Computational Particle Dynamic Simulations
on Multicore Processors (CPDMu)

Final Report - Phase |

DOE SBIR 2009 Topic 39a

(Simulation of Engineering Problems)

Principal Investigator: Mark S. Schmalz

UltraHiNet, LLC
709 SW 80th Blvd
Gainesville FL. 32607-6523

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Project Summary/Abstract

Company Name: UltraHiNet LLC

Project Title: Computational Particle Dynamic Simulations on Multicore Processors
Principal Investigator: Mark S. Schmalz, Ph.D.

Topic No./Subtopic: =~ DOE SBIR 2009 Topic 39a

Statement of Problem: Department of Energy has many legacy codes for simulation of
computational particle dynamics and computational fluid dynamics applications that are
designed to run on sequential processors and are not easily parallelized. @ Emerging
high-performance computing architectures employ massively parallel multicore architectures
(e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation
codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility.

General Statement of Solution: A legacy simulation application designed for implementation
on mainly-sequential processors has been represented as a graph G. Mathematical
transformations, applied to G, produce a graph representation G for a high-performance
architecture. ~ Key computational and data movement kernels of the application were
analyzed/optimized for parallel execution using the mapping G =G, which can be performed
semi-automatically. This approach is widely applicable to many types of high-performance
computing systems, such as graphics processing units or clusters comprised of nodes that contain
one or more such units.

Phase I Accomplishments: Phase I research decomposed/profiled computational particle
dynamics simulation code for rocket fuel combustion into low and high computational cost
regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and
time complexity. Using the research team’s expertise in algorithm-to-architecture mappings, the
high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs.
Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for
realistic model parameters, without final optimization. Error analysis showed no loss of
computational accuracy.

Commercial Applications and Other Benefits. The proposed research will constitute a
breakthrough in solution of problems related to efficient parallel computation of particle and fluid
dynamics simulations. These problems occur throughout DOE, military and commercial sectors:
the potential payoff is high. We plan to license or sell the solution to contractors for military and
domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government
agencies (hydrological and environmental simulations), and medical applications (e.g., in
tomographic image reconstruction).

Keywords. High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation

Summary for Members of Congress. Department of Energy has many simulation codes that

UltraHiNet, LLC)

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Table of Contents

Section/Subsection

1. Significance, Background, and Results of Phase I Research

1.1. Significance, Background, and Overview
1.1.1. Significance of Problem
1.1.2. Scope and Relevance of Phase I Work
1.1.3. Discussion of Phase I Work

1.2. Benefits of UHN’s Phase I Research
1.2.1. Parallel Implementation of Legacy Simulation Codes
1.2.2. Ready Optimization of Parallel Implementations
1.2.3. Explore Techniques of Legacy Code Parallelization
for New Architectures

1.3. Degree to Which Phase I Has Demonstrated Technical Feasibility
1.3.1. Conformance to Proposed Phase I Technical Objectives
1.3.2. Phase I Test Results

2. Facilities and Equipment
Consultants

4. Bibliography and References Cited

UltraHiNet, LLC

16

17
17
18

23
23
23

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

1. Significance, Background and Results of Phase I Research

1.1 Significance, Background, and Overview

UltraHiNet, LLC (UHN) is pleased to submit this Final Report pursuant to Department of
Energy (DOE) SBIR 2009 Topic 39a, entitled Computation of Engineering Problems. In Phase I
of this SBIR effort, we profiled, analyzed, parallelized and tested key computational kernels of
grid-based algorithms such as computational particle dynamics (CPD) codes for simulation on
multicore graphics processing unit (GPU) processors and clusters of multicore GPUs.

The remainder of this subsection contains an overview of the significance of the problem
(Section 1.1.1). We overview the approach that we have successfully developed in Phase I
(Section 1.1.2), then discuss details of our Phase I approach and Phase I results (Section 1.1.3).

1.1.1. Significance of Problem. Computational Particle Dynamics, together with the related
area of Computational Fluid Dynamics (CFD), is an important foundational technology for a
wide variety of dynamic particle- and field-based simulations of interest to DOE, DOD, and
NASA, to name but a few of our prior or current research sponsors. Example applications
include but are not limited to DOE’s interests in simulation supporting combustion design and
engineering, weapons design and damage reduction, DOD and NASA interests in
aircraft/spacecraft design, aerodynamic simulation, and medical imaging (e.g., tomography), and
numerous other applications.

In practice, the mapping of DOE’s CPD and CFD simulation applications to parallel
architectures, such as GPUs or clusters of CPU-GPU nodes, is not straightforward in the sense
that mapping a pointwise image operation to a synchronously parallel SIMD mesh is realized. In
practice, many realistic CPD/CFD simulation problems have irregular grids whose size and
resolution can change locally or globally [Liaoc96]. Further, in adaptive simulation applications,
the grid, population and density of particles, and/or field boundaries can change with time
[Rav10]. In realistic simulation problems, the external simulation constraints and/or output
resolution can also change. Together with the problems of real-time interpolation between cells,
these types of simulations (e.g., regular or irregular grid, mesh, or particle-in-cell) challenge
current understanding of parallelization using existing algorithm-to-architecture mapping theory.

In response to this problem, our research team has developed in Phase I an approach that
successfully maps (for example) key computational kernels of CFD/CPD simulation applications
to parallel architectures such as GPUs, or to clusters comprised of nodes having a CPU that hosts
multiple GPUs. In terms of applicability to DOE’s interest in energy generation and control
stated in the solicitation, these simulation problems are found extensively throughout the energy
sector — in design of combustion or fusion based power plants, turbine design, performance
modeling, etc. In each of these cases, the use of fixed or variable model parameters or
configurations will be addressed in terms of our parallelization approach that was proven
successful in Phase I.

1.1.2. Scope and Relevance of Phase I Work. In Phase I, the UHN research team analyzed,
parallelized, and tested computational kernels of CPD codes provided by our consultant Dr. S.
Balachandar, and parallelized these kernels successfully. Our research, development, test, and
analysis is based on our research team’s extensive proven expertise in mathematical analysis and
implementation of problems and solutions for parallel computation of grid- or mesh-based
processing algorithms, parallel vector and array processing algorithms, including but not
limited to computational particle dynamics, computational fluid dynamics, image and signal
processing, and high-performance simulation.

UltraHiNet, LLC 4

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Relevance of Phase I Parallel Implementation for CPD/CFD Simulation. Our Phase I
research pertains directly to DOE’s energy-related goals of designing efficient combustion and
power generation facilities. In combustion simulation, highly efficient, accurate parallel
processing is required for computing CPD simulation codes and related CFD simulation codes,
with physical fidelity and user-friendly interactivity. Existing CPD/CFD simulation codes have
been primarily written for Central Processing Units (CPUs), with calculations performed in serial
or parallel fashion on single or multiple CPUs. When these legacy CFD/CPD simulation codes
are ported to a parallel architecture by merely inputting them (for example) to an optimizing
compiler, the results often exhibit disappointingly poor performance in comparison with the
target architecture’s advertised peak performance. Thus, manual optimization (local as well as
global) is required, often requiring much effort and public expense.

Fortunately, video gaming chip manufacturers have developed computational hardware and
software for life-like visualization, as well as high-bandwidth parallel arithmetic
computation. Such Graphics Processing Units (GPUs) can achieve peak computational
throughput of gigaflops to teraflops, with sustained processing rates currently in the tens to
hundreds of gigaflops. GPUs can also be clustered into massively parallel supercomputers with
hundreds of energy-efficient nodes comprised of a CPU controlling multiple GPUs. Although
impressive speedups have been realized by running CPD codes on GPUs versus a single CPU,
significant challenges remain for multicore GPU implementation. Prior to and during our Phase
I research, we determined that such challenges include but are not limited to efficient data
movement, mapping of unstructured data to mesh grids, effective mapping of grid structures to
cores in the GPU, resolution of data and control dependencies in local mesh processing or
iterative mesh refinement, multiprocess collaboration and sharing of data, as well as uncertainty
quantification.

Parallel architectures such as GPUs have only recently been available to the public. Despite

the concerted development of parallel computing over the past four decades, the programming of
parallel architectures has remained challenging due to the lack of a unifying model for parallel
algorithm design and implementation. In contrast, sequential (von Neumann) architectures have
for over four decades exploited a unifying model that facilitates porting of legacy sequential
codes to other sequential architectures. Unfortunately, the porting of legacy codes to a parallel
architecture is fraught with difficulty since there exists no machine-independent programming
interface (e.g., middleware) for parallel machines to achieve efficiencies comparable to
hand-coding in languages supported by a target (parallel) architecture. Even worse, when a
legacy application is manually converted (often at great expense) to run on a parallel
architecture, it may not run efficiently (i.e., the investment may be lost) when ported to the next
generation parallel architecture with a different programming model or interface.
Overview of Parallel Problems. In order to provide a conceptual and theoretical basis for
mapping legacy CPD/CFD simulation algorithms to parallel architectures, in Phase I we first
viewed these applications as inherently parallel problems. This perspective allowed us to
characterize parallel simulation problems in terms of the following five general categories
[Fox88], each of which covers a broad range of applications:

e Synchronous problems are data parallel, with the restriction that the time dependence of each
datum is computed by the same operations. Algorithmically, as well as in natural SIMD
implementations, synchronous problems are synchronized microscopically at each processor

UltraHiNet, LLC 5

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

clock cycle. Examples of such problems include pointwise arithmetic on two images, matrix
multiplication, and other algorithms that are often popular in academia [Chou92].

® Loosely Synchronous problems (LSPs) are also data parallel, but constraints are relaxed
slightly so that different data points can be evolved with different algorithms. Points are
often linked irregularly, in a data-dependent manner — such problems are often termed
“irregular”. For example, such problems can represent macroscopic physical processes that
evolve due to interactions between irregular homogeneous objects in a synchronized manner.
Thus, loosely synchronous problems are spatially regular but temporally irregular — CPD and
CFD simulations tend to be good examples of this problem type.

® Asynchronous problems are irregular in space and time, and thus are not necessarily
supportive of general methods for parallelization. Some run well with imposed time
synchronization, others run well with functional decomposition, and some have never run
well on massively parallel machines [Fox91a].

e Embarassingly Parallel problems are totally disconnected in space and time, and do not need
synchronization except in the final stage where results are collected. These problems can run
on either SIMD or MIMD hardware, but are not within the focus of this proposal.

® Loosely Synchronous Complex problems are an asynchronous collection of loosely
synchronous problems, for example, command and control applications. Each constituent
task is synchronous or loosely synchronous, and can be parallelized with an asynchronous
expert system coordinating interactions between tasks [Chou92].

In terms of practical implementation, we have found that the architecture and organization of
commercially-available GPUs (e.g., Nvidia Tesla and Fermi processors) somewhat supports the
parallelization of loosely synchronous problems (LSPs) such as solver, interpolation, and
migration kernels of CPD and CFD simulations. Further, Nvidia’s CUDA software tools can be
utilized to enhance the efficiency of parallelization for carefully designed implementations of
LSPs, provided that the CUDA tools are properly configured. We have extensively researched
these design and configuration problems in our Phase I effort.

Additionally, over the past several decades, we have developed heuristic and algorithmic
techniques for mapping applications within the preceding taxonomy of parallel problems to
various parallel architectures [Heyw92a,b;L.ia096;0R97;Rank90a-e;Rank91a-b]. In particular, a
follow-on effort should concentrate on the GPU cluster implementation of several subclasses of
loosely synchronous problems (LSPs). These LSPs could comprise the parallel sections of the
CPD/CFD applications that would thus be implement on target architectures with a high degree
of parallelism (e.g., multicore CPU, GPU, and clusters of CPU-GPU nodes). In particular, the
sequential portions of the applications would be implemented on CPUs, which would support
efficient implementation of the entire CPD or CFD simulation application. In a follow-on effort,
we would also like to investigate load sharing between the CPU and GPUs.

Accordingly, we next overview how these prior (e.g., Phase I) developments relate to target
multicore CPUs, GPUs, and CPU-GPU clusters.

1.1.3. Discussion of Phase I Work. In prior research, and in particular our Phase I research and
development effort, we have found that loosely synchronous problems (L.SPs) can be divided
into a sequence of concurrent computational phases that are appropriate for parallel (e.g., GPU)
based implementation. This development is important to DOE’s CPD applications, as an
understanding of LSP problem subtypes directly supports an understanding and correct

UltraHiNet, LLC 6

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

implementation of the corresponding algorithm-to-architecture mappings that can support
parallelization of LSP problems such as CPD/CFD simulations.

1.1.3.1. LSP Problem Subtypes. Differences between subclasses of LSPs manifest primarily in
how the phases are separated and when intra-phase computational and communication patterns
are set. To illustrate this concept, we next present an overview of LSP subtypes, with brief
examples.

LSP Subclass 1: Static Single-Phase Computations. A static single phase computation
consists of a single concurrent computational phase, which may be executed repeatedly without
change. Examples include iterative solvers using sparse matrix-vector operations [Saad86] and
explicit unstructured mesh-based fluid dynamic calculations [Whit90]. The key challenge for
efficient implementation is partitioning the data and computation to minimize data movement
latencies while balancing load. This partitioning then dictates the program’s synchronization and
communication requirements, which must also be computed by the proposed CPDMu
middleware because the computational pattern is set at runtime (as a result, this cannot be done
by the Nvidia CUDA compiler). Reducing the overhead of these middleware calls, by reducing
information re-use and call frequency as well as latency, is vital for efficient implementation.

For example, in some CPD/CFD applications
there is a straightforward relationship between S1 fori=1tomdo
the way distributed arrays are partitioned and S2 { for j =1tondo
the way work is partitioned. Figure 1 depicts a y(i) = y(@) + a(ij) - x(col(i,j) }
sparse matrix-vector multiplication operation. . . e
Figure 1. Sparse matrix-vector multiplication

The integer array col represents the sparsity . . o
f th . operation, for example, in an iterative mesh
structure of the matrix. Loop SI1 sweeps over | (i jver for CPD or CFD problems.

the sparse matrix rows, while loop S2 sweeps

over its columns and calculates the inner

product. If the sparse matrix-vector multiplication in Figure 1 is computed repeatedly, then it is
reasonable to partition x and y between processors in a conforming manner. In such a problem,
we follow the convention of carrying out computational work associated with computing a value
for distributed array element y(i) on the processor onto which y(t) is mapped [Das91a].

As another example of single static-phase
computations, we have found that there are
common cases where assignment of ~ 4
distributed array elements (and/or work) to gé fnlix_:(;(ex((lnlz)) x(n2)
processors (e.g., threads or cores in a GPU) sS4 y(nl) =y(nl)-’4- flux
cannot be coupled as straightforwardly as in ssy(~2) = y(~2) — flux }
the preceding example of matrix-vector
multiplication. For instance, Figure 2 depicts
a loop that sweeps over the edges of a mesh —
here, we indirectly index array x on the right
hand side of S3 while also indirectly indexing
array y on the left hand side of S4 and S5.
Here, it can be advantageous to assign each loop iteration to a single processor, thus avoiding
recalculation or communication of values for the variable flux, since y(nl) and y(n2) appear on
the left hand sides of statements. As a result, we have found it important to separately develop
partitioning methods for distributed array elements and loop iterations.

fori=1,Ndo
S1 { nl =nde(i, 1)

Figure 2. Computation of flux, where two
loops sweep over the rows and columns of a
sparse matrix. Flux across a mesh edge is
calculated, which involves flow variables stored
in array x, and accumulation of flux in array y.

LSP Subclass 2: Static Multi-Phase Computations. A static multi-phase computation consists

UltraHiNet, LLC 7

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

of a series of dissimilar loosely synchronous components. These applications usually have
several parallelizable loops involving multiple distributed arrays. For simplicity, we herein
consider only the case where each individual phase is a static single phase computation as
defined previously. Importantly for a practical implementation of variable or adaptive grid CPD
and CFD simulations, examples of static multi-phase computations include unstructured
multigrids [Duff86], parallelized sparse triangular solver [Edels], particle-in-cell codes
[Fox91b,c], and vortex blob calculations [Fox90].

As with static single-phase computations, the key implementational problem is partitioning
computations and data, but this partitioning is more complicated because interfaces between
phases must be considered. Synchronization and communication requirements are similarly
complicated by the presence of multiple phases. As before, this partitioning must be performed
at runtime, for example, by incremental runtime routines [Koel90] that would take advantage of
information computed at run time.

Figure 3. Unstructured multigrid: (a) coarse grid, (b) refined grid, (c) adaptive grid.

1: Sweep over coarse mesh 3: Sweep over fine mesh
for i = 1,Ncoarse do for i =1, Nfine do
{ forj=1, Kcoarse do { forj =1, Kfine do
ye(D) = ye(i) + ac(ij) * xc(ic(i,j)) } yf() = yf(i) + af(ij) * xf(if(i) }
2: Transfer data from coarse mesh to fine mesh 4: Transfer data from fine to coarse mesh
for i = 1,Nfine do for i = 1,Ncoarse do
{ forj =1, Ninterpf(i) do { forj =1, Ninterpc(i) do

xf(i) = xf(i) + weightf(i.j) * yc(interpf(i,j)) } xc(i) = xc(i) + weightc(i,j) *
Yyf(interpc(i,j))}
Figure 4. Example oversimplified multiple mesh computation, where xc,yc represent coarse mesh
variables, and xf,yf fine mesh variables. Typically, such computations are performed iteratively.

To better understand this technique, we describe an unstructured multigrid application that
illustrates some implementational complexities of this subclass. Unstructured multigrid codes
[Duff86] perform mesh relaxation over individual, increasingly refined meshes Mi, ..., M,.
Figure 3a,b depicts two refinement levels from a fluid dynamics code we have parallelized
[Chou92]. Both grids represent the same physical geometry; Figure 3b is more refined.

UltraHiNet, LLC 8

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

This algorithm alternates between sweeping over each mesh and moving data between meshes,
per the code in Figure 4. The meshes M, ..., M, should be partitioned so that (1) each sweep
over each mesh M; minimizes interprocessor communication, (2) the computation for sweeping
over each mesh should exhibit good load balance, and (3) interpolations and projections should
require modest amounts of data movement. Note that the grids in Figure 3 were partitioned per
[Fox90b] with good results, but many other partitioning methods could be used.

LSP Subclass 3: Adaptive Irregular Computations. Adaptive irregular computations feature a
loosely synchronous computation executed repeatedly, where the data access pattern changes
between iterations. Such changes may be gradual, reflecting adiabatic changes in the physical
domain; or abrupt, reflecting additions to a data structure. With respect to possible future
development, we note that particle dynamics applications often exhibit gradual changes because
interactions between particles are implemented by neighbor lists, which change as particles
move [FOX91a]. Adaptive PDE solvgrs often for k. = 1 to K do
exemplify abrupt changes, as discussed { sweep over U.

below. The key problem in implementing flag region of U, that should be refined.
these algorithms is quick reaction to data if flagged region is not empty, then
structural changes, although physical and { modify shape of U,

numerical properties of these algorithms interpolate boundary values for U, from U.
typically guarantee that large-scale data for k; = 1to K; do

restructuring is only needed infrequently. { sweep over U, }

Adaptive irregular algorithms are useful inject values of Ur into U } }

(for example) in solving FEuler and | Figure 5. Adaptive version of two-mesh
Navier-Stokes problems that arise in | algorithm, where coarse mesh U. covers entire
computational fluid dynamics. In these | domain, refined mesh U, covers the “active”
algorithms, mesh refinement is realized in domain partition, and the location, shape and
partitions of a computational domain where size of the refined mesh are subject to change.
additional resolution may be required [Liew89,Lu91]. The grid in Figure 3c exemplifies an
adaptive refinement of the grid in Figure 3b, where the initial mesh-point distribution is
determined from the geometry of the object around which flow is simulated. Adaptive mesh
refinement is achieved by adding new points in regions of large flow gradients — a simple
example of this algorithm is given in Figure 5, where remapping is performed before the inner
loop is executed.

LSP Subclass 4: Implicit Multiphase Loosely Synchronous Computations. An implicit
multiphase computation contains irregular dependencies between iterations. Thus far, our
discussion of irregular problems has focused on a sequence of clearly demarcated computational
phases. In contrast, a number of grid- and mesh-based problems have inter-iteration
dependencies that might initially seem to inhibit parallelization. Such data dependency patterns
are known only at run time, but can be fully predicted before a program enters the loop or loops
where irregularities occur. Figure 6 exemplifies the back substitution phase of sparse matrix
factorization, which is similar to solving sparse triangular systems of linear equations arising
from ILU preconditioning methods [Mav91la,b]. Another example of this class is the tree
generation phase of adaptive fast multipole algorithms for particle dynamics simulation
[Mir88,Das91b] .

A key problem in implementing these algorithms is detection and exploitation of opportunities
for partial parallelization. For example, in the code shown in Figure 7, one can realize many
different simultaneous row substitutions. Although the sparsity structure determines which row

UltraHiNet, LLC 9

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

substitutions can be performed concurrently, this information is available at runtime only. In a
possible future research effort for such problems, we could carry out a form of runtime
preprocessing with the goal of defining a sequence of loosely synchronous computational
phases. We know that this is feasible, since for bus-based shared-memory multiprocessors, we
have demonstrated that it is possible to integrate runtime parallelization with compilers
[Baden91]. We anticipate that it would be possible to link scalable run time parallelization with
compilers targeted at multicore GPUs (e.g., CUDA-C), and in Phase I have analyzed preliminary
techniques.

A more difficult problem is runtime aggregation of
work and data. When performing computations such as N ;
sparse triangular solves or sparse direct factorizations Ly - rh.s(l.) o

p g) p . . for j = ija(i), ija(i+1) — 1 do
[Baden?l] our run time preprocessing techniques can {y(0) = (i) - a(j) * y(col()) } }
determine the number and content of concurrent
computational phases that comprise a computation. We
call this process runtime aggregation or runtime tiling.
A variety of numerical algorithms can support runtime
tiling for multiprocessor and vector computers
[Saad86,Salm90], and could be adapted to support
runtime tiling on multicore CPUs and GPUs.

fori=1, Ndo

Figure 6. Implicit multiphase
problem: sparse triangular solve on
the unit diagonal.

LSP Subclass 5: Static and Dynamic Structured
Computations. These problems comprise highly
structured computations on collections of subdomains
that are coupled irregularly. The computations on each
subdomain are often highly structured, but the
computational relationship between subdomains is
known at run time only. Further, the relationship
between subdomains often changes dynamically during
a computation. In the previous four LSP subclasses, we
dealt with irregularly coupled "points", whereas static
and dynamic structured problems feature collections of
nontrivial structures. Examples of such problems
include the adaptive mesh method described below and
a combined fluid dynamics and particle simulation
implemented by Edelsohn [Edels]. The key to realizing
efficiency on these problems is to aggressively apply
optimizations to the regular subproblems, which can
thus be implemented with reduced overhead. Also, the
larger granularity of coupled subproblems can be
exploited to reduce preprocessing overhead and
memory requirements [Simon91]

An example of this subclass of LSPs is shock profiling [Simon91], where one solves a partial
differential equation in the presence of a shock, computing the profile (detailed shape) of the
shock. Resolution constraints imply that a highly refined grid must represent the neighborhood
of the shock. Initially, one computes the solution on a coarse mesh, then applies an error
estimator to determine regions that will be covered by a refined mesh. An example mesh from
this two-level refinement is shown in Figure 7, where the solution is time-dependent.

Figure 7. Mesh for calculating
interaction of planar shock wave with
a double wedge.

UltraHiNet, LLC 10

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Time-marching on the refined mesh is performed by taking many (e.g. 100) time steps on the
refined mesh for a single coarse-grid time step. The refined mesh is dynamic in its location,
shape, and size, so the relationship between coarse and refined meshes will change during
simulation execution. As a result, the structures of the computations and data movement
operations change with time, giving rise to a nonuniform communication pattern due to data
sharing between grids. This example also generalizes to a full structured adaptive multigrid.

Summary of Our Prior and Phase I Work in Loosely Synchronous Problems. We have
found that time-dependent or iterative loosely synchronous computations in CPD and CFD
simulations (fixed or variable grid, fixed or variable particle population, etc.) can exhibit a wide
range of dynamic behaviors that can be represented by the following three categories:

(A) data dependency pattern is static and does not change between iterations;

(B) data dependency pattern is modified on occasions but between changes, the dependency
pattern remains static for many iterations;

(C) data dependency pattern changes every iteration.

Problems in Category A would occur either in the class of static, single phase loosely
synchronous computations (Subclass LSP-1) or as static, multiple phase loosely synchronous
computations (LSP-2). In contrast, problems in Categories B and C would be classified as
unstructured adaptive problems (LSP-3 and LSP-4) or structured adaptive problems (LSP-5). It
is also useful to categorize irregular problems encountered in CPD and CFD simulation, by
whether or not a given iteration or time step is composed of multiple, dissimilar loosely
synchronous computational phases. In such cases, one often must partition a problem to account
for all of the computational phases in an iteration. There are also some issues related to
partitioning and run time aggregation [Saad86,Salm90,Walk90] that can influence
implementational performance.

For example, Dr. Ranka has previously made extensions to Fortran D, in order to facilitate
specification of partitioning strategies and irregular meshes. In Phase I research, we determined
that enhancements of these techniques could be used to perform the following middleware tasks
in a more advanced prototype:

(1) indicate which loops in a program are to be considered when partitioning distributed arrays;
(2) allow users to force the selection of a particular partitioning strategy;

(3) allow users to assert that a given set of loop dependencies can or cannot change when the
loop is iteratively invoked; and

(4) allow users to specify granularity with which CPU and GPU parallelism is to be exploited.

In [Koel90], we proposed extensions (and developed run time support) that fulfill the first two
of the above mentioned goals. There is also a need for development of new data structures
targeted towards problems in which highly structured computations on a set of subdomains are
coupled in an irregular manner. In particular, we are interested in representing structured
adaptive problems in which subdomains are coupled by irregular tree dependency structures.

In [Agra93], portable runtime support for static single and multiphase problems, and for static
structured problems, is described that is oriented towards distributed memory MIMD
architectures. The runtime support for static single and multiphase problems has also been
ported to SIMD architectures. Our Phase I work has indicated the utility of adapting these
proven innovations to develop appropriate runtime support for Adaptive Irregular Computations,
Implicit Multiphase Loosely Synchronous Computations, and Dynamic Structured Problems

UltraHiNet, LLC 11

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report

Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

targeted towards multicore GPU architectures and clusters of nodes, where each node is
comprised of a CPU that controls multiple GPUs. Salient hardware technology is described as
follows.

1.1.3.2. Multicore Graphics Processing Units. Multicore GPUs were developed to meet the
expanding computational needs of computer graphics rendering algorithms. The broad, rapid
growth in sophistication of graphics applications such as computer games has resulted in the
availability of GPUs that have hundreds of processors and peak performance approximating a
teraflop and that sell for hundreds of dollars to a few thousand dollars. Although GPUs are
optimized for graphics calculations, their low cost per gigaflop has motivated significant
research into their efficient use for non-graphics applications. This effort promises great
potential longevity, as the widespread use of GPUs for computer gaming ensures a large,
long-lasting installed base. Additionally, unlike traditional (expensive) supercomputers having a
very high development cost borne by a relatively small user group (e.g., national laboratories
and defense establishments), GPUs are backed by a large, growing domestic gaming industry.
This makes it more likely that GPU architectures will remain affordable (lower cost per unit due
to large market), technologically viable (ever-expanding need for graphics speed and realism)
and will continue to evolve (applications drive technology, and vice versa).

Although GPUs have low cost per peak gigaflop, obtaining near-peak performance requires
careful programming of application codes. In practice, GPU programming is complicated by (a)
lack of a unifying model for parallel programming — especially for GPU architectures, which
continue to evolve; (b) a sometimes-problematic memory hierarchy, e.g., device memory, shared
memory, constant cache, texture cache, and registers, each having different latency, and (c)
partitioning of the available scalar processors or cores into groups called streaming
multiprocessors (as shown in Figure 8a).

@ ©

Figure 8. Nvidia GPU: (a) CUDA architecture, (b) Tesla C1050 GPU architecture, and (c) Tesla
PClex16 card (www.nvidia.com).

In our Phase I research, we surveyed different types of GPUs. Our requirements development
and survey of available computing hardware led us to focus on Nvidia's Tesla series of GPUs, in

UltraHiNet, LLC 12

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

particular, the C1060 (a.k.a. Tesla, as shown in Figure 8b-c) and T2050 (Fermi), which conform
to Nvidia’s CUDA architecture specification. In the Phase I effort, our programs were
developed with partial assistance of CUDA-FORTRAN, CUDA-C, and CUDA-C++ compiler

support. Further performance gains resulted from hand optimization of the legacy codes.

GPU Hardware. NVIDIA's Tesla C1060 GPU, Figure 8, is an example of NVIDIA's general
purpose parallel computing architecture CUDA (Compute Unified Driver Architecture) [Sati09].
Figure 8c is a simplified version of Figure 8a with N = 30 and M = 8. The C1060 comprises 30
streaming multiprocessors (SMs) and each SM comprises 8 scalar processors (SPs), 16KB of
on-chip shared memory, and 16,384 32-bit registers. Each SP has its own integer and
single-precision floating point units. Each SM has 1 double-precision floating-point unit and 2
single-precision transcendental function (special function, SF) units that are shared by the 8 SPs
in the SM. The 240 SPs of a Tesla C1060 share 4GB of on-chip memory referred to as device or
global memory [CUDA10]. A C1060 has a peak performance of 933 GFlops of single-precision
floating-point operations and 78 GFlops of double-precision operations. The peak of 933GFlops
is for the case when Multiply-Add (MADD) instructions are dual-issued with special function
(SF) instructions. In the absence of SF instructions, the peak is 622GFlops (MADDs only)
[Tesla10]. The C1060 consumes 188W of power.

The architecture of the NVIDIA Tesla C2050 (Fermi) corresponds to Figure 8 with N = 14
SMs and M = 32 SPs per SM. So, a C2050 has a total of 448 SPs or cores. Although each SP of a
C2050 has its own integer, single- and double-precision units, the 32 SPs of an SM share 4
single-precision transcendental function units. An SM has 64KB of on-chip memory that can be
configured as 48KB of shared memory with 16KB of L1 cache (default setting) or as 16KB of
shared memory with 48KB of L.1 cache [CUDA10]. Additionally, there are 32K 32-bit registers
per SM and 3GB of on-chip device/global memory that is shared by all 14 SMs. The peak
performance of a C2050 is 1,288 GFlops (1.288 TFlops) of single-precision operations and 515
GFlops of double-precision operations, which requires that MADDs and SF instructions be
dual-issued. When there are MADDs alone, the peak single-precision rate is 1.03GFlops. In
Nvidia-speak, the C1060 has compute capability 1.3 while the compute capability of the C2050
is 2.0.

As the C2050’s power consumption is 238W, the ratio of power consumption to peak
single-precision throughput is 0.2W/GFlop for the C1060 and 0.18W/GFlop for the C2050. For
double-precision operations we have 2.4W/GFlops for the C1060 and 0.46W/GFlop for the
C2050. A Tesla GPU is packaged as a double-wide PCle card (Figure 8c); with an appropriately
large motherboard and power supply, up to 4 GPU cards can be installed on one motherboard.

In Phase I, we focused on optimizing selected kernels of the CONSIF (COmputational
Navier-Stokes equation Solver with Immersed boundary technique — Florida) CPD application
provided by our consultant Dr. S. Balachandar for a single Nvidia Fermi GPU. We next describe
the supporting CUDA programming model.

GPU Programming Model. At a high level of abstraction, a GPU uses the master-slave
programming model [Won89] in which the GPU operates as a slave under the control of a
master or host processor. In our Phase I experimental set up, the master or host is a 3.33 GHz
six-core Intel Core i7-980X Extreme Processor, and the GPU is an 1.15 GHz, 448-core Nvidia
Fermi C2050. Programming in the master-slave model requires a master program to be written
that runs on the master processor (Xeon). The master (1) sends data to the slave(s) (in Phase I, a
single C2050 GPU), (2) invokes a kernel or function that runs on the slave(s) which processes
the returned data, and (3) receives results from the slave (GPU). This process of sending data to

UltraHiNet, LLC 13

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

the slave, executing a slave kernel, and receiving the computed results may be repeated several
times by the master program. In CUDA, the host/master and GPU/slave codes may be written in
C. CUDA provides extensions to C to allow for data transfer to/from device memory and for
kernel/slave code to access registers, shared memory, and device memory.

At another level, GPUs use the single instruction multiple thread (SIMT) programming model
whereby a GPU accomplishes a computational task using thousands of lightweight threads. The
threads are grouped into blocks, which are organized as a grid. While a block of threads may be
1-, 2-, or 3-dimensional, the grid of blocks may only be 1- or 2-dimensional. Kernel invocation
requires specification of the block and grid dimensions with any kernel parameters, as illustrated
below for a matrix multiply kernel MatrixMultiply with parameters a, b, and c that point to the
start of the row-major representation of n x n matrices and the

kernel computesc=a-b:

MatrixMultiply <<< GridDimensions, BlockDimensions >>> (a,b,c,n)

A GPU has a block scheduler that dynamically assigns thread blocks to SMs. Since all threads
of a thread block are assigned to one SM, these threads may communicate with one another via
the shared memory of an SM. Further, the resources needed by a block of threads (e.g., registers
and shared memory) should be sufficiently small that a block can be run on an SM. The block
scheduler assigns more than 1 block to run concurrently on an SM when the combined resources
needed by the assigned blocks does not exceed the resources available to an SM. However, since
CUDA provides no mechanism to specify a subset of blocks that are to be co-scheduled on an
SM, threads of different blocks can communicate only via the device memory. Thus, the
optimization of inter-block communication should be a key objective in a follow-on effort.

Returning to our GPU programming and execution model, once a block is assigned to an SM,
its threads are scheduled to execute on the SM's SPs by the SM's warp scheduler. The warp
scheduler divides the threads of the blocks assigned to an SM into warps of 32 consecutively
indexed threads from the same block. Multidimensional thread indexes are serialized in
row-major order for partitioning into warps. Thus, a block of 128 threads is partitioned into 4
warps. Every thread assigned to an SM has its own instruction counter and set of registers. The
warp scheduler selects a warp of ready threads for execution. If the instruction counters for all
threads in the selected warp are identical, all 32 threads execute in 1 step. On a GPU with
compute capability 2.0, each SM has 32 cores and so all 32 threads can perform their common
instruction in parallel — provided that this common instruction is an integer or floating point
operation. (Unfortunately, this does not work with I/O instructions.) In contrast, on a GPU with
compute capability 1.3, each SM has 8 SPs and so a warp can execute the common instruction
for only 8 threads in parallel. Hence, when the compute capability is 1.3, the GPU requires 4
rounds of parallel execution to execute the common instruction for all 32 threads of a warp.
When the instruction counters of the threads of a warp are not the same, the GPU executes the
different instructions serially. Note that instruction counters may become different as the result
of data dependent conditional branches in a kernel [CUDA10].

Given the GPU’s complex memory hierarchy and small local memories, the hiding of memory
latency is key to obtaining good performance. At best, an SM's warp scheduler can hide much
of the 400 to 600 cycle latency of device-memory access by executing warps that are ready to do
arithmetic operations while other warps wait for device-memory accesses to complete. Thus, in
many cases, the performance of code that makes many accesses to device memory can often be
improved by optimizing it to increase the number of warps scheduled on an SM. This

UltraHiNet, LLC 14

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

optimization could involve increasing the number of threads per block and/or reducing the
shared memory and register utilization of a block, to enable the scheduling of a larger number of
blocks on an SM.

Summary of Our Prior and Phase I Work in Parallel GPU Implementation. For more than
three decades, our research team has developed and published algorithm-to-architecture mapping
techniques for parallel and real-time computation of image and signal processing algorithms,
including fluid dynamics, mechanical engineering simulation, military applications such as
automated target recognition (ATR), medical applications such as tomography, multi-look image
reconstruction for persistent surveillance, computer vision, and many other applications. We
have mapped such algorithms to a wide variety of parallel processors, including massively
parallel meshes, MIMD arrays, SPMD networks of workstations, high-performance embedded
processors, FPGAs, cellular automata, multicore GPUs and CPUs. We thus have the
technological expertise to address the proposed effort of mapping CPD algorithms to parallel
multicore GPU processors or clusters of GPUs.

In Phase I, we developed techniques for mapping key computational kernels of the CONSIF

CPD application to a single Nvidia Fermi GPU. This has allowed us to investigate the data
movement, computation, and communication modes of the Fermi and its CUDA support
software, in the context of a realistic CPD application. The CPD application and its kernels can
be run in fixed- or variable-grid, fixed- or variable-population modes, with different levels of
computational precision. As discussed in detail in Section 1.2, we have achieved speedups in the
range of 15X to 25X for realistically-parameterized kernels, without loss of computational
accuracy with respect to the reference (single-core CPU) implementation.
In summary, we achieved objectives of CPD/CFD application analysis, implementation, test, and
verification by first decomposing each application in its entirety to portray operations, data
structures, and data flows. The analysis of cost for each application and its constituent
computational kernels driven by the target algorithm’s computational requirements determines
the computational work and time complexity. Similarly, an algorithm’s data structure
organization and data flows, analyzed with respect to a target architecture’s memory map and bus
structure, determine the memory transformations that are required to optimize I/O cost and avoid
I/O bottlenecks. Because the gap between processor performance and bus throughput continues
to grow as register cycle rate outstrips channel bandwidth, we have found in Phase I that I/O cost
primarily impacts performance in array-based applications such as CPD computations.

1.2. Benefits of UHN’s Phase I Research

There is a rapidly growing need for a broad range of scientific and
engineering application software that can be utilized on terascale and
petascale computer systems. Although few commercial vendors are
addressing this need, UltraHiNet LLC (UHN) has developed advanced
technology for porting applications to a wide variety of High Performance
Computing (HPC) platforms, including graphics processing units (GPUs) and
clusters of nodes comprised of a CPU hosting multiple GPUs. Our approaches
involve complexity and scaling analyses, algorithm redesign, software
re-architecting, software porting, and software testing, in order to fine-tune
and optimize the use of applications on these massively parallel
supercomputing systems.

Of particular interest to this proposal are algorithms that represent

UltraHiNet, LLC 15

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

CPD/CFD simulation applications of interest to DOE. For example, grid based
simulations of applications that are key to energy production and control,
such as computational particle dynamics in power generation and rocket
combustion. If grid-based algorithms could be readily and automatically ported to a wide
range of current and foreseeable computing platforms, then the pace of technology
advancement could be increased, and considerable public expense could be alleviated.

Multicore GPUs in modern computers and gaming consoles can currently achieve terascale
throughput, and can be clustered in massively parallel supercomputers with thousands of
energy-efficient GPUs. Our research aims to minimize the size of the required GPU cluster
through the development of highly efficient mapping technology (CPDMu) that will
automatically produce accurate, highly efficient architecture-tailrored GPU implementations of
applications such as the CPD kernels. Because our methodology is mathematically sound, it
can be adapted to yield more general algorithm-to-architecture mappings for a wider class of
DOE grid- and mesh-based simulation applications. Anticipated benefits will include the
following:

1.2.1. Parallel Implementation of Legacy Simulation Codes. Computational particle
dynamics and computational fluid dynamics simulations are frequently represented as large
assemblies of legacy code. For example, DOE applications (e.g., weapons design, simulation,
and analysis; nuclear fusion power generation research and development), NASA applications
(e.g., rocket fuel burning (solid or liquid); sub-sonic to hypersonic aerodynamics simulation
supporting advanced aircraft/spacecraft design), domestic applications such as law enforcement
(crowd behavior modeling) or environmental hazard dispersion — each of these applications areas
is represented by extensive legacy codes developed for implementation on CPUs.

In practice, the parallelization and optimization of these legacy simulation codes for GPU
clusters would significantly increase the accessibility of these simulations to researchers and
engineers. In practice, we foresee that this increased accessibility would be due to (a) shorter
runtimes resulting from implementation on fast, commercially-available parallel processors,
which could lead to faster design iterations; (b) wider availability of commercialized CPD/CFD
simulations on parallel architecture such as GPUs; and (c) a longer useful life for each
simulation, given more effective updating/porting of simulation codes to emerging or novel
parallel architectures.

1.2.2. Ready Optimization of Parallel Implementations. The current practice of manually
implementing and manually optimizing legacy simulation codes for each parallel target
architecture is potentially very expensive (consumptive of public resources such as time, human
effort, and money) and fraught with potential pitfalls such as unforeseen obsolescence. For
instance, if a legacy code is hand-implemented and manually-optimized for a parallel
architecture (A,), then the architecture is replaced several years later by a different, more efficient
architecture (A,), the manual implementation and optimization effort expended for A; must be
repeated for A,. Given the speed at which computer technology development progresses, it is
unsurprising that manual implementation and optimization are wasteful processes.

Our Phase I results have made it possible to develop and enhance middleware and software
prototypes that instantiate techniques for mapping CFD/CPD algorithms to parallel architectures
such as GPUs and clusters of multiple nodes, where each node has a CPU that controls one or
more GPUs. In future, these results are expected to support further development,
implementation, and commercialization of semi-automatic algorithm-to-architecture mapping
techniques and software that would significantly reduce the cost and effort associated with

UltraHiNet, LLC 16

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report

Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

manual implementation and optimization of such mappings.

1.2.3. Explore Techniques of Legacy Code Parallelization for New Architectures. As
mentioned previously, there is currently no unifying model for parallel programming. As a
result, when a new parallel architecture is introduced that is different from previous architectures,
efforts to parallelize codes for the new architecture usually begin afresh, with little re-use of
previous techniques. This leads to significant amounts of re-work that are somewhat repetitive
from one architecture to another, and incurs problems cited in Section 1.2.1 and 1.2.2.

Our Phase I results have allowed us to investigate means for parallelizing on GPU clusters the
basic types of operations typically found in CPD/CFD simulation codes, such as pointwise
operations between arrays, vector-matrix and matrix-matrix multiplication, inner products,
matrix row/column operations, etc. This could support further development of a more general
system for parallelizing a wide variety of legacy codes on GPUs and GPU clusters. Additionally,
this aspect would help pioneer new areas of theoretical and applied research in
algorithm-to-architecture parallel mapping, and is designed to make HPC versions of legacy
CPD/CFD simulations available for a wide variety of DOE, DOD, and domestic applications, as
noted in Section 1.2.1.

1.3. Degree to Which Phase I Has Demonstrated Technical Feasibility

1.3.1. Conformance to Proposed Phase I Technical Objectives. In order to validate and
demonstrate the feasibility of the CPDMu prototype, we proposed and achieved the following
technical objectives in our Phase I research and development effort:

1. Design efficient parallel implementations for CPD based combustion simulation algorithms,
based on paradigms discussed in Section 1.

Result: In Phase I, we designed parallel implementations of key computational kernels of
the CPD simulation legacy code (Fortran), for one multicore Nvidia Fermi GPU processor,
using the CUDA-C language. These implementations were performance-tested, with
example test results given in Section 1.3.2.

2. Analyze error of each system module, to determine effect on the computational accuracy of
CPD simulation.

Result: Output error of the parallel CPD kernel implementations as well as the single-core
CPU implementation was measured and no significant differences were detected between
the CPU and GPU implementations.

3. Analyze computational cost associated with CPD implementation strategies, and effect of
different data structure size and processor or I/O bus parameters on computational and
accuracy performance metrics.

Result: Prior to producing the parallelized CPD kernels, the CPD computational kernels
were analyzed to determine computational and data movement cost. The measured effect
(Section 1.3.2) of data structure size variations and particle population variations was
correctly predicted by our analysis theory.

4. Survey GPU software and hardware in support of algorithm-to-architecture mapping
analysis and prototype implementation in Phase 1.

Result: We surveyed the available GPU hardware and support software and determined
that the Nvidia Fermi GPU had the most effective storage, computational throughput, and
communication, as well as excellent potential for upward growth and compatibility. Thus,
we found the Fermi to be the platform of choice for our Phase I demonstrations and tests,
as well as possible follow-on efforts in software development and implementation.

UltraHiNet, LLC 17

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

5. Develop a proof-of-principle implementation of a simplified but representative CPD
algorithm on a multicore GPU processor that our analysis (Objectives 3 and 4, above)
indicates is the best-performance platform.

Result: Per Item 1), above, we implemented key computational kernels from the CPD
simulation on the Nvidia Fermi GPU, with performance results given in Section 1.3.2.

6. Design and analyze indicated Phase II enhancements to a production CPD simulation
system, with detailed performance analysis and prototyping of hardware implementation.
This will include estimation of cluster size required for fast parallel CPD based combustion
simulations under various assumptions about simulated physical parameters.

Result: We have designed Phase II enhancements that we proposed to DOE, including
middleware configuration, graphical user interface(s), mapping of the entire CPD
simulation application, and a CFD simulation application (e.g., XGC-1 plasma burning
simulation). These applications will be implemented on one or more GPU clusters, where
each cluster node is comprised of a multicore CPU that controls multiple Nvidia Fermi
GPUs.

1.3.2. Phase I Test Results. As proof-of-principle for Phase I, we firstly developed and analyzed
a C version of the Fortran 90 legacy CONSIF CPD simulation application obtained from our
consultant Dr. S. Balachandar. Secondly, by applying our algorithm-to-architecture mapping
transformations to the legacy code, we produced a GPU implementation of the parallel
computational kernels (most of the CONSIF code is sequential). Thirdly, we measured the
kernels’ performance on the target GPU. In this section, we present our Phase I test results
specific to two such kernels, which are representative of our Phase I work.

UltraHiNet, LLC 18

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

initialization

Craates flow field grid. places
particle in grid, and sets initial
values of variables.

No

coeff_common

Computes Navier-Stokes
tarms from fluid velocities
and pressurs.
P_=13.6% P=18.1%

ddd dalta

Immersed boundary

¥

computation: finds forces
betwean particle and flow.

P=35.2% P0.1%

lisobve - uw,w

o Uses Navier-Stokes terms

and forces from ddd_delta to
update velocities.

P=172% P-346%

has
converged

pressura boundary conditions

Exchange data between
naighboring flow cells naar
tha flow call boundaries.

P=2.3% 0.0%

¥

Yas has
converged

Yas

A 4

lisolve-p

Usas velocities to compute
new pressuras.

velocity adjustmeant

Usas pressures from
previous iteration to
adjust velocities.

velocity adjustment

Uses new pressures to
adjustvelocities.

velocity boundary conditions

Exchange data between
neighboring flow cells near

P=141% P,=30.5% P=12% P=17%
Y
No
incremeant tima at Yas
step end » End
time

the flow cell boundaries.

P=2.0% P=d 9%

P=145% P=0.0%

No

Figure 9. Flowchart of the CONSIF CPD application, partitioned into computational kernels and
sub-processes including key decision points. Here, P, and P, respectively denote percentage of
total lines of code occupied by a kernel process, and percentage of total compute time on the
CPU. For example, the kernel velocity adjustment has P, = 2.0% (occupies 2 percent of total
lines of code) and P; = 4.9% (compute time is 4.9 percent of total compute time). These
preliminary figures are not precise for all test cases, but were used as a baseline to determine
which kernels to optimize first.

The Nvidia Fermi GPU described in Section 1 was controlled by an Intel six-core CPU clocked
at 3.33 GHz, and running the Linux Ubuntu Version 10.04 operating system. To obtain our
reference data, we translated the legacy Fortran 90 code into C, which was compiled on a GNU
C Compiler Version 4.4.3, then ran the C code on the aforementioned CPU in single-core mode.
A flowchart of the legacy code is given in Figure 9, where P, denotes percentage of lines of
source code, and P, denotes percentage of total execution time, occupied by a given kernel
process (large boxes). Given this approximate runtime profiling information, we gathered
additional analytical results using sophisticated profiling procedures described in Section 2
(Work Plan), which could be implemented in a possible follow-on effort. We exploited these
measurements and analytical results to transform key computational kernels of the application
using our algorithm-to-architecture mapping and parallelization techniques. The resulting
CUDA-C implementation was implemented on the GPU with the Nvidia CUDA Toolkit Version
3.2.

UltraHiNet, LLC 19

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Examples of transformed CUDA-C code (for the GPU) are given in Figure 10 (for kernel
ddd_delta) and Figure 11 (kernel coeff_common). Table 1 lists the performance data as a function
of program parameters that are independent variables in the simulation. Observe that speedups
relative to the single-core CPU range up to 29.5:1 for the ddd_delta kernel — this is the naive

case, with very little hand optimization.

FORTRAN version of ddd_delta

CUDA-C version of ddd_delta

DO N=1,NUM_P

DO L=1,N L
11 = P_IW(L,N)
12 = P_IE(L,N)
J1 =P JS(LN)
J2 = P N(L,N)
K1 = P_KB(L,N)
K2 = P_KT(L,N)

U TILDE(11:12,)1:)2,K1:K2) =

U N(11:12,)1:J2,K1:K2) + DTIME*(-
DPX(I1:12,]1:J2,K1:K2) +
DIFX(11:12,)1:J2,K1:K2) -
1.5DO*NLX_N(11:12,)1:J2,K1:K2) +
0.5DO*NLX_N1(11:12,)1:)2,K1:K2)) *
VOL_DV_T(I1:12,J)1:J2,K1:K2)

V TILDE(I1:12,)1:J2,K1:K2) =
V_N(11:12,J1:J2,K1:K2) +
DTIME*(-DPY(I1:12,)1:)2,K1:K2) +
DIFY(11:12,)1:)2,K1:K2) -
1.5DO*NLY_N(11:12,)1:J2,K1:K2) +
0.5DO*NLY_N1(I1:12,)1:)2,K1:K2)) *
VOL_DV_T(I1:12,J)1:J2,K1:K2)

W _TILDE(I1:12,)1:J2,K1:K2) =

W N(11:12,)1:J2,K1:K2) +
DTIME*(-DPZ(I1:12,J1:J2,K1:K2) +
DIFZ(11:12,)1:J2,K1:K2) -
1.5D0*NLZ_N(11:12,)1:)2,K1:K2) +
0.5DO*NLZ_N1(11:12,J1:J2,K1:K2)) *
VOL DV _T(i1:12,J1:)2,K1:K2)

(L) =
SUM(U_TILDE(I1:12,)1:J2,K1:K2) *
DDF(11:12,)1:J2,K1:K2) ¥H**3)

(L) =
SUM(V_TILDE(I1:12,)1:)2,K1:K2)*DDF(I1:12,
J1:J2,K1:K2) *H**3)

(L) =
SUM(W-_TILDE{1:42 12 K1:K2)*DDE(1:12

L = threadldx.x +
blockldx.x*blockDim.x;

N = threadldx.y +
blockldx.y*blockDim.y; // particle index
b=L+N*NL;

I1 = p->P_IW[b];
12 = p->P_IE[b];
J1 = p->P_JS[b];
J2 = p->P_N[b];
K1 = p->P_KB[b];
K2 = p->P_KT[b];
nx = NI+1;

nxny = nx*(NJ+1);
UP _TILDE = 0;
VP_TILDE = 0;
WP _TILDE = 0;

for(int k = K1; k <= K2;k++)
for(intj=]1;j <=J2;j++) {
for(inti=11;i <= 12;i++){
a = i+ j*nx + k*nxny ;
al = i-I11+(j-)1)*4+ (k-K1)*16;
U TILDE = p->U_N[a] +
p->ddlt NS X[al;
V_TILDE = p->V_N[a] +
p->ddlt_ NS Y[al;
W _TILDE = p->W _N[a] +
p->ddlt NS Z[a];
+=U_TILDE*DDF[al]*H_3;
+=V _TILDE*DDF[al]*H_3;
+=W _TILDE*DDF[al]*H_

J1:)2,K1:K2) *H**3)
ENDDO
ENDDO

Figure 10. Legacy and CUDA-C versions of CPD simulation kernel ddd_delta, which computes
the corresponding required intermediate velocity at the Lagrangian grid point, by summing the
intermediate velocities of the surrounding cells, then multiplying by the Dirac delta function
computed earlier, times the mesh resolution cubed.

UltraHiNet, LLC 20

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

Observe how the application transformation process works in Figure 10. Firstly, the particle and
index loops are converted to thread definitions. Thus, we have the Fortran loops

DO N=1,NUM_P
DO L=1,N L

being converted to the following CUDA thread definition statements:

threadldx.x + blockldx.x*blockDim.x;
hreadldx.y + blockldx.y*blockDim.y; // particle index

L
N=t
b=L+N*N_L;

where the latter statement defines the range of particle index. Subsequently, the range limits I1,
12, J1, J2, K1, and K2 are defined in Fortran in terms of arrays and, in CUDA, in terms of
pointers to arrays. The variables U_TILDE, V_TILDE, and W_TILDE are computed in Fortran
using inherently parallel notation (e.g., U TILDE(11:12,J1:J2,K1:K2) with ranges), while CUDA
utilizes loops that cycle over each dimension of the array (e.g., via indices k, j, and i) per thread,
resulting in cleaner, more compact code.

In contrast to the code example given in Figure 10, the application transformation process
proceeds somewhat differently for the kernel coeff_common. As can be seen from the left-hand
side of Figure 11, the legacy Fortran code is not well organized, consisting of a long, run-on
expression. In contrast, the transformed legacy code, expressed in CUDA-C, is on the right-hand
side of Figure 11, and is more clearly structured. Firstly, the limit parameters nx and ny are
defined, then the base thread ID is specified as

id = (threadldx.x+1) + nx*(blockldx.x+1 +
ny*(blockldx.y+1))

FORTRAN version of coeff common CUDA-C version of coeff_common
NLX_N(sx1l:ex1,syl:eyl,szl:ezl)= int nx = blockDim.x+2;
DTIME*(DY(sx1:ex1,syl:eyl,sz1:ez1)*DZ(| int ny = gridDim.x+2;

sx1l:ex1l,syl:eyl,sz1l:ez1)*(UE(sx1l:ex1l,syl:ey | intid = (threadldx.x+1)

1,5z1:ez1)*0.5D0*(U_N(sx1:ex1,syl:eyl,szl:e + nx*(blockldx.x+1 +

z1)+U N(sx1+1:ex1+1,syl:eyl,szl:ezl)) - ny*(blockldx.y+1));

UW(sx1:ex1,syl:eyl,sz1:ez1)*0.5D0*(U_ | int id_px = id + 1; int id_mx = id - 1; int
N(sx1l:ex1l,syl:eyl,sz1l:ez1)+U N(sx1l-1l:ex1-1, | id py =id + nx;
syl:eyl,szl:ezl))) + intid_my = id - nx; intid_pz = id + nx*ny;

DX(sx1:ex1,syl:eyl,sz1:ez1)*DZ(sx1:ex1, | intid_mz = id - nx*ny;
syl:eyl,szl:ezl) *

(VN(sxl:exl,syl:eyl,szl:ezl) * 0.5D0 * | double nix =

(U_N(sx1l:ex1,syl:eyl,szl:ez1)+U N(sx1l:ex1l, | dtime*(dev->DY[id]*dev->DZ[id] *

syl+1:eyl+1,sz1:ez1))-VS(sx1l:exl,syl:eyl,sz (dev->UE[id]*0.5*(dev->U_N[id]

1:ez1) *0.5D0* +dev->U_N[id_px])

(U N(sx1l:ex1,syl:eyl,szl:ez1)+U N(sx1: - dev->UWTIid]*0.5*(dev->U_N[id]
exl,syl-l:eyl-1,sz1:ezl))) + + dev->U_N[id_mx]))
DX(sxl:ex1,syl:eyl,szl:ez1)* + dev->DX[id]*dev->DZ[id]
DY(sx1:ex1,syl:eyl,szl:ezl) * (dev->VNI[id]*0.5*(dev->U_N[id]
(WT(sx1l:exl,syl:eyl,szl:ez1) +dev->U _NJ[id _py])

0.5D0*(U N(sx1l:ex1l,syl:eyl,szl:ezl)+U -dev->VS[id]*0.5*%(dev->U NIid]

UltraHiNet, LLC 21

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011
N(sx1l:ex1l,syl:eyl,sz1+1:ez1+1))-WB(sx1l:ex | +dev-U_N[id_my]))
1,syl:eyl,sz1l:ez1)*0.5D0* + dev->DX[id]*dev->DY[id]
(U_N(sx1l:ex1,syl:eyl,sz1l:ez1)+U_N(sx1l:ex1, * (dev->WT[id]*0.5*%(dev->U_N[id]
syl:eyl,szl-1l:ez1-1)))) +dev->U_N[id_pz])

-dev->WB[id]*0.5*(dev->U_N[id]
+dev->U_N[id_mz])));

Figure 11. Legacy and CUDA-C versions of CPD simulation kernel coeff_common, which takes
the results of the last fluid dynamics computation, and computes NLX_N (a convective term from
Navier-Stokes, expressed as u® Au) which is used in the immersed boundary method.

From the variable id, the offsets for indirect indexing denoted by id_px, id_py, id_pz, id_mx,
id_my, and id_mz are defined. These offsets are then applied to device memory, e.g.,

dev->U_N[id_py]

to reference intermediate values in the computation. The result of summing the intermediate
parts is multiplied by the time increment dtime and is stored in the double-precision variable dlix.

From inspection of the right-hand side of Table 1, we see that the simple translation of
coeff_common shown in Figure 11 can be speeded up on the Fermi processor by a factor of over
31.5:1 for values ex1 = 100, ex2 = 50, and ex3 = 50. In practice, as the problem becomes larger,
prior to overrunning device memory, the speedup increases significantly.

In order to successfully address device memory overrun, one can distribute the parallelization
problem over multiple GPUs in a cluster. However, this would require more sophisticated
optimization of the data movement between levels of the memory hierarchy (i.e., host > device >

charod momar, > local memori) We __hava davalanad trancsformations that ciinmnaort
ot CO— oy ———1OoCtT oy s VYoV e oy Crop T tra o T O e tr oty it o pport

algorithm-to-architecture mapping and optimization for this purpose [Band10], which could
eventually support mapping CPD/CFD simulations to GPUs and clusters of CPU-GPU nodes.

Table 1. Measured performance for (left-hand table) simulation kernel ddd_delta (see code in
Figure 10) and (right-hand table) simulation kernel coeff_common (see code in Figure 11), where
NUM_P (number of particles) and N_L (number of loops) are as in the Fortran code, and
measured times (Fortran legacy code and CUDA-C code) are in milliseconds. Speedup =
Fortran_time / CUDA_time.

UltraHiNet, LLC 22

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

ddd_delta FORTR CU(?A' lcoeff common] FORTR CUDA

ex ey ez AN (msec Speed
NUM_ N_ AN (msec Speed 1 1 1 (msec)) up

P L (msec)) up 6.40E-0 4.62E-0
2.60E-0 4.00E-0 1 1 s0 3 9 0.14

1 64 1 1 0.65 2.01E-0 4.65E-0
25 1.10E+0 4.20E-0 5 1 50 2 2 0.43

1 6 0 1 2.62 9.35E-0 4.75E-0
51 2.20E+0 4.40E-0 25 1 50 2 2 1.97

1 2 0 1 5.00 1.79E-0 4.80E-0
60 2.56E+0 4.60E-0 50 1 50 1 2 3.73

1 0 0 1 5.57 10 3.47E-0 4.80E-0
2.80E-0 3.40E-0 0 1 50 1 2 7.23

4 16 1 1 0.82 1.49E-0 1.62E-0
1.10E+0 4.20E-0 1 25 50 1 1 0.92

4 64 0 1 2.62 5.21E-0 1.75E-0
25 4.36E+0 4.60E-0 5 25 50 1 1 2.98

4 6 0 1 9.48 2.24E+0 2.00E-0
51 8.76E+0 5.20E-0 25 25 50 0 1 11.20

4 2 0 1 1685 4.35E+0 2.13E-0
60 1.03E+0 5.00E-0 50 25 50 0 1 20.47

4 0 1 1 20.64 10 8.57E+0 2.75E-0
2.60E-0 3.00E-O 0 25 50 0 1 31.16

16 4 1 1 0.87 2.81E-0 2.79E-0
1.08E+0 3.40E-0 1 50 50 1 1 1.01

16 16 0 1 3.18 1.43E+0 3.13E-0
4.36E+0 4.40E-0 5 50 50 0 1 4.57

16 64 0 1 9.91 4.86E+0 3.38E-0
25 1.73E+0 9.40E-0 25 50 50 0 1 14.40

16 6 1 1 18.40 9.11E+0 3.50E-0
50 50 50 0 1 26.03

10 1.73E+0 5.50E-0
0 50 50 1 1 31.53

UltraHiNet, LLC

23

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems
Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011

The following equipment was employed in Phase I.
2. Facilities and Equipment

UltraHiNet LLC’s computational facilities include a computer with a 12 MB Intel Smart Cache
and a six-core Intel Core i7-980X Extreme Processor clocked at 3.33 GHz. This computer hosts
an Nvidia C2050 Fermi GPU that has 448 cores and is clocked at 1.15 GHz. The Fermi GPU
has 3 GB of memory, with a 64 KB cache, configurable as 48/16 or 16/48 L1 cache. The GPU’s
shared memory bus has throughput of 144 GB/sec. The external bus is a PCI Express bus with
throughput measured at 4,280.6 MB/sec.

Supporting software for Phase I included Ubuntu 10.04 LTS ("Lucid Lynx", by Canonical
LTD), Nvidia CUDA Toolkit Version 3.2, and GNU C Compiler Version 4.4.3.

3. Consultants

Dr. Sivaramakrishnan Balachandar, funded by DTRA to develop CPD based simulations of air
blast phenomena, and previously funded for development of combustion simulations, was a
consultant on the Phase I project. He supplied CONSIF code and expertise in CPD-based
combustion simulation.

4. Bibliography and References Cited

[AARO0] I. Al-furaih, S. Aluru and S. Ranka. (2000) Parallel Construction of Multidimensional Binary
Search Trees, IEEE Transactions on Parallel and Distributed Systems, February 2000, pp.
136-148.

[Adam96] N. Adams and K. Shariff. (1996). A high-resolution hybrid compact-ENO scheme for
shock-turbulence interaction problems. J. Comput. Phys. 127, 27-51.

[Adam09] M. Adams, S-H. Ku, P. Worley, E. D’Azevedo, J.C. Cummings, C.S. Chang, (2009) Scaling
to 150K cores: Recent algorithm and performance engineering developments enabling
XGC-1 to run at scale, J.Phys. Conf. vol 180, p. 012036.

[Agra93] G. Agrawal, A. Sussman, and J. Saltz. (1993) An Integrated Runtime and Compile-time
Approach for Parallelizing Structured and Block Structured Applications, CRPC Tech.Rpt.
TR933368, Rice University.

[Alfu97] 1. Al-furaih, S. Aluru and S. Ranka, (1997) Practical Algorithms for Selection on Coarse
Grain Parallel Computers, IEEE Transactions on Parallel and Distributed Systems, August
1997, pp. 803-810.

[Baden91] S. Baden. (1991) Programming Abstractions for Dynamically Partitioning ILocalized
Scientific Calculations Running on Multiprocessors, SIAM Jrn. Sci. and Stat. Computation,
vol. 12, no. 1.

[Bag02] P. Bagchi and S. Balachandar, (2002) Steady Planar Straining Flow past a Rigid Sphere at
Moderate Reynolds Number, Journal of Fluid Mechanics, Vol. 466, pp. 365-407.

[Bag03] P. Bagchi and S. Balachandar, (2003) Inertial and viscous forces on a rigid sphere in straining
flows at moderate Reynolds numbers. Journal of Fluid Mechanics 481, 105-148.

[Bala95] S. Balachandar, D. A. Yuen, D. M. Reuteler and G. S. Lauer, (1995) Viscous dissipation in
three-dimensional convection with temperature-dependent viscosity. Science 267,
1150-1153.

[BalaO1] S. Balachandar, J.D. Buckmaster, and M. Short, (2001) The generation of axial vorticity in
solid-propellant rocket-motor flows, Journal of Fluid Mechanics, Vol 429, pp.283-305.

UltraHiNet, LLC 24

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report

Computational Particle Dynamics on Multicores (CPDMu)

[Bala08]

[Band10]
[Bow01]

[Bozk93]

[Cai99]

[Chan09]

[Chou92]

[Chou93]

[Cook05]
[Cook07]
[CUDA10]
[Das91a]

[Das91b]

[Decy95]

[Des02]

[DOE1]
[DOE2]
[DOE3]
[DOE4]

[Duff86]

July 24, 2011
S. Balay, Buschelman K, Eijkhout V, Gropp W D, Kaushik D, Knepley M G, McInnes L C,
Smith B F and Zhang H (2008) PETSc users manual TR ANL-95/11 - Revision 3.0.0
Argonne National Laboratory.
S. Bandopadhyaya and S. Sahni. (2010) “GRS - GPU Radix Sort For Multifield Records”,
Proceedings of the IEEE International Conference on High Performance Computing (HiPC).
K. Bowers, (2001) Accelerating a Particle-In-Cell simulation using a hybrid counting sort,
J.Comput.Phys, vol. 173, p.393.
Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. (1993) Compiling HPF for
Distributed memory MIMD computers, Impact of Compilation Technology on Computer
Architecture. David Lilja and Peter Bird, eds. Kluwer Academic, Norwell, MA, October
1993, pp. 191-217.
FEM. Caimi, M.S. Schmalz, and G.X. Ritter, (1999) Mapping of image compression
transforms to reconfigurable processors: Simulation and analysis. Proceedings SPIE, Vol.
3814, pp.98-114.
C.S. Chang, S. Ku, P.H. Diamond, Z. Lin, S. Parker, T.S. Hahm and N. Samatova, (2009)
Compressed ITG turbulence in diverted Tokamak edge, Phys. Plasmas Vol. 16, pp. 056108.
A. Choudhary, G.C. Fox, S. Ranka, S. Hiranandani, K. Kennedy, C. Koelbel, and J. Saltz.
(1992) Software Support for Irregular and Loosely Synchronous Problems, Tech. Report
CRPC-TR92258, Rice University.
A. Choudhary, G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and C-W.
Tseng. (1993) Unified Compilation of Fortran 77D and 90D, ACM Letters on Prog. Lang.
and Systems, Vol. 2, pp. 95-114.
A. Cook and W. Cabot, (2005). Hyperviscosity for shock-turbulence interaction. J. Comput.
Phys. 203, 379-385.
A. Cook, (2007). Artificial fluid properties for large-eddy simulation for compressible turbulent
mixing. Phys. Fluids 19, 055103.
NVIDIA CUDA Programming Guide, Version 3.0, 2010,
(http://developer.nvidia.com/object/gpucomputing.html).
R. Das, J. Saltz, and H. Berryman. (1991) Manual for Parti Runtime Primitives, Revision 1,
Int.Rpt. 91-17, ICASE.
R. Das, P. Ponnusamy, J. Saltz, and D. Mavriplis. (1991) Distributed Memory Compiler Methods
for Irregular Problems: Data Copy Re-use and Runtime Partitioning, in Compilers and Runtime
Software for Scalable Multiprocessors (J. Saltz and P. Mehrota, Editors), Amsterdam: Elsevier.
V. Decyk, (1995) Skeleton PIC codes for parallel computers, Computer Phys. Comm. Vol. 87,
pp-87-94.
P.E. Des-Jardins, M.R. Baer, R.L. Bell & E.S. Hertel. (2002) Towards numerical simulation
of shock induced combustion using probability density function approaches. Tech. Rep.
SAND2002-2175.
Science Based Nuclear Energy Systems Enabled by Advanced Modeling and Simulation at
the Extreme Scale, Workshop Summary, Washington, DC, May 11-12, 2009.
Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy
Systems, Report of the Basic Energy Sciences Workshop, July 31-August 3, 2006.
Workshop on Simulation and Modeling for Advanced Nuclear Energy Systems, August
15-17, 2006.
Report of the Nuclear Physics and Related Computational Science R&D for Advanced Fuel
Cycles Workshop, Bethesda, MD, August 10-12, 2006.
I.S. Duff and J.K. Reid. (1986) Direct Methods for Sparse Matrices, New York: Oxford
University Press.

UltraHiNet, LLC 25

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report

Computational Particle Dynamics on Multicores (CPDMu)

[Edels]
[Fer02]

[Fer05]

[Fox88]

[Fox90a]

[Fox90b]

[Fox91a]
[Fox91b]
[Fox91c]
[Gai99]

[God05]

[GPGPU]

[GramO1]

[Gior97]

July 24, 2011
D.J. Edelsohn. Hierarchical Tree Structures as Adaptive Meshes” SCCS Report 193,
Syracuse Univ. (USA).
J. Ferry and S. Balachandar, (2002) Equilibrium expansion for the Eulerian velocity of small
particles, Powder Technology, Vol. 125, pp.131-139.
J. Ferry and S. Balachandar, (2005) Equilibrium Eulerian approach for predicting the thermal
field of a dispersion of small particles. International Journal of Heat and Mass Transfer 48,
681-689.
G.C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. (1988) Solving
Problems on Concurrent Computers, Prentice-Hall, Englewood Cliffs NJ.
G.C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. (1990)
“Fortran D Language Specification”, Department of Computer Science Technical Report
90-141, Rice University.
G.C. Fox. (1990) “Hardware and Software Architectures for Irregular Problems
Architectures”, Invited Talk at ICASE Workshop on Unstructured Scientific Computations on
Scalable Multiprocessors, Nagshead NC.
G.C. Fox. (1991) “Architecture of Problems and Portable Parallel Software Systems”, in
Proc. Supercomp °91.
G.C. Fox. (1991) “Parallel Problem Architectures and Their Implications for Parallel
Software Systems”, DARPA Workshop, Providence RI, February 1991.
G.C. Fox. (1991) “Fortran D as a Portable Software System for Parallel Computers”,
Presentation at Supercomputing USA/Pacific 91, Santa Clara, CA.
D. Gaitonde and M. Visbal, (1999). Further development of a Navier-Stokes solution
procedure based on higher-order formulas, ATAA Paper 99-0557.
D. Goddeke, R. Strzodka, and S. Turek (2005), “Accelerating Double Precision FEM
Simulations with GPUs,” In Proceedings of ASIM 2005 - 18th Symposium on Simulation
Technique.
GPGPU -- XGC-1-Wiki, the free XGC-1 reference,
http://www.XGC-1-online.com/Wiki/GPGPU.
A. Grama, V. Kumar, S. Ranka and V. Singh (2001) Architecture Independent Analysis of
Parallel Programs, Proc. 2001 International Conference on Computational Science, Vol. 2,
pp-599-608.
R. Giorgi, C. A. Prete, G. Prina, and L. Ricciardi, (1997) Trace Factory Generating Workloads
for Trace-Driven Simulation of Shared-Bus Multiprocessors," IEEE Concurrency, Vol. 5, No.
4, (1997), pp. 54-68.

[Hahm88] T.S. Hahm, (1988) Nonlinear Gyrokinetic Equations for Tokamak Microturbulence, Phys. Fluids

[Har04]

[Has09]

Vol. 31, p. 2670.

M.J. Harris, (2004) Fast Fluid Dynamics Simulation on the GPU, Chapter 38, Excerpted
from GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics,
Addison-Wesley.

A. Haselbacher, J. Chao, and S. Balachandar. (2009) A Massively Parallel Multi-Block
Hybrid Compact-WENO Scheme for Compressible Flows (submitted to Journal of
Computational Physics).

[Heyw92a] T. Heywood and S. Ranka. (1992) A Practical Hierarchical Model of Parallel Computation:

Binary Tree and FFT Graph Algorithms, Journal of Parallel and Distributed Computing,
November 1992, 233--249.

[Heyw92b] T. Heywood and S. Ranka. (1992) A Practical Hierarchical Model of Parallel Computation:

The Model, Journal of Parallel and Distributed Computing, November 1992, vol. 3, pp.
212--232.

UltraHiNet, LLC 26

http://www.cfd-online.com/Wiki/GPGPU

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report

Computational Particle Dynamics on Multicores (CPDMu)

[Hig02]
[Hofs05]
[Koel90]
[Lad03]

[Lee83]
[Lee87]
[Lee88]

[Liao96]

[Liew89]

[Lin98]

[Liu90]

[Lu91]

[Mav91la]
[Mav91b]

[Mir88]

[Nev05]

[Nyl07]

[OGR95]

[OR97]
[Pas00]

[PhamO06]

July 24, 2011
N. Higham, (2002) Accuracy and Stability of Numerical Algorithms, Siam Press, Second
Edition.
H. Hofstee, (2005) Power Efficient Processor Architecture and Cell Processor, Proceedings of the
11" Int’l Symposium on HPC Architecture.
C. Koelbel and P. Mehrota. (1990) Compiling Global Name-Space Loops for Distributed
Execution, in IEEE Transacations on Parallel Distributed Systems, vol. 2, no. 4.
F. Ladeinde, X. Cai, M. Visbal, and D. Gaitonde, (2003). Parallel implementation of
curvilinear high-order formulas. Int. J. Comp. Fluid Dyn. Vol. 17, 467-485.
W.W. Lee, (1983) Nonlinear gyrokinetic equations Phys. Fluids, Vol. 26, pp.556-562.
W.W. Lee, (1987) Gyrokinetic particle simulation model, J. Comput. Phys., Vol.72, p.243.
W.W. Lee and W.M.Tang, (1988) Gyrokinetic particle simulation of ion temperature gradient
instabilities, Phys. Fluids, Vol. 31 pp. 612-624.
W. Liao, C. Ou and S. Ranka. (1996) Dynamic alignment and distribution of irregularly
coupled data arrays for scalable parallelization of particle-in-cell problems, Proc.IPPS ’96,
Par. Proc. Symp., pp. 57-61.
P.C. Liewer and V.K. Decyk. (1989) A General Concurrent Algorithm for Plasma
Particle-in-Cell Simulation Codes, Journal of Computational Physics, vol. 85, no. 2, pp.
302-322.
Z. Lin, Hahm T.S., Lee W.W,, Tang W.M. and White R.B. (1998) Turbulent transport
reduction by zonal flows: Massively parallel simulations, Science Vol. 5384, pp. 1835-1837.
L. Liu and J. Peir: (1990) A Performance Evaluation Methodology for Coupled Multiple
Supercomputers. Proc. 1990 International Conference on Parallel Processing, vol. 1, pp.
198-202.
L.C. Lu and M.C. Chen. (1991) Parallelizing Loops with Indirect Array References or
Pointers, in Proceedings of the Fourth Workshop on Languages and Compilers for Parallel
Computing.
D.J. Mavriplis. (1991) Three-dimensional Unstructured Multigrid for the Euler Equations, in
Proceedings of the AIAA 10" Computational Fluid Dynamics Conference.
D.J. Mavriplis. (1991) Unstructured and Adaptive Mesh Generation for High Reynolds
Number Viscous Flows, ICASE Technical Report 91-25.
R. Mirchandaney, J.H. Saltz, R.M. Smith, D.M. Nicol and K. Crowley. (1988) Principles of
Runtime Support for Parallel Processors, Proceedings of the 1988 ACM Int’l. Conf.
Supercomputing, pp. 140-152.
W.M. Nevins, G.W. Hammett, A.M. Dimits, W. Dorland, D.E. Shumaker, (2005) Discrete
particle noise in particle-in-cell simulations of plasma microturbulence, Phys. Plasmas, vol.
12, p.122305.
L. Nyland, (2007) N-body on the GPU, presented at AstroGPU Conference, Princeton, NJ
(ftp://ftp.cs.unc.edu/pub/publications/techreports/04-032.pdf).
C. W. Ou, M. Gunwani, and S. Ranka. (1995) Architecture-Independent Locality-Improving
Transformations of Computational Graphs Embedded in k-Dimensions, Proceedings of the
1995 International Conference on Supercomputing, pp. 295--298.
C. W. Ou and S. Ranka. (1997) Parallel Incremental Graph Partitioning, IEEE Transactions on
Parallel and Distributed Systems, Aug 1997, pp. 884-896.
A. Pascarelli, U. Piomelli, and G. Candler, (2000). Multi-block large-eddy simulations of
turbulent boundary layers. J. Comput. Phys. 157, 256-279.
M.V. Pham, F. Plourde, S.D. Kim, and S. Balachandar, (2006) Large-eddy simulation of a
pure thermal plume under rotating conditions. Physics of Fluids 18, 015101.

UltraHiNet, LLC 27

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report
Computational Particle Dynamics on Multicores (CPDMu)
July 24, 2011
V. Podlozhnyuk, Histogram calculation in CUDA, 2007.

[Pod07]
[Pov98]
[Prze05]
[Rank90a]

[Rank90b]

[Rank90c]
[Rank90d]
[Rank90e]

[Rank91]

[Rank91a]

[Rank91b]
[Rav10]
[Roc89]
[Saad86]
[Salm90]

[Sati09]

[Sch97]
[Sen07]

[Shan97a]

[Shan97b]

http://www.nvidia.com/object/cuda_sample_ data-parallel.html)

A. Povitsky, (1998). Parallel directionally split solver based on reformulation of pipelined
Thomas algorithm, NASA Technical Report, NASA/CR-1998-208733.

V. Przebinda, J. Cary, (2005) Some improvements in PIC performance through sorting,
caching, and dynamic load balancing, U. Colorado.

S. Ranka and S. Sahni. (1990) Hypercube Algorithms with Applications to Image Processing
and Pattern Recognition, Springer Verlag, June 1990.

S. Ranka and S. Sahni. (1991) Image Template Matching on MIMD Hypercube
Multicomputers, Journal of Parallel and Distributed Computing, September 1990, vol. 10,
No. 1, pp. 79--84.

S. Ranka and S. Sahni. (1991) String Editing on a Hypercube Multicomputer, Journal of Parallel
and Distributed Computing, vol. 9, pp. 411--418.

S. Ranka and S. Sahni. (1991) Convolution on an SIMD Mesh Connected Multicomputer,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 315--318.

S. Ranka and S. Sahni. (1991) Odd-Even Shifts on SIMD Hypercubes, IEEE Transactions on
Parallel and Distributed Systems, vol. 1, pp. 77--82.

S. Ranka and S. Sahni. (1991) Image Transformations on Hypercube and Mesh Multicomputers,
Parallel Architectures and Algorithms for Image Understanding. Prasanna Kumar, ed. Academic
Pr., pp. 227-248.

S. Ranka and S. Sahni. (1991) Efficient Serial and Parallel Algorithms for Median Filtering,
IEEE Transactions on Acoustics, Speech and Signal Processing, June 1991, vol. 39, No. 8,
pp. 1462--1466.

S. Ranka and S. Sahni.(1991) Clustering on a Hypercube Multicomputer, IEEE Ti: Par.Distrib. Sys, vol.
2, pp. 129-137.

G. Ravunnikutty, R. G. Joseph, S. Ranka, E. D’Azevedo, and S. Klasky. Efficient GPU
implementation for Particle in Cell algorithm, submitted to IPDPS 2011 (1 Oct 2010).

F. Rocca, C. Cafforio, and C. Prati, (1989) Synthetic aperture radar: A new application for
wave equation techniques. Geophysical Prospecting, vol. 37, pp. 809-830.

Y. Saad. (1986) Communication Complexity of the Gaussian Elimination Algorithm on
Multiprocessors, Linear Algebra Applications, vol. 77, pp. 315-340.

J.K. Salmon. (1990) “Parallel Hierarchical N-Body Methods”, Tech.Report CRPC-90-14, CA
Inst. Technol.

N. Satish, M. Harris, and M. Garland. (2009) Designing Efficient Sorting Algorithms for
Manycore GPUs, in Proc. IEEE 2009 International Parallel and Distributed Processing
Symposium.

M.S. Schmalz. (1997) Automated analysis and prediction of accuracy and performance in
ATR algorithms, Proceedings SPIE vol. 3079, pp. 249-272.

T. Sengupta, A. Dipankar, and A., Rao, (2007). A new compact scheme for parallel
computing using domain decomposition. J. Comput. Phys. Vol. 220, pp. 654-677.

R. Shankar and S. Ranka. (1997) Random Data Accesses on a Coarse-grained Parallel
Machine I. One-to-one Mappings, Journal of Parallel and Distributed Computing, July 1997,
pp. 14-23.

R. Shankar and S. Ranka. (1997) Random Data Accesses on a Coarse-grained Parallel
Machine II. One-to-many and Many-to-one Mappings, Journal of Parallel and Distrib.
Computing, July 1997, pp. 24-34.

UltraHiNet, LLC 28

http://www.nvidia.com/object/cuda_sample_data-parallel.html

DOE SBIR 2009 Topic 39a : Computation of Engineering Problems

Final Report

Computational Particle Dynamics on Multicores (CPDMu)

[Shen06]

[Shew96]

[Simon91]

[Slaw07a]

[Slaw07b]

[Sor08]

[StanIP]

[Ston07]

[Sun96]

[Swe98]

[Tay08]

[Tesla10]
[Walk90]

[Whit90]

[Won89]
[Yee99]
[Zeng05]
[Zho98]

[Zhou07]

July 24, 2011
Y. Shen, G. Yang, and Z. Gao, (2006). High-resolution finite compact difference schemes for
hyperbolic conservation laws. J. Comput. Phys. 216, 114-137.

J.R. Shewchuk, (1996) Applied Computational Geometry: Towards Geometric Engineering
(Lecture Notes in Computer Science vol 1148) ed Lin M C and Manocha D (Springer-Verlag)
pp 203222

H. Simon. (1991) Partitioning of Unstructured Mesh Problems for Parallel Processing, in
Proc. Conf. on Parallel Methods on Large Scale Structural Analysis and Physics
Applications, Pergamon Press.

M. Slawinska, et al. (2007) Enhancing Portability of HPC Applications across High-end
Computing Platforms, IEEE International, @ March 26-30, 2007, pp.1-8,
(http://www.dcl.mathcs.emory.edu/downloads/ /hwb/papers/hcw07.pdf).

J. Slawinski, M. Slawinska and V. Sunderam. (2007) Porting Transformations for HPC
Applications, in Proc. 21* Intl. Parallel & Distrib. Proc. Symp.,
(http://www.dcl.mathcs.emory.edu/downloads /hwb/papers/pdcs07.pdf).

T. Sorensen, T. Schaeffter, K. Noe, M. Hansen, (2008) Accelerating the nonequispaced fast
fourier transform on commodity graphics hardware, IEEE Transactions on Medical Imaging,
Vol. 27, pp.538-547.

G. Stantchev, D. Juba, W. Dorland, A. Varshney, High-performance computation and
visualization of plasma turbulence on graphics processors, Computing in Science and
Engineering (2008).

J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, (2007)
Accelerating molecular modeling applications with graphics processors, J. Comput.
Chemistry, Vol. 28, pp. 2618-2640.

X.-H. Sun, and S. Moitra, (1996). A fast parallel tridiagonal algorithm for a class of XGC-1
applications, NASA Tech. Paper 3585.

M. Sweat and Wilson, J.N. (1998) Overview of AIM: Supporting computer vision on
heterogeneous high-performance computing systems. Proceedings SPIE, Vol. 3452, pp. 81ff.
Z. A. Taylor, M. Cheng, S. and Ourselin, (2008) High Speed Non-linear Finite Element Analysis for
Surgical Simulation Using Graphics Processing Units, IEEE Transactions on Medical Imaging, vol.
27, no. 5, pp 650-663.

Nvidia Tesla (2010) http://wapedia.mobi/en/NVIDIA Tesla.

D.W. Walker. (1990) “Characterizing the Parallel Performance of a Large-Scale,
Particle-in-Cell Plasma Simulation Code”, Concurrency: Practice and Experience, vol. 2, no.
4, Chichester UK: John Wiley.

D.L. Whitaker, D.C. Slack, and R.W. Walters. (1990) Solution Algorithms for the
Two-Dimensional Euler Equations on Unstructured Meshes, in Proc. of the AIAA 28"
Aerospace Sciences Mtg, Reno NV.

Y. Won and S. Sahni. (1989) Hypercube-to-Host Sorting, Jrn. of Supercomputing, vol. 3, pp.
41-61.

H. Yee, N., Sandham, and M. Djomehri, (1999). An artificial nonlinear diffusivity method for
supersonic reacting flows with shocks. J. Comput. Phys. Vol. 150, pp. 199-239.

L. Zeng, S., Balachandar, and P. Fischer, (2005) Wall-induced forces on a rigid sphere at finite Re.
Journal of Fluid Mechanics 536, 1-25.

X. Zhong, (1998). High-order finite-difference schemes for numerical simulation of
hypersonic boundary-layer transition. J. Comput. Phys. Vol. 144, pp. 662—709.

Q. Zhou, Z. Yao, F. He, and M., Shen, (2007). A new family of high-order compact upwind
difference schemes with good spectral resolution. J. Comput. Phys. Vol. 227, pp. 1306-1339.

UltraHiNet, LLC 29

http://www.dcl.mathcs.emory.edu/downloads%20/hwb/papers/pdcs07.pdf
http://www.dcl.mathcs.emory.edu/downloads/

