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ABSTRACT

A system for automatic generation of fuzzy rules is proposed
which is based on a new approach, called “Fuzzy Behaviorist,”
and on its associated formalism for rule base development
in behavior-based robot control systems. The automated
generator of fuzzy rules automatically constructs the set of
rules and the associated membership functions that implement
reasoning schemes that have been expressed in qualitative
terms. The system also checks for completeness of the rule
base and independence and/or redundancy of the rules to
ensure that the requirements of the formalism are satisfied.
Examples of the automatic generation of fuzzy rules for cases
involving suppression and/or inhibition of fuzzy behaviors
are given and discussed. Experimental results obtained
with the automated fuzzy rule generator applied to the
domain of sensor-based navigation in e prier: unknown
environments using one of our autonomous test-bed robots
are then presented and discussed to illustrate the feasibility of
large-scale automatic fuzzy rule generation using our proposed
“Fuzzy Behaviorist” approach.

INTRODUCTION

Several research groups have studied approximate reasoning techniques
as a means to mimic human reasoning capabilities in the sensor-based
control of complex systems (e.g. see examples in [1], [2]); in particular,
several researchers have investigated the use of fuzzy logic ([3], [4]) for
the autonomous sensor-based navigation of mobile robots in unstructured
environments (e.g., see [5], [6], [7]) including outdoor environments [8], [9].
In all these applications, the sensor-based decision making process has been
implemented as a set of fuzzy rules which, together, express the desired
navigation behaviors of the robot for various combinations of the sensory
input data. Very successful results have been achieved when the number
or complexity of the behaviors embodied in the fuzzy rule base was small.
When the number or complexity of the behaviors increased, however, and /or
the perception system grew more sophisticated (i.e., more sensory input data
is provided), the typical difficulties encountered with large rule base systems
emerged: the lack of established formalism for the development of rule bases,
in particular to provably address completeness, interaction, and redundancy
of the rules, made the actual coding of the fuzzy rules an iterative empirical
process, requiring lengthy trial-and-error experiments.




In an attempt to alleviate this general shortcoming of rule-base
system development, we recently proposed a “Fuzzy Behaviorist”
approach [7], [8], [9], [10] which provides a formalism for the development of
fuzzy rule systems for the behavior-based control of autonomous robots. This
approach and its associated formalism have introduced features which allow
for automatic generation of fuzzy rule bases, once the desired set of behaviors
(i.e., the overall decision-making strategy) has been expressed qualitatively
by a user. The objective of this paper is to present our approach and recent
results in developing this automatic system for generation of fuzzy rules,
including some experimental results obtained with the system in the context
of sensor-based navigation in a¢ prior: unknown environments using one of our
autonomous test-bed robots [11], [12]. The next section briefly reviews the
features of our proposed “Fuzzy Behaviorist” approach which directly support
automatic generation of fuzzy rules, while the following sections present the
system’s approach, development, and experimental results. The last section
includes our conclusion and proposed future work on the automated system.

FUZZY BEHAVIORIST APPROACH FOR SENSOR-BASED
ROBOT CONTROL

The basic premises underlying our proposed Fuzzy Behaviorist
approach (7], [9], [10] and pertinent to the development of the automated
system for fuzzy rule generation are as follows:

e Each action of the robot results from the concatenation of elemental
behaviors.

e Each elemental behavior is a direct mapping from a single stimulus mode
to a single output control.

e Each behavior is represented by one or a set of fuzzy rules which are
defined by the membership functions of the rule’s antecedent (stimuli)
and consequence (output controls).

e Each mode of stimulus corresponds to a dimension of the input space and
is independent of other stimulus modes.

e Stimuli (antecedents of rules) are represented by membership functions
on their respective input dimension, with membership ulz) = 1
corresponding to regions where the behavior is triggered with “full
strength.” - Input regions with membershlp 0 < p(z) < 1 correspond
to conditions where there is a “tendency” for the behavior to trigger.

e For behaviors effecting the same output control dimension, the regions
of “full strength” stimulus of the various behaviors do not overlap in the
multidimensional input space. However, regions of tendencies can overlap,
resulting in several behaviors possibly triggering for an input data in these
regions.

. Ea%ch type of input data provided by the semsors is fuzzified with
a membership function expressing, as a possibility distribution, the
uncertainty associated with the specific measurement or calculation.

o Triggering of any behavior takes place when the current input data
and the antecedents of the behavior’s fuzzy rules have non-empty fuzzy
intersection. The triggering strength transferred to the output control
is dictated by the fuzzy intersections of the input data and the rule
antecedents.

e When several fuzzy rules trigger simultaneously for a given set of input
data, all resulting consequences are taken into account in the concatenated
output membership function, which is obtained directly from the laws of
combinatorial mferencmg of the Fuzzy Sets Theory [3}, [4]. Consequently,
no “conflict resolution” or “arbitrator” between behavior’s output is




required in a Fuzzy Behaviorist system, therefore alleviating one of the
major hurdles which the Behaviorist community has long been struggling
with.

e In the current system discussed below, a typical “center of area”
defuzzification scheme is used to generate “crisp” control set points for
those output variables that represent direct actuator commands.

With these features, rule bases embodying the elemental fuzzy behaviors
can be very easily generated (e.g., see [7], [9]) or augmented with additional
behaviors to handle situations of increasing complexity [9], {10]. In this latter
case, however, a very important aspect of the formalism which needs to be
emphasized here is the requirement for independence and non-overlapping
of the full strength regions of the behaviors. This often leads to the newly
added behaviors having to “be dominant,” or “be dominated by,” some of the
existing behaviors in one or more regions of the input space. This requirement
simply expresses the fact that for a single output control, only one “full
strength” action can be commanded for any given point (stimulus) in the
input space. In the automated system, this “dominance” is implemented
using the concepts of “suppression” and “inhibition.” In the “suppression”
mechanism, the output membership function of the dominant behavior is
modified, so that its weight will appropriately overpower that of the other
behavior in the c.g. calculation. If the membership function can not be made
adequately overpowering, due to previous dominances and/or suppression
requirements with respect to other behaviors, then the system uses the
concept of “inhibition” to express the behavior’s dominance. Applying
inhibition within the overlapping region of input space consists in partially
truncating the input membership function of the “weaker” behavior so that
the dominant behavior always triggers with a greater strength. Although
both suppression and inhibition mechanisms result in expressing the desired
dominance, their concepts are quite different: one basically operates on the
relative weight of the behaviors in the output space while the other modifies
the triggering conditions of the behaviors in the input space. This difference,
 which is transparent in the automated system, becomes significant when
one seeks to couple the system with learning modules for refinement of the
behaviors and/or of the rule membership functions through reinforcement
learning.

AUTOMATED SYSTEM

Just like different people may use different strategies, different rules, and
different qualitative variables to express their navigation process, and still
navigate efficiently “in their own way,” several strategies may be used to
embody a particular process in a rule base, i.e., there is not a single or unique
rule base representation of a given process. For example, a rule base for
obstacle avoidance may be built on the basis of an obstacle-distance strategy,
as was done in [7], with rules organized and developed for input conditions
in which obstacles are very near, near, far, very far, etc.; or on the basis of
the direction of obstacles, with rules organized and developed for obstacles
located on the right, center, or left of the travel direction. Because of the
requirement of our Fuzzy Behaviorist approach for each behavior to trigger
from a single input dimension, the expression into rules of various possible
strategies may appear quite different, even though the overall process and
resulting actions of the robot may be similar. In the automated system, the
user inputs the strategy for the rules in a “qualitative” form using the format
shown in Fig. 1.




name : RN

suppressing list : G? LF

E : 50

OQutputs : 20 -
Inputs : = Near - -

FIG. 1. Input format for the automated rule generation system.

The five-line format in Fig. 1 describes one rule, with the first line giving
the “reference name” of the rule, the second line listing the names of the rules
or behaviors which are suppressed (or inhibited) by this rule, the third line
giving the suppression parameter E (which will be described in the following
paragraphs), and the last two lines specifying what the desired input and
output of the behavior, or rule within the behavior, are. In the current
version of the automated system, each rule is assumed to be of the form

IF (Ais A; and B is By and C is C; and D is Dy)
THEN (E is Eq and Fis Fy) , (1)

therefore operating on four input and two output channels. Although
extension to any number of input and output channels is possible, this
configuration was chosen in the initial version of the automated system
because it corresponds to what is available on the custom-designed VLSI
fuzzy inferencing chips and boards (see [7], [13], [14]) which we utilize in
our experimental work. The line labeled “outputs” indicates which of the
two outputs is effected by the behavior, with the number, expressed in bit
numbers over the scaled output ranges of 0 to 63 bits (see [7], [13], [14])
specifying the desired center of mass of the membership function of the output
(E; or Fy in Eq. (1)) of the rule. The line labeled “inputs” specifies which
one of the four input channels is the behavior’s input dimension, and the
qualitative name indicates which fuzzy set constitutes the antecedent, (A,
B, Cy or Dy in Eq. (1)) of the rule on the input dimension. The membership
functions defining the input related fuzzy sets are defined by the user on a
behavior-by-behavior basis (e.g. see [7] or [9]), and can be stored according
to their “name” in a “membership function library.”

When the user has listed all the rules of the desired behaviors in the
format of Fig. 1, the automated system can generate a “skeleton” of the rule
base and check if it verifies the input-related requirements of the approach
(see Section 2). In particular, the system constructs the four-dimensional
input spaces for each of the two output dimensions, so that it can evaluate
completeness of and redundancy in the rule base and report all instances to
the user. For any region of incompleteness, i.e., regions of the input space
not covered by any of the behaviors stimuli, the user decides on either the
addition of a behavior to cover these possible stimuli, extension of the current
behaviors (through extension of their input membership function) to include
these input regions, or no modification if input data within these uncovered
regions or “blind spots” are never expected to occur (for example if these
regions correspond to values outside the operating range of the sensors). For
the regions of redundancy, i.e., areas where stimuli from two or more behaviors
are overlapping, the system reports every rule for which a dominance has not
been specified but may be required because of the input overlapping. The user
can then interactively add to or modify the dominance specifications in lines
2 and 3 of each rule, until all requirements of the approach are verified and all
needed information has been input to express the desired dominances in the
rule base. The actual generation of the rule base, including the suppression




and/or inhibition mechanism, can then proceed as follows: initially, all rules
are given a “standard” output membership function equal to 1 over a width
of one bit, centered at the bit value expressed in line 4 of the “qualitative”
expression of the rule (see Fig. 1). The system checks the sets of rules that
are effecting the same output dimension. If no suppression mechanism has
been expressed between the rules because dominance is not necessary, then
the output membership functions are unconstrained and they remain at their
“standard” value. If a dominance has been expressed between two or more
rules, using lines 2 and 3 of either rule, then an overlap exists in the input
space and the rules need to be modified to reflect the dominance. In the
automated system, the dominant rule is the one that is modified if suppression
is possible, otherwise the dominated rules are modified using inhibition, as
explained in the following paragraphs.

Given a rule ¢, and its output function g;(y) on the y output dimension,
the center of mass y; and weight m; of its output are given by

yi = / yui(y)dy (2)

m; = / 1i(y)dy (3)

and, by definition, m; > 0 and Ymin < ¥i < Ymax, Where ymin and ymax are the
extremum values of the y output dimension. Assume that two rules, which
control the same output y, have respective output membership functions
pi(y) and p;(y), with corresponding centers of mass and weights given by
Egs. (2) and (3). When both rules trigger under the same input conditions,
the resulting output membership function is the union (or max operation) of
ui(y) and p;(y) and, since a “center of gravity” defuzzification scheme is used
on the VLSI chips [7], [9], [13], [14], the overall output y, is

yo = miyi ¥ M;Y; (4)
m; +m;

From Eq. (4), it is clear that the relative value of the output weight of the rules
can change the output y,. In particular, if the weight of one rule is strong
enough, the output y, can be “attracted” within the output membership
function of the rule, even though the other rule still “works” and contributes to
the overall output. This constitutes the basis for implementing the suppression
mechanism.

Suppression Mechanism

In the general case, a rule may be required to suppress a set S of other rules
i, 2 € S. The suppression mechanism can be expressed as the requirement
that, when all the rules h and i, ¢ € S, trigger, their combined output y,
must fall within an “allowable error” ep of the center of mass yp of rule h.
The suppression condition thus can be written as

lyo — yal < en (8)

This allowable error, €3, can take any positive value between 0 and 63 (the
maximum bit number of the output membership function range), and is the
user-specified number appearing in line 3 of the qualitative rule description
shown in Fig. 1. Typically, a small value ¢, indicates a “strong” dominance
of rule h over rules 7, while a large ¢, represents a “weak” dominance or what
we will refer to as a “tendency.”




Since

mryn + Y, Miyi

_ i€S
Yo = ma + E m; (6)
- 1€ES
we have
ZS lyn — yilmi
. 1€ <
mp+ D>, mi ~ ch (7)
1ES

from which a minimum value for m; can be calculated. Since the distances
between the centers of mass |y; — yn| are always less than or equal to
Y, = Ymax — Ymin, selection of m;, as

Go)gmem o

i€S

guarantees that rule h suppresses the other rules 7, : € S. From mj, and the
selected shape (rectangular in the current system) of the output membership
function, the width of, and/or the full p,(y), can be easily determined.

Inhibition Mechanism

In some cases, the suppression mechanism described above may not be feasibly
implementable because of the discretization of the membership functions in 64
bits. This will typically occur when ¢} is specified very small or equal to zero,
or if several dominance mechanisms need to be implemented within the rule
base resulting in progressively large weights calculated from Eq. (8). In this
case, the inhibition mechanism is used instead of the suppression mechanism,
and the dominance of rule h over rules 7, : € S, is forced by appropriately
truncating the input membership functions of the rules  so that these rules
do not trigger when rule h does. IF (A;, By, C1, D1, E;, Fy) defines the
rule (see Eq. (1))) which dominates rule (A3, By, Cy, Dy, Es, F3), and B,
is the overlapping input to be truncated, then the truncated condition Bj is

expressed as B = B, N B;, where B; represents the complement of condition
B;. This effectively removes from the dominated rules’ input the regions with
membership function p(z) = 1 that are overlapping.

EXPERIMENTAL RESULTS

The automated fuzzy rule generation system was utilized to generate rule
bases for the sensor-based navigation of an autonomous robot, and the
resulting rule bases were tested on navigation problems in a variety of
a priors unknown environments. In this section, sample results from these
experiments are presented to illustrate the automatic rule generation process
including the effect of the dominance mechanisms. As discussed in details
in Refs. {7], [8], [9], the navigation is purely reactive, involving no memory
or real-time information storage of any type. The four sensory input to
the fuzzy inferencing system are the goal direction (or target direction) and
the minimum distances to obstacles obtained using groups of acoustic range
finders in three 75° wide sectors at the left, center, and right of the robot
travel direction. The two output of the inferencing system are the commands
for turn increments and speed of the robot.




Figure 2 shows plots of actual runs made with the robot. These plots
provide an example of the effect on the overall sensor-based navigation which a
dominance mechanism (suppression or inhibition) can produce. In the figures,
the shaded areas represent the obstacles which were placed in the room, while
the path of the robot is illustrated using the succession of circles showing the
position of the robot every 20 loop rates. In Fig. 2a, the fuzzy rules embody a
very strong dominance of the obstacle avoidance rules over the goal tracking
rules. Consequently, due to the almost constant proximity of the corridor
walls, the suppression mechanism is quite effective in the early part of the
run and the robot wanders around for quite a long time, guided principally by
obstacle avoidance. It eventually gets positioned ideally to enter the corridor
and then turns right, in a direction closest to the goal direction. It follows
the corridor, and when reaching the end of the wall, turns left toward the
goal. Clearly the dominance of the obstacle avoidance rules over the “move
to the goal” behavior may be too strong in this environment. For the sample
run shown in Fig. 2b, this dominance has been decreased, and a modified
rule base has been generated using the automated system. The robot is seen
to negotiate the entrance of the corridor much more rapidly because of the
greater effect of the goal tracking behavior, resulting in a much shorter run to
the goal. In other words, the “shy” robot navigating mainly by moving away
from obstacles in Fig. 2a has been transformed into a much “braver” robot
driven mainly by its quest of the goal in Fig. 2b. The important point to note
here is that this “transformation” has been accomplished by a simple change
of dominance between behaviors and without modifying the basic sensor-based
behaviors.

: R Goal.

FIG. 2. Actual run of the robot using an automatically generated fuzzy
rule base with a) strong, and b) weak, behavioral dominance of obstacle
avoidance over goal tracking.

CONCLUSION

An automated system to generate fuzzy rules from the qualitative description
of a reasoning process has been developed. The automated system is built
on the basis of the Fuzzy Behavior formalism which we proposed to ease




the development of fuzzy rule bases embodying “human-like” behaviors in
sensor-based decision-making systems. The concepts of suppression and
inhibition of behaviors and the inclusion of corresponding mechanisms in
the automated system have been described. These mechanisms allow the
system to handle situations when potentially conflicting behaviors are merged
or progressively added in a single rule base. The automated system has
been used to generate fuzzy rule bases for the sensor-based navigation of an
autonomous robot. Sample runs of the actual robot have been presented to
illustrate the navigation behaviors obtained with the automatically generated
fuzzy rule base as well as the effect of a change in the inter-behavior dominance
expressed through the suppression and/or inhibition mechanism.
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