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Abstract

Radar imaging and detection of objects buried in soil has potentially
important applications in the areas of nonproliferation of weapons,
environmental monitoring, hazardous-waste site location and assessment,
and even archeology. In order to understand and exploit this potential, it is
first necessary to understand how the soil responds to an electromagnetic
wave, and how targets buried within the soil scatter the electromagnetic
wave. We examine the response of the soil to a short pulse, and illustrate
the roll of the complex dielectric permittivity of the soil in determining
radar range resolution. This leads to a concept of an optimum frequency
and bandwidth for imaging in a particular soil. We then propose a new
definition for radar cross section which is consistent with the modified
radar equation for use with buried targets. This radar cross section plays
the same roll in the modified radar equation as the traditional radar cross
section does in the free-space radar equation, and is directly comparable to
it. The radar cross section of several canonical objects in lossy media is
derived, and examples are given for several object/soil combinations.
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1. Introduction and Summary

The imaging of objects buried in soil has potentially valuable applications in several diverse areas,
such as nonproliferation of weapons, environmental monitoring, hazardous-waste site location
and assessment, and even archeology. In order to understand and exploit this potential, it is first
necessary to understand how the soil responds to an electromagnetic wave, and how targets
buried within the soil scatter the electromagnetic wave. A previous study [1] addressed the issue
of imaging buried objects in the presence of surface clutter. It showed that an optimum frequency
exists, which depends on soil characteristics, burial depth, clutter characteristics, and target type.
Although the frequency dependence of the dielectric permittivity of the soil was included at the
synthetic-aperture radar (SAR) center frequency, dispersion of the frequency components within
the compressed pulse was not included in the analysis.

The two-way impulse response of the soil is important in determining the best operating frequency
and bandwidth for a subsurface-imaging SAR. Because of dispersion and loss in the soil, the
impulse response is distorted from the free-space impulse response. The following conclusions
can be drawn from examination of the soil's impulse response:

« an optimum bandwidth exists;

» loss increases as bandwidth increases;

 very large bandwidths are not useful for imaging objects at large depths;

« in the absence of additional processing, contrast is reduced as depth increases;

 vertical polarization is best for large angles of incidence;

 inthe absence of surface clutter, lower frequencies seem best.

In addition to understanding the impulse response of the soil, it is necessary to compute the radar
cross section for simple objects buried in lossy media. For convenience, the radar cross section is
defined to have a meaning similar to, and consistent with, the free-space radar cross section used
with conventional radar analysis. In [1], the radar cross section of buried objects was modeled as
the radar cross section in free space, but scaled according to the wavelength in the soil. Here, a
more precise model is given. It is shown that, to first order, the scaled model used in [1] is
reasonable.

For buried objects, a modified form of the radar equation will be used
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where P, is the transmitted power, G,, G, are the gains of the transmitting and receiving antennas
respectively, R,, R, are the total ranges (including both the free-space and underground paths) to
the target object from the transmitter and receiver respectively, 6, is the object's radar cross

section in the lossy media, A is the signal wavelength,, 7;, and T;, are power-transmission
coefficients from one media to the other, and L(R,’z), L(R,,z) are the power-propagation-loss
coefficients along the respective paths, R,,, R , from the surface to the object. Here, the radar

cross section is designated G, to distinguish it from the free-space radar cross section .




A new definition of radar cross section is required to properly account for the loss in the media,
and to allow the losses to be factored as shown in the modified radar equation. The new
definition for radar cross section is
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where k is the complex wave number, a is the distance from the coordinate origin to the dominant
specular point of the target, and E, is the scattered electric field vector. This definition is
independent of the object's depth, is consistent with the usual definition for the free-space radar
cross section, and can be directly compared with the free-space cross section. Note, however,
that while the definition is independent of the object's depth, the scattered field, E,, may not be.
We argue that, for many cases of interest, the scattered field can be computed independently of
the depth and retain very good accuracy.

The radar cross section for several types of buried objects is derived: flat plates, cylinders, and
spheres. These models for radar cross section will find considerable utility in estimating target
brightness using the radar equation. However, the complex scattered field is required if the phase
history for a SAR image is to be computed. In addition to the radar cross section, expressions for
the complex scattered field are also included. Thus, a consistent set of models are derived which
can be used with the simple radar equation, or used to generate a complex phase history of buried
objects.

Several conclusions can be drawn from the new definition of radar cross section and the models
derived for buried objects:
o the appropriate depth for computing losses is the depth to the dominant specular
scattering point on the object; _
o free-space radar cross sections scaled by the wavelength in the lossy media provide
reasonable estimates of the object's buried radar cross section,
« multiple scatterer interactions are less significant for objects buried in lossy media,
« with the new definition, the radar cross section of a buried object behaves much like
intuition would predict.

2. Band-limited impulse response of lossy media

The band-limited two-way impulse response described here includes both dispersion (phase) and
frequency-dependent loss, which are characteristics of soils. The two-way impulse response
includes the Fresnel transmission coefficient at the air-soil interface (into and out of the soil) as
well as two-way propagation to a given depth in the soil.

The band-limited impulse response is obtained by a Fourier transform of the frequency-domain
response of the soil over the appropriate bandwidth, when illuminated by a plane wave. Fig. 1
shows the geometry in which the response is referenced. The half space above the X — § plane is
free space (g,, M,), and the lossy, dispersive half space below is homogeneous soil (g, u,).
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Fig. 1 Geometry illustrating a plane wave incident upon a planar air-soil interface.

Wave numbers are defined in each medium
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and
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where fis the instantaneous frequency. The complex angle of refraction, 0., is related to the
incident angle, 0,, through Snell's law

sinB, =%sin8,. 3)
The real angle of refraction, vy, is the angle between the normal to the constant-phase planes and
the z-axis [2], and is given by

Re(k,)sin6, il ' @

=Tan™
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The free-space path to the point of refraction is shorter than the reference free-space path to the
coordinate system origin by an amount

Ar=dtany,sin0, )

The two-way band-limited impulse response (referenced to the origin) is
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where ® = 27f. The Fresnel reflection coefficient is

cosf, —n, cosd . st
n, 1~ Mo L for perpendicular polarization

1, c0s, +n, cosH,
n, cosB, —n,cosb,

, for parallel polarization
| M, c0s0; +m,cosb, P P

The impulse response (6) accounts for both the dispersive and frequency-dependent loss
characteristics of the soil, and is normalized so its peak is unity when £, = k,.

The quantity plotted in the examples, called the magnitude of the impulse response, is

1,,(1) = 2010g(J1(1))). (10)

Thus, the peak value of 1 ,(f) corresponds to the two-way loss in dB to a point scatterer buried

at depth d in the soil. Four different soil types will be examined in the examples that follow. The
model for the soil dielectric constant is described in Appendix A and in [1]. The soils are listed in
Table 1.

Table 1
Soil Models
Soil Model Number Description Relative Loss
1 Dry Sand Very Low
2 San Antonio Clay Loam Moderate
5% Water by Weight
3 San Antonio Clay Loam High
10% Water by Weight
4 San Antonio Clay Loam Very High
20% Water by Weight




2.1. Impulse Response of Dry Sand
Fig. 1 illustrates the magnitude of the impulse response (/ ;(¢)) for the dry-sand model contained
in [1]. Note that the pulse width, as well as the attenuation, increases as the target depth

s increases. The 3-dB and 10-dB pulse widths are plotted in Fig. 2. The increase in width is not
linear with depth for shallow depths, but becomes essentially linear for larger depths.
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Fig. 1 Magnitude of the band-limited (1 KHz < f <1 GHz) impulse response for dry
sand for several depths.
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Fig. 2 Width of the band-limited (1 KHz < £ <1 GHz) impulse response in dry sand
as a function of depth.




2.2. Impulse Response of San Antonio Clay Loam With 5% Water

The effects of dispersion and loss are much more pronounced in the San Antonio clay loam with
5% water by weight. The two-way impulse response is illustrated in Fig. 3 for several depths.
The 3-dB and 10-dB widths are plotted in Fig. 4. Note that the maximum depth shown is S m
rather than 30 m shown for the sand. Again, the pulse widths show a nonlinear increase as depth
increases.
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Fig. 3 Two-way impulse response of San Antonio clay loam with 5% water for
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Fig. 4 Width of the impulse response in San Antonio clay loam with 5% water as a
function of depth.
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2.3. Effect of Increased Water Content

As the water content is increased, both the losses and dispersion increase. Fig. 5 shows the
impulse response for a depth of 1 m in San Antonio clay loam with 5%, 10%, and 20% water by
weight. The increased broadening of the pulse, and the reduced contrast are very apparent as the

(3 . . . . .
water content increases. The 3-dB and 10-dB pulse widths are shown in Fig. 6 as a function of
water content.
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Fig. 5 Impulse response for San Antonio clay loam with 5%, 10%, and 20% water by
weight at a depth of 1 meter.
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Fig. 6 Impulse response width for San Antonio clay loam at a depth of 1 meter for
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2.4. Comparison of Different Bandwidths

Because the loss increases significantly with frequency, the soil is effectively a low-pass filter.

Very little advantage is gained from very large bandwidths. Fig. 7 presents the band-limited

impulse responses for four different bandwidths (from about 50 MHz to 1 GHz) at a depth of 5 m N
in San Antonio clay loam with 5% water. There is little difference in the pulse shape for 1 GHz,
500 MHz, and 100 MHz bandwidths. The response with 50 MHz bandwidth is beginning to
show significant pulse broadening due to insufficient bandwidth. Thus, it appears that a
bandwidth which minimizes loss without sacrificing resolution is probably around 50 to 100 MHz
in this soil.

35
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Fig. 7 Band-limited impulse response for several bandwidths at depth of S m in San
Antonio clay loam.

g : 5 5 ! ! i ! 1MHz < £< 10 MHz

@ : ; . : ' '

0

c !

° 1 1

=% ; . '

] F b : el . .

x 65 .‘,," """"" oo 3MHz< FS30MHz - - T s

@ - : , . ' b

% 70 F------ 5MHZ< f< 15 MHz ....... ' 44 San Antonio clay loam

a - | 5% water

E a5b i X TS Depth = 10 m

S - : Incident angle = 60°

o o . ; e T H ! | ———Vertical Pol.

B 80 |- i R 8227777177 | - -- —Horizontal Pol.

b - e i 7

5 85| : R —— *

S o : Torsmen , ]

= gk i T BN BN EPENPE PP I e B
0 50 100 150 200 250 300 350 400 450 500 hl

Time (nsec)

Fig. 8 Band-limited impulse response for three bandwidths at a depth of 10 m in San
Antonio clay loam with 5% water.
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As the depth is increased, useful bandwidths become smaller, and the useful spectrum is shifted to
the lower frequencies. Fig. 8 shows the band-limited impulse response for three different
bandwidths at a depth of 10 m in San Antonio clay loam with 5% water by weight. Here, the
incident angle has been changed from normal incidence (6 ; =0°)to 6, =60°, causing a difference
between the polarization responses. Vertical polarization shows nearly 5 dB advantage over
horizontal polarization. More than 15 dB additional loss is suffered with the 5-15 MHz impulse
when compared to the 1-10 MHz impulse, even though the bandwidth is almost the same. This is
due mainly to the higher center frequency, 10 MHz, as compared to 5.5 MHz. Increasing both
the center frequency and bandwidth to 3-30 MHz improves the resolution with surprisingly little
additional loss (<2 dB) compared to the 5-15 MHz impulse.

2.5. Additional Comments

The results reported here illustrate the band-limited impulse response of the soil alone. The
effects of surface clutter are not included. As shown in [3], in the presence of surface clutter, the
return from a buried object may be difficult to separate from sidelobes of the surface-clutter
return. The need for low loss favors low frequencies and small bandwidths, while the need to
reduce surface clutter favors large bandwidths and thus higher frequencies [1]. Additional insight
and understanding could be obtained by including the clutter return, including loss-compensated
window functions (such as described in [3]), and then searching for optimal bandwidths and
center frequencies as in [1].

3. Definition of Radar Cross Section in Lossy Media

The scattered field used in the definition of the radar cross section, ¢ ., will be based on uniform-

plane-wave scattering from an object in an infinite media. In reality, the scattered field from a
buried object depends on the interaction with the interface between the lossy media and the air.
This interaction can be thought of as multiple reflections between the object and the interface. In
a lossy medium, these multiple reflections quickly attenuate to insignificant levels. If they were
included in the computation of the radar cross section, it would necessarily be dependent on the
depth of burial. However, since it is desirable that the radar cross section, ¢ .., be independent of

the depth of burial, and since the multiple reflections quickly attenuate to insignificant levels in the
lossy medium, they will be ignored.

In addition, when a uniform plane wave is incident upon the air-media interface, the transmitted
wave becomes nonuniform. However, when the angle of incidence is not too large, the
nonuniform plane wave below the surface is nearly uniform. To the extent that this is true, the
scattered fields computed here are a good approximation. However, if the computation for the

scattered electric field, E, includes the interaction with the interface and the nonuniformity of the
plane wave, then the definition for o, will contain no approximations. In this case, the radar

cross section will become dependent on both the burial depth and the angle of incidence.

3.1. The Radar Equation
In estimating the performance of a conventional radar, the received power P, scattered from an
object in free space is computed from the radar equation,




G, o GX
Pr = Pr 2 2 ’
4nR’ 4rR, 4w

(11)

where P, is the transmitted power, G,, G, are the gains of the transmitting and receiving antennas
respectively, R,, R, are the ranges to the target object from the transmitter and receiver
respectively, © is the object's radar cross section, and A is the signal wavelength. The most
common application of this equation is for a monostatic radar where G,=G,=G and

R =R =R. The radar cross section, o, is defined in the context of the radar equation, and it
only really has meaning in this context. It is defined to be the proportionality constant between
the incident power density at the object and a total scattered power. This total scattered power is
not the true total power scattered from the object, but is the total power necessary to be scattered
from an isotropic scatterer which produces the same power density at the receiver as the actual
object.

When computing the radar cross section for some object, the approach is to compute the
scattered field E, when given the incident field E,. Common practice is to let the incident field be
a plane wave, and reference the cross section to the far field so that

£
o= g_rgo4nR2—|Ef‘7. (12)

3.2. Modification of the Radar Equation for Lossy Media

In dealing with buried objects, the definition of radar cross section is more problematic.
Nevertheless, it is still desirable to define a radar equation similar to (11). Referring to Fig. 9, one
sees that the computation of the scattered field is complicated by the interface between the two
media. Because of the interaction between the object and the interface, the scattered field will
contain a dependence on the burial depth, d, which is more than simply a propagation loss.
However, if it is assumed that the object is buried deep enough in lossy media, the interaction
between the object and the interface will be small, and it can be ignored. In this case, it makes
sense to define a radar cross section for the object embedded in lossy media of infinite extent.

A radar equation will be defined as follows

G, c G N
])’_ :BWYB"L(&)4K;2 L(RZ)T{,O 4TC

where R= R +R,, T, and T,, are power-transmission coefficients from one media to the other,

; (13)

and L(RZ) is the power-propagation-loss coefficient along the path from the surface to the object.
Here, the radar cross section is designated o, to distinguish it from the free-space radar cross
section 5. This radar cross section appears to have basically the same meaning in (13) as the free-
space cross section, o, in (11). In fact, it has been intentionally defined to be independent of
depth so that it can be compared directly with the free-space radar cross section. It will, however,
depend on the constitutive parameters, p and € for the media. It is also understood that 6, is an

approximate radar cross section in that it ignores the effects of the interface between the two

16




media. This approximation is good for objects buried in lossy media at a depth where the losses
make the interaction terms unimportant.

L)

Fig. 9 Arbitrary object buried in a lossy half space is illuminated by airborne radar.

3.3. New Definition of Radar Cross Section in Lossy Media
The radar cross section, G, will be computed for an object in a lossy full space. However, when

the radar cross section is computed from the scattered field, the traditional definition (12) cannot
be used. The losses must be carefully factored from the definition of the cross section since they
are explicit factors in (13). An additional problem arises with the plane-wave illumination, since a
finite amplitude at the origin implies an infinite amplitude at the limit 7 — oo. In fact, if the
definition (12) is used, the radar cross section would be zero. Thus, the radar cross section must
be normalized in such a way as to remain finite and be consistent with (13). If'this is done
properly, the new radar cross section will be similar to the free-space radar cross section, and they
can be directly compared with each other.

An appropriate solution is to measure the distance R, to the dominant specular point on the
object, to reference the incident-illumination amplitude to this point, and to factor from the radar
cross section the loss along the path measured from the dominant specular point to the radar.
With the new definition for radar cross section, which correctly accounts for the loss, o, will be
given by

fmlie®-a)] s [
e

; (14

where @ is the vector from the coordinate-system origin, typically located within the object, to the
dominant specular point. The radar cross section, 6., defined by (14) is consistent with the free-

space radar cross section, 6. Since there is a tendency to compare the cross section of a buried
object with its free-space counterpart, this definition is more desirable than a definition which is




dependent on burial depth. However, it must be emphasized that this definition does nof include
the interaction between the object and the interface.

Unfortunately, the correct choice for the dominant specular point may not always be obvious. It
is possible to choose a in such a way that the radar cross section as given above will increase (or
decrease) exponentially as the object size is increased, counter to intuition derived from
experience with free-space radar cross sections. However, if the losses in the modified radar
equation are computed to this same point, the computed received power will be correct. The only
consequence of a poor choice for the dominant specular point is that the radar cross section no
longer behaves intuitively, and it can no longer be compared directly to the free-space radar cross
section.

A further complication is associated with the fact that the plane-wave illumination in the lossy half
space becomes a nonuniform plane wave for nonnormal incidence. The plane wave is preserved
for normal incidence, however, and this case will be treated initially. In addition, the normal to
the constant-phase planes will be bent toward the normal to the interface, the amount of bending
increasing as the index of refraction, = J1,E,, increases. When the index of refraction is large

enough and the incident angle, v, is small, the constant-phase planes will be nearly parallel to the
interface. Thus, since the planes of constant amplitude are almost parallel to the plane of the
interface, the uniform-plane-wave approximation will be reasonable when the media has a large
index of refraction, and the angle of incidence is not too large.

The approximations can be removed simply by computing the scattered field, E,, with a method
that includes the interaction with the interface and the effects of the nonuniform plane wave. In
addition to the added complexity of the computation, this approach would have the drawback that
the radar cross section will no longer be independent of burial depth or incidence angle.

However, the definition (14) is still the appropriate definition for use with the modified radar
equation (13), even when the exact scattered field is used.

4. Radar Cross Section of a Conducting Flat Plate Embedded in Lossy
Media

The first object to be considered is scattering from a three-dimensional, perfectly conducting,
rectangular flat plate that is illuminated by a uniform plane wave, and that is embedded in an
infinite, lossy medium. Various approaches for calculating the scattering from a flat plate in free
space have been successfully applied; the solution derived here parallels the physical optics
solution outlined by Balanis [2].

As depicted in Fig. 10, the flat plate has length equal to a and width equal to b. As shown in Fig.
11, the incident plane wave is assumed to have TE* polarization (electric field transverse to the x -
axis) and lies on the § —Z plane. The incident electric and magnetic fields can therefore be
written as

| = nHo(j" cosH, + Zsin G,.)e_”(ysme"—""se’) (15)
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ﬁi = iH e‘fY(YSine,-—zcosei) (16)
where the propagation constant v is defined as
y=B-ja, -

in which the real part 8 is interpreted as the phase constant, and the imaginary part o is the
attenuation constant.

Fig. 10.  Uniform plane wave incident on perfectly conducting, rectangular flat plate
embedded in lossy media.

E’ H’

<Y

< b/2 b/2

Fig. 11.  TEX-polarized uniform plane wave incident on flat plate in ¥ — Z plane.
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The total scattered fields are given by

B = —joA— j——V(V-A)- LV xF (18)
oule €
B B »
A =—VxA- joF- j—V(V-F), (19)
n OUE

where A and F are the magnetic and electric vector potentials, respectively, which can be
calculated using the expressions

A= ZL—:?H‘[' Ix',y',2") e-rjyr av' (20)
and
F:%IJ.LM(x',y‘,z‘)e;nr @ @1

in which J and M are electric and magnetic current densities.

In the far field, the expressions for the electric and magnetic fields simplify considerably. The
radial components of the E and H fields become negligible, and it has been shown that the far-
field components can be written as [2]

E =0 (22)
E, = - jo[ 4y +1F, (23)
E, =~ jco[A¢ - nE,] (24)
and
H =0 (25)
©
H, = J?[Aq, —nF,) (26)
[}
H,= ——Jn—[Ae +nf], 27)
in which the vector potential components have also simplified to
iy
4, =X N, (28)
4nr
pe
A4, = N, 29
LY A 29
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)

F==—1I, (30)

4mr

ge "
F, = L, . 31
4 T @1

The factors Ny, N, L, and L, are expressed as

No = [[ (4, cosBcosd +J, cosbsin g - J, sin 9);3””ds' . (32)
Ny = [[(~J.sin¢+J, cosp)e™ds (33)

Ly = [[(M, cosocosd+ M, cosBsin  — M, sin0)e™ ds (34)
L=J[ (=M, sin ¢ + M, cosp)e™ ds' . (35)

For this particular problem, the magnetic current density (M) is zero, such that L, = L,=0.

Using the physical optics approximation, the current density (J) induced on the surface of the
plate by the incident plane wave can be represented as

I, =2ixH'|,oo =§2H e V"% (36)

=y

The expression given in (36) is exact for a plate of infinite extent, but neglects edge effects for
finite plates. The radar cross section predicted by this technique therefore becomes less valid
toward grazing incidence of plane waves. A further drawback in using the physical optics
approximation to calculate the monostatic radar cross section for a flat plate is that the values
calculated are polarization independent; that is, the calculated RCS for both TE* and TM*
polarizations are equivalent, despite the fact that measurements have shown this to be incorrect,
especially near grazing incidence. Nevertheless, physical optics techniques provide results that are
quite accurate at and near specular directions [2], and provide a straightforward means of gaining
a greater understanding of the scattering behavior of objects (i.e., flat plates) embedded in lossy
media.

Combining (22) - (36) allows the scattered field components to now be expressed as follows:

E =0 (37)
ve "
E = —JZW A (33)
e
E,=-IC _nw, (39)




~ J) e—er
6 1 ¢ (41)

. ~fyr
Hy=- LN, . “2)

Using (32) and the result from (36) that J, = J, = 0, N, can be expressed as

Ne _ st(zHoe—msme,. )Coses sin ¢sefy(xsinecos¢+ysinesin¢)dx.dy.
(43)

_ . DI ivy(—sin®,+sin,sindy) g 4 al2 Jyx'sin®; cosdy 7t )
=2H cos0,sin d)sj_b/ze dy J_me dx
The integrals included in this expression are of the form
c/2 c/2 /2 .
L/ze” dz = L/zefﬂ e%dz = J:/ze“z (cosPz + jsin Bz)dz . (44)
From [8], it is known that
J'e‘” sin Bzdz = 2e > (asin Bz —Bcos Bz), (45)
o +p
e™ cosPzdz = 2e 5 (ctcosPz —BsinBz). (46)
o +p
Using these relationships, it can be shown that
rlz o gl = _:Z___ e—5(a+j[5) _ ef(a”B) . (47)
~cl2 B - ja

The use of (47) allows the integrals in the expression for N, to now be easily evaluated. That s,
setting

P2 py(-sinB+sinG,sing,) g 4 :
Y= f_b/ze ay', (48)
and letting
B'=P(sinB,sin¢, —sin6,) (49)
o'=o(sin@,sing, —sin9,) , (50)
the results of (47) allow the integral in (48) to be evaluated by observation, giving the result that
j R LI
_ ']. '[85( 1!3)__25( JB)]. 1)
p'—jou

The second integral in the expression for N, can be similarly evaluated by setting

X = a/2ejyxvsine,c05¢,cbcn (52)

—al2

and letting
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B"=PBsin6, cosd, (53)

o"=asinB, cosd,, (54)
such that
X :—j,—[e"g(“'” ") _ g '3')} . (55)
p"~ja"
The final expression for N, can therefore be written as
Ny =2H XY cos,sind, . (56)

Using these results, the expression for N, » can also now similarly be written as
N, =2H XY cos, . 7N

Having solved for N, and N, the scattered fields are then obtained using Equations (37) - (42),
such that

E =0 (58)

s =—jn ;Z;’ (xr cos@, sin d, Je ™" (59)
s =—JN '}ZIZ; (XY cos¢, )e (60)
H =0 (61)

e (62)

H; = iﬂ (63)

As seen in Fig. 10, the plane of the incident electromagnetic field for this problem is defined as

¢.:173, 0<0 <=
b2 2

For the purposes of this study, the interest is in monostatic backscattering from the plate, meaning
that

From (60) it can be seen that in the backscattering direction (¢, = 3?“), E; = 0; hence, the total

backscattered field (E®) is equivalent to E;. Tt must also be noted that the factor X in Equation
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(59) requires further investigation, since at ¢, = 37“, X — 0/0. Letting f (d)s) = numerator of X,

g(d)s) = denominator of X, substituting in for o" and B", and invoking L'Hospital's rule, it can be
found that

S '(¢s = “2_) _a(g— jo)sin®, __
' _EE B (B-ja')Sines -
g((bs— 2)

such that X o n > a Similarly, it may be seen from (51) that L'Hospital's rule must also be

2
invoked to ascertain the value of the factor ¥ at normal plane wave incidence (9, = 0°). By doing

s0, it can be found that ¥, . — b. The backscattered electric field can now be expressed as

E; = jnﬂi’-(aY cosf, e, (64)
2mr
where Y is as given in Equation (51), with (since 6, =9,)
B'=-2Bsin0, (65)
o'=-2asinb, . (66)

Utilizing the new definition of radar cross section as given in (14), in which the amplitude of the
incident plane wave illumination is referenced to the dominant scattering point, the radar cross
section of the flat plate can thus be expressed as

(2

2
24mn)” 00520, for 0, # 0

—|yYe
i
Cc, = ﬁ , 67)

232
a—b—|y|2 for9,=0
L =«
The factor d in (67) is defined as the distance from the coordinate system origin (center of the flat
plate) to the dominant scattering point of the target. When the plate is oriented normally to the
direction of the incident wave (8, =0, = 0), a specular reflection occurs, and d = 0. However, as
the incidence angle varies from 8, = 0, the dominant source of energy scattered back to the radar
is that diffracted from the edges of the flat plate, such that

d= %sin 0, . (68)

4.1. Calculated Radar Cross Section for Buried Flat Plates

Fig. 12 - 15 show the calculated radar cross section for a SA x 5A (A = free space wavelength)
rectangular flat plate embedded in four different types of lossy soil (as defined in Table 1) as a
function of aspect angle (-n/2 < 8 < /2) at a frequency of 1.0 GHz. Fig. 16 compares the
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calculated radar cross section for the same SA x SA flat plate located in a lossless medium (free
space) with the calculated radar cross section of the plate embedded in soil 4.
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Fig. 3. Principle plane monostatic radar cross section for a SA x 5A rectangular flat
plate embedded in dry sand.
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Fig. 4. Principle plane monostatic radar cross section for a 5A x 5A rectangular flat
plate embedded in San Antonio clay loam with 5% water.
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Fig. 14.  Principle plane monostatic radar cross section for a 5A x 5A rectangular flat
plate embedded in San Antonio clay loam with 10% water.
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Fig. 15.  Principle plane monostatic radar cross section for a 5A x 5A rectangular flat
plate embedded in San Antonio clay loam with 20% water.
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Fig. 16.  Comparison of principle plane monostatic radar cross section of a 5A x SA
rectangular flat plate embedded in free space vs. San Antonio clay loam with
20% water.

In the course of examining Fig. 12 - 16, it becomes immediately obvious that, counter intuitively,
the maximum of the scattered field from the flat plate embedded in the lossy media becomes larger
as the loss factor increases, and in all cases is larger than that of the flat plate in free space. This
is readily explained, however, by noting that the physical size specified for the flat plate in each
simulation was the same, whereas its electrical size increased as the loss factor of the soil
increased. That is,

A G 1
effective f f \/SI ’

where & and p are the complex constitutive parameters (permittivity and permeability,

respectively) of the media in which the plate is embedded, and fis the frequency of operation. It
is therefore clear that as the loss factor of the soil increases and || becomes larger (y is assumed
in the above cases to be equal to that of free space: 41 x 10-7), A efeciive DECOMES smaller, and the
electrical size of the flat plate increases. From (67) it is therefore seen that the scattered field for

normally incident plane waves will similarly be larger.

(69)

The second observation that can be made from the above plots is that the sin(x)/x pattern that
typically characterizes the radar cross section of a flat plate (in free space) versus aspect angle is
progressively attenuated for the flat plate embedded in soils 1, 2, 3, and 4, or in other words, as
the loss factor of the media increases. This may be understood by observing that the sin(x)/x
pattern is generated by the energy which is scattered from the two edges of the flat plate that are
parallel to the X -axis interacting in a constructive and destructive manner. That is, as the phasing
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between the diffracted energy from the edges varies in conjunction with the variation in aspect
angle of the plate, a pattern of peaks and nulls occurs. Ina free space medium, the magnitude of
the diffracted energy from each of the edges is essentially equivalent, such that destructive
interference produces deep nulls in the RCS pattern. In a lossy medium, however, the diffracted
energy from the far edge of the flat plate (with respect to the radar) is significantly attenuated in
comparison to the energy scattered from the near edge. Therefore, as the aspect angle of the
plate is varied from normal incidence such that the relative distance between the edges increases
(with respect to the radar) and the amplitude of the scattered energy from the far edge is
significantly reduced with respect to the near edge, the RCS of the plate becomes dominated by
the scattering from the near edge, and the interference pattern dampens out.

This phenomena is well-illustrated by Fig. 17-18. Fig. 17 is 2 4096-point IFFT of the stepped
frequency response (0.5 - 2.0 GHz) of a rectangular flat plate (a = b = 59.02 inches) in free space
oriented at an angle of §; = 8¢ = 30° with respect to the radar. The scattering from the two edges
is clearly resolved, and the amplitude of the diffracted energy from each of the edges is seen to be
equivalent. Fig. 18 is a 4096-point IFFT of the stepped frequency response (0.5 - 2.0 GHz) of the
same rectangular flat plate (@ = = 59.02 inches) oriented at an angle of 6, =6, =30° with
respect to the radar, but embedded in San Antonio clay loam with 5% water. Again the scattering
from the two edges is clearly resolved; however, the energy diffracted from the far edge of the
plate is highly attenuated (by ~ 40 dB) in comparison to that of the near edge. It therefore
becomes clear as to why the interference pattern disappears.

-10 -5 0 5 10
Distance (feet)

Fig. 17.  One-dimensional image of scattering from rectangular flat plate (@ = b = 59.02
inches) located in free space and oriented at angle of 30° with respect to radar.
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Fig. 18.  One-dimensional image of scattering from rectangular flat plate (a = 5 = 59.02
inches) embedded in San Antonio clay loam with 5% water and oriented at
angle of 30° with respect to radar.

As a final observation, the fact that scattering from the far edge of the flat plate is highly
attenuated relative to scattering from the near edge of the plate leads one to conclude that the
process of attempting to identify objects embedded in a lossy medium by means of a
“characteristic"” radar cross section signature may be a very difficult task. Since physical objects
of even modest complexity are typically composed of a number of scattering centers which are not
equidistant in space relative to the illuminating radar, the radar cross section of an object
embedded in a lossy medium will change dramatically from its analogous free space value (as has
been seen), and the measured value will be highly dependent not only on the orientation of the
object, but also on the constitutive parameters of the medium.

5. Radar Cross Section of a Perfectly Conducting Circular Cylinder
Embedded in Lossy Media

5.1. TMZ Polarization

The second object to be considered is scattering from a two-dimensional (infinitely long),

perfectly conducting circular cylinder having a radius of a that is illuminated by a uniform plane

wave and that is embedded in a lossy medium. Cylinders are an important class of geometrical
. objects to consider, since they are representative of a wide range of practical scatterers, such as
missiles, fuselages, storage tanks, pipelines, etc. The exact solution for scattering from a two
dimensional cylinder in free space is well known and can be found in several references. The
derivation given here parallels those given in [2] and [9].




To begin, it is assumed that a normalized plane wave traveling in the +X direction is incident upon
the cylinder as shown in Fig. 19. This plane wave is TMZ-polarized, and can be represented as

E =2E.e™, (70)

where the propagation constant y remains as previously defined in (17). In calculating scattering
from the cylinder, it is convenient to express this rectilinear form of the incident plane wave in
terms of cylindrical wave functions, since the surface of a cylindrical structure is most
conveniently defined using cylindrical coordinates. It has been shown [2,9] that the plane wave
can in fact be expressed as an infinite sum of cylindrical wave functions, such that

B = 3E,e ™ = 2E,e Pt =3E, Y jJ,(vp)e™, (71)

n=—ow

where J, (yp) is an nth-order Bessel function of the first kind, and # is an integer.

Fig. 19.  Uniform plane wave incident on perfectly conducting circular cylinder
embedded in lossy media (TM? polarization).

The total field that exists with the conducting cylinder present is given by
E'=E+E°, (72)
where E* is the scattered field. Since the scattered field travels in the outward direction away

from the cylinder, it can be expressed using the same form as the incident field, but with Hankel
functions replacing the Bessel functions, such that

B =iE, 3 j"a,H (1p)e™ (73)

n
n=—w

in which a,, represents the as yet unknown amplitude coefficients of the cylindrical wave
functions. These coefficients may be solved for by utilizing the boundary condition that the total
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field at the surface of the cylinder must be equal to zero (since the cylinder has been chosen to be
perfectly conducting); that is,

E =2E'(p=a,0<¢<2m)=0. (74)
Therefore, combining (72), (73), and (74),
£, 3" [77e"(J,(va) +a,HO (1a))] =0, 75)
such that
J,(va)
=7 76
an H(z) (ya) ( )

The scattered field from the cylinder may now be written as

= -1k, Z J7 H(z)( )) Hr(:z)(YP)ejmb

n=—oo

e e19) 7
=—on§(—J) o (Ya)H (vp)cos(nd)
where
1 n=0
€,= . (78)
2 nz0 '

For the purposes of calculating scattering from the cylinder in the far-field region, the large
argument approximation for the Hankel function can be used to reduce the expression for the
scattered field. According to [5],

|z}>e0 Y PR
(2\( ( J; ( 2 4) i (79)

where z is a complex number. This expression can be rewritten as

[z}
HO(2) = ,/2’ 2J jrgre (80)

such that in the far field, (77) can be expressed as
Es bp':w_ E { 2.] —]’YPZ n(
TC'Yp n=0 ,(1 )

For a two-dimensional target, the scattering parameter is typically referred to as the scattering
width or radar cross section per unit length, and is conventionally expressed as [2]

Z )) cos(nd). (81)




2

s

O,y = gl_t)I}Oan—é;]T = mznp'ﬁ"r .

l—s

(82)

However, in order to be consistent with the new definition for the radar cross section for an
object embedded in a lossy full space as given in (14) in which the loss along the path from the
dominant specular point of the object to the radar is factored out, the above expression for the
scattering width must similarly be modified, resulting in

2

oI KR-a) s |e"““7’KR'“)ﬁ' >
o, =lm2x =lim 2rpt——-—, 83
b = 5 STP Sm(r)e 2 oo TP e 2 (83)

where as before, a is the distance from the coordinate system origin to the dominant specular
point of the object, and the amplitude of the incident wave is normalized to that at the specular
point. In the case of the cylinder, the distance to the specular point is a, the radius of the cylinder.
Substituting the expression for E* given in (81) into (83) provides the result for the TM?
scattering width of the two-dimensional cylinder that

“2dim(y) J (ya) 2
e :4‘e a\Y s(no)l 84
Ml R Zoe H(ya) cos{rmb) 9

As previously noted, for purposes of this study, the interest is in monostatic backscattering; as
seen in Fig. 19, the angle ¢ is therefore equal to 180°, and the expression above can finally be
written as

2

“2dfim(y)] w J ( a)
o™ = 4i 1) 4| 85
MEag -\/? ;0( ) n an)(ya) ( )

where €, is as given in (78).

5.2. TEZ Polarization

The second problem of interest with regard to the cylinder is scattering when a TEZ-polarized
plane wave is normally incident upon it as shown in Fig. 20. Again, the cylinder is assumed to be
a two-dimensional (infinitely long), perfectly conducting circular cylinder having a radius of a, and
is embedded in a lossy (full space) medium. It is most convenient in solving this problem to use
the magnetic field to find the scattering width of the cylinder. Proceeding as before, then, the
normalized plane wave is assumed to be traveling in the +x direction, and can be represented as

H' =iH e =iH e =2H, 3" j"J (yp)e”™ . (86)

Again, the total field that exists with the cylinder present is the sum of the incident and scattered
fields, such that

H=H +H’, (87)
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where H’ is the scattered field. The scattered field can be expressed using the same form as the
incident field with Hankel functions replacing the Bessel functions (since the scattered field is
traveling outward away from the cylinder), such that

H* =zH, i J"b, H (yp)e™ | (88)

where b,, are the presently unknown amplitude coefficients of the cylindrical wave functions. The
total magnetic field is therefore given by

H'=H, i [j‘”e"""’(J,,(vp) +b,,Hff)(Yp))] : (89)

n=—0oo

Fig. 20. Uniform plane wave incident on perfectly conducting circular cylinder
embedded in lossy media (TE? polarization).

The boundary condition that may be utilized to solve for the coefficients 5, is that the tangential
component of the total electric field must go to zero at the surface of the cylinder since the
cylinder is a perfect conductor. That is,

¢E(p=a,0<$<2n)=0 . (90)
The electric field can be found using Maxwell's Ampere equation,
LR 1)
Jjog

which in this instance reduces to

g | 100 . oH
Jjoe pp o op

(92)
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since H' is composed solely of z - polarized components. Solving, then, for the §- polarized
component of the total E field results in

£y =2 3 e o0) + 8,1 (), 3

where the ' sign indicates a partial derivative with respect to the argument of the Bessel or Hankel
function. Combining (90) and (93),

YH, T en e
JEe S e (7, (1a) +8,H (ya))| =0, 94)
leading to the result that
J,(va)
b, =——7" . (95)
H (va)

The scattered magnetic field from the cylinder may therefore now be written as

)

Y A - —n J;x a jn
0 =-2H,) j _({)('Y_H;(f)(yp)e”)
H,”(ya) ©6)
= H, 5 (e, T ) cosnd)
n=0 H ('Ya)

n

n=—o0

where €, is as given in (78).

The large argument approximation for the Hankel function as given in (80) can again be used to
reduce the expression for the scattered field in the far-field region, such that

_ oo .. J
H* = -3H, ﬁ—e’""Zan ——(';Sl)cos(nd)) . (97)
Ve =" HY(ya)
Using this expression for H* in the modified definition of the scattering width as given in (83),
and again noting that ¢ = 180° for monostatic backscattering, the scattering width for a two-

dimensional cylinder having a normally-incident TE?-polarized plane wave can thus be written as
y y p p

“2aim(y)] « '
4 -1)", ____J(,,qua)
ﬁ n=0 Hn- (’Ya)

5.3. Calculated Radar Cross Section for Buried Cylinders

Fig. 21 - 24 show the calculated scattering width as a function of frequency for a two-
dimensional, perfectly conducting cylinder of infinite length having a radius of 0.5 m. The
cylinder is embedded in the same lossy soil types as used in the flat plate calculations (as defined
in Table 1). Fig. 25 then compares the calculated scattering width for the same cylinder located in
a lossless medium (free space) with the calculated scattering width of the cylinder embedded in
San Antonio clay loam with 20% water.

2
TE® _
He2q

(98)
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Fig. 21. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters
embedded in dry sand.
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Fig. 22.  Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters
embedded in San Antonio clay loam with 5% water.
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Fig. 23. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters
embedded in San Antonio clay loam with 10% water.
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Fig. 24. Monostatic scattering width for a two-dimensional cylinder of radius 0.5 meters
embedded in San Antonio clay loam with 20% water.
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Fig. 25.  Comparison of monostatic scattering widths for a two-dimensional cylinder of
radius 0.5 meters embedded in free space vs. San Antonio clay loam with 20%
water.

It can be seen from Fig. 21 and 25 that the TE?-polarized scattering width of the cylinder located
in free space or in a relatively low-loss medium displays an oscillatory behavior at the lower
frequencies; the oscillations dampen out with increasing frequency, approaching a constant value
of ma as the wavelength becomes small with respect to the size of the cylinder. The oscillations
are caused by a creeping wave that is excited by the TE?-polarized incident field which travels
around the rear of the cylinder and which therefore varies in and out of phase with the specular
scattering from the near side of the cylinder as the frequency changes. The contribution from the
creeping wave to the scattering width becomes progressively smaller as the electrical size of the
cylinder increases (due to the decreasing wavelength), such that the oscillations are attenuated as
the frequency is increased.

More importantly with regard to this study, these figures show that the oscillations are also
severely attenuated as the loss factor of the medium in which the cylinder is embedded increases.
For instance, the oscillations are barely discernible for the cylinder embedded in San Antonio clay
loam with 5% water (Fig. 22), and have completely disappeared for the cylinder located in San
Antonio clay loam with 10% and 20% water. The reason for the dampening of the oscillatory
behavior is that the creeping wave return from the cylinder in a lossy medium is significantly
attenuated in comparison to the specular backscattered energy, largely because the creeping wave
must traverse a longer distance in the lossy medium (with respect to the radar) than does the
specular return. As the loss factor of the medium in which the cylinder is embedded is increased,
the amplitude of the creeping wave is increasingly attenuated, such that the scattering becomes
completely dominated by the specular return; hence, the oscillations vanish.




These results further substantiate the conclusion previously suggested that the process of
attempting to identify objects embedded in a lossy medium by means of a "characteristic" radar
cross section signature may be a very difficult task, due to the fact that scattering from an object
embedded in a lossy medium changes dramatically from its analogous free space value, dependent
not only on the orientation of the object with respect to the incident field, but also on the
constitutive parameters of the medium.

6. Radar Cross Section of a Perfectly Conducting Sphere Embedded in
Lossy Media

The exact solution for the field scattered from a conducting sphere in free space was obtained in
the early part of this century by Mie, and is quite well known. The solution is also valid when the
media has electric permittivity and magnetic permeability different from free space. For
completeness, the solution is summarized here. The geometry is described in Fig. 26. Assuming a
time dependence of e’, and using the vector spherical harmonics as described in Jackson [4], the
scattered field from a sphere of radius a can be written

E, = -12-2 j*J4an(2p +1)[ai(p)h§?(kr)i,,,ﬂ 5B f,(f’ )y, h;”(kr)i,,,ﬂ} (99)

p=l

where the coefficients oci( p) and 3, ( p) are obtained by forcing the continuity of the tangential
electric field intensity and the normal magnetic flux density at the surface of the sphere. This

results in
K (ka)
a,(p)= —[W + 1], (100)
i[rh;‘)(kr ]
B.(p)=d— +1| (101)
g;[ H (k)] )

The spherical Hankel's functions are [5]

oy D7 L& (prg)t 1
h;)(z)_————z e ;q!(p_q)! =i (102)

and

@(, G L& (pg) 1
)= 2 (-2 (103)

X ., is the vector spherical harmonic given by

1

Xp,m(e’ d)) = mvpﬂ (6,¢) >

(104)




where L is called the angular momentum operator,

_ ~ 1 0 ~0
L=—jFxV=——=- b=, !
V=P Jo— (105)
and the scalar spherical harmonics are
_ 2p+1(p-m)' m jmé _ KR 7l
Y,.(6.9) —\/ i it (0s)e™ = (1), (6.0) (106)
with Pp’"(x) the associated Legendre function of order p ahd degree m [4]
meon_ D" gym ar 2 _4\?
Pr(x)= 75 (1-x?) e (x*-1)". (107)

The = refers to the two senses of circular polarization as the incident field is assumed to be a
circularly polarized plane wave incident along the Z -axis, given by [4]

_. l\+ o~ ) o) - —
E, =("—”)ezkz =3 7\ Jan(2p+1) j‘,,(kZ)X,,,ﬂw_L—l-ijp(kz)xI,,il . (108)
V2 ] k
p=

Note that, when the media is lossy, the incident plane wave has unity amplitude at the origin, but
not at the specular point, z=a (k is chosen to have a negative imaginary part, indicating loss in
the direction of propagation).

N>v

Conducting sphere
radius = a

A

y

Fig. 26  Plane wave incident on a conducting sphere with radius a.
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6.1. The Angular Momentum Operator and Vector Spherical Harmonics

In evaluating the vector spherical harmonics, it is useful to represent the angular momentum
operator (105) as [4]

L=%xL +yL, +iL,

L +L L -L ., > (109)
=X +y —+2zl,
2 2j
where the operators L, L, and L, have useful properties and are given by
L+:ej¢ i.*___'l_.é. , (110)
o6 tanb o0
L=et -2 S 0] (111)
00 tanb 0
and
0
L=-j- 112
When operating on the spherical harmonics, these operators have the simple properties
LY, (8,0)=(p-m)p+m+1)Y,,.(6,), (113)
LY,,(0,60)=(p+m)p-m+1),,,(6.9), (114)
and
LZ},P,m(e’d)) =mYp,m(ea¢)~ (115)

Thus, the vector spherical harmonics become

%onl0.0)= 5 (W=l m s, o mlp =m0, )

: 1 n
5 o=+ m s = (o mip=mE, )5 (1)
+[2mY p,m]i

A useful recursion relation can be obtained for the scalar spherical harmonics using the recursion
relations for the associated Legendre functions [5]

B 1 (2p+3)(p—m+l)!.
Ypum(8,0) = ( )\[

p-m+1 (p+m+1)!

.{(2p+1)\}( (p+m)! cosOYp,m—(p+m)\/( (p+m-1) };_Lm}

2p+1)(p—m)! 2p—1)(p—m—1)!

(117)
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The first few scalar spherical harmonics are tabulated in [4] and [6].

6.2. Back-scatter Cross Section of Spheres in a Lossy Media
The case of interest is the back-scatter case where 6 = ¢ =0. Since

Ltllgo — Y2,i-1 YZ,ize___oz)/;,tZ e:0=0,
the recursion relation (117) shows that
Yol =0, (118)
and
Yl =0, (119)
for all p. The vector spherical harmonic becomes
v ~ A 1 2 +1) ~ o~
X,1(0=0,0)=—%,,(6=0,0)(%+ )= ( Pz )9) (120)
The scattered field given by (99) simplifies to
° (2p+1) B.(p) o AL n
-5l [i(p>h;3>(kr>—J——k(ji-g(rh;@(kr))](xijy) a2

where we have also used the fact that
hP () . 10 . e
vV x (K2 (kr)X,,(6,0)) = [—’-——;— p(p+1)Y,,,,,,(e,¢)Jr+;5(rh§f’(kr))r xX,.(6,0), (122)

and the interesting result that
FxX P’ﬂ(e’(b)’e:o =FjX p,ﬂ(e,(p)lezo. (123)

The back-scatter radar cross section for the conducting sphere (using the definition (14)) is

> (172240 () -B.(P)] -

p=l 2

_ 1 —4|Im(k)|a
He T i ¢

o (124)

6.3. Behavior of Large Spheres in Lossy Media

The value of the new definition for radar cross section (14) can be appreciated by examining the
behavior of the series for the scattered field for large spheres. To this end, it is useful to examine
the coefficients, o, (p) and B, (p), in (99). Using the series expressions, (102) and (103), for the
spherical Hankel's functions,

2 (p+q)! 1
a,(p)=(-1)"e 21ka;q,(p g)! (-2 jka)*

3 (p+q)! 1

S q(p-9) (2 jka)’

-1 (125)
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and

M~

I
(=3

(p+q)! ( )
(p+g) (1, g} 1
B.(p)=(-1)7 e 2 q(p-9)! +Jka)(—2jka)q i

Z(l”—)‘(l— ji_)+

S q(p-q)! (2 jka)?

1. (126)

The point to note is that for large spheres in lossy media, the coefficients grow as

. e2|Im(k)|a‘

By normalizing the radar cross section as described in (14), the loss path is measured to the
specular point of the sphere, and the radar cross section is consistent with the free-space radar
cross section. Thus, the growth in the coefficients is canceled in the expression (124) for the
radar cross section G .

The radar cross section behaves in the way intuition would predict, as will be demonstrated in the
examples which follow. Because of the loss, the creeping wave is attenuated, and the specular
return remains fairly constant with frequency.

6.4. Calculated Radar Cross Section for Buried Spheres

The monostatic radar cross section of a perfectly conduction sphere with a 1 m diameter
embedded in dry sand is illustrated in Fig. 27. Since the dry sand is not very lossy, evidence of the
creeping wave is quite evident for frequencies below about 1 GHz. The oscillation due to the
interference between the creeping wave and the specular return is essentially gone for f >2 GHz.
However, the same sphere embedded in free space would show significant creeping wave
interference to nearly 3 GHz (see Fig. 31). The radar cross section of the sphere is behaving as if

the frequency were increased by a factor of g, ~ 1.6.

Fig. 28 - 30 show the radar cross section when the same sphere is embedded in San Antonio clay
loam with 5%, 10%, and 20% water by weight. This soil has a higher dielectric constant than dry
sand and is a much more lossy medium. As the water content is increased, the loss and the
dielectric constant both increase. Evidence of the creeping wave is present only in the soil with
5% water because of the much higher losses in the other soil models. Clearly, the simple model
for large spheres in lossy media is simply

o, =na’, (127)

ue

just as it is for large spheres in free space. Using (127) for the 1 m diameter sphere embedded in
any of the San Antonio clay loam soils results in less than 1 dB error. Fig. 31 compares the 1 m
diameter sphere in free space with the same sphere embedded in San Antonio clay loam with 20%
water. Obviously, the high-frequency approximation for the radar cross section (127) is valid at
much lower frequencies for the sphere embedded in the soil than for the sphere in free space. In
fact, a good approximation for the response of the embedded sphere would be the response of the

sphere in free space with the frequency scaled by a factor of fe_, ~6.

soil
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Fig. 27 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5
meters embedded in dry sand.
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Fig. 28  Monostatic radar cross section of a perfectly conducting sphere of radius 0.5
> meters embedded in San Antonio clay loam with 5% water.
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Fig. 29 Monostatic radar cross section of a perfectly conducting sphere of radius 0.5
meters embedded in San Antonio clay loam with 10% water.
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Fig. 30  Monostatic radar cross section of a perfectly conducting sphere of radius 0.5
meters embedded in San Antonio clay loam with 20% water.
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Fig. 31  Comparison of monostatic radar cross sections for a sphere of radius 0.5 meters
embedded in San Antonio clay loam with 20% water vs. free space.

7. Conclusion

Electromagnetic imaging of objects buried beneath the surface of the soil is complicated by the
dispersion and loss of the soil dielectric. We have demonstrated its effect on loss, resolution, and
image contrast. Not only do soil dielectric properties have implications with regard to appropriate
frequencies and bandwidths for optimum imaging, the introduction of loss also requires a new
definition for the radar cross section. We have introduced a new definition for radar cross section
which is valid for objects in lossy media, while being consistent with, and comparable to, the free-
space radar cross section definition. This new definition is not only useful, but necessary in order
to compare the radar cross section of an object buried in soil with its free-space radar cross
section. Finally, we have presented methods of computing this radar cross section for several
canonical objects, and have included examples. In summary, the following conclusions and
guidelines can be drawn from this study:

« in the absence of surface clutter, lower frequencies are optimum;

e an optimum bandwidth exists;

e loss increases as bandwidth increases;

o very large bandwidths are not useful for imaging objects at large depths;

« in the absence of additional processing, contrast is reduced as depth increases;

» vertical polarization is best for large angles of incidence;

o the appropriate depth for computing losses is the depth to the dominant specular

- scattering point on the object;
o free-space radar cross sections scaled by the wavelength in the lossy media provide
reasonable estimates of the object's buried radar cross section;
« multiple scatterer interactions are less significant for objects buried in lossy media.
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Appendix A -- Dielectric Soil Models

A complete description of the model for the soil dielectric constant is contained in [1]; a brief
description is included here . The dielectric constant is given by

e=¢,8, (Al-1)

where ¢, is the relative dielectric constant (in general complex) and €, is the permittivity of free
space. The model for €, uses the Debye model [2] for the real part of the dielectric constant and
the losses due to relaxation in the dielectric, and it also includes a conduction-current loss term.
For the case of soil, which is a mixture of various minerals, water, etc., it is reasonable to assume
there will be static conductivity and more than one relaxation time constant, so the model used
here is

Ae! c
€, =€+ P—— j—-=g! — je! | Al-2
2:‘1+ij,, J(DSO r/ (A1-2)
where €/, is the relative dielectric constant at very high frequency, Ae ' is the static contribution
to the relative dielectric constant from the n relaxation term, t,, is the n** relaxation time
constant, o is the angular frequency, and o, is the static conductivity. The real and imaginary
parts can be separated

Ag!
g =g +) —2— Al-3
o ;1+m21,2, (A1-3)
and
" Ael ot c
B/=2 S+ (Al-4)

~l1+0’t  og,

Our approach will be to use measured soil dielectric constants obtained from the literature to
obtain a fit to €,,, Ae/, 1,, and &, that will provide a representative soil model for the conditions

of interest.

Dry sand has been measured and reported by Von Hippel [7]. Using the parameter-based model
above, and assuming that €, has only small, smooth variations between the data points reported
in [7], the fit shown in Fig. A1-1 can be obtained. The model uses five relaxations and the
parameters are shown in Table Al-1.

An example of soil with significant static conductivity is gray San Antonio clay loam as measured
by Hipp [10]. Fig. A1-2 shows the real part, ', of the relative dielectric constant as a function of
frequency for various dry-soil densities and various fractions of water by weight. Fig. A1-3
shows the imaginary part, €;. Not only is the soil very dispersive, but there is a large variation
between the samples. Three cases are chosen to represent this soil: 1.2 g/cc dry density with 5%
water by weight, 1.6 g/cc dry density with 10% water by weight, and 1.8 g/cc dry density with
20% water by weight. Using parameter-based modeling, the data was fit with four relaxation
terms. The parameters are listed in Table A1-2, and the resulting models are illustrated in Fig.
A1-4-6 along with the data points obtained from [10].
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Table A1-1

Frequency (MHz)

Dry Sand
Parameters to Fit Data from Von Hippel [7]
! (MHz)
e’ c, (S/m) Ae,, 2nT,
248 4.5E-07 0.06 1
0.058 9
0.04 80
0.03 600
0.02 6000
Dry Sand
30 0.05
Q_ Real Part A 4 0.045
2.5 i —x0.04
- - 1 0.035 3
Ww 2 Q
S i Imaginary Part 0.03 3
E 1sL 0.025%
& : S
§ - 0.02 A
B o
® 1r 0.015
05 [ [po-o1
- - 0.005
ol T
1 10 100 1,000 10,000

Fig. A1-1 Curve fit for €, for dry sand, based on data from Von Hippel [7].
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Table A1-2
Gray San Antonio Clay Loam
Parameters to Fit Data from Hipp [10]
1 ‘
Dry Density Water €0 o, (S/m) Ae!, 27T, (MHz) ‘
g Content
cnt’

1.2 5% 3.65 0.006 35
1.20 130
0.55 1200
0.15 2500
1.6 | 10% | 83 | 0036 3.5 40
0.85 110
2.0 1000
0.7 3000
18 | 20% | 160 [ 0.123 12.5 65
3.5 110
4.8 1200
2.8 6000

7 r -

Dielectric Constant

10 — J 100 “ B ’II,ODO I — 10,000
Frequency (MHz)
Fig. A1-4 Curve fit (solid line) to data (points) taken from Hipp [10] for gray San

Antonio clay loam with dry density of 1.2 g/cc with water content 5% of dry >
weight.

50




51

: g
2 8 3
8 Gt g s
s . e S o~
lllllllllllllllllllll rlllllllllbllVl|lii”Lo m % S O
......... : _ i e S
s v SO yt
" =) 28
\ "avu,.t w...oe
_ B 5 w o
" o SIR<]
: o & 55
=5 = 5
R _.UW
e
— 3 o o
Q o 3 g &z
g ph - o~ H.l
0’ == ~ W
- N HM g gE
s £3 = 538
S &3 > €%
~— ﬁ =
b 2 £a
> o o g=»
2 = 0 =
c .ﬂl o & -
@ - 3 \SI
> =0 72
8 2 2 e m.ﬁ
g 8L o & EF
g 2 8 - ~
=4 a O =
g 55
- o ° =
h R R
= 2%
T 2 2:
= m o=
== 23
pamat Sl
% Wu.. [ =] ~ "o
Sl ) =
e  ZI% 2 5T
o = o . =9 4
284 c S
S & = !
m g% JueISUOD 2L399IRId ER-R
JUBISUOD) 2113991910 LR S
o A
” <
N e
,ob 2
S




This Page Intentionally Blank

52




(1]

(2]

(3]

[4]

[3]

[6]

(7]

(8]

[

[10]

References

B. C. Brock, W. E. Patitz, Optimum Frequency for Subsurface-Imaging Synthetic
Aperture Radar, SAND93-0815, May 1993.

C. A. Balanis, Advanced Engineering Electromagnetics, John Wily & Sons, New York,
1989.

A. W. Doerry, A Model for Forming Airborne Synthetic Aperture Radar Images of
Underground Targets, SAND94-0139, January 1994.

J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, 1962.

M. Abramowitz, 1. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1972
(originally published by the National Bureau of Standards, 1964).

J. Mathews, R. L. Walker, Mathematical Methods of Physics, second edition, The
Benjamin/Cummings Publishing Company, Menlo Park, 1970.

A. R. Von Hippel, ed., Dielectric Materials and Applications, The Technology Press of
M.IT. and John Wiley & Sons, Inc., New York, 1954.

B. O. Peirce, A Short Table of Integrals, Fourth Edition, Ginn and Company, Boston,
1956.

R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book
Company, New York, 1961.

J. E. Hipp, "Soil Electromagnetic Parameters as Functions of Frequency, Soil Density, and
Soil Moisture”, Proceedings of the IEEE, vol. 62, no. 1, January 1974, pp. 98-103.

53




Distribution:

MS-0100
MS-0304
MS-0355
MS-0358
MS-0471
MS-0509
MS-0509
MS-0529
MS-0529
MS-0529
MS-0529
MS-0531
MS-0531
MS-0531
MS-0531
MS-0531
MS-0531
MS-0570
MS-0619
MS-0705
MS-0705
MS-0899
MS-9018
MS-0531
MS-0531

Document Processing for DOE/OSTI (7613-2) (10)
C. M. Hart (9100)
D. H. Cress (9134)
B. Boverie (9135)
M. W. Callahan (5802)
R. D. Andreas (2300)
W. D. Williams (2304)
B. C. Walker (2345)
B. L. Burns (2343)
A. W. Doerry (2345)
R. B. Hurley (2345)
W. H. Schaedla (2343)
W. E. Patitz (2343)
M. Axline (2344)
L. Bickel (2344)
T. Cordaro (2344)
W. H. Hensley (2344)
B. F. Johnson (5900)
Technical Publications (7151)
T. W. H. Caffey (6114)
M. W. Scott (6114)
Technical Library (7141) (5)
Central Technical Files (8523-2)
B. C. Brock (2343) (10)
K. W. Sorensen (2343) (2)

R.
D.
J.

R




