

common /dadol/ho,rw,visc

if (j1 .eq. 1) then

Qdnw = part(1)/(permh®dr) * (teta ® (1.d0-x)1) * dhavg *

& permx(1,1) * (W(1,1) - Ww(1)) +
& (1.d0-teta) ® (1.d0 - xj2) * dzavg ® permx(1,1) "
& (Wold(1,1)-Wwold(1)))
Qnw = permh ®* ho * rw * Qdnw /{2.03328d4 " visc)
else
suml = part(1) * dhavg ® permx(1,1) * (W(1,1) . Ww(1)) +
& part(j1) ® (1.d0 - xj1) * dzavg * (W(1,41) - Ww(j1))
sum2 = part(1) ® dzavg * permx(1.1) * (Wold(1,1) - Wwold(1))
& + part{j2) ® (1.d0 - xj2) * dzavg * (W(1,j2) - Ww(j2))
do ) = 2,j1-1
suml = suml + part(j)*dzavg ® permx(1,j) * (W(1,)) Ww(j))
enddo :
do j = 2,j2-1
sum2 = sum2 + part(j) * dzavg * permx(1,)) *
& (Wold(1,j) - Wwold()))
enddo
Qdnw = 1.d0/(permh®dr) * (teta * suml + (1.d0-teta) * sum2)
Qnw = permh ® ho ™ rw * Qdnw /(2 03328d4 * vis¢)
endif
return
end
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SUBROUTINE MATCO2 (m,n,fk,rdu,ctd,swr ,hcd,matcal)
PARAMETER(mcm=80,ncm=100)
- THIS SUBR. CALCULATES THE COEFFICIENTS OF THE BLOCK PRESSURES.

implicit real™8(a-h v-z)

common /dado/poros,permh,permv, teta

common [dimlss/td,dtd,hwd ,hod,hs,dzdw,dhw,qd,red

common /alt/zd(mcm,ncm),zold(mcm,ncm),hd(mem),hold(mem),zdw(ncm),

& hdavg(mcm+1),2davg(mem+1)

common /geom/u(mcm),rd(mcm+1),a1(mcm),fr(mcm),permx(mem,necm),
rbar(mem+1),Ix(mem,ncm),part(ncm),alf(mcm+1)

common [pres/w(mcm,ncm),wold(mcm,ncm),ww(ncm},wwold(ncm),wo(nem)

common /thick/dh(mcm),dhl(mcm),dhold(mem),dzd(mem),dzavg(mem+1),

& dhavg(mem+1)

comman [coef/A(mem,ncm),B(mem,ncm),C(mem,ncm),D(mem,ncm),

& E(mcm,nem),F(mem,ncm)

common /grd/pd(mcm,ncm),grad(mem)

common /angle/ cosn(mem,ncm)

dimension {val(mem),altd(mem),cdterm{mem),cdtrmi(mecm)

dimension aux4(mcm), aux5{mem), aux6(mecm), aux7(mecm)

* Calculation of group of constants for optimization and vectorization
sg = 1.d0 - swr
tetl = 1.d0 - teta
tet2 = 2.d0 * teta
auxl = permh /dtd
aux2 = ctd / 2.d0
aux3 = teta ® permv
dot = 2,m-1
fval(i) = permv * Al(i) / permx(i+1,1)
altd(i) = auxl / permx(i+1,1)* Al(i)/cosn(i,1)
cdtrm1(i) = aux2 * altd(i) * (dzd(i)+dh(i))
enddo

* =s=  [ree Surface Equation
do i =2, m-1
B(i,1) = 0.d%
C(i,1) = tet2 * fval(i)/{(dh(i) + dzd(i))
D(i,1) = teta *fx(i,1) * fr(i) * (hcd + dhavg(i))
E(i,1) = teta®(bed + dhavg(i+1))
F(i,1) = altd(i)*(dh(i)-dzd(i))"sg - cdtrm1(i) * wold(i,1)
- tet1*((hcd+dzavg(i+1))"(wold(i41,1)-wold(i, 1)) 4
fx(i,1)*fr(i)*(hcd+dzavg(i))*(wold(i-1,1)-wold(i,1))
+ fval(i)/dzd(i)*(wold(i,2)-wold(i,1)))

R

enddo
doi = 2.mn-1

A(i,1) = - E{i,)) - D(i,1) - C(i,1) - edtrml(i)
enddo

* **= Zecond Layer Equation

do =2, m-}
altd(i) = aux1 / permx(i41,2) * Al(i)/ cosn(i,2)
fvalii) = permv * Al(i) [ permxii+1,2)
cdterm(1) = altd(1) ™ dzd(1) * ctd

enddo
do1 =2 m-1

B(i,2) = tet2 * fval(i) f(d2d(i)+dh(i))

Cli,2) = teta ®fval(i) / dzd(i)

D(1,2) = 1eta®™fx(i,2)%r(1)*dzavg(1)

E(i.2) = teta"dzavg(i+1)

F(i,2) = - cdierm(i} * wold(i.2) - tetl * ( dzavg(i+1)*
& iwold(i41,2)- wold(1.2)) - x(i,2)*{r(i)"dzavgli)*
& (wold(1.2)-wold(i-1,2}) + fvalfi)/dzd(i) ® (wold(i,1)
& . 2.d0"wold(i,2) 4+ wold(i,3)) )
enddo
doi =2, m.1

A(i,2) = -B(1,2) - C(i,2) - D(1,2) - E(1,21 -~ cdterm(1)
enddo

if (matcal eq. 0) then
= ===  lower Boundary Equation
doit = 2.m-1
altd(i) = auxl / permx(i+i,n)* Al(i) /cosn(i,n)
fval(i) = permyv * Al(i) / permx{i41.,n)
cdterm(i) = altd(i) * dzd(i) * ctd

enddo

doi = 2.m-1
B(i.n) = teta “*fval(i)/ dzd(i}
C(i.n) = 0.d0

Dii.n} = teta®fx(i,n)*{r(i) “ dzavgli)
Eii,n) = teta*dzavg(i+1)
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F(i,n) = - cdterm(i) * wold(i,n) - tet1 * (dzavg(i+1) *

& (wold(i+1,n) - wold(i,n)) - fx(i,n)*fr(i)* dzavg(i)
& * (wold(i,n) -wold(i-1,n)) + fval(i)/dzd(i) *
& (wold(i,n-1) - wold(i,n)))
enddo
doi = 2,m-1
A(i,n) = - B(i,n) - D(i,n) - E(i,n) - cdterm(i)
enddo
~ w=»  Normal Layer Equations
doi=1,m-1
aux4(i) = aux3 * A1(i) / dzd(i)
auxs(i) = teta * fr(i) * dzavg(i)
aux6(i) = teta * dzavg(i+1)
aux?(i) = fr(i) * dzavg(i)
enddo
doi = 1,m-1
do j = 3, n-1
B(i.,j) = aux4(i) / permx(i+1,j)
D(i,j) = aux5(i) * fx(i,j)
E(i.j) = auxs(i)
enddo
enddo
doi =2, ml
doj = 3,n-1
altd(i) = auxl * Al1(i) / permx(i+1,j) /cosn(i,j)
cdterm(i) = auxl ® A1(i) / permx(i+1,j) * dzd(i) * ctd
fval(i) = permv ® A1(i) / permx(i+1,j)
C(i,j) = B(i,j)
Ali,j) = -2.d0*B(i,j) - D(i.j) - E(i,j) - cdterm(i)
F(i,j) = - cdterm(i) *® wold(i,j) - tetl ™ ( dzavg(i+1)™*
& (wold(i+1,j)-wold(i,j)) - fx(i,)) * aux7(i} *
& (wold(i,j)-wold(i-1,j)) + fval(i)/dzd(i) *
& (wold(i,)-1)- 2.d0*wold(i,j) + wold(i,j+1) ) )
enddo
enddo
endif

* *=* QUTER BOUNDARY LAYERS

fkal = fk * Al(m)

altd(m) = Al(m) / dtd

cdterm(m) = altd(m) * dzd(m) * ctd
cdirmi{m) = aux2 * altd(m) * (dzd(m)+dh(m})

w ==»% Pree Surface Equation

B(win,1) = 0.d

Clm,) = 2. do teta = fkal / (dzd(m) + dh(m))

D(m,1) = u-ta"{x(m 1) " fr(m) * {hcd + dhavg(m))

E(m,1) = 0.d

A(m1) = tcla'dhavg(m-{-l) C(m.1) - D(m,1} - cdtrml(m)

F{m,1) = altd(m)*(dh(m)-dzd{m))*sg-cdtrmi(m)*wold(m,1)-dzavg(m+1)
& *(1.d0-tet)”wold(m,1)) - tet1*( -fx(m,1)*{r(m)"*

& (hed + dzavg{m)) ™

L (wold(m,1)-wold(m-1.1)) - tkal/dzd(m) *

&

(wold(m,1) . wold(m,2)) )

= === Second Layer Equation

B(m,2) = tet2 * fkal/(dh(m)+dzd(m))

C{m,2) = teta™ fkal/dzd(m)

D(m,2) = teta ® {fx(m,2) ™ fr(m) *dzavg(m)

E(m,2) = 0.d0

A(m,2) = - teta*dzavg(m+1) -B(m,2) - C(m,2) - D(m,2) - cdterm(m)
F(m,2) = - cdterm(m) ™ wold(m,1) - dzavg(m+1)"(1.d0 - tet1*
& wold(m,2)) - tet1*(-fx(m,2)*{r(m)*dzavg(m) *
& (wold(m,2)-wold(m-1,2)) + fkal/dzd(m)*(wold(m,1)
& . 2.d0"wold(m,2) + wold(m,3) ) )

if (matcal .eq. 0) then

[

Lower Boundary Equation
B(m,n) = teta*fkal /dzd(m)

D(m,n) = teta * {x(m,n) * fr(m)* dzavg(m)

A(m,n) = -teta*dzavg(m+1) - B(m,n) . D(m.n) - cdterm(m)
C(m,n) = 0.d0

E{(m,n) = 0d0

F(m.,n) = - cdterm(m) * wold(m,n) - dzavg(m+1)®(1.d0-tet} *
wold(m,n)) - tet1® (- fx(m,n)*{r(m)*dzavg(m)
(wold({m,n)-wold(m-1,n)) + fkal/dzd(m)*(wold(m,n-1)-
wold(m,n) ) )
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Normal Layer O.B.C. Equations
do j = 3.n-1
B(m,) ) = teta® fkal/dzd(m)
D(m,)) = teta * fx(m,})*fr(m)*dzavg(m)
E(m,) = 0.d0
F(m,j) = - cdterm(m) ® wold(m,j)- dzavg(m+1)*(1.d0-tet1™
wold(m,j)) - tet1®{ -fx{m,j)*fr(m)*dzavg(m)*
(wold(m.j)-wold(m-1.j))+fkal/dzd(m)"*(wold(m,j-1)-
2.d0"wold(m,j) + wold(m,j+1) ) )

[N

enddo
do i} = 3,n-1
C(m.j) = B(m,j)
A(m,j) = - teta®dzavg(m+1)-B(m,j)-C(m,j)-D(m,j)-cdterm{m)
enddo
endif

= «sx SANDFACE (INNER) BLOCKS
= =»» Dree Surface Equation
altd{1) = aux1l / permx(2,1) * A}(1)/ cosn(1,1)

fval(1) = permv [/ permx(2,1) * A1(1)
cdtrml(1) = aux2 " wltd(1) * (dzd(1)+dh(1))

B(1.1) = 0.d0

C(1.1) = tet2 ® fval(1) / (dh(1) + dzd(1))

D(1.1) = 0.d0

E(1.1) = teta®(hcd + dhavg(2))

A(1,1) = - C(1,1)- E(1,1)- cdtrmi(1)

F(1,1) = altd(1)*(dh(1) - dzd(1))%sg - cdtrml(1) * wold(1,1)
& . tet1®((hcd 4 dzavg(2)) * (wold(2.1)-

& wold(1.,1))-fval(1)® dzd(1)®(wold(1,1)-wald(1,2)))

¢ *** Second Layer Equation

altd(1) = auxl / permx(2,2) * A1(1)/ cosn(1,2)
fval(1) = permv [ permx(2.,2) * A1{1)
cdterm(1) = altd(1) * dzd(1) ® cd

B(1,2) = tet2 ® fval(1)/ (dh(1) + dzd(1))

C(1.2) = teta *fval{1)/dzd(1)

D(1,2) = 0dD

E(1.2) = teta®dzavg(2)

A(1,2) = - teta *{x(1,2)"fr(1)"dzavg(l) - B(1.2)- C(1,2) - E(1,2)
& - cdterm(1)

Fi1.2) = ~lx(13)'!:(1)'duvg(1)'(\eta'ww(?)-lell'(wold(!‘2)

& _ wwold(2)) ) - cdterm(1) ® wold(1.2)

kY . lell'(dz.\vgd)'fwold(2.2)-wold(1.2)‘;+1va)l 1j/dzd(1) "
i (woid{1,1) - 2 d0"wold(1,2} + wold(1.2) } 1

¢ "** Inner Boundary Inner Layer Equations

do i = 2n.l
altd(1l) = auxl / permx(2,3) * AL()) { cosu(l,))
fvalil) = permv / permxt 2.3) * Al(l)
cdtermil) = altd(l) " dzdi1)* «1d

B(1.;) = teta®fval(1)/dzd(1)

Dil,;) = 0.d0

E£(1.5) = teta ® dzavgi2)

Filg) = -fx(1.3)%Mri11"dzavg(} y*(teta®ww()-tet1®(wold(1,))

. wwold())) j - cdtermil} ® wold(1,)

S tety® i viuvg(’l\"Woldi:‘)pwold{),;)'l+ivalrx)/dz.d(ll'

ol

& iwold(1.)-1). 2d0®wold(1,5) + wold(1)+1)))
enddo
do ) = 3.n-1
Cil.yy) = Bil,yy
All.y) = - teta "fx(1)*r(1)%dzavg(’ 2 40*Bi1,y) - E(1,))
& . cdterm(1)
enddo

c *** Lower Inner Boundary Equation

altd(1) = auxl / permxi2.n} * Al(1} / cosn{1,n}
fval{l} = permv / permxi2.n} " A1)
cdterm(1) = altd(l) * dzd(1)* cid

B(1l.n7 = teta®fval(1)/dzd(1)
C{i.n) = 0d0O
Dil.n) = 0d0

220



E(1,n) = teta®dzavg(2)
A(1,n) = .teta®fx(1,n)"{r(1)*dzavg(1)- B(1,n)-E(1,n)-cdterm(1)

F(i,n) = -{x(l,n.)'fr(l)‘dzavg(l)'(teu‘ww(n)-tetl'(wold(l.n)
& - wwold(n)) ) - cdterm(1) * wold(1,n)

& - tet1* (dzavg(2)*(wold(2,n)-wold(1,n))+fval(1)/dzd(1)*
& (wold(1,n-1) - woid(1,n) ) )

return

end

SUBROUTINE JACOBI (m,n,ji,xj,Bwb,ctd,cld,hwold,
& grado,lgchs,matcal,alfw,Swr,dww21)
PARAMETER(mcm=80,ncm=100)

- JACOBIAN MATRIX CALCULATION

implicit real®8(a-h,0-2)

common /dado/poros,permh,permv,teta

common /dimlss/td,dtd,hwd hod,hs,dzdw,dhw,qd red

common /alt/zd(mcm,ncm),zold(mem,ncm),hd(mem),hold(mem),zdw(ncm),

& hdavg(mecm+1),zdavg(mem+1)

common /geom/u(mcm),rd(mcm+1),al(mcm),fr(mem),permx(mcm,ncm),
rbar(mem+1),fx(mem,ncm),part(ncm),alf{mem+<+1)

common /pres/w(mcm,ncm),wold(mcm,ncm),ww(ncm),wwold(ncm),wo(ncm)

common /thick/dh(mcm),dhl(mcm),dhold(mcm),dzd(mem),dzavg(mem+1),

& dhavg(mem+1)

common [coef/A(mcm,ncm),B(mem,necm),C(mem,nem),D(mem,nem),

& E(mcm,ncm),F(mem,nem)
common /jacob/DA(mcm,ncm),DB(mcm,nem),DC(mem,necm),DD{mcm,ncm),
& DE(mcm,ncm),DF(mem,nem),DG(ncm,nem)

common /grd/pd{mecm,ncm),grad(mecm)
common /deriv/dww(ncm,ncm)
common fangle/ cosn(mcm,ncm)

Sg = 1.d0 - Swr
if (Igchs .eq. 1) then

if(ikkk .eq. 0 .and. td .ge. 10.) then
print®, 'primeira vez que igchs =1 apos td=10. '

ikkk =1

endif

alfl = 0.5d0
els

e
alfl = alf(1)

endif

call wwder(n,j1.xj.dtd,poros,grado,bwb,qd.cld,permh,
& hwd.hwold teta,alfw DWW21)

¢ ®*=* Caiculation L.H.5. and R.H.S. vectors

do 2 j = 3,n-1
do 11 = 2.m-1
DF(i.j) = A(L,j)"w(i.ji)}+B(i,j)*w(i,j-1)+C(1,j)*w(ij+ 1)+
&D(ig)"w(i-1,))+E(i)*wli+1,))-F(iy)
if (matcal .eq. 1) go to 1
DA(i.j) = Ali})

DB(i,j) = B(ij)

CC(iy) = C(i.g)

DD(.j) = D(i.j)

DE(i.j) = E(iy)
1 continue

2 continue

- Free Surface
do 3i= 2,m-1

aitd = hod * permh / permx(i+1,1) * A1(i) / (dtd®cosn(i 1))
cdterm = altd * Cid / 2.d0
Cterm = hod * C(i,1)/(dh(i) + dzd(i))
- Cterm = 0.d0
Dterm = teta®alf(i)*fx(i,1)*fr(i)*hod
Eterm = teta * hod * (1.d0 - alf(i+1))

DF(i.1) = A(i,1)*w(i,1)+C(i,1)*w(i,2)+
&D(i.1)"w(i-1,1)+E(i,1)*w(i+1,1)-F(i,1)

DA(i,1) = A(i,1) - (Dterm 4'Eterm - Cterm + cdterm) * w(i,1)
& - Cterm * w(i,2) 4+ Dterm * w(i-1,1) 4+ Eterm® w(i+1,1)
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& . altd * Sg + cdterm * wold(i,1)

DB(i,1) = 0.40

DC(i,1) = C(i,1)

DD(i,1) = D(i,1) 4 teta * hod * (1.d0 - alf(i)) * fx(i,1) ™
fr(i) * (w(i-1,1) - w(i,1))

DE(i,1) = E(i,1) 4 hod ® teta * (w(i+1,1) -w(i,1))

¢ *** Second Layer blocks

DF(i,2) = A(i,2)*w{i,2)+B(i,2)*w(i,1)+C(i,2)*w(i,3)+

& D(i,2)*w(i-1,2)+ E(i,2)*w(i+1,2)-F(i,2)
DA(i,2) = A(i,2)
DB(i.2) = B(i,2)"(1.d0 - hod * (w(i,1)-w/i,2))/(dzd(i)+dh(i)))
DC(i,2) = C(i,2)
DD(i,2) = D(i,2)
DE(i,2) = E(i,2)

3 continue
¢ *** Free Surface Inner Block
cte = 2.d0 ™ poros * dtd
altd = hod * permh / permx(2,1) * A1(1) / (dtd®cosn(1,1))
cdterm = altd * Ctd / 2.d0
Cterm = hod ® C(1,1)/(dh(1) + dzd(1))
Dterm = teta®alf(1)*fx(1,1)*fr(1)*hod
Eterm = teta ® hod * (1.d0 - alf(2))
DF(1,1) = A(l,l)'w(l,l)+C(l,l)‘w(1‘?)+E(l,1)‘w(2.1)-‘F(1,1)

DA(1,1) = A(1,1)- (Eterm - Cterm 4 cdterm) * w(1,1)
& . Cterm ® w(1,2) + Eterm ™ w(2,1) - altd * Sg +

& cdterm * wold(1,1)

DB(1,1) = 0.d0

DC(1.1) = C(1,1)

DD(1,1) = 0.d0

DE(1,1) = E(1,1) - teta*hod * alf(2)* (w(1,1) - w(2,1))

- Second Layer IBC
par = fx(1,2)*fr(1)%teta [ 2.d0

DF(1,2) = A(:,z)‘w(l,2)+B(1.2)'w(1|1]+C(1.2)'w(1.3)+E(1.2)'W(2.2)
& -F(1,2)

DA(1.2) = A(1.2) + teta * fx(1,2)*fr(1) * dzavg(1) * dww(2,2)
DB(1.2) = B(1.2) ® (1.d0 - hod ™ (w(1,1)-w(1,2))/(dzd(1)+dh(1)) )
& 4+ teta ™ 1x(1,2)"fr(1) * dzavg(l) = dww(2,1)

DC(1,2) = C(1,2) + teta ™ fx(1,2)*{r(1) = dzavg(1) * dww(2,3)
DD(1,2) = 0.d0

DE(1,2) = E(1,2)

- Free Surface OBC

altd = hod * Al(m) / dud

cdterm = altd ™ Ctd / 2.d0

Cterm = hod * C(m,1) /(dh(m) 4 dzd(m))
Dierm = teta * hod * {x(m,1) * fr(m)
Eterm = teta * hod ® (1.d0 - alf(m+1))

DF(m,1) = A(m.l)"w(m,l)+C(m,l)'w(m.2)+D(m,l)'w[m-l.l)-F‘(m,l)

DA(m,1) = A(m,1) - (Dterm 4 Eterm - Cterm + cdterm) ® w(m,1)
& . Cterm * w(m,2) + Dterm * w(m-1,1) + Eterm
& - altd * Sg + cdterm *wold(m,l)

DB(m,1) = 0.d0

DC(m,1) = C(m,1)

DD(m,1) = D(m,1) + teta ® hod * (1.d0 -alf(m)) ® fx(m,1)*{r(m) *
& (w(m-1,1)-w(m,1))

DE(m,1) = 0.d0

- Second Layer OBC

DF(m,2) = A(m.2)‘w(m.2)+B(m,2)'w(m.l)+C(m.2)'w(m,3)+
& D(m,2)*w(m-1,2)-F(m,2)

DA(m,2) = A(m,2)

DB(m.2) = B(m,2) * (1.d0 - hod*(w(m,1)-w(m,2))/(d2d(m)+dh(m)))
DC(m,2) = C(m,2)
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DD(m,2) = D(m,2)
DE(m,2) = 0.d0

do 4j = 3,n-1
Saturated Region IBC

DF(1,i) = A(Li)*w(1,i))4+B(1,i)*w(1,j-1)+ C(1,i)*w(1,i+1)+E(1,))
& *w(2,j)-F(1,j)

par = teta * fx(1,j) * {r(1) * dzavg(1)

DA(1,j) = A(1,j) + par*dww(j,j)
DB(1,j) = B(1,j) + par*dww(j,j-1)
DC(1,j) = C(1,j) + par*dww(j,j+1)
DD(1,j) = 0.d0

DE(1,j) = E(1,i)

OBC Saturated Region

DF(m,j) = A(m,j)*w(m,j)+B(m,j)*w(m,j-1)+C(m,j)*w(m,j+1)+D(m,j)
& *w(m-1,j)-F(m,j)
if (matcal .eq. 1) go to 4
DA(m,j) = A(m,j)
DB(m, ) = B(m,))

DC(m,j) = C(m,j)
DD(m,j} = D(m,j)
DE(m,j) = 0.d0

4 continue
IBC Layer N

par = teta * fx(1,n) ™ fr(1) * dzavg(l)
DA(1,n) = A(1,n) + par * dww(n,n)
DB(1,n) = B(1,n) + par ™ dww(n,n-1)
DC(1,n) = 0.dD

DD(1,n) = 0.d0
DE(1,n) = E(1,n)
DF(1,n) = A(1,n)*w(1,n}+B{(1,n)*w(1,n-1)4+E(1,0)*w(2,n)-F(1,n)
if (matcal .eq. 1) go to 400
Layer N
do 5i =2,m
DA(i,n) = A(i,n)
DB(i,n) = B(i,n)
DC(i.n) = 0.d0
DD(i.n) = D(i,n)
DE(i,n} = E(i,n)

g continue
400 DF(m,n) = A(m,n)*"w(m,n)+B(m.n)*w(m.n-1)+D(m.n)*w(m-1,n)-F(mn)

do 6i = 2.m-1
DF(i,n) = A(i,n)*w(i,n)+B(i,n)*w(i,n-1)4D(i,n)*w(i-1,n)+E(i,n)*
w(i+1,n)F(in)
& continue

- Derivatives of Ww(j) w.r.t. w(1,k), to fill up the matrix.
do8)=1l.n
if(} eq. 1) then
par = teta ™ fx(1,1)*fr(1) * dhavg(1l}
else

par = teta ™ {x(1,j)*{r(1) ® dzavg(1)
endif
do 7Tk =2n

if () 14 j1 ) then
DG(j,k) = 0.d0
else
DG(j,k) = par * dww(jk)
endif
continue

-1

if (j dt.j1) then
DG{j,1) = 0.d0
else
DG(j,1) = par ® dww(j,1)
endif
8 continue
DG(1.,1) = 0.d0

return
end
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subroutine solve(m,n ierr,ideg)

T ISR LA LR R Lyt LI T L] U A N
==mms Subroutine SOLVE provides the interface between the simulator -
*==»= and a linear solver package. menw

- LT

== It puts the matrix coefficients in a compressed storage scheme, "%**

=suu® llocates workspace for the iterative solver and calls MSILUM, hiahd
=wew= which performs incomplete factorization, and MSORMN, which does  ****
w=exs GRTHOMIN iterations. Lk

MERET NAANRSNEEN EREEENE.. ---'Clcmen‘ Brand’Aus 1991‘-‘.
-

- The matrix is*"apart from modifications at the boundaries®*a

- five-diagonal banded matrix. For each block, the coefficients are

- stored in the following way

- " " “ “ "

- DD —- DB. DA. DC —- DE

- [ [0 “ " "

- DG are coefficients in the first NxN submatrix, DF is the right-

. hand side.

- Compressed storage mode:

- A( ) holds all nonzero matrix coefficients in consecutive order,

- column index runs first, row index second.

- IA( ) holds the column index of the corresponding element in A( )

- NA( ) points to the first element of a row. For example, the

- nonzero coefficients of row K would be stored on

- A(1), I=NA(K),....NA(K+1)-1

- and their column indices would be stored on

. A22,...,A2N A2 N42,A31,A32,...,,A3N,A3 N

- with A11, then

L2 1 2 T it e PP TR P PR A T PR PP DL DL DR R DA AL L Ll

PARAMETER(mcm=80,ncm=100)
implicit real*8(a-h,0-2)

common /pres/w(mcm,ncm),wold(mcm,ncm),ww(ncm),wwold(ncm),wo(ncm)
common [jacob/DA(mcm,ncm),DB(mem,ncm),DC(mem,nem),DD(mem,ncm),
& DE(mcm,ncm),DF(mcm,nem),DG(ncm,ncm)

= ncm®ncm+5*ncm®*mem
ncm®mem
3*kadim+15*neqdim)

1 , neqdim

parameter ( kadim
2 , iwkdim =

...... make sure that kadim and neqdim are even numbers!
common/solwrk/ a(kadim), ia(kadim), na(neqdim+2). work(iwkdim)
1 , 1(neqdim), x(neqdim}

data iswi,nold,mold/1,0,0/
save iswi,nold,mold

N
~ === sdditional input parameters for the iterative solver
- degree of factonization, number of orthogonalisations.
= .topping cliterion. maximum number of 1terations
- 1deg = ]
norto = 5
* errlim = 1e.7
errlim = 1 .6
itmax = 20
out = 0
neq = n*m
-
-
. MES AN AN ERANE R AN AR AN NS N A NSRS NSRRI RN AR
" === Hut matnix elements into sparse matrix storage scheme
RS NS NN RANANNEE RN NS ARANARNSI NSNS NSNS RN AN R R
itow = 0
icnt = 0

"*® rows 1 ton
do 100 j=1.n

irow = irow+1

naiirow) = icnt+1

idiag = icnt+4)

do 110 k=1,n
icnt=icnt+1
alicnt) = dg(j.k)
ialicnt) = k

110 continue
if(y.ne 1)

1 alidiag-1) = db(1,))
alidiag) = da(1,))
if(y.ne n)

1 aidiag+1) = dc(1,j)

icnt = icnt41
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a(icnt) = de(1,j)
ja(icnt) = irow+n

= ==x  right-hand-side
r(irow) = di(1,j)

100 continue
-

* =%* rows n41 to m*n
do 200 i=2,m
do 200 j=1,n
irow = irow+1
na(irow) = icnt+1
icnt = icnt41
a(icnt) = dd(i,j)
ia(icnt) = irow-n
if(j.ne.1) then
icnt = icnt+1
a(icnt) = db(i,j)
ia(icnt) = irow-1

end if

icnt = icnt+1
a(icnt) = da(i,j)
ia(icnt) = irow

if(j.ne.n) then
icnt = icnt+1
a(icnt) = dc(i)j)
ia(icnt) = irow+1
end if
if(i.ne.m) then
icnt = icnt+1
a(ient) = de(i,j)
ia(icnt) = irow+n
end if
-
= === right-hand.side
r(irow) = df(i,j)
-
200 continue
na(irow+1)=icnt+1

write(6,'(10e8.1)") ((dg(i,i),i=1,70),i=69,70)
do i=1,3

write(6,'(5¢16.5)") (dd(i,j),db(i.j).da(i.j),

1 dc(i,j)de(i,j)j=1,n)

end do

=== allocate the workspace and check the dimensions
"

=== number of nonzero elements in the lower and upper triangular factors
ludim = ideg™icnt/2

hd this formula is a rather coarse estimate. e.g. for ndeg=1,
* ludim = (n*n-n)/2+4(2*n-1)*(m-1)
- should be the exact value
= === pointers for the arrays storing the L and U factors
- —y —1 — iy =+ il'— nu — nl — du —
= i4 i5 i6 iT i8 9 {10 il
i4 =1
i5 = i4 + ludim
i6 = i5 + ludim
i7 = i6 + (ludim/2 + 2)
i8 =i7 + (ludim/2 + 2)
i9 = i8 + neq/2+42
i10= i9 4+ neq/2+42
ill= i104 neq
= === pointers for work arrays for the ILU part
hd — xhelp — ihelp — nohelp — iuloc — ieli —
- i1l i12 i13 i14 i15 il6
-
i12 = ill + neq
i13 = i12 4+ neq/2+41
i14 = i13 4 ideg™(neq/241)
i15 = il4 + neq/2+1
i16 = il5 + neq/2+1

=*= pointers for the ORTHOMIN work arrays
they share space with some of the solver arrays
— ‘adx — dx — adxor — dxor —
k1 k2 k3 k4 kS5
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k1l =il

k2 = k1 + neq -

k3 = k2 4 neq

k4 = k3 + neq*(norto-1)
k5 = k4 + neq®(norto-1)

** diagnostic messages
iwk = max(il6,k5)
if(iwk.ge.iwkdim) then
write(*,*) ' NOT ENOUGH WORKSPACE FOR THE SOLVER.'
write(®,*) ' REQUIRED:'iwk,’ ACTUAL VALUE IWKDIM:'iwkdim
write(*,*) ' INCREASE DIMENSION OF WORK(IWKDIM) '

atop
end if
N L1 L] -m L L] -
=#% select incomplete factorization routine
BEE ANARAREAR NS EAR A AT RN NEA IR AR AR RN R - -
iawi = 1 MSILUM...ILU factorization including symbolic fact.
iswi = 2 MSILUP...ILU factorization using previous symboiic fact.
iswi =1
if(n.eq.nold .and. m.eq.mold) iswi=2
nold = n )
mold = m
if(iswi.eq.1) then
call msilum( neq
1 , a , i3 , na , kadim
2 . work(i5), work(i7), work(i9), ludim
b | il nl kldim
3 , work(i4), work(i6), work(i8),; work(i10), ludim
mow u iu nu du kudim
4 , ideg
. norder
5 , work(ill),work(i12),work(i13),work(il4),work(ils)
i xhelp thelp nohelp iulo® ieli
6 , ierr)
else if(iswi.eq.2) then
call msilup( neq
1 , a , ia . na , kadim
2 , work(i5), work(i7), work(i9), ludim
e | il nl kldim
3 . work(i4), work(i6), work(i8), work(i10), ludim
i u iu nu du kudim
4 , ideg
b norder
A L work(ill),work(i112),work(112), work(114),work(11%)
== xhelp ithelp nohelp  1ulo® reli
0 ,lerr)
end if

=** diagnostic messages
vall esgetdm(neqg.,na,work(i8),work(i9), iad, iud, ild)
f(iud.gt.ludim or. ild.gt.ludim) ierr=2

write(® ") neq,' equations.’
write(*.®) 'Requested dimensions: a ', iad
write(*.*) "’ u ', iud
write(" ")’ 1, 0ld
if(ierr.eq.1) then
write(*,*) ' WARNING - NDEG exceeds LOCDI1 in routine MSILUN"
write(*. %)’ NDEG is reduced to 'jideg
else if(ierr.eq.2 .or. ierr.eq.3) then
write(™,®) ' FATAL - not enough workspace for the °
write(®®) ' preconditioning matrix.’
write(*,*) ' Increase LUDIM; actual value = ',ludim
write(*,*) "’ required ',max(iud,ild)
end if
ierr = 0
NI IO I U0 0 OO0 00 EREEENN -e
*=* perform the ORTHOMIN iterations
- l.l.l!l---‘-I-ll-‘l‘ll.-ﬁll-I-“‘.ﬁ'-'-.-‘“-‘-..‘.‘.--.---I-!-"-

do 401 i=1,neq
x(i)=0

401 continue

— adx — dx — adxor — dxor —
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- k1 k2 k3 k4 k5

call msormn( neq

1 , a , ia , na , kadim
2 , work(i5), work(i7), work(i9), ludim
bl 1 il n} kidim
3 , work(i4), work(i6), work(i8), work(i10), ludim
. ane u iu nu du kudim
4 .r ., x , work(kl), work(k2}, work(k3), work(k4)
. e r x adx dx adxor dxor
5 , norto, errlim, itmax, nitr, iout
6 , ierr )
-
if(ierr.ge.3) then
write(*,*) '"WARNING - no convergence in ORTHOMIN after*
write(®,*) ' 'itmax,’ iterations.’
end if
-
b call prinzm(neq,work(i’z),na.worl(”),work(iQ).
= 1 work(i6),work(i8),work(i10) )
-
" Emy AN NE RSN - ANERR RN

= w=® ypdate the solution
- mEe I.!.'.--.‘.--'--'..‘-l----.Il--‘.--.-Il-'l-‘.-.-I.-.-----“--.--II

irow = 0
do 500 = 1,m
do 500 ) = 1,n

irow = irow+1
w(ij) = w(ij) - x(irow)
500 continue

return
end

subroutine prinzm(neq, ia, na, il, nl, iy, ny, heip)
dimension ia(®), na(™), il(*), ni(*), iu(*), nu(*), help(*)
open (lb,form:’(ormaned',ﬁle:’i]udal')
write(15,%) neq, neq, 1
do 201 j=1,neq
201 help(j) =0
do 202 i=1,neq
do 203 k=nu(i),nu(i+1)-1

203 help(iu(k)) = 0.5

do 204 k=nl(i),nl(i+1)-1
204 help(il(k)) = 0.5

do 205 k=na(i),na(i+1)-1
20% help(ia(k)) = 1.

do 206 )=1.,neq
write(15,") help(})
206 help(j) =0

202 continue

close(15)

return

end
C
C--l---l-'-l.ll.---l--Ilﬂ-I------ll-l---‘-‘lll-‘.-lIl--l.l-ll-l----l---
[of

subroutine msilum( neq

1 , a, ia, na, kadim

2 , Lok nl, kldim

3 . u, iu, nu, du, xudim

4 , norder

5 , xhelp, thein, nohelp, juloc, ieli

6 ,ierr)
P PP P T L EEE P LI LI LI L LDl
- ITERATIVE MATRIX-530LVER

---------------------------‘-.----------------t-n---------------------

Routine MSILUM: incomplete LU-factorization of order NORDER

For a sparse matrix A, an approximate decomposition into a
product L.U is constructed, where L is a lowerand U is an
upper triangular matrix. The sparsity pattern of L and U is
controlled by the order of admissible fill-in terms.

As opposed to routine MSILUN, this routine assumes tnat the

elements for each matrix row are stored in increasing order

w.r.t column index
----I-ll-----'-..llll-ll-ll--ll--.l-...l-lll..-.-l-.l.‘-lI----.l.-lll_

Input (unchanged on exit):

It b R P L T L P LD Ll L Ll L Lt bbbl ottobdd bt
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NEQ
number of equations and unknowns.

KADIM, KUDIM, KLDIM
dimensions of the corresponding arrays.

A(KADIM), IA(KADIM), NA(NEQ+1)
non-zero matrix elements of A in compressed storage format
(Yale sparse-matrix format).

Norder
maximum order of addmissible fill-in terms.

LI T T L e L P L L LR e T L T L LY ] LI

Input (scratch arrays)
-ama l.'.--..“.---“-‘l...ll.-....‘."..“tl'.----‘---.-l‘-‘-----.-II._

XHELP(NEQ), IHELP(NEQ), NOHELP(NORDER,NEQ), IULOC(NEQ), IELI{NEQ)

L L T R e LT PR PR R LT I T LTV YL T AR LTI LT T LT L o

Output

LT P Y DR TP TR P R TP DR LT LR LR T DR T PR TP R TR TR DR L LI T Lo

L(KLDIM), IL(KLDIM), NL(NEQ+1)

matrix elements of L in a compressed storage format
(negative values of non-zero matrix elements below the
main diagonal of L in compressed storage format).

U(KUDIM), IU(KUDIM), NU(NEQ), DU(NEQ)

matrix elements of U in a compressed storage format

(reciprocal diagonal elements are stored in DU, negative values of
non.zero elements above the main diagonal are stored on U, IU, NU)

IERR

0 normal successful completion

1 ... NORDER exceeds LOCDI1 (warning).
Program re-sets NORDER to LOCDI1 and continues. Be aware,
it doesn’t make much sense to choose a too great value of
NORDER. It is, however, possible to increase LOCDI1 by
changing the PARAMETER statement below.

2 ... KLDIM exceeded (fatal). Increase array size for L and‘IL
or iry a lower NORDER.
3 ... KUDIM exceeded (fatal). Increase array size for U and U

or try a lower NORDER.

2 % 8 & 8 2 E QR NEE SRS RSN E IR R RN SERRS R E PSRN RSN

A NN AN NN AN NSNS NS NN NSNS NE RN

implicit double precision (a-h,0-2)

ditmension a(kadim), ia(kadim), na{neq+1)

1 L Hkidim), l(kldim), nl{neq+1)

2 , u(kudim), iu(kudim), nu(neq), du(neq)
- real |

double precision |

*** scratch arrays
dimension xhelp(neq), ihelp(neq), nohelp(norder,neq)
1 ,1uloc(neq), ieli(neq)

**= small local arrays
parameter( locdil = 10)
dimension ndgloc(locdil), iii(locdil)

L L L T e L e L P T P P L)

LT YT T
L L L P P e e L e L L LY L P R LT T LN

n** check and initialize

P T e T T L e R L P LT Y] LETT LY

CLL T e T P L ey e e P Y T R T R TR L AL LR LR LS YL T

ierr = 0

*** chieck local array dimensions
if( norder.gt.locdil) then
ierr = 1
norder = locdil
end if

*** initialize ihelp
do 100 i=1,neq
ihelp(i) = 99

100 continue
-
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w wum 4ot gutput control flag (for debugging purposes only)
cc® ichk = 0

c* if(ierr.eq.-1) ichk = 1

"

wm* ypecial treatment of first row
T

® 2 8 8 & 30

== |ower matrix: no clements stored for first row
nl(1)=1
ilent = 0

“»* ypper matrix: elements of A transferred to U
du(1) = 1./a(na(1))
nu(1) =1
do 200 j=na(1)+1,na(2)-1
u(j-1) = -a(j)
iu(j-1) = ia(})
200 continue
iucnt = na(2)-na(1)-1
-
= === pointers referring to the degree of fill-in terms
nohelp(1,1) = na(2)-na(1)
do 250 j=2,norder
nohelp(j,1) = 0
250 continue

et LI L L L -

PRI TTT PR LRI Pl L) L1 » -

=== |gop for rows 2,.,NEQ of the matrix
EXET T DL Ll Ll - » Y

PTIT TR LD LN

AR AERRA RSN - TR AL DLt L

do 300 ilin = 2,neq

®=% 4ot counters and pointers

-
neli = 0
nuli= 0

jeli=0

nu(ilin) = iucnt+1

do 305 i = 1,norder
ndgloc(i)=0
305 continue

PR
= wxw ansfer matrix coefficients from compressed to full storage mode
« wmm

do 310 j=na(ilin),na(ilin41)-1

k = ia())
xhelp(k) = a(j)
ihelp(k) = 1

if(k.Jt.ilin) then

= === count elements left of the diagonal, store their position
neli = neli+1!
ieli{neli) = k
else if(k.gt.ilin) then

- man

count elements right from the diagonal, store their position
nuli = nuli41
ndgloc(1) = ndgloc(1)+1
juloc(nuli) = k
end if
310 continue

-
- if(ichk.eq.1) then
- write(6,) ' IHELP '
. write(6,97) (ihelp(j),j=1,neq)
c97 format(40i2)
end if
anm
PTIIIL L e L L LA bl d LLJ auns mEEEES

wxs oliminate elements left to the diagonal eiement
----u--l----.Illll.l.‘-lt-ll-l-II‘--l-l‘l--llllllllI.-I‘--‘--IIIII“-‘

do while (jeli.le.neli) ;"™ coded as a goto construct
2000 continue
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jeli = jelit1
if(jeli.gt.neli) goto 2999

®=e get and store pivot value
jpiv = ieli(jeli)
juent = nu(jpiv)-1
xpiv = xhelp(jpiv)*du(jpiv)
xhelp(jpiv) = -xpiv

*a= conrtol incomplete factorization

L LIT R RIS Y DRI T LT L L L DT e LY LT
nmw

[ I B A

degree of element to be eliminated
jdeg = ihelp(jpiv)

®==* first case: degree of element in pivot row plus degree of

*** slement to be eliminated does not exceed norder

do 330 id = jdeg+1,norder
nd = noheip(id-jdeg,)piv)

cc* write(6,*) ' jucnt, nd', jucnt, nd

cc* write(6,*) (iu(k),k=jucnt41,jucnt+nd)
do 331 k=jucnt41,jucnt4nd

kk = iu(k)
ihkk = ihelp(kk)
if(ihkk.le.id) then
not a new entry, no change in degree
xhelp(kk) = xhelp(kk) + xpiv™u(k)

eise if(ihkk.gt.norder) then
. mmm new entry
xhelp(kk) = xpiv*u(k)
ihelp(kk) = id
if(kk.t.ilin) then
c*® ° insert kk at the correct position in ieli
do 3311 j=neli,jeli41,-1
if(kk.le.ieli(j)) then
ieli(j+1) = ieli(j)

else
ieli(j+1)=kk
goto 3319
end if
331 continue
el jeli4 1 )=kk
)0 neli = neli4+!
else
nuli = nuli4l
iuloc(nuli) = kk
ndgloc(id) = ndgloc(id)+1
end f
else

not 3 new entry, but the degree changes
xhelp(kk) = xhelp(kk) + xpiv®u(k)
f(kk.gs.ilin) then
ndgloctihkk) = ndgloc(ihkk)-1
ndgloc(id) = ndgloc(id)+1
end if
iheip(kk) = id
end if
331 continue
jucnt = juent+4nd
330 continue

=== second case: degree of element in pivot row plus degree of

==* element to be eliminated exceeds norder
"

LI I B )

do 340 k=jucnt+1,nu(jpiv+41)-1

kk = iu(k)

xhelp(kk) = xhelp(kk) + xpiv*u(k)

(only VALID entries will be updated after completion)
340 continue

goto 2000
2999 continue
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*** sparse elimination in row ilin now complete. collect coefficients
FYTYTTLI LI R LR PP LA DL R Ly L Yt ] LA L LT L] -

=s» gscan IELI: reset IHELP and store L-matrix in condensed form

nl(ilin) = ilent+1
do 350 j=1{,neli
ij = ieli(j)
ihelp(jj) = 99
ilent = jlent+1
I(ilent) = xhelp(jj)
il(llent) = jj

3%0 continue

-

= se» ,can IULOC
-

*=  set pointers to coefficients w.r.t. order
iii(1) = iuent

do 355 j=2.norder

iii(j) = iii(j-1)+ndgloc(j-1)

35% continye

-

c

if{abs(xhelp(ilin)) 11. 1.e-20) xhelp(ilin) = 1.e-20
du(ilin) = 1./xhelp(ilin)
ihelp(ilin) = 99

-
c®*  fill up arrays u and iu
do 360 j=1,nuli
) = iuloe(j)
ihjj = ihelp(j})
iii(ihjj) = iii(ihjj)+1
u(iii(ihjj)} = -xhelp(j}j)
iu(iii(ihjj)) = iuloc(j)
cc” xhelp(jj) = 0
ihelp(jj) = 99
360 continue
iucnt = jucnt+4nuli
-
do 365 j=1,norder
nohelp(j,ilin) = ndgloc(j)
365 continue

300 continue

AN AN USSR S AR SRR S AN AR AR AN N AN AN TR AN

-
= ==* loop ilin=2,neq now compiete

R L P L L L LT T T L TP T
-

=

nl(neq+1) = ilent41

write(*,”) na(neq+1), ni(neq+1), nu(neq}
iflichk eq.1) then
write{6.%) ' die u-mastrix’
j0 = nu(1)
do i=1,neq-l
3l = nu(i+1)
write(6,99) 1./du(i), (u(}),j=}0,31-1)
write(6,98) i,(iu(j),j=10,j1-1)
10 = 51
end do
i = neq
write(6,99) 1./du(i)
write(6,98) 1
end if

if(ichk.eq.1) then
write(6,*) ' die l-matrix '
jo = nl(1)

do i=1,neq

11 = nl{i+1)

write(6,99) (1(j),j=j0,j1-1)
write(6,98) (il(j),j=j0,j1-1)
i0 = j1

end do

end if

¢99 format(1lh ,10e10.3)

¢98 format(1h ,10110) '
-

@ % 2 N N RR N R R AR R R ERNEE AN

99999 continue
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return
end
subroutine msailup( neq

1 , 8, i3, na, kadim

2 , 1, il, al, kldim

3 . u, iu, nu, du, kudim

4 , norder

5 ., xhelp, ihelp, nohelp, iuloc, ieli

6 , ierr)
O - W00 200 0 30 N TN
. ITERATIVE MATRIX.SOLVER
MR EA NN RN SRR AN SRR RN

Routine MSILUP: incomplete LU-factaorization of order NORDER
Clemens Brand, November 1990

For a sparse matrix A, an approximate decomposition into a
product L.U is constructed, where L is a lowerand U is an
upper triangular matrix. The sparsity pattern of L and U is
prescribed in advanice, using information from a previous call
to the solver

As opposed to routine MSILUN, this routine assumes that the
fill-in pattern is known in advance and given by the arrays

il, nl, iu and nu
PR LR RS TS 2 0 L LR A b R A R ARttt il iR ity E b Ll

A ¥ E ¥ R R R ES AR RS

a

unnecessary arrays which are kept in the parameterlist for

¢ compatibility are ihelp, nohelp, iuloc and ieli
WO O 00 00N 0O OO OO A0 N DR 000 OO N R0 0 O O O 00 00 O 000

implicit double precision (a-h,0-2)

dimension a(kadim), ia(kadim), na(neq+1)

1 , I(kldim), il(kldim), nl(neq+1)

2 ., u(kudim), iu(kudim), nu(neq), du(neq)
real |

double precision |

dimension xhelp(neq)

T
* ®=* che-k and initialize
- man
-
ierr = 0
-
* *** special treatment of first row
® **" Jower matrix: no elements stored for first row
-

*** upper matrix: elements of A transferred to U
du(1) = 1./a(na(1))
do 200 j=na(l}+1,na(2)1
n(y-1) = -a(j)
200 continue
-
D T T L T Y L T e e T
* *** loop for rows 2. .NEQ of the matrix

L T e e T e

do 300 ilin = 2,neq

clear array xhelp and
*** transfer matrix coefficients from compressed to full storage mode
do 310 y=nl(ilin).nl(ilin4+1)-1
o=l
xhelp())}=0
310 continue
if(ilin.it.neq) then
do 320 j=nu(ilin),nu(ilin+1)-1
i = u(j)
xhelp(jj) =0
320 continue
end if

do 330 j=na(ilin),na(ilin41)-1
k = ia(j)
xhelp(k) = a(j)

330 continue

-

PR
* *** eliminate elements left to the diagonal element.
do 2999 jeli=nl(ilin),nl(ilin+1)-1

get and store pivot value
jpiv = il(yeli)
xpiv = xhelp(jpiv)*du(jpiv)
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xhelp(jpiv) = -xpiv

control incomplete factorization
-
juent = nu{jpiv) .
do 340 k=jucnt,nu(jpiv+$1)-1
kk = iu(k)
xhelp(kk) = xhelp(kk) 4+ xpiv*u(k)

340 continue
-

299

continue

(only VALID entries will be updated after completion)

sparse elimination in row ilin now complete. collect coefficients

do 350 j=nl(ilin),nl(ilin41)-1

i = i)
(j) = xhelp(jj)
350 continue
du(ilin) = 1./xhelp(ilin)
if(ilin.lt.neq) chen
do 360 j=nu(ilin),nu(ilin+1)-1
jii = iu(j)
u(3) = -xhelp(jj)
360 continue
end if
-

300 continue
- mEe

scan IL,IU and store L- and U-matrix in condensed form

- LT 2t 33 1)
=** Joop ilin=2,neq now compliete.

- EASRESAEREE NS

if(ichk.eq.1) then

write(6,*) ' die u-matria’

jO = nu(1)

do i=1,neq-1

j1 = nu(i$1)

write(6,99) 1./du(i), (u(j).i=j0,j1-1})
write(6,98) i,(iu(j),j=jn,j1-1)
j0 = )1

end do

| = neq

writel 6,99) 1./du{i)
write(6.,98) i

end f

if(ichk eq.1) then
write(€,”) ' die |-matrix
10 = ni(1)
do i=1,neq
11 = nli+1)
write(6,99) (1(j),j=j0,)1-1)
write(6,98) (il(}),)=j0,j1-1)
)0 =1
end do
end if
format(1h ,10e10.3)
formas(1h ,10i10)

AR 5 2 N B 5 N % R E F SRR E RS E R W NI

n
©
©

c98
-

99999 continue
return
end
subroutine msormn( neq
, a, is, na, kadim
. Lol nl, kldim
, u, iu, nu, du, kudim
, 1, x, adx, dx, adxor, dxor

- LR XN

, ierr)
AR AN TR NSRS

, norto, errlim, itmax, nitr, iout

AsssssEAEREEEBSAESESEARERSS
-
- iterative
-

solver

iteration with orthomin convergence aceleration

NSRS NN N A N I NN N S RN SN S SN S EAN S EANN N R AR NS RN
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EEERSEERRENL SRR R " R TR RN R

-
- iterative solution of a linear system
-
- a.x =
-
- using the generalized conjugate gradient technique orthomin.
=
. as a preconditioning, the incomplete factorization of a into
- a product | . u, is used. the set-up of the triangular matrices
- I and u is done in subroutine orilu.
-
EANRESD -
-
- EHRORcode ierr
e ierr=0. means normal successful completion
- ierr=2 norto, number of orthogonalizations, exceeds
- local array dimension locdil
- ierr=3 maximum number of iterations exceeded
= ierr=4 cnorm almost 0, no search direction
. can be found. Improve preconditioning
. and start again
b jerr=% maximum number of iterations exceeded, however,
. a moderate reduction of the initial residual
- has been obtained
-
T LT T P e e L e e e PP Y T R T LT ws
=
O O L

implicit double precision (a-h, ¢-2)

double precision 1

dimension a(kadim), ia(kadim), na(neq+1)

1 . I(kldim), il(kldim), nl(neq+1)

2 , u(kudim), iu(kudim), nu(neq), du(neq)
real |

dimension r(neq), x(neq)
**¥ scratch arrays

dimension adx(neq), dx(neq)
1 , adxor(neq,*), dxor(neq,*)

"** local arrays.

parameter (locd1=20)
dimension cnorm(locdl)

N O OO O
ierr=0

*=® check norto (norto-1is the maximurmn number of previous residual
*=*® vectors that are stored and used for orthogonalization)

L}

iffnorto.gt.iocdl) then
rerr = 2 i

norto = locdl

end if

*=* jnitialize residual vector, compute initial residual
.

call msmvmi(neq, a, ia, na, x, adx)
resimi = 0
do 200 i=1l.neq
r(i) = r{i) - adx(i)
resini = resini 4 r(i)*r(i)
resini = max{resini,abs(r(i)))
300 centinue
resini = sqri(resini)

if(iout.gt.0)
1 write(iout,®) 'rms init

, real(resini)

RSN E RSN SRR

O

start of the orthomin iteration loop
LT L L e e P T T PR T PR L A PR PR L R L LT T L

a2 0 EF o

nor = 1

icnt = 1
400 continue
~
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P I I I B

solve the system L.U*DX =R

call mslusv(neq, |, il, nl, kidim, u, iu, nu, du, kudim, dx, r)

-
- mae
B AN AERENERSE RS REAN R ————
*  matrix multiplication; ADX = A*DX
® GOSN - aRaw
- sEn
-
call msmvmi(neq, a, ia, na, dx, adx)
xerr = 0
do 409 i=1,neq
xerr = max(xerr, abs(dx(i)))
409 contin‘ie
=
- K
 AEARSER AR - ELI I T
- orthogonalization part. ADX is orthogonalized regarding (NOR-1)
- previously computed vectors (which are stored on ADXOR)
" RN R AR AN AN RN RN EREN AN RN LI T T T T

do 410 ior=1,nor-1

==* compute inner product
[

sum =0
do 411 i=1,neq
sum = sum 4+ adxor(i,ior)*adx(i)

411 continue
sum = -sum/cnorm(ior)
-
n mne
= w== add correction for orthogonalization
« ane
do 412 i=1,neq
adx(i) = adx(i) + sum™adxor(i,ior)
dx(i) = dx(i) + sum™ dxor(i,ior)
412 continue
410 continue

-

minimization constants

-
-
R
v
-
.

O O O 0

430

L T I A

AR ARENSS SRR NS NN

T E T T P L e R e T e L L)

cnorm(nor) = 0
omega =0

do 430 i=1.neq
cnorm(notr) = cnorm(nor)+adx(i)*adx(i)
omega = omega + r(i)®adx(i)
continue
if(cnorm(nor).lt.1.e.-30) then
if(omega .It. 10.e-30) then
.. not really a problem, just dealing with small numbers
omega = ).
else
. the new search direction iz bad
ierr = 4
return
end if
else
. this is the regular case
omega = omega/cnorm(nor)
end if

update solution and residual

rnorm = 0.d0
oma = max(1.d0, abs(omega))
do 440 i=1,neq



x(i) = x(i)+omega®dx(i)
r(i) = r(i)-omega®adx(i)
rnorm = rnorm+r(i)*r(i)
tmp = abs( oma®dx(i) )
xerr = max(xerr,tmp)
rnorm = max(rnorm,abs(r(i)))
440 continue
rnorm = sqrt(rnorm)

cc® xnorm = 0

cc® errmax

cc* do 460 i=1,neq

cc* errmax = max(abs(real(r(i))),errmax)
cc* xnorm = xnorm+x(i)*x(i)

460 continue
-

if(iout.gt.0)
1 write(iout,®) icnt, real(omega), real(rnorm)
2 , real(rnorm/resini), real(xerr)

-

= ame

WO L2 1 - -ﬂ
- convergence check

" mEEERE EERSERER ARSI E R AN ERNEE AR RN R RN
T

= === check convergence condition; return (successful completion)

T

if(rnorm .1t. errlim®resini
* 1 ) then
1 .or. xerr.lt.1.d-6) then
nitr = icnt
return
end if

m=m check for maximum number of iterations; return (EHROR status).
.
if(icnt .ge. itmax) then
nitr = icnt
ierr = 3
if(rnorm.lt.sqrt(errlim)®resini
1 .and. xerr.1t.10) ierr=5
return
end if

EEREESRER TRAREESRN LEL LD L L L Lt
go and give it another try
l‘lll'.l.l.-----llIllIlt..‘l--.l...ll-.-..lll“.IlIlllllll-llllll--'l.

==* increment iteration counter
anw

icnt = icnt41
e

restart the orthogonalization sequence or add new vector
to the orthogonal system

if (nor.eq.norto) then
nor = 1 ’

else
do 490 i=1,neq
dxor (i,nor) = dx(i)
adxor(i,nor) = adx(i)

490 continue

nor = nor+1

end if

goto 400
end

subroutine msmvml(neq, a, ia, na, x, ax)
l-l-----Illllll‘l‘l‘-il.lllIl-lI-ll--IIIIIl-lll..ll"ll‘.ll.lllll.

MSMVML .

performs matrix-vector-multiplication *
ax = a.x -
- = . -

«
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implicit double precision (a-h, o-2)
dimension a(™), ia(*), na(neq+1)
dimension x(neq), ax(neq)
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j1=1

do 1 i=1l,neq
0 =i1

il = na(i+1)
ax(i) =0

do 1 j=j0,j1-1
ax(i) = ax(i) + a(j)*x(ia(j))

-

return
end
subroutine mslusv(n, l,il,nl kldim, u,iu,nu,du,kudim, dx,r)

L]

- “ »

hd - m sl usyv -

» - matrix solver - solve a sysatem L.Udx =t -
- " L L L]

- L "

e * forward.backward substitution to solve hd
L - -

- e LUdx =1 hd

- - pa— - -

- - -

- * L, U : lower and upper triangular mairices from (incompiete) *
. - = o .

hd * gaussian elimination .

- - »

- * r: residuum. right hand side of equations. -
- - -

- - L]

. * dx: solution vector delta x .

» - e -

L] R BEREE NS - BEAWE NS
»

-

implicit double precision (a-h, o-z)
double precision |
dimension 1(kldim), il(kldim), nl(n41)
, ulkudim), iu(kudim), nu(n), du(n)
2 , ax(n), r(n)

-

real §

*w* forward sweep

% K & 8 %

j0o =1
do 100 i=1,n
il = nl(i+1)
dx{i) = r(i)
do 110 j=j0.,j1-1
i o= ilG)
dx(i) = dx(i) + U(j)=dx(jj)
110  continue
o0 = j1
100 continue

* ®=% backward sweep

1 =n

dx(i) = dx(i)*du(i)

iul = nu(n)

do 300 i=n-1,1,-1

iud = nu(i)

do 310 j=iu0,iui-1

dx(i) = dx(i) + u(j)*dx(iu(j))
310 continue

iul = iu0

dx(i) = dx(i)*du(i)
300 continue .
-
return
end

subroutine esgetdm(neq,na,nu,nl,iad,iud,ild)
dimension na(neq+1), nl(neq+1), nu(neq)
iad = na(neq+1)

iud = nu(neq)

ild = nl(neq+1)

return

d
----::------------------.--.----:---------.----------------t--

238



SUBROUTINE TIM(tdi,td,dtd tdbld,itime,dtd1,1dflw,
&qd,ntdi,ntd)

. TIME STEP CONTROL SUBROUTINE

- I1flow=0 =; flow period
lflow=1 =; last time-step in the flow period
|flow=2 =; shuttin period

implicit real®8(a-h,0-z)
common [logic/iwhfig,|flow ktcnt, kifig,igchs,ihw
common/pcte/qdold,tdb,tdnxt,istar

tdl = td
if (1flow. eq. 1) then
print*, 'START OF BUILDUP PERIOD'

td = tdi
dtd = tdi
qd = 0.d0
1flow = 2
ktent = 1
ntd = ntdi
dtdl = dtd
go to 1
endif
dtd1 = dtd
if (ktent .gt. ntd) then
ktent = 1
ntd = ntd 4 100
endif

ktent = ktent 4 1
td = td1 * 10.d0**(1.d0/ntd)
dtd = td - tdl

if (1low .eq. 0 .and. td. gt. tdfiw) then
dtd = tdflw - tdl

td = tdfiw
write(*,*) '"LAST TIME-STEP IN THE FLOW PERIOD'
1flow =1 ’
endif
1 if (Iflow .eq. 2. and .td .gt. tdbld) then
itime = 1
print *, 'End of program at td + tdfiw = ' td-did+tdfiw
endif
100 return
end

SUBROUTINE TDCOR (m,n,hwold kilst ,tdbase)
PARAMETER(mcm=80,ncm=100)

Subroutine used to reduce the time-step to the test, since the

pressure drawdwon in the free-surface stream-layer is large enough

compared to the volume of any block.

ktflg 1s a parameter that controis time step fractioning, and
equals 1 always when thae new td valueis geneate in the
subroutine TIME. Otherwise, its value 1s a whole number
used to divide the time step previously, and is gradually
increased, since convergence is not reached because of
time-step is still large.

ktlst 15 the recorded last ktflg used previously, and is used ta
avoid waste of computer time. Thus, if, for example, the
need of auto-reduction of the time-step was 5 times in the
last period, then, when starting to divide the new time-step
ktfig will assume 5 initially.

IMPLICIT REAL®8 (A-H,0.2)

common /dimlu/td.dtd,hwd,hod|ha,dzdw.dhw,qd,r¢d

common [logic/iwhfig,|flow kicnt kifig,lgchs,ihw

common /alt/zd(mcm.ncm).zold(mcm,ncm),hd(mcm).hold(mcm).zdw(ncm).
& hdavg(mcm+1),zdavg(mem+1)

common /prea/w(mcm,ncm),wold(mcm,ncm),ww(ncm).wwold(_ncm),wo(ncm)
common /lhick/dh(mcm).dh!(mcm),dhold(mcm),dzd(mcm),dzavg(mcm+1),
& dhavg(mem+1)

if (ktflg .eq.1) then
tdbase = td
dtdl = dtd
if (ktlst .gt. 3) then
ktflg = ktlst - 2
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else
ktfig = ktlst
endif
endif
ktfig = kiflg + 1
dtd = dtd1 [ ktflg
td = tdbase - dtdl + did

do 2 j=1,n
ww(j) = wwold(j)
do 1i=1m
w(i,j) = wold(i.j)
continue
continue

do 3i=1m

hd(i) = hold(i)

dh(i) = dhi(i)

dh(i) = dzd(i)

dhavg(i) = dzavg(i)
continue
dhavg(m+1) = dzavg(m+1)

hs = hd(1)

hwd = hwold
hwdl = hwold
dhw = dzd(1)
dhavg(1) = dzd(1)
iwhflg = 1

lgchs = 0

return
end

subroutine tetctl (hwd, td, tmin, teta, tetai)

VARIABLE TETA DEFINITION (NORMALLY NOT USED)
implicit real®8 (a-h,o-z)

real™4 tt, der, tet

td3
td2 = td1

td1 td

hwd3 = hwd2

hwd2 = hwdl

hwdl = hwd

derla = (hwdl - hwd2) / (1d1 . td2)

derib = (hwd2 . hwd3) / (td2 . 1d3)
der2old = der2

der2 = 2.d0 ™ (derla- derlb) / (tdl - td3)

td2

prod der2 * der2old

tt = tmin

der = der2

if (dabs(der2) .le. 0.001 .or. prod .1t. 0.) then
teta = 1.d0

else
teta = tetai

endif

tet = teta
print =, 'tmin=".tt," der2=",der,’ teta=",tet

return
end

e T P T TR TR T T T DRI DL DL D AL Al bbbl bbb
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START subroutine E'1

This subroutine calculates the exponential integral E1(x), where x
is a real number larger than zero.
It was kindly furnished by Jan Aasen

For x less than 1.35, series expansion is used.

For x greater or equal to 1.35, the 15-point Gauss-Laguerre
integration scheme is used.

Input: x = argument [DBL PREC]

Output: ei = Ei(x) {DBL PREC])
Valid range of input parameter: x = ;0,%;

Supporting subroutines: fac(n,n'fac)

lag'e'1(x,ei)

double precision function ei(x)
double precision x
double precision n'fac, tol, euler, total, sigma
integer n
data tol, euler/1.e-8, 5772156649/
total = .0
if (x .Jt. 1.35) then
do 10 n = 1,15
call fac(n,n'fac)
sigma = (-x)**n/(n"n’fac)
total = total + sigma
if (abs(sigma/total) .It. tol) then
ei = -culer - log(x) - total
return
endif
continue
else
call lag e'1(x,ei)
return
endif
end

END subroutine E'1

START subroutine fac
Input : n = zero or positive [INTEGER]

Output : n'fac = n! = faculty of n [DBL PREC]

Valid range of input parameter: n = 0,1,..... 34

subroutine fac(n,n’fac)
integer n
double precision n'fac
integer i
n'fac = 1.
do10i=1,n-1

n'fac = (i + 1.)*n'fac
continue
return
end

END subroutine fac

START subroutine lag'e'l
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This subroutine evaluates the exponential integral E1(x) using the
15-point Gauss-Laguerre quadrature. The roots of the Laguerre
polynomial and the weight factors are from Table 2.4, page 113,
Carnahan et al: 'Applied Numerical Methods'. The integral is
approximated using Eq.2.109 on page 115,

Input : x = lower integration limit [DBL PREC]

Qutput : ei = the value of the integral [DBL PREC]

R K R B BN B K B BN BB 3 )

subroutine lag'e'1(x,ei)
double precision x, ei
double precision z(15), w(15), sigma
integer i
data 2/.093307812017, 492691740302, 1.215595412071,
+2.269949526204, 3.667622721751, 5.425336627414,
+7.565916226613, 10.120228568019, 13.1302824821786,
4+16.654407708330, 20.776478809449, 25.623894226729,
+31.407519168754, 38.530883306486, 48.026085572686/
data w/ 218234885940, .342210177923, .263027577942,
4+.126425818106, .0402068649210, .00856387780361,
+.00121243614721, .000111674392344, .00000645992676202,
+.000000222631690710, .00000000422743038498,
+.0000000000392189726704, .000000000000145651526407,
+.000000000000000148302705111, .0000000000000000000160059490621/
ei = .0
do 10} = 1,1%

sigma = w(i}/(z(i) + x)

ei = ei + sigma

10 continue

ei = ei"exp(-x)

return
end
-
- END subroutine lag'e'l
-
LR TR LR R LR LR L DL LR L Lyl LA Ll

subroutine spline(n,x,y,b,c,d)

- Original subroutine in Fligelman (1981)
integer n
double precision x{n),y(n),b(n),c(n),d(n)

INTEGER NM1t, IB, I
DOUBLE PRECISION T

NM1=N-1

IFIN LT.2) THEN
RETURN

ENDIF

IF{N LT.3) THEN
GO TO 50
ENDIF

D(1)=X(2)-X{1)
C(2)=(Y(2)-Y(1))/D(1)
DG 10 1=2,NM1
D(D=X(141)-X(1)
B(l)=2.%(D(1-114D(1))
C(I4+1)=(Y(1+1)-Y(I))}/D(I)
CIH=Cl141)-C(1)

10 CONTINUE

B(1)=-D(1)

B(N)=-D(N-1)

C(1)=0.

C(N)=0.

IF(N.EQ.3) THEN

GO TO 18

ENDIF
C(1)=C(3)/(X(4)/X(2))-C(2)/(X(3)-X(1})
C(N)=C(N-1)/(X(N).-X(N-2))-C(N-2)/(X(N-1)-X(N-3))
C(1)=C(1)*D(1)""2/(X(4)-X(1))
C(N)=-C(N)*D(N-1)"*2/(X(N)-X(N-3))

* FORWARD ELIMINATION
15 DO 20 1=2,N

T=D(1-1)/B(I.1)
B(1)=B(1)-T*D(I-1)
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c()=C(1)-T*C(1-1)
20 CONTINUE

. BACK SUBSTITUITION

C(N)=C(N)/B(N)
DO 30 IB=1,NM1
1=N-1B '
C(I)=(C(1)-D(1Y*C(141))/B(1)
30 CONTINUE

c COMPUTE POLYNOMIAL COEFFICIENTS

B(N)=(Y(N)-Y(NM1))/D(NM1)+D(NM1)*(C(NM1)+2.*C(N))
DO 40 I=1,NM1
B(D=(Y(141)-Y(1))/D(1)-D(1)*(C(1+1)+2.2C(1))
D(1)=(C(141)-C(1))/D(1)
c(1)=3.#c(1)

40 CONTINUE
C(N)=3.*C(N)
D(N)=D(N-1)
RETURN

50 B(1)=(Y(2)-Y(1)}/(X(2)-X(1))
C(1)=0.
D(1)=0.
RETURN
END

DOUBLE PRECISION FUNCTION SEVAL(N,U,X,Y,B,C,D)
INTEGER N
DOUBLE PRECISION U,X(N),Y(N),B(N),C(N),D(N)

= ==s THIS SUBROUTINE EVALUATES THE CUBIC SPLINE FUNCTION
- Original subroutine in Fligelman (1981)

INTEGER 1,J,K
DOUBLE PRECISION DX
DATA 1/1/

IF(1.GE.N) TREN
I=1
ENDIF
IF(U.LT.X(1)) THEN
GO TO 10
ENDIF
IF{U LE.X(1+41)) THEN
G0 TO 30
ENDIF
10 I=1
J=N+4+1
20 K=(141))/2
{F(U LT X(K)) THEN
J=K
ENDIF
IF(U GE X(K)) THEN
=K
ENDIF
IF(J.GT.14+1) THEN
GO TO 20
ENDIF
30 DX=U-X(])
f (dabs(dx) -le. 1.d-18) dx = 0.d0
if (dabs(b(i)) le. 1.d-18) b(i) 0.d0
if (dabs(c(i)) .le. 1.d-18) c(1) OdO
if (dabs(d(i)) le 1.d-18) d(i) = 0.d0
SEVAL=Y(1)+DX*(B(I+DX*(C(1)+DX*D(1)))
RETURN
END

n L

double precision function aval(n,u,x,y,isort)
PARAMETER(mcm=80,ncm=100)

n - number of vectors dimension

u - abscissa value to be interpolated in x(i)

x - abscissa vector

y - ordinate vector

isort . if aval is called for the first time for a given pair of
vector x & y, isort=0. Otherwise, isort .ne. 0
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implicit real®8 (a-h,0-2)
double precision x(n),y(n),x1(ncm),yl(ncm)

= »%® Sorting the input vector
if (isors .eq. 0) call sort(n,x,y,x1,yl)

* =*¥* [nterpoiation
do 1 k = 1,n-1
if (u.ge x1(K) .and. u .It. x1(K+1)}) then
aval = y1(k) + (yi(k+1)- y1(k))/(x1(k+1)-x1(k))*(u-x1(k))
return
endif
1 continue
if (u 1t x1(1)) then
aval = y1(1) + (y1(2) - y1(1))/(x1(2)-x1(1))*(u-x1(1))
return
endif
if (u_.gt. x1(n))
& aval = yi(n) + (y1(n) - y1(n-1))/(x1(n)-x1(n-1))*(u-x1(n))

return
end

SUBROUTINE SORT(N,x,y,rx,ry)
implicit real*8 (a-h,o-2)
real*s x(n),y(n) rx(N),ry(n)
do 1 k=1,n
rx(k) = x(k)
ry(k) = y(k)
1 continue

L=N/2+1
IR=N

10 IF(L.GT.1)THEN
L=L-1
Rrx=rx(L)
rry=ry(L)
ELSE
Rrx=rx(IR)
Rry=ry(IR)
rx(IR)=rx(1)
ry(IR)=ry(1)
IR=1R-1
'F(IR.EQ.1)THEN
rx(1)=Rrx
ry(1)=Rry
RETURN
ENDIF
ENDIF
I=L
J=L+L
20 {F(J LE.IR)YTHEN
IF(J.LT.IR)THEN
IF(rx(J).LT.rx(J41))I=J+1
ENDIF
IF(Rrx.LT.rx(J))THEN
rx(D=rx(1)
ty(D=ry(J)
1=J
J=J41
ELSE
J=IR+1
ENDIF
GO TO 20
ENDIF
rx(l)=Rrx
ry(l)=Rry
GO TO 10
END
.-'lll.l‘---‘-ll-.."‘l-l--lll-ll..l--..l.-.-I--"‘l----..
Double Precision Function WAVG(i,n)
PARAMETER(mcm=80,ncm=100)
implicit real®8 (a-h,0-2)
common /all/zd(mcm.nCm).zold(mcm.ncm).hd(mcm).hold(mcm),zdw(ncm).
& hdavg(mcm+l),zdavg(mcm-H)
common /pren/w(mcm,n:m),wald(mcm,ncm),ww(ncm),wwold(ncmhwa(ncm)
common /thick/dh(mcm).dhl(mcm),dhold(mcm),dzd(mcm).dzavg(mcm-H),

& dhavg(mcm+1)
sum = 0.
do j =2.n
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sum = sum + w(i,j)
enddo

wavg ® (sum®dzd(i) + dh(i)*w(i,1)) / hd(i)
if (wavg .gt. 1.) then
wavg = 1.d0
endif
return
end

Double Precision Function WWAVG(n,ww,dzdw,dhw,hs)
implicit real*8 (a-h,0-2)
dimension ww(1)
sum = 0.
do j =2,n
sum = sum + ww(j)
enddo
wwavg = (sum®dzdw + dhw*ww(1)) / hs
return
end

P ITT Lt CEEE PE PR PR DL AL DD L L LD D S DL At L Lt

SUBROUTINE CPUTIME(CPUSEC k)

"OUTPUT:

CPUSEC CPU TIME USED SO FAR.
THIS SUBROUTINE WORKS ONLY ON ABQAIQ AND PANGEA.

REAL"4 TARRAY(2),ETIME
REAL®8 CPUSEC

CPUSEC = ETIME(TARRAY) ™ 1000000.

RETURN
END

AN AR AN RE S =nase ERUSESSENRENRE.
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