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ABSTRACT

This study investigates the high frequency response of Faraday effect optical fiber current
sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical
models were developed for several configurations of planar (collocated turns) and travelling
wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the
model predictions. High frequency operation above 500 MHz, with good sensitivity, was
demonstrated for several current sensors; this frequency region was not previously considered
accessible by fiber devices.

Planar fiber coils in three configurations were investigated: circular cross section with
the conductor centered coaxially; circular cross section with the conductor noncentered; and
noncircular cross section with arbitrary location of the conductor. Centered, circular coil
sensors have a frequency response easily characterized by light transit time. In this category,
a 20-turn, 6.4mm diameter annealed fiber sensor was tested up to 1 GHz. It has a 3dB
bandwidth of approximately 230 MHz and a sensitivity-bandwidth product of approximately 0.8
MHz-°/A. Both noncentered coils and noncircular coils exhibit a resonant response at the higher
frequencies that mimics the response of tapped, recirculating fiber delay lines. Coils with large
eccentricity in the cross section feature the same sensitivity in the resonance bands as they do
at low frequencies. This frequency response was successfully modeled using a point interaction
between the magnetic field and the light in the fiber.

The helical travelling wave fiber coils were immersed in the dielectric of a coaxial
transmission line to improve velocity phase matching between the field and light. Three liquids
(propanol, methanol, and water) and air were used as transmission line dielectrics. Complete
models, which must account for liquid dispersion and waveguide dispersion from the multilayer
dielectric in the transmission line, were developed to describe the Faraday response of the
travelling wave sensors. Large enhancements in current sensor bandwidth are possible without
a loss in system sensitivity. A maximum bandwidth of approximately 300 MHz was achieved
in a water-dielectric sensor cell containing a 14-turn coil with a 3 cm diameter and a 3 cm
helical pitch. This sensor has a sensitivity-bandwidth product of approximately 1.08 MHz-°/A.

Other travelling wave current sensors with potentially greater Faraday sensitivity, wider
bandwidth and smaller size are investigated using the theoretical models developed for the

singlemode fiber coils.
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CHAPTER 1
INTRODUCTION

The use of optical methods to measure environmental parameters and physical
quantities is becoming highly commonplace in today's technology. Optical sensors, or
more commonly photonic or fiber optic sensors, can perform very sensitive
measurements often with the inherent speed afforded by the optical processes and with
the added advantage of making remote and nonperturbing interrogations. In recent years,
photonic sensing has found use in applications for characterizing electromagnetic (EM)
quantities [1-3]. Here, the reduced interference of the optical or dielectric media serves a
dual purpose: the presence of the instrumentation, or sensor, does not perturb the
environment being measured like conductive materials often can; and the measurement
itself is EMI (electromagnetic interference) -proofed, the environment does not perturb
the measurement. This property has been the main reason that optical technology is
being developed for detection of EM parameters, since in general, photonic sensors have
yet to attain the high frequency sensitivities or the sensitivity-bandwidth products
achieved by the conventional techniques. This is particularly true for electrical current
sensors. Wideband operation that extends well into the microwave region (beyond 500
MHz) is desired while maintaining reasonable current detection sensitivity.

Conventional wideband electrical probes use an inductive loop or inductive
transformer to sense current. These devices are quite sensitive, capable of measuring less
than 1 mA near their upper frequency limit of ~ 1 GHz [4]. However, extending probe
frequency response much beyond 1 GHz is unlikely due to the inductance associated with
the transduction technique. Other conventional methods exist that measure steady state
currents at RF and microwave frequencies (tens of GHz); most have applications for
determining weapon component susceptibility and ordnance safety. These probes sense

the thermal rise produced by Joule heating when current passes through a resistance point




in the conduction path. Most common are electrical thin film thermocouples and
thermistors used to measure currents in electroexplosive devices (EEDs) [5]. Fiber optic
thermometric techniques have been developed that replace the thermocouple/thermistor
to determine currents and powers in EEDs or substitute resistors [6]. These hybrid
optical-electrical sensors still incur some signal perturbations, and since they record only
the magnitude of the RF currents they are incapable of measuring transients faster than
the thermal response time.

Two competing optical techniques can be used to measure magnetic field or
current waveforms: magnetostriction and Faraday rotation. Each has its advantages [3],
and both have been adapted to optical fiber current sensing. In magnetostrictive sensors
[7] an external magnelic field produces a deformation or strain in a magnetostrictive
material that is in intimate contact with a singlemode fiber. The strain is transferred to
the fiber creating perturbations in geometry and refractive index. Deviations in the
optical path length are sensed interferometrically. This technique is quite sensitive;
magnetic fields as small as 0.07 pT/w/E have been detected [8]. However, bandwidths
are generally limited to a few tens of kilohertz because of the mechanical movement
required in the magnetostrictive material. Sensors with frequency response beyond 1
MHz have been constructed by mixing the signal with a field from an RF oscillator [9];
the detection band is shifted to a higher center frequency but the detection bandwidth
remains unchanged.

The Faraday effect, on the other hand, is an inherently fast optical process in most
materials. In the sensing medium, the magnetic field produces a rotation in the plane of
polarization of the propagating light. Field and current sensors which exploit this fast
process have been reported [10-14]. Measurement at frequencies above 1 MHz are easily
accomplished, aithough response sensitivities do not approach those of the
magnetostrictive sensors. The strength of the Faraday interaction is relatively weak in

most materials. Common silica optical fibers exhibit particularly small rotations per unit
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length. As a result, fiber sensors have mainly been used to measure kiloampere or
megampere currents [15] most notably produced in the power generation [16-17] and
fusion research [11,18-20] industries. (In these applications high electrical isolation is
definitely a benefit.)

Much effort in recent years has concentrated on improving the sensitivity of
Faraday effect fiber current sensors. Sensitivity is improved by increasing the interaction
length between the field and the light or by using materials that produce a larger Faraday
rotation per unit length (possess a larger Verdet constant). Longer fiber lengths,
however, often lead to large, bulky sensors while limiting bandwidth due to light transit
time. Recent investigations into fiber annealing [21,22], circularly-birefringent [23] and
elliptically-birefringent [24] singlemode fibers, higher Verdet constant fibers [25-27],
and other special fiber processes [28,29] have allowed for the fabrication of small,
sensitive multiturn coils and provided the direction needed to achieve subampere current
detection using optical fiber systems.

Other material studies have identified the ferromagnetic (or ferrimagnetic)
crystals such as the iron garnets [12,13,30,31] and paramagnetic crystals such as
CdMnTe [10,32] as possessing excellent Faraday sensitivity for field sensing
applications. Rotation sensitivity in these crystals exceed that in silica by more than
three orders of magnitude. Also, one current sensor configuration has recently been
developed using the ferromagnetics [30]. The huge increase in detection sensitivity,
however, often means that frequency response is reduced due to the required
reorientation times of the magnetic ions or domains in the optical material.

The tradeoff between sensitivity and bandwidth is apparent in all classes of
magneto-optic materials and processes and, subsequently, in any field or current sensor
that utilizes them. Diamagnetic glasses and crystals (silica fibers belong to this group)
have small Faraday sensitivities but possess extremely wide material bandwidths. For

this reason, optical fiber current sensors are always limited in high frequency response by




the transit time of the light through the fiber. Thus, tradeoffs between sensitivity and
bandwidth require compromising on fiber length. For most applications the required
current detection sensitivity determines the fiber and coil parameters and response
bandwidth is estimated from the fiber length. This practice is widely accepted, and little
attention is given to bandwidth considerations during sensor design unless large currents
are being detected. However, many current monitoring applications require wideband
detection of milliampere-level signals. Faraday effect sensors, and particularly optical
fiter sensors, have the potential to fill these needs should their high frequency response
be better understood.

A formal characterization of the frequency response of fiber current sensors,
including expressions for 3 dB bandwidth and the sensitivity-bandwidth relationship, has
recently been presented [33]. The theoretical discussions in Ref. 33 are mostly limited to
the simplest of fiber sensor coils, those that are circular and concentric with the current
conductor. In addition, experimental measurements are performed on a single coil at
frequencies up to 5 MHz, which is limited to just above the sensor 3 dB bandwidth.

In this study a complete picture is given for the high frequency response of
Faraday effect fiber current sensors. Theoretical models are generated and response
functions are measured for many different fiber coil configurations. These include
sensors with planar, circular coils centered on the axis of the current conductor; circular
sensing coils with the axes displaced from that of the conductor; noncircular or elongated
fiber coils with concentric and displaced axes; and helical coils aligned coaxially with the
conductor. Varying coil diameters and the number of coil turns further extends each
category. Many other configurations (some of them non-physical) are explored
theoretically to provide further insight into current sensor models. Measurements are
made for frequencies between 1 MHz and 1 GHz. For many sensor coils this represents
frequencies well above the 3 dB bandwidth and the response function cutoff frequency.

Fiber current sensing in this frequency range has not been demonstrated or reported



previously.

Planar fiber coil sensors — those with collocated or closely assembled turns —
have well-defined bandwidths as determined primarily by light transit time.
Manipulations of the coil cross section or off-center placement of the conductor axis
within the coil introduces response resonances at higher frequencies. These can be
exploited for narrowband current sensing; demonstration of the technique is performed at
frequencies above 500 MHz. Within the high frequency bands, relative increases in
detection sensitivity occur, while the bandwidth remains as described by the lower
frequency response.

The fundamental bandwidth limitation dictated by the light transit time in the
fiber current sensor can be overcome by using travelling wave techniques. Improved
phase maiching between the propagating magnetic field and the light in the fiber is
accomplished by spreading the coil turns in a helix then immersing the coil in the
dielectric of a coaxial transmission line. This can be accomplished without a loss in
measurement sensitivity, thereby increasing the sensitivity-bandwidth product of the
Faraday effect current sensor. Demonstrations of the technique use liquids as the
dielectric medium in the slow-wave transmission line structure. Measured bandwidths of
300 MHz with bandwidth enhancements of greater than four (compared to planar coils)
are reported. Because of the orientation of the magnetic field relative to the light in the
fiber, phase matching in a Faraday effect travelling wave current sensor is much more
difficult to achieve than in electro-optic travelling wave field sensors. Perfect phase
matching is virtually impossible to attain, although an optimum set of sensor travelling
wave parameters exists such that large bandwidth enhancements are achievable.

Following this introduction, Chapter 2 gives an overview of the Faraday effect in
bulk optics and optical fibers with specific applications to current sensing. Limitations
on measurement sensitivity and bandwidth are discussed in relation to material

properties, fiber birefringences, and common system noise sources. Chapter 3 presents




the general theoretical description of the frequency dependence of the Faraday rotation in
fiber current sensors when light transit time through the fiber is the constraining factor.
These mathematical developments are then continued in the later chapters as specific
model responses are generated for particular fiber sensor coil configurations. After
Chapter 3, this document branches in two fundamental directions. Chapters 4 through 7
cover fiber current sensors that utilize planar coils, while Chapters 8 through 12 discuss
travelling wave fiber sensors with helically shaped coils.

The details of experimental hardware and procedures are presented in Chapter 4.
Included among the hardware is the expanded coaxial transmission cells that contain the
fiber coils and produce the magnetic fields [34]. Additional discussion about these cells
is given in Appendix A. Many of the apparatus and procedural details related in Chapter
4 and Appendix A also apply to the travelling wave sensors. Starting with Chapter 5,
mathematical models and experimental measurements of the frequency dependent
Faraday response are presented for specific categories of fiber coil configurations.
Chapter 5 covers circular coil sensors with the current conductor centered in the coil
cross section. Several coils with varying geometry are characterized, highlighted by
testing of a small diameter (6.4 mm) annealed coil sensor. Noncentered, circular coil
sensors are discussed in Chapter 6. This discussion includes theoretical response
predictions for a sensor system with the conductor totally outside the coil cross section.
Chapter 7 presents fiber coils with noncircular cross sections. "Delta function” or point
interaction models are developed from a highly eccentric coil geometry. Rectangular
coils are used to describe the Faraday response in generic noncircular fiber sensors.
Important in the accurate determination of current sensor frequency response is the
inclusion of effects due to the fiber coil leads. Appendix B gives an exact mathematical
treatment of these lead effects for a planar coil geometry.

Chapter 8 begins the study of the travelling wave fiber current sensors with a

discussion of the basic sensing concepts. Bandwidth enhancement is a key element in the



use of the travelling wave configurations and performance criteria are established in this
chapter. The experimental travelling wave transmission cells are presented in Chapter 9.
Cells contain either air as a dielectric or one of three liquid dielectrics: 1-propanol,
methanol, or water. The peculiarities associated with precise sensor response modeling
for the liquid travelling wave structures are detailed in Chapter 10. Complete models are
developed and include effects created by liquid dispersion, waveguide dispersion and
multimoding in the coaxial transmission cells, and relative permittivity perturbations due
to fiber coil supports. Mathematical supplements to the models are provided by
Appendices C and D which derive the effective relative permittivity in the coaxial lines
and the waveguide modes in a multilayer dielectric coaxial line with complex relative
permittivity.  Chapter 11 presents the experimental measurements using the fiber
travelling wave sensors and compares the Faraday response data to model predictions.
Further enhancements to the bandwidth and high frequency response of Faraday
effect current sensors are discussed in Chapter 12 for several other travelling wave
configurations. These include solid dielectric coaxial transmission line structures,
combination travelling wave/noncentered (or noncircular) fiber coil sensors, helical
waveguide sensors using higher sensitivity materials, bulk-optic helical-conductor
travelling wave sensors, and a serpentine, planar waveguide in an RF stripline. Finally,
Chapter 13 summarizes the high frequency response model predictions and experimental

measurements for all planar and travelling wave fiber current sensors.




CHAPTER 2
FARADAY EFFECT CURRENT SENSORS

The Faraday effect is an induced circular birefringence created by a magnetic
field interacting with an optical medium [35]. The resulting rotation of the plane of

polarization, ©, of light propagating in a medium of length L is described (in MKS units)

by
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Only that component of the magnetic flux density, B, which lies in the direction of the
incremental length, dl, of the light propagation contributes to the effect.  The
proportionality factor, V, is the Verdet constant and determines the strength of the
interaction created by the field. The Verdet constant is a material parameter that is also
dependent upon the temperature [36], the wavelength of the propagating light and the
modulation frequency of the magnetic field [37,38]. Verdet constants for some common
materials used in sensors are given in Table 2-1 [39,40].

Current sensors using the Faraday effect can be quite simple. Ampere's law states

that for a static magnetic field H, the current, i, is given by

i=§{H.Al . 2-2)

Thus, allowing the interrogating light beam to propagate in a loop around the current
conductor produces a rotation that is independent of the beam path. Optical fibers wound

in a coil represent an ideal method for directing light around a current carrier. Multiple



Table 2-1.

Verdet Constants for Several Materials Used in Faraday Effect Sensors.

Parameters were measured at a wavelength of 633 nm and at 25 °C. (Refs. 39,40).

Material Type V (rad/T/m)

Cd, Mn,Te Paramagnetic Crystal ~2000
ZnSe Diamagnetic Crystal 118

Bi,Ge,0,, Diamagnetic Crystal 28.8
ER-5 Paramagnetic Glass -71
FR-4 Paramagnetic Glass -30.5
Si0o, Diamagnetic Glass 3.6
SE-57 Diamagnetic Glass 20

turns of the fiber have the effect of amplifying the resulting Faraday rotation. Such a

sensor has a rotation described simply by

©, = U;VNi, (2-3)

where i, is the permeability of the interaction medium, usually taken to be that of free
space since materials are typically nonmagnetic dielectrics, and N is the number of loops
of optical fiber. Sensitivity to currents can be enhanced even further by using several
turns of the conductor through the optical fiber coil to increase the magnetic field. The
zero subscript used in Eq. (2-3) denotes the dc or low frequency rotation produced by a

static or slowly-varying magnetic field. If the amplitude of the field changes
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significantly in the time it takes the light to traverse the closed path, then Ampere's law,
Eg. (2-2), is no longer valid.

A typical current sensing system using an optical fiber [41] is shown in Fig. 2-1.
The light output from a laser source is passed through a polarizer injecting linearly
polarized light into the fiber. Light exiting the fiber is analyzed with a second polarizer
converting induced rotations to transmitted intensity changes that can be detected by the
photodiode receiver. The sensing fiber must be singlemode in order to preserve the
instantaneous polarization state of the light. The measured light intensity, I, for the

system in Fig. 2-1 when the polarizers are aligned is given by

I = I,cos20, , (2-4)

where I, is the maximum transmitted light intensity and ©, is taken from Eq. (2-3). For

a system using crossed polarizers, the transmitted intensity is

I = Iysin?@, . (2-5)

For this case, the relative intensity is zero with no current. The intensity reaches a

% Input fiber Output fiber %

Source Det.

Conductor Singlemode fiber

Fig. 2-1. A simple optical fiber system for Faraday effect current sensing. This
polarimetric configuration uses singlemode fiber between input and output polarizers.
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maximum when a current is present that produces a rotation of ©, = /2, or odd multiples
of m/2. It is obvious from Egs. (2-4) and (2-5) that a measured intensity could represent
any number of currents. This has an advantage in current sensing since saturation cannot
occur as in magnetic core current probes. However, difficulties can be encountered when
determining large currents where several of these intensity "fringes" are observed.
Usually in this case, two polarization states 45° apart are monitored simultaneously at the
fiber output [42]. A ratio of the two detected signals gives an unambiguous
determination of the current. The relative intensity response of the fiber sensor in Fig. 2-
1 is plotted in Fig. 2-2 as a function of measured current. The effect of several polarizer
configurations are shown.

Small currents are measured with the greatest sensitivity in a system using input
and output polarizers oriented at 7/4 (45°) with respect to one another. The transmitted
relative intensity at zero current (see Fig. 2-2) is biased to %, and bipolar current signals
produce an increase or decrease in intensity about this point. More importantly, the
intensity slope, dI/di, is maximum. If the currents are small enough so that rotations are
much less than n/4, then measured changes in intensities are linear with changes in
current. From Fig. 2-2, polarizers aligned at +45° and -45° produce equivalent intensity
changes but with different signs. Sensing both of these polarization states simultaneously
and then taking the difference in intensities produces a measurement with twice the
sensitivity. A system incorporating this scheme is identical to that in Fig. 2-1, except the
output polarizers and detectors are arranged as in Fig. 2-3. The polarizing beam splitter
selects the orthogonal polarization components, one for each photodiode receiver. This

system has a response with rotation, or current, of

I = Iysin(20,) . (2-6)

Using this differential detection scheme also reduces system common mode relative

11




aligned

Current, i (= ©VN)

Fig. 2-2. The relative intensity response versus current for a polarimetric fiber current
sensor. (Top) With polarizers aligned and crossed. (Bottom) With polarizers oriented at
+ 45° to one another.
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Fig. 2-3. The optical output in Fig. 2-1 is split using a beam-splitting polarizer or a
Wollaston prism for dual polarization detection.

intensity noise such as carrier fluctuations in semiconductor diode lasers.

In addition to the polarimetric sensing schemes illustrated in Figs. 2-1 and 2-3,
optical fiber Faraday effect current sensors can also be constructed using interferometers.
In particular, the Sagnac interferometer [43], shown in Fig. 2-4, provides a very simple
method for sensing currents. The counter-propagating beams in the fiber are rotated
nonreciprocally by the magnetic field resulting in a doubling of the detected response
compared to the polarimetric sensor. Reciprocal effects produced by some noise sources
(e.g., laser phase noise and stress-induced polarization changes from temperature drift),
however, are inherently compensated for when the two signals are combined at the fiber
coupler. The Sagnac interferometric sensor also has the advantage of not requiring
external polarizers. Iis greatest drawback is that the response is likened to that of crossed
polarizers in the polarimetric current sensor. The detected intensity is zero with zero
slope, as shown in Fig. 2-2, when no current is present. Recently, current sensors that
use the fiber Sagnac interferometer with a 3 x 3 fiber coupler have been studied [44].
With this system, it is possible to bias the zero current response to a relative intensity of
1/3, with a nonzero response slope. This fiber current sensor has many advantages for
detection of small currents.

Faraday effect current sensors are not limited to optical fibers, although working
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Fig. 2-4. A fiber Sagnac interferometer configured as a Faraday effect current sensor.
The fiber coupler launches two counter-propagating beams of light that are recombined
at the coupler output for optical detection.

with fibers is usually much easier. Several glasses have been used to construct sensors
that either slip around a current conductor or have the conductor pass through a hole in
them [45,46]. Also, a Ga:YIG (ferromagnetic crystal) sensor, consisting of four separate
rods that form a path around the conductor, has been developed [30]. For these bulk
oplic sensors, materials are selected that have much higher Verdet constants or much
larger rotations per unit field than a silica fiber. This leads to a more sensitive current
detection system. Fibers are still necessary to transport light to and from the basic
sensor, and lenses and other optical elements are required to collimate and direct the light

through the bulk glass.

Sensor Sensitivity

Faraday effect optical fiber current sensors do not always have an ideal response
that is only dependent on the optical rotation. Singlemode fibers are a birefringent
medium and controlling the exact state of polarization of the propagating light is difficult
[47,48). Stress introduced in the fiber during manufacturing or simply by winding it into
a coil creates a linear birefringence, or retardance, that is coupled to the circular
birefringence produced by the Faraday rotation. This effect can mask the rotation,

resulting in loss of sensor sensitivity. Inherent stresses due to manufacturing can be
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reduced significantly through careful processing [49]; however, bending stresses cannot
be reduced quite so easily. Fortunately, the linear birefringence induced by bending is
controllable and well defined [50]. For a fiber under zero tension, the bend-induced
birefringence per unit length is given as

2

If
A =K, —= , 2-7)
B A R2

where 1; is the fiber radius, R is the bend or coil radius and K, is a parameter related to
the stress-optic coefficient and dependent upon the fiber material and the wavelength of
light. For a silica fiber with A = 633 nm (HeNe laser light), K, = 7.7 x 107 deg/m.

In a linearly birefringent medium, the effects of Faraday rotation are best
expressed as an operation on the complex field amplitudes, E, and E,. Using the Jones

Calculus, these amplitudes are described by [51]

Ex(z) _ }A -B Ex(o) (2-88.)
E,(2)| A"||Ey0)]
A = cos (-q)—,z) - j—Aﬁsin(q)—,z) , (2-8b)
2 ¢’ 2
B = 2F sin(cl,z) , (2-8¢)
¢’ 2 .
and

N2 2

(‘l) _ (A_B) LB (2-8d)
2 2

Here, AB is the total retardance per unit length and F is the total Faraday rotation per unit

length. The field amplitudes are assumed to have a known state at z = 0, the entrance to
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the fiber coil. The axes for linear birefringence are also assumed to remain constant
throughout the fiber coil, with the fast axis in the plane of the fiber bend. From Egs.
(2-8), it is seen that if F >> A, the operation on the field amplitudes is a pure rotation.
Conversely, if AB >> F, B — 0 and a pure retardance results. Under the latter condition,
the sensing of Faraday rotation can be quenched.

The effects of linear birefringence in the fiber sensor coil can be reduced in
several ways. Twisting of the optical fiber along its axis introduces a circular
birefringence that acts to bias the sensor response to Faraday rotation [47,52]. The

twisting rotation per unit Ieneth, €, is given b
g p g g y

Q =gt 2-9

where € is the number of twists per unit length and g’ is a material dependent parameter.
At A =633 nm, g' ~ 0.08. The rotation induced by twisting adds algebraically to the
field-induced Faraday rotation to produce the quantity, F, required for Egs. (2-8). Since
twisting has a nonsymmetric effect on bipolar signals, it is important that care be taken in
sensor coil design.

In general, most commercially available optical fibers can withstand a twist rate
of 50 turns per meter {15]. This is more than adequate to offset the effects of linear
birefringence in large diameter coils, but in fiber coils produced of many small turns, it is
not sufficient. More rotation can be achieved through the use of circularly and
elliptically birefringent optical fibers. A circularly birefringent fiber is manufactured
with a helical core [23]; elliptically birefringent fibers are produced from high linearly
birefringent fiber by spinning the preform during the fiber pulling process [24,53].
Current sensors constructed from these fibers have led to relatively high sensitivity
measurements.

The linear birefringence in small multiturn fiber coils can essentially be
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eliminated through annealing [21, 22, 54]. The fiber is wound in the desired geometry,
heated to near the glass softening point and then returned slowly to room temperature.
The annealed coil retains its predetermined configuration but has orders of magnitude
less linear birefringence with only a slight increase in attenuation. Fiber sensors
produced using this technique have resulted in the highest sensitivity measurements to
date, noise equivalent currents of ~100 pA/+Hz for 188 turns of silica fiber in a coil 1
cm in diameter [54].

Improved sensitivity is also possible through the use of higher Verdet constant
optical materials. Many materials are available that have a much greater current
measurement potential than do silica fibers (see Table 2-1). Attempts have been made to
produce optical fibers from special glasses [25], such as FR-5, and from silica with high
concentrations of rarc earth dopants [26,27]. In general, the resulting fibers have
contributed little to sensor applications because of large increases in fiber attenuation,
increased linear birefringence resulting from the manufacturing process or only minor
improvements in Verdet constant for dopants in a stable glass matrix. Should production
of quality higher Verdet constant fibers become prossible, one material in particular is of
interest: SF-57 glass [45], with a Verdet constant 5.5 times that of silica and with a
stress-optic coefficient (for reduced bend birefringence) about 100 times less.

Bulk optic sensors have been fabricated from the diamagnetic materials SE-57
glass and polycrystalline ZnSe {46]. These devices show increases in Faraday rotation
that reflect their larger Verdet constants. Most bulk materials have been used for
magnetic field sensors, but configurations for current sensors have been developed
[45,46]. Temperature dependence of the Verdet constant and thermal expansion of the
optical material set a limit on the measurement precision of the Faraday rotation.
Diamagnetic materials are typically less temperature dependent than paramagnetic or
ferromagnetic materials [35] which often makes them more desirable for sensor

applications. A compensation mechanism for reducing the temperature dependence in
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diamagnetic materials through use of input polarization control has also been developed
[55].

For greater Faraday sensitivity, the paramagnetic materials with even larger
Verdet constants can be used. One in particular is the dilute magnetic semiconductor,
Cd, Mn,Te, which offers sensitivities as great as three orders of magnitude above that of
silica [10,39,56]. Additionally, a wavelength of operation can be selected for a given
Manganese concentration that results in temperature independent Faraday rotation [57].
Because of its crystalline structure, however, this material has yet to be adapted to
current sensor applications. Devices have primarily been confined to small volume
magnetic field sensors [10].

The largest Faraday rotations are produced in ferromagnetic (or ferrimagnetic)
crystals [2,13,39]. The most notable ferromagnetics are the iron garnets (e.g., YIG.
yttrium iron garnet). In these materials, an applied magnetic field aligns the magnetic
dipoles of the individual domains. The specific rotation per unit applied field (equivalent
to the Verdet constant in diamagnetic or paramagnetic materials) is the ratio of the
saturation rotation, ©ps¥, to the saturation magnetic field, H,. This parameter is
comparatively quite large, especially in the substituted iron garnets [12,58]. In 20%
gallium substituted YIG (for the iron), Faraday sensitivity is reported to be 2.5 x 104
larger than in silica, which is approximately 20 times greater than in Cd, ,Mn, Te [12].
High sensitivity magnetic field sensors have been constructed using YIG [13] and
Ga:YIG [12], and small rods of Ga:YIG have been arranged around a conductor in a
current sensor configuration [30]. By the nature of the ferromagnetic material, saturation
magnetization can be a limiting factor [58]. However, for the measurement of small
fields or currents, for which these materials would be targeted, this saturation limit
should not interfere.

Ultimately, the sensitivity limit for a Faraday effect current sensing system will

be established by noise levels. Sources of noise are fluctuations in optical power
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throughout the system and shot and thermal noise in the optical receiver. Laser noise
sources and polarization variations due to temperature or stress vibrations can be large,
but through careful component selection and system design, these fluctuations can be
reduced significantly. The minimum measurable currents will then depend upon the
receiver characteristics, in particular, the average optical detector output current, i,,,, and
the amplifier feedback resistance, R,. An expression for the noise equivalent current,

NEI, given per unit root bandwidth [59], is

\/ 2kp T .
R + e ldet
NEI = f : (2-10)

where kg is Boltzmann's constant, T is the absolute temperature, e is the magnitude of the
electron. charge, and N is the number of turns in the fiber sensor coil. A plot of Eq.
(2-10) for a single turn sensor coil with several values of the feedback resistor is shown
in Fig. 2-5. For small values of the resistor, R,, a slope of unity between NEI and the
average detector current is approached, indicating dominant Johnson or thermal noise.
For large resistor values, shot noise dominates and the curve approaches a constant slope
of ¥2 for all detector currents. It is expected that average detector output currents are not
likely to exceed about 1 mA, resulting in system NEIs of ~1 mA/+/Hz /turn for the most
sensitive fiber sensor systems [45]. Further improvements in system response can only
be gained through more turns in the fiber coil or through the use of higher Verdet

constant materials.
Sensor Bandwidth

The bandwidth of Faraday effect current sensors is limited by four basic factors:

(1) the intrinsic response of the Faraday rotator material; (2) the response time of the
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Fig. 2-5. The noise equivalent current per root unit bandwidth for a single turn fiber
current sensor plotted as a function of the average detector output current. The effect of
varying the feedback resistance in the transimpedance detection amplifier is shown.

photodiode and the bandwidth of the amplifier used in the receiver circuit; (3) the
dispersion of the propagating light while passing through the sensing and transmitting
medium; and (4) the transit time of the light propagating through the sensor material.
For most sensor systems, items (2) and (3) are of little concern. Photodiodes with a few
tens of picoseconds of response time are available as are amplifiers with greater than 10
GHz bandwidths. And since relatively short lengths of singlemode fibers and high
quality glasses or crystals are used in sensor systems along with laser sources, dispersion
effects should not begin limiting bandwidths until tens of gigahertz.

The intrinsic response in Faraday rotator materials is determined by the relaxation
or spin reorientation time of the interacting magnetic ions or domains. Each class of
materials — diamagnetic, paramagnetic and ferromagnetic — can have a different

microscopic interaction mechanism for the Faraday effect, resulting in effective Verdet
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constants that are widely distributed in frequency response. In some paramagnetic

glasses and crystals the frequency dependent Faraday rotation, O,,(w), is described by a

simple Debye relaxation function [37]

Op(0) = =22 | (2-11)

where ©,,(0) is the zero frequency response of the material, ® = 2nf is the angular
modulation frequency of the magnetic field, and Tg is the material relaxation time
constant. This model has been compared to measurements made on Cd, Mn, Te sensors
[38]. The frequency dependent Faraday rotation (effective Verdet constant) for the
Cd, ;Mn,Te system is shown in Fig. 2-6 for two different compositions. Different laser
wavelengths were required for maximum Faraday response since the bandgap changes
with composition. When the Manganese concentration is increased from 10% to 45%,
the relaxation time decreases, resulting in nearly an order of magnitude increase in the
frequency response.

In ferromagnetic materials, the frequency dependence of the Faraday effect is also
highly dependent on composition [30,31]. Typically, the larger the enhancement of the
localized magnetic field, the slower the movement of the domain walls. In Fig. 2-7, the
frequency response is plotted for samples of pure YIG [13] and Ga:YIG [30]. The YIG
sample has a -3 dB frequency of approximately 700 MHz, while the Ga:YIG sample has
a bandwidth of ~ 7.5 MHz. These frequency responses scale inversely (though not
linearly) with the increases in their relative Faraday sensitivities; the Ga:YIG has a
significantly larger rotation per unit field.

In diamagnetic and paramagnetic glasses, the magnetic ion relaxation times are
usually less than one picosecond [37]. Thus, in fiber current sensor systems where the

singlemode fiber has been drawn from common glasses or glasses doped with magnetic
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Fig. 2-6. Relative changes in the Faraday rotation versus frequency for two Manganese
concentrations in Cd, Mn,Te [38]. Each set of data was taken using a laser wavelength
optimized for material response with that Mn concentration. Solid and dashed lines
represent theoretical fits to the frequency dependence.
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Fig. 2-7. The frequency response of the Faraday rotation for two compositions of YIG
crystals. (Top) A 5 mm diameter by 3 mm long sample of pure YIG [13]. (Bottom) A
1.5 mm diameter by 5 mm long sample of Ga:YIG [30].
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ions, it is safe to assume that intrinsic material frequency response will not be the
limiting factor in system bandwidth. In most practical applications, the bandwidth will
be constrained by the light transit time through the sensing material. This is particularly
true for fiber sensors in which many turns have been used in a coil for increasing
measurement sensitivity. In order for the rotation to be described by Eq. (2-3), the
amplitude variations in the conducted current (or the associated magnetic field) must be
small during the time it takes for the light to propagate from one end of the fiber coil to
the other. Otherwise, changes in the field become convolved with the propagating light
rotations. The dependence of fiber current sensor frequency response on the light transit
time and the subsequent limitations on bandwidth are the subject of this study.
Theoretical and experimental descriptions of the frequency dependent Faraday rotation
for many current sensor configurations appear throughout the remainder of this

document.
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CHAPTER 3
TRANSIT TIME FREQUENCY RESPONSE THEORY

In order to derive an expression for the frequency dependent Faraday rotation,
three assumptions are made about the optical fiber current measurement system: (1) the
circular birefringence produced by the Faraday effect dominates the polarization state in
the fiber; (2) the magnetic field propagating along with the current on the conductor is
planar and azimuthally symmetric — in general, a transverse electromagnetic (TEM)
wave; and (3) the current flowing along the conductor is treated as an infinitely long
filament of moving charge centered at the conductor's longitudinal axis. The first
assumption implies that any significant linear birefringence in the fiber has been removed
through annealing or twisting so that uncharacteristic polarization shifts in the fiber are
not convolved with the remaining electromagnetic interactions. And the last two
assumptions assure that all points along the fiber that fall in a plane perpendicular to the
conductor experience simultaneous exposure to the passing magnetic wave.

The magnetic flux density from the passing TEM wave has a spatial and temporal
dependence given by

-j(wt - kel) =~

By = Ml 5, (3-1)
2nr

where r is the radial distance from the conductor to the light element propagating in the

fiber, @ = 2xnf is the angular modulation frequency of the field, k is the propagation

vector of the TEM wave pointing in a direction parallel to the conductor, 1 is the length

vector for the fiber coil, and cfs is the unit vector in the azimuthal direction. In Eq. (3-1)
the current, i, is taken to be static, or slowly varying with respect to . The fiber coil and

its position relative to the conductor is allowed to be in many configurations. In general,
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the coil will not have a circular cross section, the conductor will not be centered in the
coil cross section, and the coil turns will not be collocated (allowed to form a helix).
Thus. B and dl in Eq. (2-1) will not be codirectional as is the case for a circular coil with
a centered conductor, and the vectors k and 1 in Eq. (3-1) will not be orthogonal as with a
coil with collocated turns.

The angles formed between the field vectors and the light elements in the fiber
are illustrated in Fig. 3-1. B and dl subtend an angle y and k and dl subtend an angle v,

so that

B e dl = Bcosysinydl , (3-2)

and
kel = klcosy . (3-3)

Substituting the information from Egs. (3-1) through (3-3) into Eq. (2-1) results in an

expression for the frequency dependent Faraday rotation:

L

= = J 1 cosy siny e
T
0

-j{ot - Klcosy) da . (34)

The wave propagation constant can be expressed as k = @/vy,, where v, is the

ph?
wave phase velocity (usually the speed of light in the medium surrounding the
conductor). The surrounding medium totally immerses the fiber and may be a material
other than air or vacuum. In general, the medium will have permittivity of € and

permeability of . Then the phase velocity is given by
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Fig. 3-1. Angles formed between the light propagating in the fiber coil and the magnetic
field associated with the conducted current.
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Vop = —— . (3-5)

Since € = gy ¢, and U = |, H,, Where &, and i, are the free space permittivity and
permeability, and €, and ., are the material relative permittivity and permeability, the

phase velocity can be rewritten as

_ 1 1 _ c
P \/“'080 ‘\/urer p‘rer ’

v (3-6)

with ¢ being the speed of light in a vacuum.

As the light in the fiber propagates through the coil, 1, ¥ and v in Eq. (3-4) can
vary, making them time. or position, dependent parameters. Equation (3-4) is changed
from a length integral 1o a time integral, using the relationship 1 = (¢/n)t, where n is the
fiber refractive index. The expression for k, incorporating Eq. (3-6), and the time

dependencies of all parameters are substituted into Eq. (3-4) to give

T . VHr€r :'
. -j® t[l i cos[w(t}]
0w) = 0 ;N (%)J COS[Y(‘)I](SI“[“’(O] e dt , (3-7)

0

where T = (n/c)L is the transit time of the light through the fiber. In Eq. (3-7), the low
frequency Faraday rotation, @, , has been introduced through substitution of Eq. (2-3).
The frequency dependent Faraday rotation as expressed by Eq. (3-7) is then a function of
the position of the current-carrying conductor relative to the fiber coil, the coil shape
(cross section and helical parameters), and the relative phase between the magnetic field
and the light propagating in the fiber.

For a given current measurement system, Eq. (3-7) can be solved to predict the
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Faraday rotation frequency response. Solutions for particular system geometries are
presented in the following chapters of this document. Two simplifications of Eq. 3-7)
are of greatest interest in providing the starting foundation for those developments. First
is the case where the fiber coil turns are collocated and the plane of the coil is
perpendicular to the conductor. In this configuration all points along the fiber coil are
simultaneously exposed to the passing magnetic field. With y = 90°, the expression for

the frequency dependent Faraday rotation becomes [14]

T
- 1 (e} [ cosly®] ot )
O®) = @ (HN o St (3-8)

Sensor coils having this planar geometry are discussed in detail in Chapters 4 through 7.
The second case fixes the conductor at the center of a circular cross section coil,
but allows the coil turns to be spread apart. This configuration represents a travelling
wave geometry that increases the phase matching between the propagating light in the
fiber and the passing electromagnetic wave [60]. With the conductor centered, r = R

(fixed radius of the circular coil), and y=0. Then Eq. (3-7) reduces to

T

1 c -j® t[l - @ cos[y (t)]}
o) = 6, nNR (E) J sinfy(t)] e dat . (3-9)

0

Travelling wave fiber current sensors are presented in Chapters 8 through 11.

Throughout this paper, particular interest is generated from the magnitude of the

Faraday response relative to its low frequency value, |©(@)/O,|. The frequency
dependent response can be calculated using either Eq. (3-8) or Eq. (3-9), or directly from

Eq. (3-7) if more complex configurations wish to be explored. At frequencies near zero
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(static or d.c. conditions), the relative magnitude is always unity. At the higher
frequencies, this magnitude will rolloff, but in general, it can have values anywhere

between zero and one at any given frequency. A frequency, ®,, is defined at the point

where the relative magnitude is first reduced from its static value to

- L . (3-10)

O(®,)
2

S

This frequency provides the 3 dB bandwidth, AB, for the current measurement system
under investigation. The bandwidth is a useful parameter for comparing the response and
performance of systems that use different types of optical fiber coils. In general, the
bandwidths are strong functions of the transit time, T. A second parameter of interest is
the cutoff frequency, o, = 2nf,,. which is defined as that frequency where the Faraday
response first equals zero. Multiple nulls and high frequency lobes of the Faraday
rotation response occur for many of the fiber systems studied here.

The assumption that a TEM wave surrounds the current carrier is useful in
simplifying the theoretical development needed to model fiber current measurement
systems and providing a framework within which an experimental verification is
possible. A single wire conductor produces non-TEM fields consisting of many modes
and exhibiting strong spatial distributions [61]. Wave impedances vary with frequency,
and a simple relationship between currents and fields may not be possible to determine.
This obviously would introduce additional complexity into the Faraday response
computations of Egs. (3-7) through (3-9). A coaxial transmission line, however,
produces a magnetic flux density given by Eq. (3-1) and satisfies the TEM condition.
The fiber current sensor models developed in this study do not attempt to treat the
additional high frequency effects produced by the single wire conductor; that is left for

future study.
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CHAPTER 4
EXPERIMENTAL APPARATUS AND PROCEDURES

The instrumentation used in the high frequency measurements of fiber current
sensor coils is shown in the schematic of Fig. 4-1. Linearly polarized light from a laser
source passes through beam expansion optics and a half-wave retarder, then is injected

into a singlemode fiber lead using a 10x microscope objective. Light in the fiber lead is

L1 12 As2 g4 Xeos
LASER 1 1 M ‘
SOURCE ) ) Ll
L . J
0PTICS
N sM FIBER
COAX
30 dB | [ POWER
0SC. AMP. TEST CELL -{
reor PAD METER

X-Y-1

MM HBER.\\ POS.  4ox POL
—} |
X-Y-2Z
POS.
BATTERY PHOTO- AMPS SPECTRUM
SUPPLY DETECTOR ANALYZER

Fig. 4-1. Arrangement used for measuring the frequency response of the Faraday effect

in optical fiber current sensor coils. L1 and L2 are lenses used for beam expansion and
collimation, A/2 is a double Fresnel rhomb half-wave plate, and the components marked

by 10X and 20X are microscope objectives used for light injection into the optical fibers
and collimation of light exiting from the fibers.
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carried to the sensor coil located inside a special coaxial test cell. The light undergoes a
rotation (induced by the conducted current), is transported out of the cell via the output
fiber coil lead, and then exits the fiber. The polarization is analyzed, and the resultant
optical signal is reinjected into a multimode fiber leading to a high speed photodiode.
Signals are amplified and their magnitudes are displayed on a spectrum analyzer. Three
different laser sources were used during experimentation: a He-Ne laser (633 nm, 8 mW)
and two GaAlAs diode lasers (780 nm, 3 mW and 840 nm, 30 mW). Figure 4-2 is a
bench-top photograph of the optical components used in the experimental arrangement.
Single frequency RF signals were generated by an oscillator or synthesized signal
generator and then amplified to a maximum of 10 Watts before injection into the coaxial
test cell. The power transmitted through the test cell was attenuated (usually 30 dB) and
monitored by a power meter. All the RF instrumentation in the drive line operates into a

50 Q impedance, thus producing a maximum rms test current of approximately 0.45 A.

:111001:10-'.-.

LR A Y A I B B P
$ 3 2 =2 =) S, & e,

Fig. 4-2. A photograph of the optical components on the bench top used in the
measurement of fiber current sensor response.
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The general frequency range covered during experimentation was 500 kHz to 1 GHz.
The photograph in Fig. 4-3 shows the RF instrumentation used: signal generators, high-

power amplifiers, power meter, photodetectors and spectrum analyzers.

Fig. 4-3. The RF drive and measurement instrumentation used in characterizing the
response of fiber current sensor coils.
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One of three high speed photodiodes was used at the front end of the
photodetection system. These include a silicon PIN photodiode, a silicon avalanche
photodiode (APD) and a GaAlAs photodiode. Each has a response bandwidth in excess
of 1 GHz. The diodes along with bias circuitry and small-signal RF amplifiers were
housed in shielded enclosures to reduce interference from the high power RF drive
sources.

In Fig. 4-4, the schematic of the silicon PIN photodetection system is shown. The
system includes 42 dB of amplification and a dc bias port for monitoring light intensities
during setup and alignment. A 1.2 AH rechargeable battery pack served as the +15 Vdc
supply. The frequency response of this photodetector is plotted in Fig. 4-5. In
generating this response curve, an Ortel high speed GaAlAs semiconductor laser drove
the input to the silicon PIN photodiode. Detector response does not deviate greater thant

2 dB for frequencies below ~ 1.1 GHz; however, the oscillations above 500 MHz are

+15 Vdc
DC Bias
Dcmo )O“‘P‘“
N
Semirigid
Coax
RF
Am Amp ) Output
15 dB 27 dB
50/125
MM fiber
Shielded
Enclosure

Fig. 4-4. Silicon PIN photodetection system built into a shielded enclosure.
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Fig. 4-5. The frequency response of the silicon PIN photodiode with 42 dB of serial,
small-signal RF amplification.

large enough to warrant corrections in the measured current sensor data. The large
response increase near 1 GHz is caused by resonant amplification between the
photodiode circuit and the first RF amplifier. This anomaly does not occur in all the
photodetector systems.

The coaxial test cells are expanded transmission line chambers that provide near
ideal electromagnetic environments that impinge on the fiber coils [34]. Discussions of
pertinent coaxial line properties and the characteristics of fabricated airlines are given in

Appendix A. A cross sectional view of one of the test cells is presented in Fig. 4-6, and a
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Fig. 4-6. A cross sectional view of an expanded coaxial airline test cell with an optical
fiber coil mounted in the working volume.

close-up photograph of the cell is shown in Fig. 4-7a. The cells are designed to open
easily for mounting of the optical fiber coils in the cell working volume. The position of
the coil inside the cell is seen in Fig. 4-7b. A transverse electromagnetic (TEM) wave is
launched in the air space in the cell, and travels with a phase velocity equal to the speed
of light. Cell impedance is designed for 50 Q, requiring the outer to inner conductor
diameter ratio to be 2.3. The conductor diameters also dictate the highest frequency to
which TEM mode operation can be sustained. Three cells with higher-order mode cutoff
frequencies of 1.0, 2.3 and 13.7 GHz were used in these measurements; selection among
these devices was dependent on the fiber sensor coil size.

All the cells were characterized with the fiber coils and any additional support
structures mounted inside. Measurements of the standing wave ratios (SWR) and
impedances of the cells indicate that electromagnetic properties varied minimally from

the design. The 1-GHz airline test cell was used most frequently during experimentation;
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its SWR and impedance magnitude are plotted in Fig. 4-8. Below 1 GHz, the maximum
cell SWR is approximately 1.21, and the impedance varies no more than 7 £ from its
50 Q nominal value (0.7 dB maximum deviation). These excellent cell impedances
allow for the simple relationship between power and current, P = i2 Z, to be utilized.
Thus, only power monitoring was needed during coil testing to determine the relative
magnitude of the sensed currents. The maximum error in estimating the currents was
always less than 0.7 dB, and corrections for impedance deviations at individual
frequencies could be applied where greater precision was required.

The coaxial transmission cells were also configured in non-airline modes with
liquid dielectrics. These configurations are used in conjunction with travelling wave
current sensor concepts and are discussed in detail in Chapter 9.

Optical fiber coils were constructed from low birefringence singlemode fiber with
an 80 pum cladding diameter. In order to overcome the effects of bend-induced linear
birefringence [50], fiber twisting [52] or fiber annealing [21] was employed during coil
fabrication. For most of the sensors, a twisted and rejacketed fiber was used [29]. This
fiber has an outer buffer diameter of 1 mm and can have twist rates as large as 40
turns/meter.  With this fiber, coil construction is greatly simplified. Fiber coils were
mounted approximately in the center of the test volume of the expanded coaxial test cells
as illustrated in Figs. 4-6 and 4-7b. Some of the circular cross section coils were wound
directly on the cell center conductor or were wound in a self-supporting form using the
twisted and rejacketed fiber. Other circular coils were supported using machined
polyurethane foam (10 1b/ft) or a polycarbonate. Fibers entered and exited the cell
volume through the outer conductive wall (see Fig. 4-7a).

Using the half-wave retarder, the linear polarization angle of the light injected
into the singlemode fiber was aligned with one of the fiber coil linear birefringence axes.
Orientation of the axes (in all but the annealed fiber coils) are established by bend

birefringence and twist-induced circular birefringence. The output polarizer/analyzer
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Fig. 4-8. The SWR (a) and the impedance magnitude (b) for the 1-GHz coaxial test cell
with an optical fiber coil inside.
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was set at 45° to the exiting linear polarization state. The detected intensity versus

rotation then follows the response shown in the bottom of Fig. 2-2 and is described by

IG,0) = ;1o[1 £ sin[20(w)]] , Gy

where O(w) is the frequency dependent Faraday rotation introduced in Chapter 3. The
linear dependence of ©(w) on the current, i, is established by Eq. (3-4). Maximum
sensitivity to the Faraday rotation is achieved since the slope of the response curve in
Eq. (4-1) is largest at zero current. The choice of sign in Eq. (4-1) depends on whether a
+45° or - 45° analyzer setting is used. For the RF currents used in testing, the bipolar
signals oscillate about zero and the magnitude of the ac component is all that is recorded.
Then in the absence of any linear birefringence in the coil fibers, the sign of the response
slope near zero in Eq. (4-1) is not important, and the system output polarizers can be set
al either + 45° or - 45°. In the present measurements, maximum rotations were
approximately 200 prad (rms) making the argument of Eq. (4-1) very small. Under these
conditions, the change in the measured light intensity is directly proportional to changes
in the induced Faraday rotation, Al o« A®. Subsequently, the intensity variations follow
the signal drive current, Al oc Al

Spectrum analysis was used to determine the Faraday rotation in the fiber sensor
coils through frequency domain measurements of response magnitudes. No attempts
were made at measuring phase shifts in the sensor systems or monitoring the time
domain response. Instrument sensitivities make such measurements far more difficult
than the magnitude determination. Relative response magnitudes were generated for
each of the current sensor coils of interest by establishing a low frequency reference. For
all of the systems studied, this reference magnitude was recorded at 1 MHz or below. At

discrete higher frequencies magnitude changes were measured. A plot of the relative
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frequency response was produced directly from these results. Care was taken during all
measurements to keep the RF power transmitted through the cell and the dc laser light
level constant. Any significant deviations in these parameters were corrected in the
measured magnitudes.

The small Faraday rotation angles produced in the silica optical fibers required
measuring signals with magnitudes less than -70 dBm. Photodetection was usually
limited by thermal noise at a level near -120 dBm for a 10 Hz spectrum analyzer
bandwidth. When using the GaAlAs semiconductor diode laser sources, carrier noise
often dominated the system; levels were typically 10 to 20 dB greater than detector
thermal noise. Signal-to-noise ratios (S/N) at the lowest frequencies (~ 1 MHz) were
always greater than 30 dB, regardless of the source used, and occasionally exceeded 40
dB for some of the fiber sensor systems. At the higher frequencies the S/N dropped as
the response diminished. Consequently, significant RF shielding was required to
preserve signal integrity at these higher frequencies. Isolation between the RF drive
amplifier output (up to + 40 dBm) and the spectrum analyzer input (noise levels at less
than -110 dBm) needed to be greater than 150 dB up to 1 GHz. Shielding was provided
at all component stages: semirigid coaxial cable for all electrical interconnects; the closed
coaxial test cell; multimode fiber isolation of the detected optical intensity; complete
shielded enclosures with coaxial feedthroughs for the photodetection system; and
shielded, battery-operated sources for supply voltages. RF interference occasionally
degraded system performance at the highest frequencies, but did not prohibit the

characterization of any current sensor coil response.
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CHAPTER §
CENTERED AND CIRCULAR FIBER SENSOR COILS

The most common configuration for a Faraday effect fiber current sensor is a
planar, circularly shaped coil with the current-carrying conductor centered in the coil
cross section. This geometry is considered baseline for most sensor systems, and
experimenters often strive to assemble fiber coils in this configuration if for no other
reason than the resultant symmetry. Because of the high degree of symmetry, the
mathematical developments needed to describe the high frequency response of the
Faraday rotation are greatly simplified. Much of the related theory for the circular,
centered coil is presented in Ref. 33; it is repeated here to provide a foundation for the

circular coils and establish comparative relationships for later model developments.

Centered Coil Model

In addition to earlier assumptions given in Chapter 3, it is now assumed that all
fiber turns are circular in cross section, collocated in space and concentric with the
conductor axis. Then if the fields associated with the current are planar, all points on the
fiber coil are simultaneously exposed to the same magnetic flux density. Variations in
field modulation with time are all that create a frequency dependence in the induced
Faraday rotation. In Eq. (3-8), r is a constant value R, which is the fiber coil radius, and
Y is zero at all times since the magnetic field vector direction always coincides with the
direction of light propagation in the fiber. Equation (3-8) then reduces to the simple

form:
T

) = O, G) J e IO gt | (5-1)
0
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where T = (n/c)L = 2rRN(n/c). The solution to Eq. (5-1) is

P [621%
O@) = O, (1) l-e | (5-2)
T jo
which further simplifies to
sin (0T ;0T
0) = O, sin (%) I (5-3)

(%)

Equation (5-3) is a familiar relationship, describing the response of many systems
involving the convolution of two propagating electromagnetic signals [62]. The

magnitude of the Faraday response relative to its low frequency value is

l ow) | _ | sin(*%) 54
% (%) |
and the phase, ¢, is given by

¢ = arg[O(@)] = -% . (5-5)

Plots of the magnitude and phase described by Egs. (5-4) and (5-5) are shown in Fig. 5-1
as a function of the normalized frequency, wt/2. Presentation of theoretical responses
versus normalized frequency removes the dependence on coil size. This practice is
commonly used throughout this document.

In the most generalized case, Eq. (5-3) also includes a phase factor, ed®to, which

accounts for an arbitrary starting point of the light in the fiber coil relative to the zero
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Fig. 5-1. The relative magnitude (solid curve) and phase (dashed curve) of the fre-
quency dependent Faraday rotation for an optical fiber current sensor system with a
centered, circular coil.

phase point of the oscillating magnetic field. The time delay, t,, can be introduced into
Eq. (5-1) by modifying the integration limits, t, to T + t,, or by changing the integrand to
eJo(t + t0), Using either approach, the resulting phase delay is the same and has no affect
on the Faraday rotation magnitude, Eq. (5-4). The response phase becomes ¢ =
- (@) (T + t,), but its frequency dependence is not altered from that in Eq. (5-5).
Consequently, the arbitrary phase delay has no significant affect on Faraday response for
the centered, circular coils, and t, is set to zero without any loss of generality.

By combining Egs. (3-10) and (5-4), the 3 dB bandwidth, AB, occurs when
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sin (mu%) 1

— = =, (5-6)
Oy T J2
(%)
from which ®,1/2 = 1.392 and
0.696 ¢
= = 5-7
T’ RnN &7

An estimate of the sensor bandwidth was made in Ref. 33 by noting that ®,t/2 ~ /2

from Eq. (5-6). Thus

C
T V2mRaN

(5-8)
The difference in the bandwidths computed using Egs. (5-7) and (5-8) is only 1.6%. The

current sensor high frequency cutoff (first response null) occurs at

1
fo= == ———— . 5-9
“®~ 17 2mRnN -9

Additional response function nulls occur at integer multiples of £

A sensitivity-bandwidth product was introduced in Ref. 33 and has been used by
other researchers [30] to compare the high frequency measurement performance of
current sensing systems, both optical fiber and bulk optic. The sensitivity-bandwidth

product is formed by combining Egs. (2-3) and (5-8):

S} HLe Ve
SBP = [[—2|eAB| =~ —L1 = (5-10)
[( 1) :l V272 Rn
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Equation (5-10) indicates that fiber current sensor bandwidth can be increased without a
loss in sensitivity by reducing the coil radius. At small radii, however, the effects of
bend-induced linear birefringence begin to quench the Faraday sensitivity [50]. Under
such conditions, the SBP is a more complex relationship involving R. In fact, the
response function for fiber coils that exhibit significant linear birefringence will contain
other frequency dependent factors in addition to those described by Eq. (5-3). During
experimentation with one tightly wound coil, this anomalous behavior was observed. It
was quickly dismissed as being caused by linear birefringence; no mathematical
description of this perturbed frequency response was attempted.

As mentioned previously, the effects of linear birefringence can be overcome in
the fiber sensor by twisting the optical fiber [52] before forming it into a coil. This
procedure creates a circular birefringence bias that leads to acceptable sensor response.
Practical mechanical limitations on fiber twisting, however, are approximately 50
twists/m, which constrains coil radii to greater than 1.5 cm for current sensor operation in
the red or near infrared portions of the spectrum. Smaller coil radii are possible by using
fiber annealing to remove bend-induced birefringence and the intrinsic stresses due to
manufacturing [21]. Coils of 10 to 20 turns with 2.5 mm radii [63] and 100 to 200 turns
with 5 mm radii [54] have been manufactured. With fiber sensors having these small
radii, significant improvements in the sensitivity-bandwidth product are possible. Thus,
high frequency measurements on an annealed coil sensor are included in this study to

demonstrate these improvements.

Measured Response Functions

High frequency responses were measured on several optical fiber current sensor
coils to demonstrate the utility of Faraday effect sensors at extremely high frequencies
and to verify the theoretical predictions. Fiber test coils were fabricated in several con-

figurations; these are summarized in Table 5-1. Mean coil diameters ranged from
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Table 5-1.
Summary of High Frequency Response Measurements
on Centered, Circular Optical Fiber Current Sensor Coils.
Mean |Number Fiber/ 3dB Cutoff Highest
Coil Coil of Coil Bandwidth, Frequency, Measurement
# | Diameter | Turns | Construction AB (MHz) feo (MHz) Frequency
(cm) Measured | Theory |Measured | Theory (MHz)
1 10.7 100 | Twisted, 15/m 2.7 2.7 6.1 6.1 15
Rejacketed
2 9.5 42 Twisted, 10/m 7.1 7.3 16.1 16.4 50
3 6.0 20 Twisted, 40/m 24.5 242 55.4 54.5 110
Rejacketed
4 6.0 10 Twisted, 40/m | 45.4 48.3 102.5 109.0 215
Rejacketed
5 8.95 15 Twisted, 40/m | 20.7 21.6 46.8 48.7 100
Rejacketed
6 0.64 20 Annealed 229.1 226.4 517.1 511.0 1000
7 9.6 10 Twisted, 40/m | 29.5 30.2 66.7 68.1 800
Rejacketed
8 2.95 21 Twisted, 20/m | 46.7 46.8 105.4 105.6 215
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approximately 6.4 mm to 10.7 cm and the number of coil turns varied between 10 and
100. The smallest coil, #6, was annealed during fabrication while all the other coils used
twisted fiber.

(The annealed coil was prepared by the Optical Electronic Metrology Group at
the National Institute of Standards and Technology (NIST). NIST personnel also
contributed significantly to the fabrication and characterization of the coaxial
transmission cell used to hold the coil and the experimental measurement of the sensor
response.)

A summary of the high frequency response parameters for each of the different
sensors is also presented in Table 5-1. Both measured and theoretically predicted values
are given for bandwidth and cutoff frequency. Equations (5-7) and (5-9) were used for
the predictions. The 3 dB bandwidths for the coils in Table 5-1 ranged from 2.7 to 229

MHc.. High frequency measurements were made on all coils to well beyond f_; the

largest test frequency was 1 GHz. For some of the configurations several high frequency
lobes of the response magnitude (greater than two) were investigated. All of the
measured response curves followed the functional form of the magnitude predicted by
Eq. (5-4) and plotted in Fig. 5-1.

The frequency response of coil #4 listed in Table 5-1 is shown in Fig. 5-2. The
dashed curve is generated from Eq. (5-4) using the estimated parameters for the fiber
(n=1.46 at A =633 nm) and coil only. Although the curve shape is generally correct, it
represents a poor fit to the experimental values. Discrepancies are due somewhat to the
uncertainty in determining coil geometry and the optical fiber refractive index but mostly
to neglect of the fiber coil leads in the response computation. When the coil was inserted
into the coaxial test cell, the input and output fiber leads were arranged so that each lead
exited the coil in opposite directions. This effectively adds an extra half turn to the value

of N. (This configuration is not a requirement for current sensor coils and some of the

tested coils did have a different lead configuration.) The added fiber length then
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contributes to a reduced bandwidth since the passing magnetic wave also produces a
Faraday rotation in the leads.

An extended model that addresses fiber lead effects is presented in Appendix B.
An exact mathematical description is derived for the Faraday rotation in two possible
lead configurations: fiber entering and exiting from the same side, and the configuration
used for coil #4, leads exiting in opposite directions. When the lead effects are
accounted for in the response of the coil, the solid curve in Fig. 5-2 is produced. This
predicted response agrees well with the measured data points, especially at the nulls in
the curve. Not surprising is the fact that the solid curve in Fig. 5-2 can be duplicated

almost precisely by using N = 10.5 as a coil parameter in the magnitude prediction from

1.0-p T T T T T T T T T
1 N = 10 ]
0.8 R=3cm -
| (dash) theory/coil only ]
P 0.6- (solid) theory/coil+leads _
® .
N
~ J
3
SN’
® 0.4+
0.2
0.0

0 20 40 60 80 100 120 140 160 180 200 220
Frequency (MHz)

Fig. 5-2. Measured and theoretical Faraday rotation relative response magnitudes versus
frequency for a 10 turn, 6 cm diameter current sensor coil.
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Eq. (5-4).

Figure 5-3 is a plot of the relative magnitude of the high frequency Faraday
response for the annealed fiber coil sensor (coil #6 in Table 5-1). The sensor bandwidth
is estimated to be 229 MHz and the cutoff frequency 517 MHz. The dashed curve in Fig.
5-3 is a best fit to the measured values using the function given by Eq. (5-4) and varying
the argument, ®t/2 = 2n2fRN(n/c). This fitted curve is quite accurate and thus can be
used to enhance the evaluation of the sensor response. Since relative measurement eIrors
are typically +1 dB, exact determination of response parameters is difficult using only the

measured values. For example, the 3 dB bandwidth is extracted from the experimental
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Fig. 5-3. The measured Faraday rotation relative magnitude versus frequency for a 20
turn, 6.4 mm diameter annealed fiber current sensor coil. The dashed curve is a best fit
functional response to the experimental data.
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data by first performing a functional curve fit, taking care to properly match the response
nulls since absolute measurement error is small in these frequency regions, and then
interpolating the frequency at a relative magnitude of 0.707. All of the measured
bandwidths for sensors presented in Table 5-1 were determined using this procedure.

Fits to the experimental response data are also useful in estimating other fiber and
coil parameters. The dashed curve in Fig. 5-3 was used to estimate the mean diameter of
the annealed fiber sensor coil. In manufacturing the coil, an annealing fixture with a coil
channel 5 mm to 8§ mm in diameter is used to confine the fiber. The resulting coil has
turns of slightly varying diameter. From the results presented in Fig. 5-3, a light transit
time is estimated for the entire coil which then corresponds to a mean coil diameter of
approximately 6.4 mm.

The annealed fiber coil represents a first attempt at producing a current sensor
with a very wide bandwidth. Its testing is also a first attempt at characterizing the
response of a fiber current sensor into the microwave region (> 500 MHz). The
estimated 3 dB bandwidth of 229 MHz is almost a factor of five greater than that for any
of the other coils characterized in this study. Since the measured Faraday rotations were
approximately of the same magnitude for the annealed coil as for all the other test coils,
there appears to be no degradation in sensor performance due to fiber annealing. Hence,
the annealing process only serves to enhance the capabilities for high frequency current
sensing by extending the sensitivity-bandwidth product. The estimated SBP for this
sensor is 1.34 x 10* Hz-rad/A or 0.77 MHz-°/A.

The signal and noise spectrum of the annealed fiber current measurement test
system is shown in Fig. 5-4. Maximum signals at the low frequencies correspond to
measured rms rotations of approximately 41.4 purad. Diode-laser carrier noise (closed
circles in Fig. 5-4) is the limiting factor in sensor performance; it increases in magnitude
about 10 dB as the frequency increases from its lower values to 1 GHz. Over the sensor

3 dB bandwidth, a S/N ~ 32 dB is maintained for a spectrum analyzer bandwidth of 10
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Fig. 5-4.  The measured signal and noise responses versus frequency for the annealed
fiber current sensing system.

Hz. Based on experimental parameters and measured noise characteristics, the projected
noise equivalent rms current (NEI) sensitivity for this annealed coil sensor is
3.6 mA/+/Hz, or if the number of fiber turns in the coil is removed, 71.5 mA/+/Bz/ turn.
Over the full sensor 3 dB bandwidth, the minimum detectable rms current would then be
54 A.

As a comparison, the published NEI sensitivity for a 1 cm diameter, 188 turn
annealed-coil sensor system is ~ 100 puA /~/Hz or 18.8 mA /+/Hz/ turn [54]. This noise
figure is a factor of four better than that determined for the wideband annealed coil
system studied here. However, the 3 dB bandwidth for the sensor in Ref. 54 is only 15.5

MHz, almost a factor of 15 smaller. The differences in NEI performance can be rectified
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by comparing the detection systems used in each study. In Ref. 54, the sensor sensitivity
is based on a shot-noise-limited detection of two, complimentary polarization-state
signals (see Eq. (2-10) and Fig. 2-5). Wideband sensing systems as used in the present
measurements require 50 Q or low impedance circuitry to be compatible with RF
instrumentation. Thus, detector noise levels are dominated by thermal properties and not
shot noise. Thermal noise levels in these systems will typically be 10 dB or greater than
detector shot noise. The detector thermal noise measurements for the annealed coil used
here are given in Fig. 5-4 as the closed triangles. If this system was limited by thermal
noise instead of laser carrier noise (which is frequency dependent), the NEI sensitivity
would rival that of the systems presented in Ref. 54. In fact, the dual detector system
used in Ref. 54 allows for removal of laser noise common in the two channels.

In most of the measurements on the sensor systems summarized in Table 5-1, a
He-Ne laser was used as the source. Performances were then limited by detector thermal
noise and not laser carrier noise as seen in Fig. 5-4. This leads to larger signal-to-noise
ratios and smaller broadband NEIs. The largest measured S/N values were for coil #8.
Over its 3 dB bandwidth of 46.7 MHz, S/N is greater than 40 dB, and the system rms
NEI is 1.4 mA /+/Hz or 30 mA /vHz/ turn. This sensor has a relatively narrow
bandwidth compared to that of the annealed coil sensor used in this study, and thus the
minimum detectable rms current at full bandwidth is significantly smaller, 3.1 A. It is
obvious that complex tradeoffs exist between sensitivity and bandwidth in these high
frequency systems. An estimated theoretical limit for the ultimate noise performance in a
fiber current sensor system utilizing the dual shot-noise-limited detectors was briefly
presented in Chapter 2 and is given as 1 mA /+/Hz/ turn [45,59]. It must be remembered
that this estimate is based on low frequency signals and assembling such a system for
wide bandwidth current monitoring may not be possible.

The maximum measurement frequency for each of the fiber current sensor coils is

listed in the last column of Table 5-1. Characterizations were performed at frequencies
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that extend well beyond the cutoff frequency. In general, the measured magnitudes for
the second lobes of the response functions show excellent agreement with the theoretical
predictions. This can be seen in the response plots of Figs. 5-2 and 5-3. For some of the
coil systems, several of the higher frequency response lobes were measured, and
magnitudes always agreed with the predictions. (One such response curve, for coil #7, is
shown in Fig. 6-6a and covers 12 frequency lobes.) The purpose of measuring current
sensor frequency response beyond f_, is to produce a full understanding of the relative
Faraday rotation magnitude as described in Eq. (5-3). By performing fits to the
measured magnitude data, an accurate value for ®1/2 can be extracted for a given sensor
coil. This then gives additional information about the sensor phase frequency response,
Eq. (5-5), since the phase angle is much more difficult to measure experimentally. It is
postulated that with enough knowledge of the high frequency response magnitude and
phase, these Faraday effect current sensor coils could be used as wideband monitoring
devices to frequencies above their 3 dB bandwidth. Near f,,, however, the sensor

response would eventually be limited by system S/N.
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CHAPTER 6
NONCENTERED CURRENT SENSOR COILS

Fiber current sensor coils cannot always be properly aligned to have the coil and
conductor axes coincident. In some applications, it may not be possible or even desirable.
The high frequency Faraday response has been investigated for circular current sensor
coils whose axis has a linear radial displacement with respect to the conductor. A model
has been developed that predicts the frequency dependent Faraday rotation for such
sensors. Experiments have verified the model for specific cases. In general, the radial
displacement can assume any value, even those where the conductor lies outside of the
coil cross section. The entry point of the light into the fiber coil relative to the conductor
also plays an important role in coils with one or a few turns. Both theory and experiment
indicate high frequency resonant responses for these noncentered coils. The magnitude

of these resonances is dependent on several properties of the coil-conductor system.

Noncentered Coil Model

A noncentered current sensor coil is modeled using the geometry displayed in
Fig. 6-1. The coil and field parameters are identical to those identified previously for the
centered coil model, except here, the conductor axis is radially displaced from the coil
axis by a distance X,. This displacement means that light propagating around the fiber
loop will experience a spatially-dependent magnitude variation in the passing magnetic
field. Light enters and exits the coil at a single point designated by the angle, o, from
the conductor position. Coil leads are neglected in this model. The current conductor is
again treated as a filament of moving charge with point cross section. This allows for
modeling of the specific configuration X, = R or where the conductor is at the fiber.

From Fig. 6-1, the radial distance, r, between the conductor and the propagating

light element, dl, on the fiber coil is given by the law of cosines:
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r2 = R? + Xf - 2RX; cos(a+0ctg) .

(6-1)

The angle y between the magnetic flux density and the light element is also determined

from the law of cosines. The relationship is rearranged to give

R? +r? - Xf
= 6-2
oSy 2Rr 6-2)
: Current
nght t=-t, C d "
Out 0 ongauctor
| :
— 1

Fig. 6-1.
displaced from the coil axis.

N Tum
Fiber Coil

A geometrical model of a fiber current sensor coil with the conductor
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Combining Eqgs. (6-1) and (6-2) yields the following expression for substitution into the

integrand of Eq. (3-8):

cosy _ 1 1 - (X%{) cos(o+0.g) | .

r "R 1+(X%{)2_2(X%{)cos(a+ao)

The required time dependence of y and r in Eq. (6-3) is provided by the rotating angle, o.

As the light in the fiber propagates, this angle changes as
al) = — t (6-4)
nR
The reference starting angle is then given by o, = (¢/nR) t,.

Equation (6-3) can be transformed into an infinite series by using simple long

division:

corsy = % m2=:O (%) cos [m(a+ao)] . (6-5)

Since the cosine function oscillates between 1 and -1, this series converges only when
X;<R. Substituting Eq. (6-5) into Eq. (3-8) provides the integral expression for the

frequency dependent Faraday rotation,

T
O(w) = @0% mz=o (%) JO cos{m& (t+to)] e IO gt | (6-6)

where T = (0/c)L = (n/c) 2rNR is used in the factor preceding the summation. In
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Eq. (6-6) the summation and integration have been interchanged under the assumption
that the series is absolutely convergent. The integration proceeds by rewriting the cosine

function in its exponential form,

b

%I:ej%g(wto) -_]nR(t+t0)

and rearranging to get

T T
1 < (X;\'(1 me _j(me _;me A2 L ol
W) = 0= (f]) (_2_) eJanoJ eJ(“R m)t i+ eJnRtoJ eJ(nR+m) al
T m=0 I 5 0

Continuing with the integration leads to

o) = 0ge7 72 G_) m ( )
sin [ R)ﬂ R(ot) [(‘“nm_@ﬂ K aR(t*%)
(o- Hﬁ)g} (o+3)3]

The expression for the light transit time, 7, in the N-turn circular coil can be

(6-8)

rewritten in the form

MmC ¢ = mNn . (6-9)
2nR

Equation (6-9) is substituted throughout Eq. (6-8). The phase factors for each term in the

brackets of Eq. (6-8) further reduce to
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+ ijn(ZI% +1] _ (_DmN(Zt% +l) (6-10)

?

v

since ¢J% = e ™ = -1. In this model both m and N are always integers. The time delay,

to, is unique only for values between zero and the transit time of light through a single

loop of the coil, T, = ¥/y. It is appropriate then to redefine t, as a fraction of 1, by

to =87 ==, (6-11)

where & is the fractional multiplier having values 0 <& < 1. A simplified expression for

the noncentered sensor coil response is then

B _j T,
O@) = @ge’ 72 L; R (% - mNn) (974 + mNr)
(6-12)

/1) ozjo (1) (ﬁ)m [sin ((0% - mNn:) . sin (COT/2 + mNﬂ) '

Equation (6-12) can be further simplified by combining the two terms in the

bracket. First, a common denominator is found for this factor to yield

(w%)[sin (9% - mNn) + sin (@74 + mNn)] + (mNn)[sin (@74 - mNx) + sin (934 + mNn)]
(%) - (umy? |

The trigonometric identities for the sum and difference of two angles are then applied to

reduce this factor to

-1

%) - @o? | (%) oy

2

(m%) 2sin (m%) cos(mNm) oy 2sin(0)%) B (mNnJ?'

(6-13)
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where cos(mNr) has become (-1)™N. Substitution of Eq. (6-13) into Eq. (6-12) leads to a

final expression for the Faraday rotation in a noncentered sensor coil:

—1

: wT . ©o m 2
o(®) = O, ()| 9% 3 (P (—);—1) 1 - [mN") . (6-14)
m=0

(%) %

Equation (6-14) can be compared to Eq. (5-3) for the centered coil; obvious similarities
exist. If X, is set to zero in Eq. (6-14), only a single term in the series will exist, that
being m = 0. Then the frequency dependent rotation reduces to Eq. (5-3) as required.
The low frequency response for the noncentered coil sensor can also be evaluated.
This is more easily accomplished using Eq. (6-12) instead of Eq. (6-14). If @ = 0, Eq.

(6-12) becomes

< M 2si N
o0 = o, (3) 3, (pnted () 2= e
m:

But sin(mNr)/(mNr) is non-zero only for m = 0. Then for any value of X,/R, ©(0) = 6,
as expected.

The response for the noncentered, circular coil given by Eq. (6-14) shows a
dependence on the entry point for light propagation in the coil, the relative displacement
of the coil axis, and the number of coil turns. The starting point for light in the fiber coil
influences the response because of the series sign factor (-1)2®% This factor has a
diminished effect when N >> &, or when the number of turns becomes large. Resonances
will occur in the frequency response when /2 is equal to integer multiples of Nit (07/2
=m'Nr, form'=1, 2, 3,...). At each resonant frequency, @y, the series in Eq. (6-14) has
only one term where m' = m # 0. (Note that m' = O produces the low frequency

response.) The response given by Eq. (6-14) then becomes
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O(@g) = O (—;—) (-1)>™% (%) : (6-16)

which has a relative magnitude of

O(wg)

_1 ﬁ)“" y
o, ( . (6-17)

2 R

With X, <R, each successively higher resonance will have a diminishing magnitude.

The maximum relative response will be %2 in the limiting case.

Model Predictions

Equation (6-14) is evaluated for several different current sensor configurations to
illustrate the effects of a noncentered coil on the high frequency Faraday response. Of
particular interest are coils consisting of one turn for which conductor displacement
effects are most pronounced. In Fig. 6-2 the relative magnitude of the Faraday rotation is
plotted as a function of the normalized frequency, wt/2, for single turn sensor coils. The
displayed curves result from varying the relative displacement of the conductor, X,/R,
for two different entry points of light into the coil, £ = 0.5 in Fig. 6-2a and & = 0 in Fig.
6-2b. These light entry points correspond to the respective angular positions o, = 7 and
0, = 0 in Fig. 6-1.

In Fig. 6-2, curves are plotted where the conductor has a displacement of X;=R.
This particular configuration is not physically realizable since the conductor and the fiber
cannot occupy the same location in space. Also, when X, = R, the series convergence
criterion established for Eq. (6-5) is violated and a singularity is produced in Eq. (6-3).
However, finite solutions to Eq. (6-14) do exist when X, =R, Eq. (6-16) being evidence
of such. Predictions are consistent with others in the noncentered coil model and

represent the limiting response as X, approaches R. Under these assumptions, the
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Normalized Frequency, oT/o

Fig. 6-2. The frequency dependent Faraday rotation response magnitude of a single
turn, noncentered current sensor coil. The effects of relative displacement (X,/R)
between the conductor and the coil axis are illustrated for (a) light entry into the coil
farthest from the displaced conductor, £ = 0.5, and (b) light entry into the coil nearest to
the conductor, & = 0.
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theoretical high frequency response at the X; = R limit are included in this study as a
means of illustrating extreme effects.

For both plots of Fig. 6-2, the 3 dB bandwidth is changed significantly as the coil
and conductor axes become less concentric. In Fig. 6-2a the light enters and exits the
single fiber loop at a point farthest from the conductor, € = 0.5, and AB increases with
increasing X;/R. Also, the nulls in the response curve disappear, and the higher
frequency response lobes change shape, becoming less pronounced. Under these
conditions the Faraday rotation does not have a defined cutoff frequency. In contrast, in
Fig. 6-2b the light enters and exits the sensor coil nearest to the conductor, & = 0, and AB
decreases with increasing X /R. The value of f,, decreases proportionally with AB, while
the response magnitudes in the high frequency lobes increase with X,/R. Large response
magnitudes appear at frequencies where previously there were nulls. In the limiting
cases where X, = R, AB has decreased to approximately 0.7 times that of the centered
coil sensor when § = 0 (Fig. 6-2b) and has increased to approximately 1.5 times that of
the centered coil when & = 0.5 (Fig. 6-2a).

The dependence of the single turn coil response on & can be explained
qualitatively. When the conductor is displaced in the coil cross section, the magnetic
field strength is increased at those points of light in the fiber closest to the conductor; the
Faraday rotation becomes concentrated in a shorter length of fiber. If the position of the
conductor within the coil cross section is away from the light entry point, only one light
pass is made through the enhanced region. The decreased effective interaction length
naturally leads to an increased response bandwidth. On the other hand, if the conductor
is now positioned toward the light entry point in the coil, the light must twice pass close
to the conductor as it propagates around the single loop of fiber. Two regions of strong
Faraday interaction are created, and the response is largest when these resonate with the
field modulation. This resonance effect is best observed at @t/2 = 7 in Fig. 6-2b for the

curve with X,/R = 1. Because of the phasing of the magnetic field with the propagating
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light in the coil, an antiresonance must also occur between each of the resonance peaks.
The first antiresonance in the Faraday response occurs somewhere between the
frequencies @t/2 = 0 and wT/2 = . As aresult the 3 dB bandwidth is decreased.

The changes in frequency response for the noncentered single turn coil compared
to the centered coil are most pronounced for & = 0 and £ = 0.5. For other values of £, an
intermediate response deviation is predicted. In Fig. 6-3 several Faraday response curves
are shown for different &, all with maximum conductor displacement, X; = R. A
comparison can be made with the response for the centered coil, X /R = 0, which is also

plotted in Fig. 6-3. For values of £ > 0.5, symmetry exists in the response predicted by

0(0)/0,

Normalized Frequency, co‘r/g

Fig. 6-3. The effects of the light entry point (§) in the coil on the frequency response for
a single turn noncentered, circular coil with maximum conductor displacement
(X,/R =1). The dotted curve is a reference for a centered, circular coil.
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Eq. (6-14): ©(w,§) = O(w, 1-€) for 0.5 <€ < 1.

Few current sensor applications call for a fiber coil with only one turn; most
require multiple turns for increased measurement sensitivity. When N > 1 in Eq. (6-14),
many of the anomalous features observed in the Faraday response for a single turn are no
longer present. Fig. 6-4 shows the predicted relative magnitude of the Faraday rotation
for a five turn sensor coil. Notice the cutoff frequency for the noncentered coils, both for
£ =0 and & = 0.5, fall at the same frequency as that for the centered coil. This
characteristic is seen in the response for all coils with two or more turns; only the single
turn noncentered coils have a shifting f,.

In Fig. 6-4 resonant responses occur at frequencies where ®t/2 is an integer
multiple of Sn. Here, the five turns in the coil, or the number of close passes between the
propagating light in the fiber and the strong field from the conductor dictate the resonant
conditions. Also, these resonances occur for the noncentered coil at frequencies where
nulls exist in the response for the centered coil. The relative magnitudes for the
resonance peaks are consistent with the predictions given by Eq. (6-17). For X/R <1,
each higher frequency resonance has a smaller magnitude than the previous one. When
X,/R =1, the peak magnitudes are approximately ¥5. Close inspection of the plots in Fig.
6-4 shows that AB for the higher frequency resonance lobes is the same as that for the
low frequency response lobe.

In Fig. 6-4 the main lobe 3 dB bandwidth is indistinguishable from that of the
centered coil response regardless of the X,/R or § value. This is quite different from that
predicted for the single turn coil where significant bandwidth deviations occur. In
general, for a fixed §, AB changes as X,/R increases (the sign of the deviation in AB
depends on &), and for a fixed X,/R, AB increases as & increases from 0 to 0.5. The
change in AB from that of a centered coil diminishes rapidly as N increases. These
bandwidth features are shown in Fig. 6-5 for sensor coils with N = 1, 2, and 3; the curves

are plotted only for ®wt/2 < m to emphasize the main lobe response. The percent
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Fig. 6-4. The frequency dependent Faraday response for a five turn circular current
sensor coil with varying relative axes displacement. Light enters the coil closest to the
conductor (top) and farthest from the conductor (bottom).
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Fig. 6-5. The effects of the number of coil turns and the light entry point on the
bandwidth of a noncentered sensor coil with maximum conductor displacement. The
dotted reference curve is for a centered, circular coil, X, = 0. The curve for & = 0 with

N =1 is truncated for frequencies above the first null for plot clarity.

deviations in bandwidth are also given in Table 6-1 for noncentered coil responses with
X/R=1,&=0and 0.5, and for N between 1 and 10. When € = 0, bandwidths are
smaller than those for the centered coils, while with § = 0.5, bandwidths are larger. For a
coil with ten turns, the bandwidth deviation is insignificant; AB can then be estimated
using Eq. (5-7) or (5-8) for the centered, circular coil. This indicates that for multiturn
current sensor coils (N > 10), alignment of the coil axis with that of the conductor is not
necessary if the range of interest is those frequencies below cutoff,

The frequency response of the noncentered coil is quite similar to that of a

recirculating tapped fiber delay line [64,65]. As mentioned previously, the magnetic
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Table 6-1.

Changes in the 3 dB Bandwidth for Noncentered Fiber Current
Sensor Coils (X,/R = 1) Compared to Centered Coils (X;/R = 0).

N With € = 0.0 With € = 0.5
1 -29.1 % +50.1%
2 -9.2% +5.8%
3 -4.6% +2.5%
5 C1.9% +0.8%
10 -0.4% <+0.1%

fields are largest at points on the fiber coil that are closest to the conductor, and as light
propagates in the fiber, it experiences greater Faraday rotation in these regions. Once
during each turn this Faraday rotation enhancement occurs; when the frequency of the
oscillating field is in phase with this process, a resonant response is observed. This
phenomenon is much like the extraction of light on each turn in the tapped delay line.
Resonant response is observed in Eq. (6-14) when @wt/2 = m'Nz. Then the resonant

frequencies are wy = 2nm' (N/1) or

fp =m'— , (6-18)

where 1, = Uy has been previously defined as the transit time of light through one coil

turn. This resonance frequency relationship has been observed for all Faraday responses

predicted for the noncentered coil sensors. An exception is the response with N = 1 and
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€ = 0.5; increased responses are observed at the correct higher frequencies, only the

antiresonance nulls are missing.

Three responses are plotted in Fig. 6-6 for X,/R = 1 but now as a function of a
new normalized frequency, wt,/2. With this abscissa, all the higher frequency
resonances coincide for sensor coils with varying numbers of turns. The sensor
bandwidth still decreases with added fiber turns as expected. This type of behavior has
been measured for the tapped fiber delay line with response dependent on the number of
fiber taps and the propagation delay between taps [65].

From Eq. (6-17) and Fig. 6-6, the peak magnitudes of the frequency response

l6(w)/8,

Normalized Frequency, wT, / )

Fig. 6-6. The relative Faraday response for noncentered current sensor coils versus a
frequency that has been normalized by the number of turns. Resonances are observed for
all three coils at frequencies determined by light transit time in a single fiber turn.
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resonances are predicted to have a maximum value of approximately Y2 when the
conductor is displaced to the very edge of the coil. This indicates that complete phase
matching between the magnetic field propagating along with the conducted current and
the light propagating in the fiber does not occur. Enhancements in the Faraday rotation
that do occur as the light passes near the conductor once during each revolution around
the circular coil are partially negated by out-of-phase interactions that occur when the
same propagating light segment is further from the conductor and the magnetic field
swings to opposite polarity. Complete phase matching can only occur for true point
interactions between the magnetic field and the light, resulting in resonances with relative
magnitudes of one. This type of Faraday effect current sensor is described in the next
chapter of this document.

Equation (6-14) has been used extensively to predict the magnitudes of the
Faraday response for noncentered, circular coils, but it can also be used to determine
phase angles. In general, the Faraday rotation should have a frequency dependent phase
as expressed in Eq. (5-5) for the centered coil; the phase is a simple function only of the
total fiber length, T. However, the series sign factor (-1)2m in Eq. (6-14) can introduce
other phase deviations into the response of the displaced coil. If & = 0 or 0.5, the sign
factor is real only, and no deviations occur. But if & has other values, the sign factor is
complex. The resultant phase shifts are frequency dependent, increasing with X /R,
decreasing with N, and obtaining a maximum when & = 0.25, N=1 and X,/R = 1. A plot
of the frequency dependent phase for this maximum deviation configuration is shown in
Fig. 6-7. Throughout the plotted frequency range (wt/2 < 3m), the phase angle is slightly
nonlinear and has a period approximately 2/3 that for the centered coil.

It is not apparent whether the predicted phase anomalies are real — and
observable in measurement systems — or are the result of deficiencies in the model
developed to describe the noncentered coil frequency response. A frequency dependent

phase shift other than that described by Eq. (5-5) was not anticipated in final
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Fig. 6-7. The Faraday rotation phase shift for a single turn coil with maximum
conductor displacement and with the light entry point at 90° to the conductor offset
direction. The dotted reference curve is the response phase shift in a centered coil.

computations. A check on the model was conducted by substituting cos(y)/r given by Eq.
(6-3) directly into Eq. (3-8) and integrating numerically to determine both magnitude and
phase. Results identical to those predicted by Eq. (6-14) were obtained. If the model is
in error, it exists in a more fundamental assumption. Obviously, more investigations are
needed here. In the meantime, these uncertainties limit the capability of the noncentered
coil model to predict complete sensor high frequency response functions.

Nonetheless, radially displacing the fiber coil axis from that of the conductor does
offer some potential for increased measurement bandwidth and the measurement of

currents at higher banded frequencies. Using a single turn coil, significantly increased
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bandwidth and higher frequency response can be achieved by proper placement of the
loop. The biggest gain for fiber current sensor applications may be in exploiting the
increased response at the higher frequency resonances. In designing such systems, the
center frequency of the band is selected by the radius of the coil according to Eq. (6-18).
Constraints on minimum radius must be observed to avoid bend birefringence problems.
The Faraday sensitivity of the sensor is then determined by the number of fiber turns in
the coil and the maximum amount of displacement that can be achieved. As observed
from the model predictions of Eq. (6-14), the larger the offset, the greater the relative
response magnitude in the high frequency band. Response bandwidth is then found from
the total fiber length. AB must be traded off with sensitivity as established by the

sensitivity-bandwidth product in Eq. (5-10).

Noncentered Coil Measurements

In order to verify some of the predictions of the noncentered coil model, a
specific set of parameters was chosen for a coil design and used in the experimental
configuration shown in Fig. 4-1. The 1-GHz coaxial airline test cell was selected to
generate the appropriate currents. Because of the space constraints in the working
volume (outer conductor diameter of 13.3 cm and inner conductor diameter of 5.8 cm),
only a limited range of coil diameters and relative displacement factors can be achieved
in this cell. An experimental investigation of the high frequency response predicted for
the single turn current sensor was desired, however, the small signal-to-noise ratio and
the limited dynamic range for a one-turn coil in the assembled measurement
configuration precluded such a test. A 10 turn coil with a 9.6 cm diameter was selected.
Parameters of this coil appear as #7 in Table 5-1. The diameter of the fiber coil was
optimized so that one edge touched the cell outer conductor while the opposite edge just
wrapped around and touched the cell center conductor. This coil position gave the

maximum-achievable displacement, X,/R = 0.38, measured from the axis of the center
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conductor. The coil was configured so that fiber leads entered and exited from the same
side and then was arranged inside the test cell so € = 0.

The measured frequency response magnitudes for the sensor coil in both the
centered and displaced position are shown in Figs. 6-8a and 6-8b, along with the
appropriate model-predicted curves. In both plots, experiment and theory agree quite
well. The predicted sensor bandwidth is 30 MHz and the cutoff frequency is 67 MHz.
For the noncentered or displaced coil (Fig. 6-8b), a peak resonance first occurs near 675
MHz, approximately where the tenth null exists for the centered coil frequency response.
All the experimental response function peaks and nulls occur at the frequencies
predicted.

In Fig. 6-8b, the measured relative magnitude of the resonance peak near 675
MHz is noticeably smaller than expected from the model. The predicted magnitude is
0.19, but both experimental data sets indicate a reduced value. This discrepancy could be
caused by one or more of the following factors. (1) Data scatter is significant near the
resonance peak as seen for the plotted values in Fig. 6-8b. (2) The model neglects the
presence of the fiber coil leads, which could be significant in determining frequency
response near the resonances. And (3) the model treats the conductor as a filament of
moving charge, while in reality the cell conductor has a large diameter and the current
tends to concentrate in the outer skin at these high frequencies.

Other key features predicted by the model and shown in Fig. 6-8b are verified by
the experiments. One in particular is the missing response lobe just below 600 MHz.
Also, the ratio of the peak magnitudes for the enhanced responses at 675 MHz and 765
MHz is quite precise. The absolute magnitudes of the peaks do not agree well with
predictions, however, the ratio does. Measurements above 800 MHz were attempted, but
these were limited by RF interference in the detection equipment. Fortunately, response

information at those high frequencies offers little to the understanding of the model.

73




e

1.0-¢ T 1 I I T T T T I
i N = 10 i
1 = 48 cm '
¢ =0 -
- X/R =0 -
(a) 0.5+ -
@O T o
™~ 0.0 T j T T S
/3\ 1.0 1 T T T T T T T T
N’
€3/ 7 XI/R = (.38 i
(b) 0.5+ -
o‘o D-E0O AAAL

| 1 I ] ] 1 I 1
0 100 200 300 400 5Q0 600 700 800 9S00 1000
Frequency (MHz)

Fig. 6-8. Theoretical and measured frequency response magnitudes for a 10 turn, 9.6
cm diameter fiber current sensor coil. (a) Measured (points) and predicted (solid curve)
responses for the centered sensor coil. (b) Measured (two point curves shown) and
predicted (solid curve) responses for the noncentered sensor coil.
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Conductor Outside the Coil

Ampere's law given by Eq. (2-2) equates the current in a conductor with the
magnetic field strength integrated around any loop enclosing that conductor. For a fiber
Faraday current sensor, no response is anticipated at low frequencies when the current
conductor does not pass through the coil cross section. At the higher frequencies,
though, a response does occur and is addressed here in a brief theoretical discussion.

In the previous model for the noncentered coil, the relative displacement factor
was taken to be less than one. However, the expression given by Eq. (6-3) remains valid
even for X,/R greater than one. Using this as a starting point, the series expansion is

modified and results in

cosy 1
TR 2

m=

1( )m cos [m(o+oro)] (6-19)

or

oot _ L {1 . (Xi]m cos [m(a+a0)]} . (6-20)

1

These series are complementary to Eq. (6-5) and converge for X, > R. When Eq. (6-19)
is substituted into Eq. (3-8) and integrated over the transit time through the total fiber,

the frequency dependent Faraday rotation is found to be

-1

o) = 0, SIELE% )| /2mz=l(-1)2“‘§(—R—)m 1 - (%%"J . (6:21)

This expression for the rotation is very similar to Eq. (6-14). Resonant Tesponses occur
at the same higher frequencies. One major difference is the absence of the m = 0 term in

the series of Eq. (6-21); this previously was found to be a necessary condition for the
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existence of the low frequency response. Thus when @ ~ 0, ©(0) = 0 for all N as
expected.

The relative magnitude determined from Eg. (6-21) is plotted versus the
normalized frequency, @t/2, in Fig. 6-9 for two current sensor coil configurations: (a) a
single turn with & = 0.5 and (b) five turns with § = 0. For both configurations no
responses occur at zero frequency, but secondary lobes and resonant peaks are present at
the higher frequencies. As the sensor coils are moved further away from the conductor,
the response magnitudes decrease at all frequencies as expected. Eventually as X,/R
grows larger, the conductor and coil are separated by such a large distance that magnetic
fields are too small to induce any significant Faraday rotation in the fiber.

In Fig. 6-9a the effects of the light entering and exiting the fiber coil farthest from
the conductor (§ = 0.5) are again illustrated. As discussed previously in conjunction with
Fig. 6-2b (conductor inside the coil), a single turn coil will exhibit a continuous and
enhanced higher frequency response with the proper positioning of the conductor and the
coil. The Faraday response magnitude for the solid (X;/R = 1) and dashed curves in
Fig. 6-9a are symmetric about the magnitude 2. The frequency response with the
conductor just outside the coil is simply one minus that response when the conductor is
just inside the coil. This phenomenon is the result of the sign change that occurs in B * dl
for that fiber section just adjacent to the conductor. It is also evident in the frequency
dependent angle/distance relationships, Egs. (6-5) and (6-20), which are simple
complements when X, = R.

In Fig. 6-9b, the characteristic resonance responses for the noncentered coils are
again observed. The center frequencies of the resonant bands fall at wt/2 = m'Nw,
exactly the same as those predicted for a coil with X; < R. Resonance bandwidths are
again determined by the total fiber length. If X,/R = 1, the peak relative magnitudes are
all approximately ¥z, but when X,/R > 1, each successively higher frequency resonance is

weaker than the previous one.
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Fig. 6-9. The theoretical high frequency Faraday rotation relative magnitude for fiber
current sensor coils with the conductor outside the coil cross section (X,/R = 1). (a) A
single turn coil with light entering farthest from the conductor, and (b) a five turn coil
with light entering nearest the conductor.
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This model of a conductor external to the fiber sensor coil was not verified
experimentally. The frequency range for the TEM mode in the 50 Q coaxial airline test
cells is not compatible with the expected first resonance frequency or other significant
features predicted by the model. Experimentation may be possible in a modified test

cell, but for now this concept remains a theoretical curiosity.
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CHAPTER 7
COILS WITH NONCIRCULAR CROSS SECTION

The shape of the planar coil cross section can produce changes in the high
frequency Faraday response much like the resonant enhancements created by
displacement of the coil and conductor axes. In this chapter, the Faraday rotation is
investigated for coils with noncircular cross section, and the effects at the higher
frequencies are observed. Coils with two particular geometries are studied: (1) those
with a highly elongated cross section and the current conductor fully displaced to one
edge of the fiber coil, and (2) those with a rectangular cross section and the conductor
either centered or displaced within the coil. The first geometry represents a unique
situation since the magnetic field interacts only with a small segment of the fiber in each
turn. Essentially complete phase matching can occur for this interaction; and the
resulting "delta function" Faraday response produces higher frequency resonances with
peaks approaching relative magnitudes of one. This response is in contrast to the
magnitude limit of approximately %2 for the noncentered, circular cross section coil
discussed in the previous chapter. The rectangular coil geometry provides a simple
framework for investigating frequency responses for all configurations of coils, those
with centered or displaced conductors and those with varying degrees of cross section
eccentricity. Also, predictions from the rectangular coil models are easily extrapolated to
other coils of arbitrary cross section. Only theoretical studies were possible for the
rectangular coils, but experimental verifications of the delta function interaction were

performed using two specific coil implementations.

Delta Function Response Model

A highly elongated fiber sensor coil is shown in Fig. 7-1a. In the limit, the

conductor can be treated as a point source with the fiber loop making a tight bend just
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around the conductor. Realistically, this configuration is impossible since mechanical
limitations prohibit such bends and the bend-induced birefringence would be extremely
large. But theoretically, this coil cross section is ideal: Faraday rotation occurs only for
light in that segment of the fiber adjacent to the conductor. At all other points on the
fiber coil, the magnetic field is orthogonal to the light propagation and zero response is
recorded. Because this interaction occurs in a small spatial region, TEM mode
constraints on the current-produced field can be relaxed; but for the purpose of extending
the results of this model to more practical coil configurations, the fields along the
conductor are assumed to be planar.

Figure 7-1b illustrates the ideal path followed by the light propagating in the

fiber. When the fiber passes near the conductor, it is assumed to make a tight,

Current
/ Conductor Fiber Loop

(point) /
C )

(a)

—
W — >
t=t,

(b

|
o

Fig. 7-1. The delta function response fiber current sensing model. (a) The current
conductor is fully displaced inside a highly elongated fiber coil cross section. (b) The
mathematical treatment of the light path.
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approximately circular loop at a constant radial distance R, from the point conductor.

The magnetic flux density in this short segment of fiber is then given by Eq. (3-1) with

r=R,and k e 1 = 0. The field is assumed always to be codirectional with the

propagating light in the fiber loop, so that the local interaction is described by

dl

7-1
2nRy (-1

Bedl = p;i g JOt

At points along the straight segments of the fiber coil (away from the circular bend)

shown in Fig. 7-1b, the general field-light interaction is described by
B e dl =B cos(y) dl (7-2)

which is Eq. (3-2) with y = /2. In these straight segments, however, v is always taken
to be /2, and B e dI = 0. Then, substituting Eq. (7-1) into Eq. (2-1) and converting to

time-dependent integration yields

o) = K Vi (%f e IO g (7-3)

which describes the frequency dependent Faraday rotation in a single turn of the
elongated fiber current sensor. The integration times, t, and t,, are as indicated in Fig.
7-1b. In a multiturn coil, the fiber will make N passes by the conductor. The total
Faraday rotation then becomes the sum of that for each individual interaction. Also,
during each pass the integration times must be appropriately delayed to account for
variations in the oscillating magnetic field. In general, t,=mt; + &7, - 1,/2 and t, = mt,

+&1 +1,2form=0toN- I; T, = 2nR, (n/c) is the transit time of the light through
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each small, circular segment, and Et, is an arbitrary time delay from the entry point of
the light in the fiber (identical to that introduced in Eq. (6-11)). The Faraday rotation for

the N-turn elongated coil is given by

T¢
) N-1 m121+§1:1+—2—
V .
- Q5 [T S oo
¢ m=0 mTl'l"éTl—%
Proceeding with the integration leads to
N -joo(mt, + &ty + 1—24) -jco(mt1 + &1y - %)
Hi Vi "G e - e
O = ~+— > , :
Ty m=90 Jo
(7-5)
and a final solution of
o . sin(“”f/) N-1
O) = —2 (195U T e T0mh (7-6)

N (mtcz) m=0

The low frequency response, ©,(w) for the entire coil is given by Eq. (2-3).

The concept of a point interaction between the magnetic field and the propagating

light is now introduced by allowing T, — 0. The factor sin(wt, /2)/(®7, /2) in Eq. (7-6)

becomes unity, and an expression for the "delta function” Faraday response results:

jogt 1 C jomt
Os(@) = ©g e ‘EZ eI 7-7

m=0

The time delay created by the light entry point produces only a phase delay in the final
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rotation, which, in this model, has no impact on the magnitude of the Faraday rotation.
In fact, the arbitrary light entry point is significant only if it occurs exactly at the
conductor so that N + 1 interactions are produced for N loops in the coil. This is quite
different from the delay introduced in the noncentered, circular coil model where the
light entry point had a large impact on the magnitude of the Faraday response for all
values of & In order to avoid the confusion in this delta function model between the
number of close passes the light makes by the conductor and the number of turns in the
coil, the light is assumed to enter at or near the zero location indicated in Fig. 7-1b. Then

N will represent both quantities. Consequently, £ =% in Eq. (7-7), and

0)':/ -J(Dmt
05 = Oge” Z Lo (7-8)
Or, since 1, = 1/N,
0T N-1 . o1
O5@) = eoeJ /v L Y I A (7-9)
N m=0

These expressions for the frequency dependent Faraday rotation can also be
derived by simply treating the field-light interaction as a series of delta functions
separated in time by the transit time of the light through a single coil turn, t,, and

delayed in time by &1

. . Nl
Bedl = p i g JOt Y, 8(t—mt; —&ty) dt . (7-10)
m=0

When Eq. (7-10) is substituted into Eq. (2-1), the equivalent time integral becomes
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N-1 ,F

Os(w) = O % D J 8(t-—rn‘c1—§'cl)e'jcot dt . (7-11)
m=0
0

Completing the integration yields Eq. (7-7). This treatment is much simpler, however, it
is less elegant than the initial approach and lacks the generality needed for later
developments.

If a fiber current sensor makes only a single pass by the conductor, the magnitude
of the Faraday response from Eq. (7-9) is |@4@)l = 1@, and an infinite bandwidth
results. This prediction is expected from the definition of the delta function interaction.
For two passes by the conductor,

197

Os(w) = Q, cos(%) e (7-12)

For a coil with N loops, a general expression for the response magnitude is

S (2] 4 |

|

1
o5 (@) = |9y N [ N

]\ —_
m=0 m=0

) 2
sin (m—m)J . (7-13)

and the phase angle is

¢ = -tan (7-14)

Equation (7-13) is plotted in Fig. 7-2 for N = 2 and N = 5. The plot abscissa is

the normalized frequency, ©%/2. Response resonances occur when ®7/2 equals a multiple
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Fig. 7-2. The Faraday rotation relative magnitude versus normalized frequency for delta
function current sensor coils with two and five turns. The dotted reference curve is the

response for a centered, circular coil.

of Nr, with the number of intervening nulls equal to N - 1. The response magnitudes in
Fig. 7-2 for N = 5 resemble those for the noncentered, circular coil, Fig. 6-4, except
higher frequency resonances now have a unity relative magnitude instead of .. This
unity magnitude results from complete phase matching between the magnetic field and
the propagating light at each of the single-point interactions. As light in the fiber
propagates away from the conductor, it experiences no further out-of-phase rotations that
reduce the resonance magnitude as in the noncentered, circular coil. Also observed in
Fig. 7-2 that is not seen in Fig. 6-4 is the complete frequency symmetry of the lobes and

nulls about each resonance — each rising and falling frequency edge is symmetric about
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the lobe/resonance center frequency. The bandwidths of the main response lobe and each
of the higher frequency resonance lobes are also equal.

Equation (7-13) can also be plotted with the normalized frequency ®7,/2 as the

abscissa; such a plot appears in Fig. 7-3. The similarities between Figs. 6-6 and 7-3 are

obvious. The responses illustrated in Fig. 7-3 are identical to those previously discussed

for the tapped fiber delay line for N fiber taps (see Chapter 6). Comparisons can be
made to similar figures in Ref. 65.

The Faraday response bandwidths for coils configured for a delta function

interaction can be significantly larger than those for the centered, circular coils made
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Fig. 7-3. The relative magnitude of the Faraday rotation from Fig. 7-2 replotted versus
the normalized frequency ®@li/5. The dotted reference curve is the response for a
centered, circular coil.
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with the same length of fiber. This is obvious for a single loop coil which produces a
theoretically infinite bandwidth. In Fig. 7-2, a notable difference in bandwidth is
observed for the N = 2 curve compared to the centered, circular coil response even
though the cutoff frequency for the two curves is identical. Using Eqg. (7-12), the 3 dB

response point for N = 2 will occur when

Oy T 1
cos—|= — . 7-15
( 4 ) V2 (7-15)
Then
AB = — (7-16)
4tRnN

which is larger than the bandwidth for the centered, circular coil, Eq. (5-7), by 12.8%.
As N increases the bandwidth for the delta function coil quickly approaches that for the
centered, circular coil. Extracting data from the numerical computations of Eq. (7-13),
the bandwidth increases are 5.1% for N = 3, 1.3% for N = 5 and negligible when N = 7.
These bandwidth deviations can be compared to those of the noncentered, circular coil in
Table 6-1 for the same value of N; larger response bandwidths result from the point
interactions.

Based on the predictions from this delta function model, as well as those from the
noncentered coil model, a general statement can be made about fiber current sensor coil
configurations: for sensors with large numbers of fiber turns, the Faraday response in the
low frequency main lobe is unaffected by displacement or coil cross-sectional shape;
only sensor response at the higher frequencies is modified.

Although it is not obvious from a first look, the response phase given by Eq.

(7-14) can be reduced to -©0%/2 for all values of N. This is easily identified for N =2 by

inspecting Eq. (7-12). As a further example, if N = 3, Eq. (7-14) is rewritten as
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(7-17)

The sine functions are expanded into
) (mr) i ((m: mr) X (co‘c) ((DT) (m‘r) ) (mr)
sinf — sinf| ———| = sin|— [cos| — |- cos| — | sin{ —
6 2 3 2 3 2 3
and
) (Sm‘c) (o1 (o'c) ) (m‘r) (mr) (m’c) ) ((D’t)
sin| — | = sinf—+-—| = sin|— |cos| — |+ cos| — |sin| — | .
6 \ 2 3 2 3 2 3
Then Eq. (7-17) becomes
(mr) (wr
— | cos| —
2 3
((DT) (co'c
2 cos} — |cos| —
2 2
3 (mr)} W7
= —tan” |tan| —|{ = —-—
[ 2 2

Determining the phase in this mathematical fashion for larger N quickly becomes

2 sin + sin ot sin (E) [1 + 2 cos (ﬂ)]
2 1 2 3

= -—tan~

()] [l

1

6 = —tan~

N |

(7-18)

unwieldy, but the solution is always the same, ¢ = - wt/2. This phase is identical to Eq.
(5-5) for the centered, circular coil indicating that phase in this sensor configuration is

also dependent only on the total light transit time or the total fiber length.

The Complete Response Model

Based solely on the delta function interaction, the Faraday response resonances

displayed in Fig. 7-2 would extend unattenuated (at unity) to infinite frequency. Such a
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system, of course is not physically realizable, and the previous presentation of the delta
function response model must be considered only for its conceptual value. A more
realistic model is constructed by recognizing that ©4(w) in Eq. (7-9) is the transfer
function for an ideal fiber current sensor having N point interactions. The transfer
function is then used to construct complete frequency response functions for physical
systems. In general, for each pass of the fiber near the conductor, the interaction length
between the magnetic field and the propagating light in the fiber may be small but is
finite. The two propagating electromagnetic signals become convolved over this short
interaction length. Then in the frequency domain, the Faraday response for the coil
system is nothing more than the transfer function, Eq. (7-9), multiplied by the expected
frequency response for the short fiber length while making a single pass.

If the short interaction length is given as ¢, the function ©,/w) describes the
response for a single interaction. The complete frequency dependent Faraday rotation,

which depends on the number of passes N, is then the product of two functions,

@((D) = 95(0‘)) . @g(())) . (7'19)

The function © () can be labeled an envelope function, since in the frequency domain,
it bounds the resonant response due to Oz(w) alone. If a functional form for ©,(w) can
be identified or computed for a single pass of the fiber by the conductor, then the rolloff
in the magnitudes of the higher frequency resonance peaks can be established.

By inspecting Eq. (7-6) and comparing it to Eq. (7-19), one functional form for
the envelope function, ©,(w), can be determined. The function sin(wt, /2)/(w7,/2) is a
direct result of using a short circular fiber loop in the derivation of the model for the

highly elongated coil. And as would be expected, this function is equivalent to Eq. (5-3),
less the phase factor, when the appropriate transit time 7T, = (n/c)! is used.

Approximating the short interaction length with a circular loop is often a good estimate
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for many fiber current measurement systems. In particular, such a description allows for
quick computations of the magnitudes of the resonance peaks since they fall under a
well-defined enveloping function.

Using Eq. (7-19), the frequency characteristics of the complete response function
for a multiturn coil in a delta function configuration are determined by three separate
parameters of the fiber current sensor coil. All of these parameters are related to well-
defined lengths of different fiber sections and can be used in the design of optimum
sensor coils. (1) The resonance peaks in the response function occur at higher
frequencies (see Eg. (6-14)) related to propagation through one loop of the coil,
L,=(c/n)7,. (2) The bandwidth of the main response lobe and the bandwidths of all the
unattenuated higher frequency resonance peaks are found from the total length of fiber in
the coil, L. And (3) the enveloping magnitude of the resonance peaks is determined by
the short interaction length, ¢, of a single pass of the fiber by the conductor. For most
applications that exploit the advantages of the delta function response model, the
relationship between these three lengths will be £ < L, < L.

Interesting phenomena result from use of the complete response function in Eq.
(7-19) when £ is not small compared to L,. A trivial result occurs for N = 1 in Os(w);
O(w) = O w) eJ9V2 a5 expected, regardless of the value of £. But if N > I, the
formulation of Eq. (7-19) provides a shortcut for determining the frequency response for
more complicated coil systems, especially those that use double-pass/reflective
geometries or series of identical coils. As an example, assume a multiturn, circular coil
is used and one lead is terminated such that the light is reflected back through the coil.
Light injection and detection are both accomplished at the nonreflecting lead. Such a
current sensor coil configuration is used in high sensitivity systems to reduce the effects

due to reciprocal interactions such as stress or temperature-induced birefringence

changes. If the coil is centered about the conductor, © (o) is simply sin(wt, /2)/(wt, /2),

for 1, =2nR, N, (n/c) the one pass transit time through the entire coil, N, turns. The delta
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function response accounts for phase delays in the light propagation. Here N (number
of light passes) = 2 and Og(w) is given by Eq. (7-7) with € = 0 and 1, = 1, the time
required for light to propagate from the middle of the coil, £/2, to the reflection point and

back. By definition, 1, > 1,. The complete Faraday response is then

sin( ") o) A7)

O = Oy | —= cos(———

=) |

(7-20)

Similar descriptions of the Faraday response can be derived for other sensor systems.

Demonstration of the Model

The delta function response model was verified using the two fiber coil
configurations shown in Fig. 7-4. Both experimental systems used the coaxial test cell
#2 listed in Table A-1. This cell has an inner conductor diameter of 2.5 cm, an outer
conductor diameter of 5.75 cm, and a HOM cutoff frequency of 2.3 GHz [34]. All coils
had 10 loops of fiber with each loop being approximately two meters in length and with a
small portion of each loop passing through the cell. The Faraday response is then limited
to the interactions with light in those short segments of fiber inside the cell; outside the
cell, no field exists and the propagating light experiences no induced rotation. In the first
configuration (Fig. 7-4a), the fiber made a short turn around the cell center conductor
entering and exiting the cell at the same point. This simulates very closely the light path
illustrated in Fig. 7-1b. In the second configuration (Fig. 7-4b), a straight fiber section
passed near the center conductor with the fiber entering and exiting on opposite sides of
the cell. The various lengths in the fiber coil were chosen to achieve a narrow response
bandwidth and to place several of the resonance peaks at frequencies that were within the

measurement range of the experimental instrumentation.
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(a)

)

Fig. 7-4. Two {iber coil configurations used to demonstrate the delta function response
model.

The relative magnitude of the Faraday rotation measured using the first experimental
configuration is shown in the two graphs of Fig. 7-5. In Fig. 7-5a the model response,
depicted by a solid curve, and the experimental results, shown as the open circles, are
plotted for the lower frequencies. The resonance peaks are spaced about 101 MHz apart,
the bandwidths are approximately 4.5 MHz and the cutoff frequency occurs at 10.1 MHz.
Although the model and experimental curves in Fig. 7-5a agree well for the frequencies
near resonance, the responses at the intervening frequencies do not agree at all. The
secondary lobe magnitudes and the null frequencies do not match. Symmetry of the

measured values about the resonance frequencies, however, is preserved.
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Fig. 7-5. The measured (open circles) and predicted Faraday response at low
frequencies (a) and higher frequencies (b) for a 10 turn test coil with short tight loops
around the conductor. The solid curve in (a) represents the theoretical behavior near and
below the first higher frequency resonance. In (b), the dashed curve is an estimate of the
response of an enveloping function for the short fiber length interaction, and the plotted
points are measured values only at frequencies near the resonance peaks. Error bars
represent total scatter in the measured values.
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Much of this disagreement between measurement and model is attributed to bend-
induced linear birefringence created by the tight turns as the fiber loops around the cell
center conductor. This coil was prepared using the twisted and rejacketed fiber with 40
twists/m [29], which should have been adequate for testing at this diameter; but
apparently when tight bends are introduced, the fiber jacket breaks free from the glass
and the twist relaxes. By modifying the bend radius of the loops within the cell,
significant changes were noted in the frequency response. The curves plotted in Fig. 7-5
represent the best agreement between the model and the experiment. Although the
presence of linear birefringence in the fiber is believed to produce perturbations in the
frequency response of the Faraday rotation, a detailed investigation of this phenomenon
goes beyond the present scope of this study.

The finite interaction length of the short fiber loop inside the test cell causes a
rolloff of the resonance peak magnitudes at the higher frequencies. This feature is seen
in Fig. 7-5b. The experimental data are plotted only at the peaks of each resonance. The
dotted curve is a rough estimate of the envelope function computed using the magnitude

Isin(a)tl )Wz, /2) | from Eq. (7-6). Although the 10 loops of fiber inside the cell are

not circular in cross section, an average length is estimated for these fiber segments and
used to determine a value for 1, As seen in Fig. 7-5b, the experimental data are bound
by relatively large error bars, especially at the higher frequencies. These uncertainties,
coupled with some residual linear birefringence effects in the fiber and the imprecise
estimates used for the model envelope function, make quantitative comparisons of the
curves in Fig. 7-5b difficult. The general trend in the measured data, however, follows
the prediction.

The second experimental configuration (Fig. 7-4b) was designed to remove the
interfering effects from bend-induced linear birefringence. This was achieved by using
only short, straight fiber segments passing through the cell without any bending. Results

from measurements using this arrangement are shown in Fig. 7-6 along with the model
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predictions. The measured and calculated responses near the resonance frequencies agree
well, just as they did for the first configuration. In this case, however, the measured
secondary lobe magnitudes and the null frequencies between the resonances are much
closer to those predicted by the model. Exact identification of the nulls was difficult
with this type of current monitor since a 10 dB loss in sensitivity occurs. This sensitivity
loss results from having only a partial turn of optical fiber inside the cell acting as the
sensor, whereas in the first configuration, a full sensor turn around the center conductor
existed.

A nice feature of this second experimental configuration is that it lends itself to a
relatively simple computation of the complete response function. Each of the ten straight

sections of singlemode fiber passing through the cell will experience a rotation given by

0
Op(@) = TO" ag dt , (7-21)

where 1, = (n/c){ is the transit time of light through the straight section and a, is the
distance of closest approach the fiber makes with the axis of the cell center conductor.
Here ©, = VB,/, where B is an arbitrary static flux density created by the current at unit
distance from the conductor. Equation (7-21) must be normalized to the low frequency

response to remove the dependence on B, and other geometric parameters. Integrating

for @ = 0 results in

=2 Sofm) pf S
©,00) = " (c) tan [ ) . (7-22)

Y] 2na0

The normalized Eq. (7-21) is integrated numerically to produce the envelope function,
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Fig. 7-6. The measured (open circles) and predicted (solid curves) Faraday response at
low (a) and higher (b) frequencies for a test coil with short straight segments passing near
the conductor. Only measured values near the resonance peaks are plotted in (b). Error
bars on the measured values represent total data scatter.
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and then substituted into Eq. (7-19). The resulting high frequency model response is
used to generate the solid curves in Fig. 7-6. Resonance frequencies, bandwidths and
cutoff frequencies predicted by this model are identical to those of the first experimental
coil configuration. These features are expected since they depend only on T and 1, (or
equivalently on L and L,) which are identical for both coils. The high frequency rolloff

of the resonance peak magnitudes, however, is dependent on %, and a, in Eq. (7-21).

Here, a; = 1.52 cm and £ = 4.85 cm. The transit time of the light through the short fiber
section inside the cell is T, = 0.24 ns, producing an envelope function with 3 dB
bandwidth and cutoff frequency of 1.87 GHz and 4.2 GHz. The resonance peaks in Fig.
7-6b are plotted only to approximately 400 MHz. Unfortunately, RF interference in the
measurement instrumentation (peculiar to this experimental configuration only)

precluded data recording to nearer the 3 dB bandwidth of the envelope function.

Rectangular Coils

Fiber current sensors coils with rectangular cross sections (though not practical to
implement because of the sharp corners) are excellent for the theoretical study of high
frequency effects in the Faraday response. This particular geometry is chosen for
modeling because (1) it represents a coil cross section that is noncircular in all respects,
thus exhibiting several unique high frequency features; and (2) it lends itself to a simple
analytical description for predicting centered, noncentered and highly elongated coil
frequency responses. Ideally, a model of an elliptically-shaped coil is desired to
represent a realistic fiber current sensor coil that might have a displaced conductor or a
compressed cross section; however, the mathematical treatment is quite complicated, and
the resulting model begins to break down as the coil becomes very eccentric. The
rectangular coil model provides a good compromise for this study.

The Faraday response model is constructed using the geometry shown in Fig. 7-7.

Expressions similar to Eq. (7-21) are used to determine the rotation in each segment of
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the rectangular cross section. The rectangle has dimensions 2w (width) by 2h (height).
Light enters the coil at the location marked by t, in Fig. 7-7. One complete loop around
the rectangle requires light travel through five fiber segments; the total number of fiber
segments in the coil is then SN. The Faraday rotation in the first segment is

mt; +14
it

0y(w) = VBO(%)(W+X1) dt ,(7-23)

2

(w+X1)2 + (%) (mt; - t)2

mt,

where m is the turn counter, 0 to N - 1, 1, = 2(w + h)(n/c) is the light transit time through

one complete fiber loop. and t;, = h(n/c). In the second segment (top horizontal),

Light Direction

ty

\ —~p
Conductor N Fiber COil

Fig. 7-7. 'The geometrical layout for the rectangular coil model. The conductor is
displaced in the coil cross section, and the coil shape is allowed to vary.
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mt;, +t,

ot

2 c 2 n
h*+ (H) [m‘tl +t]+E(W+X1)—t]

0,(®) = VB, (%)h S dt

mT, +t
(7-24)

where t, = t; + 2w(n/c). The third segment (left vertical) produces a rotation given by

ot

2
(W—X1)2+ (%) [mTI + t2 +%h—t:|

0;(w) = VB, (%)(w—xl) 5 dt,

mt, +t,

(7-25)

where t; = t, + 2t;. An expression for ©,(w) for the lower horizontal segment is similar

to Eq. (7-24) with appropriate changes in the time; and the final rectangular segment has

a rotation, ©4(w), similar to Eq. (7-23). The total response is computed by summing the

individual rotations, then normalizing to the zero frequency rotation.

[0,(@) + ©2(0) + O3(w) + B4 () + O5(w)]

2NVB,| tan™ L I +tan“l(w+X1J+tan"(w_X1)
W+X1 W—Xl h h

(7-26)

Equation (7-26) is evaluated numerically to determine the total Faraday rotation.

Throughout the computations, the rectangle geometries will vary, but the perimeter of the

rectangle is held constant so that total transit time, 7, is the same as that in an equivalent

circular coil. The light entry point into the fiber can also be varied by letting X, > 0 to
simulate £ = 0.5 and setting X, < 0 for £ = 0.

The frequency response of the Faraday rotation for the rectangular coil models

are plotted in Fig. 7-8. In the models leading to these two plots, the conductor is allowed
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Fig. 7-8. Model predictions for a Faraday effect fiber current sensor coil with a varying
rectangular cross section. (a) A single turn coil with the conductor centered in a square
cross section and with the conductor displaced to the coil edge in a direction away from
the light entry point. The rectangular cross section is varied with the conductor
displaced. (b) A two turn coil with the conductor displaced to the coil edge. The dotted
curve in each plot is the reference for an equivalent centered, circular coil.
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to move toward the fiber coil (X, > 0) and the rectangular cross section is varied. The

. dotted curves in both Figs. 7-8a and 7-8b are the response for a centered circular coil

which has a circumference equal to the perimeter, 4(w + h). In Fig. 7-8a, the response
for a single turn square coil (width/height = 1) is shown. This response has identical
main lobe bandwidth and cutoff frequency as that for the centered, circular coil.
However, a noticeable deviation in the curves occurs near @t/2 = 4z. This is due to the
four-fold symmetry created by the four identical coil sides. As might be expected, the
exact shape of this small response enhancement near ®t/2 = 4x will depend on the choice
of light entry point in the square coil. Also shown in Fig. 7-8a is the effect of displacing
the conductor to the edge of the square coil (w/h = 1, X, ~ w) in a direction away from
the light entry point (equivalent to X, /R ~ 1 and & = 0.5 in the circular coil). This curve
shows an increased bandwidth in the low frequency lobe and higher frequency
oscillations that result from both two-fold and four-fold symmetries. This curve can be
compared directly to its counterpart for the circular coil in Fig. 6-2a. Noted similarities
are the lack of response nulls at the higher frequencies and relative response magnitudes
near Y.

With the conductor fully displaced, the rectangular coil cross section is
compressed to a highly elongated state. Response curves are shown in Fig. 7-8a for an
intermediate compression state (w/h = 10) and near total compression (w/h = 100). The
frequency response for the coil with large eccentricity and near-maximum conductor
displacement approaches that of the delta function model for a single turn coil. This
response exhibits a near-infinite bandwidth.

In Fig. 7-8b the Faraday response is shown for a two-turn coil, again with the
conductor displaced almost fully to the edge of the coil; the cross section of the rectangle
is allowed to vary in shape. For the square coil, resonant responses are observed near the
frequencies defined by ©1/2 = 2m'n. This resonant behavior is very similar to that of the

two-turn circular coil with displaced conductor. The relative magnitude of the first
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higher frequency resonance peak for the square coil in Fig. 7-8b is near Y2, and the
magnitudes of subsequent higher frequency peaks diminish. If the model were to allow
the limiting case of X, = w without producing a singularity, the magnitude of all the
higher frequency resonances would be 2 as demonstrated for the circular coil in Chapter
6. As the cross section of the rectangular coil is compressed, the relative magnitude of
the resonance peaks in Fig. 7-8b increases. When w/h = 100, the predicted Faraday
response approaches that of the delta function model shown in Fig. 7-2 for N = 2. The
bandwidth increase in the main lobe is noted, and the magnitudes of the higher frequency
TESONances are Very near one.

The curves in Fig. 7-8 are presented to help visualize the frequency responses for
coils that are in intermediate states between a symmetric (i.e., circular) coil with fully
displaced conductor and a highly elongated coil with fully displaced conductor. During
the transition of coil cross section between these two states, the magnitude of the
resonance response peaks (see Fig. 7-8b) progresses from approximately %2 to very near
unity. It is expected that coils that initially have a circular cross section will exhibit
similar high frequency responses as the cross section is compressed.

Many general high frequency characteristics of fiber current sensors can be
investigated theoretically using the rectangular coil model. One good example is a single
turn coil with the conductor placed at the center and the coil cross section compressed.
Modeling the initial shape as a square, the frequency response begins as that seen in Fig.
7-8a for the curve with w/h = 1 and X, = 0. After compression, the response is much like
the curve in Fig. 7-8b for w/h = 100. The current sensor response will resemble that of a
"double delta function”, since in the highly elongated state, the light in the fiber makes
two close approaches to the conductor for a single coil turn. The frequency spacing
between resonances is determined from the transit time of light through half a coil turn,
T,/2, resulting in ©,7/2 = 2m'w, which is exactly that shown in Fig. 7-8b for the two-turn

coil.
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The resonance phenomenon just described is observable in the frequency
response of almost any fiber coil with arbitrary cross section. If the conductor is
centered in the coil cross section, then the sensor main lobe bandwidth and frequency
response will closely approximate that of the centered, circular coil. Deviations in the
higher frequency response will result from symmetries peculiar to the chosen coil
geometry and the choice of the light entry point. Then in the highly elongated state, the
response will approach that predicted by the delta function model. Also, it is easily
envisioned that specific features in the responses for coils with displaced conductors in
arbitrary cross sections can be predicted using information already generated from the
delta function and rectangular coil models. In general, it appears that predicting the
Faraday frequency response for many coil geometries is possible through use of the

framework developed here for the noncircular current sensor coils.
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CHAPTER 8
TRAVELLING WAVE FIBER CURRENT SENSORS:
BASIC CONCEPTS AND THEORY

Manipulation of the fiber current sensor coil cross section and the position of the
conductor relative to the coil changes the higher frequency characteristics of the Faraday
response, but has limited effects on the sensor bandwidth, especially for multiturn coils.
Bandwidth can be enhanced in the transit time limited fiber sensors by deviating from the
planar coil structure and expanding the fiber into a helix. In this geometry the
electromagnetic wave propagating along the conductor experiences partial phase
matching with the light propagating in the fiber. This travelling wave configuration
enhances the Faraday rotation at the higher frequencies, and thereby increases the
bandwidth.

The travelling wave concept has been used extensively in electro-optic
modulators [62], and integrated optic devices with bandwidths well beyond 10 GHz have
been fabricated [66]. In these modulators, however, the Pockel's effect (interaction
between the light and the electric field) is used, and the two interacting signals propagate
codirectionally and in the same dielectric medium. In a fiber current sensor, the
magnetic field is generally orthogonal to the direction of current propagation, while the
Faraday rotation is dictated by B e dl and is maximized when the field and light are
codirectional. Implementing a Faraday effect travelling wave concept is thus much more
difficult since both B and k cannot simultaneously be directional with the light. The
helical coil geometry allows for partial phase matching, but further enhancement of the

Faraday signal requires slowing the propagation of the electromagnetic wave.

Travelling Wave Fiber Current Sensor Model

A basic travelling wave fiber current sensor is shown schematically in Fig. 8-1.
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The helical singlemode fiber coil is immersed in the dielectric of a coaxial transmission
line. If the frequency of operation is limited to a range where only a TEM mode exists in
the transmission line and the fiber coil is centered about the coax center conductor, then
Eq. (3-9) describes the Faraday response for the system. It is possible for the coil to
assume any position relative to the center conductor, which then requires use of Eq. (3-7)
to fully describe the frequency dependent Faraday interaction. This added complexity is
addressed briefly in Chapter 12; however, for most of this study of travelling wave fiber
current sensors, the coil is taken to be coaxial with the conductor. Two further
simplifications are introduced into the model: the fiber helix consists of N complete turns
with a constant pitch, x, and the coax line dielectric is free of magnetic materials, g, = 1.

Using these assumptions, the angle v is no longer time dependent,

Sinel 4 Dielectric
inglemode ,
Fiber Coil (rs &)

Fig. 8-1. A travelling wave fiber current sensor constructed of a helical singlemode fiber
coil immersed in the dielectric of a coaxial transmission line.

105

S D AN A 21 VBRI R S IR A T I Y S N i OO £ T RN i WA b P ity (W A IS se s s s e e



cosy = EL"— , (8-1a)

and

> (8-1b)

where L is the total fiber length in the coil helix and d is the mean diameter of the coil
measured radially from the conductor axis. Substituting Egs. (8-1) into Eg. (3-9) results

in a general expression for the Faraday rotation of the simplified travelling wave sensor:
1 'J"’“[l"—/xfz I\T]
Ow) = B, = e dt . (8-2)

In Eq. (8-2) T = (n/c)2rRN/siny, which differs from that for the planar coil by (siny)-!.
This factor arises because the helical coil requires a longer fiber length for a given coil

diameter, d. The actual length of the fiber is given by
L = Ny(md)® + x2 , (8-3)

which when substituted into Eq. (8-2) results in a final integral expression for the

Faraday response:

-jmt[l- : ;e_), 1 J
O() = @o% e W] (8-4)

If the material relative permittivity is considered constant (independent of
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frequency), Eq. (8-4) can be solved in manner similar to Eq. (5-1) for the centered,

circular (and planar) coil. The solution becomes

o) = 0, [Smc(@] eS| (8-5a)
where
€= % 1 - Ve ) (8-5b)

At the low frequencies, ® — 0, { becomes zero and Eq. (8-5a) reduces to Eq. (2-3) as
expected. If the coil pitch, x,,, becomes small, the contribution from the second term in
the parenthesis of Eq. (8-5b) is diminished. If x, = 0, then Eq. (8-5a) is identical to Eq.
(5-3) for the planar coil. The relative magnitude of the Faraday response in Egs. (8-5)

has a form similar to Eq. (5-4):

(8-6)

O(w)
O,

sin(¢) ’
C

The 3 dB bandwidth occurs when { ~ V2 which leads to [60]

-1
1 VAN T 87
AB = w2 nNx, I:\/(Ao) T nn] ' &7

The travelling wave sensor bandwidth now shows a dependence on the coaxial line
relative permittivity and the fiber coil diameter-to-pitch ratio, d/x, .

The bracketed factor in Eq. (8-7) can be equal to zero, which theoretically gives
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an infinite bandwidth. This condition arises from perfect phase matching between the
two interacting electromagnetic signals. When Eq. (8-6) for the travelling wave coil
configuration is compared to Eq. (5-4) for the planar coil geometry (the baseline

configuration), an enhancement factor equivalent to

) (8-8)

is extracted [62]. The travelling wave enhancement is determined by the relative phasing
between the light in the fiber, v, = (c/n)cosy (in the direction of k) and the velocity of the
TEM wave, v, as given by Eq. (3-6). When the relative phase velocities are identical,
the enhancement is infinite.

The relative magnitude of the Faraday rotation from Eq. (8-6) is plotted versus
the normalized frequency, wt/2, in Fig. 8-2. Also plotted is a reference curve taken from
Eq. (5-4). In the example in Fig. 8-2, a travelling wave enhancement of slightly larger

than two is used for illustration.

The Bandwidth Enhancement Factor

A bandwidth enhancement factor (BEF) is determined by the ratio of the

travelling wave sensor bandwidth to the planar coil bandwidth:

AB (travelling wave)
AB (planar)

BEF =

(8-9)

Upon substitution of Egs. (8-7) and (5-8) [60],
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BEF = (Xioj [\/(%0)2+ ;1? - *I{i—f}_] . (8-10)

In defining the BEF, the number of fiber turns and the coil diameter remain fixed for the
two coils being compared. This means the low frequency Faraday sensitivity is
unchanged from that described by Eq. (2-3). Thus, the BEF can be used as a figure of
merit to give a quantifiable estimate of sensor performance improvement for travelling
wave configurations. The BEF can also be used directly to compute the increase in the

sensitivity-bandwidth product over that for the planar coil given in Eq. (5-10).

I T T T
0 T 21 3 471

co’r/z

Fig. 8-2. A typical Faraday response curve for a travelling wave fiber current sensor.
The dotted reference curve is the response for an equivalent sensor coil with coplanar
turns.
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Equation (8-10) is very similar to the enhancement factor given by Eq. (8-8)
when the respective velocities are substituted. The only difference is the added fiber

length,

AL = \[1 + (XO nd)z , (8-11)

that must be used in the helical coil in order to maintain a fixed diameter. Equation (8-8)
is a generic expression for any travelling wave structure that accounts only for the
relative phase velocity mismatches; Eq. (8-10) is specific to this fiber configuration.

The BEF is strongly dependent on the diameter-to-pitch ratio of the travelling
wave fiber sensor coil and the relative permittivity of the slow-wave structure (the
coaxial line). Figure 8-3 is a plot of the BEF, Eq. (8-10), for several values of €_using
d/x, as the independent variable. The fiber refractive index is assumed to have a nominal
value of 1.46. For any €, a value of d/x, exists for which a maximum BEF occurs. If
€. > n2, the maximum BEF approaches infinity. This complete phase matching condition
(the travelling wave condition) occurs when the bracketed factor in Eq. (8-10) equals

Zero, or when

— -1 . (8-12)

In Fig. 8-4, the values of €, and d/x, are plotted for which the travelling wave condition,
Eq. (8-12) are met. It is obvious from Fig. 8-4 that slow-wave structures with larger
relative permittivities are needed if the fiber helix has a small pitch.

In Fig. 8-3, if €, < n?, the maximum BEF remains finite. For ¢ = 2, the BEF
attains a peak value of ~ 4.0 at d/x, = 0.083; and for € = 1, an air or vacuum dielectric,

the BEF peaks at 1.37 when d/x, = 0.33. Thus, merely expanding the fiber coil into a
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BEF (magnitude)

Diameter—to—pitch, d/x,

Fig. 8-3. The magnitude of the bandwidth enhancement factor as a function of the
travelling wave coil diameter-to-pitch ratio. Curves are plotted for a wide range of
relative permittivity values.

helix does not provide much improvement in the sensor bandwidth. The propagation of
the magnetic wave must also be slowed, preferably by using a dielectric with a large
relative permittivity.

Two other features are noted in the curves in Fig. 8-3. As d/x, — oo, or the coil
pitch becomes small, the BEF approaches one for all values of £, (no enhancement occurs
as expected). But as d/x, — 0 (X, — oo, infinite pitch), the BEF approaches zero for all
g, This feature results from the chosen definition for the BEF. If the coil diameter must
remain constant, then as X, increases so does the total fiber length according to Eq. (8-3).
Eventually, the transit time of the light through this fiber length becomes prohibitively

long and the bandwidth for the sensor decreases to zero. In order to keep the travelling
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Fig. 8-4. A plot of the relative permittivity of the dielectric medium required for

maximum Faraday response bandwidth versus the sensing fiber diameter-to-pitch ratio.
For the ideal travelling wave sensor with €, > n?, the theoretical maximum bandwidth

approaches infinity.

wave sensor at a practical length and yet produce as large a BEF as possible, emphasis is

again placed on using the high relative permittivity materials.
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CHAPTER 9
TRAVELLING WAVE TRANSMISSION CELLS

The travelling wave fiber current sensor shown in Fig. 8-1 was implemented
using coaxial transmission cells with helical fiber coils mounted in the cell working
volume [34]. Two basic cell configurations were used: one with an air dielectric, the
other with liquid dielectrics of varying relative permittivity. The airline provided a
baseline measurement for Faraday current sensor response when only a helically-shaped
coil was used. Liquids were chosen as coaxial line dielectrics for the second
configuration because they have large €, they are readily available in a wide range of
permittivities, and they can easily assume the shape of the cell interior and fill the large
volumes required.

The fiber coils were constructed from low birefringence singlemode fiber with an
80 um cladding diameter. Fibers were twisted at a rate of ~30 turns/meter and wound on
3 cm diameter mandrels. The selected twist rate was adequate for the circular
birefringence bias to overcome the bend-induced birefringence at the chosen coil
diameter. Faraday responses then could be measured directly from relative changes in
the light intensity as described in Chapter 4. The coil diameter was held constant for all
test designs, but the pitch of the helical coil varied between 1.5 and 3.0 cm; several
values of d/x, were used. In some configurations, the coils were quite long; however, the
total number of turns was limited so that coils never exceeded 45 cm in axial length. The
number of coil turns varied from 10 to 20.

A single coaxial cell outer structure was used for all travelling wave experiments.
The outer conductor diameter was 5.75 cm. In order to maintain a 50 £ nominal
impedance on the transmission line, the inner conductor diameter varied according to Eq.
(A-11) for the appropriate value of €. Properties of the travelling wave transmission

cells — SWR, impedance and transmission magnitude — were determined using ANA
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measurements and Egs. (A-25) and (A-26). These properties were important in assessing
the useful operating frequency range for the liquid cells and necessary in developing
accurate response models that accounted for all the liquid parameters.

The transmission cells were positioned as shown in the experimental arrangement
of Fig. 4-1. A photograph of the bench-top hardware for this configuration is shown in
Fig. 9-1. All remaining instrumentation and procedures for the measurements of the

travelling wave current sensor response were as outlined in Chapter 4.

T e

Fig. 9-1. A bench-top photograph of the experimental hardware used during testing of
the travelling wave fiber current sensors.
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Airline Cell

The coaxial airline travelling wave test cell is described as Cell #2 in Table A-1
of Appendix A. The cell center conductor diameter is 2.49 cm (for 50 2 characteristic
impedance), and the working volume length is 45.7 cm. The fiber sensor coil consisted
of 10 turns wound on a polyurethane foam mandrel of 3.0 cm diameter. This coil
support then fit directly over the cell center conductor. A view of the disassembled
airline is shown in the photograph, Fig. 9-2. Tapered end sections of both inner and
outer conductors can be seen at the left of the photo. The ends of the fiber coil are
secured to the foam mandrel by first sewing several thread loops around the fiber and
through the foam; then a dab of UV-curing epoxy is hardened at the fiber-thread
interface. The twist is locked into the fiber turns, and the coil leads are allowed to dangle
(untwisted) so they may be fed through the wall of the cell outer conductor section.

The electromagnetic performance characteristics of the airline travelling wave

cell were quite good. SWR and impedance magnitude of the cell are plotted versus

frequency in Fig. 9-3. The cell SWR never exceeds 1.23 and the impedance varies

Fig. 9-2. Photograph of the disassembled travelling wave airline cell. A 10-turn, helical
fiber coil on a foam mandrel is located at the bottom of the photo.
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Fig. 9-3. The measured SWR (a) and the impedance magnitude (b) of the travelling
wave airline cell with the optical fiber sensor inside.
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between 42.5 and 52 Q. Frequency spacing between the larger oscillations in both the
SWR and the impedance is approximately 260 MHz. This corresponds to resonant
reflections at the transitions from the RE connectors into the cell air space. The fiber coil
and foam mandrel do not create noticeable perturbations in the electromagnetic
characteristics. The useful operating frequency range of the airline cell extends beyond
2.3 GHz, which is the cutoff frequency for cell higher order modqes. Such a high test
frequency, however, is not needed since the fiber current sensor Faraday response is

limited to much lower values.

Liquid Cells

Many organic and inorganic liquids with large relative permittivities [67], € > 10,
were considered during design of the travelling wave sensors. Three — 1-propanol,
methanol, and water — were chosen for testing because they spanned a wide range of €,
values and were relatively nonhazardous in the small volumes used. The static or low
frequency relative permittivity of these three liquids is 20.1, 32.63, and 78.54,
respectively, at 25°C. One disadvantage of using liquid dielectrics in the travelling wave
cell is the temperature dependence of €. Selected values of the relative permittivity for
the three test liquids are given in Tables 9-1 and 9-2. Near ambient temperature in the
laboratory, values for €, vary only slightly. Thus, no temperature control was deemed
necessary, but a monitor was provided to indicate liquid temperature. This sensor, a
Fluoroptic™ thermometer [68] from Luxtron, is seen in Fig. 9-1.

Figure 9-4 is a close-up view of the fully assembled liquid travelling wave cell.
(This cell is also seen in the experimental setup of Fig. 9-1.) Inlet and vent ports for
liquid filling are visible on the top of the cell. Exit holes for the fiber sensor required
sealing to prevent liquid leakage. The optical fiber test coil is supported in the liquid
medium by a teflon tube. A helical groove with a semicircular cross section was

machined in the outside surface of the tube as a guide for the twisted fiber. The fiber
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Table 9-1.
Relative Permittivity of the Test Liquids at Selected Temperatures [67].
Temperature (°C) 1-Propanol Methanol Water
-113 — 64.0 —
-80 38.0 54.0 —
-34 29.0 — —
-20 — 40.0 —
20 — 33.62 80.37
25 20.1 32.63 78.54
200 — — 345

was anchored to the mandrel using the same thread-and-epoxy technique as used for the
airline coil. Several mandrel tubes were used, each with a different helical pitch. The
teflon mandrel was aligned coaxially in the cell using several teflon support rings. These
rings are seen in the end-view photograph of the opened liquid cell in Fig. 9-5a. The
support rings also aligned the center conductor coaxially in the cell. Because of the large
relative permittivity of the liquid, the center conductor diameter required to maintain a
50 € characteristic impedance in the cell was often very small. Thus, external support
was needed.

Barely visible in Fig. 9-5a is the optical fiber spooling off the end of the teflon
mandrel and exiting the cell. This section of fiber was untwisted, and care was taken to
not stress it during cell assembly. Figure 9-5b shows the disassembled travelling wave
cell. The O-rings used to seal the cell outer conductor componcnts are visible on the two

endcap sections. Also, short teflon extension tubes are seen in the endcaps; these help

118



Table 9-2.

Relative Permittivity of Water.

Temperature (°C) € [Ref. 69] € [Ref. 70]
0 87.74 87.90
5 85.76 85.90
10 83.83 83.95
15 81.95 82.04
20 80.10 80.18
25 78.30 78.36
30 76.55 76.58
35 74.83 74.85
40 73.15 73.15
45 71.51 71.50
50 69.91 69.88
55 68.34 68.30
60 66.81 66.76
65 65.32 65.25
70 63.86 63.78
75 62.43 62.34
80 61.03 60.93
85 59.66 59.55
90 58.32 58.20
95 57.01 56.88

100 55.72 55.58
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maintain radial dielectric continuity throughout the entire length of the cell interior.

The presence of the teflon support structures inside the cells often created
numerous points for reflection of the electromagnetic waves. Teflon was chosen as a
support material because it is impervious to all liquids considered as potential dielectric
materials. However, the teflon has a relative permittivity of 2.0, which differs

significantly from that of any of the liquids. Impedance mismatches could occur at many
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Fig. 9-4. Photograph of the liquid travelling wave transmission cell. Optical fiber leads
exit the cell through sealed holes in the cell outer conductor. Fill and vent holes for the
liquid are located on top of the cell.
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Photographs of the liquid travelling wave transmission cell. (a) End view
showing the inside of the cell, and (b) the fully disassembled cell.
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locations inside the cell. Also, the geometric transition from the RF connectors to the
inside of the cell was difficult to design considering the large permittivity steps, the
varying size of the small diameter center conductor, and the presence of the support
structures. As a result, the SWR of many of the cell configurations was not good.

The measured SWRs for a propanol-filled cell and a water-filled cell are shown in
Figs. 9-6 and 9-7. For the propanol cell, the SWR never exceeds 1.31 below 500 MHz.

These low-level reflections are attributed to the good impedance matching achieved in

RFL SWR 100 m /r/ REF 1 2 1.3123
PROPANOL CELL WAFIBER COIL 102. 878 236 MH=z
S/12/90
1:s 1. 1295
30. 391 MH=z
1 [m}=1=]
| 84, 35 z
%’ 1. 3182
275. 064 MH=

START . 300 000 MH=z STOP S00. 000 000 MH=z

Fig. 9-6. The SWR for the propanol-filled transmission test cell for frequencies up to
500 MHz.
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the cell when using a relatively low ¢, liquid material. The impedance magnitudes
. corresponding to data in Fig. 9-6 vary between 38  and 52 Q, which represents a
maximum deviation of only 1.2 dB from the nominally 50 Q design.

In contrast, the SWR for the water cell, Fig. 9-7, is as high as 15 for frequencies
below 1 GHz. This cell is burdened with large reflections due to the high € of the water.
Corresponding impedance magnitudes vary from ~3.5 Q to ~109 Q, a 11 dB deviation

from 50 Q. Some configurations of the water cells had better electromagnetic

RFL SWR 2 7/ REF 1 2 14.778
WATER| CELL|~- WAFIBER| COIL 36564. 880 S30 MHz
8/722/890
3
I
Al \/\J \j 3 W TN
M\
START « 300 000 MH=z STOP 1 000. 000 000 MH=z=

Fig. 9-7. The SWR for the water-filled transmission test cell for frequencies up to 1
GHz.
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characteristics than those shown in Fig 9-7, but all had SWRs greater than 5.0. Even
with the large mismatches, however, the water-filled cell proved useful in travelling
wave current sensor testing. It is postulated that energy, once coupled into the cell,
propagates with a wave impedance that closely approximates that of a TEM wave and
with a well-established phase velocity that can be estimated by Eq. (3-6). Further details
on the construction and characterization of the liquid travelling wave cells are found in

Ref. 34.
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CHAPTER 10
EXTENDED MODELS FOR LIQUID CELL TRAVELLING WAVE SENSORS

The theory for the travelling wave current sensor presented in Chapter 8 assumes
all parameters of the fiber coil, the transmission cell, and the dielectric medium are ideal
(i.e., they are independent of frequency). In reality, however, several factors contribute
to perturbations of the basic travelling wave Faraday response, Egs. (8-5), all which
reduce the predicted bandwidth enhancement given by Eq. (8-10). Infinite bandwidths
are certainly not possible, even under the best matching of parameters, but the
perturbations do not preclude achieving large bandwidths in many practical devices.

Five mechanisms have been identified that affect the Faraday response in the
experimental travelling wave structures and limit the system bandwidth. First is the
presence of the fiber coil leads. In the cell configurations discussed in the previous
chapter, the fiber is allowed to spool off the end of the support mandrel and exit the cell
through the outer conductor wall. In most cases the fiber leads do not conform to the
prescribed helical pitch of the coil proper and merely increase in radial distance along a
path that is perpendicular to the conductor. Thus, the leads do not "travel" like the
remainder of the fiber and contribute to a minor bandwidth reduction. The deviation in
response created by the fiber coil leads is discussed in detail in Appendix B for the planar
coil configuration. Since the fiber leads used with the travelling wave coils do not differ
significantly from those of the planar coil, the theory presented in Appendix B is
adequate to describe all Faraday responsés. Also, the Faraday response in the leads is
independent of the value of € because of the chosen configuration, and thus, both the
airline and the liquid cell travelling wave sensor systems experience some bandwidth
reductions.

The second limiting mechanism is the modal structure of the coaxial transmission

line. All response models, especially those for the travelling wave sensors, are based on
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TEM wave propagation, and more importantly, on the magnetic field component being
perpendicular to the direction of wave propagation. Higher order modes begin
propagating in the cells at frequencies defined by Eq. (A-13) in Appendix A. This
prediction assumes that an ideal dielectric is present in the coaxial waveguide. For the
cell configurations described in Chapter 9, the onset of the higher order modes will occur
at 2.32 GHz for g = 1 (air dielectric), 517 MHz for €, = 20.1 (the static value for
propanol at 25 °C), 406 MHz for €, = 32.6 (methanol), and 262 MHz for g =785
(water). The first higher order mode in the ideal coaxial line is TE,;, which means the
magnetic field will have a component in the direction of propagation — along the
direction of the conducted current. This could enhance the Faraday response in the
travelling wave coil at the higher frequencies since the light and field vectors might align
more readily. But an exact mathematical description of this interaction is difficult since
the contribution of both the TEM and the TE,; mode must be considered and each has a
separate propagation constant that varies differently with the frequency. Consequently,
the wave phase velocity varies with frequency, and this quantity is the determining factor
in the degree of phase matching that occurs in the travelling wave sensor. As more
higher order modes are added in the waveguide volume, the situation becomes even more
complicated. Thus, operation of the travelling wave current sensors is targeted for a
frequency range in which a single dominant waveguide mode exists, limiting the useful
bandwidth of the system.

A third perturbation arises from the presence of the teflon fiber support mandrel
used in the liquid cell. The relative permittivity of the teflon is ~ 2.0 which is much
smaller than that of any of the liquids. This modifies the wave propagation in the coaxial
line and produces an effective relative permittivity (at low frequencies) for the composite
dielectric structure. The effective relative permittivity is smaller than the g of the
immersing liquid. The fourth mechanism is liquid dispersion and absorption. Polar

molecules that necessarily give rise to the large relative permittivities must reorient in the
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oscillating fields. At higher frequencies the liquid molecule cannot keep up with the
changing field polarization, resulting in absorption of the RF power and a subsequent
loss in current detection sensitivity. Finally, a fifth mechanism is described by a
combination of those effects just discussed for the second, third and fourth mechanisms
above. This response perturbation is due to the waveguide modal structure in multilayer,
dispersive dielectric media.

A detailed description of these last three mechanisms is warranted given their
significant affect on the Faraday response of the travelling wave fiber current sensor.
Each is treated separately in the following sections. A complete computational model for
predicting responses of the liquid travelling wave sensors is offered at the end of this

chapter.

Effective Relative Permittivities

The relative permittivity of the dielectric medium in the coaxial transmission line
establishes the phase velocity of the propagating magnetic wave according to Eq. (3-6).
Consequently, the response, Egs. (8-5), and the bandwidth, Eq. (8-7), of the travelling
wave fiber current sensor are dependent on the value of €. In all of the previous
theoretical developments, it is assumed that €, is single-valued and equal to that of the
dielectric medium, here, the liquid. However, in the liquid cell configurations, it is
necessary to support the helical fiber coil at a given diameter and position relative to the
coax center conductor. When the teflon mandrel tube is submersed in the liquid, the field
spatial distribution is perturbed from that of the liquid alone, and the EM properties of
the cell are changed. The propagating wave in the transmission line then has a phase
velocity determined by an apparent or effective relative permittivity which is
intermediate to the liquid (¢, > 20) and the mandrel (g, ~ 2). For the purpose of
computing cell geometric parameters and estimating sensor responses, this effective

relative permittivity, €., is treated as a single-valued quantity.
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With the fiber mandrel present, the lowest-order mode in the coaxial cell is no
longer TEM, but TM,,. This follows from the waveguide modal solutions for the
multilayer dielectric which is treated later in this chapter. In the static or low frequency
case, however, the TM,; mode can be considered "quasi-TEM," and the electric field has
a 1/p dependency in the cell volume between the conductors. The derivation of an
effective relative permittivity for a coaxial cell with two dielectric media, one submersed

in the other, is performed in detail in Appendix C. The solution is given as

(10-1)

)|

where g, is the relative permittivity of the liquid, &, is the relative permittivity of the
mandrel material (the teflon), 1, and r, are the inner and outer radii of the mandrel tube,
and 'a’ and 'b' are the center and outer conductor radii of the coaxial line.

Fixed values were designed for three of the radii in the travelling wave liquid
cell: r; = 0.475 in. (1.20 cm), r, = 0.625 in. (1.59 cm), and b = 1.13 in. (2.87 cm). The
value of 'a' varies with each liquid. When the fixed radii values and the relative
permittivity of the teflon mandrel are substituted into Eq. (10-1), the effective relative
permittivity becomes

€

off = ’
1+ (05, - 1) 22T

n(113)

(10-2)

where 'a’ has the units of inches. Figure 10-1 is a plot of Eq. (10-2) for each of the three
test liquids used in the cell and with the cell center conductor diameter, 2a, as the

abscissa. A wide range of values for 2a are plotted. For the small conductor sizes, the
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effective relative permittivity is greatest, but it is still significantly less than that of the
liquid alone. For large conductor sizes, the three curves begin to converge, attaining
values of €, between 5 and 6 at the maximum center conductor diameter, a =r,.

The large effect of the teflon fiber mandrel tube on the relative permittivity of the
liquid cell can be interpreted by examining the boundary conditions at the dielectric
interfaces. From Eq. (C-5), E, = (¢,/&,)E, at both r; and r,. This requires the electric
field in the volume occupied by the mandrel to be at least 10 times larger (since €; > 20
and &, = 2) than the field in the equivalent volume occupied by the liquid alone. If the

relative permittivity of the fiber support material more closely matched that of the
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Fig. 10-1. The static, or low frequency, effective relative permittivity versus center
conductor diameter for the three liquid travelling wave test cells. The dashed curve
represents the appropriate €, for a coaxial cell with a fixed 50 Q characteristic

impedance. Open circles are parameters for actual experimental cell configurations.
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liquids, the perturbation would not be so great. Fortunately, a second boundary
condition, Hy; = Hy,, requires the magnetic field component to be uniformly continuous
along the cell radius between the two conductors, extending through the teflon. Since the
desired current measurements depend only on the interaction of this magnetic field
component with the light in the fiber, no deviations will occur in the low frequency
Faraday response magnitude even with the fiber at the outer surface of the support
mandrel. Thus, the properties of the travelling wave sensor must be adjusted to account
only for the faster wave phase velocity created by changes in the relative permittivity.
The low frequency characteristic impedance, Z,, of the liquid travelling wave cell

can be computed by substituting €, from Eq. (10-1) for g in Eq. (A- 11):

PRRE:

(10-3)

The relationship between impedance and relative conductor radii is now much more
complicated. If all the cell geometric parameters and the material relative permittivities
are known, the characteristic impedance can be computed. However, it is often desirable
to identify an impedance, then design the coaxial cell for given dielectric materials.
Rearranging Eq. (10-3) gives an expression for the ratio of the conductor radii as a

function of the remaining parameters,

2 2 2
b 1 € I 1( ¢ r Z
() = 5(1 - e_] ln[r_f) * \/ Z(i ) ) Hf)] "o (35) R

For a cell matched to 50 Q and with the teflon mandrel and cell outer conductor
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geometries as given previously, Eq. (10-4) reduces to

a = 1.13 x exp[0.14 (0.5¢, - 1) - J 0.02 (0.5¢, — 1)* + 0.7¢, ] . (10-5)

This expression can be used to uniquely determine the size of the center conductor
required for a 50  test cell for a given liquid. For the three test liquids selected for use
in the travelling wave sensors, the center conductor diameters are 0.15 in. (0.39 cm) for
propanol, 0.1 in. (0.26 cm) for methanol, and 0.05 in. (0.13 cm) for water. If these
values are appropriately substituted into Eq. (10-2), the effective relative permittivities
for the 50 € cells are 10.5 for the propanol cell, 13.9 for the methanol cell, and 21.1 for
the water cell.

In Fig. 10-1, a dashed curve is plotted that represents the values of €4 as a
function of 2a for all possible liquids used in our 50 € cell. This curve is generated by
first selecting a liquid relative permittivity, €,, and using Eq. (10-5) to find ‘a’. The
values for g, and 'a' are then substituted into Eq. (10-2) to find a unique €. Liquid
relative permittivities cover the continuum from €, = 1 to 150. These extreme values for
g, are shown as the endpoints for the dashed curve in Fig. 10-1. The intersections of the
dashed curve with the three solid curves identify the values of the effective relative
permittivity for the 50 Q cells for the selected test liquids. These three values were
stated in the preceding paragraph. Also plotted in Fig. 10-1 (as the open circles) are the
parameters of the actual travelling wave sensor experimental configurations. As can be
seen, for each test liquid a configuration near 50 Q characteristic impedance was used.
Other cell configurations with different impedances were also implemented.

Equation (10-1) can also be used to compute the effective relative permittivity of
the dielectric in the airline travelling wave test cell. This cell used a polyurethane foam

(g, < 1.2) mandrel to support the helical optical fiber. As might be expected, the foam
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represents only a minimal perturbation on the cell dielectric properties: €, = 0.98 if €, =
1.1, and g4 = 0.96 if &, is as large as 1.2. Since the transmission line characteristic
impedance follows as (g.,)*, insignificant changes in the wave properties occur due to

the presence of the foam fiber mandrel.

Liquid Dispersion

One of the greatest concerns with liquid as a dielectric medium is the dispersion
that occurs at high frequencies. The EM wave propagating in the medium causes
oscillations of the liquid molecule. At high frequencies, these molecules cannot reorient
fast enough to move synchronously with the field. A phase delay occurs between the
wave and the molecule resulting in apparent deviations of the real component of the
relative permittivity and significant increases in the imaginary component. The latter
effect gives rise to dielectric absorption. The complex relative permittivity is expressed
by Eq. (A-16). A Debye relaxation model is used to describe the real and imaginary

components in terms of the molecular properties [71]:

4o N 4o, N
g = |1+ —=—4 | 4 j|l—="d o1, | , (10-6)
g ( l+m2T}%) J(1+m2T}§ RJ

where o is the static polarizability of the molecule, N, is the molecular density, and Ty
is the molecular reorientation time. Ty, is closely related to the material viscosity and the
size of the molecule [71]. Small liquid molecules with low viscosity, such as water, will
produce large absorption only at the highest frequencies; however, dielectrics with large
molecules will exhibit significant dispersion.

Figure 10-2 shows the frequency characteristics of the real (g') and imaginary (e")
parts of Eq. (10-6) for a typical dielectric medium. When the frequency is equal to 1/Tg,

the imaginary component is maximum (indicating peak absorption) and the real
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Fig. 10-2.  The real and imaginary components of the relative permittivity for a
dispersive medium.

component is reduced to approximately one-half the difference between the low
frequency and the high frequency relative permittivity. As an example, the peak
absorption for water occurs near 16 GHz at 25 °C which equates to a molecular
reorientation time of Ty ~ 10" seconds [72]. The values of the reorientation time for the
other two liquids used in the experimental travelling wave sensor cells are approximately
3.6 x 1071 sec for propanol and 7 x 10! sec for methanol. These two liquids have much
larger molecules than water, consequently, the longer reorientation times. In many
materials, several higher frequency absorption bands will also occur. Each of these will
have relative permittivity characteristics as shown in Fig. 10-2, only with progressively
lower starting values for €. For the purpose of describing dispersion in the liquid
dielectrics used in this study, however, only the first absorption is of interest.

The static or low frequency value for the relative permittivity, €, is found from

133

-



Eq. (10-6) when o = 0:

g€ =1+ 4n0Ny (10-7)

Static values for materials are usually those published in the handbook tables. If a
constant parameter, X, is defined as x = 4noN,, then x = &, - 1. The two material
dielectric parameters, K and Ty, are all that is needed to fully describe the frequency
dependence of the relative permittivity given by Eq. (10-6).

The amplitude of the propagating EM wave in the coaxial transmission line is
given by

.®
—]=ErZ
Alz) = Age P? = Age Yo , (10-8)

where A, is the initial wave amplitude, B is the waveguide propagation constant, and z is
the direction of propagation. The attenuation or absorption coefficient is determined

from the real component of the exponential factor, or

ap = —‘ghn(,/e'+ je”) . (10-9)

If attenuation is small, the dielectric has a loss that is described by Eq. (A-18). For the
liquids at higher frequencies, larger attenuation occurs and Eq. (10-9) must be used
directly to determine losses. Figure 10-3a shows the transmission magnitude measured
for the travelling wave sensor cell filled with propanol. The dashed curve is a prediction
of the frequency-dependent absorption using the waveguide model discussed in the
following section of this chapter. Absorption is quite large in this configuration,

approximately 30 dB at 500 MHz. The Faraday response sensitivity for the travelling
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Fig. 10-3. The transmission magnitude (a) and phase angle (b) for the propanol-filled
liquid test cell used as a travelling wave sensor. The dashed curve in (a) is a computation
of the cell attenuation produced by absorption in the propanol with an estimated
molecular reorientation time of 3.6 x 10°'° sec. In (b) the liquid dispersion creates a
noticeable phase lag.
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wave sensor is significantly diminished under these large attenuation conditions. In fact,
it is determined that only ~ 20 dB of loss can be accommodated before measurement
signal-to-noise ratios become too small. This limitation then establishes a higher
frequency bound on each travelling wave sensor configuration. For the propanol-filled
cell, this upper frequency limit is approximately 380 MHz. For the methanol cell, the
limit is ~ 650 MHz, and for the water cell, ~ 825 MHz. Because of other limitations in
the Faraday current sensor response, none of the cells could be used up to this absorption
frequency bound.

Absorption of the RF power by the liquid dielectrics limits the maximum energy
that can be injected into the transmission cells. The heat generated by the absorbed
power elevates the liquid temperature, thus lowering the relative permittivity (see Tables
9-1 and 9-2). No attempts were made during experimentation to control the liquid
temperature, but a monitor was used and the temperature was continuously recorded.
The controller for the fiber optic temperature sensor, a Luxtron Model 1000A, can be
seen in the lower left of the photo in Fig. 9-1. Liquid temperatures were not allowed to
deviate greater than 5 °C during all tests. This ensured a reasonably stable relative
permittivity and cell impedance, and negated the need for any cormrections to the
measured Sensor responses.

In addition to absorption, dispersion in the liquid relative permittivity also
perturbs the waveguide propagation parameter. At the higher frequencies, changes in
both €' and €" produce deviations in the imaginary component of the exponential factor in
Eq. (10-8). This factor is critical in establishing the wave phase velocity in the travelling
wave sensor configuration. In liquids that exhibit large absorption, large increases in
phase velocity also occur. In Fig. 10-3b, the transmission phase angle for the propanol-
filled cell is plotted. A noticeable phase lag is observed, which results from the relative
permittivity steadily decreasing as the frequency increases. This indicates that the EM

wave in the cell is gaining speed with frequency. In a current sensing system this leads
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to a gradually increasing phase mismatch with the light in the optical fiber. Faraday

response will obviously decrease at the higher frequencies.

The Liquid Coaxial Waveguide
An exact determination of the electromagnetic properties for the liquid travelling

wave sensor cells requires a detailed analysis of the actual and complete waveguide.
This analysis must include the relative permittivity perturbations caused by the presence
of the fiber mandrel tube, the dispersion in the liquid dielectric, and the waveguide
dispersion created by modes at the higher frequencies. The general problem that must be
solved is finding the modal structure in the transmission line dielectric volume for a
multilayer coaxial dielectric with complex relative permittivities. Maxwell's equations
(the wave equations) are solved subject to the appropriate coaxial boundary conditions.
From these solutions, a complex relative permittivity is determined that can be
substituted into Eq. (8-4) to give an expression for the frequency-dependent Faraday
response in the travelling wave current sensor.

A complete, detailed solution to the general waveguide problem is quite involved;
it must assume that all spatially-orthogonal components of the magnetic and electric field
exist inside the transmission line dielectric volume. The approach of reducing the
computations to TM and TE modes as taken for the ideal coaxi_al line (see Appendix A)
may not be appropriate. Coupled modes must initially be considered. Fortunately, the
implementation of the travelling wave sensors only requires knowledge of the lowest
order mode propagating in the cells. This can be achieved by simplifying the problem
from the outset: assume a limited modal structure and a limited frequency range of
operation. Previously, the lowest order mode in the liquid-filled cells was assumed to
have quasi-TEM characteristics. Then, a reasonable assumption is that this mode
possesses azimuthal symmetry. With no ¢ dependencies, the field components in the

multilayer dielectric become uncoupled (transverse field components are no longer a
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superposition of E, and H,) [73], and the modal problem can again be simplified
mathematically into TE and TM groupings. The problem is further simplified by
identifying the approximate cutoff frequency of the first higher order azimuthally
symmetric mode, then bounding sensor operation to the assumed single mode region
below this frequency. As verified by the experimental data, the above assumptions have
proved quite accurate in treatment of the travelling wave fiber sensor response.

The eigenvalue equations for the TE,, and TM,, modes in the liquid-filled
transmission cells are developed in Appendix D. Modal solutions to these equations are
approached, and eventually displayed, from the perspective of an effective relative
permittivity, €. The effective relative permittivity is related to the waveguide

propagation constant through the expression

B =j% et - (10-10)

It is more common to determine the modes in the coaxial transmission line by simply
finding B as a function of frequency. Such a treatment is used in Appendix A. However,
the relative permittivity representation continues from earlier discussions of the travellin g
wave sensor systems and allows for greater insight into dielectric properties, especially
dispersion. The use of an g, in the mathematical treatment is consistent with other
waveguide properties.

Throughout the waveguide modal analysis, it is assumed that computed values for
€. Will be representative of a homogenous dielectric medium between the conductors in
the coaxial line. Then the effective relative permittivity can be used to estimate
impedances, propagating-wave phase velocities, and ultimately, the travelling wave
sensor responses. In the waveguide computations, the liquid relative permittivity is
treated as complex, thus the resulting €. is complex. This allows for treatment of both

the wave dispersion and attenuation.
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An iterative computer algorithm [34] was used to compute the solutions to the
modal eigenvalue equations, Eq. (D-15) for the TM,, modes and Eq. (D-27) for the TE,,
modes. The code initially estimates a value for €, (complex components where
appropriate) at a given frequency and then computes the waveguide propagation
constant, P, using Eq. (10-10). The complex value of k, (from Egs. (A-4) and (10-6)) for
the liquid dielectric is combined with B to determine the parameter u, from Eq. (D-2).
Similarly, u, is determined from B and k,, for a nondispersive relative permittivity for the
teflon fiber mandrel. Arguments for the Bessel functions are then generated from the
geometric dimensions, and trial solutions to the eigenvalue equations are computed.
Iterations of €, occur until satisfactory solutions are found. Because u; and u, can
assume any complex value, it is necessary to utilize Bessel function routines that allow
complex arguments. These functions were provided by D. E. Amos as a complete
Fortran subroutine package [74].

Modes within the multilayer dielectric transmission line are first identified by
treating the liquids as lossless or nondispersive. Then the effective relative permittivities
introduced into Egs. (10-10) and (A-4) are real only. The lowest order mode for all the
multilayer dielectric configurations is TM,;. A TEM mode cannot exist. Guided modes
in the cell require that &, < ¢4 < €, for propagation to occur; modes fall below cutoff if
€. < €. This implies the phase velocity of the propagating wave is faster than the speed
of light in the liquid medium. Such anomalous phase velocities are not unusual in guided
wave structures. The maximum phase velocity in the multilayer dielectric is limited by
the speed of light in the teflon.

Figure 10-4 is a plot of e, versus frequency for several TM and TE modes in a
lossless coaxial transmission cell filled with water. At zero frequency, the static value of
€. for the TM,, mode agrees exactly with that determined by Eq. (10-2) from the theory

developed in Appendix C. This validates the assumption that at low frequencies a quasi-

TEM mode exists in the cell. In Fig. 10-4 the modal values for € are bound by €, on
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Fig. 10-4.  The effective relative permittivity versus frequency for the azimuthally
symmetric TM,, and TE,, modes in a multilayer dielectric coaxial waveguide containing
water. Liquid dispersion is neglected.

the high side and ¢, on the low side. The transmission cell becomes highly multimoded
as the frequency approaches 1.5 GHz; several additional modes, that are not azimuthally
symmetric, are expected to appear among the TM,, and TE, modes at the higher
frequencies. The first higher order azimuthally symmetric mode in Fig. 10-4 is the TE,,
mode which begins propagating near 600 MHz. This cutoff establishes an approximate
upper frequency bound for single mode operation in a water-filled travelling wave cell.
For travelling wave cells filled with propanol and methanol, the TE,, mode is also the
first higher order mode in the multilayer dielectric waveguide assuming nondispersive
liquids. The cutoff frequency for this mode is approximately 1220 MHz in the propanol

cell and approximately 940 MHz in the methanol cell.
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Portions of the lower frequency €, for the TM,; mode in the lossless liquids
propanol, methanol and water are plotted as the dotted reference curves in Figs. 10-5
through 10-7. All three curves show a static value for &, that agrees with the previously
determined quasi-TEM calculations. Also, each curve shows a waveguide dispersion in
the effective relative permittivity that is independent of the liquid dispersion. Below 500
MHz, the waveguide dispersion for the propanol-filled cell is quite small (see Fig. 10-5),
but values for the methanol cell and especially the water cell are quite significant (see
Figs. 10-6 and 10-7). This waveguide dispersion arises from the large disparity between
the relative permittivities of the liquid and the teflon tube, and subsequently, from the

large disparity between the static €, value and the static liquid €.
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Fig. 10-5. The complex effective relative permittivity versus frequency for the TMy,
mode in a propanol-filled travelling wave transmission cell. The dotted reference curve
is produced from the waveguide model neglecting liquid dispersion.
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Fig. 10-6. The complex effective relative permittivity versus frequency for the T™,,
mode in a methanol-filled travelling wave transmission cell. The dotted reference curve
is produced from the waveguide model neglecting liquid dispersion.

When liquid dispersion is included in the multilayer waveguide computations,
complex solutions for € are generated. Only the TM,, mode is investigated for these
dispersion calculations, and the frequency range is limited to 500 MHz for the propanol
and methanol-filled cells and to 600 MHz for the water-filled cell. Cell absorption is
included as part of the computations so that comparisons can be made directly to
measured transmission (or loss) values. The molecular reorientation time, Ty, is treated
as a variable input parameter in the model. The complex relative permittivity of the
liquid, Eg. (10-6), is then used to determine k and u for use in the waveguide eigenvalue
equations. Differences between computed and measured attenuation values determine
the correctness of the chosen value of Ty. Figure 10-3a is one such comparison of cell

transmission values for the propanol-filled coaxial line. The dashed curve in Fig. 10-3a
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Fig. 10-7. The complex effective relative permittivity versus frequency for the TM,,
mode in a water-filled travelling wave transmission cell. The dotted reference curve,
which is almost hidden behind the solid curve, is produced from the waveguide model
neglecting liquid dispersion.

is generated by the multilayer waveguide model for T = 3.6 x 101° sec. Good
agreement with the network analyzer curve is observed, especially below 350 MHz. All
estimated values for Ty for the three test liquids were determined using this technique .
The complex effective relative permittivities versus frequency for the three
liquids are plotted in Figs. 10-5 through 10-7. The real and imaginary components of €,
are plotted as separate curves in each figure. In the propanol-filled cell, Fig. 10-5,
absorption dominates. The imaginary part of &, increases rapidly with increasing
frequency. The dispersion in the real part of €, is dramatic; liquid dispersion dominates
the waveguide dispersion which is observed by comparing the solid and dotted curves in

Fig. 10-5. In the methanol-filled cell, Fig. 10-6, the absorption is much smaller below
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500 MHz. Waveguide dispersion is slightly greater than the liquid dispersion, as the real
componen. of €. increases only 8% over the frequency range plotted. Because of the
fast reorientation time for the water molecules, little liquid absorption occurs in this
travelling wave cell. In Fig. 10-7, the real component of €, below 600 MHz is almost
identical to £ computed for the lossless liquid (the dotted curve). Waveguide
dispersion, however, produces more than a two-fold increase in the value of €. This
leads to dramatic effects in the wave propagation characteristics for the water cell.

The complex effective relative permittivity for each liquid is used to compute the
wave impedance, using Eq. (A-9), for the TM,, mode in the multilayer dielectric
transmission line. The TM,, mode is considered quasi-TEM at the low frequencies,
which means that over some frequency range the wave impedance can be considered
constant. For a pure TEM mode, the wave impedance does not change with frequency.

Figure 10-8 shows a plot of the wave impedance magnitude for the travelling
wave cells filled with the three test liquids. This parameter deviates with frequency in
much the same manner as the real components of € plotted in Figs. 10-5 through 10-7.
For methanol in the liquid-filled cell, Fig. 10-8 shows almost a constant wave impedance
magnitude up to 500 MHz. Waveguide characteristics for this cell configuration are
obviously quite good, indicating that travelling wave sensors using methanol as a liquid
dielectric are useful up to the liquid absorption frequency limit, approximately 650 MHz.
For propanol, the wave impedance magnitude shown in Fig. 10-8 deviates somewhat
greater (and with opposite slope) than methanol with increasing frequency. If a 10%
deviation from the static value is allowed in considering the frequency range over which
the wave impedance is "essentially constant”, then travelling wave sensors using
propanol can operate to ~ 375 MHz. This frequency is about the same as that established
by the liquid absorption limit. Waveguide dispersion in the water-filled cell creates large
deviations in the wave impedance magnitude as seen in Fig. 10-8. Greater than 10%

increases from the static 1 value are observed for frequencies above 315 MHz. This is
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Fig. 10-8. The computed wave impedance magnitude for the TM,; mode in liquid-filled
travelling wave cells for each of the three test liquids.

easily the most dominant factor in configuring a single mode cell with water dielectric

for use as a travelling wave sensor.

The Complete Sensor Model

The mechanisms discussed in the previous sections of this chapter significantly
alter the electromagnetic properties of the travelling wave sensor cells and, thus, can have
a profound effect on the response of the fiber sensor. The relative permittivity of the
coaxial dielectric medium cannot be treated as a constant over all the frequencies of
interest, and in many cases it deviates largely from its static value and its liquid-only
value. Thus, only when dealing with ideal or severely confined configurations can the

response function given by Eq. (8-5) be used to describe the frequency dependent
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Faraday rotation. In all other cases, Eq. (8-4) must be used directly to predict responses.
A suitable expression for the relative permittivity is identified and substituted for €_in
Eq. (8-4); integration then follows to determine the response. For the most complete
description, the liquid multilayer coaxial waveguide model discussed in the previous
section and in Appendix D is used to generate a table of values for €, at discrete
frequencies for a given sensor cell configuration. These values are used in Eq. (8-4) to
predict Faraday rotation at those discrete frequencies. In addition, the lead effects for the
complete sensor system can be included by using the developments of Appendix B; the
responses just described for the travelling wave coil proper are used as ©,(w) in Eg.
(B-17). Such a comprehensive model [75] is used to predict the behavior of all the
travelling wave sensor experimental configurations and to evaluate responses for a
broader range of possible sensors.

Figure 10-9 shows model predictions for several different travelling wave sensor
example configurations. In the examples, a coaxial transmission cell with methanol as
the liquid dielectric is used. All fiber coils have 20 turns, a mean diameter of 3 cm, and a
constant helical pitch of 2.4 cm. This fixes the diameter-to-pitch ratio at d/x, = 1.25.
Curve (a) in Fig. 10-9 is the relative magnitude of the Faraday rotation for the reference
coil having planar turns (zero pitch). The bandwidth for this sensor coil is 48.3 MHz.
Curve (b) is the sensor response for a travelling wave coil system with € = 32.6. The
helical fiber coil is assumed self supporting in the liquid medium, and the methanol is
treated as nondispersive. Equation (8-6) describes the response for curve (b), which is
very close to having the maximum bandwidth for a travelling wave sensor. The
travelling wave condition, Eq. (8-12), for this dielectric is met when d/x, ~ 1.20. A very
wide bandwidth, 1.34 GHz, is predicted for this near-ideal sensor configuration. If liquid
dispersion is considered in the model, the Faraday response is given by curve (c) in Fig.
10-9. Absorption by the methanol damps the response at the higher frequencies; the

bandwidth is reduced by a factor of 5.5 from that of curve (b). Liquid dispersion also
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Fig. 10-9. Model predictions of the relative magnitude of the Faraday rotation for a
travelling wave fiber current sensor with methanol as the dielectric. (a) Planar coil only;
(b) helical coil, no dispersions; (c¢) helical coil, liquid dispersion only; (d) helical coil, €

due to the teflon, no dispersions; (e) helical coil, €, waveguide dispersion only; and (f)
helical coil, €, liquid and waveguide dispersion, and fiber lead effects.
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eliminates the nulls from the sensor response, meaning the magnitude never drops
completely to zero. This is an argument for potential utilization of fiber sensors well
beyond their 3 dB bandwidth or the expected cutoff frequency.

In practical travelling wave systems, the presence of the fiber support mandrel
was shown to perturb the transmission line relative permittivity. If this effect is
considered in our example model, curve (d) in Fig. 10-9 results. In generating this
response, a teflon support tube (g, = 2.0) having inner and outer diameters of 2.4 and
3.18 cm was used, and the coaxial transmission cell had center and outer conductor
diameters of 0.52 and 5.75 cm. These dimensions are exactly those used for all the
experimental configurations in this study. An effective relative permittivity of 14.07 is
computed for the methanol-teflon dielectric system. Once again, the liquid is assumed
nondispersive in generating the response curve (d). The 3 dB bandwidth for this curve,
computed using Eq. (8-7), is 127.9 MHz.

In the lower half of Fig. 10-9, the perturbations in the Faraday response due to the
addition of waveguide dispersion, liquid dispersion and lead effects are shown. Curve
(e) adds the waveguide dispersion but treats the liquid medium as lossless. The €,
values from the dotted reference curve in Fig. 10-6 were used to generate this response.
Since the effective relative permittivity of the methanol increases with frequency, the
phase matching between the electromagnetic signals actually improves as the frequency
increases. This leads to a slightly larger bandwidth for curve (¢) when compared to
curve (d) in Fig. 10-9. Significant increases in response are seen in the second lobe near
500 MHz. This increased travelling wave performance is even more pronounced for
other liquids, such as water, since the waveguide dispersion for the TM,; mode is much
greater (see Fig. 10-7).

All travelling wave sensor effects, including the fiber coil lead effects, were
considered in generating the response curve (f) in Fig. 10-9. Leads are assumed to have

a length defined in Appendix B by X = R and be oriented perpendicular to the planar
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magnetic wave, having no travelling wave characteristics. This lead configuration
describes precisely that used in the experimental sensor cells. Both absorption in the
methanol and increased propagation time in the fiber leads lower the sensor bandwidth in
curve (f) of Fig. 10-9. Lead effects are not as pronounced in this model description since
N = 20. As might be expected, coils with fewer numbers of turns exhibit further
reductions in bandwidth due to the lead effects. Even when accounting for the many
effects that spoil the original near-ideal travelling wave condition, the predicted sensor
response still shows a bandwidth enhancement of greater than 2.5 compared to the planar
coil sensor configuration. And this occurs without a loss in Faraday sensitivity.

In Fig. 10-9, two other features of curve (f) are noted. First, the response never
drops to zero. One explanation for this phenomenon, the liquid dispersion effects, was
given earlier when describing curve (¢). Missing nulls in the response curve can also be
created by the fiber leads, since they are arranged in a non-travelling wave configuration.
For curve (f) in Fig. 10-9, a combination of both liquid dispersion and lead effects
contribute to the non-zero response near 300 MHz and also to the loss in higher
frequency response in the second lobe. The second noted feature in curve (f) is the
presence of a weak modulation over the entire response. This is entirely due to the fiber
leads and appears to have a modulation frequency which very closely follows that for the
planar coil shown in curve (a). This result is somewhat expected, since the leads are
configured in a planar layout and contribute additional length to the coil proper (as
described in Appendix B). In travelling wave coil configurations that have fewer turns,
the lead effects are more dominant, and the modulation is more pronounced.

The Faraday rotation phase also undergoes various transformations as the effects
of the liquid travelling wave cell configurations are compounded. Some of these are

illustrated in Fig. 10-10. Shown are phase response curves that correspond to the

" magnitudes in the lower half of Fig. 10-9; the curve letter indicators remain the same.

Curve (d) gives the expected response for a sensor whose frequency dependent phase is
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Fig. 10-10. Model predictions of the Faraday rotation phase for a methanol-filled
travelling wave current sensor. The sensor parameters and the curve designators
correspond to Fig. 10-9.

determined by the total interaction time, ¢ «« @. The "apparent" interaction time for a
travelling wave sensor decreases as the phase matching increases, when in reality, the
actual interaction time lengthens. The decrease in interaction time is given by the factor
in parenthesis in Eq. (8-5b). In fact, Eq. (8-5b). describes the phase angle (less the sign
change) for the travelling wave sensor used to generate curve (d) in Fig. 10-10. Curve

(e) shows the increasing phase angle with frequency created by the constantly increasing

value of €. for the lossless methanol model. The phase is a nonlinear function of
frequency, giving rise to the less-abrupt phase flip near 300 MHz and the lag in phase

angle as frequency increases.
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The most noticeable phase deviations occur in curve (f) in Fig. 10-10. Flattening
and diminution of the phase angle curve near the transition frequency is what contributes
to the missing nulls in the magnitude curve. From previous discussions of the Faraday
response for fiber sensor coils (see Eq. (5-5) and Fig. 5-1), the zero response magnitude
occurs at frequencies where the phase is an integer multiple of -n. For curve (f) in Fig.
10-10, the phase never achieves this value, and thus, the corresponding magnitude in Fig.
10-9 never drops to zero. Also noticeable in the phase curve (f) is the weak modulation
due to the fiber coil leads and the increased phase flattening at the highest frequencies
due to absorption in the methanol.

Many of the mechanisms discussed earlier in this chapter, and illustrated in Fig.
10-9, lead to reduced bandwidths for practical travelling wave fiber current sensors. In
particular, the waveguide and liquid dispersion in the travelling wave transmission cells
and the presence of the non-travelling wave configuration of the fiber coil leads preclude
achieving the near-infinite bandwidth enhancement factors described in Chapter 8 for the
ideal configurations. These limitations are illustrated in Fig. 10-11 where predicted
magnitudes of the bandwidth enhancement factor are plotted for several configurations of
the methanol example model. The diameter of the helical coil is again fixed at 3 cm and
the pitch is varied to allow for a changing d/x, in the plot abscissa. Curve (a) is the BEF
magnitude for the nondispersive, travelling wave sensor; one point on this BEF curve
comes from curve (b) in Fig. 10-9. The BEF magnitude is generated from Eq. (8-10)
with € = 32.6. At d/x, = 1.2, the BEF approaches infinity. If the model now includes
liquid dispersion in the methanol, curve (b) in Fig. 10-11 results. For this curve, the BEF
is generated directly from Eq. (8-9) with AB (travelling wave) extracted from numerical
computations. The peak BEF in curve (b) is limited to ~ 5.04 and occurs at d/x, ~ 1.23.
Although the maximum-achievable bandwidth enhancement is significantly reduced due
to the absorption, the design parameters for the best travelling wave sensor performance

remain essentially the same (peak BEF is approximated by Fig. 8-4). From further
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ratio for travelling wave current sensors using a methanol dielectric. (a) Helical coil
only, & = 32.6; (b) helical coil, liquid dispersion only; (c) helical coil only, € = 14.07;
and (d) helical coil, €4, all effects included.

investigations using the extended models, it appears that the larger the liquid absorption,
the greater the reduction in the maximum BEF. This prediction is not surprising.

Curve (c) in Fig. 10-11 is the BEF magnitude for the travelling wave current
sensor including effects produced by the teflon fiber support tube but neglecting
dispersion in the methanol medium. The BEF curve, computed using Eqg. (8-10), is now
shifted to smaller d/x, values to account for the effective relative permittivity,
€ = 14.07. Because of the nondispersive medium, a BEF approaching infinity occurs

for d/x, » 0.753. Curve (d) is generated for the comprehensive travelling wave model
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including all perturbing effects. The peak BEF magnitude is ~ 6.82 and occurs when
d/x,~ 0.785. Again this maximum BEF, though attenuated, appears at nearly the same
d/x, value as that for the ideal travelling wave sensor. The peak BEF magnitude for
curve (d) is noticeably larger than that for curve (b). This appears to solely depend on
the static value of the g, for the transmission cell dielectric medium; the smaller the
value of €, the greater the degree of phase matching and the larger the maximum-
achievable BEF. The inclusion of lead effects in the model used to generate curve (d) in
Fig. 10-11 reduces the peak BEF by only 3%. This small reduction is obviously due to
the large number of turns (N = 20) used in the model fiber coil. When fewer turns are
used, more pronounced reductions in the maximum BEF are predicted. Also noticeable
in curve (d) is the weak modulation effects produced by the fiber coil leads.

The complete extended models describing the liquid travelling wave current
sensors predict that large bandwidth enhancements are possible for many configurations.
In the previous example for a sensor containing methanol as a dielectric, BEFs greater
than 6.0 were predicted. However, the model predicts that BEFs will always be below
10 for most configurations using methanol. For other liquid dielectrics, larger bandwidth
enhancements may be possible, but for the three test liquids chosen for experimentation,
estimates are that BEFs will remain less than 10. Bandwidth enhancement is very much
dependent on travelling wave sensor design parameters such as transmission cell
geometries, fiber support material and geometry, fiber coil pitch and number of turns,
and fiber coil lead length and configuration. The comprehensive models indicate that
highly precise estimates of the effective reiative permittivity can be made, and that static
values for €. can be used in Eq. (8-12) to find d/x, for maximum performance in the

travelling wave sensor design.
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CHAPTER 11
TRAVELLING WAVE SENSOR MEASUREMENTS

The relative magnitude of the Faraday rotation was measured for several
configurations of the travelling wave fiber current sensors. Relative permittivity was
varied through use of air and liquid dielectrics, and diameter-to-pitch ratio was varied in
the helical fiber coils. Travelling wave cell configurations are discussed in detail in
Chapter 9, and the laboratory experimental instrumentation and hardware are shown in
Figs. 4-1 and 9-1. Measurements with the liquid-filled cells were conducted up to a
frequency that was limited by loss in response signal-to-noise: a combination of the
Faraday rotation high frequency rolloff and the absorption of the transmitted power in
the liquid dielectric. Thus, maximum experimental frequencies were 625 MHz. The
transmitted power through the coaxial test cells was held constant for most of the high
frequency testing so that monitored currents could be related directly to power.
However, as absorption increased it was sometimes necessary to accept the reduced
transmitted power and correct the data for the relative magnitudes. Also, because of the
large impedance mismatches that occurred for some of the travelling wave test cells,
corrections to the estimated conducted currents were attempted. This was only necessary
in a few extreme cases.

For all the experimental sensor configurations, an increase was observed in
response 3 dB bandwidth compared to that for an equivalent planar fiber coil. The
travelling wave fiber sensor concept was proven, and quantitative information was
acquired on sensor parametric effects. Also, the complete extended current sensor
models developed in Chapter 10 predicted quite accurately the magnitude versus
frequency response curves for most of the systems. Trends in the measured responses

were noted for the others.
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Airline Measurements

One configuration of a travelling wave sensor with an air dielectric was tested.
The helical fiber coil parameters were N = 10, d = 3 cm, and d/x, = 1.0. Figure 11-1
shows the Faraday response for that system. Plotted are the measured values of the
relative magnitude, shown as the open circles, and the model predictions, the solid curve.
Scatter in the measured data is approximately 1 dB around the plotted points. The
measured 3 dB bandwidth for the sensor system is ~ 109.5 MHz.

As seen in the Fig. 11-1, agreement is excellent between the experimental and
theoretical values. Below 350 MHz, little deviation is observed; however, at the higher

frequencies some loss in measured response is seen compared to that predicted by the
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Fig. 11-1. The relative magnitude of the Faraday rotation for a coaxial airline travelling
wave fiber current sensor.
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model. This high frequency discrepancy between model and experiment is consistent
throughout all measurements made for the travelling wave sensors, air or liquid cells, and
can only be explained by a deficiency in the model, unaccounted perturbations in the EM
properties of the transmission cells, or a combination of the two. The model predicts
quite accurately the non-zero response minimum near 245 MHz in Fig. 11-1. This
missing null s caused by the fiber leads that enter and exit the coaxial line in a non-
travelling wave configuration. The fiber leads are also configured such that they add an
equivalent half turn to the fiber coil length (see Appendix B for a further explanation),
which reduces the sensor response bandwidth.

Also plotted in Fig. 11-1 is a dashed reference curve for the equivalent planar coil
fiber current sensor. This reference sensor also includes fiber leads in the exact
configuration as those for the travelling wave coil. The measured values for the
travelling sensor show an enhanced high frequency response when compared to that of
the reference sensor. The bandwidth enhancement factor (BEF), determined from the
ratio of interpolated AB values, is approximately 1.19 (AB for the reference sensor is
~103.4 MHz). This is very close to 1.2, the BEF predicted for €, = 1 and d/x, =1 by the
ideal travelling wave theory presented in Chapter 8. Thus, well within experimental
error, the enhanced response of this sensor can be determined from simple theory.

Judging from the predictions shown in Fig. 11-1, the extended models (that
account for fiber lead effects) can be used to identify optimum design parameters for
general configurations of the airline travelling wave fiber sensor. If the fiber coil
parameters N = 10 and d = 3 cm are used in the model and the coil pitch is allowed to
vary, the BEF attains a peak value of ~ 1.37 at d/x, = 0.33. This prediction is essentially
identical to that found from Eq. (8-10) and shown in Fig. 8-3 for the idealized travelling
wave sensors. The mathematical developments leading to Eq. (8-10) neglect the
presence of the fiber leads, both for the planar as well as the travelling wave coil.

Obviously, the lead configuration in a 10 turn airline travelling wave coil has little, if
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any, effect on the relative bandwidth enhancement. However, it is expected that for coils
with fewer turns or for systems with larger high frequency enhancements that lead
interactions may be more significant, producing somewhat reduced BEFs.

Regardless, it is obvious from these predictions and the validating measurements
on the air dielectric travelling wave current sensor that significant increases in sensing
bandwidth cannot be achieved with only the helical fiber structure. Slow-wave
mechanisms for improved phase matching are required. In the present travelling wave

cell design, this entails use of higher relative permittivity dielectrics.

Liquid Cell Measurements

In addition to the three test liquids used as dielectrics in the coaxial transmission
cells, three different fiber coil helical pitches were employed. These were x, = 3.0, 2.0,
and 1.5 cm, which correspond to d/x, values of 1.0, 1.5, and 2.0, respectively, since the
mean coil diameter was held constant at d = 3 cm. The number of fiber turns was 20 for
the coils with d/x, = 1.5 and 2.0, and 14 for the coil with d/x, = 1.0. This difference was
deemed necessary due to the total length of the cell working volume, approximately 46
cm. A 20 turn coil with the largest coil pitch would have been 60 cm in length. In all,
nine different sensing configurations were available for experimentation. Actually a few
additional configurations were explored, involving a varied cell center conductor
diameter. These variations caused cell impedance to differ from S0 Q and produced
deviations in the dielectric effective relative permittivity (see Egs. (10-2) and (10-3)), but
changes in the measured Faraday responseé for the sensors could not be distinguished due
to the relatively large experimental errors (~ 1 dB). For this reason, the responses
presented for the travelling wave current sensors are identified only by test liquid, the
fiber coil d/x,, and the number of coil turns.

A typical response curve showing the relative magnitude of the Faraday rotation

versus frequency is presented in Fig. 11-2 [60]. These data were generated from a
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Fig. 11-2. The experimental and theoretical Faraday response for a liquid travelling
wave fiber current sensor containing a methanol dielectric. The helical coil has 20 turns,
a 3 cm diameter and a diameter-to-pitch ratio of 1.5.

system that used methanol as the cell dielectric and a fiber sensor coil of 20 turns and
d/x, = 1.5. The measured response values (open circles) agree well with the predictions
of the sensor model. Deviations between experiment and theory occur only at the higher
frequencies, in the second response magnitude lobe. Explanations for this discrepancy
are offered in the previous section. Both the measured and predicted response curves
show the missing null near 250 MHz in Fig. 11-2 which is the result of liquid dielectric
dispersion and fiber coil lead effects.

This travelling wave sensor has a 3 dB bandwidth of approximately 103 MHz and
a BEF of ~ 2.2 when compared to the planar sensing coil (dashed response curve in Fig.

11-2). This enhancement is slightly smaller than the BEF of 2.47 predicted by Eq. (8-10)
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for a nondispersive dielectric with the effective relative permittivity of the

- methanol/teflon combination and for a leadless helical coil in the same test configuration.

The difference in these two BEFs, 11%, is approximately the same as that illustrated for
curves (c) and (d) in Fig. 10-11 when d/x, = 1.5.

Using a liquid as the dielectric medium in the travelling wave fiber sensor
systems provides the slow-wave mechanism needed to enhance high frequency Faraday
response. Experimental measurements verified the theoretical predictions that increasing
the liquid relative permittivity progressively increases the sensor bandwidth. This point

is illustrated in Fig. 11-3, where response curves for each of the test liquids are plotted.

1.0 T T | ¥ I !
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1 Water .
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Fig. 11-3. A comparison of the relative Faraday rotation for each of the three test
liquids used with the same helical coil. The plotted points are experimental values, and
the solid curves are model predictions of response. The dashed curve is the response for
an equivalent 20-turn coil with d/x, = oo,
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The same fiber sensing coil, N = 20 and d/x, = 1.5, is used with the three liquids.
Effective relative permittivities (static values) for the liquids increase from 10.35 for the
propanol, to 14.07 for the methanol, to 20.94 for the water. Sensor bandwidths are
approximately 77.4 MHz, 103 MHz, and 159.5 MHz, respectively, for the curves using
the three liquids. The corresponding bandwidth enhancement factors are 1.65, 2.2, and
3.4 when compared to the reference curve bandwidth of 46.9 MHz. In Fig. 11-3, both
measured data (the plotted points) and model-generated responses (the solid curves) are
displayed. For the parameters used in these experimental configurations, the model
predictions are shown to be highly accurate.

The other travelling wave sensor parameter that affects the bandwidth
enhancement factor is the fiber coil diameter-to-pitch ratio. Experimentation on similar
configurations with each test liquid while varying only d/x, showed that increasing the
coil pitch improved sensor phase matching and increased response bandwidth. In Fig.
11-4, a plot of the relative magnitude of the Faraday rotation versus frequency is given
for several methanol liquid cell configurations. Both experimental values and model-
generated curves are again plotted for the Faraday response, except for d/x, = 1.0, which
is represented only by a modeling prediction. As discussed earlier, the fiber coil with
d/x, = 1.0 had only 14 turns, while the other coils had 20 turns. Since the comprehensive
model predictions for the travelling wave fiber current sensors agree quite well with the
measured values, liberty was taken to generate the extra curve for the larger coil pitch
and appropriately complete the illustrated comparisons. In Fig. 11-4, as d/x, decreases
(x, increasing), the BEF increases. Values of approximately 1.6 (with AB =~ 75.3 MHz),
2.2 (AB = 103.5 MHz), and 3.9 (AB =~ 183.3 MHz) are attained for d/x, = 2.0, 1.5 and
1.0, respectively. As illustrated previously in Fig. 10-11 for a similar methanol-filled
sensor cell, the BEF grows nonlinearly with decreasing d/x,. When d/x, =1.0, the sensor
system parameters are very close to meeting the travelling wave condition for maximum

phase matching.
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Fig. 11-4. The relative magnitude of the Faraday rotation for a travelling wave current
sensor with a 20-turn helical coil in a methanol-filled transmission cell. The diameter-to-
pitch ratio is varied to show the correlation with response bandwidth.

The largest bandwidth enhancement achieved during experimentation with the
liquid travelling wave sensors was approximately 4.1 for a water-filled test cell using a
fiber coil with 14 turns and d/x, = 1.0 [60]. Figure 11-5 shows the Faraday response
curve for this sensor. The measured sensor bandwidth is ~ 300 MHz, which is the
largest for any multiturn fiber current sensor reported to date. An estimate of the system
sensitivity-bandwidth product (SBP) for this wideband sensor is 1.85 x 10-# rad/A-s or
1.06 MHz-°/A. This SBP, though much larger than any for a fiber current sensor, is
approximately seven times smaller than reported for a bulk optic current sensor using
Ga:YIG as the Faraday rotator material [30]. In Fig. 11-5, the rolloff in the response for

frequencies above the 3 dB point is quite dramatic, but significant response S/N is seen
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for frequencies as high as 400 MHz. For some current monitoring applications, this
sensor could be used to these higher frequencies.

At the low frequencies in Fig. 11-5, below 200 MHz, the measured values (open
circles) agree well with the model predictions (solid curve). Above 200 MHz, however,
the experimental and theoretical values deviate significantly. Here, the quantitative
ability of the comprehensive travelling wave model to predict sensor responses breaks
down. It is postulated that the electromagnetic properties of the transmission cells are
not adequately described in the model since contributions that do not adhere to the

quasi-TEM assumption are ignored. The source of such contributions could be large cell
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Fig. 11-5. The measured and modeled responses for a travelling wave fiber current
sensor using a coil with N = 14, d = 3 cm, and d/x, = 1.0 inside a cell containing water.
The measured bandwidth for this configuration is approximately 300 MHz, the largest
for any of the experimental systems.
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reflections, cell multimoding by nonazimuthally-symmetric modes, or a combination of
these and other high frequency effects.

In spite of these discrepancies, qualitative trends are observed in the measured
response values that are predicted by the model. One of these is the abrupt rolloff of the
curves. For the model-generated response, this occurs between 300 and 500 MHz, with
magnitudes dropping from approximately 0.95 to near 0.05. A probable explanation for
this fast rolloff lies in the rapid increase of the effective relative permittivity for the TM,;,
mode in the water transmission cell. From Fig. 10-7, the value of €, increases from
~ 23 at 200 MHz to ~ 40 at 500 MHz; thus, at the higher frequencies, the magnetic wave
is travelling much slower. For frequencies below ~ 150 MHz, the wave phase velocity is
essentially constant and the Faraday response curve will behave normally with a given
travelling wave enhancement. But as €, increases rapidly above 200 MHz, the phase
matching is also modified, first increasing slightly, then decreasing significantly as the
light in the fiber now begins to outrun the progressively slowing magnetic wave. The
travelling wave condition for this water cell configuration should occur when g, ~ 23.5
according to Eq. (8-12). Thus, at approximately 220 MHz, the phase matching predicted
by the model is greatest, and the travelling wave enhancement peaks. As the frequency
increases beyond 220 MHz, the enhancement decreases and the response curve quickly
drops. At 500 MHz, predictions indicate that travelling wave enhancement has been
reduced by nearly a factor of three from its peak value.

The experimentally determined values in Fig. 11-5 show a rapid rolloff at much
lower frequencies than predicted by the model. This decreased response at a lower
frequency could be caused by the changing wave impedance of the TM,; mode in the
transmission line. As seen in Fig. 10-8, the wave impedance for the water-filled cells
increases significantly, and rapidly, above 150 MHz. Thus, the propagating wave
becomes less quasi-TEM with a larger field component along the positive axial direction

of the cell. This should produce an enhanced phase matching between the magnetic
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wave and the light in the fiber at lower frequencies than predicted by the model (the
model does not address the "non-quasi TEM" conditions of the EM wave). A resultant
loss in travelling wave enhancement then occurs at somewhat lower frequencies due to
the combination of the rapidly increasing €., and . The experimental values in Fig. 11-
5 appear to confirm this hypothesis, with essentially flat frequency response below 150
MHz, and rapid decrease above that frequency.

Also seen in Fig. 11-5 is the weak modulation created by the fiber coil lead
effects. This modulation is apparent in both the measured and model-generated curves.
The depth of modulation is slightly larger for this sensing configuration, primarily due to
lead effects having a greater impact on coils with smaller numbers of turns. The largest
response perturbations caused by lead effects have also been observed when liquid
absorption is minimum and when travelling wave enhancements are near maximum.
Both of these conditions apply to this water dielectric current sensor configuration.

The largest sensor bandwidths measured for the propanol and methanol-filled
travelling wave cells also occurred for the fiber coils with N = 14 and d/x, = 1.0. The
experimental 3 dB bandwidths for these sensors were approximately 137 MHz and 221
MHz for propanol and methanol liquid dielectrics, respectively. Corresponding BEFs are
2.1 and 3.3 for the given configuration. Figure 11-6 is a plot of the Faraday response
curves for the widest bandwidth current sensors using each of the three test liquids. As
expected, the bandwidth becomes progressively larger as the liquid relative permittivity
increases. But at the higher frequencies, the curve for the water-filled cell has a faster
response rolloff and crosses the curve for the methanol cell. This indicates that a
travelling wave current sensor using methanol as the dielectric medium may be more
useful at the higher frequencies, since the S/N remains quite large to well beyond 500
MHz.

In Fig. 11-6 only the measured values for the three liquid dielectric cells are

plotted. For these wide bandwidth sensors, the discrepancies between the measured
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Fig. 11-6. 'The measured relative magnitude of the Faraday rotation for the largest
bandwidth travelling wave sensors using each of the three test liquids. The common coil
configuration had N = 14, d = 3 cm, and d/x, = 1.0.

Faraday responses and the model predictions are noticeable, as seen in Fig. 11-5. It is
observed that for sensor configurations with low values of the BEF, the comprehensive
travelling wave model predicts quite accurately most features of the response magnitude
(as seen in Fig. 11-2); however, for configurations with larger BEFs, the model
predictions consistently show a greater relative magnitude at the higher frequencies than
the measured values. This occurred for all the liquid cell configurations when d/x, = 1.0
and N = 14, Although, the theory-experiment discrepancy is much less for the propanol-
filled sensor cell (approximately 6.5% at the 3 dB point in the response curve) and the
methanol-filled cell (approximately 11%) than for the water-filled cell. These

discrepancies become slightly greater at the higher frequencies.
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Phase Considerations

Throughout experimentation with the travelling wave fiber current sensors, only
response magnitudes were measured. A phase delay measurement is much more difficult
to make than a magnitude measurement, and none was attempted as part of this study.
However, this characteristic of the sensor systems is needed to provide the complete
transfer function for the Faraday interaction. It is hoped that measurements of the
Faraday response magnitude presented here along with the well-developed models to
predict sensor behavior is adequate to fully describe the wideband transient response.
For most of the liquid-cell experimental sensor configurations, the comprehensive
travelling wave model was quite accurate in its predictions of the magnitude; it is
reasonable to expect that phase delays can be predicted equally as well. Thus, during
travelling wave current sensor design, the models presented in Chapter 10 should be
useful in describing both Faraday rotation magnitude and phase. Time domain response

measurements should follow to finalize and verify sensor characteristics.
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CHAPTER 12
OTHER TRAVELLING WAVE CONFIGURATIONS

The liquid travelling wave configurations show enhancements in the bandwidth
of Faraday effect fiber current sensors, all without a loss in the sensitivity. Significant
increases in sensor bandwidth and sensitivity-bandwidth product have been
demonstrated. However, estimates of the maximum BEFs using models of the liquid
transmission line sensing structure are limited to less than 10. Further increases in
current sensor bandwidth and sensitivity might be possible, but significant deviations
from the existing travelling wave structures will most likely be required. In this chapter,
several innovative schemes that utilize travelling wave current sensing configurations are
discussed. Predictions of the potential response, bandwidths and high frequency
characteristics, are made where appropriate.

In the liquid travelling wave sensors, dielectric dispersion is the major bandwidth-
limiting factor, while the need to support the fiber helix in the liquid leads to a
waveguide dispersion that can also affect higher frequency response. One way of
eliminating these factors is to use a solid dielectric as the propagation medium in the
slow-wave structure. A very low-loss material at microwave frequencies can be
identified so that dielectric dispersion is minimized, and the dielectric alone should be
capable of supporting the fiber coil without use of other interfering materials. As part of
this study, a travelling wave structure using a ceramic dielectric was designed, and its
electromagnetic properties were characteriied.

Another disadvantage of the liquid (and air) travelling wave current sensors is
size. The liquid test cells were quite large, 6.35 cm diameter and 53.8 cm length, in
order to accommodate the 20 turn fiber helical coils. Such large size is tolerable for
laboratory development, but practical systems need to be much smaller. Reductions in

device size can be accomplished in three ways: (1) using dielectric materials with
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extremely large relative permittivities, so that x,, is minimized for a given bandwidth; (2)
decreasing the fiber coil diameter so high-sensitivity coils with many turns are still short;
and (3) developing optical fibers with larger Verdet constant materials so high sensitivity
is achieved with fewer coil turns. All of these methods have limitations, some of them
severe, due to present technology.

Thus, constructing usable travelling wave current sensors will require new
technological developments and possibly new materials in new configurations. Fiber
coils have been utilized exclusively because of their ease of use, but they may have to
give way to other optical waveguide structures. Or the coaxial transmission line with
helical light guide must be abandoned altogether. New configurations are postulated here
in hopes of stimulating further development of wideband optical current sensors. In
addition to the ceramic dielectric transmission line structure, devices that use helical
optical waveguides, planar integrated waveguides, and bulk optical materials are
discussed. Travelling wave configurations include the use of helical conductor paths as
well as looping optical paths. For the sake of completeness, travelling wave designs that
utilize combinations of the fiber sensing techniques discussed in the earlier chapters are
covered here. The theoretical framework derived for those techniques provides an

excellent means for predicting high frequency response, even in non-fiber systems.

Ceramic Dielectric Travelling Wave Sensor

A solid material with a large relative permittivity that is suitable for use in a
transmission cell is difficult to find. Typically, polyethylene or teflon is used in coaxial
cables because of their flexibility and good microwave characteristics; but they have
relative permittivities of less than 2.5. Higher € materials are generally limited to the
high-alumina content ceramics and the titanates (barium, strontium, calcium, magnesium
and lead) [67]. These materials have very good microwave characteristics, but lack

much of the fabrication flexibility afforded by the polyethylene or teflon. -With these
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properties in mind, a diamonite high alumina (95%) ceramic with a static relative
permittivity of 9.6 was chosen as the candidate material for a solid dielectric travelling
wave structure. This ceramic does exhibit some dielectric dispersion, as €, drops t0 9.36
at 10 GHz.

The fabricated coaxial transmission cell with ceramic dielectric is shown in the
cross- sectional composite view of Fig. 12-1 [34]. The test cell working volume consists
of five ceramic pieces; each were cast and fired separately. The core component is a tube
6 cm long with a 1.3 mm inner diameter and 6 mm outer diameter. Along the outer
surface of the tube a 10-turn helical groove is machined approximately 0.75 mm deep.
Mating ceramic parts were fabricated so the entire dielectric structure filled the coaxial
cell working volume: 10 cm long and 1.59 cm in diameter.

The ceramic pieces were designed to double as an annealing fixture for the 10-
turn singlemode fiber coil. Fiber annealing is necessary on this sensor in order to

remove the large linear birefringence produced by the small radius turns [21]. Initially,
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Fig. 12-1. A composite drawing of a travelling wave sensor transmission cell with a
ceramic dielectric.

169

B AL < M AN PR B~y 7 s O BPGIS ~ A RPy SELws 1< . - P LT TR A L X0 I ool S T Ly e O O ) et 5 A Wl A AN SRR 7 ) A RS SR R



the fiber is wound into the groove of the tube with ample lengths of excess fiber for
leads. The remaining ceramic pieces are assembled around the fiber, the transmission
line's brass center conductor is passed through the ceramic parts, and the whole structure
is taken to a high temperature (~ 850 °C) to perform the annealing process [22]. After
annealing, the outer conductive shield of the transmission cell is assembled around the
dielectric containing the fiber coil. Cutaway and disassembled views of the travelling
wave transmission cell (less the optical fiber) are shown in the photographs of Fig. 12-2.

Annealing of the helical fiber coil, final assembly of the sensor, and measurement
of the Faraday response have yet to be conducted. To date, fiber annealing has only
occurred for coils in a planar configuration [22]. Extending this technology to other coil
shapes is still a challenge, but likely one with a workable solution. In the annealing
process, the singlemode optical fiber with its buffer coating is place in the annealing
fixture. Pretreatment of the fiber by soaking in solvent, typically acetone or methylene
chloride, allows the buffer to evaporate at a relatively low temperature in the annealing
cycle (300 to 400 °C), leaving the bare glass fiber to be annealed [22]. Ideally, a soft
ceramic such as Macor™ is used to prevent scratching and fracturing of the fiber. The
diamonite ceramic used in the travelling wave sensor design is much harder than
Macor™, but it also has a significantly larger relative permittivity. One challenge is to
determine if the fiber coil will survive the annealing cycle. A second challenge is to
apply a protective coating on the fiber while it remains in the ceramic fixture.
Backfilling with a thinned polyurethane or silicone elastomer should provide a soft coat
for the fiber.

In the absence of finished hardware and measured responses, the utility of the
ceramic-filled travelling wave current sensor can only be evaluated from cell
electromagnetic characterization and modeled Faraday responses. Based on cell
geometries and the relative permittivity of the ceramic dielectric, the higher order mode

cutoff frequency for the transmission line is 3.6 GHz. The impedance of the cell was
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characterized for frequencies below 5 GHz. A plot of the impedance magnitude is
presented in Fig. 12-3. Oscillations in the impedance are created by reflections at the
transition points into the cell dielectric volume. These cause the cell impedance to vary
between ~ 20  and ~ 120 € for the frequencies below 5 GHz. If the frequency range is
limited to 2.5 GHz, a likely cutoff in the Faraday response characterization, impedance
deviations about 50 Q are bound within 1.3 dB. Also, below 2.5 GHz the test cell has a
very impressive SWR of 1.4.

The predicted Faraday response for this travelling wave sensor is shown in Fig.

12-4. Plotted are model-generated curves for both the magnitude and the phase. The
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Fig. 12-3. The measured impedance magnitude of the ceramic dielectric transmission
cell for frequencies below 5 GHz. The cell HOM cutoff frequency is 3.6 GHz.
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Fig. 12-4. The predicted frequency dependent magnitude (top) and phase (bottom) of
the Faraday rotation for a travelling wave current sensor using a ceramic dielectric and an

annealed helical fiber coil. The solid curve includes some dielectric dispersion; the
dashed curve is for a system with no dielectric dispersion.
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solid curves are determined using a model that includes a small amount of dielectric loss
in the ceramic. These losses are based on a Debye molecular reorientation model much

like the liquid dispersion treated earlier [71]. Typical effects in the Faraday response
| result from the dielectric dispersion: some loss of bandwidth in the main response lobe,
the missing null in the response magnitude, and the lack of maximum phase deviation at
the frequency where zero magnitude usually occurs. The fiber coil leads have essentially
no affect on the travelling wave sensor response because of their designed configuration.
Leads enter and exit the coil from the same direction making the transition to the helical
shape over a minimal distance and with a radius of approximately one-half that of the
coil. It is intended that the fiber annealing process will adequately remove any linear
birefringence in this lead transition region.

The projected sensor bandwidth is approximately 1.45 GHz, with a corresponding
bandwidth enhancement factor of 2.8. It appears from Fig. 12-4 that response S/N is
large enough at 2.5 GHz that measurements are possible up to this frequency (over the
frequency range where the cell has a very good SWR). Estimated value for the
sensitivity-bandwidth product for this travelling wave device is 3.85 MHz-/A, more than
three times larger than that of the water-filled travelling wave current sensor. However,
this SBP remains a factor of two below that measured for the bulk optic Faraday effect

current sensor [30].

Combination Fiber Sensors

It is possible to use the helical fiber coil concept with the noncentered or
noncircular, planar fiber coil concept to form a new travelling wave fiber current sensor
configuration. The combination allows all of the separately-observed bandwidth and
high frequency enhancements for these coil configurations to be utilized in a single
sensor. The frequency dependent Faraday response for this combination is found directly

from Eq. (3-7). In Chapter 3, two simplifying routes were developed, which led to the
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travelling wave coil configurations or the noncentered/noncircular coil configurations.
Here no simplifications are made. To illustrate the combination sensor approach, a
mathematical model is briefly outlined for a travelling wave fiber coil with a displaced
(noncentered) conductor within the coil cross section.

The function [(1/r) cos(¥)] in Eq. (3-7) describes the deviation in the Faraday
interaction due to the nonconcentric axes of the current-carrying conductor and the fiber
coil. Equation (6-3) for this function is valid for the combination sensor, but with R now
representing the mean radial distance from the helical coil axis to any perpendicular point

on the fiber, and the time dependence of the angle o. now given by

c

oft) = nR AL

t, (12-1)

where AL is defined by Eq. (8-11). Also, the reference angle in Eq. (6-3) is now
expressed by o, = cty/(nRAL). The phase factor in Eq. (3-7) is modified according to
the developments in Chapter 8, leading to the form given in Eq. (8-4). Then an integral

expression for the noncentered, travelling wave fiber current sensor is

1
. JE
-jot|1-
O(w) = O, 1 = (:(%{) ostoree) e m‘/(%°)2 "/ dat ,
T 1+ (X%{) - Z(X%) cos(o+0g)
’ ' (12-2)

where T is now the total transit time of light propagation through the helical fiber coil

given by

T = 2nRN(%)AL . (12-3)
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The solution to Eq. (12-2) proceeds as followed in Chapter 6 using long division
decomposition of the first bracketed factor in the integral. The resulting series is
integrated term by term and then simplified to yield an expression similar to Eq. (6-14).

The frequency dependent Faraday response for the combination sensor is

. . oo m 271
) = O, l:smc(lg):' eIG 2_0(-1)2“‘5(%) [1 - (mlg") } . (124

where { is given in Eq. (8-5b) for the travelling wave configurations and § is the fraction
of the single loop propagation delay taken from Eq. (6-11). Both of these variables are
functions of 7 as given by Eq. (12-3).

The Faraday response predicted by Eq. (12-4) is simply that determined by Eq.
(6-14) for a noncentered, planar coil expanded in the frequency domain to account for
the travelling wave interaction. Figure 12-5 shows the predicted response for a two-turn,
travelling wave sensor coil with d = 3 cm, d/x, = 1.0, and & = 0.5 and with the conductor
fully displaced in the coil cross section, X, = R. The fiber coil is treated as leadless. The
displaced conductor creates a response resonance where initially the second null occurs
in the centered-coil travelling wave response. This response is identical to the resonant
behavior observed for the noncentered, planar coil predictions. The travelling wave
characteristics of the sensor coil produce a large bandwidth enhancement (compare the
dotted and dashed curves in Fig. 12-5.), and a smaller, but notable, enhancement is
created by the nonconcentric axes (dashed and solid curves). From Table 6-1, the BEF
of the solid curve should be 5.8% larger. And as discussed in Chapter 6, the small
enhancement due to the noncentered coil decreases as the number of fiber turns in the
coil increases.

It is obvious from Fig. 12-5 that combining coil manipulation schemes with the

travelling wave concept can enhance the high frequency response of the fiber current
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Fig. 12-5.

The predicted relative magnitude of the Faraday rotation for a two-turn

travelling wave fiber sensor with the current conductor fully displaced in the coil cross
section. The dotted curve is the reference response for a centered, planar coil.

SEnsors.

Other combinations of sensing concepts are certainly possible, and

mathematical expressions to predict their Faraday response can be developed using the
existing theories.

Non-Fiber Configurations

Several travelling wave current sensor configurations that utilize bulk optics or
planar waveguides have been formulated. Three of these are discussed here to show

options to the helical fiber travelling wave design. Some quantitative information is
provided, but most of the discussion is conceptual.
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1. Helical Waveguide Sensor

The ceramic dielectric travelling wave current sensor, with an annealed helical
coil, offers significant reduction in size and large improvement in the sensitivity-
bandwidth product compared to the liquid travelling wave configuration, but absolute
Faraday sensitivity still suffers. The only mechanism for improving the static response is
to add fiber turns. However, this will increase the length of the transmission cell as
further reductions in coil diameter (even using the annealing process) do not appear
feasible. A planar waveguide structure fabricated on the surface of a cylindrical substrate
could provide the optical propagation medium. Envisioned is a singlemode rib
waveguide etched on the surface of a glass or crystal which has a high Verdet constant.
Singlemode waveguides are typically a few micrometers in dimension, and such
structures have not been demonstrated on other than flat surfaces. A real challenge exists
in fabricating such a waveguide, especially in a helical layout. Significant reductions in
waveguide helix diameter are possible with this concept.

The terbium-doped borosilicate glass, FR-5, has a Verdet constant that is
approximately 20 times larger than that of a silica fiber (see Table 2-1) [39,40]. A
waveguide fabricated from this material would significantly improve the Faraday
sensitivity of a current sensor. FR-S glass has a relatively high loss per unit length for a
waveguide medium [25], but the total attenuation should be small since the proposed
light transit distance is short. If a travelling wave light path is created with a mean
diameter of 2 mm, 10 turns and d/x, = 1.0, the sensor bandwidth is predicted to be
~2 GHz. The projected sensitivity-bandwidth product is approximately 106 MHz-°/A.
These computations assume a laser wavelength of 633 nm, so that n = 1.684 for the FR-5
glass [40], and that the glass medium is the sole dielectric in the coaxial line. An
estimate of the relative permittivity of the FR-5 is 5.0 in the 1 MHz to 1 GHz frequency
range based on handbook values for similar glasses [76]. If only a thin cylinder of the

FR-5 substrate is used along with a higher € ceramic as the remaining dielectric, the
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bandwidth can be enhanced even further. Assuming g, = 9.0 for the slow-wave
structure, the sensor will have a AB = 2.6 GHz and a SBP = 137.5 MHz-°/A. The
waveguide will only be 2 cm long, and the entire device package should not exceed one
inch long by half inch in diameter, excluding the RF connectors and the supporting
optoelectronics needed for light production and detection.

The challenge of mating miniature lenses, polarizers and optical fiber to the
waveguide structure is not addressed here, however, these technologies are becoming
quite advanced and should not be a limiting factor. If the complete sensing system can
be fabricated and assembled, it would provide milliampere current detection at greater
than 100 MHz bandwidth. These figures rival or surpass conventional electrical current
monitors [4], with the added advantages afforded by the noninterfering optical

techniques.

2. Bulk Optic Sensor

Another prospective travelling wave current sensing technique utilizes a bulk
optic Faraday rotator material and reverses the optical and current-carrying paths in the
structure. The current passes through a wire solenoid wound around a cylinder of the
optical material. Figure 12-6 shows a schematic drawing of the sensor. The magnetic
field inside the solenoid is axial and scales linearly with both the current and the number
of wire turns. The light is injected along the cylindrical axis of the Faraday material and
is codirectional with the magnetic field. Sensitivity of this device can be controlled by
varying the wire turns and the choice of optical materials. In this scheme the propagating
light will outpace the magnetic field since it travels a shorter path. Bandwidth will
depend on phasing between these two signals.

This technique should produce small, yet responsive, current monitors when
implemented. As an example, FR-5 glass is selected as the Faraday rotator material and

cast in a cylinder 2 mm in diameter and 2 cm long. Forty turns of wire (30 or 32 gauge
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Fig. 12-6. A wideband bulk optic current sensor with a helical wire coil used to
generate an axial magnetic field inside a cylindrical piece of Faraday rotator material.

should be small enough, yet capable of handling sufficient current) is wrapped in a
helical solenoid around the glass. Because of the helix pitch, 0.5 mm, the magnetic field
phase velocity along the solenoid axis is approximately an order of magnitude smaller
than that of the propagating light. Consequently, the system 3 dB bandwidth should be
limited to approximately 250 MHz. The measurement sensitivity of this device,
however, is quite high, with an estimated noise equivalent current at full bandwidth of
0.75 A and a projected sensitivity-bandwidth product of approximately 51 MHz-°/A.

One design difficulty with the wire solenoid is its large reactance at the higher
frequencies. Near the sensor 3 dB bandwidth, the inductive reactance exceeds 500 €2

which can limit signal current propagation. By adding distributed capacitance through
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use of a transmission line ground plane, this effect is countered [77]. The coaxial line
structure shown in Fig. 12-6 is such an implementation. The device characteristic
impedance can be returned to 50 © by maintaining a spacing of a few mils (~ 0.2 mm)
between the solenoid and the outer coaxial conductor. By choosing a thin electrical
insulating material such as mylar for the spacer, the relative permittivity is closely
matched with that of the FR-5 glass, and the electromagnetic properties of the

transmission line are optimized.

3. Planar Waveguide Sensor

A third travelling wave sensor configuration incorporates a serpentine singlemode
planar waveguide in the dielectric substrate of an RF stripline. This structure is shown in
the schematic of Fig. 12-7. The waveguide is perpendicular as it passes under the RF
trace, and the propagating light interacts N times with the magnetic field.  Each
interaction is over a very short distance so the Faraday response behaves much like that
for the delta function interaction described in Chapter 7. Only with this current sensor,
the sign of Bedl changes with each consecutive pass by the conductor. A combination of
previously developed techniques and models can be used to predict responses.

The frequency dependent Faraday rotation is determined by introducing the
travelling wave phase factor, exp[-jot(1 - Viign/v,,)] into Eq. (7-4) and accounting for the
counter-rotating interactions using (-1)m in the series. The resulting delta function

response has the form

N‘—l -‘m% 1- g’
Os@ = 0y = 3 (DTe 2 e (12-5)
N =
m=0
with
n
Tl = ELI N (12—6)
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Fig. 12-7. A planar waveguide travelling wave optical current sensor. The waveguide
follows a serpentine path that makes several passes by the stripline conductor.
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where Xo/s is the distance along the stripline between waveguide interactions, and L1/, is
the light propagation distance between interactions. In Eq. (12-5) any arbitrary phase
delays between the light and the magnetic field have been ignored.

The response predicted by Eq. (12-5) is unique in that it depends on N being even
or odd and the degree of travelling wave phase matching. At the low frequencies, ® —

0, the relative response is

0:(0) ) N-1 0 if N1is even
_g -+ 3 D™ = . (12-8)
0 m=0 % ifNis odd

The maximum relative response, ©,, is not attained at the low frequencies (unless N = 1)
since every second pass of the light by the conductor negates the response of the previous

pass. Maximum response will involve all N interactions and is given by

© =NVBZ¢ , (12-9)

where £ is the short interaction length between the light and the field as the waveguide
passes near the RF conductor.

Equation (12-8) also describes the Faraday response for perfect phase matching
between the two propagating signals. When the travelling wave condition is met, ¢' = 1,
and the phase factor in Eq. (12-5) is again equal to one. Thus, under ideal travelling

wave conditions and with N odd, the response magnitude is 1/N for all frequencies. This
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implies that optimum sensors with near perfect phase matching only require that N = 1.
For less than perfect phase matching, the sensor Faraday response exhibits
resonances, as seen previously for the delta function interactions. In Fig. 12-8 the
response relative magnitude is plotted versus the normalized frequency, ®Ti/5, for a
waveguide device making three passes by the conductor. The use of the normalized
frequency for the plot abscissa removes structure dimensions from the computations and
presents the response in a form consistent with those in Chapter 7. The degree of phase

matching is quite important in determining the frequency responses shown in Fig. 12-8.

l@(co) /0.

l
21 3

Normalized Frequency, ¥7i/o

Fig. 12-8. The predicted relative magnitude of the Faraday rotation for the planar
waveguide travelling wave current sensor. The waveguide makes three passes under the
RF trace. Three phase matching conditions are shown: none (¢' = 0), intermediate
(¢' = 0.5) and perfect (¢'= 1).
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Resonance maxima occur when

%El-(l -¢)=0Qm + )Y, m’ ' =0,1,2,... . (12-10)

The frequency dependence of the maxima on N is removed since the transit time 7, is
used. But the number of nulls occurring between the response peaks is N - 1. For
frequencies below the first maxima, there are 2(N - 1) nulls if N is odd and N/2 nulls
(including the one at zero frequency) if N is even. Also, the bandwidth of the high
frequency resonances is determined by the total transit time T = N (%1/9). If the number
of waveguide passes under the stripline gets quite large, N — o, the response becomes
concentrated at frequencies near resonance, approaching zero relative magnitude between
the maxima.

One of the advantages of this planar waveguide current sensor is its large
narrowband, high frequency response. By tailoring the device parameters, these high
frequency bands can be utilized. (As discussed in Chapter 7, the resonant response does
not continue to infinity but is bound by an enveloping function that depends only on the
interaction length £.) As an example, the characteristics of a practical waveguide sensor
are estimated. The example device uses a substrate material 0.5 mm thick with a relative
permittivity of 5.0. The singlemode waveguide has a refractive index of 1.68 (FR-5
glass) and makes five passes by the conductor, every 1 cm along the light path and every
2.5 mm along the current path (¥*o/L, = 0.25). The 50 Q stripline has a trace width of
~ 1.7 mm. An estimate of the magnetic flux density along the light path at each
interaction point is B = 0.0025 T/A, which produces a peak Faraday rotation of ©, =
0.087 °/A. The static rotation is 1/5 this value or 0.017 °/A. Frequency parameters are
quite impressive: the first null in the response curve occurs at 2.68 GHz, the first

resonance maximum with relative magnitude of one occurs at 13.4 GHz, and the

185

s o



resonance response bandwidth is 2.37 GHz. The bandwidth of the lowest frequency
response lobe is approximately 1.2 GHz. As a comparative measure, the SBP for this
device is only 20.4 MHz-°/A at low frequencies, but has an SBP of 204 MHz-°/A, or ten

times larger, in the resonance frequency band.
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CHAPTER 13
CONCLUSIONS

A thorough investigation has been made of the high frequency response of planar
and travelling wave Faraday effect- optical fiber current sensors. Several models have
been developed that provide excellent response predictions for fiber coils in a variety of
sensor configurations. Measurements of the magnitude of the high frequency response
for the sensors verify many of the model predictions. Thus, some unique Faraday effect
current sensors have been demonstrated and reported for the first time as a result of this
study.

Three basic configurations of planar coil fiber current sensors were explored:
circular cross section coils with coincident coil and conductor axes; circular coils with
the conductor displaced from the coil axis; and noncircular and highly elongated coils
with the conductor centered or fully displaced in the coil cross section. Travelling wave
current sensors were also explored. They consisted of helical fiber coils with constant
diameter immersed in the dielectric of a coaxial transmission line. Both air and liquid
dielectrics were used in these transmission lines. Both groups of current sensors, planar
and travelling wave, required the development of coaxial transmission test cells [34] to
properly characterize the fiber coils at high frequencies (up to 1 GHz).

Planar fiber current sensors with a circular coil cross section and concentric
coil/conductor axes have an easily predictable high frequency response determined by
light transit time in the fiber. Many measurements were made with coils of varying radii
and numbers of turns to demonstrate this concept. All tests extended in frequency
beyond the cutoff frequency of the sensors and, in some cases, covered several of the
higher frequency response lobes. Of particular interest in this sensor category were
measurements using a 20 turn, 6.4 mm diameter coil which had been annealed to remove

bend-induced linear birefringence [21,22]. This sensor has a bandwidth of 229 MHz and
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a sensitivity-bandwidth product estimated at 0.8 MHz-°/A. The measurements on this
sensor verified that the annealing process can successfully be used to manufacture small
radii coils with improved sensitivity-bandwidth products and without the detrimental
birefringence effects.

Important in the correct modeling of the frequency dependence of fiber current
sensors are the effects of leads. They add to the total length of fiber that the light must
traverse and can result in reduced detection bandwidths. In some configurations, the
fiber leads add an effective half turn to the coil length, which significantly alters high
frequency response, especially for coils with small numbers of turns.

Noncentered and noncircular planar coils used as fiber sensors exhibit resonances
in their high frequency response. Resonance magnitudes are dependent on the
displacement distance between the coil and conductor axes and the eccentricity of the
coil cross section. Spacing of the resonance frequencies depends on the length of fiber in
a single coil turn. This type of response at the higher frequencies is compared to similar
responses that occur in tapped and recirculating fiber delay line devices [64,65]. To aid
in the characterization of the high frequency Faraday rotation for a coil with a highly
elongated cross section and the conductor at maximum displacement, a delta function
model was introduced. This model is based on a point interaction between the magnetic
field and the light, and it provides an excellent theoretical framework for building
frequency response functions for sensors that exhibit bounded resonant behavior. A
rectangular cross section coil model was used to predict the frequency response for
sensors with arbitrary coil cross section and with arbitrary placement of the conductor
within the coil. A connection between the noncentered, circular coil and the highly
elongated coil was provided by the rectangular coil model as it allowed for varying
eccentricity of the cross section. One additionally interesting feature is that resonant
responses at high frequencies occur for fiber current sensors with the conductor outside

the coil cross section, even when such response is prohibited at the low frequencies as
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described by Ampere's law.

Single-turn and few-turn planar fiber coils exhibit sensor 3 dB bandwidths that
are significantly affected by coil configuration. The maximum bandwidth for these
sensors is realized for a highly elongated, one-turn coil (a delta function interaction);
ideally the bandwidth approaches infinity. Light entry point into the single-turn, circular
coil can create a factor of two difference in response bandwidth when the conductor is
fully displaced in the coil cross section. If light enters away from the radial conductor
offset, a large (~ 50%) bandwidth increase is observed compared to the centered coil; if
light enters nearest the conductor, a significant loss (~ 29%) in bandwidth occurs.
Bandwidth increases in single or few-turn coils are further enhanced by increasing the
eccentricity of the coil cross section. Using the delta function response model, a two-turn
coil will exhibit a 13% increase in bandwidth. These bandwidth deviations become less
significant as the number of coil turns increases, regardless of the coil configuration. For
multiturn coils with N 2 10, all fiber sensor bandwidths converge to that of the simple
circular, centered coil, Eq. (5-7). This simplifies current sensor coil design, especially
for those applications where the frequency range of interest lies below the main lobe
3 dB bandwidth.

The travelling wave configurations show that increases in bandwidth are possible
for fiber current sensors without a loss in detection sensitivity. By distributing the fiber
coil and slowing the propagation of the magnetic wave, improved phase matching occurs.
Bandwidth enhancement is a function of the helical coil diameter-to-pitch ratio and the
relative permittivity of the transmission line dielectric. Under ideal conditions, a
configuration exists where, theoretically, a near-infinite bandwidth could occur.
Realistically, such a large bandwidth is not possible, but enhancement factors of
approximately 10 (compared to an equivalent planar coil) appear achievable.

Transmission test cells filled with liquid provided the slow-wave structures for

travelling wave sensor experimental measurements. Liquids were chosen as coaxial line
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dielectrics because they have large relative permittivities and can easily fill the volume of
the cell around the fiber sensor. However, liquids also exhibit significant dielectric
dispersion at the higher frequencies [71] and require other structures to support the fiber
coil within the cell. These properties can severely limit the system bandwidth. Extended
mathematical models of the travelling wave current sensor have been developed that
account for many of the properties of the transmission cell structures [75]. In addition to
liquid dispersion, the models include waveguide dispersion of the lowest-order TM mode
in the transmission line, an effective relative permittivity due to the teflon support
structures, and effects from excess lead length used in a non-travelling configuration.
The models only consider a single EM mode in the coaxial line and assume that mode
has quasi-TEM characteristics. In most cases the extended models showed excellent
agreement with the experimental results.

Three liquids — 1-propanol, methanol and water — were used in the test cells.
Their progressively larger relative permittivities — 20.1, 32.6, and 78.5, respectively at
25°C — created sensor systems with increasingly larger bandwidth for a given helical
coil structure. Comparative tests with a helical coil in a coaxial airline indicated that
merely distributing the coil provides minimal bandwidth enhancement (maximum of
1.37); slow-wave mechanisms are needed for further phase matching. The largest
bandwidth recorded during experimentation was approximately 300 MHz for a water-
filled cell and a 14-turn helical fiber coil with 3 cm diameter and 3 cm pitch. This sensor
has a bandwidth enhancement factor of ~ 4.1 when compared to a 14-turn, 3 cm planar
coil. Its estimated sensitivity-bandwidth product is 1.06 MHz-%/A, the largest SBP
measured to date for a fiber current sensor.

Models of the travelling wave fiber sensor configurations predict that high
frequency response will be limited in liquid-filled devices. Large bandwidth
enhancements or higher frequency operation will require solid dielectric slow-wave

structures in combination with annealed fiber coils or helical waveguides. Predictions
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for such systems indicate that bandwidths greater than 2 GHz and SBPs greater than 100
MHz-°/A are possible. In addition to enhanced performance, these devices will also
significantly reduce sensor size. Other non-fiber travelling wave sensor configurations
may ultimately prove to be more sensitive in given current monitoring applications. A
proposed planar waveguide travelling wave sensor fabricated in an RF stripline shows
excellent response potential. With proper selection of Faraday rotator materials for the
waveguide and with optimum serpentine path design, enhanced high frequency operation
is predicted well into the microwave region with SBPs as large as 200 MHz-°/A.

In summary, this work has explored the theoretical and experimental high
frequency characteristics of Faraday effect fiber current sensors. Detailed quantitative
analyses of the frequency responses of planar and travelling wave sensor configurations
are now possible. High frequency response functions depend on several properties of the
fiber coil and the transmission medium surrounding the coil. Sensor bandwidth can be
enhanced through careful travelling wave fiber design or through selected use of few-turn
noncentered and elongated fiber coils.  Narrowband, high frequency resonant
enhancement is produced through proper design with the noncentered or noncircular
fiber coils. Measurements have been performed at frequencies that extend into the
microwave region with 1 GHz being the maximum used. All of the experiments explore
high frequency regions (usually above the 3 dB bandwidth) not previously considered for
sensitive, Faraday effect fiber current sensors. Many of the sensors show adequate S/N
and characterizable responses in these regions. Models of the sensor systems have
allowed further investigations of potential response in these high frequency regions.
Thus, it appears feasible to fabricate current sensors from optical fibers (or optical
waveguides) that have a wider bandwidth or higher frequency detection capability than

conventional current probes.
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APPENDIX A
EXPANDED COAXIAL TRANSMISSION CELLS

Expanded coaxial transmission cells have been developed to provide a known
electromagnetic environment for the testing of optical fiber current sensor coils [34].
These structures are the coaxial analog to the rectangular transverse electromagnetic
(TEM) cells that are used extensively in RF testing [78,79]. Large working volumes are
characteristic of the transmission cells, able to contain sizable test objects with minimal
perturbation of the impinging TEM wave. The coaxial cell geometry is ideal for
experimentation with optical fiber coils that measure conducted RF currents; the known
modal properties and impedances make it easy to relate current to power at frequencies

well into the microwave region.

Coaxial Line Properties
The waveguide theory for an ideal coaxial cable is well developed [73,80], but it

is repeated in a brief format here to highlight some of the useful properties and to provide
a reference for later theoretical developments.

The fields inside the dielectric medium of a coaxial line (see Fig. A-1) with center
conductor radius p = a and outer conductor radius p = b can be divided into transverse
magnetic (TM) and transverse electric (TE) components. The TM components of the

electric and magnetic field are given by

E, = v*[AT (up) + BY,(up)|cos(m¢y) , (A-1a)
_ doe, K0 9 i
Hy = B E, = o [A % J.(up) + Bap Ym(up)]cos(m¢) , (A-1b)

and
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E, = —i%-EH = rnTB[AJm(up) + BYm(up)]sin(mq>) . (A-1c)

The TE field components are given by

H, = v’[CT,(up) + DY,(up)]cos(m¢) , (A-22)
E, = _i.q)_EHp =ju03[Ca—ame(up) + D—%Ym(up)]cos(mq)) , (A-2b)

and
H, = A%E - Ep-ﬁ[c:fm(up) + DY, (up)Jsin(me) .  (A20)

©>

>

o>

Fig. A-1. The geometry of a coaxial transmission line. A dielectric medium with
permeability | and permittivity € fills the volume between cylindrical conductors of
radius a and b. The cylindrical coordinates (p, ¢, z) as indicated are used for
computations.
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For brevity, the common phase factor e-Pz + jot is omitted from all the components in

Egs. (A-1) and (A-2). Here

w=k2+p, (A-3)
with
k? = pea?, (A-4)

and P the wave propagation constant. The coefficients A, B, C, and D are arbitrary
constants, and J_(up) and Y, (up) are Bessel functions of order m of the first and second

kind, respectively. If the coax has infinitely conducting walls, the tangential components

of the electric field vanish at both p = a and p = b. This leads to two eigenvalue

equations describing the TM and TE modes:

Y, (ua) Y (ub)
Ta(ua) T, (ub)

) (A-5)
for the TM modes, and

Y. (ua) _ Y.(ub)
I(va) — Tp,(ub)

, (A-6)

for the TE modes. The primes in Eq. (A-6) denote differentiation with respect to p.

The lowest order mode in the ideal coaxial line is both TE and TM or TEM,; this
requires that E, = H, = 0 for all p. Using Egs. (A-la) and (A-2a), these conditions are
satisfied only if u2 = 0. Then B = jk, and the TEM wave propagates with a phase velocity

given by

(A-7)
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which is the speed of light in the dielectric medium. The TEM mode is azimuthally
symmetric (m = 0), and its two transverse field components can be derived from Eq. (A-

1b). They are given by

= — (A-8)

where

= B (A-9)

is the wave impedance and i is the conducted current. The characteristic impedance of

the TEM mode is

Zy = -211;111(%) . (A-10)

For a dielectric medium containing no magnetic materials, p = L, and with a relative

permittivity, €. = e/g,, Eq. (A-10) becomes

Zoz

6:r m(%) ) (A-11)

N

Equations (A-5) and (A-6) provide for an infinite number of real solutions for u
for a given order m of the Bessel functions. The propagation constants identifying these

modes are given by

Bon = jYk2—-12, , m=012.. , n=123.. . (A-12)

These satisfy the condition that $? < 0 for all propagating modes within the coaxial line.
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The second lowest mode in the typical ideal coaxial line is the TE,, mode. It has an

approximate cutoff frequency described by [80]

c
fim—"_ A-13)
° =w(a+b)fe (
for a dielectric with p = p,. Equation (A-13) approximates the cutoff at a point where
the modulation half-wavelength equals the circumference of a circle midway between
p=aand p=>D.

Coaxial transmission lines experience some attenuation due to conductor and

dielectric losses. Contrary to the boundary condition originally stated, the metal coax

walls are not infinitely conducting, but have a conductivity, 6. The propagating wave

penetrates into the conductors as defined by the skin depth

& = 2 . (A-14)
WOoW

The conductor losses of the coaxial line given in dB per unit length are [80]

R Y A O
o, = 13.6 2 E(I + E) ln(%) R (A-15)

where A is the free space wavelength.

Dielectric losses arise from the finite time of molecular reorientation in the
insulating materials [71]. Absorption is treated mathematically by assuming a complex
relative permittivity

€

r = € +je” . (A-16)
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Since the waveguide propagation constant is expressed as

B = jk = jofpe , (A-17)

an attenuation factor results from the imaginary part of k, while the real component gives

rise to the material dispersion. An expression for the dielectric loss given in dB per unit

length is [80]
e
Op = 273Tm8 R (A-18)
where
tand = (A-19)
g

is the loss tangent published in the handbooks for many dielectric materials.

Another useful property of coaxial lines is the maximum power-handling
capability. This property is based on the dielectric standoff or breakdown electric field,
E.. The maximum power, in Watts, is given by

b
Prax = MM (A-20)

= .
60 (b))
As a reference, the breakdown electric field for air is ~ 30 kV/cm.

Coaxial Airlines

The design of expanded coaxial airlines is straightforward; most are intended for

use with 50 © RF test instrumentation. If Z, = 50 is substituted into Eq. (A-11), the

airline design requires that b/a = 2.301. Equation (A-13) for the higher order mode
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(HOM) cutoff frequency then simplifies to f, ~ 2.89/a GHz, if the center conductor radius
is given in cm. For a desired HOM cutoff frequency in the cell design, the remaining
geometric parameters can be determined. If a given working volume size is desired for
testing a fiber coil, the TEM mode parameters can be computed.

A transition region in the cells is necessary to expand the radial dimensions from
the input and output connectors to a reasonably large working volume. This is
accomplished using tapered conical conducting sections. Conical launchers for coaxial
transmission lines are common, and the impedance and field matching conditions
required for geometrical transitions have been well studied [81]. The characteristic line

impedance for the TEM mode in the tapered section is given by

(A-21)

where 0, and 0, are the taper angles of the center and outer conductors. If the angles are
kept small, Eq. (A-21) reduces to Eq. (A-10) for a coaxial line of the appropriate
geometry. Subsequently, cell design can be simplified by allowing the conductor radii
ratio to be 2.3 throughout the cell length, even in the conical region. For an airline, this
cylindrical-geometry-only approach can be used quite effectively to large taper angles. If
0, does not exceed 45°, the characteristic impedance of the conical transition deviates
less than 5% from 50 Q.

Long tapered transition regions for the coaxial cells ensure good impedance
matching in the lines; however, all field disturbances cannot be avoided at the
geometrical discontinuities. At the discontinuities, the spherical wavefront of the conical
section must make the transition to the cylindrical wavefront (planar) of the coax

section [81]. Cell higher order modes are excited at the discontinuities, but they are
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evanescent, carrying no energy and dying out rapidly. Attenuation to HOM propagation

at the frequencies, £, near cutoff is given in dB per unit length by [80]

2
o, = 54.6% 1- ( %) : (A-22)

The effective cell bandwidths and the proximity of the fiber optic test coils in the
working volume to the transition discontinuities can be determined from Eq. (A-22).
Three expanded airlines were designed and fabricated for testing of fiber current
sensor coils. Table A-1 gives the dimensions and the HOM cutoff frequency for each
airline. Each cell was machined from brass because of its workability, high electrical
conductivity, and its relatively high chemical resistance. The cells were disassembled at
mating joints for ease of placement of the fiber coils in the working volume.
Polyurethane foam was used for all supports inside the cells, including most of the

mandrels onto which the optical fiber coils were wound. The relative permittivity of the

foam is ~ 1.15, which can perturb the cell impedance as much as 4.5 Q from its
nominally 50 € value. Use of the foam supports was thus limited to absolute minimum
for operation.

All losses in the coaxial airlines are quite small: dielectric loss is insignificant,
and the conductor loss for the brass in dB per unit length is

o, = 225 x1

08 -‘{)—f (A-23)

For a frequency of 1 GHz and a minimum value of b = 0.49 cm at the cell connector
transitions, this attenuation is only 0.0015 dB/cm. The maximum power handling
capability of the airlines is P, ~ 2.36 b? Megawatts if b is expressed in cm. Again for

the minimum value of b at the connector transitions, P_._ > 500 kW.

max
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The airline cell working volumes are of sufficient length to allow HOMs created

at the transition discontinuities to be well damped. For the existing designs, Eq. (A-22)

Table A-1.
Expanded Coaxial Airline Cells
Cell Property Cell #1 Cell #2 Cell #3

[ dimensions given in inches and (cm) ]
Cell outer dimensions

Total length 18.000 (45.72) 24.000 (60.96) 6.000 (15.24)
Cell Diameter 5.500 (13.97) 2.500 (6.35)  1.300 (3.30)

Outer conductor dimensions

Center section length 6.000 (15.24) 18.000 (45.72) 4.820 (12.24)
Center section diameter 5.240 (13.31) 2.260(5.74)  0.384 (0.98)
End section length 5.410 (13.74) 2.410 (6.12) —_

End section diameter at connector 0.384 (0.98)  0.384 (0.98) E—

End section taper angle 26.86° 23.63 ° no taper

Inner conductor dimensions

Center section length 6.000 (15.24) 18.000 (45.72) 4.820(12.24)
Center section diameter 2.280(5.79) 0.980 (2.49) 0.167 (0.42)
End section length 5.410 (13.74) 2.410(6.12)

End section diameter at connector 0.167 (0.42)  0.167 (0.42)

End section taper angle 12.28 © 10.64 ° no taper
HOM cutoff frequency 1.00 GHz 2.32 GHz 13.65 GHz
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becomes
oy = =1 1-(f )2 (A-24)
mo = b Ac ?

with dimensions of dB per unit length. For the largest outer conductor radius, b = 6.66
cm, evanescent modes are attenuated 1.2 dB/cm at a frequency, f = 0.75 f.. Depending
on the perturbations created by the fiber coils inside the cell, operations to greater than
80% of the HOM cutoff frequency are predicted for all airlines.

The exact, useful operating ranges are established through experimental
performance verification. Part of the evaluation criteria comes through measurement of
basic properties of the cell using automatic network analysis. The transmission (S,,) and
reflection (S;,) scattering parameters, both magnitude and phase, are collected for the
cells in their final configurations. Along with these parameters the standing wave ratio

(SWR) and the device impedance are computed from

swr < L+ [Sul , (A-25)
1 -8y
and
z =z, 5 (A-26)
1 _Sll

where Z, Z,, and S,, are complex quantities. Ample information is provided from these
electromagnetic characterizations to determine the range of useful frequencies for the

testing of fiber sensor coils.
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APPENDIX B
EXACT TREATMENT OF FIBER COIL LEADS

The fiber leads on a Faraday effect current sensor coil can significantly change
the high frequency characteristics of the sensor response function. Each lead adds to the
total fiber length in the coil, reducing the sensor bandwidth. More importantly, the
position of the fiber leads creates a complex phase interaction between the propagating
light in the fiber and the oscillating magnetic field signal. This produces deviations in
the Faraday rotation from the simple response function for the centered, circular coil as

described by Eq. (5-2).

Lead Effect Model

A simple model for a fiber coil lead is developed to allow for an analytical
investigation of the effect on sensor response. As illustrated in Fig. B-1, the coil lead is
treated as a constant radius arc of optical fiber originating a distance X from the coil edge
and ending at a point on the coil proper tangent to its curvature. Beyond the distance X,
the fiber lead is assumed perpendicular to the magnetic field and no Faraday interaction
occurs (B - dl = 0). The formulation in chapter 3 is used to derive the frequency
dependent Faraday rotation for the fiber lead, ©,(w). Starting with Eq. (3-4), the angle y
is set to zero and integration occurs only over the fiber lead length, ¢, the distance

between points 0 and 1 in Fig. B-1. The Faraday rotation is then

£

. 1 .
0,(®) = VEI COSY 0t g (B-1)
271 0 T

Since both vy and r depend on the position of the light in the fiber lead, both remain as

part of the integrand. Changing the integral to one over time yields the expression
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L4

(3) f cosly®] -jot 4 B-2)

_ oy kel
Ol@) =V c (t)

2T

where t, is the light transit time through the lead section.

From the geometry in Fig. B-1, the following properties are derived:

y=ao +§ , (B-3)
sina’ = % sinp’ (B-4)

Current
Conductor

N Turn
Fiber Coil

Fig. B-1. A geometrical model of the fiber leads on a current sensor coil.
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r2 = (R + R)® + R? - 2R (R + R;)cosp’ , (B-5)

x?
Ri=— +X, -6
] R (B-6)
and
1+
Bruax = tan —lyx . B-7)
1+ XZR

The relationships between the angles and the light propagation times are

= 2Rig (B-8)
C
and
C
Vs - - - . B_
B "y (t - 1) (B-9)

A time dependent function for r is constructed from Egs. (B-5) and (B-9):

rt) = \/(R + Rl)2 + R} - 2R, (R + Rl)cos[ncT1 (t, - t):l . (B-10)

A similar expression for vy is derived from Egs. (B-3), (B-4), (B-5) and (B-9):

C
Ry sin|— (t; -t
1Sln[nR1(1 )}

\/ (R +R;)? + R? - 2R; (R + Ry) cos[i (t; - t)]

-1

) c
= —_ (t; - t).
Y(t) = sin + R (t; - 1)

1
(B-11)

The exact coil lead Faraday rotation is found by substituting Egs. (B-10) and (B-11) into

Eq. (B-2). This final expression is
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Rl sm[-—?— (tl - t):|
cos | sin~! nRy + n;{ (t1 - ¢)
. J A1 - Ay COS[—;— (tr - t)] ' .
0,(®) = v-‘f—fi(ﬁ) - e Ot g4,
2T \¢c R
] JAI - A2 OOS[n—:Rl' (tl - t):|
0
(B-12a)
where
Ay = R+R) +R?, (B-12b)
and
A, =2R;(R +Ry) . (B-12¢)

Equations (B-12) must be integrated numerically to find the solution.

Input and output leads contribute differently to the Faraday interaction, although
each can be treated with similar mathematics. Two fiber coil lead configurations have
been used in this study, and both can be visualized using the layout shown in Fig. B-1.
In the first configuration, the light in the fiber propagates through the input lead from
position 0 to position 1, through an input transition section to position 2, around (N - %)
coil turns to position 3, through an output transition section to position 4, and finally
along an output lead to position 5. Light propagation in the second configuration differs
only in that it passes through a complete N coil turns between positions 2 and 3. This
means that positions 2 and 3 are coincident on the coil and the output fiber lead exits to
the right of the coil in Fig. B-1, opposite that of the input lead. The interaction of the
magnetic field with the light as it passes through the output transition section and output
lead is identical for the two configurations except for a phase delay created by the extra
half turn in the second configuration.

In the mathematical model, Eq. (B-12) describes the Faraday rotation for the

input lead. A similar expression integrating from t, to t; (propagation times
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corresponding to light at positions 4 and 5 in Fig. B-1) describes the rotation for the

output lead:
i
c
Ry sinj— (t-t
- ' [DRI ( 4)] c
cos | sin + (t - ts)
c nR,
N JA] - A2 COS[ﬁ—- (t - t4)} .
05(0) = VE(E) ! | IO g,
2w \c c
A -A —(t-t
J e
ty

(B-13)

Between positions 1 and 4, the fiber follows the constant radius path of the coil proper.
The expression for the rotation in this coil section then follows directly from Egs. (5-1)

and (5-2) and is given by

Oy34(@ = V

(B [((()P ozt go(%)

c
In general, the rotation expressed in Eq. (B-14) can be treated as a single quantity as

(B-14)

shown. However, in some configurations it may be necessary to break out the rotation
into constituent components 0,(w), ©;(w), and 6,(w), with corresponding separation in
the time intervals (t, - t,), (t; - t,), and (t, - t;). -One such configuration is the travelling
wave fiber design where the coil proper and the lead transition sections may differ. The
critical times corresponding to positions 1 through 4 shown in Fig. B-1 can be found

from the associated geometries. These are expressed by

nR ,
tp -4 =tg-t3 = TBmax ) (B-15)
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and

n
t3 - t2 = an—C- or . (B-16)

The choice of the coil turn factor (N - % or N) in Eq. (B-16) is dependent on the desired
coil configuration.

The time dependent expressions Egs. (B-12), (B-13) and (B-14) are added to
determine the total Faraday rotation as the light propagates from one end of the fiber
sensor to the other. Since the complete model consists of several integral and nonintegral
expressions, each for a distinct section of the coil, care must be taken to properly
normalize to the low frequency response. In its final form the description of the relative

Faraday rotation for the entire sensor is

O(w) _ 0;1(0) + (0,(0) + ...) + O5(w)

©  ©1(0) + (0,(0) + ...) + O5(0) (B-17)

Appropriate use of Eq. (B-14) or the constituent rotations is determined by the selected

sensor configuration.

Model Results and Comparisons

The effects of fiber leads on the high frequency Faraday response of current
sensor coils is dependent on the number of turns in the coil. Perturbations are at a
maximum for a single turn coil, with effects diminishing as N becomes larger. Plotted in
Fig. B-2 are the relative magnitudes of the Faraday rotation for one turn coils with the
two lead configurations described previously. Lead distance is X = R. The resulting lead

length is such that its radius of curvature is R, = 1.5R, which satisfies a condition that
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bends in the lead not produce a linear birefringence per unit length greater than that of
the bends in the coil.

Curve (a) in Fig. B-2 is the frequency response for a coil with leads entering and
exiting from the same side. This configuration is simply a single loop around the
conductor. Its response matches closely that of the one turn leadless, centered and
circular coil. The cutoff frequency is identical, but the 3 dB bandwidth is reduced
slightly, approximately 1.5%. A noticeable reduction in peak magnitude of the second
response lobe (near @t/2 = 1.5%) is observed when the lead effects are included. This

loss of response becomes more pronounced for each successively higher frequency lobe

1-0" T T T
X=R
0.8 ~
(dot) Leadless Coil, N=1
1 (dash) Leadless Coil, N=1.57
®° 0.6 -
>
\3/
® 0.4- (a) -
(b)
0.2 e -~ -
N Lo e
o 7 ,//’~ ‘\\\ -
OOO L) l ¥
0 T 21

Normalized Frequency, wt/ 2

Fig. B-2. The predicted frequency response for a single turn Faraday effect fiber current
sensor with (a) input and output leads exiting from the same side of the coil and (b) the
input and output leads exiting in opposite directions (equivalent to 1.5 coil turns).
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ey

(not displayed in Fig. B-2), indicating that magnetic field phasing with the light

. propagating in the coil leads becomes much more important as frequency increases. As

the number of turns in the coil is increased, the leads are less of a perturbation to the
system frequency response. For as few as three coil turns, the bandwidth and secondary
lobe magnitudes are predicted to be essentially the same as those for the leadless coil.

Curve (b) in Fig. B-2 is the response for a single loop sensor with the fiber leads
exiting the coil in opposite directions. This configuration has an effective 1.5 coil turns,
thus making the bandwidth for curve (b) much smaller than for curve (a). The
magnitude of the frequency response for curve (b) can be predicted quite well using Eq.
(5-3) for a centered, circular coil with N = 1.5 (see the comparison in Fig. B-2).
Deviations in response between the leadless coil and the coil with leads occur only near
the frequency peaks of the secondary lobes where a loss in magnitude is observed.
Again, as the number of coil turns increases, this lead-induced response loss diminishes
rapidly. However, it is necessary to include the extra half turn of fiber length when
predicting frequency response for coils with this lead configuration remains unless N is
an extremely large number. This is evident in comparing the measured and predicted
values in Fig. 5-2 where N = 10.

In addition to the magnitude predictions, phase angle deviations are also
considered in the lead effect model. For both configurations investigated, the coil leads
add some length to the total fiber required in sensor fabrication. Thus, a propagation
phase delay, compared to the leadless coil, is produced due to the slightly longer light
transit time. This phase delay as a function of frequency follows exactly that given by
Eq. (5-4) for the appropriate value of 1.

The actual length of the fiber coil leads can have an impact on the Faraday
frequency response. This is shown in Fig. B-3 for a single turn coil with leads exiting
from the same side of the coil and with X = 10R. Note that the added fiber length in the

leads results in a loss of 3 dB bandwidth, but that the cutoff frequency of the curve is
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Fig. B-3. The effect of lead length on the relative response magnitude of a single turn
fiber current sensor.

shifted to a higher value than that for the leadless coil. This feature occurs because light
propagating in the fiber lead experiences a much weaker Faraday interaction — the angle
vy is large when X is large — than in the coil proper. At the low frequencies where the
magnetic field polarization is changing slowly, the entire fiber length, including the long
leads, contributes to the response. But at the higher frequencies (@1/2 > 0.67), where the
magnetic field wavelength is approximately the same as the length of the fiber in the

leadless coil, the leads contribute less to the total response and an effective shortening of
the interaction length results. The decreasing dB and increasing f_, continues to occur for
the single turn coil as more length is added to the leads. Eventually, the leads become so

long that total Faraday interaction in them is comparatively weak. At that point the
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model begins to exhibit anomalous results due to the segmented mathematical treatment
of the different fiber sections. All of the predicted response then derives from the
remaining half-turn of the coil proper, with non-interactive delays due to the leads; a
delta function-type response results.

If the model allowed, it would be of theoretical interest to explore more fully the
extreme limit, X — oo, for the long leads on a single turn fiber current sensor coil. In
experimental coils, however, such long lead lengths are simply not practical, especially if
the stringent fiber geometries are followed as required by the model. True interaction
lengths in the coil leads will always be significantly shorter. Thus, frequency response
shifts due to long fiber leads are not expected to be greater than those shown in Fig. B-3
for X = 10R. And, as mentioned previously, the lead effects become less pronounced as
the number of turns in the fiber coil increases. For N > 10, the Faraday response can be
predicted quite precisely by the leadless coil model, regardless of the fiber coil lead

lengths.
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APPENDIX C
DERIVATION OF EFFECTIVE RELATIVE PERMITTIVITY

The cross sectional geometry of the multilayer dielectric coaxial line is defined by
Fig. C-1. Inner conductor radius is 'a', outer conductor radius is 'b’', and the dielectric
transitions occur at r; and r,. The relative permittivities at radii p are given as €, for a <
p<ryandr,<p<b,andg, forr, < p <1, Atlow frequencies, the fields in all the
dielectric regions are assumed to be TEM. The radial electric field between a and b then

has a 1/p dependency so that in medium 1, E, = C,/p, and in medium 2, E, = C,/p, where

Fig. C-1. Cross section of the multilayer dielectric coaxial line. A medium with
relative permittivity €, is surrounded by a medium of relative permittivity €,. Coax

conductors are defined by inner radius a and outer radius b.
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C, and C, are constants. An equivalent effective (homogeneous) medium is defined

throughout the dielectric region such that E_ = C,/p for a < p < b. The electric field is

assumed to vanish at the conductor walls (¢ = ), and the boundary condition D, ® n =

D, e nis applied atr; and r,. An effective displacement vector, D,g, is defined so that in

the coaxial dielectric volume their exists an equivalent medium with relative permittivity,

€etry ANA Dy = €. E 1r.

The voltage between the conductors in the coaxial cell is found from the line

integral over the radial component of the electric field,

b

\A =J Epdp .
a

It follows then that

and equivalently

Equation (C-2) reduces to

bl
Vap = Ceffj —dp
. P

]

N
o

=

5
—

| o
——

C-D

C-2)

(C-3)

(C-4)

To solve Eq. (C-3), the boundary condition at the dielectric interface is applied so that

!
E2 = ‘Q’El .
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Then substituting for E, and E, in Eq. (C-3),

W T, b
1 g (21 1
Vab = Cl |'J E‘dp + q Edp + L Edp] .

a L

This integral expression has the solution

_ I & (T2 b
Vab = Cl [ln(a) + e, ln[ﬁ] + ln(rz)] .

Equation (C-7) can be further reduced to

o) ]

Combining Egs. (C-4) and (C-8) gives

or

The energy density in the dielectric of the coaxial line is given by

dw
dv,

= 20 ,
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(&r)

(C-8)

(C-9)

(C-10)

(C-11)



which becomes ¥ eE? for a TEM mode. The total energy per unit length is found by

integrating Eq. (C-11) over a given planar surface, S, in the coaxial line dielectric region.

dw 1 2
— = —¢ | E“dA . -
iz > f (C-12)
S

Here dA = p dp d¢. The electric field for the TEM mode is azimuthally symmetric (no ¢
dependency). Then for a radially dependent electric field in a homogeneous dielectric

with an effective relative permittivity, Eq. (C-12) becomes

2
dw 1 2 1
—a' = Eaeﬂ- Ceff 27EJ (5) pdp s (C-13)
a
which has a solution of
dw 2 b
W o regCl m(z) . (C-14)

Equivalently, Eq. (C-12) can be broken into its constituent integrals for each of the three

radial dielectric regions:

aw 5y (e 1) °’
2 2 € 2
S msjetaf () e o o [ (23] o0 o cte [ () o]
- r2

a <}
(C-15)

where Eq. (C-5) has been applied in the second dielectric. Then
N rec? [ ln(r—l) s =L m(r—z] " m[ﬂ)] : (C-16)
dz a 82 1'1 1‘2
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This further reduces to
dw 2 b € I
v o_ = fhid SO 2 . C-17
iz nalcl [ln(a) + (82 l)ln(l_1 ]] ( )

Combining Egs. (C-14) and C-17) leads to

w . (6f[i (o )o0H

€, In (%) . (C-18)

Finally, an effective relative permittivity results by substituting Ceff/C1 from Eq.

(C-10) into Eq. (C-18). This gives

et _ | . (el )ln(l%)

) m(g)| (©19)

The ratio of the effective relative permittivity to the relative permittivity of medium 1 is
dependent only on the geometry of the coaxial line and the ratio of the two media relative
permittivities. If medium 2 is very thin so that 1, = 1,, or if the two dielectrics have
approximately the same relative permittivities, €, = &,, then €4 — €, in Eq. (C-19) as
expected. And if medium 2 is large so that it nearly fills the entire volume of the coaxial

line, thenr, ~a,r, b and €4 — &,.
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APPENDIX D
WAVEGUIDE MODES FOR AZIMUTHALLY SYMMETRIC
FIELDS IN A MULTILAYER COAXTAL TRANSMISSION
LINE WITH COMPLEX RELATIVE PERMITTIVITY

In these discussions the waveguide geometry and material dielectric properties for
the coaxial line are taken as described in Appendix C and as illustrated in Fig. C-1.
Material wave parameters k, , = (co/c)‘/;;l._2 and the waveguide propagation constant, B
as given by Eq. (A-8), are all treated as complex quantities. Due to the added dielectric,
medium 2, the electric and magnetic field components in all the coaxial dielectric layers
may, in general, be coupled together, and defining strictly TE and TM modes as in the
simple (single dielectric) coaxial line is not appropriate. The treatment of this coupled
mode problem is quite involved mathematically, and thus a complete description of the
transmission cell higher order modes is not attempted here. Instead, azimuthal symmetry
(m = 0) is assumed, the field components become uncoupled, and TE and TM modes can
be derived separately. The waveguide propagation constants, B, for each of the modes
then takes on the simpler form, B,,. The derivation of the modal eigenvalue equations in

the following discussions is adapted from Wait [73].

TMon Modes
If m = 0 in Egs. (A-1), E, and H,, vanish and the remaining field components E,,
H, and E, are sufficient to describe the TM fields in each coaxial layer. In the region

defined by a < p <r1,, the TM field components are given by

Ey = u [A To(wp) + B Yo(u,0)] & (D-1a)
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ik [, o d
Hy, = —-EO—IJ-[AngO(ulp) + Bla—pYo(ulp)] , (D-1b)
and
E, = -B Alilo(ulp) + BliYo(ulp) . (D-1c)
P dp dp
Here
W=k B ©-2)

In Egs. (D-1) and (D-2), u, and B are both multivalued parameters — u, o, and By, forn =
1, 2, 3... — due to the waveguide modal structure. For simplicity in these derivations,
the modal subscripts 'On' are dropped from u and B, and the remaining numerical
subscripts refer only to the dielectric region they represent.

In the region defined by 1, < p <b, the field components E 3, Hy; and E;; will be
identical to those described in Eqgs. (D-1) only with A, and B, replaced with A, and B,.

For r; < p <r,, the TM field components are

Ep = U A, To(u,p) + B, Yo(uyp)] (D-3a)
ke[, o ,
and
E,, = A d J B 9 Y, 3
p2 = -B ?'a_p o(uzp) + 2a_p o(uzp) ) (D-3¢0)
with
u =k + B . (D-4)

The metal walls of the coaxial line are considered to be infinitely conducting so

that E, vanishes at p =a and p =b. Then
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B i/ ariae s
— 1 L40

= - > (D-S)
B, JO(ula)
and
Aj Yo(u;b)
—_— = = . (D‘6)
B, Jo(usb)

At the dielectric interfaces p =1, and p =1, the tangential components, E, and H, are

continuous. At p =1, this leads to

A A
ulz Bl l:(’B—ll') Jo(ulrl) + Yo(ulrl):l = ui B2 [(B—ZZJ Jo(qul) + YO (UZII)} s
(D-7)

and

A A
klzulBl =1 Jl(ulrl) + Yl(ulrl) = k;usz 2 JI(U2I'1) + Yl(u2rl) .
B, B,

(D-8)

In Eq. (D-8), the property of the Bessel function

2
$Jo(up) = —uJ;(up) (D-9)

has been applied. Equation (D-8) is divided by Eq. (D-7), and A, / B, is replaced by its

equivalent form from Eq. (D-5). The following expression results.

(_15_12_ Yalun) - ZJ;((::)) hi(wi) ) (1;_%) (%)JI(HZI.I) + Yy(up5) |
1) Yy ) - J;’((l‘::)) o) |\ (g_i)%(um) s Yoo

(D-10)
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Solving for A, / B, gives

2
k u
Y (u,5) - (_k‘l) _u2 X1 Yo(u,1)
2) O
= 5 , (D-11)

B k u
: (ﬁ) Fj-xl To(u,1) — J3i(u,m)

Ay

where ), is the bracketed factor on the left side of Eq. (D-10) and is given by

Y,
Yl(ulrl) = Jo((::l:)) Jl(ulrl)
% = Y,(0,a) B2
Yo(u1) - Jo(u1a) To(uy)
o\

At the second dielectric interface, p = r,, a similar expression for A, / B, is

derived. Itis given by

2
k1 u
A Y, (u,5,) - (f) ‘u—z‘xz Yo(u, 1)
B—2 = 5 2 ! , (D-13)
2 k u
(i) ’lfxz To(u,5) - Ji(u.n)
where
Y,(u;b
Yl(ulrz) Ll)Jl(ul 2)
1 = Jo(u,b) D-14)
Y - 2oy
o\*1%2 Jo(ulb) o\“*1*2

Combining Eqs. (D-11) and (D-13) gives a final transcendental eigenvalue equation for
the TM,, modes,
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2 2
k u ki)l u
(_k;_) _llf X2 Jo(llzl'z) - Jl(u2r2) (k;) llj X2 Yo(U21'2) - Y1(1121'2)
k) u ) k) u ,
(#J 29 Jo(uzn) - Ji(upm) (k—l) —2 % Yo(upmy) — Yi(up1y)
2) U 2) W
(D-15)

with %, and ), given by Eqs. (D-12) and (D-14).

TEon Modes
In a fashion similar to the TM,, mode derivations, the TE,, modes of the
waveguide are found from Egs. (A-2) with m = 0. In the dielectric region defined by ¢,

the field components are given by

Hys = ul2 [CI,S JO(ulp) + Dy; Yo(ulp)] , (D-16a)
j o o D-16b
E¢1.3 = JHOICy 5 a_pJo(ulp) + Dy, é-p-Yo(ulp) ) (D-16b)
and
0 0
Hpps = _BI:CI,S a_pJo(ulp) + Dy %YO(UIP):I ) (D-16c)

where the subscript 1 applies for a < p <r, and the subscript 3 applies forr, <p <b. The

TE field components for r; < p <r,, where the relative permittivity is €,, are given by

Hy, = ui [Cz Jo(u,p) + D, Yo(uzp)] ) (D-17a)
. ) 0
Ey, = jHO [Cz %Jo(uzp) + D, gYo(uzp)} ’ (D-17b)
and
0 d
Hp, = ‘B[Cz a_pJo(uzp) + D, a_pYo(uzp):l . (D-17¢)
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Again the Bessel function property, Eq. (D-9), can be applied to Egs. (D-16b), (D-16c),
(D-17b), and (D-17c).

At the infinitely conducting metal walls, the tangential E component must vanish.
For these TE modes, E,= 0 at both p=a and p =b. Then

Y, (u,a)

G , (D-18)
D, Jl(ula)

and
Cy _ _Y(ub) (D-19)
D, Jl(ulb)

At p = 1, the tangential components E, and H, are continuous across the dielectric

interface. Thus, for H,,

C C
u12 Dl [[D_l) JO (ull'l) + YO (ul rl )il = u; D2 |:(D—2) Jo (qul) + YO (qul )] ’
1 2
(D-20)

and for E¢,

4, D, [(%)Jl(ulrl) . Yl(ulrl):l = u,D, [(%]Jl(uzrl) " Yl(uzrl)].

2
(D-21)

Using Eq. (D-18) to eliminate C, / D,, and dividing Eq. (D-21) by Eq. (D-20) yields

Y, (u,a C
Y (o) - Jll((ulla)) J1(uiy) ) (5—2']11(1121'1) + Y (uzm)
u, Y, (u;a - u, {(C )
" Yo (mn) - Jll((u:a)) Jo(umy) (D—z)lo(uzfl) + Yo(upx)

(D-22)

Then solving for C,/D, gives
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=2 - 1 (D-23)
D, %Zl Jo(u,1) - Jl(u2r1)
1

where Z, is the factor in the brackets on the left side of Eq. (D-22) and is given by

Yl(ulrl) - ?}((UIa)) Jl( U 1)
2= ~Y,(0) (B-24)
Yo(u,1,) T,(u,2) To(u,1)

At the second dielectric interface, p = r,, the tangential field components are also

continuous, which leads to a similar expression for C, / D, given by

u
C Yi(u,1) - u—jzz Yo (u,1,)

D, 22 Z, Jo(uzrz) - Jl(uzrz)
1

) (D-25)

where

(D-26)

Yo(u,1,) - To(w, 2)

Y (1) - Yl((UIb)) (1)
Y,(u;b)
7,(u;b)

Equations (D-23) and (D-24) are combined to give the ftranscendental eigenvalue

equation for the TE,, modes,

u u

2 7, Tp(uy1y) - Fy(uy1y) 27, Yo(u5) - Yi(up1,)

s = U (D-27)
u u ’

u—le Jo(uzm) - Jy(uam) ;‘:‘21 Yo(uomy) - Yi(upm)
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where Z, and Z, are presented in Egs. (D-24) and (D-26).

Modal Solutions

Solutions to Egs. (D-15) and (D-27) that lead to guided propagating modes
require that B be imaginary and thus B? < 0. In the frequency regions where B > 0,
modes experience attenuation only and thus die out rapidly. The cutoff frequency, ®,, is
defined as that frequency above which free wave propagation occurs and below which
only modal attenuation occurs. In this multilayer dielectric waveguide where relative
permittivities can be complex, modal solutions for f§ are also complex, having both real
and imaginary components, when ® > ®,. Field waves are then freely propagating yet
attenuated.

As discussed in Appendix A, a TEM mode can exist in a waveguide structure
only if E, and H, both equal zero for all values of p. Then Egs. (D-1a) and (D-3a) must
be simultaneously zero at p = r;, as will Egs. (D-16a) and (D-17a). Similar sets of
equations can be identified for the p =r, interface. Using the TM,, mode equations, Egs.
(D-1a) and (D-3a) at p =1, as a baseline to illustrate the situation, the following

expressions result:

0 = u;[A To(u,5) + B, Yo(un)] , (D-28)

and
0 = u; [A, To(u,5) + B, Y(u,5)] . (D-29)

Solutions to these equations require that u; = 0 and u, = 0. But since k; # k,, except
when the two dielectrics are identical, a contradiction exists for the muiltilayer media.

Thus, no TEM mode is possible. If the static values of the material relative permittivities
are such that g, > &,, then the TM,; mode is of lowest order for this coaxial transmission

line structure. This mode exists at all frequencies and is cutoff only at @ = 0.
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GLOSSARY OF SPECIAL SYMBOLS AND TERMS

radius of coaxial transmission line inner (center) conductor

radial distance from coaxial line axis to nearest point on fiber segment
radius of coaxial line outer conductor

speed of light in vacuum

diameter of fiber coil

ratio of diameter to pitch of helical fiber coil

energy density for coaxial line dielectric

total energy per unit length along axis in a coaxial line dielectric
magnitude of the electric charge

modulation frequency

cutoff frequency of higher order modes in coaxial transmission lines
cutoff frequency (first null) in optical fiber sensor response
resonance center frequency

fiber twist material parameter

half-height of rectangular coil

static or steady state current amplitude in a conductor

average optical detector output current

<1

electromagnetic wave vector

wave propagation parameter (general)

wave parameter for dielectric regions 1, 2

Boltzmann’s constant

fiber length variable (general)

length vector

short fiber or optical material length (usually less than one turn)
length of fiber lead

integer counter for series, azimuthal mode number in coaxial transmission line
integer counter for response resonances

fiber refractive index

surface normal vector

radial distance from conductor axis to fiber axis

inner, outer radius of fiber mandrel, radii at dielectric transitions
fiber radius

time variable (general)

time at points a, b on a short circular fiber loop

time or time delay at designated points: starting or reference, 1, 2,... in a fiber
coil or lead

Bessel function wave number, u® = k? + 82

Bessel function wave number for dielectric regions 1, 2

Bessel function wave number for the mnth coaxial waveguide mode
velocity variable (general)

velocity of light in fiber
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X,y
Ep.¢,z
Epl 02,03

EM 1$2,$3

Ezl 122,23
Eeff ? Eeff
E,

F

H

Hp.¢,z

H

£1,02,03
H¢l 92,63

Hzl ,22,23

H sat

velocity of light in a planar waveguide

phase velocity of EM wave in transmission line

half width of rectangular coil

pitch of helical fiber coil

axial length dimension in cylindrical coordinates, length along coaxial
transmission line

axial unit vector in cylindrical coordinate

integration constants used with electric and magnetic field components
amplitude of propagating EM wave in a coaxial line

initial amplitude of EM wave

constant in dielectric regions 1, 2, and 3

constant in dielectric regions 1, 2, and 3

constant in dielectric regions 1, 2, and 3

constant in dielectric regions 1, 2, and 3

magnetic flux density vector

static or low frequency magnetic flux density

integration constant used in determining effective parameters for multilayer
dielectrics

displacement vector (general)

displacement vector for dielectric regions 1 and 2

effective displacement vector for the multilayer dielectric material

electric field vector (general)

electric field components for dielectric regions 1 and 2; they may have arbitrary
direction

comiplex electric field amplitude components for light in fiber

electric field components in a coaxial line (cylindrical coordinates)

radial electric field components for different dielectric regions in a coaxial line
azimuthal electric field components for different dielectric regions in a coaxial
line

axial electric field components for different dielectric regions in a coaxial line
effective electric field in a multilayer dielectric, effective electric field vector
dielectric or breakdown electric field strength

Faraday rotation per unit length

magnetic field vector (general)

magnetic field components in a coaxial line (cylindrical coordinates)

radial magnetic field components for different dielectric regions in a coaxial line
azimuthal magnetic field components for different dielectric regions in a coaxial
line

axial magnetic field components for different dielectric regions in a coaxial line
saturation magnetic field for ferromagnetic crystals

optical intensity

initial state (maximum) optical intensity

Bessel function of the first kind of order 0
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Bessel function of the first kind of order 1

Bessel function of the first kind of order m

first derivative of Bessel function of the first kind of order m
fiber stress-optic parameter

total length of fiber or optical material

length of fiber in one coil turn

number of turns of optical fiber

molecular density

total number of turns in an optical fiber coil

total number of delta function interactions or number of close passes of the fiber
by the conductor

power (general)

maximum power handling capacity of a coaxial line

optical fiber coil radius

radius of curvature of fiber lead

amplifier feedback resistance

radius of short circular fiber loop

planar surface area

electromagnetic reflection scattering parameter
electromagnetic transmission scattering parameter

absolute temperature

molecular reorientation time

Verdet constant

voltage between conductors in coaxial line

radial length of an optical fiber lead

radial distance from center of fiber coil to electrical conductor
Bessel function of the second kind of order 0

Bessel function of the second kind of order 1

Bessel function of the second kind of order m

first derivative of Bessel function of the second kind of order m
impedance

transmission line characteristic impedance

molecular static polarizability

attenuation due to conductor losses in a coaxial line
attenuation due to dielectric losses (absorption) in a coaxial line
attenuation of higher order modes in a coaxial line
waveguide (transmission line) propagation constant
propagation constant for the mnth transmission line mode
Dirac delta function, dielectric loss angle

electrical skin depth

free space wavelength

permittivity

relative permittivities for dielectric regions 1 and 2
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real and imaginary components of relative permittivity

free-space permittivity

material relative permittivity (complex quantity)

static (low frequency) relative permittivity

effective relative permittivity

permeability

free-space permeability

material relative permeability

fiber material permeability

electromagnetic wave impedance

permittivity constant, ¢, - 1

azimuthal angle in cylindrical coordinates

azimuthal unit vector

total birefringence in optical medium

phase matching parameter in planar waveguide sensor

radial dimension in cylindrical coordinates

radial dimension unit vector

conductivity

taper angles for the center and outer conductors in a conical transmission line
launcher

ratio of time delay to light transit time in a single fiber turn (fraction indicating
light entry point in the fiber coil)

number of twists per unit length in optical fiber

angular modulation frequency (general)

cutoff angular frequency of higher order modes in coaxial transmission lines
cutoff angular frequency (first null) in optical fiber sensor response
angular resonant frequency

angular frequency at which rotation relative magnitude is reduced 3 dB
normalized frequency for optical fiber coil sensor

normalized frequency for a single-turn fiber sensor

transit time of light through fiber

transit time of light through one turn of fiber

light propagation delay time between fiber coils

transit time of light through length of fiber £

material magnetic ion relaxation time

normalized frequency parameter for traveling wave sensor

infinity :

rotary angle between dl and an arbitrary reference point on a fiber loop

angles in the fiber coil plane used to locate a light segment in a fiber lead
initial value of « at time t = 0

maximum value of the angle £’

angle between the magnetic flux density vector B and the fiber length vector dl
in the plane of the fiber coil
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AB

AL

AB

QI

S

O(w)
O5(w)

S,
91.2,3,...(0’)
Op(w)

el(w)
;al

ANA
APD
BEF
DC (or dc)
EM
EMI
HOM
MM
NEI
PIN
RF
SBP
SM
S/N
SWR
TE
TE,,
TEM
™
™,
uv
YIG
Ga:YIG

angle between the wave vector k and the fiber length vector dl out of the plane
of the fiber coil

3 dB bandwidth

change in total fiber length in helical coil

linear birefringence or retardance per unit length

twisting rotation per unit length

rotation in the plane of polarization (general); usually refers to Faraday rotation
frequency-dependent rotation

frequency dependent rotations due to delta function interactions

static or low frequency rotation

rotations in different segments of fiber

frequency and material dependent Faraday rotation in paramagnetic crystals and
glasses

frequency dependent rotation in short fiber length ¢

saturation rotation in ferromagnetic material

automatic network analyzer
avalanche photodiode
bandwidth enhancement factor
direct current

electromagnetic
electromagnetic interference
higher order modes
multimode (fiber)

noise equivalent current
positive-intrinsic-negative
radio frequency
sensitivity-bandwidth product
singlemode (fiber)
signal-to-noise ratio

standing wave ratio
transverse electric

mnth transverse electric mode
transverse electromagnetic
transverse magnetic

mnth transverse magnetic mode
ultraviolet

yttrium iron garnet

gallium substituted YIG
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