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Physically Transparent Formulation of a
Free-Electron Laser in the Linear Gain Regime

William A. Barlettal, Andrew M. Sessler? and Li-Hua Yu3

Abstract: The recent 2-dimensional analytic theories of a free-electron laser (FEL) in the
linear regime are reformulated in terms of three dimensionless ratios that describe the
degree to which the characteristics of the electron beam deviate from the cold beam
limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic
model equations of a fit that combines features of both of the 2—-dimensional analyses
are given as a convenient computational tool. Graphs of the FEL gain eigenvalue
computed with the combined 2-D formulation illustrate that the gain and the output
power at saturation are reduced from the 1-D value, when any of the ratios is larger
than unity.

1. Introduction

In recent years Yu, Krinsky, and Gluckstern [1] (the BNL group) and Chin, Kim, and
Xie [2] (the LBL group) have derived analytical models of high gain FEL amplifiers
operating in the linear regime that include 2—-dimensional effects. Both models have
been compared with the large numerical simulation codes, FRED and FELIX, and are
found to agree with the simulations to within a few percent for beams for which 2-
dimensional effects are significant.. Thus one can base FEL design with confidence

upon analytic theory rather than upon numerical simulation.
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The analyses of Ref. [1] and [2], which are formulated for a beam with a “waterbag”
disﬁibution and for a Gaussian beam distribution respectively, have yielded scaling
laws and associated universal graphs of FEL behavior. The waterbag model has the
advantage of reducing to the correct, cold-beam limit; however, it probably
overestimates performance for realistic beams with significant energy spread,
emittance, and non-uniform phase space distributions. In this latter case, the Vlasov
model of a Gaussian beam [2] provides a more prudent basis for FEL design. Although
Ref. [1] and [2] have proved useful to many workers, their physical interpretation is
obscured to some degree because both analyses are formulated in variables with less-
than-obvious physical significance. For this reason the 2-D theories (often incorrectly
referred to as 3~dimensional) have not been employed as widely as should be the case.

Some years ago, a simple 1-dimensional analysis, with careful attention to the limits
of validity of the one dimensional theory was given by Barletta and Sessler [3]. In
particular, Ref. [3] introduced three dimensionless parameters, f1, f2, and f3, that
characterize the validity of the 1-dimensional , r-scaling of FELs derived by Bonifacio,
Pellegrini, and Narducci [4]. The f; are defined in terms of the rms beam characteristics

as:

fi =—S0__, )
l ’Y()‘/Zn)

2¢€n
f2= ’ (2)
pa2 (1+a2)

L
f3 =2Q- , 3)
R

where ep, is the normalized emittance, r the BPN scaling parameter, 1 the radiation
wavelength, g the relativistic factor, ay the dimensionless vector potential of the
wiggler, ap the beam radius, LG the gain length for power, and Zg the Rayleigh range.

In a careful restatement of arguments made by various workers through the years,



Ref. [3] argued that validity of the 1-D theory (in the sense that 2-D effects only reduce
the gain) requires that all the f; < 1. Satisfying the resonance condition requires that f2 =
£12 f3; hence, the three criteria are not independent despite the apparent differences in
the physical arguments used in their derivation. As Ref. [3] assumed that the energy
spread in the beam was negligibly small, a more complete analysis should introduce an
additional parameter, fe, as a measure of the energy spread. One expects that fe should
be small (<1) for the cold-beam, 1-D results to apply.

The f-factors f1 and f3 are physically transparent in the sense that they allow for
immediate physical interpretation. Therefore, they are easy to remember and to use.
Can the more complete 2-D analyses of Ref. [1] and [2] be expressed in terms of f1, f3,
and a transparent variable measuring the energy spread? The answer is yes. That the
physically transparent variables completely describe the 2-dimensional state of the
beam shows both the soundness of the physical arguments put forward in Ref. [3] and
the underlying validity of the 1-dimensional analysis of the r-scaling of FEL
performance first derived in Ref. [4]. In this sense we expect that if the 2-dimensional
theories are expréssed in terms of physically transparent variables, the resulting form of
the theory will be easier to understand and to use.

In the next section we define the physically transparent ratios, ri. These ratios are
essentially the f-factors normalized to have unit value at the edge of the regime of
applicability of the predictions of the 1-D theory. We then present model equations
that represent a combined fit to features of both 2-D models. The combined fit aims at
avoiding potential shortcoming of both models as applied to beams with realistic phase
space distributions. To illustrate the consequences of the 2-D effects we present graphs
of the linear growth rate in terms of the ri. Our conclusion is that with the exception of
the analysis of wiggler field errors and misalignment sensitivities (true 3—-dimensional
effects), the complete analysis of an FEL in the linear regime is in hand (thanks to the

work of the BNL and LBL groups) and now in a form that is convenient to use. Indeed,



for the bulk of the work of designing optical FELs (without waveguides), one can
simply make all the rj close to unity and use the 1-dimensional theory of Ref. [4].

2. Formulation
Following the arguments given in Ref. [3], we introduce the ratios r;. The first ratio is

the normalized, full width of the energy spread,
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where the fractional energy spread, AE, is a rms value and where r is the BPN scaling
parameter [4] for a planar wiggler, given by:
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In the formula ly, is the wiggler wavelength, ay, the dimensional vector potential of the

wiggler strength, and wyp is the relativistic plasma frequency of the drive beam. The

Bessel function factor JJ is
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where e is the rms geometrical emittance of the drive beam, which is in terms of the
normalized emittance, en/g. The third ratio is
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where LG is the e-foiding (gain) length for the power carried by the electromagnetic

field as computed from the 1-dimensional theory. Lgis given by the general

expression,
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where Im(p) is the solution to the (cubic) eigenvalue equation for the FEL instability
written for the field intensity. In the cold-beam, 1-D limit, Im(p) = V3 /2. The Rayleigh
length, ZR, is related to the rms beam radius, ap, and to the optical wavelength, 1, by

2
Zr =_h"},a . (11)

In terms of the rj we may evaluate the linear gain contours, Im pu(rj). The Gaussian
beam model is a more conservative and probably more realistic model to use in design
studies for cases in which two dimensional effects are important. Unfortunately the
closed form, analytic formulae of Ref. [2] contain singularities for small values of r3 and
the model does not show the correct physical limit as the r; go to zero. For this reason
we have modified the analytical formulae of Ref. [2] to eliminate the singular behavior
in the limit of no diffraction and to give much better agreement with the waterbag
model in the cold beam limit. In terms of the physically transparent variables, we find
the following model equations (valid for r3 > 0.05) for the combined fit to Gaussian

beam in 2-D limit and waterbag model in the cold beam limit:
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A comparison of the combined model equations with the predictions of the
waterbag and the Gaussian models for two cases with small diffraction is shown in Fig.
1. To assess the limits of validity of the 1-D model it is most useful to look at a plots of
the gain surface, Im(p), as a function of the scaled emittance and diffraction. Two such
plots for r; =0 ry =1 are given in Fig. 2 a, b. The behavior of the function Im p(rj) for r;
< 0.05 has been suppressed. Note that even a small energy spread make the
performance much more sensitive to emittance and diffractive effects. Fig. 3 shows the
dependence of the gain, Im pu(rq,17), as a function of energy spread and emittance for
two values of the diffraction parameter, r3. While strong diffraction does not
significantly reduce the gain for a cold, mono-energetic beam, it does make performance
much more sensitive to emittance and energy spread.

The theory developed l{ere can easily be extended to allow for conditioned
beams, as has already been done in analytic form for the water bag model.[5] A graph
of Im p for a Gaussian beam with a “conditioned” energy distribution, Fig. 4a, when
compared with the corresponding graphs for a beam without conditioning, Fig. 4 b,
shows very clearly the advantage of using conditioned beams to suppress emittance,

energy spread and diffraction effects.



In optimizing an FEL design one may minimize the gain length; alternatively one
might maximize the output power at saturation. Ref. [4] argues that the output power of
the FEL at saturation can be expressed in terms of the scaling parameter r; i.e.,

Psat; 1.0 = P Pbeam - 1)
The corresponding expressions for the output power of the FEL at saturation given in
Ref. [1] and [2] are not as easily interpreted. One can, however, rewrite these
expressions in a form more readily understood in terms of the predictions of the 1-

dimensional theory. In particular the approximate expression of Ref. [2] reduces to

4
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Simulations indicate that the exact expression for the power at saturation in the
presence of strong 2-D effects is far more complicated in its dependence on the rj than
indicated in Eq. (22). If the figure of merit for the FEL optimization is the peak spectral
brilliance, Bs, one must recall that the gain-broadened line width of the radiation is r.

Consequently,

B, o —"5— e [Im (u)]4. 23)

This quantity always decreases with increased external focusing. One must be clear

what figure of merit is to be optimized in the design of the free electron laser.

3. Conclusions

The results of the 2-dimensional theories of free electron laser amplifiers in the linear
gain regime can be expressed in terms of the dimensionless, physically transparent
ratios r1 , r2, and r3. The resulting dependences can be seen in the graphs of the gain
eigenvalue which have been calculated on the basis analytic theories using a waterbag
model [1], a Gaussian model [2], and a combined fit that yields preferred limiting
behavior. One sees that 2-dimensional effects are always "bad" in the sense that they

reduce the 1-D gain length. Fortunately, in designing an FEL the deleterious 2-D effects



can be eliminated by making the rj < 1 through a judicious choice of beam
characteristics. Since making the rj small is difficult (and/or expensive), it is usually
most practical to design an FEL with the r; close to, but less than, unity.

In practice, our prescription suggests that in designing an FEL one employs the
lowest emittance gun one can obtain and, then, builds the lowest energy accelerator that
allows r2 to be of the order of unity for the wavelength of interest. One then checks that
r1 is of the order of unity. (If not, one either allows the energy spread to increase by
obtaining more current from the gun or bunching the beam at an intermediate energy,
or one decreases the energy spread in the beam by, for example, using a higher energy
or lower current beam.) Finally one checks that r3 is near unity. If not, one decreases the
gain length (for example by going to lower energy where lw is smaller), or in the
opposite case, one can increase the focusing--beyond "natural focusing"--by the use of
external magnetic elements or plasmas. At each point one must re-evaluate r and iterate
the procedure. In all cases one should be sure to “optimize” FEL with respect to the
appropriate figure of merit for the application desired. For example, if the extremely
high peak power is essential for the application, one may be forced to increase the beam
energy much higher than our prescription would indicate. The price will be a much
longer wiggler to reach saturation. Alternatively, one may also leave the beam
parameters as is and taper the wiggler to increase the output power.

At this point one must also consider how the choice of beam characteristics will
affect the alignment of the FEL and field tolerances in the wiggler. Unfortunately, there
is not presently a complete analytic theory of such three dimensional effects for high
gain FELs. In the absence of such a theory one might describe steering errors as leading
to an equivalent emittance, which should then be kept less than 1y 2x. Presently, one
must resort to simulation for a sound, quantitative assessment at this stage of the design

study.
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Figure Captions

Figure 1. Comparison of waterbag model (dashed line), Gaussian model (:ght gray
line) and combined fit (solid line).

Figure 2. The variation of FEL gain surface with scaled diffraction and scaled
emittance as described in terms of physically transparent variables:
Fig. 2a) r1 =0, Fig.2b) r1 = 1.0. Vertical and horizontal scales are linear.

Figure 3. Gain surface, Im p, versus scaled emittance and energy spread for two
values of the diffraction parameter, r3.

Figure 4. a) Gain contour, Im , for an emittance conditioned beam, b) Gain contour

for an unconditioned beam with a scaled emittancery = 1.
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