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Abstract

A numerical method to simulate viscous diffusion of vorticity using vortex blobs (i.e.,
without a grid) is presented. The method consists of casting the effects of viscous diffu-
sion into an effective “diffusion velocity” at which vortex blobs convect. The ditfusion ve-
locity was proposed previously by Ogami and Akamatsu’, but they did not consider the
effects of the divergence of the diffusion velocity. In fact, the diffusion velocity is highly
non-solenoidal, which significantly affects the area over which a vortex blob diffuses. A
formulation is presented that relates the area expansion to the diffusion velocity diver-
gence. By taking into account the area expansion, more accurate simulations of diffusion
are obtained, as demonstrated by a comparison of numerical and analytical diffusion solu-
tions. Results from simulations show that vortex areas expand significantly in regions of
large vorticity gradients. As a result of the area expansion, adjacent vortices remaii over-
lapped, thereby maintaining smooth solution fields. The non-solenoidal diffusion velocity
method is easily implemented in vortex blob algorithms, thus facilitating the development
of vortex methods to simulate flows with finite Reynolds numbers.

MASTER b



This page is intentionally blank.



Table of Contents

Introduction.................... OO RO P TS U P O PO PP TP U PPV POPPRPP 7
Vorticity Transport Equations .................c.ccec.... e eret e e rre e aan e 9
Diffusion of Finite Regions of Vorticity ................cccccoevviennn. ettt bbb are e 9
. Kinematics of Circulation ......coccvvveviinnieiinnininie i vreererene et 10
2. Inclusion of Dynamics within the Kinematics of Circulation .......co.occevviciieiniiinnn. 10

2.1 Inviscid Transport in Terms of Circulation..........ccvvviiiiiiniinnnn FRPRORPRRPR B

2.2 Viscous Transport in Terms of Circulation..........ccccovvviiiiininiinnnnn, SRR 11

2.3 Determination of the Diffusion VEIOCItY .......coccnvvvvniiciiniicniinniin e e
3. Effects of Non-Solenoidal Velocity Fields ......cccoovvveninne Cerreerre e Cere e 13
Implementation of the Non-Solenoidal Diffusion Velocity Method ........................... 14
1. Details of Vortex BIobS.....cccccovviiviiiiieviiiniinnns cereraees crreeiere e et e e e 14

1.1 Calculation of Diffusion Velocity and Its Divergence.............. e RTTTORROTN 15

1.2 Implementation of the Diffusion Velocity Divergence..........covvvviiiniiiiniinnnn, 16
2. Summary of the Diffusion Velocity Vorticity Formulation ............. ettt 17
Evaluation of Accuracy of the Diffusion Velocity Technique............. e 18
1. Problem Statement.........ccooveeviiiiiiiiiiiiiniiccn et 18
2. Analytical SOIUtiON .oocvvviiiveiiiice s ST Ceerrr e SO EUPURTN 18
3. Diffusion Velocity Simulations of Pure Diffusion......c.ccccenniiiinnnnn, 18
DiSCUSSION .........ccoocoveiiniiniiiiiic et OO RO P UPRPPUPORYPORPPPRPION 23
Summary and Conclusions .............. e e hete e e —teee et ae s s e e raae s e e bt e e e e et reaeee e rarteeeetbaeaas 24
Acknowledgment................. et beee e e e e e et e s et e e et aestaeear et e rraee e reverer e enresenieeen 2
References.................... T OO OO PRSP PP PPTPPRI R e 25
APPENDIX A:  Formulas for a Two-Dimensional Vorticity Field............ VORI W27
APPENDIX B:  Formulas for a One-Dimensional Vorticity Field..........cccovvnnnnnne, 28



This page is intentionally blank.



Introduction

The use of discrete vortex methods to simulate finite Reynolds number flows lags consid-
erably behind grid-based methods, such as finite element techniques. A principal reason
for this disparity is the difficulty of accurately including viscous diffusion, which is the
topic addressed herein.

The difficulty of including viscous diffusion in vortex methods arises from the fact that
discrete vortex methods are based on inviscid flow theory. As a result, viscous diffusion is
treated as a secondary, but important, effect within the framework of vortex methods. The
most common approach is to use operator splitting in which inviscid and viscid transport
are treated in sequential steps. In the most commonly used operator splitting scheme, the
implementation of diffusion is reduced to solving the diffusion equation, which is a rela-
tively simple procedure it a grid is available. Vortex methods, however, do not require a
grid to simulate inviscid transport, so a grid is not available. Moreover, there is significant
motivation to avoid the use of grids since their construction can require significant time
and effort, especially for complex geometries.

Since vortex methods are Lagrangian, it would be more consistent to implement diffusion
in a Lagrangian algorithm. Seve1 al such approaches have been proposed, includin f the
Gaussian random walk method>, the diffusing core method®, the method by Fishelov™, and
the diffusion velocity method by Ogami and Akamatsu’.

The Gaussian random walk method was introduced by Chorin3, and is based on the rela-
tionship between random walks and diffusion. For a field of particles moving with Gauss-
ian random walks, the probability of a particle being at a particular location is specified by
the diffusion equation. Thus, adding a random walk to the motion of vorticity particles
simulates diffusion in a statistical sense. A vortex blob represents a finite region of vortic-
ity (many pointwise particles of vorticity), however, so that moving a vortex blob with a
Gaussian random walk specifies incorrectly that all the particles within a blob move with
the same random walk. As a result, the random walk method applied to vortex blobs only
approximates the diffusion of vorticity in the mean. This approximation is believed to be
the origin of the weli-known hmltatlon that the random walk method is appropriate only
for Reynolds numbers of 0(10% or greater. Several large Reynolds number flows have
been succe%fully simulated using the random walk approach, such as flow over a back-
ward facing step 0 The solutions are “jittery,” however, since statistically well-converged,
smooth solutions require an intractable number of vortices.

As mentioned above, the large Reynolds number restriction of the random walk method is
believed to arise from the fact that the random walk is added to the motion of finite regions
of vorticity, rather than to each infinitesimal point of vorticity. This approximation is nec-
essary to make the method computationally feasible, but omits an important feature of dif-
fusion which is emphasized in the present analyses, namely that the volume occupied by a
particular set of particles increases.

The diffusing core method® accounts for the expansion of the volume occupied by a re-
gion of vorticity, but in a manner that does not depend on the rest of the vorticity field. Ad-



ditionally, there is no motion of the vortex center, and the combined equations associated
with inviscid convection and the diffusing core algorithm are not the Navier-Stokes equa-
tions>. As will be shown, the formulation developed here indicates that the diffusing core
method is appropriate only for a domain containing a single vortex. It will also be shown
that for more than one vortex, viscous interactions between vortices yield a translation and
an expansion of each vortex.

Ashurst! accounted for viscous effects in a vortex simulation of a mixing layer by combin-
ing the random walk and diffusing core methods. Saffman and Baker” suggest that this
amounts to counting the effects of viscosity twice. However, in the derivation of the diffu-
sion model to be presented, it is shown that both translation and expansion of vortices are
necessary to describe viscous diffusion. Thus, Ashurst’s approach is in fact conceptually
appropriate, although translation by random walks and expansion by the ditfusing core
method both have significant limitations. The proposed model provides improved alterna-
tives for both diffusive translation and expansion. A deterministic diffusion velocity is
used instead of random walks, and core expansion is prescribed by the diffusion velocity
divergence instead of the diffusing core method. The proposed approach takes advantage
of two recent developments which are discussed below.

The method proposed by Fishelov? essentially involves the calculation of vorticity fluxes
from one vortex to another. Vorticity fluxes are based on the vorticity gradient that is cal-
culated by differentiating the assumed vorticity distribution of each vortex. This approach
is appealing because it is consistent with other aspects of vortex methods. However, the
transport of vorticity into regions where vortices do not exist requires that new vortices be
added continually during a calculation. The proliferation of vortices can be treated with a
vortex merging technique, but vortex merging does not preserve linear or angular momen-
tum, and such errors are not desirable, even though they often have negligibly small ef-
fects.

The diffusion velocity method by Ogami and Akamatsu’ essentially casts diffusion as a
convective process using a diffusion velocity. Unlike the random walk method, the motion
specified by the diffusion velocity is deterministic, and theretore statistical convergence
issues are not a concern, But, similar to the random walk method, the diffusion velocity
method neglects vortex expansion. Nonetheless, the concept of a diffusion velocity is ap-
pealing since it can be easily implemented within vortex methods.

The starting point for the present analyses is the diffusive velocity method proposed by
Ogami and Akamatsu, using Fishelov’s method to represent spatial derivatives of vortici-
ty. We present a method in which vortices convect at the diffusion velocity and the blob
sizes change with time according to the divergence of the diffusion velocity. We refer to
this approach as the non-solenoidal diffusion velocity method to emphasize the signifi-
cance of the diffusion velocity divergence. Derivation of the method is based largely on
the kinematics of circulation and is shown to be accurate by comparing its results with an-
alytical diffusion solutions.



Vorticity Transport Equations

The vorticity form of the three-dimensional Navier-Stokes equations for a constant density
(and therefore incompressible) flow with constant viscosity, v, is

a’—\ - - Y -
a;’)Jr(a.V)w: (wOV)u+vV2(D. (1)

Vorticity is defined as the curl of the velocity field,

® = Vxi, )
and the incompressibility constraint is,

Veir =0. @)

If the velocity normal to the boundary is specified, Egs. (1), (2), and (3) form a closed sys-
tem that allows the vorticity field and the velocity field to be determined.

Diffusion of Finite Regions of Vorticity

Before considering diffusion as a convective process, details of viscous diffusion are re-
viewed in terms of a finite volume of vorticity. We choose the three-dimensional volume
element to be a cylinder whose two end faces are material surfaces with vector area A%,
The integral of vorticity over the area A is referred to as the circulation, T,

r= _[a‘)-ﬁdA. )
A

If every point in the area A is assumed to convect at the local fluid velocity, the circulation
varies with time as<,

r
izvj’vzca.mm, 5)

where the viscosity, v, is assumed to be constant, as is the fluid density. The change in cir-
culation indicated by Equation (5) is due to the diffusion of vorticity across the boundary
of the fluid area. As shown in Figure 1, a region of vorticity initially bounded within in a
fluid area convects and expands beyond the fluid area as a result of diffusion.

The objective of the non-solenoidal diffusion velocity approach is to re-define the area in

the circulation integral in such a way that it remains coincident with a particular region of
vorticity. In order to develop this approach, we first consider the kinematics of circulation,
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t+dt

L

Figure 1  Inviscid and viscous transport of a region of vorticity. Inviscid
transport is shown by the translation of the wvorticity at the
incompressible fluid velocity, with no change in the area A occupied by
the vorticity. Viscous transport is shown by additional translation and
expansion of the area occupied by the vorticity. The fixed shape of the
regions omits possible effects of shear on the vorticity field, which can
be remedied through the use of adaption techniques not described here.

1. Kinematics of Circulation

The circulation of a cylindrical fluid element with end face area A is
F=J'(T)or‘sz. (6)
A

If every point in the area A is assumed to convect at an arbitrary velocity i, (i.e., the rela-
tion Vxa, = ® need not be true), then the time-derivative of the circulation is

d,T omw N N s N
(—h—=J.[5;+(“a‘V)m+m(V'“a)‘((‘”V)“a]'ﬁ‘m' (7)
A

where the notation d,/dt denotes differentiation of a region convecting at an arbitrary ve-
locity. Lack of a subscript implies differentiation of a region convecting at the local fluid
velocity i@, for which Vx @& = @. The latter two terms of the integrand arise from the
time-derivative of the end face area A.

2. Inclusion of Dynamics within the Kinematics of Circulation

Vorticity dynamics in a viscous flow can be thought of as occurring in two simultaneous
steps: inviscid dynamics, and viscous dynamics. Inviscid dynamics are governed by

16



g_‘t”+(,;.v)a=(m-V)a. (®)

Viscous dynamics are governed by

BI0) 2
5 vWo. )

2.1 Inviscid Transport in Terms of Circulation

First, we re-state the well-known theorem of Helmholtz that inviscid vorticity convects at
the local fluid velocity and the circulation of a region of vorticity remains constant. This
can be obtained within the present framework by assuming # = i, and substituting the
inviscid vorticity equation Eq. (8) into the general kinematic equation for circulation Eq.
(7). The well-known result is

— = (). (10)

2.2 Viscous Transport in Terms of Circulation

For viscous transport, we assume that the area in the circulation integral convects at a yet
to be determined diffusion velocity i1, = iy, so as to remain coincident with the area oc-
cupied by a particular sub-field of vorticity (a vortex blob) as it diffuses. In this way, we
can explicitly track a particular region of vorticity. Additionally, since vorticity can be nei-
ther created nor destroyed in the interior a homogeneous fluid (but can rotate, stretch, or
compress, as can the fluid area), the circulation of such a region cannot change. This is
specified by,

(ldr a(—r) N - - A - KN A .
.___=J'[__+(udoV)(o+u)(Voud) —-(on)ud]OndA=() . (11)
dt J ot

Note that equating the time-derivative of the circulation to zero is a specification, and it is
the basis for obtaining a formulation for the diffusion velocity.

2.3 Determination of the Diffusion Velocity

Equation (11) implies that the integrand must be zero, or

aa) - - Y —> Y
5 = (e V)D+B(Veiry) - (Do V)iy). (12)

Equating the right hand sides of Eq. (12) and the diffusion equation, Eq. (9), yields an
equation for the diffusion velocity in terms of the vorticity field,
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(B e V)D+D(Veiiy) — (Do V)il = —vV’d. (13)

Using the vector identities, VX (VX®) = V(Ved) - V?®, Ved =0, and
VX (ix®) = (DeV)ii— (e V)D+iu(Ved) —d(Veir), Eq. (13) can be writ-
ten in a form in which the diffusion velocity appears only once,

~V X (iiyx®) = vV X (Vx). (14)
This equation implies that,
Uy x® = -vVx®. (15)

This equation indicates that if a component of the diffusion velocity exists in the direction
of the vorticity vector, then at least one component of the cross product ity X @ is zero. As
a result, Eq. (15) yields no information regarding the component of the diffusion velocity
in the direction of the vorticity vector, Thus, without further analysis, this formulation pro-
vides a diffusion velocity only in two dimensions, since the velocity field is always per-
pendicular to the vorticity field in two dimensions. We leave the three-dimensional case
for future consideration, and restrict further discussions herein to the two-dimensional
case.

To find the two-dimensional diffusion velocity, consider the vorticity vector to be aligned
W1th one of the coordinate axes in a rectilinear system with unit vectors (z j, k), and
= (0,0, (oz) . Then the components of Eq. (15) are

v 0w,
Uy, =——=—",
4y w,dy
(16)
v 0w,
U; = ——=",
dxT o dx
or using the notion that V' indicates the gradient operator in one or two dimensions,
N Vo
by =-—Vo, (17)

W,

This is the same form of the diffusion velocity as obtained by Ogami and Akamatsu’, al-
though they used a different approach which begins with the two-dimensional equations.
The fact that the diffusion velocity has vorticity in its denominator is not a problem since
in a vorticity method, regions of zero vorticity are not considered.



We note that the divergence of the diffusion velocity is not solenoidal, in general, as seen
from,

0, w,

Vo, 2 V'zwz
) S -
Vieiu,=v ( ) - . (18)
Thus, it appears that diffusion can in fact be described as a convective process in which
convection occurs at a non-solenoidal diffusion velocity.

3. Effects of Non-Solenoidal Velocity Fields

Two effects of convection in a non-solenoidal velocity field are to change the area of a flu-
id region and to change local vorticity values. We first consider the change in the fluid area
as specified kinematically. The definition for the time-rate-of-change of volume of a dif-
ferential fluid element 6V,2

10V .
51\7(“37 =Vei. (19)

For two-dimensions, the time-rate-of-change of a differential area 04 is

| doA .
S-A‘—?l—t—' =Veu, (20)

and for a one-dimensional differential length 8L,

| doL R
'SZW =Vey. (21)

We will use this one-dimensional result later when we compare one-dimensional diffusion
using this method with an analytical solution.

The effect of the velocity divergence on the vorticity field can be discerned by examining
Eq. (12) which is repeated here as

gﬁ?ﬁ(ad-vm:—a(voudy (22)
An interpretation of this equation is that as vorticity convects at the diffusion velocity (as
indicated by the left-hand side of Eq. (22)), the vorticity value changes in proportion to the
value of the vorticity and the divergence of the velocity field (as indicated by the right-
hand side of Eq. (22)). Thus, for example, if V e i, >0, the magnitude of the vorticity
will decrease with time. This is consistent with the diffusion velocity concept in which an

13



increase in area for a fixed circulation implies a decrease in vorticity. Next, we implement
the non-solenoidal diffusion velocity in a vortex blob aigorithm.

Implementation of the Non-Solenoidal Diffusion Velocity Method in a
Vortex Blob Method

The non-solenoidal diffusion velocity can be applied to vortex blobs just as the fluid ve-
locity is applied in discrete vortex methods. Implementation of the diffusion velocity di-
vergence requires some additional development, and is discussed below. First, however,
some details of a vortex blob algorithm are presented to provide a framework for the im-
plementation of the diffusion velocity and its divergence.

1. Details of Vortex Blobs

A commonly used vortex method represents the vorticity field as a collection of vortex
blobs, in which each blob has a known circulation ", and has a radially symmetric, Gaus-
sian distribution of vorticity about its center fcj. The vorticity field is approximated by the
collection of blobs according to

B (%) = e S (23)

where ©. is referred to as the core radius, which is a characteristic length of the area asso-
ciated with each blob. The choice of a Gaussian vorticity distribution is one of many pos-
sible choices, but for our purposes it is useful since core function similarity is maintained
if the core size changes.

The velocity field associated with a vorticity field is typically obtained from the Biot-Sa-
vart law, but a simpler approach is to use Stokes’ theorem .

JGS-MA =§f4-ds, (24)
A C
where C is the integration path around the area A of the vortex core, with arc length ds.

Substituting the Gaussian vorticity distribution of a single vortex into the area integral in
Eq. (24) yields




jﬁ)'ﬁdA=r. l—e J , (25)
A

which reduces to the circulation of a blob at |x; — X| = oo, as required. Since the core func-
tion is radially symmetric, the integral on the right-hand side of Eq. (24) (for a single vor-
tex) can be expressed as

§ﬁ ods = ug(r)2mr, (26)
C
where r = |X;— X| . Equating the right hand sides of Eq. (25) and Eq. (26), transforming

the circumferential speed ug into cartesian velocity components, and summing the veloci-
ty contributions for each vortex gives the often-used expression for the velocity field,

~ . . Ixj—x|
IO ThxGmn | ()
H(X) = 2‘1—5 R ) —-e (27)
- ij‘xl

Since vorticity convects inviscidly at the local fluid velocity, the motion of each vortex is
specified by

B (%) (28)

For inviscid, incompressible flows, no further development is required since the circula-
tion does not change with time. As a result, the evolution of an inviscid flow is described
by integrating Eq. (28) for a given collection of vortices, each with known constant circu-
lations. A vortex blob is assumed to convect as a whole at the velocity of its center X;,
while the size and circular shape of the blob are assumed to remain fixed. We shall make
similar assumptions to convect vortex blobs at the diffusion velocity.

For a viscous flow, the vorticity and size of each blob can change with time. These chang-
es are taken into account using the divergence of the diffusion velocity field.

1.1 Calculation of Diffusion Velocity and Its Divergence

In order to calculate the viscous diffusion velocity, Eq. (17), the gradient of the vortic'ity
field must be evaluated. To do this, the method proposed by Fishelov* is used, in which

15



the gradient of the vorticity field is approximated by applying the gradient operator to the
core function in the expression for the approximate vorticity field, Eq. (23). The circula-
tions I'; and core radii o, are not differentiated. Since the contribution by each vortex blob
to the vorticity field is radially symmetric about the center of each blob, the gradient oper-
ator is simply the derivative with respect to the distance from the center of each blob.

As will be shown, the divergence of the diffusion velocity is an important aspect of the
diffusion velocity method, and is given by

R V'wz 2 V‘sz
V‘oud=v[w)—w . (29)

Z Z

Evaluation of Eq. (29, requires the Laplacian of the vorticity field to be approximated in
the same way as the gradient of the vorticity field; i.e., by double differentiation of the
core function with respect to the distance from the blob center, ,%j. Expressions for the
two-dimensional gradient and Laplacian of the vorticity field are given in Appendix A.

1.2 Implementation of the Diffusion Velocity Divergence

To gain some insight into the physical nature of the diffusion velocity approach, consider a
a domain with only a single vortex. At the center of the vortex, the vorticity is F4/n02.,
the gradient of the vorticity is zero, and the Laplacian of the vorticity is —4I" /no .. Since
the diffusion velocity is proportional to the gradient of vorticity (see Eq. (l7){, and the gra-
dient of vorticity is zero, the diffusion velocity is zere. Thus, the center of the vortex does
not move. The divergence of the diffusion velocity for a single vortex can be shown to be
4v/c* It

As mentioned earlier, a non-zero divergence changes the area of a fluid element. In terms
of vortex blobs, a non-zero divergence is assumed to change the area of the vortex blob. In
analogy with the evolution of a fluid area, Eq. (20), the evolution of the characteristic fluid
area noj? is,

2
1 d(ncj) R
—_— 1 =V'en,. (30)
,wj; dt d

Implicit in this formulation is the assumption that a vortex blob expands about its center
and remains circular. This is consistent with the level of approximation used for inviscid
transport in which vortex blobs remain circular and do not change size as they convect.

For a single vortex, which has a divergence of 4v/ sz ,

—L =4y, 31)
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which is the well-known result for the diffusion of a two-dimensional Gaussian vorticity
distribution®. Moreover, it is the same as the so-called diffusing core scheme that, within a
vortex method, is known to represent a set of equations that are not the Navier-Stokes
equations. This demonstrates that the diffusing core approach is appropriate only for a sin-
gle vortex. For multiple blobs, the diffusing vortex scheme omits two important
features: 1) contributions by other vortices to the divergence and hence the time-rate-of-
change of each blob area, and 2) ihe motion of vortex blobs at the diffusion velocity. Our
new scheme includes both convection and expansion due to diftusion,

2. Summary of the Diffusion Velocity Vorticity Formulation of the Two-
Dimensional Navier-Stokes Equations

In the derivation of the non-solenoidal diffusion velocity method, the two-dimensional
Navier-Stokes equations were considered in two simultaneous steps, one step being invis-
cid transport, the other step being viscous transport. Having derived the non-solenoidal
diffusion method under this partitioning, it is now convenient to consider two different
steps, one step being translation of vortices at the sum of the inviscid fluid velocity and the
diffusion velocity, the other step being the expansion of the vortices due to the diffusion
velocity divergence. For a collection of vortices with centers at X;, the translative step con-
siste of solving

(I}i - Y hy By
W = U (.Xi) +le(.xi) (32)
to obtain new blob locations. The fluid velocity i (x;) is calculated from Eq. (27), and the

diffusion velocity i, (x;) is calculated from Eq. (17).

Since the diffusion velocity has a non-zero divergence, the area of the blob must change.
Assuming that the circular shape is retained, the core radii o, change according to

=0l (Ve (k). (33)

The aivergence of the diffusion velocity is given by Eq. (18). The circulations Fj used to
calculate the fluid and diffusion velocities remain constant.

Equations (32) and (33) must be solved simultaneously because the vorticity gradients
used to calculate the diffusion velocity and its divergence depend strongly on the core
size. Expressions for the gradient and Laplacian of the vorticity field used to calculate the
diffusion velocity and its divergence are given in Appendix A. Note that the change in
vorticity occurs implicitly as the circulation is held constant and the core size increases.



Evaluation of Accuracy of the Diffusion Velecity Technique

To evaluate the accuracy of the diffusion velocity method, a one-dimensional diffusion
problem that has an analytical solution is simulated numerically, and the results are com-
pared with the analytical solution.

1. Problem Statement

The governing equation for one-dimensional diffusion with constant diffusivity is

ow _ % "
a—t—vgon X . (34)

We consider the problem which has initial conditions

w=1 on -h<x<h (35)

w = ( elsewhere.

The dimensionless length x* is x/h, the dimensionless time t* is vt/ k.

2. Analytical Solution
The analytical solution to Eq. (34) and Eqg. (35) is

o A FASE]

3. Diffusion Velocity Simulations of Pure Diffusion

For the numerical simulation, the vorticity distribution is given by a collection of vortex
blobs with one-dimensional Gaussian core functions. The one-dimensional vorticity field,
its gradient and Laplacian are given in Appendix B. These expressions are used to calcu-
late the one-dimensional diffusion velocity and its divergence.

By analogy with the evolution of a fluid area, Eq. (21) the evolution of the characteristic

fluid area of a one-dimensional vortex blob, J—G

I de _ diky

6‘;7{7 =5 (37)

Four numerical simulations are performed to show the effects of core size and divergence
of the diffusion velocity. In each case, the initial vorticity field is represented by 50 vortex
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Figure 2 Simulation of diffusion using the diffusion velocity method. Effects of the
diffusion velocity divergence are omitted, and the core size is o/h = 0.4.
a) Comparison of analytical solutions (continuous lines) and diffusion
velocity solutions, where symbols denote the location of vortex blobs.
Solutions are shown for times of 0, 0.2, 1.0, and 4.0. b) The blob
representation of the initial vorticity distribution is poor for the large core
size, o/h = 0.4, The core size is shown to scale with respect to the x axis.

blobs with unitorm core sizes which are distributed unitormly in the region =1 <x/h <.
Initial dimensionless core sizes of 6/h = 0.4 and o/h = (.04 are considered, and the
initial circulations of the vortex blobs have the same value as their respective dimension-
less core sizes. These values yield a maximum vorticity of unity in the field.

The equations were integrated with a 3rd-4th order Runge-Kutta-Fehlberg algorithm with
time-step adaption based on a specified relative error criterion of 106, Typical dimension-
less time steps are on the order of O( 10°2), which, as we shall see, depend on whether the
divergence of the diffusion velocity field is considered.

The first two cases omit the effects of the divergence of the diffusion velocity tor the two
core sizes. The latter two cases consider the same two core sizes, but include the effects of
divergence of the ditfusion velocity. The case of 6/h = 0.4 without considering the di-
vergence was presented by Ogami and Akamatsu and is reproduced in Figure 2a. Symbols
denote the vorticity at blob locations and the solid lines denote the analytical solutions.
The numerical results are in good agreement with the analytical solutions, and without fur-
ther consideration, one might (incorrectly) conclude that it is not necessary to take into ac-
count the divergence of the diffusion velocity. Figure 2b shows that the numerical
representation of the initial condition is very poor for the large core size used. With such a
poor representation of the initial condition, the good agreement at times greater than zero
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Figure 3  Numerical solution for a core size ten times smaller than the previous
simulation. Effects of the diffusion velocity divergence are omitted, and the
core size is 6/h = 0.04. Symbols denote the blob locations. a) The initial
condition is well-represented for this core size. b) Large errors are shown as
differences between the symbols and the analytical solution. The continuous
numerical vorticity distribution contains non-physical “wiggles,” due to the
omission of diffusion velocity divergence effects.

is, at best, fortuitous. In addition, the cores are highly overlapped, to a degree which is not
practical for typical vortex methods. The cores are shown to scale in Figure 2b at t =0.
The continuous vorticity distribution shown for the initial condition is obtained by evalu-
ating Eq. (1) in Appendix B at 1200 points distributed uniformly on the interval -6 < x <6.
Ogami and Akamatsu did not present the initial condition.

Next, we consider a core size ten times smaller, 6/h = 0.04, again omitting the effects of
divergence to demonstrate the undesirable features of so doing. Even for this smaller core,
the overlap between adjacent cores is considerable: the separation between core centers is
one core radius, thus cores are overlapped by a full core radius. As shown in Figure 3a, the
initial condition is represented accurately by the smaller cores. At times greater than zero,
however, the vorticity at each blob location is highly inaccurate, as shown in Figure 3b.
Additionally, the implied vorticity distributions (the lines passing through the symbols)
contain non-physical “wiggles.” The “wiggles” arise because the cores are no longer over-
lapped, due to the fact that they convect at different velocities. In this case, outer vortices
convect faster than inner vortices, so the vortices become separated and the overlap de-
creases. Core overlap is essential to maintaining smooth vorticity fields, and lack of it re-
sults in non-physical “wiggles” such as those shown in Figure 3b.
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Figure 4  Simulation of diffusion including the effects of the diffusion velocity
divergence. The core size is o/h = 0.04. a) Inclusion of the divergence
results in good agreement with the analytical solution. b) Including
divergence effects also eliminates wiggles in the numerical vorticity
distribution.

The effects of the velocity divergence are now considered for the same small core size,
o/h = (i.u4. Figure 4a shows that including the diffusion velocity divergence greatly im-
proves the accuracy of the diffusion velocity method. Not only is the vorticity at the blob
locations accurate, but the continuous vorticity distributions do not contain the “wiggles”
seen previously. Figure 4b shows the vorticity distribution at the same time as Figure 3b.
“Wiggles” do not occur because the cores are expanding at a rate that is large en()ugh to
keep the cores overlapped even as their centers become increasingly sepuratgd. Att =4,
the solution also remains free of “wiggles,” but there is an error of 2.6% at x~ = 0 (barely
perceptible in Figure 4a), which decreases rapidly with distance from the center. This error
is appears to be due to the relatively small number of vortices (50) used for these demon-
stration simulations, and decreases with increasing numbers of vortices. For example, us-
ing 200 vortices (o/h = (.04), the maximum error at t'= 4 is 0.048%, as compared to
2.6% with 50 vortices. Adaption techniques could also be applied to this problem to assist
in maintaining the overlap of vortices that is necessary for high accuracy.
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Figure 5  Comparison of results from the non-solenoidal diffusion velocity technique
for a core size of o/h = 0.4.

The case with the large cores (dimensionless size (.4) including divergence eftects is
shown in Figure 5. This demonstrates that the non-solenoidal diffusion velocity technique
also performs well with large cores. Although, this result has little meaning considering
the poor representation of the initial condition with such large cores, as shown in Figure
Figure 2b.

Returning to the case of the smaller cores (o/h = 0.04) where the divergence was included,
the values of the divergence and core size are examined. Figure 6 shows the divergence
and size of the cores at dimensionless times of 0.2 and 1.0, The expansion of the outermost
cores is nontrivial: they expand by a factor of approximately six at t* = 0.2 and ten at
t* = [. At very early times, only the outermost cores have significant velocities, This situ-
ation gives rise to large divergences at the outermost vortices, which causes them to ex-
pand, while the other vortices remain relatively constant in size. As time proceeds, the
velocities of the cores become more uniform, yielding a smaller and more uniform distri-
bution of the divergence, so that the cores expand uniformly. The outer cores, however, al-
ways remain larger than inner cores, since they are the only ones to experience the large
expansion rate at early times.

The simulations presented above indicate that including the divergence of the diffusion
velocity is essential to obtaining an accurate simulation of diffusion. Care must be tuken in
this approach, however, since a new time scale is introduced when the divergence is taken
into account. The new time scale is the inverse of the divergence, and is manifested in the
evolution of the core sizes, e.g., Eq. (37). At early times, when the divergence is largest,
stability and accuracy of the time integration require significantly smaller time-steps. For
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Figure 6  Distribution of core size and divergence of the diffusion velocity at
dimensionless times of 0.2 and 1.0. At t* = 0.2, the cores at the edges of the
field have expanded by a factor of approximately 6, whereas the cores in the
center have expanded by less than a factor of two. At t* = 1.0, the outer
cores have expanded by a factor of ten. In each figure, the initial
dimensionless core size is gy = 0.04. The divergence has units of inverse
dimensionless time.

exam%le, if divergence effects are omitted, typical dimensionless time-step sizes are
O(107%) and “wiggly” solutions are obtained. In order to obtain smooth solutions by i m-
cluding divergence effects, time-steps must be an order of magnitude smaller, 0(1073),
(These results are based on the restrictive specification that relative errors be less than
1079). Thus, for situations where large gradients of vorticity are anticipated (such as flows
with large Reynolds numbers), use of an adaptive time integration scheme (such as we
used) becomes essential to obtain accurate results.

Discussion

The comparison of the analytical diffusion solution with results from the non-solenoidal
diffusion velocity method indicates that diffusion can be accurately approximated as a
convective process. To provide a physical motivation for the treatment of diffusion as a
convective process, a Monte Carlo simulation of vorticity diffusion is discussed and relat-
ed to the non-solenoidal diffusion velocity method.

In a Monte Carlo simulation, the vorticity field would be represented by a collection of
particles each with the same vorticity, which does not vary with time or space. The vortic-
ity at a point in space (at any time) would be obtained from a volume-average of the parti-
cles in a small volume enclosing the spatial point. Thus, any vorticity distribution can be
specified in terms of the particle population density (particles per volume), Diffusion of
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the vorticity field would be simulated by applying a sequence of Gaussian random walks
to the particles, and finding local volume averages at points of interest to determine the
vorticity as a function of time.

Now consider a particular set of particles and the simply connected volume that containg
them. As time advances, the particles become more separated and the volume of the re-
gion containing them expands. Since the amount of vorticity associated with the set of par-
ticles is constant, the expansion of the volume which encloses the particles amounts to a
reduction in the volume-averaged vorticity for that set of particles. Also, for a spatially
nonuniform distribution of particles, the center of the volume will move. Thus, diffusion
phenomena for a set might be represented as a random walk of the set as a whole in addi-
tion to an expansion of the set.

The volume which encloses a set of points is not a physical volume, since it can overlap
the volume of other sets of points. Similarly, vortex blobs can overlap, and as noted by
Sarpkayag, “blobs must be regarded as mathematical artifices (many souls in one body!)
since vorticity-carrying non-deforming fluid particles cannot occupy the sume space at the
same time (the exclusion principle).”

In discrete vortex methods, the constant circulation of a finite vortex is analogous to the
constant amount of vorticity associated with a particular set of particles. By applying a
random walk to the motion of a vortex as a whole, the diffusive expansion of that vortex is
not resolved. Since the standard deviation of a random walk variable in each direction var-
ies us Re”! (Re is the Reynolds number), the expansion rate varies as Re™2 where n is the
dimension of the problem, n = [, 2, or 3. Thus, for low Reynolds numbers, diffusive ex-
pansion is more important than at high Reynolds numbers. As a result, the random walk
approach is not appropriate at low Reynolds numbers. For large Reynolds numbers, where
diffusive expansion is smaller and better approximated as being zero, convergence can
only be expected in a mean sense since the number of vortices that is computationally af-
fordable is insufficient to obtain statistical convergence.

Summary and Conclusions

The non-solenoidal diffusion velocity method has been derived for two-dimensional vor-
tex methods, In this method, diffusion is cast as a velocity at which vortices convect with
fixed circulation, just as in inviscid vortex methods. The size of each core changes accord-
ing to the divergence of the diffusion velocity, and an algorithm to implement this core
variation in a vortex blob method was also presented. The inclusion of viscous ditfusion
effects allows vortex methods to be applied to flows with general finite Reynolds numbers,
thus greatly extending their range of application.

This non-solenoidal diffusion velocity method is more accurate than previously developed
methads, since previous methods typically considered either the translation or the expan-
sion, when both are necessary to be accurate. The diffusion velocity proposed by Ogami
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and Akamatsu is used to translate vortices, and the model for the core expansion is based
on the kinematics of fluid areas in a non-solenoidal velocity field. The accuracy of this
method was demonstrated by comparison with an analytical diffusion solution for a range
of corc sizes that spans the range of values typically used in vortex calculations.

Our tuture plans include a brief study to determine if it is necessary to include the effects
of all the vortices in calculating the diffusion velocity and its divergence. Preliminary indi-
cations are that the diffusion velocity at a particular vortex can be accurately computed by
using only a few of the surrounding vortices, rather than all the vortices. This would great-
ly speed-up the algorithm. We also plan to examine the extension of this approach to
three-dimensional flows.
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Appendix A

Formulas for a Twe-Dimensional Vorticity Field, its Gradient and
Laplacian

The vorticity field specified by a collection of vortex blobs, each of which has a radially
symmetric, Gaussian vorticity distribution, is

w(x) = —e ! : (1
no;

j J

The circulation of each blob is I, and the core radius is o;. The gradient of the vorticity

field is,

;‘2

[x- %]
ra-i) |
vV (%) —32 / 4——’-e( i | . (2)

J

where the circulations and core radii are not differentiated. Similarly, the Laplacian of the
vorticity field is,
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Appendix B

Formulas for a One-Dimensional Vorticity Field, its Gradient and
Laplacian

A one-dimensional distribution of vorticity described by a collection of vortex blobs each
of which has a Gaussian vorticity distribution is given by,

® (x) E '
w(x) = '4
i Jro,

The circulation of each blob is I ; and the core radius is o The gradient of the vorticity
field is,

2
_(lx—xj[

O;

(1)

2 I (x-x) “(x;-xj)z

= (4 / ’ (2)
o7,
J

Vo (x) =

where the circulations and core radii #:~ not differentiated. Similarly, the Laplacian of the
vorticity field is,

2

r. . 2 _ JC"'.XJ
V236 (x) = 2 E —31-[2()6 x’) -1}», ( % ) . 3)
Jn - e O;
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