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HIGH PRESSURE HUGONIOT OF SAPPHIRE

Dave Erskine

Lawrence Livermore National Laboratory, PO Box 808 L-299, Livermore, CA 94550

The Hugoniot of sapphire was measured for the first time above 145 GPa, from 80 GPa to 340 GPa in
shock-wave experiments using projectiles accelerated by a two stage gas gun. The transit times of the shock
waves were measured either optically with a streak camera or through electrical pin contacts. The Hugoniot in
this pressure range fits Us=8.74+0.96 Up in km/s.
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INTRODUCTION

Sapphire is a technologically important
material frequently used in high pressure physics. In
the form of ruby (Cr-doped sapphire) it indicates
pressure in a diamond anvil cell through the pressure ('--
shift of its fluorescence. However, at megabar
pressures the fluorescent lineshape changes, making Top
its interpretation increasingly difficult 1. A first- Bottom pins
principles calculation of the optical properties of ruby Figure 1. Targetdosign using thecloctrical pin tcchniqu¢to
requires its high pressure equation of state (EOS). mcasur¢ shock speed in a sapphire "tophat". The electrical

In shock-wave physics, sapphire is an pins short when they encounter the shock-wave. Six "top"
important window material because it has a high ,pinsand six "bottom" pins encircle a center pin.
density (4.0 g/cm 3) relative to other window
materials such as LiF (2.64 g/cm3). This produces

higher shock pressures upon impact. Also, its density Shorting Pin Technique
can be a better impedance match to some samples, Figure 1 shows the target design employing
minimizing undesired reflected waves. Often in these electrical shorting pins to record the shock transit
applications an EOS accurate at multi-megabar
pressures is needed. Previously the Hug oniot (shock time across a "top-hat" sample. The technique isdescribed in more detail in ref. 4. The bottom and top
EOS) of sapphire had not been measuredZ beyond 145 . pin circle diameters were 19.3 and 9.6 mmGPa. We have measured the Hugoniot from 80 to '
340 GPa in two stage gas gun experiments using respectively and the step height was 1.3 mm. The tiltand bowing of the flyer at impact were determined
optical and electrical pin contact methods, from the distribution of pin arrival times and used in

calculating the transit time of the center of the shock

METHOD surface. If the center pin failed the ari :)unt of bowir.g
could not be determined, and this amount could be

The Hugoniot was determined by measuring significant (20 ns out of a transit time of 100 ns for
the speed of a shock through sapphire created by high velocity shots). This critical reliance on a single
impact of a disk projectile. The projectile density, pin is a disadvantage which motivated us to employ

the optical technique described below.Hugoniot and velocity combined with the sapphire
shock speed (Us) using elementary shock relations3, 4

yields the sapphire mass velocity (Up). The locus of Optical Technique
Us-Up data constitutes the Hugoniot. Figure 2 illustrates the target design used with

The sample was high quality sapphire ef [0001] an optical technique similar to that described in ref. 6,
orientation obtained from either Union Carbide Co. but using an indicator fluid. A sapphire (Sp) cylinder
or Crystal Systems Co. 5 Its density averaged 5 mm thick and 18 mm diameter is mounted against a
p=3.989 g/cm 3. Except for a shot using Pt, the copper baseplate and surrounded by an indicating
projectile was a Ta disk, 1 - 2 mm thick and 24 mm fluid such as bromoform or benzene. The fluid emits
diameter. The projectile was accelerated by a two light when shocked. An opaque gold film covering
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window _ _;,'2_A;;/.,_ Cu f

lens _ __ flyer The transit time is found by translating the

@ l I sh°ulder POints upward until they fit the same

i_i"_'''''' _ parabolic curve defined by the top points inside the

aak_ bat-ears. The turn-on time of the fash was assumed

_i_i sp to be identical for the Cu/fluid and Sp/Au/fluid

_smt_or / _ interfaces. This is reasonable since the calculatedpressures developed at the two surfaces are similar.
a / _,,_,_,_,_,_,_ An advantage of this technique over the

, _,_. electrical pin method is that amount of bowing can be _'
indicating :Y_/'_ determined with confidence. Secondly, the sample
fluid , can be approximately twice as thick while still

Figure 2. Target design for the streak-camera technique, avoiding side release waves, since there is no central
The indicating fluid emits light when snocked. The lens hole for the center pin as in the tophat shape. The
images the sapphire (Sp) face and the Cu baseplate to the disadvantage of'the technique is that amount of light
streak camera slit. produced in the flash and the proper exposure to use

for the camera for a given impact velocity is not easily
the sapphire blocks light internal to the sapphire. The calculated and must be discovered empirically.
Sp/Au/fluid and baseplate/fluid surfaces are imaged
to the entrance slit of a streak camera. The shock'

emerging from the baseplate first creates light at the RESULTS AND DISCUSSION
baseplate/fluid interface, then later at the rear of the
sample. The Us-Up data are plotted in Fig. 4 along with

Figure 3 shows a digitization of a streak data of ref. 2. A linear best fit through all the data
camera record plotting first appearance of light along yields the relation Us=8.74+0.957Up for 80<P<340
a line bisecting the target. Light first appears on GPa. The error bars for most of our data are smaller
either side of the sapphire as it breaks out of the than the datum symbols. We have not determined
baseplate. It appears at the rear face of the sapphire the source of the statistical fluctuations in the data.
later. The.tilted and bowed nature of the shock front Since the fluctuations are much greater than our
due to the projectile distortion is clearly seen, estimated measurement error it is due to either
especially in the expanded view Fig. 3b. The release sample-to-sample variations in material properties, or
wave propagating inside and from the sapphire sides an unknown source of uncertainty in our experiment.
slows the periphery of the shock front, forming the
"bat-ears" shape.
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Figure 3. a) Streak camera record plotting time of breakout of shock versus horizontal position across a
line bisecting the target. Breakout first occurs from baseplate (shoulders), then from the rear face of the
sapphire cylinder, b) Close up of same record, with the shoulder points translated 374 ns upward. The
"bat-ears" aredue to the side release waves. A parabola is fitted through the top points inside the bat-ears.
The bowing and tilt of the shock wave front due to the projectile distortion is clearly seen.
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Figure4. ExperimentalHugoniotdata(shockspeedvs.massvelocity) from thiswork and
ref. 2 (circles, Los Alamos Nat. Lab.). Symbolsdistinguish the two techniquesused,
diamonds: electrical pin contacts, squares: streak camera. The line of best fit through all the
data is Us=8.74+0.957Up. For our data only, most error bars are smaller than the symbols.

The slope (S) of the Us-Up relation is less than ACKNOWLEDGEMENTS
uni_y. This is atypical of most materials, which have
slopes 2 1.2 - 1.7. We don't believe sapphire's low S Wol'k performed under the auspices of the U.S.
value is due to its hardness, since although some hard Department of Energy by the Lawrence Livermore
materials 7 have low S (diamond: 1.0, B4C: 0.67), National Laboratory under contract number W-7405-
others don't (TaC:l.27, WC: 1.17). In a counter- ENG-48.
example, two soft materials having low S values are
calcium (S=0.95) and cesium (S=1.04).
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