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Physically Transparent Formulation of a

Free-Electron Laser in the Linear Gain Regime
|

William A. Barletta 1, Andrew M. Sessler 2 and Li-Hua Yu3

Abstract:. The recent 2--dimensional analytic theories of a free-electron laser (FEL) in the

linear regime are reformulated in terms of three dimensionless ratios that describe the

degree to which the characteristics of the electron beam deviate from the cold beam

limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic

model equations of a fit that combines features of both of the 2--dimensional analyses

are given as a convenient computational tool. Graphs of the FEL gain eigenvalue

computed with the combined 2-D formulation ilLlustrate that the gain and the output

power at saturation are reduced from the 1-D value, when any of the ratios is larger

than unity.

1. Introduction

In recent years Yu, Krinsky, and Gluckstern [1] (the BNL group) and Chin, Kim, and

Xie [2] (the LBL group) have derived analytical models of high gain FEL amplifiers

operating in the linear regime that include 2--dimensional effects. Both models have

been compared with the large numerical simulation codes, FRED and FELIX, and are

found to agree with the simulations to within a few percent for beams for which 2-

dimensional effects are significant.. Thus one can base FEL design with confidence

upon analytic theory rather than upon numerical simulation.
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The analyses of Ref. [1] and [2], which are formulated for a beam with a "waterbag"

distribution and for a Gaussian beam distribution respectively, have yielded scaling

laws and associated universal graphs of FEL behavior. The waterbag model has the

advantage of reducing to the correct, cold-beam limit; however, it probably

overestimates performance for realistic beams with significant energy spread,

emittance, and non-uniform phase space distributions. In this latter case, the Vlasov

model of a Gaussian beam [2] provides a more prudent basis for FEL design. Although

Ref. [1] and [2] have proved useful to many workers, their physical interpretation is

obscured to some degree because both analyses are formulated in variables with less-

than-obvious physical significance. For this reason the 2-D theories (often incorrectly

referred to as 3-dimensional) have not been employed as widely as should be the case.

Some years ago, a simple 1-dimensional analysis, with careful attention to the limits

of validity of the one dimensional theory was given by Barletta and Sessler [3]. In

particular, Ref. [3] introduced three dimensionless parameters, fl, f2, and f3, that

characterize the validity of the 1-dimensional, r-scaling of FELs derived by Bonifacio,

Pellegrini, and Narducci [4]. The fi are defined in terms of the rms beam characteristics

as:

fl = F_n (1)

f2 = 2 en (2)
p ( . aw2)'

f3 =LG , (3)
ZR

where en is the normalized emittance, r the BPN scaling parameter, 1 the radiation

wavelength, g the relativistic factor, aw the dimensionless vector potential of the

wiggler, ab the beam radius, LG the gain length for power, and ZR the Rayleigh range.

In a careful restatement of arguments made by various workers through the years,



Ref. [3] argued that validity of the 1-D theory (in the sense that 2-D effects only reduce

the gain) requires that all the fi < 1. Satisfying the resonance condition requires that f2 =

. fl 2 f3; hence, the three criteria are not independent despite the apparent differences in

the physical arguments used in their derivation. As Ref. [3] assumed that the energy

spread in the beam was negligibly small, a more complete analysis should introduce an

additional parameter, fe, as a measure of the energy spread. One expects that fe should

be small (<1) for the cold-beam, 1-D results to apply.

The f-fact0rs fl and f3 are physically transparent in the sense that they allow for

immediate physical interpretation. Therefore, they are easy to remember and to use.

Can the more complete 2-D analyses of ReL [1] and [2] be expressed in terms of fl, f3,

and a transparent variable measuring the energy spread? The answer is yes. That the

physically transparent variables completely describe the 2--dimensional state of the

beam shows both the soundness of the physical arguments put forward in Ref. [3] and

the underlying validity of the 1-dimensional analysis of the r-scaling of FEL

performance first derived in Ref. [4]. In this sense we expect that if the 2-dimensional

theories are expressed in terms of physically transparent variables, the resulting form of

the theory will be easier to understand and to use.

In the next section we define the physically transparent ratios, ri. These ratios are

essentially the f-factors normalized to have unit value at the edge of the regime of

applicability of the predictions of the 1-D theory. We then present model equations

that represent a combined fit to features of both 2-D models. The combined fit aims at

avoiding potential shortcoming of both models as applied to beams with realistic phase

space distributions. To illustrate the consequences of the 2-D effects we present graphs

of the linear growth rate in terms of the ri. Our conclusion is that with the exception of

the analysis of wiggler field errors and misalignment sensitivities (true 3-dimensional

• effects), the complete analysis of an FEL in the linear regime is in hand (thanks to the

work of the BNL and LBL groups) and now in a form that is convenient to use. Indeed,



for the bulk of the work of designing optical FELs (without waveguides), one can

simply make ali the ri close to unity and use the 1--dimensional theory of Ref. [4].

t

2. Formulation

Following the arguments given in Ref. [3], we introduce the ratios ri.The first ratio is

the normalized, full width of the energy spread,

rl =2 AE t

pE (4)

where the fractional energy spread, AE, is arms value and where r is the BPN scaling

parameter [4] for a planar wiggler, given by:

p = aW0)p_'W JJ 3". (5)
8x c

In the formula lw is the wiggler wavelength, aw the dimensional vector potential of the

wiggler strength, and Wp is the relativistic plasma frequency of the drive beam. The

Bessel function factor JJis

JJ = Jl(_)- J0(_) (6)

where

a2.
2( 1+a2)" (7)

The second ratio is
4_E

r2 = , . (8)

where e is the rms geometrical emittance of the drive beam, which is in terms of the

normalized emittance, en/g. The third ratio is

r3 =LG (9)
ZR '

where LG is the e-folding (gain) length for the power carried by the electromagnetic

field as computed from the 1-dimensional theory. LG is given by the general

expression,



- Xw (lO)
4_ p Im(2B) '

where Irn(tt)isthesolutiontothe(cubic)eigenvalueequationfo_theFEL instability

writtenforthefieldintensity.Inthecold-beam,I-D limit,lm(B)= q3/2.The Rayleigh

' length, ZR, is related to the nrts beam radius, ab, and to the optical wavelength, 1, by

ZR =x__. (11)
x

In terms of the ri we may evaluate the linear gain contours, Im _t(ri). The Gaussian

beam model is a more conservative and probably more realistic model to use in design

studies for cases in which two dimensional effects are important. Unfortunately the

dosed form, analytic formulae of Ref. [2] contain singularities for small values of r3 and

the model does not show the correct physical limit as the ri go to zero. For this reason

we have modified the analytical formulae of Ref. [2] to eliminate the singular behavior

in the limit of no diffraction and to give much better agreement with the waterbag

model in the cold beam limit. In terms of the physically transparent variables, we find

the following model equations (valid for r3 > 0.05) for the combined fit to Gaussian

beam in 2-D limit and waterbag model in the cold beam limit.

S= 31/4 r31/2r1 (12)
27/2

33/4
B ---1.15 ----- r2r33/2+ 0.0028 (13)

27/2

...25/2 r_I/2 (14)
D= 31/4

_ X = Ln (15)
0.0035 + 33/4 r33/2

Y --41.34 + 3.69 X + 3.62 X2 (16)



w --(0.33+o.oosr_- O.OlS'2)S2+2.1SS4+7O.9S6 (17)

U ---(0.739+ 0.197X +0.0175X 2-0.00031X 3) (18)

[
• lr2.0.32))-I]+33/2(0.025r22+0.05,24+_ r26)r: (19)

8 ( 0.17 + 0.0304 InB) + YW (20)

A comparison of the combined model equations with the predictions of the

waterbag and the Gaussian models for two cases with small diffraction is shown in Fig.

1. To assess the limits of validity of the 1-D model it is most useful to look at a plots of

the gain surface, Ira(gr),as a function of the scaled emittance and diffraction. Two such

plots for rl = 0 rl = 1 are given in Fig. 2 a, b. The behavior of the function Im _t(ri) for ri

< 0.05 has been suppressed. Note that even a small energy spread make the

performance much more sensitive to emittance and diffractive effects. Fig. 3 shows the

dependence of the gain, Lm$t(rl,r2), as a function of energy spread and emittance for

two values of the diffraction parameter, r3. While strong diffraction does not

significantly reduce the gain for a cold, mono-energetic beam, it does make performance

much more sensitive to emittance and energy spread.

The theory developed here can easily be extended to allow for conditioned

beams, as has already been done in analytic form for the water bag model.[5] A graph

of lm Ixfor a Gaussian beam with a "conditioned" energy distribution, Fig. 4a, when

compared with the corresponding graphs for a beam without conditioning, Fig. 4 b,

shows very clearly the advantage of using conditioned beams to suppress emittance,

energy spread and diffraction effects.



In optimizing an FEL design one may minimize the gain length; alternatively one

might maximize the output power at saturation. Ref. [4] argues that the output power of

. the FEL at saturation can be expressed in terms of the scaling parameter r; i.e.,

Psat;1-D -- [3Pbeam- (21)
V

The corresponding expressions for the output power of the FEL at saturation given in

Ref. [1] and [2] are not as easily interpreted. One can, however, rewrite these

expressions in a form more readily understood in terms of the predictions of the 1-

dimensional theory. In particular the approximate expression of Ref. [2] reduces to

lm(p.)/ 4Psat;2-D---'_"/')i pPbe,am• (22)i/.,

Simulations indicate that the exact expression for the power at saturation in the

presence of strong 2-D effects is far more complicated in its dependence on the ri than

indicated in Eq. (22). If the figure of merit for the FEL optimization is the peak spectral

brilliance, Bs, one must recall that the gain-broadened line width of the radiation is r.

Consequently,

Bs o, Psa......._to__Im (It)]4. (23)
P

This quantity always decreases with increased external focusing. One must be clear

what figure of merit is to be optimized in the design of the free electron laser.

3. Conclusions

The results of the 2-dimensional theories of free electron laser amplifiers in the linear

gain regime can be expressed in terms of the dimensionless, physically transparent

ratios rl, r2, and r3. The resulting dependences can be seen in the graphs of the gain

eigenvalue which have been calculated on the basis analytic theories using a waterbag

model [1], a Gaussian model [2], and a combined fit that yields preferred limiting

. behavior. One sees that 2-dimensional effects are always "bad" in the sense that they

reduce the 1-D gain length. Fortunately, in designing an FEL the deleterious 2-D effects

7



can be eliminated by making the ri < 1 through a judicious choice of beam

characteristics. Since making the ri small is difficult (and/or expensive), it is usually

most practical to design an FEL with the ri close to, but less than, unity. .

In practice, our prescription suggests that in designing an FEL one employs the
v'

lowest emittance gun one can obtain and, then, builds the lowest energy accelerator that

allows r2 to be of the order of unity for the wavelength of interest. One then checks that

rl is of the order of unity. (If not, one either allows the energy spread to increase by

obtaining more current from the gun or bunching the beam at an intermediate energy,

or one decreases the energy spread in the beam by, for example, using a higher energy

or lower current beam.) Finally one checks that r3 is near unity. If not, one decreases the

gain length (for example by going to lower energy where 1Wis smaller), or in the

opposite case, one can increase the focusing-beyond "natural focusing"--by the use of

external magnetic elements or plasmas. At each point one must re-evaluate r and iterate

the procedure. In ali cases one should be sure to "optimize" FEL with respect to the

appropriate figure of merit for the application desired. For example, if the extremely

high peak power is essential for the application, one may be forced to increase the beam

energy much higher than our prescription would indicate. The price will be a much

longer wiggler to reach saturation. Alternatively, one may also leave the beam

parameters as is and taper the wiggler to increase the output power.

At this point one must also consider how the choice of beam characteristics will

affect the alignment of the FEL and field tolerances in the wiggler. Unfortunately, there

is _not presently a comple_,e analytic theory of such three dimensional effects for high

gain FELs. In the absence of such a theory one might describe steering errors as leading

to an equivalent emittance, which should then be kept less than 1/2_. Presently, one

must resort to simulation for a sound, quantitative assessment at this stage of the design

study.
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Figure Captions

Figure 1. Comparison of waterbag model (dashed line), Gaussian model (l'ght gray

line) and combined fit (solid line).

Figure 2. The variation of FEL gain surface with scaled diffraction and scaled

emittance as desc_'ibed in terms of physically transparent variables: "

Fig. 2a) rl = 0, Fig.2b) rl = 1.0. Vertical and horizontal scales are linear.

Figure 3. Gain surface, Im _, versus scaled emittance and energy spread for two

values of the diffraction parameter, r3.

Figure 4. a) Gain contour, Im _, for an emittance conditioned beam, b) Gain contour

for an unconditioned beam with a scaled emittance r2 = 1.
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