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Statement of Problem: Department  of  Energy  has  many  legacy  codes  for  simulation  of 
computational  particle  dynamics  and  computational  fluid  dynamics  applications  that  are 
designed  to  run  on  sequential  processors  and  are  not  easily  parallelized.   Emerging 
high-performance  computing  architectures  employ  massively  parallel  multicore  architectures 
(e.g.,  graphics  processing units)  to increase throughput.   Parallelization  of legacy simulation 
codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility.

General Statement of Solution:  A legacy simulation application designed for implementation 
on  mainly-sequential  processors  has  been  represented  as  a  graph  G.  Mathematical 
transformations,  applied  to  G,  produce  a  graph  representation  G for  a  high-performance 
architecture.   Key  computational  and  data  movement  kernels  of  the  application  were 
analyzed/optimized for parallel  execution using the mapping  G G, which can be performed 
semi-automatically.   This  approach  is  widely  applicable  to  many  types  of  high-performance 
computing systems, such as graphics processing units or clusters comprised of nodes that contain 
one or more such units.

Phase  I  Accomplishments:  Phase  I  research  decomposed/profiled  computational  particle 
dynamics  simulation  code  for  rocket  fuel  combustion  into  low and high  computational  cost 
regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and 
time complexity.  Using the research team’s expertise in algorithm-to-architecture mappings, the 
high-cost  kernels  were  transformed,  parallelized,  and  implemented  on  Nvidia  Fermi  GPUs. 
Measured  speedups  (GPU with  respect  to  single-core  CPU)  were  approximately  20-32X for 
realistic  model  parameters,  without  final  optimization.   Error  analysis  showed  no  loss  of 
computational accuracy.

Commercial  Applications  and  Other  Benefits.   The  proposed  research  will  constitute  a 
breakthrough in solution of problems related to efficient parallel computation of particle and fluid 
dynamics simulations.  These problems occur throughout DOE, military and commercial sectors: 
the potential payoff is high.  We plan to license or sell the solution to contractors for military and 
domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government 
agencies  (hydrological  and  environmental  simulations),  and  medical  applications  (e.g.,  in 
tomographic image reconstruction).

Keywords.  High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation

Summary for Members of Congress.  Department of Energy has many simulation codes that 
must compute faster, to be effective.  The Phase I research parallelized particle/fluid simulations 
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1. Significance, Background and Results of Phase I Research 

1.1 Significance, Background, and Overview 

UltraHiNet,  LLC (UHN)  is  pleased  to  submit  this  Final  Report  pursuant  to  Department  of 
Energy (DOE) SBIR 2009 Topic 39a, entitled Computation of Engineering Problems.  In Phase I 
of this SBIR effort, we profiled, analyzed, parallelized and tested key computational kernels of 
grid-based algorithms such as computational particle dynamics (CPD) codes for simulation on 
multicore graphics processing unit (GPU) processors and clusters of multicore GPUs.  

The remainder  of this  subsection contains an overview of the significance  of the problem 
(Section 1.1.1).  We overview the approach that  we have successfully developed in Phase I 
(Section 1.1.2), then discuss details of our Phase I approach and Phase I results (Section 1.1.3).

1.1.1. Significance of Problem.  Computational  Particle Dynamics,  together with the related 
area of Computational Fluid Dynamics (CFD), is an important foundational technology for a 
wide variety of dynamic particle-  and field-based simulations of interest  to DOE, DOD, and 
NASA, to  name but  a few of our prior  or  current  research sponsors.   Example  applications 
include but are not limited to DOE’s interests in simulation supporting combustion design and 
engineering,  weapons  design  and  damage  reduction,  DOD  and  NASA  interests  in 
aircraft/spacecraft design, aerodynamic simulation, and medical imaging (e.g., tomography), and 
numerous other applications.

In  practice,  the  mapping  of  DOE’s  CPD  and  CFD  simulation  applications  to  parallel 
architectures, such as GPUs or clusters of CPU-GPU nodes, is not straightforward in the sense 
that mapping a pointwise image operation to a synchronously parallel SIMD mesh is realized.  In 
practice,  many  realistic  CPD/CFD simulation  problems  have  irregular  grids  whose  size  and 
resolution can change locally or globally [Liao96].  Further, in adaptive simulation applications, 
the  grid,  population  and  density  of  particles,  and/or  field  boundaries  can  change  with  time 
[Rav10].   In  realistic  simulation  problems,  the  external  simulation  constraints  and/or  output 
resolution can also change.  Together with the problems of real-time interpolation between cells, 
these types of simulations (e.g.,  regular or irregular  grid, mesh, or particle-in-cell)  challenge 
current understanding of parallelization using existing algorithm-to-architecture mapping theory.

In response to this  problem, our research team has developed in Phase I  an approach that 
successfully maps (for example) key computational kernels of CFD/CPD simulation applications 
to parallel architectures such as GPUs, or to clusters comprised of nodes having a CPU that hosts 
multiple GPUs.  In terms of applicability to DOE’s interest  in energy generation and control 
stated in the solicitation, these simulation problems are found extensively throughout the energy 
sector  – in  design of  combustion  or  fusion based power plants,  turbine design,  performance 
modeling,  etc.   In  each  of  these  cases,  the  use  of  fixed  or  variable  model  parameters  or 
configurations  will  be  addressed  in  terms  of  our  parallelization  approach  that  was  proven 
successful in Phase I.

1.1.2. Scope and Relevance of Phase I Work.    In Phase I, the UHN research team analyzed, 
parallelized, and tested computational kernels of CPD codes provided by our consultant Dr. S. 
Balachandar, and parallelized these kernels successfully.  Our research, development, test, and 
analysis is based on our research team’s extensive proven expertise in mathematical analysis and 
implementation  of  problems  and  solutions  for  parallel  computation  of  grid-  or  mesh-based  
processing  algorithms, parallel  vector  and  array  processing  algorithms,  including  but  not 
limited to  computational  particle  dynamics,  computational  fluid dynamics,  image and signal  
processing, and high-performance simulation.  
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Relevance of  Phase  I  Parallel  Implementation  for  CPD/CFD  Simulation.   Our  Phase  I 
research  pertains directly to DOE’s energy-related goals of designing efficient combustion and 
power  generation  facilities.  In  combustion  simulation,  highly  efficient,  accurate  parallel 
processing is required for computing CPD simulation codes and related CFD simulation codes, 
with physical fidelity and user-friendly interactivity.  Existing CPD/CFD simulation codes have 
been primarily written for Central Processing Units (CPUs), with calculations performed in serial 
or parallel fashion on single or multiple CPUs.  When these legacy CFD/CPD simulation codes 
are ported to a parallel  architecture by merely inputting them (for example) to an optimizing 
compiler,  the  results  often  exhibit  disappointingly  poor  performance  in  comparison with  the 
target architecture’s advertised peak performance.  Thus, manual optimization (local as well as 
global) is required, often requiring much effort and public expense.

Fortunately,  video gaming chip manufacturers  have developed computational  hardware and 
software  for  life-like  visualization,  as  well  as  high-bandwidth  parallel  arithmetic 
computation. Such  Graphics  Processing  Units  (GPUs)  can  achieve  peak  computational 
throughput  of  gigaflops  to  teraflops,  with  sustained  processing rates  currently  in  the  tens  to 
hundreds of gigaflops.  GPUs can also be clustered into massively parallel supercomputers with 
hundreds of energy-efficient nodes comprised of a CPU controlling multiple GPUs.  Although 
impressive speedups have been realized by running CPD codes on GPUs versus a single CPU, 
significant challenges remain for multicore GPU implementation.  Prior to and during our Phase 
I  research,  we determined  that  such challenges  include  but  are  not  limited  to  efficient  data 
movement, mapping of unstructured data to mesh grids, effective mapping of grid structures to 
cores  in  the  GPU,  resolution  of  data  and control  dependencies  in  local  mesh processing  or 
iterative mesh refinement, multiprocess collaboration and sharing of data, as well as uncertainty 
quantification.

Parallel architectures such as GPUs have only recently been available to the public.  Despite 
the concerted development of parallel computing over the past four decades, the programming of 
parallel architectures has remained challenging due to the lack of a unifying model for parallel 
algorithm design and implementation.  In contrast, sequential (von Neumann) architectures have 
for over four decades exploited a unifying model that facilitates porting of legacy sequential 
codes to other sequential architectures.  Unfortunately, the porting of legacy codes to a parallel 
architecture is fraught with difficulty since there exists no machine-independent programming 
interface  (e.g.,  middleware)  for  parallel  machines  to  achieve  efficiencies  comparable  to 
hand-coding in languages  supported by a  target  (parallel)  architecture.   Even worse,  when a 
legacy  application  is  manually  converted  (often  at  great  expense)  to  run  on  a  parallel 
architecture, it may not run efficiently (i.e., the investment may be lost) when ported to the next 
generation parallel architecture with a different programming model or interface.
Overview of Parallel  Problems.   In order to provide a conceptual  and theoretical  basis  for 
mapping legacy CPD/CFD simulation algorithms to parallel  architectures,  in Phase I we first 
viewed  these  applications  as  inherently  parallel  problems.   This  perspective  allowed  us  to 
characterize  parallel  simulation  problems  in  terms  of  the  following  five  general  categories 
[Fox88], each of which covers a broad range of applications:

 Synchronous problems are data parallel, with the restriction that the time dependence of each 
datum is computed by the same operations.   Algorithmically,  as well as in natural SIMD 
implementations, synchronous problems are synchronized microscopically at each processor 
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clock cycle.  Examples of such problems include pointwise arithmetic on two images, matrix 
multiplication, and other algorithms that are often popular in academia [Chou92].

 Loosely  Synchronous  problems  (LSPs)  are  also  data  parallel,  but  constraints  are  relaxed 
slightly so that different data points can be evolved with different algorithms.  Points are 
often  linked  irregularly,  in  a  data-dependent  manner  –  such  problems  are  often  termed 
“irregular”. For example, such problems can represent macroscopic physical processes that 
evolve due to interactions between irregular homogeneous objects in a synchronized manner. 
Thus, loosely synchronous problems are spatially regular but temporally irregular – CPD and 
CFD simulations tend to be good examples of this problem type.  

 Asynchronous  problems  are  irregular  in  space  and  time,  and  thus  are  not  necessarily 
supportive  of  general  methods  for  parallelization.   Some  run  well  with  imposed  time 
synchronization,  others run well with functional decomposition,  and some have never run 
well on massively parallel machines [Fox91a].

 Embarassingly Parallel problems are totally disconnected in space and time, and do not need 
synchronization except in the final stage where results are collected.  These problems can run 
on either SIMD or MIMD hardware, but are not within the focus of this proposal.

 Loosely  Synchronous  Complex  problems  are  an  asynchronous  collection  of  loosely 
synchronous problems, for example,  command and control applications.  Each constituent 
task is synchronous or loosely synchronous, and can be parallelized with an asynchronous 
expert system coordinating interactions between tasks [Chou92].

In terms of practical implementation, we have found that the architecture and organization of 
commercially-available GPUs (e.g., Nvidia Tesla and Fermi processors) somewhat supports the 
parallelization  of  loosely  synchronous  problems  (LSPs)  such  as  solver,  interpolation,  and 
migration kernels of CPD and CFD simulations.  Further, Nvidia’s CUDA software tools can be 
utilized to enhance the efficiency of parallelization for carefully designed implementations of 
LSPs, provided that the CUDA tools are properly configured.  We have extensively researched 
these design and configuration problems in our Phase I effort.

Additionally,  over  the  past  several  decades,  we  have  developed  heuristic  and  algorithmic 
techniques  for  mapping  applications  within  the  preceding  taxonomy of  parallel  problems  to 
various parallel architectures [Heyw92a,b;Liao96;OR97;Rank90a-e;Rank91a-b].  In particular, a 
follow-on effort should concentrate on the GPU cluster implementation of several subclasses of 
loosely synchronous problems (LSPs).  These LSPs could comprise the parallel sections of the 
CPD/CFD applications that would thus be implement on target architectures with a high degree 
of parallelism (e.g., multicore CPU, GPU, and clusters of CPU-GPU nodes).  In particular, the 
sequential portions of the applications would be implemented on CPUs, which would support 
efficient implementation of the entire CPD or CFD simulation application.  In a follow-on effort, 
we would also like to investigate load sharing between the CPU and GPUs.

Accordingly, we next overview how these prior (e.g., Phase I) developments relate to target 
multicore CPUs, GPUs, and CPU-GPU clusters.

1.1.3. Discussion of Phase I Work. In prior research, and in particular our Phase I research and 
development effort, we have found that loosely synchronous problems (LSPs) can be divided 
into a sequence of concurrent computational phases that are appropriate for parallel (e.g., GPU) 
based  implementation.   This  development  is  important  to  DOE’s  CPD  applications,  as  an 
understanding  of  LSP  problem  subtypes  directly  supports  an  understanding  and  correct 
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implementation  of  the  corresponding  algorithm-to-architecture  mappings  that  can  support 
parallelization of LSP problems such as CPD/CFD simulations.

1.1.3.1. LSP Problem Subtypes.  Differences between subclasses of LSPs manifest primarily in 
how the phases are separated and when intra-phase computational and communication patterns 
are set.   To illustrate  this concept,  we next present an overview of LSP subtypes, with brief 
examples.

LSP Subclass  1:  Static  Single-Phase  Computations.   A static  single  phase  computation 
consists of a single concurrent computational phase, which may be executed repeatedly without 
change.  Examples include iterative solvers using sparse matrix-vector operations [Saad86] and 
explicit unstructured mesh-based fluid dynamic calculations [Whit90].  The key challenge for 
efficient implementation is partitioning the data and computation to minimize data movement 
latencies while balancing load.  This partitioning then dictates the program’s synchronization and 
communication  requirements,  which  must  also  be  computed  by  the  proposed  CPDMu 
middleware because the computational pattern is set at runtime (as a result, this cannot be done 
by the Nvidia CUDA compiler).  Reducing the overhead of these middleware calls, by reducing 
information re-use and call frequency as well as latency, is vital for efficient implementation.

For example, in some CPD/CFD applications 
there is a straightforward relationship between 
the way distributed  arrays are  partitioned and 
the way work is partitioned. Figure 1 depicts a 
sparse  matrix-vector  multiplication  operation. 
The  integer  array  col  represents  the  sparsity 
structure  of  the matrix.  Loop  S1 sweeps over 
the sparse matrix rows, while loop  S2 sweeps 
over  its  columns  and  calculates  the  inner 
product. If the sparse matrix-vector multiplication in Figure 1 is computed repeatedly, then it is 
reasonable to partition x and y between processors in a conforming manner. In such a problem, 
we follow the convention of carrying out computational work associated with computing a value 
for distributed array element y(i) on the processor onto which y(t) is mapped [Das91a].

As  another  example  of  single  static-phase 
computations,  we  have  found  that  there  are 
common  cases  where  assignment  of 
distributed  array  elements  (and/or  work)  to 
processors  (e.g.,  threads  or  cores  in  a  GPU) 
cannot  be coupled  as  straightforwardly  as  in 
the  preceding  example  of  matrix-vector 
multiplication.  For instance, Figure 2 depicts 
a loop that sweeps over the edges of a mesh – 
here, we indirectly index array  x on the right 
hand side of S3 while also indirectly indexing 
array  y on  the  left  hand  side  of  S4 and  S5. 
Here, it can be advantageous to assign each loop iteration to a single processor, thus avoiding 
recalculation or communication of values for the variable flux, since y(n1) and y(n2) appear on 
the left hand sides of statements. As a result, we have found it important to separately develop 
partitioning methods for distributed array elements and loop iterations.

LSP Subclass 2: Static Multi-Phase Computations.  A static multi-phase computation consists 
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  S1 for i = 1 to m do
  S2        {  for  j  = 1 to n do

        y(i) = y(i) + a(i,j)  x(col(i,j) } 

Figure 1.   Sparse matrix-vector multiplication 
operation,  for  example,  in  an  iterative  mesh 
solver for CPD or CFD problems.

for i = 1,N do
S1  { nl = nde(i, 1)
S2     n2 = nde(i, 2)
S3     flux = f(x(nl), x(n2))
S4     y(nl) = y(nl) + flux
        ssy(~2) = y(~2) – flux }

Figure  2.   Computation  of  flux,  where  two 
loops  sweep over  the  rows  and columns  of  a 
sparse  matrix.   Flux  across  a  mesh  edge  is 
calculated, which involves flow variables stored 
in array x, and accumulation of flux in array y.
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of  a  series  of  dissimilar  loosely  synchronous  components.   These  applications  usually  have 
several  parallelizable  loops  involving  multiple  distributed  arrays.  For  simplicity,  we  herein 
consider  only  the  case  where  each  individual  phase is  a  static  single  phase computation  as 
defined previously. Importantly for a practical implementation of variable or adaptive grid CPD 
and  CFD  simulations,  examples  of  static  multi-phase  computations  include  unstructured 
multigrids  [Duff86],  parallelized  sparse  triangular  solver  [Edels],  particle-in-cell  codes 
[Fox91b,c], and vortex blob calculations [Fox90].  

As with static single-phase computations, the key implementational problem is partitioning 
computations and data,  but this  partitioning is  more complicated because interfaces  between 
phases  must  be  considered.  Synchronization  and  communication  requirements  are  similarly 
complicated by the presence of multiple phases. As before, this partitioning must be performed 
at runtime, for example, by incremental runtime routines [Koel90] that would take advantage of 
information computed at run time. 

    
(a)                                                   (b)                                                   (c)

Figure 3.  Unstructured multigrid: (a) coarse grid, (b) refined grid, (c) adaptive grid.

1: Sweep over coarse mesh 3: Sweep over fine mesh
   for i = 1,Ncoarse do for i = 1, Nfine do
   {   for j = 1, Kcoarse do {   for j = 1, Kfine do
           yc(i) = yc(i) + ac(i,j) * xc(ic(i,j)) }         yf(i) = yf(i) + af(i,j) * xf(if(i,j)) }

2: Transfer data from coarse mesh to fine mesh 4: Transfer data from fine to coarse mesh
   for i = 1,Nfine do for i = 1,Ncoarse do
   {   for j = 1, Ninterpf(i) do {   for j = 1, Ninterpc(i) do
           xf(i) = xf(i) + weightf(i,j) * yc(interpf(i,j))  }        xc(i) = xc(i) + weightc(i,j) * 
yf(interpc(i,j))} 

Figure 4.  Example oversimplified multiple mesh computation, where  xc,yc represent coarse mesh 
variables, and xf,yf fine mesh variables.  Typically, such computations are performed iteratively.

To better  understand this  technique,  we describe an unstructured multigrid  application  that 
illustrates some implementational  complexities of this  subclass. Unstructured multigrid codes 
[Duff86]  perform mesh  relaxation  over  individual,  increasingly  refined  meshes  M1,  …,  Mn. 
Figure  3a,b  depicts  two refinement  levels  from a  fluid  dynamics  code we have  parallelized 
[Chou92]. Both grids represent the same physical geometry; Figure 3b is more refined.
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This algorithm alternates between sweeping over each mesh and moving data between meshes, 
per the code in Figure 4. The meshes  M1, …,  Mn should be partitioned so that (1) each sweep 
over each mesh Mi minimizes interprocessor communication, (2) the computation for sweeping 
over each mesh should exhibit good load balance, and (3) interpolations and projections should 
require modest amounts of data movement. Note that the grids in Figure 3 were partitioned per 
[Fox90b] with good results, but many other partitioning methods could be used.

LSP Subclass 3: Adaptive Irregular Computations.  Adaptive irregular computations feature a 
loosely synchronous computation executed repeatedly,  where the data access pattern changes 
between iterations. Such changes may be gradual, reflecting adiabatic changes in the physical 
domain;  or  abrupt,  reflecting  additions  to  a  data  structure.   With  respect  to  possible  future 
development, we note that particle dynamics applications often exhibit gradual changes because 
interactions  between particles  are  implemented  by neighbor  lists,  which  change as  particles 
move [Fox91a]. Adaptive PDE solvers often 
exemplify  abrupt  changes,  as  discussed 
below.  The  key  problem  in  implementing 
these  algorithms  is  quick  reaction  to  data 
structural  changes,  although  physical  and 
numerical  properties  of  these  algorithms 
typically  guarantee  that  large-scale  data 
restructuring is only needed infrequently.  

Adaptive  irregular  algorithms  are  useful 
(for  example)  in  solving  Euler  and 
Navier-Stokes  problems  that  arise  in 
computational  fluid  dynamics.  In  these 
algorithms,  mesh  refinement  is  realized  in 
partitions  of a computational  domain where 
additional  resolution  may be required  [Liew89,Lu91].  The grid in  Figure 3c exemplifies  an 
adaptive  refinement  of  the  grid  in  Figure  3b,  where  the  initial  mesh-point  distribution  is 
determined from the geometry of the object around which flow is simulated.  Adaptive mesh 
refinement  is  achieved by adding new points  in  regions  of  large  flow gradients  –  a  simple 
example of this algorithm is given in Figure 5, where remapping is performed before the inner 
loop is executed. 

LSP Subclass  4:  Implicit  Multiphase  Loosely  Synchronous  Computations.   An implicit 
multiphase  computation  contains  irregular  dependencies  between  iterations.  Thus  far,  our 
discussion of irregular problems has focused on a sequence of clearly demarcated computational 
phases.  In  contrast,  a  number  of  grid-  and  mesh-based  problems  have  inter-iteration 
dependencies that might initially seem to inhibit parallelization. Such data dependency patterns 
are known only at run time, but can be fully predicted before a program enters the loop or loops 
where irregularities  occur.  Figure 6 exemplifies  the back substitution phase of sparse matrix 
factorization, which is similar to solving sparse triangular systems of linear equations arising 
from ILU preconditioning  methods  [Mav91a,b].   Another  example  of  this  class  is  the  tree 
generation  phase  of  adaptive  fast  multipole  algorithms  for  particle  dynamics simulation 
[Mir88,Das91b] .

A key problem in implementing these algorithms is detection and exploitation of opportunities 
for partial parallelization. For example, in the code shown in Figure 7, one can realize many 
different simultaneous row substitutions.  Although the sparsity structure determines which row 
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for kc = 1 to K do
{ sweep over Uc

   flag region of Uc that should be refined.
   if flagged region is not empty, then
   {  modify shape of Ur

       interpolate boundary values for Ur from Uc

       for kr = l to Kr do
       {  sweep over Uc }
    inject values of Ur into Uc  } }

Figure  5.   Adaptive  version  of  two-mesh 
algorithm, where coarse mesh Uc  covers entire 
domain,  refined  mesh  Ur covers  the  “active” 
domain partition,  and the location,  shape and 
size of the refined mesh are subject to change.
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substitutions can be performed concurrently, this information is available at runtime only. In a 
possible  future  research  effort  for  such  problems,  we  could  carry  out  a  form  of  runtime 
preprocessing  with  the  goal  of  defining  a  sequence  of  loosely  synchronous  computational 
phases. We know that this is feasible, since for bus-based shared-memory multiprocessors, we 
have  demonstrated  that  it  is  possible  to  integrate  runtime  parallelization  with  compilers 
[Baden91]. We anticipate that it would be possible to link scalable run time parallelization with 
compilers targeted at multicore GPUs (e.g., CUDA-C), and in Phase I have analyzed preliminary 
techniques.  

A more  difficult  problem is  runtime aggregation  of 
work and data. When performing computations such as 
sparse triangular  solves  or sparse direct  factorizations 
[Baden91] our  run time preprocessing techniques  can 
determine  the  number  and  content  of  concurrent 
computational phases that comprise a computation. We 
call this process runtime aggregation or runtime tiling.  
A variety of numerical algorithms can support runtime 
tiling  for  multiprocessor  and  vector  computers 
[Saad86,Salm90],  and  could  be  adapted  to  support 
runtime tiling on multicore CPUs and GPUs.

LSP Subclass  5:  Static  and  Dynamic  Structured 
Computations.   These  problems  comprise  highly 
structured computations  on collections of subdomains 
that are coupled irregularly. The computations on each 
subdomain  are  often  highly  structured,  but  the 
computational  relationship  between  subdomains  is 
known  at  run  time  only.   Further,  the  relationship 
between subdomains often changes dynamically during 
a computation. In the previous four LSP subclasses, we 
dealt  with irregularly coupled "points", whereas static 
and dynamic structured problems feature collections of 
nontrivial  structures.  Examples  of  such  problems 
include the adaptive mesh method described below and 
a  combined  fluid  dynamics  and  particle  simulation 
implemented by Edelsohn [Edels]. The key to realizing 
efficiency on these problems is  to aggressively apply 
optimizations  to  the  regular  subproblems,  which  can 
thus be implemented with reduced overhead.  Also, the 
larger  granularity  of  coupled  subproblems  can  be 
exploited  to  reduce  preprocessing  overhead  and 
memory requirements [Simon91]

An example of this subclass of LSPs is shock profiling [Simon91], where one solves a partial 
differential equation in the presence of a shock, computing the profile (detailed shape) of the 
shock. Resolution constraints imply that a highly refined grid must represent the neighborhood 
of  the  shock.  Initially,  one  computes  the  solution  on  a  coarse  mesh,  then  applies  an  error 
estimator to determine regions that will be covered by a refined mesh. An example mesh from 
this two-level refinement is shown in Figure 7, where the solution is time-dependent.  

UltraHiNet, LLC 10

Figure 7.  Mesh for calculating 
interaction of planar shock wave with 
a double wedge.

for i = l, N do
{  y(i) = rhs(i)
    for j = ija(i), ija(i+1) – 1 do
    { y(i) = y(i) - a(j) * y(col(j))  } }

Figure  6.   Implicit  multiphase 
problem:  sparse  triangular  solve  on 
the unit diagonal.
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Time-marching on the refined mesh is performed by taking many (e.g. 100) time steps on the 
refined mesh for a single  coarse-grid time step. The refined mesh is dynamic in its location, 
shape,  and size,  so  the  relationship  between  coarse  and refined  meshes  will  change  during 
simulation  execution.  As  a  result,  the  structures  of  the  computations  and  data  movement 
operations change with time, giving rise to a nonuniform communication pattern due to data 
sharing between grids. This example also generalizes to a full structured adaptive multigrid. 

Summary of Our Prior and Phase I Work in Loosely Synchronous Problems.  We have 
found  that  time-dependent  or  iterative  loosely  synchronous  computations  in  CPD and  CFD 
simulations (fixed or variable grid, fixed or variable particle population, etc.) can exhibit a wide 
range of dynamic behaviors that can be represented by the following three categories:

(A) data dependency pattern is static and does not change between iterations;

(B) data dependency pattern is modified on occasions but between changes, the dependency 
pattern remains static for many iterations;

(C) data dependency pattern changes every iteration.

Problems  in  Category  A  would  occur  either  in  the  class  of  static,  single  phase  loosely 
synchronous computations (Subclass LSP-1) or as static,  multiple phase loosely synchronous 
computations  (LSP-2).   In contrast,  problems in Categories  B and C would be classified  as 
unstructured adaptive problems (LSP-3 and LSP-4) or structured adaptive problems (LSP-5). It 
is  also useful to categorize irregular problems encountered in CPD and CFD simulation,  by 
whether  or  not  a  given  iteration  or  time  step  is  composed  of  multiple,  dissimilar  loosely 
synchronous computational phases. In such cases, one often must partition a problem to account 
for  all  of  the  computational  phases  in  an  iteration.  There  are  also  some  issues  related  to 
partitioning  and  run  time  aggregation  [Saad86,Salm90,Walk90]  that  can  influence 
implementational performance. 

For example, Dr. Ranka has previously made extensions to Fortran D, in order to facilitate 
specification of partitioning strategies and irregular meshes. In Phase I research, we determined 
that enhancements of these techniques could be used to perform the following middleware tasks 
in a more advanced prototype:
(1) indicate which loops in a program are to be considered when partitioning distributed arrays;
(2) allow users to force the selection of a particular partitioning strategy;
(3) allow users to assert that a given set of loop dependencies can or cannot change when the 

loop is iteratively invoked; and 
(4) allow users to specify granularity with which CPU and GPU parallelism is to be exploited.

In [Koel90], we proposed extensions (and developed run time support) that fulfill the first two 
of the above mentioned goals.  There is  also a need for development  of new data  structures 
targeted towards problems in which highly structured computations on a set of subdomains are 
coupled  in  an  irregular  manner.  In  particular,  we  are  interested  in  representing  structured 
adaptive problems in which subdomains are coupled by irregular tree dependency structures.

In [Agra93], portable runtime support for static single and multiphase problems, and for static 
structured  problems,  is  described  that  is  oriented  towards  distributed  memory  MIMD 
architectures.  The  runtime  support  for  static  single  and  multiphase  problems  has  also  been 
ported  to  SIMD architectures.  Our Phase I  work  has  indicated  the  utility  of  adapting  these 
proven innovations to develop appropriate runtime support for Adaptive Irregular Computations, 
Implicit  Multiphase  Loosely  Synchronous  Computations,  and  Dynamic  Structured  Problems 
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targeted  towards  multicore  GPU  architectures  and  clusters  of  nodes,  where  each  node  is 
comprised of a CPU that controls multiple GPUs.  Salient hardware technology is described as 
follows.

1.1.3.2. Multicore Graphics Processing Units. Multicore GPUs were developed to meet the 
expanding computational needs of computer graphics rendering algorithms. The broad, rapid 
growth in sophistication of graphics applications such as computer games has resulted in the 
availability of GPUs that have hundreds of processors and peak performance approximating a 
teraflop and that sell  for hundreds of dollars to a few thousand dollars.  Although GPUs are 
optimized  for  graphics  calculations,  their  low  cost  per  gigaflop  has  motivated  significant 
research  into  their  efficient  use  for  non-graphics  applications.  This  effort  promises  great 
potential  longevity,  as  the  widespread  use  of  GPUs  for  computer  gaming  ensures  a  large, 
long-lasting installed base. Additionally, unlike traditional (expensive) supercomputers having a 
very high development cost borne by a relatively small user group (e.g., national laboratories 
and defense establishments), GPUs are backed by a large, growing domestic gaming industry. 
This makes it more likely that GPU architectures will remain affordable (lower cost per unit due 
to large market), technologically viable (ever-expanding need for graphics speed and realism) 
and will continue to evolve (applications drive technology, and vice versa).

Although GPUs have low cost per peak gigaflop, obtaining near-peak performance requires 
careful programming of application codes.  In practice, GPU programming is complicated by (a) 
lack of a unifying model for parallel programming – especially for GPU architectures, which 
continue to evolve; (b) a sometimes-problematic memory hierarchy, e.g., device memory, shared 
memory,  constant  cache,  texture  cache,  and registers,  each having different  latency,  and (c) 
partitioning  of  the  available  scalar  processors  or  cores  into  groups  called  streaming 
multiprocessors (as shown in Figure 8a). 

Figure 8.  Nvidia GPU: (a) CUDA architecture, (b) Tesla C1050 GPU architecture, and (c) Tesla 
PCIex16 card (www.nvidia.com). 

In our Phase I research, we surveyed different types of GPUs.  Our requirements development 
and survey of available computing hardware led us to focus on Nvidia's Tesla series of GPUs, in 
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particular, the C1060 (a.k.a. Tesla, as shown in Figure 8b-c) and T2050 (Fermi), which conform 
to  Nvidia’s  CUDA architecture  specification.   In  the  Phase  I  effort,  our  programs  were 
developed with partial assistance of CUDA-FORTRAN, CUDA-C, and CUDA-C++ compiler 
support.  Further performance gains resulted from hand optimization of the legacy codes.

GPU Hardware.  NVIDIA's Tesla C1060 GPU, Figure 8, is an example of NVIDIA's general 
purpose parallel computing architecture CUDA (Compute Unified Driver Architecture) [Sati09]. 
Figure 8c is a simplified version of Figure 8a with N = 30 and M = 8. The C1060 comprises 30 
streaming multiprocessors (SMs) and each SM comprises 8 scalar processors (SPs), 16KB of 
on-chip  shared  memory,  and  16,384  32-bit  registers.  Each  SP  has  its  own  integer  and 
single-precision floating point units. Each SM has 1 double-precision floating-point unit and 2 
single-precision transcendental function (special function, SF) units that are shared by the 8 SPs 
in the SM. The 240 SPs of a Tesla C1060 share 4GB of on-chip memory referred to as device or 
global memory [CUDA10]. A C1060 has a peak performance of 933 GFlops of single-precision 
floating-point operations and 78 GFlops of double-precision operations. The peak of 933GFlops 
is for the case when Multiply-Add (MADD) instructions are dual-issued with special function 
(SF) instructions.  In  the  absence  of  SF instructions,  the  peak is  622GFlops (MADDs only) 
[Tesla10]. The C1060 consumes 188W of power. 

The architecture of the NVIDIA Tesla C2050 (Fermi) corresponds to Figure 8 with  N = 14 
SMs and M = 32 SPs per SM. So, a C2050 has a total of 448 SPs or cores. Although each SP of a 
C2050 has its own integer,  single- and double-precision units, the 32 SPs of an SM share 4 
single-precision transcendental function units. An SM has 64KB of on-chip memory that can be 
configured as 48KB of shared memory with 16KB of L1 cache (default setting) or as 16KB of 
shared memory with 48KB of L1 cache [CUDA10]. Additionally, there are 32K 32-bit registers 
per SM and 3GB of on-chip device/global  memory that is  shared by all  14 SMs. The peak 
performance of a C2050 is 1,288 GFlops (1.288 TFlops) of single-precision operations and 515 
GFlops  of  double-precision  operations,  which  requires  that  MADDs and SF instructions  be 
dual-issued. When there are MADDs alone,  the peak single-precision rate is 1.03GFlops. In 
Nvidia-speak, the C1060 has compute capability 1.3 while the compute capability of the C2050 
is 2.0.

As  the  C2050’s  power  consumption  is  238W,  the  ratio  of  power  consumption  to  peak 
single-precision throughput is 0.2W/GFlop for the C1060 and 0.18W/GFlop for the C2050. For 
double-precision  operations  we have  2.4W/GFlops for  the  C1060 and 0.46W/GFlop for  the 
C2050.  A Tesla GPU is packaged as a double-wide PCIe card (Figure 8c); with an appropriately  
large motherboard and power supply, up to 4 GPU cards can be installed on one motherboard. 

In  Phase  I,  we  focused  on  optimizing  selected  kernels  of  the  CONSIF  (COmputational 
Navier-Stokes equation Solver with Immersed boundary technique – Florida) CPD application 
provided by our consultant Dr. S. Balachandar for a single Nvidia Fermi GPU.  We next describe 
the supporting CUDA programming model.

GPU Programming  Model.   At a  high  level  of  abstraction,  a  GPU uses  the  master-slave 
programming model  [Won89]  in  which the GPU operates  as a  slave under the control  of  a 
master or host processor. In our Phase I experimental set up, the master or host is a 3.33 GHz 
six-core Intel Core i7-980X Extreme Processor,  and the GPU is an 1.15 GHz, 448-core Nvidia 
Fermi C2050. Programming in the master-slave model requires a master program to be written 
that runs on the master processor (Xeon). The master (1) sends data to the slave(s) (in Phase I, a 
single C2050 GPU), (2) invokes a kernel or function that runs on the slave(s) which processes 
the returned data, and (3) receives results from the slave (GPU). This process of sending data to 
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the slave, executing a slave kernel, and receiving the computed results may be repeated several 
times by the master program. In CUDA, the host/master and GPU/slave codes may be written in 
C. CUDA provides extensions to C to allow for data transfer to/from device memory and for 
kernel/slave code to access registers, shared memory, and device memory. 

At another level, GPUs use the single instruction multiple thread (SIMT) programming model 
whereby a GPU accomplishes a computational task using thousands of lightweight threads. The 
threads are grouped into blocks, which are organized as a grid. While a block of threads may be 
1-, 2-, or 3-dimensional, the grid of blocks may only be 1- or 2-dimensional. Kernel invocation 
requires specification of the block and grid dimensions with any kernel parameters, as illustrated 
below for a matrix multiply kernel MatrixMultiply with parameters a, b, and c that point to the 
start of the row-major representation of n x n matrices and the
kernel computes c = a  b :

MatrixMultiply <<< GridDimensions, BlockDimensions >>> (a,b,c,n)

A GPU has a block scheduler that dynamically assigns thread blocks to SMs. Since all threads 
of a thread block are assigned to one SM, these threads may communicate with one another via 
the shared memory of an SM. Further, the resources needed by a block of threads (e.g., registers 
and shared memory) should be sufficiently small that a block can be run on an SM. The block 
scheduler assigns more than 1 block to run concurrently on an SM when the combined resources 
needed by the assigned blocks does not exceed the resources available to an SM. However, since 
CUDA provides no mechanism to specify a subset of blocks that are to be co-scheduled on an 
SM,  threads  of  different  blocks  can  communicate  only  via  the  device  memory.   Thus,  the 
optimization of inter-block communication should be a key objective in a follow-on effort.

Returning to our GPU programming and execution model, once a block is assigned to an SM, 
its threads are scheduled to execute on the SM's SPs by the SM's warp scheduler. The warp 
scheduler divides the threads of the blocks assigned to an SM into warps of 32 consecutively 
indexed  threads  from  the  same  block.  Multidimensional  thread  indexes  are  serialized  in 
row-major order for partitioning into warps. Thus, a block of 128 threads is partitioned into 4 
warps. Every thread assigned to an SM has its own instruction counter and set of registers. The 
warp scheduler selects a warp of ready threads for execution. If the instruction counters for all 
threads in the selected warp are identical,  all  32 threads execute in 1 step.  On a GPU with 
compute capability 2.0, each SM has 32 cores and so all 32 threads can perform their common 
instruction in parallel  – provided that this common instruction is an integer or floating point 
operation. (Unfortunately, this does not work with I/O instructions.)  In contrast, on a GPU with 
compute capability 1.3, each SM has 8 SPs and so a warp can execute the common instruction 
for only 8 threads in parallel. Hence, when the compute capability is 1.3, the GPU requires 4 
rounds of parallel  execution to execute the common instruction for all 32 threads of a warp. 
When the instruction counters of the threads of a warp are not the same, the GPU executes the  
different instructions serially. Note that instruction counters may become different as the result 
of data dependent conditional branches in a kernel [CUDA10].

Given the GPU’s complex memory hierarchy and small local memories, the hiding of memory 
latency is key to obtaining good performance.  At best, an SM's warp scheduler can hide much 
of the 400 to 600 cycle latency of device-memory access by executing warps that are ready to do 
arithmetic operations while other warps wait for device-memory accesses to complete. Thus, in 
many cases, the performance of code that makes many accesses to device memory can often be 
improved  by  optimizing  it  to  increase  the  number  of  warps  scheduled  on  an  SM.  This 
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optimization  could  involve  increasing  the  number  of  threads  per  block  and/or  reducing  the 
shared memory and register utilization of a block, to enable the scheduling of a larger number of 
blocks on an SM.  
Summary of Our Prior and Phase I Work in Parallel GPU Implementation.  For more than 
three decades, our research team has developed and published algorithm-to-architecture mapping 
techniques for parallel and real-time computation of image and signal processing algorithms, 
including  fluid  dynamics,  mechanical  engineering  simulation,  military  applications  such  as 
automated target recognition (ATR), medical applications such as tomography, multi-look image 
reconstruction  for  persistent  surveillance,  computer  vision,  and many other  applications.  We 
have  mapped  such  algorithms  to  a  wide  variety  of  parallel  processors,  including  massively 
parallel meshes, MIMD arrays, SPMD networks of workstations, high-performance embedded 
processors,  FPGAs,  cellular  automata,  multicore  GPUs  and  CPUs.   We  thus  have  the 
technological expertise to address the proposed effort of mapping CPD algorithms to parallel 
multicore GPU processors or clusters of GPUs.

In Phase I, we developed techniques for mapping key computational kernels of the CONSIF 
CPD application to a single Nvidia Fermi GPU.  This has allowed us to investigate the data 
movement,  computation,  and  communication  modes  of  the  Fermi  and  its  CUDA support 
software, in the context of a realistic CPD application.  The CPD application and its kernels can 
be run in fixed- or variable-grid, fixed- or variable-population modes, with different levels of 
computational precision.  As discussed in detail in Section 1.2, we have achieved speedups in the 
range  of  15X  to  25X  for  realistically-parameterized  kernels,  without  loss  of  computational 
accuracy with respect to the reference (single-core CPU) implementation.  
In summary, we achieved objectives of CPD/CFD application analysis, implementation, test, and 
verification  by  first  decomposing  each application  in  its  entirety  to  portray  operations,  data 
structures,  and  data  flows.   The  analysis  of  cost  for  each  application  and  its  constituent 
computational kernels driven by the target algorithm’s computational requirements determines 
the  computational  work  and  time  complexity.   Similarly,  an  algorithm’s  data  structure 
organization and data flows, analyzed with respect to a target architecture’s memory map and bus 
structure, determine the memory transformations that are required to optimize I/O cost and avoid 
I/O bottlenecks.  Because the gap between processor performance and bus throughput continues 
to grow as register cycle rate outstrips channel bandwidth, we have found in Phase I that I/O cost 
primarily impacts performance in array-based applications such as CPD computations.  

1.2.  Benefits of UHN’s Phase I Research

There  is  a  rapidly  growing  need  for  a  broad  range  of  scientific  and 
engineering  application  software  that  can  be  utilized  on  terascale  and 
petascale  computer  systems.  Although  few  commercial  vendors  are 
addressing  this  need,  UltraHiNet  LLC  (UHN)  has  developed  advanced 
technology for porting applications to a wide variety of High Performance 
Computing (HPC) platforms, including graphics processing units (GPUs) and 
clusters of nodes comprised of a CPU hosting multiple GPUs.  Our approaches 
involve  complexity  and  scaling  analyses,  algorithm  redesign,  software 
re-architecting, software porting, and software testing, in order to fine-tune 
and  optimize  the  use  of  applications  on  these  massively  parallel 
supercomputing systems.  

Of  particular  interest  to  this  proposal  are  algorithms  that  represent 
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CPD/CFD simulation applications of interest to DOE. For example, grid based 
simulations of applications that are key to energy production and control, 
such as  computational  particle  dynamics  in  power  generation  and  rocket 
combustion. If grid-based algorithms could be readily and automatically ported to a wide  
range  of  current  and  foreseeable  computing  platforms,  then  the  pace  of  technology  
advancement could be increased, and considerable public expense could be alleviated.

Multicore GPUs in modern computers and gaming consoles can currently achieve terascale 
throughput,  and  can  be  clustered  in  massively  parallel  supercomputers  with  thousands  of 
energy-efficient  GPUs.  Our research aims to minimize the size of the required GPU cluster 
through  the  development  of  highly  efficient  mapping  technology  (CPDMu)  that  will 
automatically produce accurate, highly efficient architecture-tailrored GPU implementations of 
applications such as the CPD kernels.  Because our methodology is mathematically sound, it  
can be adapted to yield more general algorithm-to-architecture mappings for a wider class of  
DOE grid-  and  mesh-based simulation  applications.   Anticipated  benefits  will  include  the 
following:

1.2.1.  Parallel  Implementation  of  Legacy  Simulation  Codes.   Computational  particle 
dynamics  and  computational  fluid  dynamics  simulations  are  frequently  represented  as  large 
assemblies of legacy code.  For example, DOE applications (e.g., weapons design, simulation, 
and analysis; nuclear fusion power generation research and development), NASA applications 
(e.g.,  rocket  fuel  burning (solid  or  liquid);  sub-sonic to  hypersonic aerodynamics  simulation 
supporting advanced aircraft/spacecraft design), domestic applications such as law enforcement 
(crowd behavior modeling) or environmental hazard dispersion – each of these applications areas 
is represented by extensive legacy codes developed for implementation on CPUs.  
In  practice, the  parallelization  and  optimization  of  these  legacy  simulation  codes  for  GPU 
clusters  would significantly  increase the accessibility  of these simulations  to  researchers  and 
engineers.  In practice, we foresee that this increased accessibility would be due to (a) shorter 
runtimes  resulting  from  implementation  on  fast,  commercially-available  parallel  processors, 
which could lead to faster design iterations; (b) wider availability of commercialized CPD/CFD 
simulations  on  parallel  architecture  such  as  GPUs;  and  (c)  a  longer  useful  life  for  each 
simulation,  given  more  effective  updating/porting  of  simulation  codes  to  emerging  or  novel 
parallel architectures. 
1.2.2. Ready Optimization of Parallel  Implementations.  The current practice of manually 
implementing  and  manually  optimizing  legacy  simulation  codes  for  each  parallel  target 
architecture is potentially very expensive (consumptive of public resources such as time, human 
effort,  and money) and fraught with potential  pitfalls  such as unforeseen obsolescence.   For 
instance,  if  a  legacy  code  is  hand-implemented  and  manually-optimized  for  a  parallel 
architecture (A1), then the architecture is replaced several years later by a different, more efficient 
architecture (A2), the manual implementation and optimization effort expended for  A1 must be 
repeated for  A2.  Given the speed at which computer technology development progresses, it is 
unsurprising that manual implementation and optimization are wasteful processes.
Our Phase I results  have made it  possible to develop and enhance middleware and software 
prototypes that instantiate techniques for mapping CFD/CPD algorithms to parallel architectures 
such as GPUs and clusters of multiple nodes, where each node has a CPU that controls one or 
more  GPUs.   In  future,  these  results  are  expected  to  support  further  development, 
implementation,  and  commercialization  of  semi-automatic  algorithm-to-architecture  mapping 
techniques  and  software  that  would  significantly  reduce  the  cost  and  effort  associated  with 
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manual implementation and optimization of such mappings.  
1.2.3.  Explore  Techniques  of  Legacy  Code  Parallelization  for  New  Architectures. As 
mentioned  previously,  there is  currently  no unifying model  for  parallel  programming.   As a 
result, when a new parallel architecture is introduced that is different from previous architectures, 
efforts  to parallelize codes for the new architecture usually begin afresh, with little re-use of 
previous techniques.  This leads to significant amounts of re-work that are somewhat repetitive 
from one architecture to another, and incurs problems cited in Section 1.2.1 and 1.2.2.  
Our Phase I results have allowed us to investigate means for parallelizing on GPU clusters the 
basic  types  of  operations  typically  found  in  CPD/CFD simulation  codes,  such as  pointwise 
operations  between  arrays,  vector-matrix  and  matrix-matrix  multiplication,  inner  products, 
matrix row/column operations, etc. This could support further development of a more general 
system for parallelizing a wide variety of legacy codes on GPUs and GPU clusters.  Additionally, 
this  aspect  would  help  pioneer  new  areas  of  theoretical  and  applied  research  in 
algorithm-to-architecture  parallel  mapping,  and is  designed to  make HPC versions of  legacy 
CPD/CFD simulations available for a wide variety of DOE, DOD, and domestic applications, as 
noted in Section 1.2.1.
1.3. Degree to Which Phase I Has Demonstrated Technical Feasibility
1.3.1.  Conformance to  Proposed  Phase  I  Technical  Objectives.   In  order  to  validate  and 
demonstrate the feasibility of the CPDMu prototype, we proposed and achieved the following 
technical objectives in our Phase I research and development effort:

1. Design efficient parallel implementations for CPD based combustion simulation algorithms, 
based on paradigms discussed in Section 1.

Result:  In Phase I, we designed parallel implementations of key computational kernels of 
the CPD simulation legacy code (Fortran), for one multicore Nvidia Fermi GPU processor, 
using  the  CUDA-C  language.   These  implementations  were  performance-tested,  with 
example test results given in Section 1.3.2. 

2. Analyze error of each system module, to determine effect on the computational accuracy of 
CPD simulation.  

Result:  Output error of the parallel CPD kernel implementations as well as the single-core 
CPU implementation was measured and no significant differences were detected between 
the CPU and GPU implementations.

3. Analyze computational cost associated with CPD implementation strategies, and effect of 
different  data  structure  size  and  processor  or  I/O bus  parameters  on  computational  and 
accuracy performance metrics. 

Result:  Prior to producing the parallelized CPD kernels, the CPD computational kernels 
were analyzed to determine computational and data movement cost.  The measured effect 
(Section  1.3.2)  of  data  structure  size  variations  and particle  population  variations  was 
correctly predicted by our analysis theory.

4. Survey  GPU  software  and  hardware  in  support  of  algorithm-to-architecture  mapping  
analysis and prototype implementation in Phase I. 

Result:  We surveyed the available GPU hardware and support software and determined 
that the Nvidia Fermi GPU had the most effective storage, computational throughput, and 
communication, as well as excellent potential for upward growth and compatibility.  Thus, 
we found the Fermi to be the platform of choice for our Phase I demonstrations and tests,  
as well as possible follow-on efforts in software development and implementation.
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5. Develop  a  proof-of-principle  implementation  of  a  simplified  but  representative  CPD  
algorithm on a multicore  GPU processor that  our  analysis  (Objectives  3 and 4,  above) 
indicates is the best-performance platform.

Result:  Per  Item 1),  above,  we implemented  key computational  kernels  from the CPD 
simulation on the Nvidia Fermi GPU, with performance results given in Section 1.3.2.

6. Design  and analyze  indicated  Phase  II  enhancements  to  a  production  CPD simulation  
system,  with detailed performance analysis and prototyping of hardware implementation. 
This will include estimation of cluster size required for fast parallel CPD based combustion 
simulations under various assumptions about simulated physical parameters. 

Result:  We have designed Phase II enhancements that we proposed to DOE, including 
middleware  configuration,  graphical  user  interface(s),  mapping  of  the  entire  CPD 
simulation application,  and a CFD simulation application (e.g.,  XGC-1 plasma burning 
simulation).  These applications will be implemented on one or more GPU clusters, where 
each cluster node is comprised of a multicore CPU that controls multiple Nvidia Fermi 
GPUs.

1.3.2. Phase I Test Results.  As proof-of-principle for Phase I, we firstly developed and analyzed 
a C version of the Fortran 90 legacy  CONSIF  CPD simulation application obtained from our 
consultant  Dr.  S.  Balachandar.  Secondly,  by  applying  our  algorithm-to-architecture  mapping 
transformations  to  the  legacy  code,  we  produced  a  GPU  implementation  of  the  parallel 
computational  kernels  (most  of  the  CONSIF code  is  sequential).   Thirdly,  we measured  the 
kernels’ performance on the target  GPU.  In this section,  we present our Phase I test  results 
specific to two such kernels, which are representative of our Phase I work.  
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Figure 9.  Flowchart of the CONSIF CPD application, partitioned into computational kernels and 
sub-processes including key decision points.  Here, PL and Pt respectively denote percentage of 
total lines of code occupied by a kernel process, and percentage of total compute time on the 
CPU.  For example, the kernel  velocity adjustment has PL = 2.0% (occupies 2 percent of total 
lines  of  code)  and  Pt =  4.9% (compute  time  is  4.9  percent  of  total  compute  time).   These 
preliminary figures are not precise for all test cases, but were used as a baseline to determine 
which kernels to optimize first. 

The Nvidia Fermi GPU described in Section 1 was controlled by an Intel six-core CPU clocked 
at  3.33 GHz, and running the Linux Ubuntu Version 10.04 operating system.  To obtain our 
reference data, we translated the legacy Fortran 90 code into C, which was compiled on a GNU 
C Compiler Version 4.4.3, then ran the C code on the aforementioned CPU in single-core mode. 
A flowchart of the legacy code is given in Figure 9, where PL denotes percentage of lines of 
source  code,  and Pt denotes  percentage  of  total  execution  time,  occupied  by a  given kernel 
process  (large  boxes).  Given  this  approximate  runtime  profiling  information,  we  gathered 
additional  analytical  results  using  sophisticated  profiling  procedures  described  in  Section  2 
(Work Plan), which could be implemented in a possible follow-on effort.  We exploited these 
measurements and analytical results to transform key computational kernels of the application 
using  our  algorithm-to-architecture  mapping  and  parallelization  techniques.  The  resulting 
CUDA-C implementation was implemented on the GPU with the Nvidia CUDA Toolkit Version 
3.2.  
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Examples  of  transformed  CUDA-C code  (for  the  GPU)  are  given  in  Figure  10  (for  kernel 
ddd_delta) and Figure 11 (kernel coeff_common). Table 1 lists the performance data as a function 
of program parameters that are independent variables in the simulation.  Observe that speedups 
relative to the single-core CPU range up to 29.5:1 for the  ddd_delta kernel – this is the naïve 
case, with very little hand optimization. 

FORTRAN version of ddd_delta CUDA-C version of ddd_delta 
DO N=1,NUM_P
DO L=1,N_L
  I1 = P_IW(L,N)
  I2 = P_IE(L,N)
  J1 = P_JS(L,N)
  J2 = P_JN(L,N)
  K1 = P_KB(L,N)
  K2 = P_KT(L,N)
U_TILDE(I1:I2,J1:J2,K1:K2) = 
U_N(I1:I2,J1:J2,K1:K2) + DTIME*(- 
DPX(I1:I2,J1:J2,K1:K2) + 
DIFX(I1:I2,J1:J2,K1:K2) - 
1.5D0*NLX_N(I1:I2,J1:J2,K1:K2) + 
0.5D0*NLX_N1(I1:I2,J1:J2,K1:K2)) * 
VOL_DV_T(I1:I2,J1:J2,K1:K2)
V_TILDE(I1:I2,J1:J2,K1:K2) = 
V_N(I1:I2,J1:J2,K1:K2) + 
DTIME*(-DPY(I1:I2,J1:J2,K1:K2) + 
DIFY(I1:I2,J1:J2,K1:K2) - 
1.5D0*NLY_N(I1:I2,J1:J2,K1:K2) + 
0.5D0*NLY_N1(I1:I2,J1:J2,K1:K2)) * 
VOL_DV_T(I1:I2,J1:J2,K1:K2)
W_TILDE(I1:I2,J1:J2,K1:K2) = 
W_N(I1:I2,J1:J2,K1:K2) + 
DTIME*(-DPZ(I1:I2,J1:J2,K1:K2) + 
DIFZ(I1:I2,J1:J2,K1:K2) - 
1.5D0*NLZ_N(I1:I2,J1:J2,K1:K2) + 
0.5D0*NLZ_N1(I1:I2,J1:J2,K1:K2)) * 
VOL_DV_T(I1:I2,J1:J2,K1:K2)
UP_TILDE(L) = 
SUM( U_TILDE(I1:I2,J1:J2,K1:K2) * 
DDF(I1:I2,J1:J2,K1:K2) *H**3 ) 
VP_TILDE(L) = 
SUM(V_TILDE(I1:I2,J1:J2,K1:K2)*DDF(I1:I2, 
J1:J2,K1:K2) *H**3 ) 
WP_TILDE(L) = 
SUM(W_TILDE(I1:I2,J1:J2,K1:K2)*DDF(I1:I2,
J1:J2,K1:K2) *H**3 )
ENDDO
ENDDO

L = threadIdx.x + 
blockIdx.x*blockDim.x; 
N = threadIdx.y + 
blockIdx.y*blockDim.y; // particle index
b = L + N * N_L;

I1 = p->P_IW[b];
I2 = p->P_IE[b];
J1 = p->P_JS[b];
J2 = p->P_JN[b];
K1 = p->P_KB[b];
K2 = p->P_KT[b];
nx = NI+1;
nxny = nx*(NJ+1);
UP_TILDE = 0;
VP_TILDE = 0;
WP_TILDE = 0;
for(int k = K1; k <= K2;k++) 
  for(int j = J1; j <= J2;j++) {
    for(int i = I1; i <= I2;i++){
       a = i+ j*nx + k*nxny ;
       a1 = i-I1+(j-J1)*4+ (k-K1)*16;
       U_TILDE = p->U_N[a] + 
p->ddlt_NS_X[a];
       V_TILDE = p->V_N[a] + 
p->ddlt_NS_Y[a];
       W_TILDE = p->W_N[a] + 
p->ddlt_NS_Z[a];
       UP_TILDE+=U_TILDE*DDF[a1]*H_3;
       VP_TILDE+=V_TILDE*DDF[a1]*H_3;
       WP_TILDE+=W_TILDE*DDF[a1]*H_
        }
    }
}

Figure 10.  Legacy and CUDA-C versions of CPD simulation kernel ddd_delta, which computes 
the corresponding required intermediate velocity at the Lagrangian grid point, by summing the 
intermediate  velocities of the surrounding cells,  then multiplying by the Dirac delta function 
computed earlier, times the mesh resolution cubed.
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Observe how the application transformation process works in Figure 10.  Firstly, the particle and 
index loops are converted to thread definitions.  Thus, we have the Fortran loops

DO N=1,NUM_P
DO L=1,N_L

being converted to the following CUDA thread definition statements:

L = threadIdx.x + blockIdx.x*blockDim.x; 
N = threadIdx.y + blockIdx.y*blockDim.y; // particle index
b = L + N * N_L;

where the latter statement defines the range of particle index. Subsequently, the range limits I1, 
I2,  J1,  J2,  K1,  and  K2 are defined in Fortran in terms of arrays and, in CUDA, in terms of 
pointers to arrays.  The variables U_TILDE,  V_TILDE, and W_TILDE are computed in Fortran 
using inherently parallel notation (e.g., U_TILDE(I1:I2,J1:J2,K1:K2) with ranges), while CUDA 
utilizes loops that cycle over each dimension of the array (e.g., via indices k, j, and i) per thread, 
resulting in cleaner, more compact code.
In  contrast  to  the  code  example  given  in  Figure  10,  the  application  transformation  process 
proceeds somewhat differently for the kernel coeff_common. As can be seen from the left-hand 
side of Figure 11, the legacy Fortran code is not well organized, consisting of a long, run-on 
expression.  In contrast, the transformed legacy code, expressed in CUDA-C, is on the right-hand 
side of Figure 11, and is more clearly structured.  Firstly, the limit parameters  nx  and  ny are 
defined, then the base thread ID is specified as 

id  =  (threadIdx.x+1)  +  nx*(   blockIdx.x+1  + 
ny*(blockIdx.y+1) )

FORTRAN version of coeff_common CUDA-C version of coeff_common 
NLX_N(sx1:ex1,sy1:ey1,sz1:ez1)=
DTIME*(DY(sx1:ex1,sy1:ey1,sz1:ez1)*DZ(

sx1:ex1,sy1:ey1,sz1:ez1)*(UE(sx1:ex1,sy1:ey
1,sz1:ez1)*0.5D0*(U_N(sx1:ex1,sy1:ey1,sz1:e
z1)+U_N(sx1+1:ex1+1,sy1:ey1,sz1:ez1)) -

UW(sx1:ex1,sy1:ey1,sz1:ez1)*0.5D0*(U_
N(sx1:ex1,sy1:ey1,sz1:ez1)+U_N(sx1-1:ex1-1,
sy1:ey1,sz1:ez1))) + 

DX(sx1:ex1,sy1:ey1,sz1:ez1)*DZ(sx1:ex1,
sy1:ey1,sz1:ez1)   * 
(  VN(sx1:ex1,sy1:ey1,sz1:ez1)  *  0.5D0  * 
(U_N(sx1:ex1,sy1:ey1,sz1:ez1)+U_N(sx1:ex1,
sy1+1:ey1+1,sz1:ez1))-VS(sx1:ex1,sy1:ey1,sz
1:ez1) *0.5D0* 

(U_N(sx1:ex1,sy1:ey1,sz1:ez1)+U_N(sx1:
ex1,sy1-1:ey1-1,sz1:ez1))  )  + 
DX(sx1:ex1,sy1:ey1,sz1:ez1)* 
DY(sx1:ex1,sy1:ey1,sz1:ez1) 
*( WT(sx1:ex1,sy1:ey1,sz1:ez1)*

0.5D0*(U_N(sx1:ex1,sy1:ey1,sz1:ez1)+U_

int nx = blockDim.x+2;
int ny = gridDim.x+2;
int id = (threadIdx.x+1) 
                + nx*(   blockIdx.x+1 + 
ny*(blockIdx.y+1)  );
int id_px = id + 1; int id_mx = id - 1; int 
id_py = id + nx; 
int id_my = id - nx; int id_pz = id + nx*ny; 
int id_mz = id - nx*ny; 

double  nlx = 
dtime*(  dev->DY[id]*dev->DZ[id] * 
     (dev->UE[id]*0.5*(dev->U_N[id]
+dev->U_N[id_px])    
            - dev->UW[id]*0.5*(dev->U_N[id] 
            + dev->U_N[id_mx]))
            + dev->DX[id]*dev->DZ[id] 
        *  (dev->VN[id]*0.5*(dev->U_N[id]
+dev->U_N[id_py])                     
            -dev->VS[id]*0.5*(dev->U_N[id]
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N(sx1:ex1,sy1:ey1,sz1+1:ez1+1))-WB(sx1:ex
1,sy1:ey1,sz1:ez1)*0.5D0* 
(U_N(sx1:ex1,sy1:ey1,sz1:ez1)+U_N(sx1:ex1,
sy1:ey1,sz1-1:ez1-1)) ) )

+dev-U_N[id_my]))
            + dev->DX[id]*dev->DY[id] 
        *  (dev->WT[id]*0.5*(dev->U_N[id]
+dev->U_N[id_pz]) 
            -dev->WB[id]*0.5*(dev->U_N[id]
+dev->U_N[id_mz])   )  );

Figure 11.  Legacy and CUDA-C versions of CPD simulation kernel coeff_common, which takes 
the results of the last fluid dynamics computation, and computes NLX_N (a convective term from 
Navier-Stokes, expressed as uu  ) which is used in the immersed boundary method.

From the variable id, the offsets for indirect indexing denoted by id_px,  id_py,  id_pz, id_mx, 
id_my, and id_mz are defined.  These offsets are then applied to device memory, e.g., 

dev->U_N[id_py]

to reference intermediate values in the computation.  The result of summing the intermediate 
parts is multiplied by the time increment dtime and is stored in the double-precision variable dlx.

From inspection  of  the  right-hand  side  of  Table  1,  we  see  that  the  simple  translation  of 
coeff_common shown in Figure 11 can be speeded up on the Fermi processor by a factor of over 
31.5:1 for values ex1 = 100, ex2 = 50, and ex3 = 50.  In practice, as the problem becomes larger, 
prior to overrunning device memory, the speedup increases significantly.

In order to successfully address device memory overrun, one can distribute the parallelization 
problem over  multiple  GPUs in  a  cluster.   However,  this  would  require  more  sophisticated 
optimization of the data movement between levels of the memory hierarchy (i.e., host > device > 
shared  memory >  local  memory).   We  have  developed  transformations  that  support 
algorithm-to-architecture  mapping  and  optimization  for  this  purpose  [Band10],  which  could 
eventually support mapping CPD/CFD simulations to GPUs and clusters of CPU-GPU nodes.

Table 1.  Measured performance for (left-hand table) simulation kernel  ddd_delta (see code in 
Figure 10) and (right-hand table) simulation kernel coeff_common (see code in Figure 11), where 
NUM_P (number  of  particles)  and  N_L (number  of  loops)  are  as  in  the  Fortran  code,  and 
measured  times  (Fortran  legacy  code  and  CUDA-C code)  are  in  milliseconds.   Speedup = 
Fortran_time / CUDA_time.
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The following equipment was employed in Phase I.

2. Facilities and Equipment

UltraHiNet LLC’s computational facilities include a computer with a 12 MB Intel Smart Cache 
and a six-core Intel Core i7-980X Extreme Processor clocked at 3.33 GHz.  This computer hosts 
an Nvidia C2050 Fermi GPU that has 448 cores and is clocked at 1.15 GHz.  The Fermi GPU 
has 3 GB of memory, with a 64 KB cache, configurable as 48/16 or 16/48 L1 cache.  The GPU’s 
shared memory bus has throughput of 144 GB/sec.  The external bus is a PCI Express bus with 
throughput measured at 4,280.6 MB/sec.  

Supporting software for  Phase I  included  Ubuntu 10.04 LTS ("Lucid  Lynx",  by Canonical 
LTD), Nvidia CUDA Toolkit Version 3.2, and GNU C Compiler Version 4.4.3. 

3. Consultants 

Dr. Sivaramakrishnan Balachandar, funded by DTRA to develop CPD based simulations of air 
blast  phenomena,  and previously  funded for  development  of  combustion  simulations,  was a 
consultant  on  the  Phase  I  project.   He  supplied  CONSIF code  and  expertise  in  CPD-based 
combustion simulation.
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