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ABSTRACT

Poloidal rotation speeds and density asymmetries are calculated for the deu-
terium and dominant carbon (oxygen) impurity ions in discharges in ASDEX, DIII,
ISX-B, JET and TFTR for which vg ~ vy, for the ions. These poloidal rotation speeds
and density asymmetries are used to evaluate the neoclassical gyroviscous model for
the momentum confinement time. The rather good agreement with experimental
momentum confinement times obtained over this wide range of plasma parameters
provides a measure of confidence in the calculated density asymmetries and poloidal

rotation, as well as arguing for a neoclassical explanation for momentum confinement
in tokamaks.

ii




I INTRODUCTION

Poloidal asymmetries in ion density and poloidal bulk rotation of ions in the
central regions of tokamak plasmas are related topics which are of intrinsic interest
in the understanding of tokamak physics and which also are of importance to the in-
terpretation of toroidal rotation experiments because they determine the magnitude
of the neoclassical (gyroviscous) toroidal angular momentum transfer rate.! A calcu-
lational model was recently developed? which now allows the calculation of poloidal
density asymmetries and poloidal rotation in tokamak plasmas with strong toroidal
rotation (vg ~ vg).

The purposes of this paper are to apply the recently developed theory? to
calculate the poloidal rotation and density asymmetries of the plasma and domi-
nant impurity ions in a number of present and past tokamak experiments in which
vy ~ Uy, for the ion species and to compare the predictions of momentum confinement
times evaluated with these rotation speeds and density asymmetries against experi-
mental momentum confinement times. There are no good measurements of density
asymmetries and poloidal rotation in the center of tokamak plasmas with which our
predictions may be directly compared, but the comparison of momentum confinement
times provides an indirect comparison with experiment.

We note that there is a great deal of interest in poloidal rotation in the plasma
edge region in connection with L-H mode transition studies and that measurements of
poloidal rotation speeds in the plasma edge region have been made.®® The theory?
that we use is ordered for v, ~ v and is thus not applicable to those measurements
in which vy ~ vy, and in which radial gradient terms that we order out must be
retained.

The paper is organized as follows. The calculational models are briefly sum-

marized in section II. The experimental parameters, the calculated poloidal rotation



and density asymmetries, and the comparison of theoretical and experimental mo-
mentum confinement times are described in section III. Related work is discussed in

section IV. A summary is provided in section V.

II THEORY
A Poloidal Rotation and Density Asymmetries

The fluid theory? which we will use models NBI heated plasmas for which
vy ~ vy, and E/Bg ~ O(vg). Kinetic theory effects are accounted for in the viscosity
and friction terms, following the Hirshman-Sigmar® moments approach.

The fluid particle equation
v - (nv;) =0 (1)
and the poloidal projection of the momentum balance equation
nmi(v; - ) + Vp; + V- 7{]- +e;n;V® —nje;v; x B=R; + M, (2)

were solved self-consistently in the large-aspect-ratio approximation to determine the
poloidal velocity vs and density asymmetries 7€ and #* in tokamak plasmas.

In deriving the equations, the poloidal dependences were expanded in the form
z(r,8) = Z(r)[1 + £°sin 6 + Z° cos 9]. (3)

The solution for the (normalized) poloidal velocity 7, was obtained from the

poloidal component of Eq. (2) by integrating over 8, and may be expressed in the
form

b = driving driving

6= damping ~ viscosity + friction + inertia’

(4)



In the above equation, driving (the driving force) is given by
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and the three damping terms are given by
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friction = 7},
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inertia = —q*0% ( —*+ )

viscosity = f{

We note that in the poloidal projection of the viscous stress tensor the parallel (7)

component of the viscosity is the leading term and enters the above expression via

terms containing f;.

By taking the sinf and cos# moments of the poloidal component of Eq. (2), two

equations (for each ion species) coupling 7! and 7 were obtained:

(10)

Equations (4)—(10) are generally applicable to any number of ion species if 77, is

understood to represent a sum over species k # j. We specialize to the case of a main

plasma species (j) and a dominant impurity species (k). Thus, Egs. (4), (9), and (10)

for each species constitute 6 coupled, nonlinear equations in the unknowns 9q, G,

7}, Tk, i3, A which must be solved numerically.



Some important dimensionless quantities which enter the above equations are

defined as follows:

D;k = ijqR/'Uthj B = By/By

pr. = gee

= 73 Vig = —12— ‘
fi (€'5 + 2%)(1 + o) 76 Busng ié Vshj

'Uer J ' M'oE —_— (I)]' ET——T (11)

where v;p; is the thermal speed, 9;4, 955, and 9;, are the normalized poloidal, experi-
mental toroidal, and radial velocities of ion species j, respectively, Mjo is the poloidal
momentum input, <i>j is the normalized electrostatic potential, v;; is the collision

frequency, q is the safety factor, and » and R are the minor and major radii.

B Momentum Confinement Time

The neoclassical (gyroviscous) momentum confinement time is’

h = 2R f(;I(anvd,)Z;dT _ ~2RzeB BT D (12)
* T R [(R2ve- v T)rdr  (0G/Z)ess hav Mo
where
0G\ _ A
(7)eﬁ = > L0, (13)
The poloidal density asymmetry factor for each ion species is
< AS o B AL @Al & Az @
6; = (4+-2)[-00(253) 1(—€—+—E’-)+?]+—€l[v,~o(vj¢) 1(2+7+?’)——€-l (14)

where the ®¢/* is related to the 7%/* via charge neutrality and the electron momentum
balance. When radial profiles have the form (1 — (r/a)?)*=, the radial profile factors

have the form

r 0 _2r/a)*(an + oy + ar)
o 57 W) = TG (19)




and
n(0)v4(0)a?
2 [ n(r)vg(r)rdr

P =1+ a, + a,, ete. (16)

The experimental momentum confinement may be written as’

_ 27R [§(Rnmug)rdr _ 2n%a’RPn.gmpugoh,l  2m°a*R3nompQS
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where
_ vV 2mbRtanPb
Iy = VEs (18)

is the torque input from NBI, R,,, is the tangency radius, Ej is the neutral beam
energy, ms is the mass of the beam particles, ne is the central electron density, Q%%
is the central angular frequency, and M p is an effective mass which reduces to mp

for deuterium plasmas.

IIT ANALYSIS OF EXPERIMENT

A Experimental Parameters

We reviewed the literature to identify at least one discharge for each of the
major present and past tokamak experiments in which vy ~ vy and for which the
experimental parameters required to calculate both the poloidal speeds and density
asymmetries and the momentum confinement times were available or could be rea-
sonably extrapolated. We were able to identify such discharges for ASDEX, DIII,
ISX-B, JET, and TFTR, which provides a wide range of experimental parameters.
We elected to evaluate poloidal rotation and density asymmetries on a flux surface
corresponding to r/a=0.5 and to use these values to evaluate the poloidal asymmetry
factors, ©, that enter the calculation of momentum confinement times. Information

concerning some input parameters was unavailable, however, and a few assumptions



were made and applied to all tokamaks: safety factor g(r/a=0.5)=2, since g(0)~ 1 and
g(a)~ 3; 8 = By/By = 0.1; e®/T;=1; radial velocities 9, and 9y,=0; poloidal beam
momentum inputs Mp; and Mp,=0; radial profile of the form z(r) = zo(1 ~ (r/a)?)*=,
except for DIII, where a density pedestal was included. The value of e®/T; = 1
was obtained for ISX-B® at a potential of 0.5 V and an average ion temperature of
500 eV. Since measurements of electrostatic potential were not available for the other
machines, the value of e®/T; obtained for ISX-B was assumed to be a reasonable
estimate for all machines. The parameters that characterize the discharges analyzed
in this paper are given in Table 1.

A well-documented®1° deuterium discharge with a dominant carbon impurity
and with Q4=9.1 x10* rad/s was analyzed for ASDEX. The peaking factors for

density, angular velocity, and electron temperature®

Qn = 1.6 x (1,/0.38)7%% x (B,/2.2)*%
Qq = 2.3 x (1,/0.38)794% x (B,/2.2)"%
Qr. = 2.3 x (1,/0.33)™"" x (B,/2.2)"" (19)

where current has units of MA and magnetic field has units of T, were used to

construct the profile parameters, a,

Ty
<z >

Q. = =1+ a,. (20)

Due to the relatively high density in the case chosen for analysis, T; and 7, were
roughly equal.l® Thus, the ion temperatur. profile factor ar was assumed to be
approximated by the electron temperature profile factor calculated from Qr,.

The data for DIII were obtained for deuterium plasmas with a dominant oxygen
impurity. Data covering a wide range of experimental parameters were available.!!
However, experimental momentum confinement times were only available!? for plas-

mas with somewhat different characteristics. The experimental parameters!! were
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averaged over similar discharges and scaled to obtain parameters for two discharges
for which momentum confinement data were available. The first case was an average
of the data from two similar shots at a current of about 0.7 MA and 3.9 MW NBL
The other case was an average of the data from two similar shots at 0.71 MA and

6.1 MW NBI. The ion temperatures were scaled using the relation

Pde,nel

=T
T 1Pb1T¢171e

(21)

where the subscript 1 indicates values at fi,= 8x10'® cm~3. The scaling was nec-
essary since the plots of experimental confinement times!? were available only for
fie= 8x10'% ~m~3, whereas 7. for the tabulated data was lower. Straight-line fits to
the plots of experimental confinement time versus beam power were not justifiable;
7¢* varied slightly with P;. The ratio of Py7y to Py7y; was set to unity in Eq. (21).
The central velocities were available for only specific sets of data, namely P,=3.7, 5.0,
and 5.9 MW. The velocities at P,=3.7 and 5.9 MW and a major radius of 1.52 m
were chosen to describe the two cases at 3.9 and 6.1 MW (R~1.43 m). As mentioned,
the density profile was parabolic-to-a-power plus a pedestal.

Analysis of ISX-B!3-15 began with determining the experimental toroidal ve-

locity as a function of the neutral beam power. A straight-line fit to the data yielded
v = (8.5 + 2.4P,)(10°) (22)

with P, in MW and vy in cm/s. In ISX-B, the study focused on hydrogen neutral beam
co-injection in deuterium plasmas with a dominant carbon impurity. The central ion

temperature for such a plasma is given by

7(0) = Tox(0) + O (23)

e

where C=2.2x10-° keV - MW~1. m~3 and Ty (0)=0.3 keV. The experimental mo-

mentum confinement time was 17 ms at P,=0.85 MW aad 7,=4.5x10*3 cm~3. Using

8



these parameters in Eqgs. (22) and (23) yields v§*=1.1x107 cm/s and T;p=716 eV.
Parabolic profiles were assumed.

Data for JET™16 covered both H-mode and L-mode deuterium plasmas with
a dominant carbon impurity. For most H-mode discharges 73*=200-500 ms, and for
most L-mode discharges 75°=100-200 ms.” However, ranges of experimental confine-
ment times do not sufficiently indicate the accuracy of the theoretical model. For this
reason, an experimental confinement time was constructed for one H-mode and one
L-mode shot using the available data’® and Eq. (17). Using an average Rip,=1.515m
(eight ion sources with R, =1.85 m and eight with R;,=1.18 m),” the experimen-
tal momentum confinement time was 204 ms for the H-mode shot and 70 ms for
the L-mode shot. Density profiles were flat in H-mode discharges and more peaked
than parabolic in L-mode discharges. Velocity and temperature profiles varied from
slightly more peaked than parabolic in H-mode discharges to parabolic to the fourth
pcwer in L-mode discharges. We chose representative profiles to be consistent with
these observations.

A hot ion-mode discharge, which included temperature, velocity, and density
profiles for a deuterium plasma with a carbon impurity, was chosen for the analysis of
TFTR.!” Determination of experimental momentum confinement time proceeded as
for JET, with I'y=18.25 N-m in Eq. (17), yielding an experimental momentum con-

finement time of 44 ms. Profile factors were determined from the measured profiles.

B Calculated Poloidal Rotation and Density Asymmetries

The calculated poloidal rotation speeds and density asymmetries are displayed
in Table 2, and the dominant driving forces for these rotations and asymmetries are
indicated in Table 3. The j and k subscripts denote deuterium and carbon (oxygen),

respectively. 9;,> 0 corresponds to rotation in the direction of the By field, Aj> 0



Table 2: Poloidal Rotation and Density Asymmetries.

D [C(O)] D |[C(O0) D C (0)

Machine | 0,4 b | 0Sfe | Agfe | Alfe | Aife
ASDEX | -0.15 | -0.35 | 0.064 | 0.38 | 0.0087 | 0.061

[ DIII (1) | -0.063 | -0.17 | 0.057 | 0.45 | 0.011 | 0.040
DIII (2) | -0.11 | -0.27 | 0.073 | 0.57 | 0.0073 | 0.12
ISX-B -0.13 | -0.32 | 0.075 | 0.46 0.030 | 0.037
JET (H) ! -0.047 | -0.073 | 0.035 | 0.21 |-0.0049 | 0.045
JET (L) | -0.11 |-0.075|0.028 | 0.17 |-0.0056 | 0.024

{ TFTR | -0.12 |-0.079 ] 0.047 | 0.28 |-0.0031 | 0.023

Table 3: Summary of Dominant Driving Forces.

Asymmetry ; ASDEX,DIILISX-B JET,TFTR
D i) viscosity viscosity,inertia

C (O) | 4y | viscosity,friction,inertia viscosity
D n; viscosity Eq

C (0) | ny viscosity viscosity,inertia
D ns inertia inertia

C (0O) | n§ inertia inertia

corresponds to an upward density shift, and 75> 0 corresponds to an outward density

shift—all in a right-hand (r,6,¢) coordinate system in which the toroidal field and

the toroidal current are aligned.

The density asymmetries, defined as

are less than the inverse aspect ratio € in all cases. While 7 ranges from 0.17¢ to
0.57¢, A7 and 7} are much smaller and range from 0.023¢ to 0.12¢. The smallest
density asymmetry is 7}, the magnitude of which is in the range 0.0031¢~0.03e.

As the main ion and impurity ion species rotate in the toroidal direction (i.e.,

a(r) = [n(r,0) - a(r)}/[A(r)],

10




along the minor axis), inertial effects increase the density of the ions on the outboard
side of the tokamak. Evaluation of each term coupling the density asymmetries
showed that the largest term contributing to both A and 7f was indeed the inertia.
The in-out density asymmetries are pcsitive and increase with increasing values ot
the toroidal velocity, as would be expected. The inertial term also contributed to the
up-down impurity density asymmetry for TFTR and JET, with 7} increasing with
increasing vg.

The viscosity, which is a function of the self-collision frequency, drove !¢ ‘mpu-
rity ion up-down asymmetry in ASDEX, DIII, and ISX-B. The up-down asyn.metry
for the main ion species in JET and TFTR was driven by a combination of factors
acting to drive a poloidal electric field. The up-down density asymmetries for the
main ion species in ASDEX, DIII, and ISX-B and for the impurity ion species in all
devices show an upward shift. However, the main ion species are shifted downward
in JET and TFTR.

Analysis of Eq. (4) showed that the viscosity terms drove the poloidal velocity
in all cases. The dependence of the poloidal velocities on the viscosity was non-
monotonic, a result which is consistent with the dependence of the quantity f on
v* given by Eq. (11) and plotted in Fig. 1. The values of f, which determines the
magnitude of the viscosity, for main deuterium ions and carbon (oxygen) ions is
shown for the experiments in Fig. 1, with the leftmost value corresponding to the less
collisional deuterium in each case. In general, the poloidal velocities were smallest for
JET and TFTR. Furthermore, all values of vy were less than zero, indicating rotation

opposite to the direction of By for both species.

11
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Figure 1: Viscosity as a Function of Self-collision Frequency.

C Comparison of Theoretical and Experimental Momen-

tum Confinement Times

The poloidal rotation speeds and density asymmetries in Table 2 were used to
evaluate the quantities ®; of Eq. (14) and the effective poloidal asymmetry factor
defined by Eq. (13), the latter of which was used together with the experimental
parameters given in Table 1 to evaluate the theoretical momentum confinement time
from Eq. (12). The poloidal asymmetry factor so calculated was ~ O(0.1), with the
major contribution coming from the deuterium ions. The experimental momentum
confinement time was either evaluated using the data from Table 1 in Eq. (17) or taken
as quoted by the experimental team, as discussed in section III.A. The theoretical and
experimental momentum confinement times are compared in Table 4 and Fig. 2. The
rather good agreement provides some measure of confidence that the poloidal speeds

and density asymmetries given in Table 2 are correct, albeit it does not constitute a

12



Table 4: Comparison of Theoretical and Experimental Momentum Confinement
Times.

Machine I, P, | By | vF(0) | L(O) [ m. |78 | 75
(MA) | (MW) | (T) | (107=2) | (keV) | ({%7) | ms | ms

ASDEX 042 | 1.8 [217| 1.5 | 1.23 | 4.6 | 42 | 59
DIIT 0.7 | 3.85 |253| 1.2 | 1.89 | 8.0 | 59 | 53
DIII 071 | 6.1 |253| 16 | 223 | 8.0 | 42 | 26
ISX-B 0.155 | 085 | 1.4 | 1.1 | 7.16 | 45 | 17 | 16
JET (H-mode) | 3.1 | 7.7 | 2.2 | 2.0 55 | 3.0 |204| 240
JET (L-mode) | 3.22 | 14.25 | 347 | 3.5 | 155 | 1.33 | 70 | 58-89
TFTR 1.1 | 11.6 |475| 6.2 | 260 | 2.0 | 44 | 50

direct confirmation.
We note that our calculation is a first-principles, neoclassical calculation. The
relatively good agreement with experiment over a wide range of devices then argues

for a neoclassical explanation of ion momentum transport in tokamaks.

IV RELATION TO OTHER WORK

There are literally no measurements of poloidal rotation or density asymme-
tries in the center of tokamak plasmas. As noted previously, there are several re-
cent measurements3-5:18 of poloidal rotation in the edge, but our ordering scheme
(vg ~ vg) is generally not applicable. Up-down impurity density asymmetries have
been measured!®2* in the edge of several tokamaks; again our ordering scheme is
generally not applicable.

A number of authors?2:25-27 have pointed out the contribution of friction and

13
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Figure 2: Comparison of Theoretical and Experimental Momentum Confinement
Times.

inertia forces to driving asymmetries in the densities of very collisional ions. A self-
consistent calculation?®2? of toroidal and poloidal rotation and poloidal density asym-
metries, similar to our model? but with a phenomenological representation of radial
momentum transport instead of the neoclassical stress tensor, was made for ISX-B
and PLT parameters some years ago. The deuterium poloidal rotation and density
asymmetries obtained?® are comparable to those given in Table 2 for ISX-B, but the
high-Z impurity (titanium, tungsten) was calculated to have much larger poloidal ro-
tation and density asymmetries than shown in Table 2 for carbon. This is consistent
with the dependence of the calculation on collisionality reported previously.?

More recently, Kim et al.’® have developed a neoclassical model for toroidal
and poloidal rotation that is similar to the one? that we use. However, these authors
do not treat the effect of poloidal density asymmetries on poloidal rotation, but do
retain pressure gradient terms which order out in the vy ~ vy, ordering of our model.?

Variations of Eq. (12) have been used to rather successfully predict”1217.31

momentum confinement times in a variety of tokamaks. Heretofore, the poloidal

14



asymmetry factor of Eq. (13), or some variant thereof, has been estimated instead of
calculated. Our calculations of the poloidal asymmetry factors are quite close to the
previously estimated values.

In a different vein, the calculations of this paper should resolve the controversy
over neoclassical gyroviscous momentum transport, the salient remaining points of
which we first summarize. Stacey and Sigmar! worked out the neoclassical stress ten-
sor in toroidal coordinates and found that the gyroviscous contribution to the radial
transport of toroidal angular momentum was proportional to the up-down asymme-
try in toroidal velocity, which in turn depeuded on the up-down density asymmetry
for the species in question. Based on their previous calculation?® of O(e) up-down
density asymmetries for titanium/tungsten in ISX-B/PLT, they postulated that O(e)
up-down impurity density asymmetries could be present in tokamak experiments and
showed that that alone (without regard for the deuterium density asymmetry) would
make the gyroviscous momentum transport the proper magnitude to explain the ex-
perimentally observed momentum damping.

Connor et al.32 analyzed Egs. (1) and (2) and argued from ordering consider-
ations that the poloidal rotation would, in essence, be 0.1§ times smaller than the
thermal speed, where § is the gyroradius-to-gradient-scale-length parameter. From
this argument they concluded that the gyroviscous momentum transport would be
orders of magnitude too small to explain the experimentally observed momentum
damping rates. Stacey33 then summarized evidence for O(¢) impurity asymmetries
and pointed out an apparent inconsistency in the Connor et al. ordering argument
when vy ~ V.

Now that a first-principle, neoclassical calculation of the gyroviscous momentum
damping rate has been performed, the “controversy” can be resolved. The model?

used for the calculations of this paper is based on a consistent ordering when vy ~ v4,.

15



Neoclassical theory predicts a (gyroviscous) momentum damping rate that is of the
magnitude observed in tokamak experiments. This momentum damping is produced
primarily by deuterium ion asymmetries of magnitude << O(¢), rather than by O(e)
carbon or oxygen asymmetries as suggested by Stacey. The calculated poloidal rota-
tion speeds are orders of magnitude larger than the values of 0.1 times the thermal
speed argued by Connor et al. purely on the basis of (apparently inconsistent) order-

ing considerations.

V SUMMARY

A recently developed neoclassical theory has been used to calculate the poloidal
rotation and density asymmetries in ASDEX, DIII, ISX-B, JET, and TFTR. Using
measured plasma parameters and a neoclassical model, the poloidal rotation velocity,
the in-out density asymmetries, and the up-down density asymmetries were predicted
for the hydrogenic and dominant carbon (oxygen) impurity species in these plasmas.

Adequate experimental data does not exist to allow a direct confirmation of
the predictions. Thus, the validity of the theory was confirmed indirectly by compar-
ing theoretical momentum confinement times, which depend directly on the poloidal
velocities and density asymmetries, with the experimental momentum confinement
times.

Analysis showed that the main ion and impurity ion poloidal velocities were
in the negative By direction and depended on the plasma viscosity and the inertial
effects of the toroidal rotation. For more collisional impurities, the poloidal velocity
was also affected by friction. The up-down density asymmetries for both ion species
were affected mainly by a combination of the viscosity and the up-down potential

asymmetries, while the in-out density asymmetries depended on the toroidal velocity

16



for both ion species. The magnitude of the poloidal rotation varied, for deuterium,
from about 0.005v,, to 0.015v and, for carbon (oxygen) from about 0.007vy, to
0.035v4,. The magnitude of the in-out density asymmetries varied, for deuterium,
from about 0.03¢ to 0.07e and, for carbon (oxygen) from about 0.2¢ to 0.6e. The
magnitude of the up-down density asymmetries varied, for deuterium, from about
0.003¢ to 0.03¢ and, for carbon (oxygen) from about 0.02¢ to 0.1e.

Using the calculated density asymmetries and poloidal rotation speeds to evalu-
ate the poloidal asymmetry factors of the neoclassical gyroviscous theory, momentum
confinement times were calculated which agreed with experimental values to within
6—40%. This level of agreement provides (indirectly) some confidence that the pre-
dicted density asymmetries and poloidal rotation speeds are correct and demonstrates
that a first-principles neoclassical calculation can explain ion momentum confinement

over a wide range of experimental parameters.
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APPENDIX: SOLUTION TO NONLINEAR
EQUATIONS

The six nonlinear equations given by Eqs. (4), (9), and (10) were solved using
HYBRID (created by B. S. Garbow, K. E. Hillstrom, and J. J. More at Argonne
National Laboratory, 1980). HYBRID is a general nonlinear equation solver which
finds the zeros of a systen. of n nonlinear equations in n unknowns. The system of
equations is provided by the user in the form of a subroutine to HYBRID. Solution
of the equations is calculated by the forward-difference approximation.

The subroutine included in this appendix was created by rewriting each of the
six nonlinear equations with all terms on the left-hand-side of the equation such that
the value of the right-hand-side was zero. The first execution of the subroutine re-
sulted in an estimate of the roots of the system of nonlinear equations (using an initial
guess of zero for each root). Subsequent calls to the subroutine yielded estimates of
the roots until successive estimates varied by 10~° or less for each root. The asymme-
tries thus calculated were used to calculate the normalized poloidal and radial profile
factors, which in turn were used to calculate the theoretical momentum confinement

time according to Eq. (12).
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subroutine fcn (n,x,fvec,iflag,istar,vthetaj,vthetak)

integer n,iflag,istar,style

double precision x(n),fvec(n),q,beta,rnukj,alpha,zj,rmk,
rmj,rmjtheta,rmktheta,vjrad,vkrad,vphiex0,q2,vphiexk2,
beta2,vphiexj2,ep,fj,fk,rnujk,phij,phik,cl,c2,c3,c4,c5,
c6,phic,phis,thetaz,thetai,alphan,alphav,zk,
vthetaj,vthetak,rnujj,rnukk,alphat,zeff,G,thetagz,rne0,
ephiti,rmajor,rminor, tempQ,bphi,hntv,hnv,rmd,rmdbar, rne,
tauphi,rovera2,vphiexj,vphiexk,titote,rnebar,densrat,
rmztone,rnitone

character toh*40, inform*60

* ¥ ¥ * X ¥ *

¢ read in data on initial run
if(istar.eq.1)then
open(unit=1,file=’xsecin’)
istar=2
read(1,’(a40)’)tok
read(1,’(a60)’)inform
read(1,’(i3)’)style
read (1,*) rnukk, vjrad, vkrad, vphiexO, vphiexj, vphiexk
write(2,’ (" nuzzstar vzrad virad vphiex0")’)
write(2,’(d10.3,3x,f6.3,6x,f6.3,6x,d10.3)°)
* rnukk,vjrad,vkrad,vphiex0
if(style.eq.3)then
read (1,*) alpha, q, zeff, titote, densrat

else
read (1,*) alpha, q, zeff, titote
endif
write(2,x*)
write(2,’("alpha q zeff Ti/Te")’)

write (2,5) alpha, q, zeff,titote

read (1,*) zk, rmk, zj, rmj, beta

write(2,*)

write(2,’("zimp massz zion  massion")’)
write (2,5) zk, rmk, zj, rmj _

read (1,%) ephiti, rmjtheta, rmktheta, rnztone, rnitone

write(2,x*)
write(2,’ ("e*phi/Ti Mitheta Mztheta")’)
write (2,5) ephiti, rmjtheta, rmktheta

5 format (4(£6.3,7x))
read (1,*) alphan, alphav, alphat, rneQ
write(2,x*)
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15

write(2,’("alphan alphav alphat ne0")’)
write (2,15) alphan, alphav, alphat, rne0

format (3(£6.3,7x),d10.3)

read (1,*) rovera2, rmajor, bphi, temp0O, rnebar
write(2,*)

write(2,’("(r/a)"2 major radius bphi Tion(0)

*nebar")’)

12

write (2,12) rovera2, rmajor, bphi, temp0O, rnebar
format (£6.3,7x,f6.3,8x,f6.3,4x,f10.3,4x%,d10.3)

read (1,*) rmd, rmdbar, rne, rminor

write(2,%*)

write(2,’("m sub D m sub d bar minor radius ")°’)
write (2,9) rmd, rmdbar, rminor

format (£6.3,8x,f6.3,7x,f6.3)

read(1,*) rnujj, ep, fk, fj, rnujk, rnukj

read(1,*) phij, phik

read(1,*) c1, c2, ¢3, c4, c5, c€

write(2,%*)

write(2,’("nuii star=",d10.3)’)rnujj
write(2,’("epsilon=",d10.3)’)ep

write(2,’("f ion and f impurity: ",2(d10.3))’) £fj, fk

write(2,’("ion-impurity and impurity-ion collision freq: ",

*

*

d10.3,3x,d10.3) ’)rnujk, rnukj

write(2,’("phii hat and phiz hat:",d10.3,3x,d10.3)’)

phij,phik
close(1)
beta2=beta*beta
q2=q*q
vphiexj2=vphiexj*vphiexj
vphiexk2=vphiexk*vphiexk

endif

¢ begin calculation of roots

if(istar.eq.1 .or. istar.eq.2)then

¢ potential asymmetries

phic=(x(5)/c2+x(6)/c1)/(ephiti*titote)
phis=(x(3)/c2+x(4)/c1)/(ephiti*titate)

¢ user-supplied system of equations

* ¥ ¥ F *

fvec(1)=x(1)*(q2*fj*(1.0d0 + 5.0d0*x(5)/6.0d0

+

2.0d0*x(3)/3.0d0 + 1.0d0*x(3)*x(3)/3.0d0
1.0d0*x(5)*x(5)/3.0d0 + phis*x(3)/2.0d0
+ 0.5d0*phic*(5.0d0+x(5))) + rnujk
q2*vphiexj*(x(3)+fais))

rmjtheta - vjrad - c5%x(2) + q2*vphiexj2

+
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* * phis + 0.5d0*q2+*fj*vphiexj*(phis*x(3)
+ phic*(5.0d0 + x(5)))

fvec(2)=x(2)*(q2#£fk*(1.0d0 + 5.0d0*x(6)/6.0d0
2.0d0*x(4)/3.0d0 + 1.0d0*x(4)*x(4)/3.0d0
1.0d0*x(6)*x(6)/3.0d0 + phis*x(4)/2.0d0
0.5d0#phic*(5.0d0+x(6))) + rnukj
q2*vphiexk*(x(4)+phis))

rmktheta - vkrad - c6+x(1) + q2*vphiexk2
phis + 0.5d0*q2*fk*vphiexk*(phis*x(4)
phic*(5.0d0 + x(6)))

+ + +

® # % # % 8 =
* [}

+

fvec(3)=c3*x(1)*x(3) + vphiexj2 - 0.5d0*x(5)
» - 0.5dO*phij*phic + beta2*rnujk+*x(1)+*x(4)

fvec(4)=c4*x(2)*x{4) + vphiexk2 - 0.5d0*x(6)
* - 0.5d0*phik*phic + beta2*rnukj*x(2)*x(3)

fvec(5)=x(1)*c3*x(5) + x(1)*fj + 0.5d0*x(3) + 0.5d0*phij*phis
- beta2*rnujk*x(1) + beta2xc5*x(2)
* + beta2*rnujk*x(1)*x(6) + beta2*vjrad

fvec(6)=x(2)*c4*x(6) + x(2)*fk + 0.5d0*x(4) + 0.5d0*phik*phis
- beta2*rnukj*x(2) + beta2*c6*x(1)
* + beta2*rnukj*x(2)*x(5) + beta2*vkrad
endif
c after solving equations, calculate confinement time
if(istar.eq.3)then
phic=(x(5)/c2+x(6)/c1)/(ephiti*titote)
phis=(x(3)/c2+x(4)/c1)/(ephiti*titote)
write(2,’("phic and phis: ",d10.3,3x,d10.3)’) phic, phis
¢ peloidal profile factors
thetaz=(4.0d0+x(6))*((-x(2)*(phis+x(4))/vphiexk)

* + phis) + x(4)*((x(2)*(2.0d0+phic

* + x(6))/vphiexk) - phic)
thetai=(4.0d0+x{5))*((-x(1)*(phis+x(3))/vphiexj)

* + phis) + x(3)*((x(1)*(2.0d0+phic

+ x(5))/vphiexj) - phic)
write(2,’("theta z and theta ion: ",d10.3,3x,d10.3)7)
* thetaz, thetai
¢ radial profile factor for DIII
if(style.eq.3)then
G=2.0d0*rovera2*(alphan+alphav+alphat)*(1.0d0+densrat*
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* ((alphat+alphav)*((1.0d0-rovera2)**(-alphan))/
* (alphan+alphat+alphav) - 1.0d0))/
* ((1.0d0-rovera2)*(1.0d0 + densrat*(((1.0d0-roveral)**
* (-alphan)) - 1.0d0)))
¢ radial profile factor for other tokamaks
else
G=2.0d0*rovera2*(alphan+alphav+alphat)/

* (1.0d0-rovera2)

endif

write(2,’("G: ",d10.3)’) G
thetagz=(rnztonexthetaz + rnitone*thetai)*G
write(2,10)thetagz
10 format (’ (thetaxG/z)eff = ’,d10.3)
hntv=1.0d0+alphan+alphat+alphav
hnv=1.0d0+alphan+alphav
rmajor2=rmajor*rmajor
¢ theoretical momentum confinement time (msec):
¢ major radius (rmajor) in meters, toroidal magnetic field
c (bphi) in Tesla, central ion temperature (temp0) in electron
volts

c DIII
if(style.eq.3)then
tauphi=2.0d3*rmajor2*bphi*(1.0d0+alphat/(1.0d0+
* alphan+alphav))*(1.0d0+densrat*alphan/(1.0d0+
* alphav))*rmdbar/
* (temp0*(1.0d0 +densrat*alphan/(1.0d0+alphav+
* alphat))*rmd*thetagz)
c other tokamaks
else
tauphi=2.0d3*rmajor2*bphi*hntv*rmdbar/
* (tempO*hnv*rmd*thetagz)
endif
write(6,’(a40, "tauphi = ",£7.0)’)tok,tauphi
write(2,20)tauphi
20 format(’theoretical momentum confinement time (msec) =’,
£9.2)
write(2,%*)
write(2,%)
endif
return
end
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