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SUMMARY

In 1991, U.S. electricutilities spent almost $1.8 billion on demand-side management
(DSM) programs. These programs cut peak demands 5% and reduced electricity sak:s 1%
that year. Utility projections suggest that these reductions will increase to 9% and 3%,
respectively, by the year 2001.

However, utility DSM efforts vary enormously across the country, concentrated in a
few states along the east and west coasts and the upper midwest. To some extent, this
concentration is a function of regulatory reforms that remove disincentives to utility
shareholders for investments in DSM programs. A key component of these reforms is
recovery of the net lost revenues caused by utility DSM programs. These lost revenues occur
between rate cases when a utility encourages its customers to improve energy efficiency and
cut demand. The reduction in sales means that the utility has less revenue to cover its fixed
costs.

This report describes a new method, statistical recoupling (SR), that addresses this
net-lost-revenue problem. Like other decoupling approaches, SR breaks the link between
electric-utility revenues and sales. Unlike other approaches, SR minimizes changes from
traditional regulation. In particular, the risks of revenue swings associated with year-to-year
changes in weather and the economy remain with the utility under SR.

Statistical recoupling uses statistical models, based on historical data, that explain
retail electricity sales as functions of the number of utility customers, winter and summer
weather, the condition of the local economy, electricity price, and perhaps a few other key
variables. These models, along with the actual values of the explanatory variables, are then
used to estimate "allowed" electricity sales and revenues in future years. For example, a
utility might use quarterly data from 1980 through 1992 to estimate the SR models. The
models would then be used to determine allowed revenues for 1993, 1994, and 1995.

Five utilities -- Nevada Power, New England Electric System, PacifiCorp, Public
Service Company of Colorado, and Southern California Edison -- provided data to use in
testing this new approach. The empirical results are quite promising (Fig. S-l). With only
one exception, the errors are all less than 2%. And the three-year averages for four of the
utilities are less than 1%; the three-year average is 1.3% for Southern California Edison. The
lack of patterns across these three years and five utilities suggests that statistical recoupling
is a robust method that is likely to yield only small errors from year to year and from utility
to utility.



I examined the number of data points needed to obtain stable results, the price
changes likely to occur with this method, its effect on a utility's incentives to control costs
and promote economic development, the opportunities to manipulate model selection to
achieve desired goals, the effects of past DSM programs, and the effects of DSM programs
that differ across customer classes or in load factor. For each issue, statistical recoupling
seems to work well. For example, although different statistical models yield different
estimates of future electricity use, the differences are small. Therefore -- absent perfect
foresight about future changes in the explanatory variables -- choosing a model to yield
desired results is extremely difficult. Also, this approach encourages utilities to promote
increased sales only when such sales improve the local economy.

In summary, statistical recoupling appears to be an effective way to break the link
between revenues and sales. This approach, when implemented, should free utilities to
ambitiously and creatively pursue cost-effective DSM resources in their service areas.
Utilities, operating with statistical recoupling, can do so because their shareholders will no
longer be penalized by the operation of successful DSM programs.
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Fig. S-1. Errors in SR estimates of total (residential, commercial, and industrial) retail
electricity sales for 1990, 1991, and 1992. The percentage changes in electricity
price would be 50 to 75% of the errors in sales shown here.
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INTRODUCTION

The Colorado Public Utilities Commission (1993) recently wrote:

[U]nder traditional regulation, PSCo's [Public Service Company of
Colorado, a large utility in the Rocky Mountain region] revenues and profits
increase whenever it sells an additional kWh. For similar reasons, PSCo's

revem_es and profits decline whenever a kWh is conserved, even if the savings
are accomplished at no cost.

[Thus], the financial incentives under which PSCo operates will logically act
to hinder the ongoing IRP [integrated resource planning] process. For
example, the record of this case shows that utilities in other states have
developed load-building marketing programs even though new resource needs
were imminent, and have underestimated the long-run DSM [demand-side
management] potential.

In other words, utility DSM programs that improve customer energy efficiency create tension
between the interests of customers and utility shareholders. Utility customers want the
benefits of greater ener_ny efficiency (lower utility bills and improved comfort and
productivity), while utility shareholders want the greater earnings associated with higher
electricity sales. This conflict can be a major stumbling block to utility implementation of
what would otherwise be its "least-cost" resource plan.

State regulation to encourage utility investment in energy efficiency requires three
elements (Nadel, Reid, and Wolcott 1992):

" Utility recovery of the costs it incurs to plan, design, implement, and evaluate its
DSM programs;

', Recovery of the net lost revenue caused by the energy and demand reductions
attributed to the utility's DSM programs;" and

m A financial incentive to the utility to encourage it to run innovative and aggressive
DSM programs that capture as much of the cost-effective resource as possible.

While all three components are significant and deserve attention, the net-lost-revenue
component is often the most important. It is the most critical both because allowing a utility
to recover lost revenues is required to create a level playing field between demand and

'If the utility runs load-building programs, it will enjoy net "gained" revenues.



supply resources and because it usually represents the largest dollar amount. This report
focuses on lost revenues and suggests a new way to solve this problem, called statistical
recoupling (SR).

The next chapter defines the net-lost-revenue problem and, using data from a western
utility, shows the magnitude of the earnings loss caused by utility DSM programs. Chapter
3 reviews the various approaches that have been used to deal with lost revenues. Chapter
4 presents SR concepts, Chapter 5 presents model results based on data from five utilities
throughout the United States, Chapter 6 shows how it would work in practice, and Chapter
7 discusses various issues related to this new approach. Chapter 8 compares the strengths
and iimitations of SR with those of other methods that deal with net lost revenues.



CHAPTER 2
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DEFINING AND QUANTIFYING THE PROBLEM

This chapter quantifies the point that others have made during the past five years:
the more electricity a utility sells, the more money it makes for its shareholders (Moskcwitz
1989). Conversely, the less electricity it sells (e.g., because it runs energy-efficiency programs
for its customers), the more slaarehoiders are hurt.

Utilities periodically file rate cases, and public utility commissions (PUCs) then hold
hearings to establish the utility's revenue requirement. Once the revenue requirement is
established, the PUC allocates it among customer classes. This allocation is then used to set
electricity price structures to collect enough money from each customer class to cover the
utility's cc_sts of providing electricity (both energy and demand) tc_that class.

After rates are set, changes in the amounts of electricity used affect utility revenues.
Because fuel and other variable costs vary directly with the arnc_unt of electricity seniti, a
utility automatically cc_llects enough money to just cover these variable costs. Even if
prudently incurred fuel coastsper kWh change with time, sh_lrehc_lders neither gain nor lose
because of the fuel-adjustment clauses (FACs) that operate in many states.

Changes in electricity use also affect the amount of money that a utility cc_llects to
cover its J'ixed costs. Although these coasts increase over time (because of inflation, changes
in tax rates, and other factors), these increases are -- by definition -- independent of
changes in electricity use. Histc_ricaily, utilities and PUCs have agreed (at least implicitly)
that between-rate-cases increases in revenues associated with load growth would roughly
cc_mpensate the utility for increases in its fixed costs.

This relatioilship, however, can produce perverse financial incentives. Consider a
u'ility with an average retail price of 6C/kWh. This price reflects 2C/kWh of wlriable costs
and 4C/kWh of fixed coasts. If this utility runs a load-building program that permanently
increases electricity use, say by 10() kWh/year, its revenues will go tip by $6/year. This
increased reventie is offset by higher fuel costs of $2/year. Thus, the utility h_rs an extra $4
of revenue tc_offset increases in fixed costs and to increase earnings. The utility will receive
this extra $4 each year until the next rate case.

If the utility, on the other hand, sponsored an energy-efficiency program that saved
its customers 100 kWh/year, its shareholders would lose $4 each year until the next rate case.
Thus, existing regulation discourages the utility from running energy-efficiency programs and
encc_urages the utility to sell more electricity. These incentives and disincentives are largely
independent of any benefits that customers derive from these programs.



To quantify these relationships among short-run costs and retail prices and their effect
on utility shareholders, Hirst and Blank (1993) developed a simple model that quantifies the
effects of higher or lower load growth on shareholder earnings. We used this model to
examine the effects of load growth on shareholder earnings for Public Service Company of
Colorado, Nevada Power Company, Montana Power Company, and the Utah Division of
PacifiCorp. Because the results are quite similar across utilities, I present only the results for
Utah. Eto, Stoft, and Belden (1993), using a different approach, show how utility profitability
varies with the fraction of total cost that is variable and the ratio of marginal variable cost
to average variable cost. Their analysis of data from nearly 160 utilities from 1964 to 1989
shows "excess" annual profits of almost 50 basis points, consistent with the results presented
here."

If PacifiCorp's Utah loads grow l%/year faster than expected (i.e., at 4 vs 3%/year
or at 2 vs 1%/year), PacifiCorp shareholders will earn an extra 130 basis points during the
three years assumed to occur between rate cases.

If rate cases are conducted more frequently, the effect of higher or lower load growth
on earnings is diminished (Fig. 1). For example, if rate cases are conducted annually instead
of once every three years, the effect on shareholder earnings is cut in half.

The preceding cases implicitly assumed that load growth is beyond the utility's control
(e.g., caused by changes in winter and summer weather or by changes in the rate of
economic growth). However, utilities can affect sales through DSM programs, either with
load-building or energy-efficiency programs. The following cases examine the effects on
utility shareholders of DSM programs that help customers improve energy efficiency and cut
electric bills.

Table 1 shows the effects on customers and on PacifiCorp shareholders of three DSM
programs. The pilot program operates with a conservation load factor (CLF) # of 10% and
meets 11% of the growth in energy use. This program provides very small benefits to
customers and only a very small penalty to shareholders.

The ramp-up program increases in magnitude from year to year and has a 50% CLF.
This program offsets 22% of the energy growth between rate cases. Customer benefits and
shareholder costs are both increased substantially relative to the pilot program.

'One hundred basis points equals a l-percentage-point change in the rate ot"return. For example,
an increase of 130 basis points is equivalent to an increase in return t_nequity from 12.0% to 13.3%.

#Analogous to the utility's system load factor, the conservation load factor is the ratio of the
DSM-program-induccd average demand reduction to the peak-demand reduction.
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Table 1. Effects of different types of hytx_thetical PacifiCorp DSM programs on
customers and shareholders

Type of Percentage Customer Shareholder
DSM of energy net benefits" effects

program growth (million $) Basis points Million $

Pilot 11 7 -6 -2

Ramp-up 22 41 -52 - 14
Full-scale 36 80 -136 -37

"The benefits of these programs are the avoided capacity costs plus the qssociated
savings in fuel costs and operation and maintenance costs. The costs include the costs of the
measures plus the utility's administrative costs to run the program. Net benefits are the
difference between benefits and costs.

Finally, the full-scale program offsets 36% of the three-year growth in energy use. It
provides the largest customer benefits, but also has the greatest adverse effect on
shareholders. The issue for Utah regulators and others is how to balance the cust_maer
benefits of DSM (say the $80 million from the full-scale program) against the shareholder
penalty ($37 million).

The preceding analyses were all conducted for PacifiCorp's residential customers, who
face a:l enerb.w-only tariff. However, the results are qualitatively the same for PacifiCorp's
commercial and industrial customers, who face demand and energy charges. Figure 2 shows
the effects of DSM programs with different CLFs for the two types of rate schedules. In
both cases, the more kWh a DSM program saves per kW of demand reducticm, the more
PacifiCc_rp sharehcflders are penalized. This effect is most pronounced for residential
customers but applies to all customer classes.

In summary, current economic regulatic_n: (1) rewards PacifiCorp sharehc_lders for
higher load growth regardless of the benefits that customers enjoy from this higher level of
electricity use, (2) penalizes PacifiCorp shareholders for DSM programs that promote
customer energy efficiency regardless of the economic and environmental benefits such
programs provide, and (3) penalizes PacifiCorp shareholders for DSM programs regardless
of the customer classes at which the programs are aimed. Indeed, as one utility (PSCo)
noted (Gilliarn 1992):

If the goal is t¢_make DSM the company's most profitable resource, then ful__/
recove_ of revenue reductions related to Company sponsored DSM must be
the very basis upon which incentives can be layered. To do otherwise is tc_put
DSM at an immediate disadvantage at the starting point .... Less than full
compensati_n for lost revenue, net of the variable costs, places DSM activities
at a distinct disadvantage vis avis a supply side resc)urce. The Ct_mpany seeks
to place both resources on equal footing.
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CHAPTER 3
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SOLUTIONS TO THE NET-LOST-REVENUE PROBLEM

Commissions and utilities can choose among several mechanisms to address the
problems discussed and quantified in tile preceding chapler. The mechanisms include
traditional command.-al_d-control regulatioI_, frequen_ rate case'.;, different retail rate tariffs,
net-It)st-revenue adjustments (NLRAs), _r deceupling of electric revenues from sales.
Dt'.coupling meclmnisms, of necessity, recouple revenues to something other than sales. Such
recoul)ling mechanisms i1_clude explicit attrition adjustnlenis intended to track the
determinants of ti_,,cdcosts, the number of utility customers, or the determinants of electricity
sales. Some mechanislns that deal with the DSM-induced revenue loss include combinations

of: tllese approaches.

COMMAND-AND-CONTROL REGULATI()N

In this approach, the PUC specifies clearly what the utility should do. The commission
then closely monitors subsequent utility actions for compliance with the PUC directive. If the
utility does not follow the PUC order adequately, the C(mlmission can penalize the company
in subsequent proceedings.

This apprcmch works well in only one state, Wisconsin (Newman, Kihm, and
Schoengold 1992). Wisconsin, however, is unique because it has annual rate cases and a
future test year. Also, the Wisconsin Public Service Commission staff works closely on a day-
t(>day basis with the state's regulated utilities.

I know of no evidence to show that the command and control approach, by itself, has
worked anywhere else in tim U.S. To the contrary, the emp/msis in recent years on removing
the financial disincentives to DSM and providing incentives to utilities that run exemplary
DSM programs suggests just the opposite (N;tdel, Reid, and W(_lcott 1992). Experience with

' incentives and decoupling in New York, Calif(_rnia, and Washington show how these
regulatory reforms can dramatically and rapidly change the strength aIld scope of utility
DSM programs (Swanson 1992).

The Vermont Public Smwice Board (1%_0) rec_gnized the difficulty in ordering a
utility to take acti(_ns inconsistent with the welfare of its shareh(_lders:

Any effort t_ implement least-cost utility plan_ing nlust lecognize that
implementation of demand-side measures requires a workable partnership
between the utilities and their customers, supported by the regulatory
framework within which they operate. To maximize their effectiveness,
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demand-side programs must be carefully crafted, creatively marketed, and
intelligently monitored. These characteristics cannot be achieved by regulatt_ry
fiat alone, and are not likely to be achieved at all if utilities are financially
penalized for succeeding in lowering their sales.

Finally, the Colorado PUC (1993) stated clearly that it wanted to adopt a different
approach:

One solution to this problem [financial incentives that inhibit utilities from
pursuing DSM] would be increased oversight with greater reliance on
command and control regulation. Given the limited resources available to
monitor utility behavior in Colorado, as well as our preference to adopt a
solution that positively reinforces the desired utility behavior without the
imposition of constant regulatory oversight, this commission prefers to address
the problem through regulatory reform.

FREQUENT RATE CASES

Annual rate cases, as shown in Fig. 1, greatly reduce -- but do not eliminate -- the
utility's incentive to boost sales growth. Utilities in Wisconsin file annual rate cases with the
Wisconsin Public Service Commission, and New England Electric files annual rate cases with
the Federal Energy Regulatory Commission. However, rate cases are expensive, time
consuming, and burdensome on all those involved. Therefore, PUCs and utilities may prefer
to increase the time between rate cases rather than conduct rate cases more often. Also,
frequent rate cases dampen the cost-cutting incentives that utilities face between rate cases.

ALTERNATIVE RATE DESIGNS

A PUC, in principle, could set retail rates for energy and demand exactly equal to
utility short-run energy and demand costs. With such rates in place, utilities would face no
shareholder incentive to boost electricity sales and no disincentive to run DSM programs
that reduce sales.

To ensure that utilities collected enough revenue to cover allowed costs, the monthly
customer charges would have to be increased greatly to compensate for the much lower
energy and demand charges. However, as noted by the Connecticut Department of Public
Utility Control (1991), "the dramatic increases in charges that are unrelated to the amount
of consumption would be perceived by most customers as unfair, unjustified, and
intolerable."

Most important, setting prices at short-run costs sends customers econc_nlically
inappropriate signals that could lead to inefficient increases in electricity use. Thus, this



option conflicts dramatically with the concept of economic efficiency, for which prices should
reflect long-run marginal costs.

NET-LOST-REVENUE-ADJUSTMENT MECHANISMS

NLRAs are designed to compensate utilities for changes in revenues associated with
,_tility DSM programs. As such, they are more sharply focused than mechanisms that break
the link between sales and revenues (discussed below). NLRAs have been approved in 16
locations, including Arizona, Connecticut, the District of Columbia, Hawaii, Indiana, Iowa,
Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, New York, North
Carolina, Ohio, Oregon, and Vermont (Reid, Brown, and Deem 1993).

To implement an NLRA, the utility would first estimate the energy and load
reductions caused by each of its past and present DSM programs for the year in question.
These GWh- and MW-saving numbers are then multiplied by the difference between the
retail price for each rate class and the short-term costs (both energy and capacity). The two
products (lost energy and lost capacity revenue) are added together, again tk_reach rate
class. This sum is the net lost revenues caused by the utility's DSM program. It is called
"net" because it is equal to the difference between the reduction in utility revenue minus
the reduction in utility short-term costs (fuel costs plus wlriable operation and maintenance
costs).

NLRAs address only the lost revenue associated with a utility's DSM programs. The
narrow focus of this mechanism excludes other factors that affect utility sales, revenues, and
earnings. For example, the utility could simultaneously operate energy-efficiency and load-
building programs. Its NLRA mechanism would compensate it for lost revenues caused by
the efficiency pr¢'gram, and the extra sales caused by the load-building program would
benefit shareholders, leading to "dueling incentives." Thus, an NLRA would not eliminate
utility incentives to operate load-building programs. In addition, an NLRA would, in
principle, encourage utilities to operate DSM programs that look good on paper and would
quality for the NLRA, but would fail to produce energy savings in practice (Moskovitz,
Harrington, and Austin 1992).

NLRAs could be controversial and difficult to administer (Swanson 1992). In
particular, the estimated revenue losses from energy-efficiency programs could be reduced
by the revenue gains from (1) utility promotional efforts and (2) increased off-system sales
of electricity not captured in the FAC. Calculating the effects of load-building programs (i.e.,
both direct promotional programs and rate incentives) is likely to be as difficult as estimating
the energy-saving effects of energy-efficiency programs. Similarly, estimating the amount and
value of wholesale sales attributable directly to the electricity freed up by energy-efficiency
programs is likely to be difficult.

In addition, estimating the lost revenue associated directly with the energy-efficiency
programs may be difficult and contentious. Arguments might occur over the hours of



operation for the lighting fixtures treated in a utility's DSM program, the number of years
the measures are expected to remain in place and operate as expected, and the number of
participating customers who are free riders and would have installed the utility-sponsored
measures without the program. For a DSM program aimed at industrial customers,
arguments might occur over the effects of the DSM measures on increased productivity and
output, and therefore increased electricity use. These technical issues are difficult to resolve
and could take up a great deal of time for PUC staff and commissioners.

Thu;, NLRA mechanisms place a substantial burden on program evaluation
(Cummings 1992 and Hirst 1992). Evaluation results form the basis for the utility's claim that
it is entitled to compensation for its net lost revenues. These results serve as documentation
for the energy savings and load reductions contributed by the utility's DSM programs.
Unfortunately, the state of the practice of DSM evaluation is such that precise estimates of
program effects cannot be developed unambiguously.

Uncertainty in the estimates of program effects is also a problem in determining
DSM-program cost recovery, in establishing an appropriate incentive to the utility for its
DSM programs, and in resource planning, but the amount of money at stake is typically
much higher for net lost revenues than for these other issues. The problem is compounded
by an NLRA's need to identit}, energy and demand savings in detail -- by rate class and rate
block -- to determine the amounts of revenue actually lost year after year.

Discussions with utility and PUC staff in Connecticut (Townsley 1993 and Quinlan
1993) and in Maryland (Switzer 1993 and Tighe 1993) suggest that these problems can be
overcome. Although the experience with NLRAs is limited (generally less than a year) in
both states, both the utility and PUC people were positive about the experiences to date.
In both states, the active presence of a DSM collaborative made it much easier than it
otherwise would have been to establish the protocols to calculate energy and demand savings
for each DSM program. Outside the hearing room, the collaborative participants were able
to agree on the methods to use and the estimates to apply for each program.

In addition, both utilities (Baltimore Gas & Electric and Northeast Utilities) made
substantial commitments to evaluating their DSM programs. The results of these evaluations
will be used, in later years, to adjust the NLRA methods and assumptions.

Woolf (1993), in his review of the operation of NLRAs, reached similar conclusions.
He found that NLRAs work without controversy where there is substantial cooperation
between the utility and other parties (e.g., through a DSM collaborative), where the utility
is doing competent ewlluations of its DSM programs, where the IRP process is working well,
and where the utility is acquiring cost-effective DSM resources. Wc_olf notes that
"measurement issues, while cumbersome, can be resolved through agreements between
interested parties, and they will become less important over time as better monitoring and
evaluation practices are applied."

I0



Utility experience in, and competence with, evaluation is growing rapidly in many
parts of the count U In addition, some regulatory agencies are adopting protocols for utilities
to use it, estimating the energy and load reductions caused by their DSM programs. For
example, the U.S. Environmental Protection Agency (1993) recently published its

, Conservation Verification Protocols, which it will use in reviewing applicaticms for the sulfur
allowances in the Conservation and Renewable Energy Reserve. Similar protocols were
developed in New Jersey and in Califarnia.

An NLRA mechanism can work satisfactorily only for programs that produce
"tangible" and easily measured energy and load reductions. However, programs aimed at
educating the public; training installers and technicians; and promoting stricter efficiency
standards for new construction, appliances, and equipment are very hard to measure. But,
these "soft" programs might also be cost effective. Adopting a mechanism that rewards a
utility only for "hard" DSM might be counterproductive, leading to a component approach
to DSM programs rather than a comprehensive and integrated approach.

Overall, NLRAs are probably best suited for utilities that have in place an effective
IRP process, are committed to acquiring cost-effective DSM resources as part of their IRP,
are part of a well-functioning and ongoing DSM collaborative, and are committed to
conducting competent evaluations of their DSM programs. NLRAs can work best if the PUC
staff provides substantial oversight of utility programs. By devoting resources tc_ DSM-
program evaluation and review of programs for load-building activities, the incentive to build
uneconomic load that remains with an NLRA may be overcome. To some extent, the
collaboratives in Connecticut and Maryland serve this function.

DECOUPLING

Decoupling is a two-part mechanism. The first part breaks the link between utility
revenues and kWh sales. The second, more difficult part involves "recoupling" revenues to
something else, such as growth in the number of customers, the determinants of changes in
fixed costs, or other factors. Decoupling generally follows one of two paths. It tracks either
fixed costs or actual revenues. Decoupling operates in four states, California, Washington,
New York, and Maine, and is being considered in several other states.

California and New York

California was the first state, in 1981, to implement a decoupling system, called the
Electric Revenue Adjustment Mechanism (ERAM) (Marnay and Comnes 1990 and 1992).
Once every three years, the California PUC sets rates for each of the state's utilities
following much the same procedures used in states with,_ut decoupling. The rate-case
process, based on a future test year, includes a determination of the amount of money the
utility can recover for its fixed costs. The ERAM account is used to ensure that, for each of
the years between general rate cases, the utility collects no more and no less than the
authorized amount for nonfuel costs. As discussed below, attriticm mechanisms are used tc_
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adjust this amount for each year to reflect changes in the determinants of the utility's fixed
costs.

During each of the three years between rate cases, the utility collects in a balancing
account any excess revenues associated with sales higher than those included in the test year
(or deficit revenues associated with sales below those in the test year). During the following
year, these excess (deficit) revenues are refunded to (collected from) customers by
decreasing (increasing) the price of electricity. These revenue adjustments deal only with
fixed costs; ERAM does not address changes in variable costs, which are handled through
a FAC.

In addition to ERAM, allowed fixed costs are adjusted each year through an attrition
adjustment (Ziering 1986). This mechanism adjusts the components of fixed costs on the
basis of various factors that are not controlled by the utility, such as inflation rates and other
cost and productivity indices.

Attrition in California includes three components: financial, operational, and rate-base
attrition. Financial attrition adjusts for changes in the utility's cost of capital. These
adjustments are handled in an annual proceeding that covers all the California energy
utilities. These proceedings set interest costs and return on equity, based primarily on actual
bond interest rates.

Operational attrition adjusts for changes in operating costs, such as wage rates and
the costs of certain materials. These costs are changed on the basis of price indexes that are
specified in the general rate cases. No adjustments are made for changes in the number of
employees or the quantities of materials used. Presumably, these cost increases are offset
by productivity gains. Operational attrition protects utility shareholders from the risks of
inflation while preserving the cost-minimization incentives inherent in traditional ratemaking.

Rat,z-base attrition adjusts for changes in the utility's ratebase. These adjustments are
based primarily on forecasts of capital expenditures developed during the general rate case.

Thus, while ERAM breaks the link between revenues and sales, the attrition
mechanisms recouple revenues to the determinants of changes in fixed costs. Because the
attrition mechanisms are based primarily on cost indexes, not the utility's actual costs, utility
productivity improvements and cost-cutting measures benefit utility shareholders until the
next rate case.

In practice, California's mechanism is a tradeoff between frequent, small rate changes
and less frequent, larger rate changes. Overall, ERAM and attrition should have little effect
on the amount of money a utility collects from its customers. Figure 3 shows the effects of
these mechanisms on retail electricity prices for California's two largest utilities, Pacific Gas
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and Electric (Smith 1992) and Southern California Edison (Lisbin 1993)." For the ten-year
period from 1982 through 1991, PG&E's retail customers experienced six price increases and
four price decreases. The largest changes were -3.5% (1987) and +4.5% (1989). Over the
course of the decade, customers faced a total price increase of 9%.

% PRICE CHANGE CAUSED BY ERAM

--PG&E

4 _-SCE _

!
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!

!%
"2 _ !

",, ," _,_ _,'
m4 ....

....... 1 , l 1 J I I 1 1 ,

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Fig. 3. The percentage changes in retail electricity prices cau.:-_;'sdby ERAM and attrition
for Pacific Gas and Electric and Southern California Edison.

SCE's customers faced six price increases and three price decreases from 1983 to
1991. The largest changes were -3.7% in 1984 and -3.4% in 1988. During this nine-year
period, SCE's customers faced a total price increase of less than 1%.

These results show that the amounts of money flowing through the ERAM accounts
are small. It is important to note that ERAM and attrition affect primarily the timing of
price changes, rather than the amounts of price changes. That is, the factors that affect utility
costs would be treated in the three-year general rate cases, if they were not already included
in ERAM and attrition.

The New York decoupling mechanisms, including the three-year rate-case cycle, are
similar to the ones used in California.

"Eto, Stoft, and Belden (1993) provide additional details on the historic impacts of ERAM in
California. They show that ERAM "has had a negligible effect on rate levels and has, for PG&E,
actually reduced rate w)latility."
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Washington and Maine

Dec_mpling mechanisms were adopted in Washington and Maine in spring 1991; see,
for example, Washington Utilities and Transportation Commission (1991). In these two
states, electric revenues are decoupled from sales, as in California. But these states do not
use an explicit attrition nlechanism to adjust for increases in fixed costs over time. Instead,
to cover increases in fixed costs, these two PUCs recoupled revenues to growth in the
number of electricity customers.

Recent orders from the Washington and Maine commissions point to some problems
with revenue-per-customer (RPC) decoupling related to price w_latility. The Washington
Utilities and Transportation Commission (1992) expressed cc_nsiderable concern about the
large amounts of money flowing through Puget Power's Periodic Rate Adjustment
Mechanism (PRAM). In September 1991, the Commission granted a PRAM rate increase
of $28 million and in September 1992 approved another $66 million increase. These dollar
amounts are equivalent to rate increases of about 3% and 7%. The Commission noted that
"unusually warm weather [which reduced electricity consumption and the amount of low-cost
hydropower] and other circumstances worked to c,'eate an unusually large deferred amount. '_
Indeed, as Fig. 4 shows, more than half of these price increases were caused by changes in
power-supply costs (replacements for the low-cost hydro and new purchased-power
contracts). Puget Power does not have a FAC. It flows purchased-power costs through its
PRAM, which includes a decoupling component.

DECOUPLING 19%
POWER

SUPPLY 53%

DSM
INCENTIVE 5%

DSM-PROGRAM
COST 23%

Fig. 4. Factors accounting for electricity-price increases in Puget Power's PRAM.
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The Washington experience suggests that it might bca mistake to use a decoupling
mechanism to collect other costs (i.e., power-supply costs). In Puget Power's case, these
other costs, not decoupling itself, led to large price increases.

Since the Commission issued its order in September 1992, Puget Power has filed a
rate case; after hearings ()n that rate case, the Commission will decide whether tc) cc)ntinue
the decoupling mechanisrn. The Commissioners have made statements since issuing their
Septernber 1992 order showing their interest in continuing the decc)upling experiment. In
addition, Puget Power's CEO filed testimony (Sonstelie 1993) supporting c()ntinuatic)n c)f
decoupling:

The weather and hydro conditions which occurred during the PRAM 1 period
-- October 1991 through September 1992 -- were far from average, and it
would have been helpful to ewtluate PRAM and decoupling on the basis of
a longer, and more representative, period.

IT]he PRAM/dec()upling mechanism has perfc)rmed well to) d;lte in meeting
the Commission goals: ... Adjustment for Factors Beycmd a Utility's C()ntr¢)l
... Purchased Power Cost Recovexy ... Conservation C¢)st Reccwery ... [and]

Incentives t'c)r t.ea_st Cost Planning.

IF]or Puget Power, the PRAM/decoupling mechanism was essential t'()r us tc)
triple the amount of conserwation.

In response to a directive frc)m the Commission, Puget Pc)wer proposed to mc)dity its
decoupling mechanism to extend the c()st fete)very period to) tw() years. This chalnge wc)uld
reduce the rate swings that custc)mers would otherwise experience. The Commissicm will
issue its order later this year and decide, ;it that time, whether re) c{)ntilluc, mc)dit'y, ret)lace,
()r abandon decoupling.

A month after the Washington c()mmissi()n issued its ()rder, the Maine I)UC (1992)

expressed its concern about the effects of decoupling fc)r Central Maine Power. t t_llfway
through the three-year trial perle)d, the amount accrued, aline)st $41 millic)n, represented a
5% rate increase (3.3%/year increase). As in Washington, the increase was caused in part
by nondecc)upling factc)rs. In particular, the prc)lc)nged Maine recession led to an
overestimate c)f future lcmd growth at the end ()f CMP's pricer rate case. Specifically, while
per-custcmler electricity use grew at almost 3%/year between 198()and 1988, it declined by
me)re than l%/year between 1988 and 1991. Rather th_ln re()pen the rate case, the par,,cs
agreed to)stick with the prerecessi¢)n fi)rec_st and let dec()upling address the ensuing revenue
shortfall.

In early 1993, several parties filed a settlement agreement with the M_line PU('. This
agreement, accepted by the Cc_mmissi(hl, terminates the three-year decc)upling experiment
three months early. In its c)rder, the Maine PUC (1993) no)ted tll_lt "_l rel;_tively small
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portion of these [decoupling] accruals was title to DSM efforts. The vast majority was
because the recession had reduced sales."

In March 1993, as part of its general rate-case filing, CMP (1993) filed a report with
the Commission on decoupling. CMP argued that its mechanism worked as intended and
that it did "remove the immediate financial penalty of ongoing DSM pro}grams." CMP
suggested that the Commission keep RPC decoupling in place.

The company suggested a "few sirnple revisions" to its decoupling rnechanism. These
include use of a more accurate sales forecast, calculation of the allowed revenue-per-
customer amount based on projected customer counts, and the filing of a rate case if large
accruals begin to occur.

Later testimony ffOI'l] other parties and the response from CMP seemed to abandon
consideration of decoupling or other mechanisms to remove the disincentives to utility DSM
programs. Instead, the parties focused on changing regulation to recognize the increasingly
competitive environment in which CMP operates. Bmh the intervenors and CMP proposed
various types of incentive regulation, including a cap on price increases and greater flexibility
in pricing electricity.

As in Washington, the outcome will be known only when the Commission issues its
order, later this year, in the current CMP rate case. However, decoupling may be dropped,
r_rimarily because none of the parties is supporting it.

Other Proposals

In response to an order from the Oregon PUC (1992), Portland General Electric
(1993) and other parties developed a decoupling proposal that relies c_nfrequent rate cases.
The PGE proposal includes a two-year future test period for general rate cases. In such a
rate case, the PUC would set retail load forecasts, revenues, and variable costs for each

month during the next two years. Thus, the rate case would produce mc_nthly values of the
amounts of money PGE could collect for fixed-cost recovery.

Actual revenues, sales, and variable costs would be recc.nnputed each month on the
basis of differences between normal and actual weather. This step is intended to ensure that
the utility (rather than customers) bear the price w_latility associated with changes in
weather.

Differences between the forecast margins ctmaputed during the rate case and the
decc_upling margins computed each month on the basis of actual sales and actual weather
is called the decoupling adjustment. This adjustment would be cumulated over a six-mtmth
period, with the six-month balance refunded to (or collected from) retail customers during
the following 18 months. To further limit the price w)latility associated with this mechanism,
these price changes are subject to a _+3% rate cap. If the cap is binding, the period cff
collection is extended.
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Other utilities, including PacifiCtnp (1t)93); l:lorida Pt_wer ('¢_rp(unti(_n (1993);
P_t(_mac Electric Power; Montana Power; and groups in Coioradt_, Georgia, nnd Utah, itre
considering different mechanisms to break the link between electric revenues and s;lles.
P(_tomac Electric P(_wer (1993) proposed a simple ERAM, in which changes in the nati_nal
C_nsumer Price Index are used to set the company's ;lliowed revenues. The company l'(_ulld
that its nont'uel costs are more closely c(_rrelated with the CPl th_n with the number ()1"
customers it serves. Montana Power (Corcoran 1993) propt_sed a dec(_upling system based
on the difference between forecast retail electricity sales and _tctuni weather-norm;ilized
sales.

Risk Shiftitlg

I)ecoupling as implemented in Calit'(_rnia, New York, Washingtt_n, and Maine shift
the revenue and price risks associated with changes in weather fi(_m utilities to custt_mers.
As illustr;lted in Oregon and Mont_lna, however, risk shifting can be decided scp_lr_ltely tr_i11
the decisitm t() decouple. Under trnditi(_n;ll regulation, if electricity sales are higher because
the summer is especi:_lly hot (or the winter particularly c(_id), the utility keeps that extra
revenue. With some dec(_ul_ling rnechanisms, h(_wever, the c_inp;_ny would refuted th;|t
revenue t() ct_sto_llers ill tile ftflit_wing year. On tile {_ther hand, if the we_tther is esl_ecially
mild and electricity sales are I(_w, the utility ()perating under these mechanisms will nt_t
c(_llect enough revenues t(_meet its _uth()rized revenues; it will therefore c(_llect th;_t deficit
the toll(_wing year. The same logic applies tt_ higher (l_)wer) sales caused by high (l(_wer)
ec(_nomic grt)wth.

RPC dect_upling shifts ()nly stm]e ()t"the risks associated with changes in ec_n(m]ic
gr(_wth to customers. The economy-related risks associated with changes in the numlmr ()1"
customers remain with the utility.

Whether this shifting (_t"risks is go()d or bad ctepends ()n (_ne's perspective. There is
n(_ fund_tmenta_! rens(_n why these risks sh(_uld reside with either the utility or its cust(_mers.
Ct_nsicler the deb;ttes tw()decades _tg()()vet FACs. Beft)re th_tt time, utilities tn)re _11 the
risks (_t fuel-price v(_l;_tility.After the 1973 (_ilemb;trgo, utilities argued, ;And PtJ()s generally
agreed, th;_t it was _ppr(_pri_te to let custt_mers bear the risks (_1'chnnges in fuel l_riccs.

AIs(_, while these dect_upling mechanisms shift price risks t'mm the utility t(_ its
cust(_mers, they reduce bill w)latility tt_r cuslorners with weather-sensitive hn_ds. Electricity
bills are the prt_duct of prices _nd c(msumpli(_n. Under tr;tclitit)n_ti regulati(_n, if the winter
is very c(_ld, electricity use and hills are high, alth(_ugh prices remain u_changed. Under
decoupling, electricity use will uls()be high, but prices the fl_ll(_wingyear will be It_wer, and
therefore hills (with a lag) will n(_t incrcatse as much as they wt)uld under t|_tditi()nal
regulation.

Because st_me fl_rms t_I dect)upling shift the risks (Tfchanges i_ weather a_ndec(_t_l_ic
ct)nditit)ns lrc_m utilities tt) custt)mers, electricity prices can he mr)re w_l;ttile thali tn_lder

ir;_dition;tl regulati(_n. One way to reduce the volatility of price changes is t(_ spre_d the
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decoupling-induced changes over more than one year. A two-year amortization peric_d would
reduce the year-to-year swings in electricity price.

Another way to reduce the volatility in electricity prices that decoupling might cause
is to impose rate caps on the allowed price changes. To be fair, this limit would be imposed
on both price increases and decreases (e.g., to limit price increases to no more than 3% and
price decreases to no more than -3%). Although such price caps might partially recouple
revenues to sales, they impose limits on how much prices can vary from year to year.
Moskovitz, Harrington, _tl_dAustin (1993) discuss these and other ways to reduce the risk
shifting associated with decoupling.

Finally, to the extent that risks are shifted to customers, utility revenues will be more
stable. This greater stability should lower the utility's overall cost of capital, which in turn
would lower electricity prices.

Summary

The recent experiences in Washington and Maine show that when adverse weather
and/or a poor economy occur, price changes can be important. Even in those states,
however, decoupling worked as intended. And the price increases that flowed through the
decoupling mechanism might have occurred anyway (although with some delay) if the
utilities, absent decoupling, had filed rate cases. Finally, when the economy is growing rapidly
and/or the weather is favorable, decoupling will lead to price decreases (as shown by the
record of ERAM-induced price changes in California).

In general, decoupling is likely to be most appropriate for commissions that want
utilities to run ambitious DSM programs and for utilities that already run (or plan to run)
large DSM programs. Decoupling also makes sense in states where the PUC has only limited
staff resources to monitor the utility's DSM programs.

Decoupling removes both the incentive to increase electricity sales and the
disincentive to run energy-efficiency programs. This situation occurs because, with
decoupling, utility earnings are driven by authorized revenues rather than actual revenues.
Unlike NLRAs, decoupling requires no estimates of the energy savings and load reductions
caused by a utility's DSM programs. And decoupling is, at least in principle, simple to
administer.

RPC decoupling, although much simpler than the attritic_n mechanisms used in
California and New York, has two potential problems. First, for utilities with increases in
electricity use per customer, some adjustment must be made to allow revenues to grow more
rapidly than wc_uld occur with simple RPC decoupling. Considerable disagreement might
arise about how to compute that growth factor because its value would affect utility
revenues.
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Second, large industrial customers impose costs on utilities that are much larger than
the average amount recow.:red through the decoul_ling mechanism. Theref¢_re, s_me ¢_t"these
customers are concerned that utilities with RPC dec¢_upling might discriminate against them.
Implementing RPC decoupling separately for each cust¢_mer class I_lrgely addresses this
issue.

These concerns with decoupling led tc_ the development of statistical rec¢_upling,
which is discussed in the next tk_ur chapters.

19



CItAPTER 4
_ - - NU I I N I I II I|NNIINII --

STATISTICAL RECOUPLING CONCEPTS

I developed a new me_hod called statistical recoupling. This decoupling _lppxt_ach
should interest utilities and commissit_ns that do not want to adopt an attrition mechanism
(in which allowed revenues are tied tt_ the determinants of fixed costs) _lxld that are
ccmcerned about the decoupling-induced changes in electricity prices that lmve occurred in
recent years. This new mechanism minimizes changes from current rate m_lking while
severing the link between sales and revenues. One way to accomplish these goals is to let
the utility retain the risks associated with fluctuations in the weather, the local econc_my, and
customer growth, _s it does under current regulation.

Like other decoupling mechanisms, SR inw_lves two steps. The first step dec¢_uples
revenues from electricity sales. In the second step, revenues _lxe rect_upled to statistical
estimates of electricity use.

Implementing _ln SR mechanism requires the use of statistical models that explain
well the effects of weather and economic activity on electricity sales. Such a system might
be developed as fl)llows. The utility would statistically analyze historical data (e.g., for the
past 10 to 15 years) cmquarterly _x mtmthly electricity sales as a functic_n t_fweather severity
(e.g., heating _lnd cooling degree days), service-area economic activity (e.g., inctmae c_r
employment), retail electricity prices, and other filctors that nmteri_llly affected electricity
sales. This model would be estimated either separately for each customer cl_lss or ft_r all
retail s_'.es in aggregate. For example, the model might have the follc_wing fc)rm:

Eit = ili q" bi * I)D, + ci * Y, + di * P, + ei * C, + ... ,

where

E is electricity use (GWh) for month or quarter t and custcmler chtss i;

DD is a measure t_f weather severity (such as heating or cc_oling degree d_lys);

Y is a measure of econcmaic t_ctivity;

P is retail electricity price;

C is the number of utility customers;

... represents _)ther factors that affect electricity use; and
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a, b, c, d, and e are coefficients that are statistically determined from historical data.

The coefficients from this statistical model would then be used to estimate electricity
use for each future year, given the actual weather patterns, economic conditions, and
electricity prices for that year. For example, the utility might use data from 1975 to 1991 to
create this model. The model would then be used to calculate electricity use for the year
1993, based on actual weather, economic conditions, and electricity prices for 1993. The
utility's allowed revenue in 1993 would then be the product of the computed electricity use
(E') and the "fixed" price of electricity (P0 summed over all the retail customer classes i:

Allowed revenues1, m = _ (F_.'i.1993* Pf i.1_,3) '
i

The difference between actual 1993 electric revenues and the allowed revenues is the
!

amount of money flowing through the utility's recoupling account:

* E } _ ,Recoupling accountl, m = H [Pti.l,m ( i.l,m Ei.l,_,,3)]
i

Pt is the fixed-cost component of retail electricity prices. It is lower than the average
retail electricity price for two reasons. First, it is adjusted down to remove the amount of
revenue collected through the monthly customer charge. Second, it is adjusted down to
reflect the base energy cost (P_, either the variable cost allowed in the utility's current FAC
or, for utilities without a FAC, the actual variable cost for that year)." That is:

Pf = Retail revenue - Revenue from customer charges - P,,
Retail sales

Typically, Pf is 50 to 75% of the average retail electricity price.

If the recoupling account is positive (i.e., the utility was authorized to collect more
money than it did), it will raise the price of electricity the next year to recover this
difference. Of course, if the recoupling account is negative, the price will be reduced during
the following year.

While the models used in SR are virtually identical to those used by utilities, the
application is quite different. Utilities routinely estimate the effects of weather, the economy,
and other factors on electricity sales as part of their short- and long-term forecasting efforts.

When utilities use their models to forecast electricity sales, they must make
assumptions about the values for the explanatory variables. For example, a utility in 1993

"P,,must be calculated at the customer meter (and not at the power plant busbar) to appropriately
account for line losses. Its calculation depcnds on the particular FAC, if any, used by the utility.
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wanting to fl_recast sales fl_r 1994 and 1995 will have to assume values fl_r income, number
of customers, and other filctors for these two future years. However, in SR, these models are
used to determine allowed sales fl_r the most recent year. And values fl_r all the expla,_atoiy"
variables are available at that time. In other words, SR involves no assumptions on what the
values will be for heating degree days, income, electricity price, and so on.

With respect to allocation of risks between a utility and its customers, statistical
recoupling is like existing regulation. The utility, under SR, retains the risks associated with
changes in sales and revenues caused by changes in all the variables included in the SR
model. For example, if the model includes heating degree days as an explanatory wlriable,
then the company's allowed revenues will change according to changes in actual heating
degree days. If the winter is especially mild, the value for heating degree days will be lower
than normal. This lower value will then, through the SR model, cut allowed revenues. Unlike
other decoupling approaches, this one adjusts the revenues for fixed-cost recovery to vary
with changes in the weather, local economy, and any other factors explicitly included in the
models. This conclusion assumes that the statistical model(s) will accurately capture the
effects of changes in weather, the economy, and electricity price on electricity use.
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CHAPTER 5
I I I I II I

STATISTICAL RECOUPLING MODELS

DATA

I obtained data from five utilities to use in testing statistical recoupling (Table 2). Two
of the utilities provided monthly data (New England Electric System's Massachusetts Electric
Company subsidiary and Nevada Power Company), while the other three provided quarterly
data (PacifiCorp's Utah service area, Public Service Company of Colorado, and Southern
California Edison). All five utilities provided 13 or more years of data for their residential,
commercial, and industrial customer classes. The utilities also provided data on heating and
cooling degree days, average electricity prices for each customer class, and various measures
of economic activity in their service areas. The price variable used in all these SR models
is the ratio of revenues to sales; it does not explicitly treat the tariff details (i.e., monthly
customer charge, energy charges, and demand charges).

MODEL RESULTS

In developing SR models, I emphasized simplicity rather than accuracy. So, l
estimated only linear models (i.e., I ignored the possibility that log-log or log-linear models
might perform better) and I used the minimum number of variables that seemed
reasonable." In particular, I used no binary (dummy) variables, as did the five utilities in
their estimation of statistical models. For example, Nevada Power used binary variables for
each month in combination with the cooling degree day variable to allow for differences in
the amounts of electricity used for air conditioning by month. Other utilities used binary
variables to reflect unusual weather or economic conditions (e.g., a strike). Finally, I used
no lagged dependent variables (e.g., last quarter's electricity use) as explanatc_ry variables;
to do so would recouple revenues to sales.

To begin, I used the data from PSCo to construct two sets of statistical models. # One
set dealt with each customer class separately, while the second set dealt with total sales. In
each case, I used the data through 1989 to estimate the statistical models. I then used the
last three years (I990, 1991, and 1992) to see how well the models performed.

"The models include terms that correct for autocorrelation, a common problem with time-series
models. Autocorrelation refers to correlations among the error terms in a statistical model. Failure
to correct for autocorrelation leads to higher standard errors for the model coefficients.

#I used Forecast Pro for DOS to estimate the models presented hcrc (Stcllwagcn and Goodrich
1993).
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Table 2. Customer classes and data from five utilities

Customer classes Independent variables a

Nevada Power (monthly data, 1981-1992): Fraction of apartments in Clark County
residential, general service, large general
service, hotel

New England Electric (monthly data, Disposable income, personal income,
1980-1992): residential electric heat, employment (nonmanufacturing and
nonelectric heat, master-metered; manufacturing), wholesale production
commercial; industrial index

PacifiCorp -- Utah (quarterly data, 1978- Income, employment (manufacturing,
1992): residential, commercial, all mining, total), industrial output
industrial, four largest industrial customers

Public Service Company of Colorado Income, employment
(quarterly data, 1970-1992): residential,
commercial, industrial

Southern California Edison (quarterly Income, employment (manufacturing and
data, 1980-1992): residential, commercial, nonmanufacturing), unemployment rate,
industrial gross state product

aAll the utilities sent data on electricity sales, number of customers, revenues, and
price for each customer class, as well as data on heating and cooling degree days.

Sources: Farina (1993), Southern California Edison (1993), Tamashiro (1993),
Wharton (1993), and Wordley (1993).

I used two criteria to assess the feasibility of applying SR to PSCo. First, I looked at
the statistical properties of the model to see how well it did in simulating the past. Second,
I looked at the changes in electricity prices that SR would have caused for the last three
years (1990 through 1992).

The class-specific models had good statistical properties. The models all explained
93% or more of the quarterly variation in electricity use for each customer class. (Such high
values for R 2 are typical of time-series models.) In addition, the coefficients of each variable
always had the expected sign. As examples, the coefficients for heating and cooling degree
days were both positive, and the coefficient for electricity price was negative. The coefficients
for heating and cooling degree days were statistically significant at the 99% level, while the
coefficients for electricity price and income were often significant at only the 80 to 90%
level.
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In terms (,_ their ability to) simulate correctly electricity use for 1990, 1991, and 1992

tile models' periornmnces were also good. The residential model had errors ot'-1.5, -2.4, and
-2.8% for these three years. The commercial model had errors of-1.6,-3.1, and -2.5%. And
the industrial model had errors of +1.3, +2.2, and + 1.8%. Tile combined effect c_f these

simulations, when weighted by the contribution of each sector tc_ total retail revenues, was

quite good. As shown in the top part of Table 3, the three models tt_gether had cc_mhined
errors of-1.2%, -2.2%, and -2.1% for 1990, 1991, and 1992.

The aggregate model of total electricity use combines data from the residential,

commercial, and industrial sectors. Thus, electricity use and the number c_f custc_mers

represent the totals across the three sectors, and electricity price is the ratic_ c_f tmai
revenues to total sales across the three sectors. This model had much better statistical

properties and an even more accurate simulation record than did the three sector-specific

models (Fig. 5). This model had errors of-0.5%, (}.0%, and + 1.1% t'c_rthe three ye_trs. And

the _lggregate model c_f total electricity use per customer had ern_rs c_t"-+-(L2%, + 1.4%, and
+0.8% for 199(), 1991, and 1¢)92. The aggregate model of electricity use is the simplest, has

the best statistical properties, and yields tile smallest errc_rs. IVc_rthe three years 199()

througll 1992, SR tmsed on this model had an average error of only ().2%/ye_lr. 1t' statistical

recoupling had been in place in Colorado,, it wc_uld have led tc_ a (L3% price decrease in

199(), nc_ price change in 1991, and a ().6% price increase in 1992.

I developed similar statistical n-u_dels with the data from the other fl_ur utilities; the

results _tre similar to the PSCc_ results. For example, ! conducted the same type c_t"analysis

described above with monthly dat_l from Nevada Power (hottc_m part c_t Table 3). The

cc_mbincd results, acrc_ss the three prirn_lry customer classes, had errc_rs slightly I_lrger th:ln

those cfl_t_tined with the PSCc_ mc_clels. The aggregate models I_ad smellier errc_rs th;.lll the
c_inbin_ltic_n c_t class inc_dels, consistent with tile PSCc_ results.

Table 3. Percentage error in PSCo and NPC retail electricity sales had statistical

recoupling been used in 1990, 1991, and 1.992

Cc_mhinaticm c_l" Tectal Tectal sales

class models s_les per ct, stc_mer

Public Service ()mlpany c_t"Cc_lc_radc_
199{} -1.2 -0.5 +0.2

1991 -2.2 (1.0 + 1.4

1992 -2.1 + 1.1 +0.8

Nevad_ Power Cc_mpany
1990 -1.8 -1.8 -1.9

1991 - 1.8 -(I.4 -0.7

1992 -2.3 -{).2 -().5
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% ERRORS IN ELECTRICITY SALES AND PRICE
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Fig. 5. The errors in retail electricity sales and prices associated with statistical
recoupling, based on the model of aggregate electricity use for PSCo. The
errors in price equal :52% of the errors in sales.

Figure 6 shows the performance of the SR models fl_r each of the five utilities." All
these models used total electricity use (GWh) as the dependent variable in a simple linear
equation with about six independent variables. With one exception (1992 for SCE), the
errors are all less than 2%. And the three-year average error for each utility is less than 1%,
except for SCE, which has a three-year error of-1.3%. The 15 data points in Fig. 6 show
no pattern, either across utilities or with time. This lack of a pattern is encouraging because
it suggests that the errors associated with SR are largely random and that, on average, the
price changes caused by SR will approach zero.

These analyses of data from five utilities showed great similarity in results. This
regularity suggests that SR is likely to yield consistent results from year to year and from
utility to utility.

'The percentage change in electricity price associated with SR would bc 25 to 51)% l¢_wcrthan
the percentage change in electricity sales, as discussed above.
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% ERROR IN SR ESTIMATES OF ELECTRICITY USE
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Fig. 6. Errors in SR estimates of total (residential plus commercial plus industrial)
electricity use for 1990, 1991, and 1992.

NUMBER OF OBSERVATIONS NEEDED

An impc_rtant issue associated with SR is the minimunl number c)f ()hscrvatit)ns
needed to obtain reliable and stable estimates of electricity use during the simulation perit)d.
To examine this issue, I used the monthly data from NEES, which covers 1980 through 1992.
I tested models of total electricity use (residential, commercial, and industrial) with eight,
seven, six, five, four, and three years of data (i.e., with 96 to)36 c)hservations). These models
all included an autc)correlatic)n term with a 12-month lag, which is why the first year c)f data
(1980) was not available. The last three years c)f data ( 1990 thrc)ugh 1992) were n()t used in
the estimation so that they could be used in a simulati()n test.

Table 4 summarizes the results for these six models. Each model had the same

explanatory variables: number of customers, heating degree days, cooling degree days,
average electricity price, and industrial production.

All the models, even the one with c)nly 36 obserwltic)ns had very high expl_ln_:tc)ry
power, with R2 values ()f 9 7% or higher. The coefficients fc_rnumber c)f custorners, heating
degree days, and cooling degree days were significant at the 100% level fc)r every model.
However, the c()efficients f()r electricity price and industrial prc_ductic_nwere less significant
for the models with fewer ohservaticms. Even here, however, the cc)efficients were significant
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at the 95% level or better fl)r all the models with 60 or more observations. These two

coefficients were not significant in the models with 36 or 48 observaticms.

Table 4. Statistical properties and performance of models of total electricity use fl_r
NEES retail customers

Number of observations in model
96 84 72 60 48 36

Adjusted R -_ 0.989 0.988 0.986 0.985 0.978 0.972
Significance of coefficients

Number of customers 1.00 1.00 1.00 1.00 1.00 1.00

Heating degree days 1.00 1.00 1.00 1.00 1.0() 1.00
Cooling degree days 1.00 1.0() 1.00 1.00 1.0() 1.00
Electricity price 0.99 0.95 0.97 0.98 (I.89 0.82
Industrial production 1.00 1.00 1.()0 0.98 (I.77 0.30

Total error in simulation

period, 1990 to 1992 (%) + 1.2 + 0.9 -1.0 + 0.5 + 1.5 + 4.8

The magnitudes of the coefficients for number of customers, heating degree days, and
cooling degree days were quite stable across these models. The maximum variation across
these three variables and six models was 15%. The variation in the magnitudes of the
coefficients for electricity price and industrial production were higher. To illustrate, the
electricity price coefficient in the model with 60 observations was 36% higher than the
coefficient in the model with 96 observations.

Figure 7 shows the simulation perfl_rmance of these six rnodels for the years 1990,
1991, and 1992. All the models, except the one with only 36 observatic)ns, gave accurate
estimates of total electricity use. These five models also gave consistent estimates from year
to year: a slight underestimate of 1990 electricity use (-().5%), a slight (werestimate in 1991
(+0.4%), and a larger (werestimate in 1992 (+0.7%).

I conducted a similar experiment with a utility that pr(wided quarterly data rather
than monthly data. The results, using PSCo data, are essentially the same (Table 5). As the
number of observations used to estimate the model increases, the simulation accuracy also
increases. For example, the model with 73 observations had a smaller three-year error
(0.5%) than did any of the models with fewer observations; the same is true for the model
with 65 observations, and so on.
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% ERROR IN ELECTRICITY USE
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Fig, 7. Simulation results obtained with six models (with 36 to 96 observations) of
total retail electricity use for NEE&

Table 5. Statistical properties and performance of models of total electricity use for
PSCa_ retail customers

Number of observations in model
73 65 57 49 41 33

Adjusted R 2 (I,992 0,990 0.988 0.983 (),976 (),970
Significance of coefficients

Number of customers 1.00 1.00 1.90 l.()() l.()() l.()(I

Heating degree days 1.0() 1.00 1.()0 1.00 l.()(I 1.()()
Cooling degree days 1.00 1.00 1.0(1 1.()() 1.(1() 1.1)()
Electricity price 0.94 0.90 0.98 0.99 0.95 0.75
Income 0.99 1.()() 1.()(} 1.()(1 1.(10 (1.98

Total error in sirnulatic_n

period, 1990 to 1992 (%) +0,5 + 1,3 +2,7 +3.9 +4.5 +5.3
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Generally speaking, the more observations used to estimate the model, tile more
accurate it is over the simulation period. However, over a broad range of sample sizes
(above 40 or so), the results are quite stable in terms of both model estimation (explanatory
power and statistical significance of the coefficients) and simulation (accuracy of predictions).
Also, the range in model estimates increases from 1990 to 1991 and again to 1992.
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CHAPTER 6
iiii II i i iiiii II I I II I iiiiiii1| II ii I

IMPLEMENTING STATISTICAL RECOUPLING

Implementation involves two steps. In the first step, the utility, working with other
interested parties, develops alternative statistical models. After review of these infidels, the
c¢_mpany and other parties agree on a particular model to use, subject to approval by the
PUC. For purposes of this example, I use the PacifiCorp quarterly data from 1978 through
1989 on electricity sales and its key determinants.' Aggregatic_n of the data across the three
primary classes (residential, commercial, and industrial) yields the fc_llowing "preferred"
model (Table 6):

Total electricity use (GWh/quarter) = -564 (CONS'F)
+ 0.00660 * Number of customers (CTOT)
+ 0.113 * Heating degree days (HDD)
+ [).347 * Cooling degree days (CDD)
- 61.7 * Retail electricity price (PTOT)
+ 177 * Indus:rial output (INDOUT)

Table 6. Statistical prope_ies fi_r mc_,teiof PaeifiCorp total Utah sales (GWh/qua_er)'

Term Coefficient Standard error t-statistic Significance

CTOT 0.006603 0.001354 4.875088 0.999982
PTOT -61.723168 31.555730 -1.956005 0.942527
HDD 0.113035 0.013195 8.566718 1.000000
CDD 0.346906 0.035360 9.810710 1.000000

INDOUT 176.921646 111.595417 1.585385 0.879246
CONST -563.573372 334.283099 -1.685916 0.900402

AUTO[-1] 0.415613 0.148275 2.802979 0.992229

Sample size 47 Number of parameters 7
Mean 2496 Standard deviation 326.9

R-square 0.968 Adjusted R-square 0.9632
Durbin-Watson 1.981 Ljung-Box(18)=19.99 P=0.6664
Forecast error 62.69 BIC 77.04

MAPE 0.01869 RMSE 57.83

_See the Appendix for an explanation of the statistical terms.

The second step involves application of the model to compute allowed shies _lnd
revenues for the years 199(I, 1991, _tnd 1992. Results for a case with nc_DSM prc_gr;lms ;ire

"I did xlot use the data for 19¢X),1991, and 1992 in estimating the statistical mt_dcl; these data
were used only to test the accuracy of the SR modcl in simulation.
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shown in Table 7; see especially the last two lines of this table.* For 199(I, based (m actual
values of heating and cooling degree days, industrial output, electricity price, and number
of customers, the mendel computes allowed sales (_t' 12,615 GWh, 1.7% more than the actual
sales of 12,398. This yields an increase in electricity price of 0.05C/kWh to be applied in 1991
to the base value (_f5.36C/kWh (the weighted average of the retail prices for each customer
class approved in the most recent rate case). Thus, the average retail electricity price in 1991
is, as shown in Table 7, 5.41C/kWh.

"Fable 7. Implementation of statistical re_mpling in Utah with no DSM programs

Three-year
1990 1991 1992 1993 effect

Without statistical recoupling
Gross sales (GWh) 12398 12839 13427

DSM effect (GWh) 0 0 0

Net sales (GWh) 12398 12839 13427

Average retail price (C/kWh) n 5.38 5.36 5.12 5.12 5.20

Revenues (million $) 667 688 687 1376

With statistical recoupling
Actuals

Average retail price (C/kWh) 5.38 5.41 5.14 5.07 5.21

Revenues (million $) 667 695 690 1385

Heating degree days 5370 5795 5153

Cooling degree days 1346 1102 1189

Utah industrial output 11.2 11.3 11.8

Real electricity price 4.68 4.47 4.16

Number of customers (thousands) 491 502 506

Allowed

Sales (GWh) 12615 12925 13173

Revenues (million $) 674 691 680 1371

Price adjustment, next year

C/kWh 0.05 0.02 -0.05 0.02

% change 1.0 0.4 -I.0 0.33

aThe year-tc_-year changes in average retail prices reflect the changes, bc)th within and
acr¢_ss custc)mer classes, irathe relative amc)unts c)f'electricity used.

In 1991, the winter is me)re severe, the summer is milder, the number c_fcustc)mers
grc_ws, industrial output increases slightly, and electricity prices fall, leading tc_an increase
in allowed sales, tc_ 12,925 G Wh. Actual sales grow alsc_, to 12,839 G Wh. This difference
between actual and allowed sales in 1991 leads to a (I.02¢/kWh price increase to)be applied
to the base price in 1992.

'To produce the allowed sales estimates in Table 7, the coel'ficicnts in Table 6 t'¢_r('TOT, PTOT,
INDOUT, and CONST must be multiplied by 4 to convert from quarterly to annual estimates. Also,
the autocorrclation term (AUTO[-I ]) in Table 6 is set tc_zcm for simulati(m.
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In 1992, allowed sales are slightly below _,ctual sales, leading to a (I.(15¢/kWh price
decrease applied in 1993. During this three-year period, SR would have incre_lsed prices
slightly for two years and then decreased prices slightly in the third year. The overall effect
is an increase in electricity price of 0.()2¢/kWh ((!.33%) for the three years. The percentage
changes in electricity price are less than two-thirds the percentage err_rs in the SR model
because of the adjustments in going from the retail electricity price t_ Pf. A typical
residential customer with a base price of, say, 6.0C/kWh would have paid 6.(15C/kWh,
6.02C/kWh, and 5.95C/kWh for electricity in 1991, 1992, and 1993 had SR been in place.

Table 8. Implementation of statistical re_mpling in Utah with DSM programs

Three-year
1990 1991 1992 1993 effect

Without statistical recoupling
Gross sales (GWh) 12398 12839 13427
DSM effect (GWh) -60 -120 -180
Net sales (GWh) 12338 12719 13247
Average retail price (C/kWh) a 5.38 5.36 5.12 5.12 5.20

Revenues (million $) 664 682 678 1360

With statistical recoupling
Actuals

Average retail price (C/kWh) 5.38 5.43 5.17 5.10 5.23
Revenues (million $) 664 690 685 1375

Allowed

Sales (GWh) 12615 12925 13173
Revenues (million $) 672 688 676 1364
Price adjustment, next year
C/kWh 0.07 0.05 -0.02 0.i0
% change 1.3 0.9 -0.3 1.86

_'ro keep this example sinlple, these prices dc_not reflect recovery of DSM-pmgram
C{)StS.

If PacifiCorp had run DSM programs that cut electricity use during this perit_d, the
mechanics of implementing SR would lmve been unchanged. In this ex_lmple, I assume that
the company's DSM prc)grarns cut electricity use hy an incremental ().5% each year (Table
8). In 1992, sales are h_wer by almost 1.5%.

Because of the c_)mpany's assumed DSM programs, the price decreases are slightly
smaller and the price increases are slightly larger than was the case with no DSM prc_grams.
During the three-year period, prices increase all average of ().l%/year withc)ut DSM
programs and ().6%/year with DSM programs.' Thus, SR works as expected: it yields _ully

'These DSM-induccd sh_rt-tcrm price increases arc ol'fsct by price decreases later on and by
lower tt,tal c_sts of meeting electric-energy scrvicc needs.
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small changes in electricity price and it removes the disincentive for PacifiCorp DSM
programs.

This example covers a three-year implenmntation period, which, I believe, is
appropriate, Retention of the same model for several years is administratively simple
because it avoids conflict over model form and variables. However, the forecasts made with

a statistical model will become less accurate as time goes era. On the other hand, estimating
new models every year invites regulatory complications and, more important, is probably not
necessary to maintain accuracy. Although SR can be implemented and updated as part of
a regular rate-case cycle (e.g., the three-year cycles in California and New York), the method
can be implernented and updated independent of rate cases.
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CHAPTER 7
i i ii i i iii i iii ii

OTHER ISSUES FOR STATISTICAL RECOUPLING

COST-CONTROL AND ECONOMIC-DEVELOPMENT EFFORTS

Statistical recoupling should have no effect on a utility's efforts to control its costs,
keep electricity prices low, and promote economic development. Because the mechanism
focuses on revenues and not on earnhzgs, a utility would continue to have the same incentive
it always had to hold down costs.

Although the mechanism removes the incentive to build uneconomic load, it also
remcwes the disincentive to promote customer energy efficiency. As the Connecticut
Department of Public Utility Control (1991) noted "conservation is an essential tool to keep
Connecticut business competitive and attract new companies to the state."

A utility operating under SR would continue to run beneficial load-building programs
(e.g., to promote economic development or to imprcwe local environmental quality) because
its long-term profits depend on the health of the economy in its service area. If local
industries do poorly or go out of business, the utility will lose not only thc)se industrial sales
but all the associated residential and commercial sales, too. In the short term (i.e., between
rate cases), the utility would have an incentive to promote economic sales and a disincentive
to promote sales that did not improve the local economy (i.e., that were not reflected in the
economic variable _n the SR model).

For example, Southern California Edison (1992) runs load-building programs tc_help
its commercial and industrial customers meet environmental regulations and therefore
remain in the SCE service area. These programs focus on local air quality; examples include
the Volatile Organic Compound Reduction Test Program for Dry Cleaners and a program
to reduce NO_ emissions from fossil-fuel boilers through "retrofits, heat reccwery equipment,
emission reduction technologies, electric boilers, heat pumps, and therm;_i storage
applicztions." Because SCE's earnings are independent of electricity sales (because of
ERAM, discussed above), the California PUC can be more confident that SCE runs these
programs to help customers.

To the extent that a utility promotes load growth that increases econc_mic activity, SR
will increase allowed utility revenues and therefore earnings. Fc_r example, the mendel
presented above for NEES uses Massachusetts industrial output as an explanatc_ry wlriable.
The inclusion of this variable in the model means that any NEES eccmomic-develc_pment
activity that increases output will increase NEES's allowed revexiues under SR. If NEES
encourages a firm to build a new factory in Massachusetts, the output generated by that
factory will increase NEES's allowed revenues.
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However, if the company boosts loads in a way that does not increase output in the
service area, its revenues and earnings will not increase. In other words, the company, under
SR, has an incentive to promote sales that help the local economy. However, NEES receives
no compensation for sales that do not benefit customers in general (i.e., undifferentiated
load growth). These are very desirable features of SR, in my view.

As Bartsch and DeVaul (1993) comment:

Utilities traditionally have supported economic development initiatives
because they depend upon the fiscal fortunes of their service territories. Most
follow the 'smoke-stack' model of industrial recruitment, however, often

offering low incentive rates to attract new business. Few actually undertake an
active effort to invest directly in business modernizaticm or to help firms
improve their cash-flow positions by managing energy needs and costs.

Yet by linking energy efficiency and ccmlpetitiveness strategies, utilities can
lower businesses' operating costs and upgrade their process technologies.

Statistical recoupling provides an incentive for utilities to link efficiency and competitiveness
because the method removes the disincentive to reduce electricity sales while retaining an
incentive for economic growth.

BIAS IN MODEL SELECTION

To assess the possibilities of manipulating the mc)dels used in SR, I developed various
models of total electricity use. I used the PacifiCorp data fc)r Utah to ccmduct this exercise,
the details of which are in the Appendix.

I estimated models of total electricity use (cc_mbining data from the residential,
commercial, and industrial classes) as well as models of tcmll electricity use per customer.
Three of the four models in each set are linear models, while the fc_urth model uses the
logarithmic form for electricity use, electricity price, and the eccmc)mic variable. The first
three models differ in their use c)f an economic variable: industrial output, manufacturing
employment, and industrial output per customer.

Table 9 and Fig. 8 show how these eight models differ in the accuracy of their
estimates of electricity use for 1990, 1991, and 1992, as well as the cumulative (three-year)
error. These models were all estimated using data from 1978 through 1989.
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Table 9. Simulation errors ob:ained with different models of electricity use fi,r
PacifiCorp"

Percent error

Total sales models Sales per customer models
(1) (2) (3) (4) (5) (6) (7) (8)

1990 + 1.7 +2.8 + 1.6 +2.7 +2.0 +2.6 + 1.6 +2.2
1991 +0.7 + 1.4 +(I.5 +2.3 +0.9 +0.4 +0.1 + 1.3
1992 -1.9 -2.(9 -2.2 +0.1 -1.5 -3.9 -2.4 -2.1

Three-year
error +0.5 +2.2 +0.1 +5.1 + 1.4 -0.9 -0.7 + 1.4

"The Appendix provides details on each of these models.
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Fig. 8. Simulation errors obtained with eight models of electricity use for PacifiCorp.

The models all cwerpredict electricity use in 1990 and 1991. All but cme of the mc_dels
underpredict 1992 electricity use. The range in predictions among the mc,dels increases from
year to year, from 1.2 percentage points in 1990 to 2.2 percentage points in 1991, and 4.(I
percentage points in 1992. These results, not surprisingly, show that the accuracy of the
models' estimates decreases as one moves further away from the historical estimation peric,d.
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This phenomenem was als¢_observed in the cc_mparisc_n ¢_t:six mc_dels t'_r NEES, which was
discussed above (Fig. 7).

Given this range in model performance, how might a utility seeking to maximize its
allowed revenues in future years pick among these models? Table 9 shows that Mendel 4
yields the largest positive error of these eight models, a 5. i% overpredictic)n t)f sales.
Comparing the c(_efficients of this model with those of Model 8, the c_ther I¢_g-ic_gmendel,
shows that Model 4 has a higher electricity-price coefficient and a Ic_wer industrial-c_utput
coefficient.

If the utility knew, in 1989, that industrial output wc_uld grc_w slc_wlyduring the next
three years and that the mix of electricity sales wc)uid shift to the industrial sector (which
pays a lower price than does the residential class), then the utility w¢_uld pick Model 4 cwer
Model 8. On the other hand, if the utility thought that the eccmomy wc_uid grow rapidly and
that the mix of sales wc_uld not change (¢_r would shift to the residential sectc_r), then it
wc_uld want to use Model 8. Absent good informatic_n ¢_nsuch future trends, the utility has
nc_basis for selecting c_ne mt_del over anc_ther.

One can pick any pair of models amc_ng these eight and g¢_thrc_ugh the same type
of exercise to show the difficulty of selecting a model t¢_achieve a desired ¢_utcc_me.Consider
Models 1 and 2 as another example. The state's consumer adw_cate might like a mendel that
lowered the utility's authorized revenue. So it would prefer, after the fact, Mendel 1 t_ Model
2. But in 1989, how would it know whether the number c_t"custt_mers would gr¢_wslowly (in
which case it would pick Model 2) or whether the summers wc_uld be especially ht_t and the
winters unusually mild (in which case it would pick Model 1)? What wc_uld the cc_nsumer
advocate do if it thought that the number of customers wcmld grow slc_wly (which faw_rs
Mendel 2) and that the summers would be mild and the winters harsh (which tav_rs Mt_dei
_)?

This examination cff alternative models and their simulatic_n results leads tt_ three
conclusions:

• It is very difficult -- absent reliable infc_rmation ¢_nfuture changes in the number _1"
customers, the weather, and the ecc_nomy -- to select a mendel that will achieve _
desired outcome. Thus, manipulation is not a prc_l_lem with SR.

" The range in estimates across these models is quite small, which suggests that SR
results are robust.

• The range in estimates increases from one year tc_the next, which suggests that these
models should be re-estimated every few years.
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EFFECTS OF PAST UTILrI'Y DSM PROGRAMS

Because the models used in SR ;ire based on historical data, they will autc)matically
include the effects of any past load-building or energy-efficiency prc_grams that tile utility
might have run. Will tile effects of such past programs bias the estimates (ibtained with the
statistic_._l-recoupling models?

Hypothetical Example

T(_ explore this issue, I used the data from PacifiCorp and added the effects of a
hypc_thetical load-building prc)gram. This hypothetical program began in 1985, with a first
quarter sales increase ()f 0.15%. The program continued unchanged with each qu_lrter's load
increment added to the cumulative effects of all past increments such that sales in 1989 were
increased 2.5% because {)f these load-building efforts. By assumptic_n, this pro)gram had no)
effect on the local economy (i.e., Utah industrial output).

I made two alternative assumptions fc_r the 1990-1992 simulati()n perle)d: (1) the
utility ccmtinued its load-building pro)gram unchanged during these three years {_r (2) the
utility stopped load-building programs at the end of 1989 (Fig. 9). In bc_th cases, the effects
of past load-building programs continued through the simulntic)n period. I used the same
linear model t'ormulatic)n of total electricity use shc)wn in Table 6; 'the coctTicients are
different because of the load-building effects from 1985 through 1989.

PACIFICORP ELECTRICITY SALES (GWh)

14,000 LOAD BUILDING .5.

1985-'92 .>...;".-
13,000 .., _.

LOAD BUILDING
12,000 .... 1985-'89 .,,,/"

BASE .,/t/

11,000 (ACTUAL) _*._

10,000

9,000

8,000

7,000
1978 1980 1982 1984 1986 1988 1990 1992

Fig. 9. PacifiC.()rp retail electricity sales for its Utah service area. The solid line is
actual sales. The dashed line assumes that a I(lad-building program was in
operation from 1985 through 1989. The dotted line assumes that the load-
building program continued to operate through 19')2.
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The simulation results for the case with continuation of load building are quite similar
to those obtained with no load building (compare the first column in Table 9 with the first
column in Table 10). However, the errors are consistently more positive for the case when
load-building stops at the end of 1989. Over the three-year simulation period, the difference
amounts to an extra 2.7% of sales if the utility had stopped its load-building programs at the
end of 1989.

Table 10. Simulation errors obtained with a model of total PacifiCk_rp electricity use with
a load-building program that was run from 1985 through either 1989 or 1992"

Load building l_x_ad building
continued through 1992 stopped in 1989

1990 1.7 2.1
1991 0.3 1.2
1992 -2.4 -1.0

Three-year error -0.4 + 2.3

_This load-building program, begun in 1985, increased sales by 2.5% in 1989. The
difference between the two cases in 1992 was 1.5% of sales.

These results are expected. The model and its coefficients used to estimate electricity
use for 1990, 1991, and 1992 are exactly the same in both cases. Therefore, the estimated
results are the same in both cases. The errors are greater in the second case because the
"actual" values of electricity use are lower when load building stops at the end of 1989.

These results show that SR overestimates allowed revenues if the utility had load-
building programs that were discontinued at the start of the statistical-recoupling
implementation period. The reverse is also true. If the utility had run energy-efficiency
programs that were cancelled when SR was being implemented, the utility would under-
recover. This error in SR may, fortuitously, lead to good policy. The error encourages
utilities t¢_ stop load-building programs that do not promote economic growth and tc_
continue energy-efficiency programs.

If the statistical models include explanatory variables that capture the effects cff the
utility's DSM programs (e.g., the utility's quarterly budget for Ic_ad-building c)r energy-
efficiency programs), this problem might not occur. However, the histc_rical effects c)f utility
DSM programs are likely to be small and difficult to capture in such a simple statistical
model.

The practical issue is whether historical load-building prc_grams that dc_nc_taffect the
local economy are likely to have a large enough effect on past ;lnd future electricity sales tc_
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have measurable effects. If the hmd-huilding programs were small, the bias in simulation
results obtained with SR would, likewise, be small.

Analysis of Southern California Edison Data

Southern California Edison (1993) calculates, t_n a quarterly basis, what electricity
sales would have been for each sector absent the effects of SCE conservatk_n prc_grams,

mandatory appliance and building efficiency standards, and bypass. These adjustments
increased from 4% of sales in 1980 to 15% in 1992. Thus, these data prcwide an C_l_pc_rtunity
to examine empirically the perforrnance of SR when (1) a utility has DSM prc_grams in
place, (2) has estimates of the effects of these programs (as well _ls other t'actc_rs) t_n
electricity use, and (3) when the effect of these programs on s;lles is nontrivial.

I tested different specifications of a model of SCE retail electricity sales with and
without a variable that is SCE's estimate of the change in sales caused by the t'actc_rs listed
above. The coefficients of this change variable were always statistically signific_lnt at the 99%
level; the magnitude of this coefficient ranged from 0.6 to 1.1. A coefficient greater than 1.()
implies that the SCE estimates of the electricity savings caused by these factors w_ls tcu_Ic_w,
a coefficient of 1.() implies that the SCE estimates are exactly cc_rrect, _tnd sc_cm.

In mc_st cases, the model that included this additicmal t'actc_r'had mc_ve accurate

estimates of actual sales for 1990, 1991, and 1992 than did the Inc_del withc_ut this variable
(Table 11). However, the models that did not include this change wlriable alsc_ had ve U
good predictive pc_wers. So, even in a case where the adjustments are substantial (15% in
1992 t'c_rSCE), a model that ignores these effects can perform well.

Table 1I. Performance of models of electricity sales for Southern Cadifornia Edison with
and without an explanatory variable for the effects of DSM and other factors

Variables Number of Number Coefficient Three-year
in mc_del explanatory significant R e c_festimated (199()-92)

variables at 99% electricity savings errc_r (%)

Employment, CDD, 3 3 ().988 - -1.4
and price 4 4 0.991 -1.3 -1.7

Unemployment, CDD, 3 2 ().99() - -1.3
and price 4 4 ().993 -1.1 4).6

Unemployment, CDD, 4 3 ().992 - -1.5
I--IDD, and price 5 5 ().994 - 1.1 4).4

43



EFFECFS OF DIFFERENTIAL DSM PROGRAMS

"File statistical recoupling models all deal with electricity use and not demand (GWh
and nc_tMW). In addition, the aggregate models (which are simpler to estimate and which
perfornl better than separate models for each custonler class) include all custc_mer classes
in one equation.

These features of SR raise questions about its accuracy in estimating the net lost
revenues associated with DSM programs if (1) these programs affect different customer
classes differentially or (2) these programs have different effects c_nenergy use and demand.
To explore the performance of SR with different types of DSM programs, I created a
hypothetical utility with three customer classes and the rate structures shown in Table 12.

Table 12. Rate structures and electricity use by customer class for a hypothetical utility

Retail tariffs Custc_mers Energy Demand
S/month C/kWh $/kW-month (thousands) (GWh) (MW)

Residential 5 6.8 (1 900 630(I 1438
Cc)mmerciai 30 3.6 10 90 54()0 1121
Industrial 150 2.5 8 5 6300 899

Totals 8 4.3 5.3 995 18000 3458

Typical of most utilities, this one has rate structures that differ substantially across
customer classes. The residential customers pay no demand charge and have the highest
average price (7.7C/kWh). The commercial and industrial custc)mers pay both energy and
demand charges, with the industrial class paying less (leading to average prices of 6.7C/kWh
and 4.()C/kWh t'c)r the commercial and industrial classes, respectively). The utility's total
revenue is $1.1 billion.

Differences in DSM Across Customer Classes

If this utility runs a set of DSM programs that reduce b_._thenergy and demand for
each customer class by 1.0%, the net lost revenues total $6.1 million (0.6% of revenue). If
the utility's DSM programs, however, emphasize one class over the c_thers, then SR based
on an aggregate model will not appropriately compensate the utility lk_rits net lost revenues
(Table 13). For example, if the percentage savings frc_m the industrial DSM prc_grams are
50% more than the savings achieved by the residential and colr_mercial prc_grams, then SR
will overcompensate the utility, awarding it the same $6.1 million for its loessof $5.6 millic_n,
a -0.04% error in total revenues. On the other hand, if the residential prc_grams cut
electricity use by 50% more than the commercial and industrial prc_grams, then SR wc_uld
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underc¢_mpensate the utility, awarding it tile same $6.1 millic_n l'c_rits I¢_ss¢_t'$6.4 milli¢_n, _l
+().()3% error in tectal revenues.

A DSM progranl aimed at c)nly one customer class is the w¢_rst-c_lsesituati¢_n l'¢_rSI_.
(Table 13). An industrial-only program that cut aggregate energy and demand by the s_llne
1% would result in $3.0 million ¢_flost revenue. But the aggregate SR mcu.lel would pay the
utility $8.1 million, a 4).28% error in revenues. A DSM program theft cut energy and demand
by residential customers enough to save 1% c_verall would result in $8.3 millic_n t_l' h_st
revenue. Once again, the aggregate SR model would pay tile utility $6.1 millic_n, a + 0.2(1%
error in revenues. Thus, a utility operating under SR with an aggregate model would have
an incentive to target industrial customers and r,eglect residential custc_mers in its DSM
programs.

Table 13. Comparison of DSM-induced net lost revenues and the amounts awarded by
statistical reeouplin_a

Net lost revenue (million $)
Actual SR-aggregate _'

Savings 50% higher in
Residential class 6.4 6.1 (+ ().()3)
Commercial class 6.2 6.1 (+(1.(11)
Industrial class 5.6 6.1 (-(1.(14)

Savings only in
Residential class 8.3 6.1 (+0.20)
Commercial class 7.0 6.1 (+(I.09)
Industrial class 3.0 6.1 (-0.28)

"These cases all involve DSM programs that cut cwerall energy and demand by 1.()%.
The nunlbers in parentheses are the percentage err¢_rs in the alll(itlnts (,if nlclney aw_irded
by the SR model relative to total reventies ($1,(196 millic_n).

bSR-aggregate refers to use of one statistical mc_del that simul_ites electricity use fllr
all three classes.

These cases of dispropc_rtionate DSM yield three conclusic_ns:

,', Use of an aggregate statistical m¢_del introduces s¢_me err¢_r intc_ estimatic_n c_l"the
amount of net lost revenues asscmiated with DSM programs; use ¢_tst;ltisticill mc_dels
fc_r each customer class awfids this problem.

• The error caused by use of an aggregate model is small. Even in the wc_rst ix_ssihle
situation (a DSM prc)gram _timed only at tile industrial sector, where the It)st
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revenues per kWh are the lowest), the amount of excess revenue granted tile utility,
while double the actual net least revenues, is only 0.3% (_f t(_tai revenues.

u Therefore, states considering SR should either ensure roughly proportionate DSM
across customer classes or use individual statistical models rather than tile aggregate
model.

Differences in Conservation IJmd Factors

DSM programs can also differ in their effects on customer enert:,-y use and peak
demands. In the cases discussed above, energy and demand were always reduced by the
same percentages, which assumes that the conservation load factc_r (CLF) is the same as the
utility system's load factc_r.

However, DSM programs typically cut demand by a larger percentage than they cut
energy use (i.e., the CLF is less than the system load factc_r), Consider a set ot' DSM
programs that cut peak demands in each sector by 1% with different percentage rcductit_ns
in energs' use. Because residential customers pay no demand charge, actual net lost revenues
equal those computed with SR models. Fc_rthe conlmercial and industrial sectors, which pay
both energy and demand charges, the SR models underestimate net lost revenues when the
CLF of DSM programs is less than the system Ic_ad factor (60% in this example).

The extent to which tile SR models underestimate net I(_strevenues depends t_n (1)
whether the DSM programs cut peak demands at tile time of maximum customer demand
(i.e., the relationship between coincident and noncc_incident peaks), (2) any nonzero short-
term avoided capacity costs, and (3) whether the utility's demand charge includes a ratchet.'
In the following analysis, I assume a zero avoided capacity cost and ignore differences
between the timing of DSM-program demand reductic_ns and custc_mer peaks; these
assumptions represent a worst-case treatment of SR. I treat the mcmthly demand charge
parametrically, with a full 12-.month ratchet at c_ne extreme and nc_ ratchet at the other.

If tile DSM programs cut demand by 1% and cut energy use by 0.5% (i.e., tile CI_.F
is half the system lc_adfactor), net leastrevenues are $4.1 millic_nwith a 12-mt_nth ratchet and
$3.1 million with nc_ratchet, but the SR model allows c_nly $3.0 million (a -0.1% ern_r in
total revenues with the ratchet and a -0.01% error with no ratchet). Figure 1() shc_ws hc_w
the SR-induced error varies with differences in the CLF c_f the utility's DSM programs.
Unlike the situation with different DSM effects across custorner classes, tile two types (_1"SR
models, by class and aggregate, yield tile same errors. This error oc urs because the SR
models estimate electricity sales (GWh) and are silent with respect to demand (MW).
Therefore, changes in demand that do not affect sales have no effect c)n tile _llnounts ¢'lfnet
lost reventies estimated with SR mcldels.

'A demand ratchet has a demand charge ($/kW-month) based on the custc_mcr's highest demand
during the past n months (where n is rq'ten 12), rather than thc highest demand during the current
month.
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Figure 10 shows that the SR estimate of lost revenue is increasingly inaccurate as
CLF gets smaller. With a 12-month demand ratchet and a CLF of (Ll, the actual revenues
lost are almost triple that calculated by the SR method. With tm demand ratchet, the actual
revenues exceed the SR estimate by 15%. Figure 1()also shows the SR error as a l_ercent_tge
of total revenues. Because the amount _)f revenue lost is quite small for programs that save
little energy per kW saved, these percentages are quite small. Even for DSM prt)grams with
a CLF of 0.1 and a 12-month ratchet, the SR-induced error is less than 0.2% of revenues.

For two reasons, the errors in allowed revenues calculated here are upper bc_unds.
First, I assumed that there is no short-term capacity cost that can be awfided by DSM
programs. Second, utility load-management programs typically focus on reducing demands
at the time of system peak, which may not coincide with the times of customer peak
demands; therefore, the net lost revenue associated wit!l demand charges will be less than
assumed here.

RATIO OF ACTUAL LOST REVENUE SR ERROR AS
TO SR ESTIMATE % OF REVENUE

3"0/, _ --12"MONTHRATCHET 0.25

. .o .A'rcHEr

2.5 0.2O

2.0 ....

1.s .,,,o .ois
._.._.._.: 0.10

1.0 I

.........0.0 ' ' 0.00
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CONSERVATION LOAD FACTOR

Fig. 10. Errors in the SR estimates of DSM-induced net lost revenue as functkms of
conservation load factor. (The system load filctor is 0.60.) The graph shows
two sets of curves, both with a 12-month ratchet and without a ratchet. The
first set shows the ratio of actual lost revenues to the SR estimate, and the
second set shows the SR error as a percentage of total revenues.
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SHIVFS IN ELECI'RICITY USE AMONG CUSTOMER CLASSES

As discussed aNwe, the models t_f aggregate electricity use perform better than d_es
the c_unbinati_m c_f models t_t"each customer class. In addititm, it takes less time and is

simpler to estimate one tlmdel than to estimate separate mt_dels tt_r the residential,
cc_mmerciai, and industrial classes.

Although the mix of electricity use and dernand across sectors changes t'rmn year to
year, SR based on an aggregate model should produce unbiased estimates c_t"allowed
revenue. The variables that capture electricity use, number of custorners, and electricity price
all accc_unt tk_rchanges in the mix of sales, customers, and revenues across customer classes.
Also, the proportions of electricity sales by customer class change only slowly over time (Fig.
l 1). Therefc_re, any errors caused by aggregate SR are likely to be quite small.

Even in Massachusetts, where the economy has been poc_r during the past t_w years,
the shifts in electricity sales among classes have been slight. Between 1988 and 1992, tier
example, the share of NEES, sales to the industrial sector declined from 27.6% tc_ 25.7%,
a twc_-percentage point change in four years.

ELECTRICITY SALES BY SECTOR- NEVADA POWER (%)

- RESIDENTIAL -- COMMERCIAL "" INDUSTRIAL
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0 l _ t 1 i 1, , I l i . 1 ,

1981 1983 1985 1987 1989 1991

Fig. 11. The percentage tamtributions to total electricity sales by customer class fl_r
Nevada Power.
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EXCLUSION OF SOME CUSTOMER CLASSES

In this analysns ()f data from five utilities, I estimated models for the same three majc)r
cust(_mer classes, residential, commercial, and industrial. What are the consequences (_t'
ignoring electricity sales and revenues for the other customer classes, including street and
highway lighting, other public authorities, and railroads and railways?

National data (Edison Electric Institute 1992) show that the three major classes
accounted for more than 95% of total retail electricity sales during the past decade. Of
course, the contributions of these classes to total sales differ across utilities. Among the five
in this sample, the three classes account for anywhere from 93 to 99% of total retail sales.

These data suggest that SR, based on inclusion of only the three major customer
classes, can proceed in one of two ways. The utility can adjust electricity prices for all retail
customer classes (including those excluded from the SR analysis), which will reduce slightly
the SR-induced price changes. This approach makes sense if the utility's DSM prc_grams
affect these excluded customer classes. Alternatively, the utility could adjust electricity prices
for only those classes that are explicitly included in the SR analysis. Because the three majt_r
customer classes account for such a large fraction of total retail sales, the difference between
these two approaches is very small.
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CONCLUSIONS

COMPARISON OF STATISTICAL RECOUPLING WITH OTHER MECHANISMS

Statistical recoupling is only one c_fseveral methods that can be used to remove the
disincentives that utilities face, under current regulation, to implement energy-efficiency
progranas. These approaches include explicit net-lost-revenue adjustment mechanisms and
three forms of decoupling. The decoupling mechanisms include t_nes that recouple revenues
to the determinants of fixed costs (e.g., California's Electric Revenue Adjustment
Mechanism), to growth in the number of customers (revenue-per-custc_me,r decc_upling), or
to the determinants of electricity sales (SR). Not surprisingly, these meth¢_ds have different
strengths and limitations (Table 14).

All four approaches remnve the disincentive to utility pronu_tic_n of inlproved
customer energy efficiency. With an NLRA, a utility's shareholders are _:ompensated |'t_r the
between-rate-cases net lost revenues caused by the utility's DSM prc_granlS. With decoupling,
utility revenues are independent of sale,,; levels.

The three decoupling methods, but not NLRAs, remove the incentive tc_ prt_m_te
load growth. Whether utilities shc_uld be encouraged to build hind is a controversial issue.
Some argue that, in a competitive environment, the utility (like ¢_ther private cc_mp_lnies)
should earn more money if it sells more c)f its product. Others believe that, as part c_l
integrated resource planning, the utility slaould earn me)re money for implementing its
preferred resource plan, which likely will include bc_th demand and supply resc_urces. SR
compensates utility shareholders fc)r load growth that is a consequence _f ccc_nc_micgn_wth
but not for "undifferentiated" load grc_wth.

One of the concerns raised with decoupling is that it alh_ws the utility tc_becc_me less
co,repetitive and to worry less about cc_ntrc_llingcc_sts,promc_ting ecc_nc_micdevcl_pmcnt, and
providing to,p-notch customer service. Because NI..RAs are nam_wly fc_cuscd c_n DSM
progr_ms, such mechanisms have no effect on the utility's co,repetitive beh:_vic_r. In princit_lc,
the decc_upling apprtmches, because they affect utility revenues r;tther than ear_zitzgs,slu_uld
not affect a utility's efforts to cc_ntn_l cc_sts, l-lc_wever, decoupling rem{wes the incentive l't)r

Icmdbuilding, which removes the incentive fc)r economic dcvch)pment theft incre_ses Ic_ds.
Thus, utilities with ERAM or RPC dccc_upling might dcvc_te less efft_rt tt_ cc_m_mic
develc_pment in their service areas, alti_ough utilities with RPC decc_ur_ling h_we _n incc:.tivc
to}add customers whc_se coastsare less than that alk_wed in the RPC rneclaanism. ,S'R,C}llthe
c)ther hand, contains an explicit incentive for utilities tc_ prornc_tc ecc_nc_mic growth. 'l'his
incentive is a consequence of the explanatory variable(s) used in the SR mc_tlcl(s) theft
capture h_cal employment, industrial output, income, or gross st_lte prc_duct.
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Table 14. Comparison of alternative methods ',o treat DSM-induced net lost revenues

Criterion Current

NLRA ERAM RPC SR regulation

Removes disincentive to Yes Yes Yes Yes No

energy-efficiency programs

Removes incentive to build No Yes Yes Yes No
load

Retains utility incentives to
Control costs
Promote economic Yes Yes Yes Yes Yes

development Yes No Some Yes Yes
- Improve customer service

Yes Yes ? Yes Yes

Simple to
- Understand No No Yes No Yes
- Administer No No Yes Yes Yes

Difficult to manipulate No Yes Yes Yes Yes

Minimizes volatility of Yes No No Yes Yes
electricity prices

Maintains current risk Yes No No Yes Yes
allocation between

customers and utility

Because RPC decoupling pays the utility a fixed amount per customer, the utility may
have no incentive to encourage growth in the number of large customers (i.e., those for
whom the cost of service is above the average). Although there was no evidence of this
phenomenon occurring in Maine or Washington, some customers are concerned about this
disincentive. However, RPC decoupling could be implemented separately for each customer
class. Because the concept of revenue per customer is not part of either ERAM or SR, there
is no reascm for a utility to pay less attention to its large commercial and industrial
customers. Thus, service quality is no more, nor less, of a problem with ERAM or SR than
it is with traditional regulation.

Establishing and overseeing an NLRA can be very time consuming and complicated.
On the other hand, this effort to establish an adequate DSM-program mcmitoring and
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evaluation system is needed anyway fl_r good program management, for regulatory oversight,
and for resource planning. California's ERAM is also complicated. On the other hand, RPC
decoupling is very simple. SR may be difficult to understand, but it is straightforward to
design and implement. With RPC decoupling, it may be necessary to agree on an estimate
of per-customer growth in electricity use (expressed in %/year). SR has no predetermined
growth-rate factor that remains constant between rate cases.

One of the complications with an NLRA is the ease with which the utility can
manipulate samples, data, analytical methods, and evaluation results. Because of the
enormous information asymmetry between the utility and the PUC, monitoring the fairness
of the NLRA's implementation can be difficult. The decoupling approaches are much less
susceptible to manipulation."

An NLRA, because of its narrow focus on DSM programs, will have minimal effects
on electricity prices. ERAM and RPC decoupling can lead to larger swings in prices. SR,
because it seeks to mimic closely current regulation, should have only small year-to-year
changes in electricity prices• However, SR relies on the accuracy of statistical models that
are based on historical data. To the extent that the future is different from the past, SR will
lead to errors in the amounts of money transferred to or from the utility. Thus, SR is
vulnerable to major structural shifts in energy demand (e.g., tough new building or appliance
standards or a new electrotechnology that sweeps the market).

ERAM and RPC decoupling transfer some risks from the utility to customers, those
associated with sales fluctuations caused by changes in the weather and the economy. NLRA
mechanisms shift DSM-program performance risks from a utility to its customers. The risks
associated with weather and the economy remain with the utility under SR. With SR,
customers bear the risk only for changes in revenues associated with those factors that affect
sales and are not appropriately included in the SR equations.

In summary, statistical recoupling is similar to other forms of decoupling in that it
eliminates the between-rate-cases incentive to build load and the disincentive to run energy-
efficiency programs. However, SR does not shift the revenue and price risks associated with
weather and economic changes from utilities to customers• Thus, SR is likely to involve much
smaller price changes than do other types of decoupling.

"Three reviewers of this report believe that development of the models for stalistical rccoupling
will be contentious because people will assume: that these models can be manipulated. Because Ihe
amount_ of money at stake are large relative to earnings (although very small compared to revenues),
they think that smart analysts will find ways to manipulate the m¢_dels.These people were n¢_t
convinced by the examples summarized in Table 9 and Fig. 8.
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FINAL THOUGHTS

Whether or not SR is a good idea depends on two key factors. First, one has to
believe that electric utilities can and should play a major role in helping their customers
improve efficiency of electricity use. Second, one must believe that the bet,,,,,.en-rate-cases
disincentive to DSM in current regulation is an important deterrent to aggressive and
innovative utility DSM programs.

Acceptance of these two propositions leads to a commitment to remove from
regulation the incentives for load growth and the disincentives for energy efficiency. As
discussed here, utilities and regulatory commissions have several options to choose from in
addressing this problem. These options include net-lost-revenue adjustments, various forms
of decoupling, annual rate cases, alternative rate designs, and command-and-control
regulation.

Compared with other approaches, SR offers important advantages. Its key strength
is its ability to break the link between electric revenues and sales with minimal deviations
from current ratemaking. In particular, SR shifts few risks from utilities to customers;
therefore, the price swings caused by SR should be less than those caused by other
decoupling approaches. SR should be easy to design and implement, primarily because it
uses the same data and analytical techniques that utilities have used for years in developing
short-term forecasting models. SR should be simple for regulators to oversee because its
application is uncomplicated and it is difficult to manipulate the system. SR should serve
utilities and their customers well in an era of increasing competition because SR retains an
incentive for utilities to promote local economic growth. The major uncertainty with SR is
the possibility that the determinants of electricity use will be different during the application
period than during the historical period on which the models were based. If the structure
of electricity use changes dramatically during the few years that SR is applied, then this
approach could lead to nontrivial price changes.

On balance, statistical recoupling offers much potential to completely break the link
between revenues and sales and therefore to free utilities to run ambitious and creative

DSM programs. Statistical recoupling is easy to design, implement, and oversee; it should
yield only small (much less than 2%/year) changes in electricity price; and it retains the
traditional incentives for utilities to control costs, promote economic development, and
improve customer service.
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ALTERNATIVE MODELS OF TOTAL ELECTRICITY
USE FOR PACIFICORP

The models summarized in Table 9 and Fig. 8 are presented below. These tables are
the outputs from Forecast Pro, the software used to estimate these time-series models.
CTOT is the number of customers, PTOT is the average retail electricity price in real (1987)
dollars, HDD and CDD are heating and cooling degree days, INDOUT is Utah industrial
output, EMPMFG is manufacturing employment in Utah, _CONST is the constant term,
_AUTO[-1] is the first-order autoregressive term, and Ln refers to the logarithmic form of
the variable. R-square and Adjusted R-square show the percentage of variation explained
by the model. BIC is the Bayes information criterion. The Durbin-Watsc_tl d-statistic and the
Ljung-Box test check for autocorrelation in the residual terms. MAPE is the mean ahsc_lute
percentage error. And RMSE is the root-mean-squared error.

I. Forecast Model: Total Utah Sales (GWh)

Term Coefficient Standard error t-statistic Significance

CTOT 0.006603 0.001354 4.875088 0.999982
PTOT -61.723168 31.555730 -1.956005 0.942527
HDD 0.113035 0.013195 8.566718 1.000000
CDD 0.346906 0.035360 9.810710 1.000000
INDOUT 176.921646 111.595417 1.585385 0.879246
CONST -563.573372 334.283099 -1.685916 0.900402

-AUTO[- i] 0.415613 0.148275 2.802979 0.992229

Sample size 47 Number of parameters 7
Mean 2496 Standard deviation 326.9

R-square 0.968 Adjusted R-square 0.9632
Durbin-Watson 1.981 Ljung-Bo×(18)=19.99 P=0.6664
Forecast error 62.69 BIC 77.04

MAPE 0.01869 RMSE 57.83

Three-year simulation errors
1990 +1.7%
1991 +0.7%
1992 -1.9% Total error = 0.5%
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2. Forecast Model: Total Utah Sales (GWh)

Term Coefficient standard error t-statistic Significance

CTOT 0.007429 0.000649 11.440181 1.000000
PTOT -69.018620 23.089086 -2.989231 0.995235
HDD 0.112369 0.013876 8.098222 1.000000
CDD 0.349962 0.037579 9.312740 1.000000
EMPMFG 8.787764 3.887644 2.260434 0.970693
CONST -1351.119893 276.522568 -4.886111 0.999983

AUTO[- I] 0.275579 0.161422 1.707200 0.904463

Sample size 47 Number of parameters 7
Mean 2496 Standard d_viation 326.9

R-square 0.9698 Adjusted R-square 0.9653
Durbin-Watson 1.921 Ljung-Box(18)=21.34 P=0.7373
Forecast error 60.88 BIC 74.81

MAPE 0.01841 RMSE 56.16

Three-year simulation errors
1990 +2.8%
1991 +1.4%

1992 -2.0% Total error = 2.2%

3. Forecast Model: Total Utah Sales (GWh)

Term Coefficient Standard error t-statistic Significance

CTOT 0.007213 0.000944 7.636736 1.000000
PTOT -62.397034 30.292397 -2.059825 0.954037
HDD 0.113102 0.013115 8.623676 1.000000
CDD 0.346624 0.035132 9.866210 1.000000
INDOUT/CTOT 86.535951 50.657948 1.708240 0.904658
CONST -861.035894 255.838531 -3.365544 0.998304

_AUTO[- I] 0.417843 0.148038 2.822545 0.992613

Sample size 47 Number of parameters 7
Mean 2496 Standard deviation 326.9

R-square 0.9683 Adjusted R-square 0.9636
Durbin-Watson 1.985 Ljung-Box(18)=20.31 P=0.6844
Forecast error 62.4 BIC 76.68
MAPE 0.01858 RMSE 57.56

Three-year simulation errors
1990 +1.6%
1991 +0.5%

1992 -2.2% Total error = 0.1%
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4. Forecast Model: Total Utah Sales (GWh) (Log transform)

Term Coefficient Standard error t-statistic Significance

Ln(CTOT) 1.238864 0.213670 5.798027 0.999999
Ln(PTOT) -0.153025 0,069808 -2,192072 0.965745
HDD 0.000047 0.000005 8.540861 1.000000
CDD 0.000142 0.000015 9.663676 1.000000

Ln(INDOUT) 0.102805 0.077822 1.321033 0.806002
CONST -8.148596 2.663202 -3.059699 0.996056

_AUTO[- I] 0.370750 0.152165 2.436505 0,980625

Sample size 47 Number of parameters 7
Mean 7.814 Standard deviation 0.1328

R-square 0.9686 Adjusted R-square 0.9639
Durbin-Watson 1.983 Ljung-Box(18)=17.57 P=0.516
Forecast error 0.02522 BIC 76.72
MAPE 0,01915 RMSE 58,61

Three-year simulation errors
1990 +2.7%
1991 +2.3%
1992 +0.1% Total error = 5.1%

5. Forecast Model: Total Utah Sales per Customer (kWh)

Term Coefficient Standard error t-statistic Significance

PTOT -94.840847 64.463149 -1.471241 0,851140
HDD 0.262514 0.028798 9.115726 1.000000
CDD 0.793193 0.076713 10.339750 1.000000
INDOUT 560.396888 100.023316 5,602663 0.999998
CONST 4699.238795 510.335709 9.208132 1,000000

_AUTO[- i] 0,492139 0,140957 3.491423 0.998835

Sample size 47 Number of parameters 6
Mean 5707 Standard deviation 350.8

R-square 0.8512 Adjusted R-square 0,833

Durbin-Watson 2.059 Ljung-Bo×(18)=20.77 P=0.7086
Forecast error 143.3 BIC 171.2
MAPE 0.01933 RMSE 133.9

Three-year simulation errors
1990 +2.0%
1991 +0.9%

1992 -1.5% Total error = 1.4%
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6. Forecast Model: Total Utah Sales per Customer (kWh)

Term Coefficient Standard error t-statistic Significance

PTOT -77.908581 63.924633 -1.218757 0.770097
HDD 0.260320 0.030097 8.649273 1.000000
CDD 0.790214 0.080359 9.833496 1.000000
EMPMFG 38.238323 7.111025 5.377329 0.999997

CONST 2137.989280 886.464513 2.411816 0.979565

AUTO[- I] 0.465573 0.145612 3.197345 0.997328

Sample size 47 Number of parameters 6
Mean 5707 Standard deviation 350.8

R-square 0.8421 Adjusted R-square 0.8228
Durbin-Watson 2.001 Ljung-Sox(18)=18.96 P=0.6057
Forecast error 147.7 BIC 176.3
MAPE 0.02031 RMSE 137.9

Three-year simulation errors
1990 +2.6%

1991 +0.4%
1992 -3.9% Total error = -0.9%

7. Forecast Model= Total Utah Sales per Customer (kWh)

Term Coefficient Standard error t-statistic Significance

PTOT -87.482583 77.156850 -1.133828 0.736547

HDD 0.265101 0.027561 9.618740 1.000000
CDD 0.788912 0.073277 10.766149 1.000000

INDOUT/CTOT 351.254641 78.939624 4.449662 0.999935
CONST 4215.013094 710.312774 5.934024 0.999999

AUTO[- i] 0.586401 0.131043 4.474858 0.999940

Sample size 47 Number of parameters 6
Mean 5707 Standard deviation 350.8

R-square 0.8485 Adjusted R-square 0.83
Durbin-Watson 2.157 Ljung-Box(18)=22.25 P=0.7791
Forecast error 144.6 BIC 172.7
MAPE 0.01923 RMSE 135.1

Three-year simulation errors
1990 +1.6%
1991 +0.1%
1992 -2.4% Total error = -0.7%
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8. Forecast Model: Total Utah Sales per Customer (kWh) (Log transform)

Term Coefficient Standard error t-statistic Significance

Ln(PTOT) -0.118210 0.066328 -1.782202 0.917877
HDD 0.000047 0.000005 9.028772 1.000000
CDD 0.000140 0.000014 10.158988 1.000000

Ln(INDOUT) 0.184214 0.031288 5.887621 0.999999
CONST 8.655771 0.129577 66.800403 1.000000u

_AUTO[- I] 0.461057 0.143213 3.219389 0.997486

Sample size 47 Number of parameters 6
Mean 8.648 Standard deviation 0.06107

R-square 0.8485 Adjusted R-square 0.8301
Durbin-Watson 2.074 Ljung-Box(18)=20.39 P=0.6886
Forecast error 0.02518 BIC 171.3
MAPE 0.01931 RMSE 133.4

Three-year simulation errors
1990 +2.2%
1991 +1.3%
1992 -2.1% Total error = 1.4%
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