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Abstracs

Various excitations in the quantum Hall liquid at different Landau level
filling factors are studied using a variational quantum Monte Carlo approach.
Quantities calculated include spin-flip energies and dispersion relations for the
collective modes (the magnetorotons and magnetopiasmons). The present ap-
proach goes beyond the lowest-Landau-level and single-mode approximations
commonly used in previous studies. The inclusion of Landau-level mixing along
with finite-thickness and donor effects satisfactorily explains values forther = 1
spin-flip energy that are found in recent photoluminescence experiments on é-
doped samples. In the case of the magnetorotons at v = 1/3, we show that
multiple-mode effects can change the excitation energies significantly, especially
for high r, samples (by nearly 50% at r; = 20).

1. Introduction

Study of quantum Hall liquids provides important insight into the cooperative behav-
ior of electrons. because the ground and excited state properties of these systems are
strongly influenced by electron correlations!. Previous theoretical investiganions2' 3.4
of excitations in quantum Hall states at filling factor v = nhc/eB = 1/m, with
m=1.3..... have been primarily confined to lowest Landau level analvses. How-
ever. in general. the ratio of the Coulomb energy scale to the kinetic energy scale is
(€° ‘ed)/hw. = vry/2. which is of order 1 in expertmental examples of GaAs quantum
weils. Here =d? = 1/n = 2=} /v, and r, is the electron gas parameter, i.e. d in effec-
tive atomic units. Hence we expect electrons to pay a kinetic energy cost by mixing
in higher kinetic energy orbitals in order to gain correlation energy. This Landau
level (LL) mixing is naturally implemented in a variational calculation by using a
correlating Jastrow factor T,;56

2. Spin-flip energy at v =1

The spin-flip energy (Asg) is defined as the discontinuity in the chemical potential
(V) at v = 1. This corresponds to the £ — oo asymptote of the spin waves discussed
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by Kallin and Halperin?. Physically, Agg can be decomposed as
Asc = Ez + [Zy| — |51] + bre (1)

where the I,, are the exchange-correlation self-energies, Ez is the Zeeman energy,
and 6k g is the discontinuity § (3Ey,/ON) in the first derivative of the kinetic energy.
The terms ;) and dxg would be 0 in a lowest LL (Hartree-Fock) approximation.
Comparison with experiment,’ as in Figure 2, shows the failure of lowest LL theory:
EZ & ACIP‘ & AHF|

To obta.m Asa , we construct and optimize variational ground states for v = 1,
v =1~ ¢ (“hole state”), v = 1 + ¢ (“quasielectron state”) and take Agg = E(N +
1)+ E(N — 1) — 2E(N), where N electrons would fill the lowest Landau level. The
wavefunctions are of the form

U=0,r... 1'1\7).7:';(:‘."1T .. ZNT)Fl(zll .. 'ZNI) , (2)

which, apart from the Jastrow factor, are La.ughlm s ground, quasielectron and quasi-
hole states in periodic boundary conditions.® 9 Figure 1 shows that the effect of LL
mixing (i.e. the Jastrow factor) is dramatic, especially in high r; samples.
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Figure 1. Spin gap in units of the Coulomb Figure 2. Various corrections to the spin gap:
energy scale. The dashed line is from Ref. 2 finite thickness (FTC), kinetic energy (KEC),

and finite donor distance (FDC) (see text).

A realistic comparison to photoluminescence results’ requires corrections to the
above results. First, the 2D electron liquid has a nonzero thickness, which we have
included via a modified Coulomb interaction.!? This is the finite thickness correction
(FTC). Second, the final electron state at the impurity is not infinitely removed from
the interface. Hence the “finite distance correction” (FDC). Third, although the first
moment of the luminescence line is related to the total energy of the initial state,
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Figure 3. Magnetoplasmon dispersion. The Figure 4. Magnetoroton dispersion.

lines are a guide to the eye.

as described by Apalkov and Rashball, their treatment must be modified by an
additional term due to the kinetic energy of the electrons!? if there is Landau level
mixing. Hence the “kinetic energy correction” (KEC).

Figure 2 shows the various corrections to the spin-flip energy of a 2D system that
are appropriate to interpret Kukushkin and co-workers’ experiment.” We took the
layer thickness to be 1004, and the impurity distance to be 400Afrom the interface,

both reasonable values. With these parameters, the experimental photoluminescence
spectra are well reproduced.

3. Collective Charge Density Excitations

Qur treat nent of collective charge density excitations, magnetoplasmons and mag-
netorotons, follows the work of Girvin, MacDonald, Platzman, and Oji* 13 which is
based on Feynman’s theory'? of excitations in superfluid He*: the state®; = p¥,
generated by the density operator from the ground state is taken to be an excited
state with wavevector & . Girvin and co-workers decomposed13' 4 the density operator
into a sum of operators projected into Landau levels:

o =33 In)ulnlG™ (k) Bi(k) , 3)

i n'n

and then used the (0,0) term to generate magnetorotons and the (0,1) term to generate
magnetoplasmons. Since these operators generate excited states that do not contain
LL mixing, we use an alternative decomposition15 in terms of operators

Oma(k) = 3 75(k) (a})" a (4)

that preserve LL mixing. Here 7;(k) is the magnetic translation operator acting on
the j—th particle.



Within the single-mode approximation, the excited states are taken as

PIMA = O ()
QISW%A = 010‘1’0 (6)

The preservation of LL mixing in these excited states is significant (Figures 3,4). For
example, at ¥ = 1/3 and r, = 20, the magnetoroton energy is reduced by ~ 10%,
and the magnetoplasmon dispersion is also significantly affected. In addition, when

the magnetoroton and -plasmon energies are close, there is considerable interaction
between the modes, and the new modes can be writen as:

Omp = ONR + @A (7)
Opp = POSMA + OSMA (8)

As seen on Figure 4, mode mixing has a large effect on the lowest excitation energy
(~ 50% in the roton minimum at » = 1/3 and r, = 20).
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