o

& 0=

L

o 122
Tl

Il

2 e

(6,613 9‘5@

Y

-

a4
QDN

UCRL-ID-113760 Rev. 1

Signal Processing of Shiley Heart Valve Data
for Fracture Detection

Carmen Mullenhoff

September 1, 1993

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the authorand may
or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The viewsand
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

ABSTRACT

Given digital acoustic data emanating from the heart sounds of the beating heart
measured from laboratory sheep with implanted Bjork-Shiley Convexo-Concave heart
valves, it is possible to detect and extract the opening and closing heart beats from the
data. Once extracted, spectral or other information can then obtained from the heartbeats
and passed on to feature extraction algorithms, neural networks, or pattern recognizers so
that the valve condition, either fractured or intact, may be determined.

47

g ase Mo L

AT
: Mﬂ l:\?; Q p.wfa !a

1.0 INTRODUCTION

Artificial heart valves have provided individuals with heart ailments an extended
useful and productive life.[1] Unfortunately, mechanical failure of these valves can be
fatal, if not detected early. Lawrence Livermore National Laboratory (LLNL) proposes
to perform the research and development necessary to class.fy the condition of implanted
Bjork-Shiley Convexo-Concave (BSCC) heart valves. This instrument will analyze
acoustic signals recorded in vivo generated by a functioning heart valve implanted in
sheep. We will first develop the signal processing necessary tc extract pertinent
information from the acoustic data and then develop BSCC Fheart valve classification
algorithms based on features of the enhanced acoustic signals. These algorithms will
automatically classify the condition of BSCC heart valves implanted in sheep.

Classifying the condition of implanted BSCC heart valves is a difficult, complex
task. After preliminary analysis of acoustic data, it is readily apparent that a standard
signal processing solution would not be possible due to the hostile nature of the
biological environment, valve dynamics and noise from various sources. The acoustic
signals generated by the BSCC heart valves become distorted while propagating through
the biological medium of the sheep and eventually are digitized and recorded at the
output of a sensitive microphone also subjected to extraneous noise sources. Since the
fundamental physical characteristics (e.g. resonant frequencies) of these acoustic signals
vary at each heartbeat, it is necessary to incorporate all of these characteristics or features
in a detection scheme aimed at differentiating between fractured and unfractured valves.
Based on a careful analysis of the modal structure of the valve performed both at Shiley
Inc. and LLNL, simple simulations of this modal response and more importantly, in-situ
real-time data/spectral analysis of ovine acoustic measurements gathered by LLNL at a
veterinary laboratory, we propose the following to solve the BSCC heart valve
classification problem. Our approach to solve the heart valve classification problem is
based on Statistical Pattern Recognition which essentially interprets the spectrogram
surface as either a signal or an image, extracts so-called features from it and attempts to
define various decision regions for detection/classification. As part of this study we have
also have investigated "adaptive" type classification schemes using neural networks.
Here algorithms modeled approximately on the human brain, are applied to spectrogram
data once the important features are extracted. The network learns the various valve
classes by repeated application of data. Both techniques offer much promise, but again
large quantities of high quality acoustic data must be processed to quantify their
performance with acceptable statistical reliability. Of course, improved signal processing

of the spectrogram and/or feature vectors can enhance performance. Our approach is
outlined in more detail below in Figure 1. The steps we require to classify the condition
of a given BSCC heart valve are to: (1) acquire and digitize the acoustic measurements
after the appropriate signal conditioning (performed by Shiley Inc.), (2) perform the
necessary signal processing to enhance the particular characteristic or features of the
BSCC heart valve (e.g. pre-assigned frequency bins) which will be used for
detection/discrimination, (3) extract the selected features of interest in a simplified form
(e.g. averaging adjacent frequency bins), (4) perform heart valve classification
(fractured/unfractured) using techniques from detection/pattern recognition on either the
one-dimensional acoustic signal (feature versus time/frequency) or on the entire two-
dimensional structure (feature versus heart beat number) evolving from the data. Note
also that we will apply "adaptive" pattern recognition techniques implemented using a so-
called neural-net algorithm, (5) test the classification algorithm using a simulator first
(see Figure below) to ascertain proper performance and then measured acoustic data
composed of a training set to adjust algorithm parameters followed by a test set to
generate sample statistics (probability of detection, etc.), and finally (6) implernent the
algorithm along with an accompanying expert system (eventually in the instrument) and
process all of the acquired data set to assess overall performance (probability of detection,
miss, false alarm etc.). In order to fully develop this approach, it is first necessary to
identify the difference between the acoustic signals generated by intact and fractured or
single leg separation (SLS) BSCC valves (modeling/experiment). It will be necessary to
compensate for distortions caused by biological tissue and by electronic instrumentation
(signal processing). Large volumes of acoustic data must be reduced to a manageable
size without losing significant information about the functioning heart valve (feature
extraction). A classification algorithm with extreme reliability must be developed and
proven (pattern recognition/test). The resulting signal processing, feature extraction, and
classification algorithms must be combined with other data and algorithms into a
sophisticated instrument for application to the clinical setting.

Data
Acquisition

Signal
Processing

Implementation

Feature
Extraction

Pattern
Recognition

Test
Algorithm

Figure 1. LLNL Approach to BSCC Heart Valve Classification Problem.

The goal of this particular research project is to develop a technique to non-
invasively monitor the acoustic signals produced by implanted BSCC heart valves in
order to determine the structural condition of the valves. It is postulated that an intact
valve radiates a different acoustic signal than a SLS valve. A current feasibility study
conducted by LLNL indicates that it is possible to determine valve condition. However,
the main problem yet to be solved is to identify all of the differences between the acoustic
signatures of intact and SLS valves and construct a classification system capable of
automatically recognizing those differences.

Shiley has provided the heart valve and the data acquisition, and so it is
the purpose of this report to outline our method for signal processing of the data. Shown
in Figure 2 is an expansion of the Signal Processing block of Figure 1.

The main purpose of the Signal Processing of the heart valve data is to enhance
signal levels and minimize the effects of noise and obtain results which will be put it into
a format that is useful for Feature Extraction. Initially, we must detect the various
heartbeats (i.e. openings, closings, etc.), screen for unacceptable beats, and extract them
from the data. We then filter the heartbeats into appropriate frequency bands and find
their corresponding spectrograms.

Section 2 will discuss our methodology and the algorithms for processing the data
The Appendix will have the actual C code description and usage.

Data
identification
& extraction
(Shiley tape)

Beat/noise
extraction
algorithm

Beat
detection
algorithm

Bad beat
rejection
algorithm

Pre-processing Priicger:sling
(filtering/resampling spectral estimation Database

Figure 2: Signal Processing of Heart Valve Acoustic Data

20 ALGORITHMS

In this section, we discuss each operation depicted in Figure 2. First we discuss
the data identification and extraction procedure. Next, we detail our beat detection
algorithm followed by explanation our bad beat rejection algorithm. We then talk about
how and why we filter and resample the data into bands followed by discussion of the
spectral estimation techniques that we chose. Finally, we list the database created from
the signal processing.

2.1 Data Identification and Extraction

The data from Shiley comes in TAR format on Exabyte tapes. Since we have no
prior knowledge of the exact files names, we must first list the table of contents of the
Shiley tape. Due to large file sizes and limited disk space, we then extract a subset of the
files from the tape and process them until all the files have been completed. Once a file is
on the hard drive, it must be converted from the Shiley interleaved forinat to a format that
can be readily utilized by our software. This is accomplished by removing the 1025
character header, converting the remainder to a 16 bit integer file followed by conversion
to a binary floating point file. We call this binary floating point file the raw data.

2.2 Beat Detection

Once we have the raw data, we can process it with our beat detection algorithm,
The purpose of this algorithm is to create a text file, called a "BEATS" file, which
contains the location in the raw data file and maximum value of each acceptable opening
and closing beat. The block diagram of our beat detection algorithm is shown in Figure
3.

Get max
value of

cach cvent
(getstat)

Find events
(scgment)

Filter
(butter)

Distinguish Open-close

. Beat timing
openings & . | sequence BEATS
clos'u%gs regullamy N acceptibility ™ file
(togglemax) (togglefix) (togglefilter)

Figure 3: Beat Detection Algorithm

The first operation we perform on the raw data is to bandpass filter it with a third
order butterworth filter. This filtering operation helps to smooth the data and suppress
noise so that it is better conditioned for the detection process.

Then, from the filtered raw data we compute a signal that consists of the ratio of a
sliding short term average to sliding long term average. The outputis a signal of
potential events, where an event is either an opening or closing. The short term average
is computed as,

Ner

Mg (x)=E;§)x(tk) , typically NgT = 50 samples

and the long term average is computed as,

1 Nir
mp(x)= ———Zx(t,), typically N_T = 500 samples
NLT k=0
and their ratio is then,
mg (X
Ry = (%)

iy (x)

~

After this signal of potential events, RSTLT, is created, we then pick both a
threshold to discriminate between the noise and the signal for event screening, and a
windowsize for which events occurring inside will be coalesced together. From looking
at RgrLT in Figure 4, we see that a good threshold to use is 3.0, and from experience, a
good windowsize to use is 2800 samples based on a sampling rate of 2.0833 * 103
seconds. At this point, a text file with the beginning and ending locations of each event
in the raw data file is created. Shown here is a portion of what the text file looks like:

11864
16428
54364
73007
94616
112161
135352
152912

13425
16504
54831
73079
95018
113195
135769
154298

Using the text file of events just created, the absolute maximum value of each
event is found in the raw data file and then appended to the text file. The text file then

looks like:

11864
16428
54364
73007
94616
112161
135352
152912

13425
16504
54831
73079
95018
113195
135769
154298

14359.000000
131.000000
8361.000000
227.000000
17119.000000
133.000000
17063.000000
283.000000

Now that we know the maximum value of each event, we should be able to tell
which is an opening and which is a closing. Distinguishing between openings and
closings is accomplished by finding the best threshold that maximizes the toggles
between the openings and closings. After this threshold value is determined, a0 or 1 is
appended onto the text file, where a 0 indicates an opening, and a 1 indicates a closing.

The text file now appears as:

11864
16428
54364
73007
94616
112161
135352
152912

13425
16504
54831
73079
95018
113195
135769
154298

14359.000000
131.000000
8361.000000
227.000000
17119.000000
133.000000
17063.000000
283.000000

S O= = O

..

11 — —
10 —
9 -
8 -
7 -
6 -
5 -]
4 -
3 -
2
1
0 |
0 1 J 4 J ;[> 10 11
x 1,00e+04
Sample number

Figure 4: Example of the Sta/Lta Signal

Next, we perform a beat timing check which relies on and ensures the regularity
of the beats. The average time between similar events is calculated and a check is made
for each event to find out if it is within a certain percentage deviation from that average.
When an out of range event is found, a -1 is inserted in place of the 1 or O that was
already there in the text file. We typically allow a 20% deviation. The marked text file
appears like this:

11864 13425 14359.000000 1
16428 16504 131.000000 -1
54364 54831 8361.000000 1
73007 73079 227.000000 0
94616 95018 17119.000000 1
112161 113195 133.000000 0
135352 135769 17063.000000 1
152912 154298 283.000000 0

The final step is to output the corrected text file called the "BEATS" file, which is done
by taking into account the events marked with a -1 and keeping only acceptable length
open-close sequences. We typically accept sequences with length five or greater. The
"BEATS" file would then look like this:

54364 54831 8361.000000 1
73007 73079 227.000000 0
94616 950138 17119.000000 1
112161 113195 133.000000 0
135352 135769 17063.000000 1
152912 154298 283.000000 0

2.3 Bad Beat Rejection

In the bad beat rejection algorithm, we ensure the proper beat ordering, and
perform some outlier quality control. Although at this point we could extract the
openings and closings based on the "BEATS" file created thus far, because the openings
and closings vary somewhat widely in amplitude, we want to reject those that are outside
of a certain boundary. In Figure 5 is shown the block diagram of the bad beat rejection
algorithm.

10

NEWBEATS
file

Bound
calculation

(Mean + no)

BEATS file

Qutlier

Ordering
rejection

(close-open, etc.)

Figure 5: Bad Beat Rejection Algorithm

The first operation performed is to search through the "BEATS" file and ensure that the
ordering is close-open-close-open etc. (e.g. If the sequence ordering was close-open-
open, then the second opening would be rejected.) A temporary "BEATS" file is created
with the proper ordering. Next, from the absolute maximum values of the openings in the
temporary "BEATS" file, a mean and standard deviation(c) are calculated. Then, all
close-open sequences whose absolute opening maximum value lies outside the mean
no, where n is an input, are rejected. We typically use n= 0.5 if there are more than 100
beats detected, otherwise we use n=1.0 if there are less. A "NEWBEATS" file is then
created.

Ilustrated in Figure 6 is an example before and after the bad beat rejection algorithm. As
can be seen from the example, the first opening is kept, and the other two are rejected.

11

Amoplitude

Amplitude

) x104 _ . Mullliple openings de'lected_

T L
closing closing
e VTR SRTTUTUTUTI s g
0 \ , T / i
Al 3 opeiigs’ dété&:‘tfed ..
2 - : , ; .
0 0.5 1 1.5 2 2.5
Sample number x104
5 X104 ‘ After Bad Beat Rejection Algorithm
| T TR SRR e
1 opening remains
2 . . _L . :
0 2000 4000 6000 8000 10000 12000
Sample number

Figure 6: Bad Beat Rejection Example

The corresponding "BEATS" and "NEWBEATS" file sections are shown here:

BEATS fi

6779049
6792507
6811314
6830384
6834592

le

6779575 8218.000000
6793842 474.000000
6812726 496.000000
6830441 97.000000

6835001

15183.000000

1
0
0
0
1

12

NEWBEATS file

6779049 6779575 8218.000000 1
6792507 6793842 474.000000 O
6834592 6835001 15183.000000 1

24 Beat Extraction

Now that we know where to find all the good beats in the raw data, we can then
extract them. Based on the starting and ending locations in the "NEWBEATS" file, the
openings and closings are cut from the raw data file and pasted together into separate
opening and closing data files. Each opening and closing is centered in a window of user
defined size. We use a windowsize of 4096 samples at a sampling rate of 2.0833 * 105
seconds to ensure that we capture the whole opening beat. The capability exists in the
code to put the openings and closings into one file, but we keep them separate for
processing purposes.

The noise just prior to each opening is extracted as well. Care is taken to be sure
that the noise does not overlap the previous closing. If the code decides that it has run
into the previous closing, it writes a noise errors file indicating this.

The result of the beat extraction is three main files, and "openings", "closings"”,
and "noise" file. A block diagram of the process is shown below in Figure 7.

Raw data file

"openings”
Window p%llc s
calculation Extraction/catcnation —
. “closings
(BEAT is fi
centered (cut & paste) fl
in the window) "noise" file

Input: windowsize

NEWBEATS file

Beat location as defined
in "NEWBEATS" file

Window that the
beal is centered in

Figure 7: Beat Extraction Algorithm

"ot

In Figure 8 examples of the "openings", "closings”, and "noise" files are presented.

13

OPENINGS

x 1,00e+04

500
400
300
200
100 —
[R
~100 A
200
~300
~400 j

CLOSINGS

Lttt L

A U IR

13 OSOJJ

x 1,00e+04

NOISE.

40

Figure 8: Examples of the "openings", "closings", and "noise" files

14

2.5 Filtering and Resampling

On a beat by beat basis, the data is filtered into three bands and resampled if
necessary. We would not need to do this if the spectrum were flat, but because the
spectrum has much more energy in the higher frequencies, we divide it up in such a way
that we can look at important parts of the spectrum separately. The three bands we
employ currently are a low band from 1-5 kHz, a medium band from 3-7 kHz, and a high
band from 7-24 kHz. For the low band we apply a bandpass filter, and then are able to
downsample by a factor of four. Likewise for the medium band we apply a bandpass
filter and are able to downsample by a factor of two. The high band is merely highpass
filtered with no down sampling. Depicted in Figure 9 is an example of the low, medium,
and high bands for opening beats.

15

300

100

-100

~200

OPENINGS - LOW BAND

° % e e % % & & % %

x 1,008+03

250

150
100

-100
-150

OPENINGS - MEDIIM BAND

U SN N S O T

0 o 1 ot Mo 10 10 b 1w 1

x 1,00e+03

400

10

-100

~300
-400

OPENINGS - HIGH BAND_

———

D . ————

H

e _ g

b= N S U TR N I A A

Figure 9: Examples of opening low, medium, and high band files

16

2.6 Spectral Estimation

Now from the three bands we create spectrograms. The spectrograms are created
by taking the spectra of each opening a beat a time and then stacking the spectra together.
From this, we should be able to observe spectral lines at various frequencies. Because the
high band tends to have a lot of sharp peaks, we found that the AR (Auto-Regressive)
model [3] worked well using 100th order. This is because the AR model is an all-pole
model, which means that the transfer function has the form,

o . o -
H x(z) = ——, where & is the white noise standard deviation

A(2)
where
A(Z)=1+az "+, +ayz™"
The spectral estimate is then formed as,
a’AT
Sw(Q)=——pg
(")

For the low and medium bands, the spectrum is rather broad band and does not appear to
have any sharp peaks. Because of this, we found that the MVDR (Minimum Variance
Distortionless Response) model[3] for spectral estimation worked satisfactorily using
25th order. The MVDR spectral estimate is formed by averaging all the lower order AR
models in the following fashion,

1 1 & 1

Suvor(Q) N &S, (i)

Along with the spectrum, when using the MVDR model, we create a file of the reflection
coefficients, which can be used to reconstruct the entire spectrogram and can also be used
to derive other features directly[4]. Or, when using the AR model, we create a file of the
AR coefficients. In both cases we write the variance, 62, for each beat to a file. See

Figure 10 for examples of the low, medium, and high spectrums.

17

ol JHid

spuey] YOTH PUe “wniIpdly Mo 453 Swesbouldeds 2yl jo Idwen]

0009 0005 000% 000z 2008

0001

00T
08
03

° R8s

0
SdmO[do™2GZo¥ [Fiu

S

o1 8 9 4

(Y]

UAY
001
08
03
or
o7A

0
Sdpudo”/GZopThu

$0+300°T X

sdyb1ydo™/GzZop TAu

17a

2.7 Database

The result of these algorithms is a database of useful information about the heart
valves. The files that are currently stored in the database have the Shiley filename
followed by a suffix. The file suffixes we store are:

_beats- text file containing start sample, stop sample, max value, and event indicator
_newbeats - updated and screened "_beats" text file

_openings - binary floating point data file with the extracted and concatenated openings
_closings - binary floating point data file with the extracted and concatenated closings
_noise - binary floating point data file with the extracted and concatenated noise chunks
_hoiserrs - text file with location of possible noise error locations

_oplow - low band openings file

_oplowps, _oplowvar, _oplowrefl - low band opening spectrum, variance, and reflection
coefficients files

_opmed - medium band openings file

_opmedps, _opmedvar, _opmedrefl - medium band opening spectrum, variance, and
reflection coefficients files

_ophigh - high band opening file

_ophighps, _ophighvar, _ophighar - high band opening spectrum, variance, and
reflection coefficients files

18

3.0 SUMMARY

We have developed the signal processing capabilities to detect, identify, and
extract opening and closing heartbeats from a data file containing them. Likewise, we
can obtain information about the heartbeats, such as the power spectrum, which is useful
for feature extraction. With this variety of information about the heartbeats from the two
types of valves (SLS and intact), we are confident that with the proper features, we
should be able to distinguish between them.

19

ACKNOWLEDGMENTS
We would like to thank Tony DeGroot and Bob Searfus who wrote the detection and
extraction codes, and Ray Chia and Becky Interbitzen of Shiley who provided us with
technical guidance as well as vast amounts heart valve data on Exabyte tapes.

REFERENCES

[1] Graham Thomas, "Signal Processing and Classification of Acoustic Signatures from
Bjork-Shiley Convexo-Concave Heart Valves"

(2] Hiratzka, 1988

[3] Candy,J. V. (1988) Signal Processing: The Modern Approach McGraw-Hill, New
York.

[4] J. D. Markel, A. H. Gray, Jr. (1976) Linear Prediction of Speech Springer-Verlag,
New York,

20

APPENDIX

Unless otherwise indicated, all programs take their input file from standard input
and write their output files to standard output.

A.1 Tape File Conversion
tail +1025c filename - to get rid of the header

splitsheep ¢ - reads interleaved file from Shiley and creates a 16 bit integer file.
Inputs: starting index, optional finish index
Example: splitsheep O < input > output

stof.¢ - converts 16 bit integer file to binary floating point
Example: stof < input > output.float

A.2 Beat Detection

butter.c - filtering

Inputs: filter order, filter type, low frequency cutoff, high frequency cutoff, and delta t
where filter type = (0 Lowpass)(1 Highpass)(2 Bandpass)(3 Bandreject)

Example: butter 32 0.2 0.45 1.0 < input > output

detect.c - sta to Ita ratio

Inputs: short term average window length(sec), long term average window length(sec),
and delta t (sec)

Note: If delta t is entered as 1.0, then the short term and long term average

window lengths can be entered as the number of samples,

Example: detect 50.0 500.0 1.0 < input > output

segment.c - thresholding and event location text file

Inputs: threshold between signal and noise, windowsize(sec), delta t

Note: If delta t is entered as 1.0, then the windowsize can be entered as the number of
samples.

Example: segment 3.0 2800 1.0 < input > output.text

21

getstat.c - statistic appended to each line of text file

Inputs: binary floating point data file name, operation, windowsize

where operation = (0 get absolute maximum value of event)(1 get average value of
event), and the windowsize should be the same as in segment.c

Example: getstat input.float 0 2800 < input.text > output.text

togglemax.c - maximize open and close toggling and append O or 1 to each line in the text
file
Example: togglemax < input.text > output.text

togglefix.c - timing regularity check and marking of the text file if bad
Inputs: percentage deviation from average event spacing to allow
Example: togglefix 0.2 < input.text > output.text

togglefilter.c - outputs corrected text file and ensures at least a certain length sequence of
openings and closings

Inputs: length of shortest acceptable open-close sequence

Example: togglefilter § < input.text > output_beats

A.3 Bad Beat Rejection

fixbeats.c - modifies text file to make ordering close-open etc., rejects out of bound
openings along with their previous opening.

Inputs: beats file name, newbeats filename, percentage of the standard deviation to use
for the boundaries

Example: fixbeats input_beats output_newbeats 50

A4 Beat Extraction

extract.c - based on the text file of start and stop locations, this extracts the beats out of
the raw data and centers them in a window.

Inputs: raw data filename, extraction flag(0 = openings, 1= closings, 2=both),
windowsize in samples

Example: For this routine and the following routines, see A.8 for examples.

extractn.c - extracts noise just prior to each opening

22

Inputs: raw data file name, filename for noise errors, windowsize in samples
A.5 Filiering and Resampling

resamp.¢ - On a window by window basis, filters and resamples the data.
Inputs: Downsample factor, sampling rate(sec), windowsize in samples

A.6 Spectral Estimation

powerspec_mvdr.c - On a window by window basis, it finds the power spectrum using
the Minimum Variance Distortionless Response method.
Inputs: model order, sample rate in seconds, windowsize in samples, reflection

coefficient filename, variance filename

powerspec_ar.c - On a window by window basis, it finds the power spectrum using the
Auto Regressive (Levinson Durbins) method.
Inputs: model order, sample rate (sec), windowsize in samples, ar coefficient filename,

variance filename
A.7 Printing

printsheep.c - This routine converts a power spectrum output file into a spectrogram View
file and prints it out on our Tektronics printer .

Inputs: Filename, windowsize
A.8 Shellscript "gol"

This UNIX shellscript automates the signal processing of the heart valve data for a
particular file.

#!/usr/local/bin/bash
export DISPLAY=${HOST}:0

tail +1025¢c $1 | splitsheep 01 stof > $2

butter 32 0.2 0.45 1.0 < $2 | detect 50.0 500.0 1.0 | segment 3.0 $4 1.0 1 getstat $2 (0 $4 |
togglemax | togglefi- 0.2 | togglefilter 5 > $3_beats

23

fixbeats $3_beats $3 _newbeats 50

extract $2 () 4096 < $3_newbeats > $3_openings

extract $2 1 4096 < $3_newbeats > $3_closings

extractn $2 $3_noiserrs 4096 < $3_newbeats > $3_noise

resamp 4 1000 5000 .0000208333 4096 < $3_openings > $3_oplow
resamp 2 3000 7000 .0000208333 4096 < $3_openings > $3_opmed
resamp 1 7000 24000 .0000208333 4096 < $3_openings > $3_ophigh

powspec_mvdr 25 .000083333 1024 $3_oplowrefl $3_oplowvar < $3_oplow >
$3_oplowps
printsheep $3_oplowps 1024

powspec_mvdr 25 .0000416667 2048 $3_opmedrefl $3_opmedvar < $3_opmed >
$3_opmedps
printsheep $3_opmedps 2048

powspec_ar 100 .0000208333 4096 $3_ophighar $3_ophighvar <3$3_ophigh >

$3_ophighps
printsheep $3_ophighps 4096

24

