
IIIIINlllllgllI!!g

e

• t
0

UCRL-ID-113760 Rev. 1

Signal Processing of Shiley Heart Valve Data
for Fracture Detection

Carmen Mullenhoff

September 1, 1993

• : _d

..
• .

........... : b :: ::

;
.:.

This is an informal report intended primarily for internal or limited external

distribution. The opinions and conclusions stated are those of the author and may
or may not be those of the Laboratory.
Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626.8401

Available to the public from the
National Technical Information Service

U_. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

ABSTRACT

Given digital acoustic data emanating from the heart sounds of the beating heart

measured from laboratory sheep with implanted Bjtirk-Shiley Convexo-Concave heart

valves, it is possible to detect and extract the opening and closing heart beats from the

data. Once extracted, spectral or other information can then obtained from the heartbeats

and passed on to feature extraction algorithms, neural networks, or pattern recognizers so

that the valve condition, either fractured or intact, may be determined.

1.0 INTRODUCTION

Artificial heart valves have provided individuals with heart ailments an extended

useful and productive life.[1] Unfortunately, mechanical failure of these valves can be

fatal, if not detected early. Lawrence Livermore National Laboratory (LLNL) proposes

to perform the research and development necessary to classify the condition of implanted

Bj6rk-Shiley Convexo-Concave (BSCC) heart valves. This instrument will analyze

acoustic signals recorded in vivo generated by a functioning heart valve implanted in

sheep. We will first develop the signal processing necessaD, t,:,extract pertinent

information from the acoustic data and then develop BSCC heart -valve classification

algorithms based on features of the enhanced acoustic signals. Th_se algorithms will

automatically classify the condition of BSCC heart valves implanted in sheep.

Classifying the condition of implanted BSCC heart valves is a difficult, complex

task. After preliminary analysis of acoustic data, it is readily apparent that a standard

signal processing solution would not be possible due to the hostile nature of the

biological environment, valve dynamics and noise from various sources. The acoustic

signals generated by the BSCC heart valves become distorted while propagating through

the biological medium of the sheep and eventually are digitized and recorded at the

output of a sensitive microphone also subjected to extraneous noise sources. Since the

fundamental physical characteristics (e.g. resonant frequencies) of these acoustic signals

vary at each heartbeat, it is necessary to incorporate all of these characteristics or features

in a detection scheme aimed at differentiating between fractured and unfractured valves.

Based on a careful analysis of the modal structure of the valve performed both at Shiley

Inc. and LLNL, simple simulations of this modal response and more importantly, in-situ

real-time data/spectral analysis of ovine acoustic measurements gathered by LLNL at a

veterinary laboratory, we propose the following to solve the BSCC heart valve

classification problem. Our approach to solve the heart valve classification problem is

based on Statistical Pattern Recognition which essentially interprets the spectrogram

surface as either a signal or an image, extracts so-called features from it and attempts to

define various decision regions for detection/classification. As part of this study we have

also have investigated "adaptive" type classification schemes using neural networks.

Here algorithms modeled approximately on the human brain, are applied to spectrogram

data once the important features are extracted. The network learns the various valve

classes by repeated application of data. Both techniques offer much promise, but again

large quantities of high quality acoustic data must be processed to quantify tl_eir

performance with acceptable statistical reliability. Of course, improved signal processing

of the spectrogram and/or feature vectors can enhance performance. Our approach is

outlined in more detail below in Figure 1. The steps we require to classify the condition

of a given BSCC heart valve are to: (1) _acquireand digitize the acoustic measurements

after the appropriate signal conditioning (performed by Shiley Inc.), (2) perform the

necessary signa! processing to enhance the particular characteristic or features of the

BSCC heart valve (e.g. pre-assigned frequency bins) which will be used for

detection/discrimination, (3) extract the selected features of interest in a simplified form

(e.g. averaging adjacent frequency bins), (4) perform heart valve classification

(fractured/unfractured) using techniques from detection/pattern r_cognition on either the

one-dimensional acoustic signal (feature versus time/frequency) or on the entire two-

dimensional structure (feature versus heart beat number) evolving from the data. Note

also that we will apply "adaptive" pattern recognition techniques implemented using a so-

called neural-net algorithm, (5) test the classification algorithm using a simulator first

(see Figure below) to ascertain proper performance and then measured acoustic data

composed of a training set to adjust algorithm parameters followed by a test set to

generate sample statistics (probability of detection, etc.), and finally (6) _the

algorithm along with an accompanying expert system (eventually in the instrument) and

process all of the acquired data set to assess overall performance (probability of detection,

miss, false alarm etc.). In order to fully develop this approach, it is first necessary to

identify the difference between the acoustic signals generated by intact and fractured or

single leg separation (SLS) BSCC valves (modeling/experiment). It will be necessary to

compensate for distortions caused by biological tissue and by electronic instrumentation

(signal processing). Large volumes of acoustic data must be reduced to a manageable

size without losing significant information about the functioning heart valve (feature

extraction). A classification algorithm with extreme reliability must be developed and

proven (pattern recognition/test). The resulting signal processing, feature extraction, and

classification algorithms must be combined with other data and algorithms into a

sophisticated instrument for application to the clinical setting.

vaJve] f
----'T'---_ Data]

° [LAcquisiti°nJ

__ _Signal] I• _ J ---

Figure 1. LLNL Approach to BSCC Heart Valve Classification Problem.

The goal of this particular research project is to develop a technique to non-

invasively monitor the acoustic signals produced by implanted BSCC heart valves in

order to determine the structural condition of the valves. It is postulated that an intact

valve radiates a different acoustic signal than a SLS valve. A current feasibility study

conducted by LLNL indicates that it is possible to determine valve condition. Ho;,vever,

the main problem yet to be solved is to identify all of the differences between the acoustic

signatures of intact and SLS valves and construct a classification system capable of

automatically recognizing those differences.

Shiley has provided the heart valve and the data acquisition, and so it is

the purpose of this report to outline our method for signal processing of the data. Shown

in Figure 2 is an expansion of the Signal Processing block of Figure 1.

The main purpose of the Signal Processing of the heart valve data is to enhance

signal levels and minimize the effects of noise and obtain results which will be put it into

a format that is useful for Feature Extraction. Initially, we must detect the vm-ious

heartbeats (i.e. openings, closings, etc.), screen for unacceptable beats, and extract them

from the data. We then filter the heartbeats into appropriate frequency bands and find

their corresponding spectrograms.

Section 2 will discuss our methodology and the algorithms for processing the data

The Appendix will have the actual C code description and usage.

i& Data "_ raw {"- Beat '_ _
dentification _ detection _ _o._at._'i_"nt _ extraction [__

[,,._(Shileytape)) _,.algonthm) _on'_m)

Pre-processing -"_ _- _Signa(_"_

1tering/resampIin_pe c_rral°CeesStSmgtion_ Database

Figure 2" Signal Processing of Heart Valve Acoustic Data

2.0 ALGORITItMS

In this section, we discuss each operation depicted in Figure 2. First we discuss

the data identification and extraction procedure. Next, we detail our beat detection

algorithm followed by explanation our bad beat rejection algorithm. We then talk about

how and why we filter and resample the data into bands followed by discussion of the

spectral estimation techniques that we chose. Finally, we list the database created from

the signal processing.

2.1 Data Identification and Extraction

The data from Shiley comes in TAR format on Exabyte tapes. Since we have no

prior knowledge of the exact files names, we must first list the table of contents of the

Shiley tape. Due to large file sizes and limited disk space, we then extract a subset of the

files from the tape and process them until all the files have been completed. Once a file is

on the hm'd drive, it must be converted from the Shiley interleaved format to a format that

can be readily utilized by our software. This is accomplished by removing the 1025

character header, converting the remainder to a 16 bit integer file followed by conversion

to a binary floating point file. We call this binary floating point file the raw data.

2.2 Beat Detection

Once we have the raw data, we can process it with our beat detection algorithm.

The purpose of this algorithm is to create a text file, called a "BEATS" file, which

contains the location in the raw data file and maximum value of each acceptable opening

and closing beat. The block diagram of our beat detection algorithm is shown in Figure
3.

Raw _ _ /" • "h f : --_-_['Ge'tmax /Data f _a,,,r | [StalLta i I Find eventsI_ value of
(l_fr_ _ (deicer) _ (segment)|----_ each event]---..._

Open-close
Distinguish Beat timing sequence BEATS
openings & regularity acceptibility file
• closings (togglefix)(togglemax) (togglefilter)

Figure 3: Beat Detection Algorithm

The first operation we perform on the raw data is to bandpass filter it with a third

order butterworth filter. This filtering operation helps to smooth the data and suppress

noise so that it is better conditioned for the detection process.

Then, from the filtered raw data we compute a signal that consists of the ratio of a

sliding short term average to sliding long term average. The output is a signal of

potential events, where an event is either an opening or closing. The short term average

is computed as,

Nx. r

msr(x)=l-_X(t_), typically NST = 50 samples
"• 8"/"k---O

and the long term average is computed as,

1 NLr

mLr(X) =-:7----_X(t,), typically NLT = 500 samples
NLr_o -

and their ratio is then,

m,,,,,(x)

After this signal of potential events, RSTLT, is created, we then pick both a

threshold to discriminate between the noise and the signal for event screening, and a

windowsize for which events occurring inside will be coalesced together. From looking

at RSTLT in Figure 4, we see that a good threshold to use is 3.0, and from experience, a

good windowsize to use is 2800 samples based on a sampling rate of 2.0833 * 10-5

seconds. At this point, a text file with the beginning and ending locations of each event

in the raw data file is created. Shown here is a portion of what the text file looks like:

11864 13425
16428 16504
54364 54831
73007 73079
94616 95018
1121.61 113195
135352 135769
152912 154298

Using the text file of events just created, the absolute maximum value of each

event is found in the raw data file and then appended to the text file. The text file then
looks like:

11864 13425 14359.000000
16428 16504 131.000000
54364 54831 8361.000000
73007 73079 227.000000
94616 95018 17119.000000
112161 113195 133.000000
135352 135769 17063.000000
152912 154298 283.000000

Now that we know the maximum value of each event, we should be able to tell

, which is an opening and which is a closing. Distinguishing between openings and

closings is accomplished by finding the best threshold that maximizes the toggles

between the openings and closings. After this threshold value is determined, a 0 or 1 is

appended onto the text file, where a 0 indicates an opening, and a 1 indicates a closing.

The text file now appears as:

11864 13425 14359.000000 1
16428 16504 131.000000 0
54364 54831 8361.000000 1
73007 73079 227.000000 0
94616 95018 17119.000000 1
112161 113195 133.000000 0
135352 135769 17063.000000 1
152912 154298 283.000000 0

10 --

9 --

8 --

7 --

6 -

5 -
4 -

3 -

..,...,.,,_.-,,,.-.fr--,,---,"2 f"
_ __ -- -- _

x 1,OOe+O4
Samplenumber

Figure4: Exampleof theSta_ta Signal

Next, we perform a beat timing check which relies on and ensures the regularity

of the beats. The average time between similar events is calculated and a check is made

for each event to find out if it is within a certain percentage deviation from that average.

When an out of range event is found, a -1 is inserted in place of the 1 or 0 that was

already there in the text file. We typically allow a 20% deviation. The marked text file

appears like this:

11864 13425 14359.000000 1
16428 16504 131.000000 -1
54364 54831 8361.000000 1
73007 73079 227.000000 0
94616 95018 17119.000000 1
112161 113195 133.0(0)0(O 0
135352 135769 17063.00.0(00 1
152912 154298 283.000000 0

The final step is to output the corrected text file called the "BEATS" file, which is done

by taking into account the events marked with a -1 and keeping only acceptable length

open-close sequences. We typically accept sequences with length five or greater. The

"BEATS" file would then look like this:

54364 54831 8361.000000 1
73007 73079 227.000000 0
94616 95018 17119.000000 1
112161 113195 133.000000 0
135352 135769 17063.000000 1
152912 154298 283.000000 0

2.3 Bad Beat Rejection

In the bad beat rejection, algorithm, we ensure the proper beat ordering, and

perform some outlier quality control. Although at this point we could extract the

openings and closings based on the "BEATS" file created thus far, because the openings

and closings vary somewhat widely in amplitude, we want to reject those that are outside

of a certain boundary. In Figure 5 is shown the block diagram of the bad beat rejection

algorithm.

1()

. BoundBEATS file Ordering calculation Outlier file._

--_lose-open, etc_--_(Mean + no)fl-_rejection)

Figure 5: Bad Beat Rejection Algorithm

The first operation performed is to search through the "BEATS" file and ensure that the

ordering is close-open-close-open etc. (e.g. If the sequence ordering was close-open-

open, then the second opening would be rejected.) A temporary "BEATS" file is created

with the proper ordering. Next, from the absolute maximum values of the openings in the

temporary "BEATS" file, a mean and standard deviation(o) are calculated. Then, all

close-open sequences whose absolute opening maximum value lies outside the mean +

no, where n is an input, are rejected. We typically use n= 0.5 if there are more than 100

beats detected, otherwise we use n=l.0 if there are less. A "NEWBEATS" file is then

created.

Illustrated in Figure 6 is an example before and after the bad beat rejection algorithm. As

can be seen from the example, the first opening is kept, and the other two are rejected.

11

2 x104 Multiple openings detectedI 1 I I

closing closing
l .. I,

- 1 i .1

-I 3"_fliia_s'dete}_l................... [......................

-2 , , , ,
0 0.5 1 1.5 2 2.5

Sample number x104

x104 After Bad Beat l_ejection Algorithm2

............... , o , ,..°

2
_, 0

-1

1 opening ri_mains

-2 '
0 2000 4000 6000 8000 10000 12000

Sample number

Figure 6: Bad Beat Rejection Example

The corresponding "BEATS" and "NEWBEATS" file sections are shown here:

BEATS file NEWBEATS file

6779049 6779575 8218.0(X)(O0 1 6779049 6779575 8218.000000 1
6792507 6793842 474.0(0)0(0 0 6792507 6793842 4740(O0(X) 0
6811314 6812726 496.0(0)0(0 0 6834592 6835001 15183.0000001
6830384 6830441 97.000000 0
6834592 6835001 15183.000000 1

12

2.4 Beat Extraclion

Now that we know where to find all the good beats in the raw data, we can then

extract them. Based on the starting and ending locations in the "NEWBEATS" file, the

openings and closings are cut from the raw data file and pasted together into separate

opening and closing data files. Each opening and closing is centered in a window of user

defined size. We use a windowsize of 4096 samples at a sampling rate of 2.0833 * 10-5

seconds to ensure that we capture the whole opening beat. The capability exists in the

code to put the openings and closings into one file, but we keep them separate for

processing purposes.

The noise just prior to each opening is extracted as well. Care is taken to be sure

that the noise does not overlap the previous closing. If the code decides that it has run

into the previous closing, it writes a noise errors file indicating this.

The result of the beat extraction is three main files, and "openings", "closings",

and "noise" file. A block diagram of the process is shown below in Figure 7.

Raw data file

Input: windowsizef r l

NEWBEATSfile I

w r r° f'i e
calculation / IExtraction/catenationl / ,,

(BEATis _'il I I I[""4"_'"cI °singsfile
- centered] [(cut&paste)]]

L inthewindow) " ' " il
I I I I

j x, - -1 [..a_noise f e

I

Beat location as definM
in "NEWBEATS" file

Window thai the
beal is centered in

Figure 7' Beat Extraction Algorithm

In Figure 8 examples of the "openings", "closings", and "noise" files are presented.

13

Figure 8: Examples of the "openings", "closings", and "noise" files

14

2.5 Filtering and Resampling

On a beat by beat basis, the data is filtered into three bands and resampled if

necessary. We would not need to do this if the spectrum were flat, but because the

spectrum has much more energy in the higher frequencies, we divide it up in such a way

that we can look at important parts of the spectrum separately. The three bands we

employ currently are a low band from 1-5 kHz, a medium band from 3-7 kHz, and a high

band from 7-24 kHz. For the low band we apply a bandpass filter, and then are able to

downsample by a factor of four. Likewise for the medium band we apply a bandpass

filter and are able to downsample by a factor of two. The high band is merely highpass

filtered with no down sampling. Depicted in Figure 9 is an example of the low, medium,

and high bands for opening beats.

15

EHINGS- L B_D
3OO

l.I111JJllJ Jl J l. i lJ _J,lJ11Jll.., .l
-,_-ll'll-lll_fII_r11l"r_T_I"_II"111""",-1
-200 -

_5 I I _ II I _5 _0 I k _ _5 I ; _ 1_ 0

x 1.00e*03

OPENINGS- HEDIIt4I_qNl]
250

200 -

ls,o -

:1_ : I-I-l]]lII]i-_I]l]l-#*l]]-''l'] I_'9"ll-t-II-'-l']-l_] "__-]"

-_'_

1¢ 1t0 1; i_ 110 1; 1_ 1710 1; 1£10 2(
x 1.00e*03

OPENINGS- HIGHBRHD.
5OO

400 -

!i II III/IDII,Il l dll,lllt 11t

Figure 9: Examples of opening low, medium, and high band files

16

2.6 Spectral Estinlation

Now from the three bands we create spectrograms. The spectrograms are created

by taking the spectra of each opening a beat a time and then stacking the spectra together.

From this, we should be able to observe spectral lines at various frequencies. Because the

high band tends to have a lot of sharp peaks, we found that the AR (Auto-Regressive)

model [3] worked well using 100th order. This is because the AR model is an all-pole

' model, which means that the transfer function has the form,

t'T

H_(z) = A-'_z)' where c is the white noise standard deviation

where

A(z) = 1+ alz -l+...+auz -u

The spectral estimate is then formed as,

cr2AT

sa"(a)-IA(:)I
For the low and medium bands, the spectrum is rather broad band and does not appear to

have any sharp peaks. Because of this, we found that the MVDR (Minimum Variance

Distortionless Response) model[3] for spectral estimation worked satisfactorily using

25th order. The MVDR spectral estimate is formed by averaging all the lower order AR

models in the following fashion,

1 __1_ 1SuvoR(_) N = Sa_(a,i)

Along with the spectrum, when using the MVDR model, we create a file of the reflection

coefficients, which can be used to reconstruct the entire spectrogram and can also be used

to derive other features directly[4]. Or, when using the AR model, we create a file of the

AR coefficients. In both cases we write the variance, o 2, for each beat to a file. See

Figure 10 for examples of the low, medium, and high spectrums.

17

0

o oo _

17a

2.7 Database

The result of these algorithms is a database of useful information about the heart

valves. The files that are currently stored in the database have the Shiley filename

followed by a suffix. The file suffixes we store are:

beats- text file containing start sample, stop sample, max value, and event indicator

' _newbeats - updated and screened "_beats" text file

_openings - binary floating point data file with the extracted and concatenated openings

_closlngs - binary floating point data file with the extracted and concatenated closings

_noise - binary floating point data file with the extracted and concatenated noise chunks

noiserrs - text file with location of possible noise error locations

_oplow- low band openings file

_oplowps, _oplowvar, _oplowrefl - low band opening spectrum, variance, and reflection
coefficients files

_opmed - medium band openings file

_opmedps, _opmedvar, _opmedrefl - medium band opening spectrum, variance, and
reflection coefficients files

_ophigh - high band opening file

_ophighps, _ophighvar, _ophighar - high band opening spectrum, variance, and
reflection coefficients files

18

3.0 SUMMARY
I

We have developed the signal processing capabilities to detect, identify, and

extract opening and closing heartbeats from a data file containing them. Likewise, we

can obtain information about the heartbeats, such as the power spectrum, which is useful

for feature extraction. With this variety of infomlation about the heartbeats from the two

types of valves (SLS and intact), we are confident that with the proper features, we

should be able to distinguish between them.

19

ACKNOWLEDGMENTS

We would like to thank Tony DeGroot and Bob Searfus who wrote the detection and

extraction codes, and Ray Chia and Becky lnterbitzen of Shiley who provided us with

technical guidance as well as vast amounts heart valve data on Exabyte tapes.
0

REFERENCES

11] Graham Thomas, "Signal Processing and Classification of Acoustic Signatures from

Bj6rk-Shiley Convexo-Concave Heart Valves"

[2] Hiratzka, 1988

131 Candy, J. V. (1988) Signal Processing: The Modern Approach McGraw-Hill, New

York.

[41 J. D. Markel, A. H. Gray, Jr. (1976) Linear Prediction ofSpeech Springer-Verlag,
New York.

20

i

APPENDIX

Unless otherwise indicated, all programs take their input file from standard input

and write their output files to standard output.

A.i Tape File Conversion

tail + 1025c filename - to get rid of the header

- reads interleaved file from Shiley aud creates a 16 bit integer file.

Inputs: starting index, optional finish index

Example: splitsheep 0 < input > output

- converts 16 bit integer file to binary floating point

Example: stof < input > output.float

A.2 Beat Detection

butter,_ - filtering

Inputs: filter order, filter type, low frequency cutoff, high frequency cutoff, and delta t

where filter type = (0 Lowpass)(l Highpass)(2 Bandpass)(3 Bandreject)

Example: butter 3 2 0.2 0.45 1.0 < input > output

detect,_ - sta to lta ratio

Inputs: short term average window length(sec), long term average window length(sec),

and delta t (sec)

Note: If delta t is entered as 1.0, then the short term and long term average

window lengths can be entered as the number of samples.

Example: detect 50.0 500.0 1.0 < input > output

- thresholding and event location text file

Inputs: threshold between signal and noise, windowsize(sec), delta t

Note: If delta t is entered as 1.0, then the windowsize can be entered as the number of

samples.

Example: segment 3.0 2800 1.0 < input > output.text

21

getstat.c - statistic appended to each line of text file

Inputs: binary floating point data file name, operation, windowsize

where operation = (0 get absolute maximum value of event)(1 get average value of

event), and the windowsize should be the same as in segment.c

Example: getstat input.float 0 2800 < input.text > output.text

togglemax.c - maximize open and close toggling and append 0 or 1 to each line in the text

file

Example: togglemax < input.text > output.text

toggl_fix._ - timing regularity check and marking of the text file if bad

Inputs: percentage deviation from average event spacing to allow

Example: togglefix 0.2 < input.text > output.text

toggl¢filt_r,¢ - outputs corrected tcxt file and ensures at least a certain length sequence of

openings and closings

Inputs: length of shortest acceptable open-close sequence

Example: togglefilter 5 < input.text > output_beats

A.3 Bad Beat Rejection

fixbeats.c - modifies text file to make ordering close-open etc., rejects out of bound

openings along with their previous opening.

Inputs: beats file name, newbeats filename, percentage of the standard deviation to use

for the boundaries

Example: fixbeats input_beats output_newbeats 50
p

A.4 Beat Extraction

extract.c - based on the text file of start and stop locations, this extracts the beats out of

the raw data and centers them in a window.

Inputs: raw data filename, extraction flag(0 = openings, 1= closings, 2=both),

windowsize in samples

Example: For this routine and the following routines, see A.8 for examples.

xg,._ff..Eql._.- extracts noise just prior to each opening

22

Inputs: raw data file name, filename for noise errors, windowsize in samples

A.5 Filtering and Resampling

. resamp.,c - On a window by window basis, filters and resample,s the data.

Inputs: Downsample factor, sampling rate(sec), windowsize in samples

A.6 Spectral Estimation

powerspec rrlvdr.c - On a window by window basis, it finds the power spectrum using

the Minimum Variance Dis:ortionless Response method.

Inputs: model order, sample rate in seconds, windowsize in samples, reflection

coefficient filename, variance filename

powerspec ar,¢ - On a window by window basis, it finds the power spectrum using the

Auto Regressive (Levinson Durbins) method.

Inputs: model order, sample rate (sec), windowsize in samples, ar coefficient filename,

variance filename

A.7 Printing

printsheep.c - This routine converts a power spectrum output file into a spectrogram View

file and prints it out on our Tektronics printer.

Inputs: Filename, windowsize

A.8 Shellscrip! "gol"

This UNIX shellscript automates the signal processing of the heart valve data for a

particular file.

!/usr/loc al/b in/bash

export DISPLAY=$ {HOST} :0

tail + 1025c $1 I splitsheep 01 stof > $2

butter 3 2 0.2 0.45 1.0 < $2 1detect 50.0 5(X).0 1.01 segment 3.0 $4 1.01 getstat $2 0 $4 I

togglemax I togglefi-" 0.21 togglefilter 5 > $3_beats

23

fixbeats $3_beats $3._newbeats 50

extract $2 0 4096 < $3_newbeats > $3_openings

extract $2 1 4096 < $3_newbeats > $3_closings

extractn $2 $3_noiserrs 4096 < $3_newbeats > $3_noise

, resamp 4 1000 5000.0000208333 4096 < $3_openings > $3_oplow

resamp 2 3000 7000.0000208333 4096 < $3_openings > $3_opmed

• resamp I 7000 24000.0000208333 4096 < $3_openings > $3_ophigh

powspec_mvdr 25.000083333 1024 $3_oplowrefl $3_oplowvar < $3_oplow >

$3_oplowps

printsheep $3_oplowps 1024

powspec_mvdr 25 .(X)00416667 2048 $3_opmedrefl $3_opmedvar < $3_opmed >

$3_opmedps

printsheep $3_opmedps 2048

powspec_ar I(X).00(X)208333 4096 $3_ophighar $3_ophighvar < $3_ophigh >

$3_ophighps

printsheep $3_ophighps 4096

24

