

i i

':,.-_::_,(_] :i /) _,_ _. Proceedings of IFIP WC 10.3

" ' (__._ ,,_,,A)'_-_-._]:_/Te_" [Working Conference on
" Decentralized Systems

. Dec. 11-13, 1989

Lyon, France

PERFORMANCE OF ASYNCHRONOUS ALGORITHMS IN

MULTI-LEVEL DATA-DRIVEN SYSTEMS *

Jean-Luc Gaudiot and Chih-Ming Lin

Department of Electrical Engineering- Systems

University of Southern California

Los Angeles, California

ABSTRACT: Asynchronous algorithms are efficient methods in solving sci-

entific and engineering problems. Much research has been devoted to the

study of asynchronous algorithms in different areas. This paper will show

asynchronous algorithms applied to logic circuit simulation, communication

networks, partial differential equations (PDE) and artificial neural networks,

I and as well as implementations of these asynchronous algorithms on a special

class of multiprocessor systems, namely Multi-level Tagged-token Data-flow

(MTD) architectures.

1 Introduction

The data-flow principles of execution [1] offer the programmability needed to syn-

chronize at runtime the many parallel processes simultaneously active in a large scale

multiprocessor. Instead of relying on the conventional central program counter, the

availability of data renders an instruction executable. However, in spite of the sim-

plicity of these principles, much overhead may be introduced in order to respect the

functionality of execution. A Multi-level Tagged-token Data-flow (MTD) architecture

has been proposed [9] in order to reduce the execution time by exploiting the available

parallelism while keeping communication overhead at a minimum.

The asynchronous behavior of data in a chaotic algorithm is very complex. Gener-

ally, in the asynchronous approach, communications between processes are achieved by

reading the dynamically updated variables, while each process continues the execution

for the updating of the common variables. It is thus very difficult to implement asyn-

chronous algorithms in a data-driven system. Hence, we must introduce some special

high-level language program constructs. A specific firing rule in the Matching Stores of

processors will also be introduced in order to execute efficiently asynchronous compu-

tations in a data-flow graph. In this work, we will conduct a deterministic simulation

of a MTD system and show how the actors can be easily formed and thus deliver a high

speed-up in the presence of large degrees of parallelism. Performance of the simulated

architecture will be evaluated and the influence of partitioning in program graphs will

*This material is based upon work supported in part by the U.S. Department of Energy, l)el)art-

meat of Energy Research, under Grant No. I)E-FG03-87EI_25043 _:__t

I#I$I_ISUTIO_[IFT_ISI]OCUSI;!_TIS U_LI_IT_

be analyzed.
Tile goal of this paper is to demonstrate how such different implementations of tile

different asynchronous algorithms can be executed on a data-driven machine. This in- I
eludes the expression in a high-level language, the construction of the data-flow graphs,
as well as the performance of the simulated MTD system. In section 2, the elementary
data-flow principles of execution is shown. The high-level language constructs and new
execution mechanism are introduced in section 3. Several asynchronous algorithms
along with their data-flow implementation are discussed in section 4. While section
5 presents the results of a deterministic simulation of the MTD system, performance
observations are analyzed in section 6, and concluding remarks are made in section 7.

2 Data-Driven Principles

In this section, we introduce the data-flow principles of execution, which are used to
implement asynchronous algorithms.

2.1 Data-flow Principles

Programmability is a major issue in the design of large scale multiprocessor systems.
Programmers cannot be expected to be able to schedule and synchronize the hundreds
or thousands of tasks that are required to utilize fully the resources of such machines.
The data-flow model of computation has been introduced to alleviate this problem.
Data-flow principles offer the runtime synchronization of operations based on their
data dependencies.

2.1.1 Interpretation Models

Once a data-flow graph has been constructed and allocated, the issue arises of how to
actually execute the graph. Although the graph defines the operations to be performed
and how they are related to one anothcr, it contains no information about arc capacity,
precise firing rules, actor execution order, token consumption order, simultaneous actor
execution order, etc. Several approaches have thus been put forward regarding the
interpretation of data-flow graphs. These include the Acknowledgment Scheme, the
Queueing Interpreter, and the Unraveling Interpreter. Under the Acknowledgment
Scheme [5], an actor can fire not only when its input arguments ._.reready but also when
its output arcs are empty. Alternatively, in the U-interpreter [2] (a dialect of which we
will exclusively use in this paper), tokens are tagged with information pertaining to
their context of creation. Only two tokens with identical tags (also called color) can
activate an actor.

2.1.2 Multi-level Data-flow Systems

In spite of the simplicity of the execution principles, the fine grain data-flow model
encounters much overhead in order to respect functionality of execution. The overhead
in token handling, poor performance for low levels of parallelism, and inefficient storage
and array handling are important problems in a fine grain computation model. The
multi-level data-flow architecture [9], based on the concept of macro.actors (several

operations are grouped into a single actor) as described by Gaudiot and Ercegovac

[7], is shown to bring a solution. Indeed, with actors of various sizes, tile amount of
non-compute operations a,,d the cost of communication can be significantly reduced.

However, one should also note that the increasing size of an actor (with larger granu-

larity) may reduce the parallelism available in a program.

3 High-Level Language Constructs and Execution

Mechanism for Asynchronous algorithms

hi order to efficiently implement gsynchronous algorithms on a d_tta-flow multiproces-

sor, we describe new constructs in high-level language and a new firing rule.

3.1 High-Level Language Constructs

We have chosen "SISAL" (Streams and Iterations in a Single Assignment Language)

[11], a high-level applicative language developed at the Lawrence Livermore National

Laboratory in cooperation of other institutions (Colorado State University, University

of East Anglia, University of Manchester, Digital Equipment Corporation) for our

high-level language. New synchronization constructs will have to be added to SISAL
in order to describe chaotic behavior.

3.1.1 Asynchronous Constructs

Indeed, asynchronous computations cannot be easily implemented by traditional con-

structs. Therefore, we designed the async-repeat and the async-for operations. The

new construct of async-repeat allows its inside procedures to be concurrently evaluated

without any constraints of synchronization between each other. While the construct

of for in SISAL allows every index value to be synchronously executed in parallel, the

async.for construct releases the synchronization between each index value and allows

independent execution of every index value in parallel.

Chaotic relaxation, for example, can be expressed in SISAL by using the new con-

structs. In Fig. 1 ,it indicates that under the async.repeat construct, both the relax-

ation procedure and the termination check can be executed concurrently without any

dependency between each other. Furthermore, inside the async-for construct, each in-

dex value can concurrently proceed with the execution of the next computation without

waiting for other index values which are executing the same function.

3.2 A New Matching Store with Locks

In order to guarantee the proper asynchronous behavior of asynchronous algorithms,
we introduce the notion of locks at the inputs of the actors. In other words, we create

locks inside the matching store for the firing of an actor. Note that the implementation

of locks in actors corresponds to the Async.repeat and Async-for constructs in a high

level language. The locks will be attached to the input actors of a subgralfll which

represents the processes that can bc executed asynchronously under the Async-repeat

and Async-for constructs.

Under the new firing rule, when an actor is fired, the input tokens remain in the

input lock until the next input token is received. In this fashion, the incoming token

will replace the stored value and will activate the actor once more. Fig. 2 shows the

step-by-step operation of the new firing rule of an actor:

1. Initially, when either token A or token B comes into the actor F, it is locked inside
the actor.

2. When another token arrives on the opposite arc, actor]? is fired and produces an

.output token.

3..After firing actor F, both input tokens remMn locked inside the actor. In other

words, the rules of execution are non-swallowing.

4. _¢Vhen another token is later received by the actor, the actor is fired with the

locked token on the other port and the new value on the first port. The incoming

token will remain locked in the actor. Note that it overwrites the pre'_ious token
value.

I

4 Asynchronous Algorithms In MTD System

The async-repeat and async-for constructs implemented with the Matching Store

with Locks scheme can actually be used to express various asynchronous algorithm

on our MTD system. In the followings, we describe the data-flow graphs for several

asynchronous algorithms from different application areas.

4.1 Asynchronous Digital Systems Simulations

A logic digital system can be either synchronous or asynchronous. If it is synchronous,

every logic gate is synchronized by the system clock and execute the logic functions

step by step. If it is asynchronous, there may be no system c]ock or several different

clocks for different logic gates and the arrival time of a signal to a gate is unpredictable.

To design an asynchronous digital system, one must ensure that the system is hazard.

free. In other words, the functions must be exactly as expected by the user. A detailed

discussion of the merits of asynchronous circuits can be found in [6].

General speaking, it is difficult to simulate an asynchronous logic system on a

conventional single processor because the program counter will implicitly synchronize

the processes and force the whole execution in a deterministic manner. In a data-flow

computer, the Matching Store with Locks scheme allows an actor to be executed when

a token arrives. For example, a hazard-free logic circuit is shown in Fig. 3. The

simulation of this circuit can therefore be translated into the data-flow graph shown in

Fig. 4.

4.2 Asynchronous Shortest Path Algorithms

Finding the shortest path from one node to anoth,,r, which can be solved by the

well-known Dijkstra algorithm in a conventional cox_l,,_ter, is an important issue in

communication network systems.

In [3], a distributed asynchronous version of the Bellman-Ford algorithm is described
to find the shortest distance from one node to another. According to the description
of the r.]gorithm, each node will keep calculating the possible shortest distai_ce until
the whole system reaches a stable state.

In a data-driven approach, the data-flow principles and the Matching Store wi_h
Locks scheme can offer the algorithm suitable environment. In the data-flow graph,
every actor represents a node of the actual graph and executes the computation when-
ever a new data token arrives. An example of the graph is shown in Fig. 5 witb the
distances between each node and we try to find the shortest path from node 3 to 12.
The corresponding data-flow graph is shown in Fig. 6

4.3 Chaotic Relaxation for PDE

Solving PDE is one of the most {mportant research issues in scientific computing. A
PDE can be solved numerically either by direct methods (e.g. Gaussian elimination)
or by iterative methods. Iterative methods can further be classified as synchronous
or asynchronous methods. Synchronous methods, like the Jacobi method and the
Gauss-Seidel method have been discussed and extensively used. Asynchronous styles
of iterations (e.g. chaotic relaxation) have been developed more recently.

In the chaotic relaxation scheme [4], each grid point on the discretized problem
independently replaces the old value with the new!y updated values in its neighboring
nodes. It is in contrast with the Jacobi method when every point completes the relax-
ation in _ lock step manner. A detailed analysis of this kind of asynchronous relaxation
can be found in [8]. The data-flow execution for a two-dimensional problem will be
simulated and analyzed in the next section.

4.4 Neural Networks Simulations

Artificial neural networks have been recently studied to achieve high performance in
AI-related research. Generally, the model of neural networks is specified by the net
topology, and node characteristics.

One basic model of neural networks contains many nonlinear computational ele-
ments connected by biological neural nets. Inside the elements, computational models
can simulate the neurons [10]. In Fig. 7, a generic artificial neuron is drawn with
multiple input arcs and one output arc. The input signals of an artificial neuron can
be either binary codes or continuous values. In the actual execution, a new signal will
be sent out from the output arc_ whenever the combination of the input signals satisfy
some conditions of the properties of the cell. When we apply the data-flow principles
of execution to simulate neural networks, every neuron can be treated as a macro-actor
connected to others according to the biological neural nets. Due to the fact that an

" input signal will asynchronously arrive at a neural cell, the actor that represents the
cell needs to be fired at any time when an input token arrives. In a data-flow machine,
the Matching Store with Locks scheme can exactly represent the behavior. An example
of a simulated neuron can be seen in Fig. 8.

5 Simulation Results

Tile principles developed in the previous sections have been ilnplemented in several

data-flow graphs. Their execution has been verified by a deterministic simulation of a
multi-level d_t_-flow machine.

5.1 Simulation Assumptions

The architecture model of a MTD system within the yon Neurnann execution mode was

adopted for the simulator. It consists of a multiprocessor system with a maximum of

64 processors interconnected by a packet switching 6-dimension hypcrcube network. In

order to gather reasonable performance statistics, we made appropriate assumptions
on the various hardware and software delays: we assumed that all functional units

(Matching Store Unit, Instruction Fetch Unit, and Token Formating Unit) as well as

each network node all required a single unit of delay to perform their function. We

also assumed that each single elementary actor would take a single unit of delay in

the ALU, while a macro-actor would take the ,_,mount of time needed to execute all

the micro-instructions inside the macro-actor, and the execution time of the bro_tdcast

actor would be proportional to the number of tokens to be produced.

5.2 Simulation Results

Both the chaotic relaxation (asynchronous) and Jacobi method (synchronous) have

been programmed in a tagged token data-flow graph and their execution simulated.

The termination criterion of both methods is chosen to be IIz(k) - z(k-_)ll < 10-a ,

where the norm is the maximum norm. In both sets of experiments, with a 16x16

matrix problem size, the following results have been observed:

I Execution time : The execution times of chaotic relaxation in various system

configurations with pure micro-actors and with combined micro and macro actors

are reported in Table 1. The execution times of the Jacobi method in various

system configurations with pure micro-actors and with combined micro and macro

actors are reported in Table 2.

i Speed-up : The speed-up can be obtained by comparing the execution time of

a data-flow graph on N PEs with the execution time of the same graph on a

single P E. The reports of the speed-ups in various system sizes for both chaotic

relaxation and the Jacobi method are attached in Tables 1. and 2. while Fig.

9 shows the trend of the speed-ups with increasing PEs for the two different
relaxation methods.

• System tune.up : In order to observe the effect of network communication time

and matching time in the matching store, we change the time delay in the above

facilities to verify the original assumptions. The execution times of both methods

in m,_cro execution mode are compared in %_ble 3, while that in micro execution

mode is reported in Table 4.

e Robustness: One of the most important parameters to evaluate a multiprocessor

system is to observe the system performance with various problem sizes, ltence,
the robustness of a system is defined as :

) Eze. tlme_ M on one PERobustness (N, M = _ -((ine o-] -K_On -N P-E7
where M is the problem size that is optimal to the system size N

Essentially, robustness is an indication of how well the architecture/execution
model will scale up when machine sizes and problem sizes are increased. In fact,
the robustness property of a system can actually indicate its potential perfor-
mance. We thus express the robustness property of data-driven architectures by
showing the speed-ups in a large number of PEs. We exploit the trend of speed-
ups in many different problem sizes with various system configurations. We start
with the matrix problem size from 8x8 up to 64x64 and the machine size from
1 PE to 64 PEs. The report is shown in 'gable 5. and the curves are shown in
Fig. 10.

6 Observations

In this section, we observe the simulation results and analyze the relative merits of
the Jacobi method and of chaotic relaxation as well as of the macro and the micro
execution modes.

6.1 Observations

The simulation results, shown in the previous sectlon_ indicate many interesting fea-
tures with respect to the two algorithms as well as the architecture:

. Fig. 9 shows that the combined macro and micro actor graph always necds less
execution time than the pure micro actor graph in both chaotic relaxation and
Jaccbi method. This is due to the reduction of overhead in the macro-actor
execution mode.

, The execution time shown in Fig. 9 indicates that the speed-up in chaotic relax-
ation is always better than the speed-up of the Jacobi method in both macro and
micro execution modes. In a single processor environment, we find that chaotic
relaxation needs more time to execute than the Jacobi method. In a multipro-
cessor system, on the contrary, it can be scen that chaotic relaxation reduces the
execution time much more than the Jacobi method.

. In chaotic relaxation, a supevlinear speed-up can be sometimes observed due to
the undeterministic property of the algorithm itself. Indeed, the random sequence
of relaxations may lead to a faster convergence in multiprocessor systems,

. The inter-PE communication delay and the sl,,_' Thatching mechanism in the

matching store may defeat the performaI!ce ol ,, ,I.,t_t-driven system. J.a_ les 3,
4 show that chaot:c relaxation is less sensitive t,, ,,,, kind of time delay than the
Jacobi method. A paradoxal phenomenon ca_ ,,i-,, be observed in that chaotic
relaxation may need less time in a slower syst,'_,, t,lclay 10 times Mgher).

• In Fig. 10, we know that there are almost'linear increasing speedup curves for
the two methods in each operation mode. This is a very promising feltture for
data-driven multiprocessor systems. Indeed, the robustness property of data-flow
architectures can guarantee the performance in multiprocessor systems for various
problem sizes. For example, from Table 5, the speed-up of chaotic relaxation for
64x64 problem size can reach up to 52 in a 64 PEs system with the macro
execution mode.

7 Conclusions

In this paper, we have demonstrated how asynchronous algorithms could be imple-
mented on a data-driven multiprocessor architecture. In summv_ry, it can be said that
this paper has demonstrated the following points:

1. Data-flow principles of execution can be used to provide high-programmability
efficiently in the evaluation of highly concurrent asynchronous methods. Indeed,
we have demonstrated the graph constructions of data-driven asynchronous al-
gorithms.

2. While previous data-flow research has concentrated on "conventional" mecha-
nisms of execution, asynchronous execution can be enforced. Due to their low
inherent communication costs, this type of algorithms will be more efficient in
large-scale, distributed multiprocessors. Our Matching store with locks approach
has easily and efficiently solved the problem.

3. Programmability of these types of algorithms can be verified not only at the
low-level discussed in the previous points (graph construction) but also in the
high-level language. To this end, we have introduced new asynchronous program
constructs which can be used to create program graphs.

4. The robustness property of data-driven architectures can promise high perfor-
mance in multiprocessor systems for numerous ranges of problems. In fact, this
feature has been verified by our simulation results.

Future research issues will indeed include studying syntax-directed partitioning in-
stead of graph.directed partitioning to form macro.actors and designing efficient mech-
anism to execute the graph that contains variable resolutions of actors.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Governmentnor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or o
process disclosed, or represents that its use would not infringe privately owned rights. Refer.
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or anyagency thereof.

References

[1] IEEE Computer, Special issue on data-flow systems, February 1982.

[2] Arvind and K.P Gostelow. The U-interpreter. IEEE Computer, February 1982.

[3] D. Bcrtsekas and R. Ga_ager. Data Networks. Prentice-Hall International Edi-
tions, 1987.

[4] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Application,
2:199-222, 1969.

[5] J.B. Dennis. First version of a data flow procedure language, pages 362-376.
Springer-Verlag, New York, April 1974.

[6] A. D. Friedman and P. R. Menon. Theory and Design of Switching Circuits.
Computer Science Press_ 1975.

[7] J.L. Gaudiot and M.D. Ercegovac. Performance evaluation of a simulated data-
flow computer with low resolution actors. In Journal of Parallel and Distributed
Computing, November 1985.

[8] J.L. Gaudiot, C.M. Lin, and M. Hosseiniyar. Solving Partial Differential Equa-
tions in a Data-Driven Multiprocessor Environment. In Proceedings of the 15th
International Symposium on Computer Architecture, Honolulu, Hawaii, May 1988.

[9] J.L. Gaudiot and W. Najjar. Macro-actor execution on multilevel data-driven ar-
chitectures. In Proc. of IFIP WG 10.3 Working Conference on Parallel Processing,
Pisa, Italy, April 1988.

[10] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP
MAGAZINE, April 1987.

[11] J.R. McGraw and S.K. Skedzielewski. SISAL: Streams and Iterations in a Single
Assignment Language, Language Reference Manual, Version 1._. Technical Re-

ort Technical Report M-146, Lawrence Livermore National Laboratory, March
985.

while Err < N ASYNC-REPEAT

X :- ASYNC-FOR i in O, N

templ :: for j in i, N

RELAXATION PROCEDURE

, , ,, t,

end for;

Err :: for i in I,-N

TERMINATION CHECK

, . ° . t .

end for

l"igurc l: A Sample Program of Asynchronous (_,.)nst.r,l('ts

i i

lligure 4: The Data.flow Graph for an Asynchronous Circuit

i 4 2 33 7

3

Xo Xo

X, _,

INPUT X, "__ _-'-'-_'_ OUTPUT INPUT X, Y
-- -_=-- _ OUTPUT

x,, Y -/(El' ox,,,,, - o) x.

Figure 8: The Data-flow Graph l{epre_entation of a NeuronFigure 7: A Oenerlc Abstra£t of a Neuron

Network:1
M_t_: I
Fetch: 1
ALU:1

Route_;"i

Speedup

16 Ohaotl_M_) Problem Size ffi 16 x 10

Network=O,l,Match=O,I,Fe¢ch=1,A LU=I, Router=I

Chaotic(Micro) number * _ ,
of PEs exe. tim_ _T. _ime] % exe, time lex_ tln_e] _

I PE 10820_1-- _8200 : O0 - 7002_}-==-{70;177-_OO_
J_cobi(Mac,o) _s 2PEs 56690 _ 42112 [-41101 97

0 J,_ob{(Mk,o) 8 PEs 1354"-'-_8----13--a7_-0-0-- "-_1_
__--- --_S_d.... 7ib-_.... _ --_7-_-1--_-_

2

4 F 16 3_ I'E
]'_ercculaqe_.*,,,,,,,o,,,_,, de/,_ 'V""",

l",r,,,,eI ,_1,,,,.,{,,{>will,l'r,,l,lemSize: 16 × {_; ']'All] }l3

* Network=l, MTchY:_]7-l_tT_]:_],-A_=l, Router=l r_--_%_--_-el}_oot-ic-_ehaotic- _ Jacobi I 3a_obi]

ofPBs [exe. fim_.J exe. time - _%_ y_xf.:_timeJ_=eL_time %

1 PE [108990_[108989 99 92203 -A 90832 98 _ __8__21S__l.......... _._.._L_23:-TP--]

..... [..................x,.....'_"........................_92_
8 PBs 1484_-'-t 14613 98 18219 ! 18084 82 TABLE

Er¢. tim¢ on Sh.o_(delay, _ttcmS
Percentage = _g-6_-i-g,;Wg_.og, F,v-ii,;i;.;q; 7, 100%

TABLE 4

Network: I

Match: I

Fct&: I

ALU: I

Route*: I,

64

Chaotic{ Macro)

48

Ch_,otic(Mtcro)

32 J_ol, i(Macro}

J_mobi(Micro)

16

_ ! I

_, 16 32 64 1)E

_xF 16xl6 32_32 64x64 Problem 5,_("

]Wuw 1{;]{,)h,_.',tn,'.'> in l)ata th,w A,, hi((', lur,'_

