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Abstract

C'ellular materials consist of interconnected struts or plates which form cells. The struts or
plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellu-
lar materials are often used in impact limiters for shipping containers to protect the contents
from accidental impact events. These materials exhibit a variety of complex behavior when
subjected to crushing loads. This research focuses on the development of continuum represen-
tations of cellular solids that can be used in the finite element analysis of shipping container
accidents. A significant portion of this work is the development of a new methodology to relate
localized deformations to appropriate constitutive descriptions. This methodology provides the
insight needed to select constitutive descriptions for cellular solids that capture the localized
deformations that are observed experimentally. Constitutive relations are developed for two
different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive
relations are based on plasticity and continuum damage theories. Plasticity is used to describe
the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam.
Clontinuum damage is needed to capture the change in elastic parameters due to cracking of
the polyurethane cell wall materials. The new constitutive description of polyurethane foam
is implemented in both static and dynamic finite element codes, and analytical and numerical
predictions are compared with available experimental data.
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1. INTRODUCTION

Cellular materials consist of interconnected plates or struts which form cells. The struts
or plates are constructed from a variety of metals, polymers, ceramics and wood prod-
ucts. Materials with a two-dimensional array of cells are referred to as honeycombs and
materials with a three-dimensional array of cells are referred to as foams (Figure 1.1).
Foams with interconnected plates often form closed-cells and are referred to as closed-cell
foams. Foams with interconnected struts are referred to as open-cell foams and are gen-
erally much more flexible than closed-cell foams. Foams that permanently deform when
subjected to large strains are rigid foams and foams that remain elastic for large strains
are flexible foams. The two materials that were closely investigated in this study include
a rigid, aluminum honeycomb and a rigid, closed-cell, polyurethane foam.

—‘l 0.01 in

& ®

f

Figure 1.1. Cellular Solids: (&) aluminum honeycomb, (b) polyurethane foam.

Cellular materials have been studied by mathematicians and philosophers for over 300
years (Gibson and Ashby, 1988). Early mathematicians were intrigued by the geometry
and packing of individual cells. Cellular solids have a variety of cell shapes and pack-
ing arrangements. For example, aluminum honeycomb has regular hexagonal cells and
a uniform packing. On the other hand, polyurethane foam has a number of different
cell shapes and packing arrangements. For the past few decades, researchers have ex-
perimentally measured and analytically investigated the mechanical behavior of cellular
solids. The experimental work has included subjecting cellular solids to various load
paths and measuring the induced deformation of the sample. The analytical work has
concentrated on developing equations that relate the elastic response and initial yield

L



strength of the cellular material to the cell geometry and the properties of the cell wall
material. These investigations indicate that cellular solids have mechanical properties
which are not typical of solid materials,

Cellular solids are used in a wide variety ol applications that take advantage of the unigue
propertios of these materials. For example, cellular solids ave used as fillers and rigidizers
in airplane wings and protective packaging for shipping containers (Doyle, 1971). During
a shipping container accident, cellular solids are expected to absorh a significant amonnt
of energy by undergoing large inelastic volume reductions. Unfortinately, these materials
exhibit a variety of complex hehavior when subjected to crushing loads, Continuum rep-
resentations that are developed to capture the hehavior of cellular solids during shipping

container accidents must capture these complex behavior.

The purpose of this rescarch was to develop a continuum representation of cellular ma-
terials that not only captures the elastic response of these materials but also the plastic
deformation, damage and localized deformation that is generated when these materials
arc subjected Lo crushing loads, The constitutive relations developed for these materials
nse a combination of plasticity and continnum damage theories, Plasticity is a well devel-
oped theory which was originally nsed to deseribe the permanent. deformations of metals
loaded beyond their elastic limit, Recently, plasticity has also been used to deseribe
the permanent deformations exhibited by conerete, rocks, soils and foams. Continmum
damage theories, on the other hand, are just currently heing developed (Krajeinovie,
1989). In this paper, a rather general continunm damage theory with a stracture similar
to existing plasticity theories is presented. Use of a similar structure simplifies the de-
velopment of coupled plasticity-continnum damage theories which shave common yiceld
(damage) surfaces. In this study, a coupled theory is developed for rigid polynurethane

foa.

When cellular solids are loaded into the inelastic regime, they often exhibit deformations
that are localized into small regions at some point in the loading process. In the past,
localization has been associated with loss of positive definiteness of the acoustic tensor
(Hill, 1962; Rice, 1976). Here we show that localization should be associated with loss
of positive definiteness of the symmetric part of the acoustic tensor. The acoustic ten-
sor depends on both an orientation vector for the localization and on the fourth-order
tangent stiffness tensor for the material. A connection between constitutive theories and
localization is provided by a spectral analysis of the symmetric part of the tangent stiff-
ness tensor. The eigensystem for the symmetric part of the tangent stiffness tensor is
obtained for several different plasticity and continuum damage models. This eigensystem
provides information about both diffuse and discontinuous bifurcations. Material prop-
erties, boundary conditions, and body geometry are all shown to affect the diffuse and
localized deformation modes that are generated. Numerous experimental observations of
necking and localization in metal specimens subject to various boundary conditions are
explained with a bifurcation analysis of a von Mises plasticity model. Bifurcation analy-
ses are then performed on potential constitutive theories for cellular solids. A comparison

12




of results from the bifurcation analyses with experimental observations of localized defor-
mations is essential for the identification of appropriate constitutive theories for cellular

materials.

Constitutive relations for alumimumn honeycombs and rigid polyurethane foams are de-
veloped and analyzed. A coupled plasticity and continuum damage model for rigid
polyurethane foam is then implemented in both static and dynamic finite element codes.
A number of static tests on rigid polyurethane foam are analyzed and the results from the
finite element analyses are compared with experimental observations. Finally, a typical
impact problem is analyzed using various constitutive models for a polyurethane foam
impact limiter to demonstrate the effects of using various constitutive descriptions for

the foam.

13



2. CELLULAR MATERIALS

Literature on the mechanical behavior of cellular material is reviewed in this chapter.
The first section includes a discussion on the general behavior of cellular material. In the
second section, currently available experimental data for aluminum honeycomb and rigid,
polyurethane foam is reviewed. In the final section, existing constitutive theories for these
materials are reviewed and the need for improved constitutive theories is discussed.

2.1 General Behavior

Cellular materials generally have a much lower density, thermal conductivity, stiffness,
and strength than solid materials (Gibson and Ashby, 1988). A typical stress-strain
curve generated from a uniaxial compression test on a cellular solid is shown in Figure
2.1, Initially the cellular solid is linear elastic. When load is applied the cell walls bend
but remain linear elastic. As the load is increased, the cell walls begin to elastically
buckle, form plastic hinges, or crack. The behavior depends on the cell wall material,
temperature, and loading rate. Generally, one layer of cells will completely collapse before
a second layer collapses. This generates a narrow region of localized deformation. In this
platcau region, a small increase in the applied load will cause additional layers of cells
to collapse and the region of localized deformation will continue to grow. It is exactly
this behavior that makes cellular materials attractive for use in impact limiters. Once a

STRESS LOCK-UP
PLATEAU COMPRESSION
/ ELASTIC
STRAIN
TENSION

Figure 2.1. Stress-Strain Curve for Cellular Solid Subjected to Uniaxial Loads.



certain load level is reached, the material experiences large volume reductions and absorbs
a significant amount of energy with only a small increase in transmitted load. Finally,
once all of the cell rows have collapsed, the cell walls are compressed against each other
and the load needed to compress the sample further will rapidly increase. This is referred
to as densification or lock-up of the cellular solid. The unloading behavior will depend on
the character of the cellular material. Flexible cellular materials will elastically unload
and return to their undeformed shape. Rigid cellular materials, on the other hand, are
permanently deformed and often damaged when they are compressed into the plateau
regime. This study focuses on rigid cellular solids which exhibit inelastic deformations.

When cellular solids are subjected to tensile loads, the cell walls will again bend and
the material will initially be elastic. As the load is increased, the material will either
plastically deform or fracture. The behavior will again depend on the cell wall material,
temperature and load-rate. If the material fractures, the applied load will rapidly de-
crease. If the material plastically deforms, the load will increase as the cell wall sections
are rotated and axially stretched. Often a single row of cells will stretch or fracture and
the material will also exhibit localization in tension.

2.2 Experimental Data

Two cellular materials that are often used in packaging, aluminum honeycomb and rigid
polyurethane foam, have been experimentally evaluated by a number of researchers (Shaw
and Sata, 1966; Patel and Finnie, 1969; Zaslawsky, 1973; Klintworth and Stronge, 1988;
Gibson and Ashby, 1988; Donald and Maji, 1992). Results from these experimental
imvestigations are briefly summarized in this section.

2.2.1 Aluminum Honeycomb

Aluminum honeycomb consists of interconnected aluminum plates. The plates are con-
nected such that they form hexagonal cells that resemble a bee’s honeycomb. This
material is not isotropic. In fact, the strength of the material in a direction parallel to
the generator axis is approximately 30 times greater than its in-plane strength.

A typical yield surface for an aluminum honeycomb subjected to in-plane loads (CGibson
and Ashby, 1988) is shown in Figure 2.2. When this material is subjected to a uniaxial
in-plane compressive load the cell walls bend, plastic hinges form near the connection
between various cell walls, and cell walls eventually deform and collapse. Generally, a
localized region of cells will collapse and begin to densify before cells in other regions col-
lapse. Figure 2.3 shows the localized deformations generated by uniaxial compression in
the ribbon direction and uniaxial compression in the transverse direction. The localized
deformation zones in these materials are generally oriented along geometrically similar
lines. However, the localized deformation is significantly different when the load orien-
tation is changed. Thus, the constitutive description for aluminum honeycomb should

16
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Ficure 2.2. Failure Surface for Regular Hexagonal Honeycomb Subjected to In-plane
Loads (Gibson and Ashby, 1988).

predict geometry and load dependent localized deformation.

For uniaxial compression, the load-displacement curve consists of an initial linear elastic
regime followed by a plateau regime where the cells collapse as plastic hinges form in
the cell walls. Finally, a regime of densification is reached where all of the cells have
collapsed and begin to densify which causes the load carried by the structure to rapidly
increase. The behavior of this material under uniaxial tension is similar to its behavior
under uniaxial compression. Plastic hinges form near the connection between various
cell walls and cell walls bend and stretch. Again, a localized region of cells will stretch
and be elongated before cells in other regions are plastically deformed. Eventually the
entire matrix is elongated and the response is equal to the response of the solid cell wall
material. The cross section of the sample has, of course, been significantly reduced.

When this material is subjected to uniform biaxial tension, the cell walls are stretehed
and not bent. Note that the yield surface (Figure 2.2) for aluminum honeycomb is
elongated along the biaxial load path. This occurs because the biaxial load needed to
stretch the cells walls is significantly higher than the uniaxial load needed to bend the
cell walls. Since the permanent deformation exhibited by this material is associated with
the formation of plastic hinges in the cell walls, a plasticity model is used to capture the
inelastic behavior.



Y - Ribbon Direction

—

X- Transverse Direction

Figure 2.3. Localized In-plane Deformation of Alaminum Honeycomb Subjected to
Uniaxial Compression: (a) in the Transverse Direction, (b) in the
Ribbon Direction (Donald and Maji, 1992)
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Figure 2.4. Failure Surface for a Rigid, Closed-Cell, Polyurethane Foam (Patel and
Finnie, 1969; Gibson and Ashby, 1988).

2.2.2 Polyurethane Foam

Rigid, closed-cell polyurethane foam consists of interconnected plates of polyurethane.
The geometry of this material is three-dimensional and the plates are much more ran-
domly distributed than the plates in aluminum honeycomb. This material is manufac-
tured by having a gas expand inside liquid polymer which solidifies in a foamed state.
Shaw and Sata (1966), Patel and Finnie (1970), Zaslawsky (1973), and Donald and Maji
(1992) have experimentally measured the behavior of polyurethane foam samples sub-
jected to various load paths. Patel and Finnie's (1969) work indicates that the initial
failure surface for this material subjected to a plane stress state has the rectangular shape
shown in Figure 2.4, The experimental work of Shaw and Sata (1966), Zaslawsky (1973),
and Donald and Maji (1992) indicates that the initial yield surface for rigid polyurethane
foam can be described using a principal stress criterion.

A load-displacement curve for 20 1h/ft? polyurethane foam subjected to cyclic uniaxial
compression is shown in Figure 2.5. The initial elastic regime is followed by a platean
regime in which the load required to crush the material remains nearly constant. In
this regime, some cell walls are compressed until they buckle while other cell walls are
stretehed until they crack. When additional load is applied, the cell walls are compressed
against other cell walls and the stiffuess of the foam approaches a value equal to the
stiffness of solid polymer. The slopes of the unloading curves indicate that the material
stiffness decreases when the material is compressed into the plateau regime but that the

19
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Figure 2.5. Load-Displacement Curve for 20 1h/ft? Polyurethane Foam Subjected to
Cyclic Uniaxial Compression (Donald and Maji, 1992).

material stiffuess actually increases when the material is compressed further into the
densification regime. The decrease and subsequent increase in foam stiffness is caused
by two distinct deformation mechanisms. The decrease in stiffness occurs due to the
cracking and reduced stiffness of the cell walls. The increase in stiffuess is due to the
interaction between neighboring cell walls as they are compressed together,

2.3 Existing Continuum Representations

Most packages are currently designed using a one-dimensional uniaxial crush model for
the cellular solid. This is done due to the lack of adequate experimental data or an
accurate constitutive theory for these materials, In a typical design, the nniaxial load-
displacement, curve is used directly to compute the amount of energy absorbed by the
foam for a given uniaxial impact event, This method is acenrate for describing the
response of impact limiting materials subject to uniaxial loads; however, this simple
tniaxial approach cannot be applied to situations involving multiaxial loading. A general
continunm representation is needed if multiaxial loading is involved. The unjaxial crush
model is adequate for only the simplest of package geometries and loadings.

A variety of researchers (Gibson and Ashby, 1988; Warren and Kraynik, 1987) have
studied the linear elastic behavior of various cellular solids. In this work, equations are
developed that relate the elastic constants to parameters that define the geometry of the
cell (i.e., the thickness of the cell wall and length of a typical cell wall section). Equations
that define the critical load beyond which the behavior is no longer linear elastic are
also developed by these rescarchers. These equations are then used to deseribe the



lincar elastic hehavior of a group of cells by assuming that all cells have the same initial
geometry and deform in the same manner. ‘This work was recently extended (Warren,
Kraynik and Stone, 1989) (o capture the nonlinear elastic behavior of two-dimensional
open cell foams. Results from these micromechanical investigations indicate that the
dominant cell deformation mechanism in tflexible foams changes from hending for small
deformations to stretehing for large deformations.

The micromechanical studies of Warren and Kraynik (1987) and others provide a deserip-
tion of the cellnlar material hehavior that is based on an understanding of the behavior at
the cell level, These studies provide valuable information about cell deformation mech-
anisms aud the effects of cell geometry or material variations on the global response of
the foam. This is important because it allows for the development of an engineered cellu-
lar material that meets specific global behavior requirements. Current micromechanical
studies accurately capture the linear and nonlinear celastic behavior of cellular materi-
als that have a regular cell geometry. However, a significant extension of the current
micromechanical studies would be needed to investigate the effects of irregular cells, to
prediet inelastic behavior, or to capture localized deformation. Extension of microme-
chanical studies to inelastic behavior and localization will probably require a complement
of analytical and numerical investigations of families of cells.

[n this rescarch, a macromechanical approach is used to investigate the hehavior of cel-
lnlar solids. With this approach an extensive experimental investigation is needed to
evalnate the deformation and localization exhibited by a large number of cells subjected
to various load paths. Results from the experimental investigations are then used to de-
velop a mathematical deseription of the behavior. This approach allows the development
of a model that captures both the elastic and inclastic behavior of the material, An ac-
curate description of cach individual cell is not needed; thus, this approach works well for
materials that have irregular cells like polyurethane foam. Unfortunately, if the equations
are independent of cell geometry then the effeet of variations at the cell level cannot he
related to variations in global hehavior, With this approach localized deformations must
be measured during experiments if a model that captures localized deformation is to he
developed. Also a thorough understanding of the relationship between localized deforma-
tions and constitutive deseriptions is needed to develop appropriate constitutive theories
for materials exhibiting localization, A significant portion of this work is a development
of such an nunderstanding,

Most commercial finite element codes do not have constitutive theories for cellular solids
and analysts using these codes are foreed 1o use an inappropriate constitutive deseription
for cellular materials when they are faced with a problem in which these materials are
used. A few rescarchers are currently working on the development of constitutive the
ories for cellular materials (Neilsen, Morgan and Krieg, 1987; Klintworth and Stronge,
1988 Warren, Kraynik and Stone; 1989; Triantafillon and Gibson, 1990) and this report
represents some of that work, Recently, Klintworth and Stronge (1988) investigated the
response of aluminum honeycombs subjected to in-plane loads and developed mathemat-
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ical expressions for the elastic response and the initial yield functions for this material.
Their yield functions describe a family of intersecting yield surfaces in stress space. The
yield functions for aluminum honeycomb developed by Klintworth and Stronge (1988)
are used in the plasticity theory for aluminum honeycomb presented here. A plasticity
model for rigid polyurethane foam, developed by Neilsen, Morgan and Krieg (1987), is
used as the basis for the coupled plasticity continuum damage model for polyurethane
foam developed in this study.




3. CONTINUUM CONSTITUTIVE THEORIES

This chapter includes a review of elasticity, plasticity and continuum damage theories
which may be useful for describing the behavior of cellular solids, The continuum damage
theory was developed by Schreyer (1990a) using a structure similar to that of conventional
plasticity theory. The use of this structure ensured the development of thermodynam-
ically acceptable constitutive theories and also aided in the identification of continnum
damage theories which are analogous to existing plasticity theories. This was helpful
in the development of coupled (plasticity with continuum damage) theories which have
common vield (damage) surfaces.

3.1 Elasticity

Elasticity theories were developed to deseribed the deformation of materials not loaded
beyond their elastic limit. For a class of lincar elastic materials, there exists a positive
definite strain energy per unit volume, {7, (Malvern, 1969), given by

ll=1e:E:¢ (3.1)

where € is the total strain tensor and E is the fourth-order elastic stilfness tensor, All of
the fourth-order tensors used in this report possess the minor symmetries, e, F i =
Eoe = Eoik. The existence of a strain energy function implies that the elastic stiffness

tensor also pussesses the major svmmetry, e B = Fyy,.
For small deformations, the constitutive relation is as follows:
oc=—=E:¢€ (3.2)
If the material is isotropie, then E is given by
E =3P 4 2(/P! (3.3)

where A is the bhulk modulus and ¢ is the shear modulus. The bulk and shear moduli

are related to Young's modulus, £, and Poisson’s ratio, v, as follows

I3 I
g (= — 3.
h= g 201 + 0) (3-1)

The fourth-order spherical projection operator, P, and the deviatoric projection oper-
! pro, ) | ]
ator, P4 are given by
PV = gico P'=1-P" (3.5)
Here Tis the symmetrie fourth-order identity tensor and 1is the second-order identity.



3.2 Plasticity

Plasticity theories were originally developed to mathematically deseribe permanent de-
formations in metals which are associated with dislocation motion and slip at the mi-
crostructural level. An important assumption made by these theories is that the linear
clastic properties of the material are not affected by the generation of plastic deforma-
tion. This assumption is valid for most metals subjected to only a moderate amount
of plastic deformation; however, recent experiments indicate that the stiffness of metals
may be affected when large amounts of plastic deformation are generated.

To develop a general framework for plasticity theories, consider the following expression
for the strain energy function, [/,

l ::If(e,e”):é(e—e”):E: (e — €) (3.0)
where € and €” are the total and plastic strain tensors, respectively. Coleman and Churtin
(1967) have shown that the Clansins-Duhem dissipation inequality can he written as

o1 >0 (3.7)

or

ane oA 43)
—f — e——— ) > 3.8
iJe Jer ‘

With the constitutive relation

o

=E: (e — €") (3.9)

Je
and the following expression for the mechanical dissipation rate, 1),

Ao’

[ = - :
e’

€ =o€ (3.10)
the Clausius-Duhiem inequality can be simply expressed as

N =0 (3.11)
which indicates that the dissipation of mechanical energy is an irreversible process.

Plasticity models are characterized by a yield function, W, which defines a surface in
stress space separating clastic and plastic regimes and an evolution equation for the
plastic strain which is also referred to as a flow rule, Yield functions are often written as
follows

V(io,e") = g(o) - h(e") (3.12)

where g is a function of stress invariants and h is a positive function of €”. Information
abont the load history is stored in € or often some invariant of €’ and the effects of
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the Toad history on the yield surface are incorporated through h(e”). The yield surface
represented by this vield funetion is given by W = 0 and the normal to the yield surface,
f, is given by

A]
T 3.3
do ( )
A typical flow rule is given by
€ =g (3.14)

where pois a monotonically inereasing parameter and g is a second-order tensor that
represents the orientation of the plastie strain increment. By substituting this expression
for the plastic strain rate into the dissipation rate equation we obtain

D=jo:g (3.15)

For elastic processes, p equals zero and for plastic processes pis positive, Thus, Equation
315 indicates that mechanical dissipation will be generated when plastic deformation
ocenrs and the tensor produet @ @ g is positive. In other words, to ensure that dissipation
accompanies plastic deformation, one should select vield funetions and flow laws such that
the tensor product o @ g is positive whenever plastic deformation is generated.

The How rule is referred to as an associated flow rule when the normal to the yield surface
and orientation of the plastic strain increment are oqual, i.e., f = g, This condition is
also referred to as normality because the plastic strain inerement is oriented in a direction
normal to the vield surface. Maxinean plastie dissipation results when associated flow
riles are nsed (Simo and Hughes, 1986). Yield functions and flow rules are not ther-
modynamically »equired to be associated; however, they should always be chosen such
that dissipation and plastic deformation are coincident events for all possible load paths.
In other words, flow rales and yield functions cannot be chosen independently. Several
existing plasticity theories that may be used to deseribe the behavior of cellular solids
are presented in the next fow seetions,

3.2.1 Drucker-Prager

The Dracker-Prager model was developed to capture the bebavior of geologic materials
such as sands and soils. This model has a yield function given by

/ I -
\y = \/.Ig 4“7{/1 e (.‘l())
where pis an internal friction parameter and e is a material constant. Jy is the second

invariant of the deviatorie stress tensor and 1y is the first invariant of the total stress

Lensor:

| :
hzsw:w, Iy =a:i (3.17)

where @ is the stress deviator, The yield surface given by this function is a cone in
principal stress space as shown in Figure 3,1,




O3
Figure 3.1. Drvucker-Prager Yield Surface,

The normal to the yield surface, f, is given by
«l

f o —— + i (3.18)
and the orientation of the plastic strain increment is chosen to be

__ 7 319
STRvI o

where 4 is the dilataney parameter. When geis equal to 3 the flow is associated with the
vield function.

3.2.2 von Mises

Next, consider a von Mises plasticity model with associated flow and linear strain hard-
ening, The model was originally developed to deseribe the plastic deformation of metals.
The yield function, ¥, is as follows:

V= /Iy~ (Hy + 1) (13.20)

where Hyy is the initial vield strength, Hy is the hardening modulus, and « is the equiv-
alent plastic strain which is a monotonically increasing invariant given by

= /((le" : (le?’)% (3.21)
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G,

Figure 3.2, vou Mises Yield Surface,

This yield function represents a yield surface that is an infinitely long cylinder in stress
space as shown in Figure 3.2, The corresponding orientation of the plastic strain incre-
ment is normal to the yield surface and is given by

a.zl

fog=- 2 (3.22)

. . 2
(2y/.13)

Bquation 3.22 indicates that this model predicts only deviatoric or shape changing plastic

strains. Since rigid polyurethane foams and aluminum honeycombs exhibit significant

volumetric plastic strains, a von Mises plasticity model is not appropriate for these ma-

terials.

3.2.3 Mohr-Coulomb

Next, consider a simple Mohr-Coulomb model which has been used to describe the be-
havior of sand and other geologic materials. This model has a yield function given by
1 1 o REION DS

U = Z(01 — 0y) + ;{0 + o2)sing — ¢ cosg (3.23)

where ¢ is the internal friction angle, ¢ is the cohesion, and the coordinate system is chosen

such that a; and oy are the maximum and minimum principal stresses, respectively. Then

for an associated flow law the components of f and g in the principal coordinate system

are
| + sing 0 0
f=g=i 0 - 1+sing (3.24)
0 0 0

A Tresca model with associated flow is identical to a Mohr-Coulomb model with the
internal friction angle set equal to zero,
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3.2.4 Principal Stress

Finally, consider the principal stress theory of Rankine that was recently used by Neilsen,
Morgan and Krieg (1987) in a plasticity model for rigid polyurethane foam. This criterion
has a yield function given by

V=10 P':o — h(e’) - r=1,2,3 (3.20)
where P* is a fourth-order principal projection operator given by
P'=n'®n' ®n'&n' (3.26)

and n' is a unit vector oriented in a principal stress direction. This yield function actually
represents six different yield surfaces with normals to the principal stress axes as shown

in Figure 3.3.

The flow law is given by

ee=p'P' .o (3.27)
where the repeated indices imply summation. This flow law indicates that plastic strain
increments may be associated with each principal stress direction.

Cellular solids generally exhibit both plastic deformation and stiffness changes. Flasticity
models predict permanent deformations but assume that the stiffness of the material does
not change. Thus, a combination of plasticity theories and continuum damage theories,
which predict stiffness changes, are needed for cellular materials. In the next section,
continuum damage theories which have a structure similar to existing plasticity theories
are presented.

Figure 3.3. Principal Stress Yield Surface.
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3.3 Continuum Damage

Continuum damage theories were developed to mathematically describe the progressive
reduction in stiffness and strength of brittle materials resulting from the initiation and
growth of microcracks and microvoids. These theories have been used to describe the
nucleation and growth of microcracks and microvoids in metals and the formation of
microcracks in concrete, rocks and ceramics (Kachanov, 1986; Krajcinovic, 1989). An
important assumption implicit in these models is that the cracks are small and distributed
such that the cracked material can be logically represented by an equivalent continnum
with damage. When the cracks are large, fracture mechanics is used to predict the
formation and growth of large individual cracks. However, when there are a large number
of small cracks it rapidly becomes impossible to follow the formation and growth of cach
crack; thus, a continunm damage theory is used.

For the development of continuum damage theories, consider the following expression for
the strain energy function, U/,
— —1:..Q. Q¢
U=1U(€S)=3€e:S:¢€ (3.28)
where S is the fourth-order damaged elastic stiffness tensor which is equal to the elasticity

tensor, E, when the material is undamaged and changes as the material is damaged. The
Clausius-Duhem dissipation inequality can be written as

ou U

cr:é~-(,)—€.e—ﬁ.:320 (3.29)
Using the constitutive relation
o= oy =8S:¢€ (3.30)
Je
and an expression for the dissipation rate, D,
D:_%IS—/ ::S:-—%G:S:e (3.31)

the Clausius-Duhem inequality is again given by ) > 0. Next, if we introdice an
evolution equation for the rate of change in elastic stiffness

S = -uR (3.32)

where w in some sense represents the increment in damage and R represents the orien-
tation of the damage increment. The dissipation rate is then given by

LW

D= SE: R:e¢ (3.33)

Using a procedure analogous to that of plasticity, we assume that a damage surface exists
and separates elastic and damaging processes. The damage surface is mathematically
described by a damage function, W,

1

Vo= 7€ Q:e—yg(S,e) (3.34)
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where Q is some fourth-order tensor and ¢ is some positive function. When W is less than
zero the behavior is elastic and when W is equal to zero the behavior may be damaging.
As with plasticity, the thermodynamical constraint for dissipation to accompany damage
can be satisfied with appropriate selections for the damage function and damage evolution
equation. For example, if we use the damage evolution equation given hy Equation 3.32
and let Q equal R in the damage function, Equation 3.34, then dissipation will always
accompany damage.

The damage function given by Equation 3.34 is expressed in terms of strain which implies
that the damage function represents a surface in strain space; however, if one is opposed
to working in strain space the damage function can always be expressed in terms of stress,
For example, choose

Q=S:P:S (3.35)

then |

V= 50 P:o — g(S,¢) (3.36)
We could also use an evolution equation for the compliance of the material, C, in place
of the evolution equation for the stiffness given by Equation 3.32. Sinee C 'S =T, the
evolution equations for stiffness and compliance must be related as follows

C=-C:S:C (3.37)

Svolution equations which would be appropriate for the damage function given by Equa-
tion 3.36 are

S=-wS:P:S or C=wP (3.38)
Thus, for damage functions in stress space it may be casier to use evolution equations
for compliance. At this point, we have placed no restrictions on the forms for Q and
R and have simply stated that they should be chosen such that the thermodynamical
restriction for dissipation to accompany damage is satisfied,

3.3.1 Simple Scalar Damage

Most existing continuum damage models are scalar damage models. For these models
the orientation of the damage is given by some fixed fourth-order tensor. One of the
simplest scalar damage models has a damage function given by

V= éf:E : € — h(S,€) (3.39)

and an evolution equation for the elastic stiffness tensor given by
S=-wE (3.40)

where E is the isotropic elastic stiffness tensor given by Equation 3.3. This evolution
equation indicates that the damage orientation is given by the original undamaged elastic
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stiffness tensor. With this evolution equation, the current clastic stiffness tensor, S, is
related to the undamaged elastic stiffness tensor, E, as follows

S=(l-wE (3.41)

Since the elastic stiffuess tensor, E, is isotropic, the damaged elastic stiffness tensor, S,
is also isotropic. As the material is damaged, the elastic modulus is degraded as follows

E=(l-wke (3.42)

where £ and E° are the elastic moduli for the damaged and original undamaged ma-
terial, respectively. With this model, information about the current damaged state is
stored in a single scalar, ££. This contintum damage model is quite simple; however, the
appropriateness of this model for any damaging materials has not been demonstrated
because Equation 3.41 implies that Poisson’s ratio remains unchanged.

3.3.2 von Mises Damage

Next consider a scalar damage model which has the same yield function as a von Mises
plasticity model written as follows

¥ =1l0: P! o — ¢%(S) (3.43)

On the surface, this yield function looks different than the yield function given by Equa-
tion 3.20. However, both Equation 3.20 and this equation represent a yield surface that is
an infinitely long cylinder in principal stress space as shown in Figure 3.2, An appropriate
damage evolution equation for this model is given by

S =—wS:P":S = —4u(2P* (3.44)

where (¢ represents the damaged shear modulus for the material. For this model the
damage history is stored in the single scalar (7. A von Mises plasticity model is char-
acterized by deviatorie plastic strains and no change in the volumetric response of the
material. Likewise, a von Mises damage model is characterized by reductions in the shear
stiffness of the material and no change in the volumetric stiffness of the material.

3.3.3 Principal Stress Damage

Next, consider the principal stress criterion of Rankine which has damage functions given

by
V= 1o :P' o - h(S) 1= 1,2,3 (3.45)

where P is again the fourth-order principal projection operator. The damage evolution
equations for this model are chosen to be

§S=-wS:P:S or C =P (3.46)
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where the repeated indices imply summation. This model is not a simple scalar damage
model and information about damage is not stored in a single scalar because the orienta-
tion of the damage, specifically, P', can change during a loading process. For this model,
information about the current damaged state is stored in the damaged clastic stiffness
tensor, S, or the damaged compliance tensor, C.

3.3.4 Principal Strain Damage

Finally, consider a principal strain criterion which has recently been used by Bazant
and Lin (1988) to describe the behavior of concrete. This model is able to predict the
formation of vertical cracks in concrete specimens subjected to uniaxial compression.
This model has damage functions given by

W' =te:P':e— h(S) i =1,2,3 (3.47)
where P* is again the fourth-order principal projection operator; however, now the n'
used in the definition of P in Equation 3.26 are vectors oriented in a principal strain
direction. Bazant and Lin’s (1988) crack hand model uses a damage evolution equation
given by

C =uwP (3.48)
The interesting characteristic of this model is that for certain load paths this model will
predict damage without dissipation. For example, under uniaxial compression lateral
tensile strains are generated and damage is predicted but the dissipation equation

D= wie P o (3.49)

indicates that no dissipation is generated. This model could be improved by simply using
adifferent damage evolution equation. For example, if one of the following damage evolu-
tion equations is used with the damage function given by Equation 3.47, then dissipation
will accompany damage for all load paths.

S = —u'P or C=uwC:P':C (3.50)

This brief review of principal strain models clearly shows that evolution equations and
damage functions cannot be selected arbitrarily. The examples in this section show that
damage theories which are analogous to plasticity theories can be developed using a
similar framework. In the next section, we explore theories in which continuum damage
is coupled with plasticity.
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3.4 Coupled Theories

[f both damage and plastic deformation are generated then the developments presented
in the previous sections must be modified to capture the coupling. The strain energy
function is now given by

"= (e, €"S) = %(G —€") S (e —¢€") (3.51)
The Clansius-Duhem inequality becomes
oAt ot gt
o 66— ——. €~ 1¢"—-— 18§ > (4.52)

e de" S

The constitutive relation is given by

Ju
o= — (33.53)
e
and the dissipation rate by
~, U T | . .
D:»%gxS*%T:ﬂ:~de—ﬂMS:k*eﬂ+0:ﬂ (3.51)
( (JE &

If we introduce evolution equations for both the fonrth-order elastic stiffness tensor and

the second-order plastic strain tensor as follows:
S = —-wR €' = pg (3.55)

then the dissipation rate is given by

D=po: g+ f—:’(e —€):R: (e — €) (13.56)
At this point we could choose a yield surface for the plasticity part that is independent
from the damage surface and require that hoth terms in BEquation 3.56 satisfy the dis-
sipation inequality, This wonld certainly be a sallicient condition,  However for many
materials, it seems reasonable to expect that damage will only be generated when per-
manent strains are generated which implies that for such materials the damage and yield
surfaces are the same, Bven with this assumption, there is still a significant amount of
latitude in choosing appropriate evolution equations for permanent strain and damage.

For example, if we choose a yield function given by
V=0:P:0o - g(e€"S) (3.07)

where g is some positive function, and a damage evolution equation and flow law given
by

=-wS:P:8§ e =P .o (3.58)
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then the dissipation rate is given by

)
’

D=(p+d)e:P:o (:3.59)

Use of the yield function given by Equation 3.57 and the evolution equations given by
Fquation 3.58 will ensure that mechanical dissipation is generated whenever damage or
plastic deformation is generated. An interesting feature of this coupled theory is that p
and w are not required to monotonically increase as long as the sum of the two terims
does, What this means is that stiffness of the material could actually be increasing while
plastic deformation is being generated and the theory would still be thermodynamically
acceptable. The requirement that damage monotonically increases is ouly applicable
to damage only theories; however, for most materials that exhibit both damage and
permanent strain it may still be appropriate based on physical arguments to assume that,
damage is not a reversible process even though the assimption of irreversibility is not
required,

To complete this coupled theory we need an additional equation to determine the relative
amounts of damage and plastic strain generated during a given step. For example, we
could postulate a relationship of the form

Mp=(1-Muw (3.60)

where M is some material parameter obtained from experimental observations. When
M is equal to zero the theory represents a plasticity only theory sinee & is equal to zero
and wheu M is equal to one, the theory reduces to a damage only theory, When A
is between zero and one both permanent strains and damage are generated when the
material is loaded into the inelastic regime.

3.4.1 Simple Scalar Damage Coupled with Plasticity

Most damage models are simple isotropic, scalar damage models. One of the simplest
scalar damage models has a damage function give by Equation 3.39 which can also he
written as

V=e:C:.0—g(S €€ (3.61)

where C is the compliance tensor and is equal to the inverse of the damaged elasticity
tensor, S, For this model; the evolution equations for plastic strain and damage are given
by

€ =pC:0 = ple — €) S = -wE (3.62)
where the relationship between poand w is given by Equation 3.60. With this model,

the orientation of the plastic strain increment is given by the elastic strain tensor, € =
(e — €").

34




3.4.2 von Mises
Next consider a coupled von Mises theory with a damage (yield) function given by
— 1. pd, T 0 g
V=1lo:P'o - gie) (3.63)

The low rule and damage evolution equation are given by

e =P o E = —04(*P! (3.64)
As expected, this coupled model is characterized by deviatorie plastic strains, reductions
in the shear stiffness, and a linear elastic volumetrie response,
3.4.3 Principal Stress

Finally, consider a principal stress eriterion of Rankine that was recently used in a plas-
ticity model for polyurethane foams by Neilsen, Morgan and Krieg (1987), If we wanted
to develop a coupled model based on this same criterion we would use a damage (yield)
function given by

V'=1a:P': o - h(e¢",S) (3.65)
where P is again the fourth-order prineipal projection operator. One possible choice for
the plastic and damage flow rles would be

€ =pP o S=-wS:P:8 (3.66)

These examples show that coupled theories can be easily developed using the general
framework presented in this section.
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4. BIFURCATIONS AND LOCALIZATION

When materials are loaded into an inelastic regime, small regions of intense deformation
often develop at some point in the loading process. This intense localized deformation
limits the formability of materials and will often quickly fead to failure with continued
loading. Localization is often associated with satisfaction of the classical discontinuous
bifurcation eriterion (Hill, 1962; Rice, 1976). Here we propose that the loss of strong ellip-
ticity eriterion should he used in place of the classical discontinuous hifurcation eriterion
as a necessary condition for localization. The application of the strong ellipticity erite-
rion implies that a hifurcation mode associated with loss of positive definiteness of the
symmetric part of the acoustic tensor must be identified rather than a mode associated
with the first zero eigenvalue of the acoustic tensor itsell, The eigensystem for the sym-
metrie part of the tangent stiffness tensor is obtained for several different plasticity and
continunm damage models. This cigensystem provides information about deformation
modes associated with hoth diffuse and discontinuons bifurcations. Material properties,
boundary conditions, and hody geometry are all shown to affect the diffuse and localized
deformation modes that are generated. Numerous experimental observations of necking
and localization in metal specimens subjeet to various houndary conditions are explained
with a hifurcation analysis of a von Mises plasticity model, Finally, hifurcation analyses
are performed on constitutive theories which may be appropriate for cellular solids.

4.1 Introduction to Bifurcation Criteria

Necessary bhut not suflicient conditions for general and discontinuous bifurcations, loss of
unigueness, and localized deformation of elastic-plastic materials have been previously
developed. A necessary condition for loss of material stability, loss of uniqueness and a
general bitureation in the solution is the loss of positive definiteness of the rate of second
order work (Drucker, 1950 THIL 1958). "This general bifurcation eriterion can also he
expressed as loss of positive definiteness of the symmetric part of the tangent stiffness
tensor, I general, the strain eigentensor, or mode, associated with a general bilurcation
will not have a kinematically compatible form. Thus, the mode can only exist in a zone
deseribed as a point or surface, 1.e., a domain of measure zero. Sueh a mode eannot exist
in any real sense without affecting the stress state in the surrounding material and s
ustually referred to as a diffuse mode which initiates smooth changes in the deformation
field such as necking,

Valanis (1489) states that loss of material stability should be associated with the limit
point where the tangent stiffuess tensor obtains a zero eigenvalue. This would he ap-
propriate if one considers only statically determinate specimens with force preseribed
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systems. For materials with symmetrie tangent stitfness tensors, the Valanis (1989)
and Deneker (1950) interpretations both identify the limit point as the point at which
necessary conditions for loss of material stability are first satisliod, For materials with
nnsymmetrie tangent stiffness tensors, loss of positive definiteness of the svimmetrie part
of the tangent stiffness tensor and satisfaction of the necessary condition for a general
bifurcation can ocenr prior to the limit point.

Hill (1962), Mandel (1966), and Rudnicki and Rice (1975) have snggested that loss of
material stability and localization does not oceur until the acoustic tensor has a zero
cigenvalue, This acoustic tensor is dependent on hoth an orientation vector and on the
material. There are two reasons why this delinition is more appropriate than the one
involving only the tangent stiffness tensor. First, this condition identifies the point where
the character of the differential equations changes (loss of ellipticity) and, second, the
mode is associated with a strain rate jump within a planar hand that does not lead to
any kinematic incompatibilities with the sureonnding material, Sinee the mode can be
interpreted as a jump in strain rate within a band over the strain rate in the surround:
ing material, the mode is called a discontinnous bifurcation,  Localized deformations
associated with discontinnons bifurcations may initiate on a domain indelinite in extent.
Evolution of the domain can only be controlled if additional constraints sneh as that
provided by a non-local constitutive theory are present (Sehreyer, 1990h). A spectral
analysis of the aconstic tensor is rather diftienlt, although recent work in this arca by
Ottosen and Runesson (1991), Bigoni and Hueckel (1991), and Runesson, Ottosen and
Perie (1991) appears encouraging,

Ottosen and Runesson (1991) state that loss of strong ellipticity of the governing il
ferential equations oceurs whenever positive definiteness of the symmetrie part of the
acoustic tensor is lost, When the tangent stiffness tensor and thus the acoustic tensor
are symmietrie, loss of strong ellipticity and satisfaction of the classical necessary con
dition for a discontinuous bifurcation will first occur at the same point. However, for
nop-symmetric acoustic tensors, loss of strong ellipticity will precode satisfaction of the
necessary condition for a classical discontinuons hifurcation, In addition to the loss of
positive definiteness of the acoustic tensor, loss of strong ellipticity can also be inter-
preted as satisfaction of the general bifurcation condition with an associated strain rate
which is of a form suitable for providing a kinematically compatible veloeity field (Bigoni
and Hueckel, 1991). Here we postulate that localization should be associated with the
loss of strong ellipticity.

An eigenanalysis of the symmetric part of the tangent stilfness tensor provides a wealtl)
of information about deformation modes associated with both diffuse and discontinnons
bifurcations, The necessary condition for a general bifurcation is first satisfied when the
fundamental cigenvalue of the symmetrie part of the tangent stiffness tensor obtains a
value of zero, The deformation mode associated with this hifurcation is characterized by
the fundamental cigeutensor. Discontinuous bifurcations are investigated by choosing a
mode which satisfies the general hifurcation eriterion and is restricted to bhe of a form
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normally associated with a discontinuous bifurcation, The mode is expressed as o lin.
car combination of the cigentensors associated with the symmetrie part of the Langent
stiffness tensor. With this approach there is no need to explicitly determine or analyze
the acoustic tensor. By interpreting the problem of material stability as an eigensystem
problem in the presence of a constraint, we automatically establish the structure for in-
corporating additional constraints, such as plane strain, which may be present becanse of
external loading and boundary conditions, The presence of additional constraints anto-
matically infer that the usual procedure of finding the first zero eigenvalue of the acoustic
tensor may not be an indicator of localization.

The approach used is to determine the spectral decomposition of the symmetrie part of
the tangent stiffness tensor, For conventional elastic-plastic models this decomposition is
straightforward and explicit linear combinations of eigentensors can be obtained to show
satisfaction of constraints which reduce to lincar algebraic equations of the cigentensors.
Some of the constraints can only be satislied if the fundamental ecigenvalue is negative
which only oceurs when plasticity models with associated How rules exhibit strain soft.
ening, The degree of softening, il any, required to meet the constraint condition depends
on the particular loading path heing considered.

With the insight provided by this approach, we show that features exhibited by a number
of classical experiments can be easily explained using simple constitutive models, ‘The
(ailure modes of @ material subject to varions congtraints can provide valuable confirma-
tion of the suitability of a constitutive model. For simplicity, we confine our attention to
rate and temperature independent material behavior and infinitesimal deformations,

4.1.1 General Bifurcations

Drucker (1950, 1959) postulated that the stability of a material could be evaluated by
considering the work done by an external agency. A material is stable (will remain in
equilibrinm) if a) positive work is done by the external agency during the application of
the set of stresses and b) the net work done by it over a cycle of application and removal
is zero or positive. I plastic deformation is generated during the eyele then the net
work must be non-zero, These statements indicate that a necessary condition for loss of
material stability is

€:o=0 (4.1)
where @ and € are perturbations to the stress and strain rate fields at some point or
region in the body due to the external ageney. Equation 4.1 was shown by Hill (1958) to
be a necessary condition for a hifurcation and loss of uniqueness, This general bifurcation
criterion, Fquation 4.1, can also be written as

€e:D:e=0 (4.2)

where D* is the symmetrie part of the tangent stiffness tensor, D2 = (D50 + Dayy).
Fauation 4.2 indicates that general bifurcations may occur whenever D is not positive
definite,
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4.1.2 Limit Point Bifurcations

General bifurcations are nsnally associated with changes in the stress state both inside
and ontside the bifurcation zone, The sibset of general bifurcations associated with no
change in the stress state occur only at the limit point when

D:é=0 or det(D) =0 (1.3)

or, in other words, when the tangent stiffuess tensor D has a zero cigenvalue, Valanis
(1989) recently suggested that Equation 4.3 is a necessary and sufticient condition for loss
of material stability. His interpretation assumes that the general bifurcation associated
with the limit point is always activated. This interpretation is only valid when the tangent
stiffness tensor is symmetrie and tractions are preseribed everywhere on the houndary of
a specimen, Il constraints are present, the general bifureation associated with the limit
point may not be activated, and it becomes necessary to evaluate other potential general
and discontinwons bifurcations.  Here we adopt the classical necessary condition for a
general bifurcation given by Equation 4.2,

4.1.3 Classical Discontinuous Bifurcations

Criteria for discontinuous bifurcations in elastic-plastic materials with associated How
rules follow from Hadamard’s (1903) studies of elastic stability and were developed by
Hill (1962). Later, Mandel (1966), Rice (1976), Rice .and Rudnicki (1975, 1980), Raniecki
and Brahns (1981), and Ottosen and Runesson (1991) used Hill’s eriterion to investigate
discontinnous hifurcations in elastic-plastic materials with non-associated fow riles,

Consider a homogeneons solid subjected to monotonic, proportional loading, We wish to
determine at what point in the loading process a discontinuons bifurcation can ocenr such
that subsequent strain rates hecome discontinuons across parallel planes of orientation
n that separate a zone of localized deformation from the rest of the body, Maxwell’s
compatibility conditions require that the strain rate in the localized zone, €', he of the
form

€ = &' 4 et with ¢ =Lmen+neom) (4.1)

where € is the strain rate outside the localized zone, €* is a kinematically admissible
discontinuons mode, and m can be interpreted as a vector that represents the ovientation
of the relative veloeity of regions on opposite sides of the localized deformation zone dne
to the introduction of the localized deformation,

Assume that the entire body is being plastically deformed, the stress and strain compo-
nents are uniform throughout, and the body is at the onset of localization, With the
assumption of rate-independent hehavior, the stress rates inside and outside the localized
2000 dre giv(\,n |;y

o =D': ¢ and o' =D":¢ (1.5)




where D' and D" are the tangent stiffuess tensors for material inside and outside the
localized deformation zone, respectively. For continuing equilibrinm, the traction rates
must he continnons across the boundaries of the localized deformation zone:

t oo 4 or n-(6'-a") =0 (146)

By combining these equations, Rice (1976) shows that the requirement for continuing,
cquilibrinm is given hy
n-(D'--D"): ¢ +Q - m=20 (1.7)

where
Q=n-D''n (4.N)

is the acoustic tensor.,

Suppose the body is loaded such that the strain rate € is constrained Lo evolve contin-
nously, Then it is reasonable to assume that the tangent stitfness tensor for material
ontside the localized zone, DY, is identical to the tangent stiffness tensor for material
inside the localized zone, DY, at the initiation of the bifurcation. The classical necessary
condition for a discontinnous hifurcation is then obtained from Equation 4.7:

Q m=20 or delt(Q) =0 (1.9)

In other words, the classical eriterion for a discontinuous bifurcation is that the acoustic
tensor, Q, has a zero eigenvalie, a necessary condition for loss of ellipticity (Rice, 1976),

4.1.4 Loss of Strong Ellipticity

The classical discontinuons hifurcation eriterion is hased on two important assumptions.
The first assumption is that the discontinuity in the strain rate eld is constrained to have
a special form so that material in the localized zone will remain kinematically compatible
with the surrounding material. The second assumption is that the strain rates evolve
continuously such that the tangent stiffness tensor for material inside the localized zone
is identical to the tangent stiffness tensor for material outside the localized zone during
the initiation of the localized zone, The general bifurcation eriterion requires neither of
these assumptions. Specifically, a general bifurcation will not necessarily be associated
with a mode which has the special Torm of €% in Bquation 4.4 and the active tangent
stillness tensors for material inside and ontside the bifurcation zone will not necessarily
beidentical.

The general bifurcation eriterion, Fquation 4.2, is a necessary condition for any type
of bifurcation. A necessary condition for a general bifurcation with a kinematically
compatible mode, €¥, is the loss of strong ellipticity eriterion (Bigoni and Hueckel, 1991)

ék DY ék = = m- Q"' m o= (). (1 “))
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We adopt loss of strong ellipticity as a necessary condition for localization because this
criterion identifies the first possible bifurcation with a kinematically compatible mode.

The requirement for continuing equilibrium, Equation 4.7, may be satisfied when loss
of strong ellipticity occurs if the continuity constraint (in time) on €° is relaxed. For
example, let Q be decomposed into its symmetric, Q°, and antisymmetric, Q*, parts:

Q=Q +Q" (4.11)
Loss of strong ellipticity, Equation 4.10, will first occur when
Q- m=0 or det(Q°) =0 (4.12)

since Q° is positive, semi-definite at this point. This criterion, Equation 4.12, will he
satisfied prior to or at the same time as the classical discontinuous bifurcation criterion
of Equation 4.9. If no external constraint is placed on €° other than compatibility, then
€’ is free to adjust such that the continuing equilibrium equation

n-(D'-=D°:é°+Q“ m=0 (4.13)

is satisfied when the loss of strong ellipticity criterion is satisfied. This means that a
discontinuous bifurcation may occur when the loss of strong ellipticity criterion is satisfied
and €° is not constrained.

4.1.5 Summary of Bifurcation Criteria

The criteria for diffuse and discontinuous bifurcations are summarized in Table 4.1. The
general bifurcation criterion is first satisfied when the determinant of the symmetric part
of the tangent stiffness tensor is equal to zero. For materials with associated flow, the
tangent stiffness tensor is symmetric and the general and limit point bifurcation criteria
both identify the limit point as the first point at which a diffuse bifurcation may occur.
However, for materials with non-associated flow the general bifurcation criterion indicates
that diffuse bifurcations may occur in the hardening regime.

Table 4.1. Summary of Bifurcation Criteria.

CRITERIA EQUATION MODE
General €:D°:€=0 | Diffuse, Necking
Limit Point D:e=0 Diffuse, Necking
Strong Ellipticity m-Q°-m=20 Localized
Classical Discontinuous Q- m=0 Localized

The strong ellipticity criterion is first satisfied when the determinant of the symmetric
part of the acoustic tensor is equal to zero. For materials with associated flow rules,
the strong ellipticity and classical discontinuous bifurcation criteria identify the same
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first discontinuous bifurcation point. However, for materials with non-associated flow
the strong ellipticity criterion will predict that localization may occur prior to the point
identified by the classical discontinuous bifurcation criterion.

Discontinuous bifurcations are a subset of general bifurcations and classical discontinuous
bifurcations are a subset of those discontinuous bifurcations which satisfy the loss of
strong ellipticity criterion. Constraints may inhibit the activation of certain possible
bifurcation modes for which the nccessary but not sufficient conditions given in the
previous section have been satisfied.

4.2 Characterization of Bifurcation Modes

Bifurcation modes, €, represent perturbations to a homogeneous strain rate field that
may be activated whenever the necessary conditions presented in the previous section
are satisfled. Any bifurcation mode, €, can be characterized by its three eigenvalues,
A1 < Ay € A3, Modes associated with discontinuous bifurcations are restricted to be of
the kinematically compatible form, €, given in Equation 4.4. Suppose we choose & local
coordinate system with coordinate z; parallel and coordinates z, and w3 perpendicular
to n such that the components of n and m are

1 o
n=¢0 m=>q 2f3 (4.14)
0 : 0

The components of the corresponding discontinuous bifurcation mode, &, are

a 30
€= |00 (4.15)
000

When £ is equal to zero, the relative velocity of the bodies is oriented in a direction
normal to the zone, and the strain rate jump in the zone represents an opening mode
(Figure 4.1). When « is equal to zero, the strain rate jump represents a shearing mode.
Also, note that é has eigenvalues of a/2 + \/a?/4 + ? and zero. Thus, a discontinuous
bifurcation mode has a fundamental eigenvalue, A;, that is less than or equal to zero,
an intermediate eigenvalue, A, that is equal to zero, and a third eigenvalue, A3, that is
greater than or equal to zero.

Modes associated with general bifurcations can be any symmetric second-order tensor
as long as the necessary condition for a general bifurcation, Equation 4.2, is satisfied.
For example, a general bifurcation mode could have components obtained as a slight
generalization of Equation 4.15:
a0
e= |A00 , (4.16)
00p
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(a) opening mode (b) shearing mode

Figure 4.1. Discontinuous Bifurcation Modes.

Figure 4.2. General Bifurcation Mode.



An analysis in the @y — @y plane can be performed as before for a discontinuous bifur-
cation with the origin of @3 al the surface of a possible discontinuity; however, now an
incompatibility in the velocity field exists for points a3 # 0 which are not in the @, — xy
plane (Figure 4.2). There are two ways to interpret this situation. In brittle materials,
some experimental specimens exhibit microcracking in a specific orientation which could
be considered a manifestation of the incompatible velocity field. In ductile materials, the
potential development of an incompatible mode will lead to changes in the local stress
state and the evolution of smooth changes in the deformation field such as necking,.

The construction given above displays a compatible mode in the x; — 2, plane with the
possibility of an incompatible component in the 3 direction. Of course, a compatible
mode could possibly exist in other planes. The actual orientation of the necked region
might be based on the geometry of the specimen. For example, if the dimensions of
a specimen in the @y and xy directions are much larger than the dimension in the ay
direction, then there might be a preference for most materials to neck with the direction
of the potential incompatibility oriented towards the minimum dimension of the specimen.

In general, for a localized zone to form and remain compatible in some plane with the
surrounding material, there must be some orientation in the plane such that the normal
component of the localized mode is equal to zero. In terms of the eigenvalues associated
with a bifurcation mode, compatibility can only exist in principal planes for which A;\; <
0. Recall, that a discontinuous bifurcation mode has a zero intermediate principal value
and is thus compatible in all three principal planes. General bifurcation modes with
one positive and two negative eigenvalues are compatible only in the principal planes
with eigenvalues of opposite sign. Finally, general bifurcation modes that are positive
or negative definite are compatible only at a single point and are not compatible in any
principal plane, ‘

4.3 Bifurcation Criteria and the Eigensystem for D*

In this section, we investigate the relationship between the bifurcation criteria presented
in the previous section and the cigensystem associated with the symmetric part of the
tangent stiffness tensor, D, Consider the eigenvalue problem

D’ x; = w;x; (4.17)

in which x; denotes an eigentensor for D® and w; the corresponding eigenvalue. Due to its
minor symmetries, D® has six symmetric and three skew-symmetric eigentensors. Since
the bifurcation modes, €, are symmetric second-order tensors, we confine our attention
to only the symmetric eigentensors associated with D and refer to them simply as the
eigentensors associated with D throughout the remainder of this paper. For convenience,
we normalize the eigentensors so that

X X = (()‘;J‘ (418)




and order the eigenvalues such that w; < w, < wg. The strain rate perturbation, or any
symmetric second-order tensor, can be written as a lincar combination of the cigentensors

assoctated with D? as follows:
[t}

€= o (41.19)

i=

and the necessary condition for a geveral bifurcation from Equation 4.2 can be written

as
6

€e:D*:e= E ofw, =0 (1.20)
1=
The necessary condition for a general bifurcation is first satisfied when wy = 0, and the
corresponding bifurcation mode is characterized by the Tundamental cigentensor,

If constraints from the geometry or boundary conditions are present, the bhifurcation
mode given by the fundamental eigentensor may not be activated. If the material strain
softens with continued loading, the fundamental cigenvalue will become negative and
the necessary condition, Equation 4.20, for numerous other diffuse and discontinuous
bifurcation modes will be satisfied. A discontinuous bifurcation associated with loss of
strong ellipticity may be activated when the general bifurcation eriterion is satisfied and
the corresponding € has a special form. Specifically, the intermediate eigenvalue for this
second-order tensor, €, must equal zero. Finally, localization will only oceur when the
necessary condition for a discontinuous bifurcation mode that is not constrained by the
boundary conditions is satisfied.

4.4 Eigenanalysis of the Elastic Tangent Stiffness Tensor

Figenanalyses of the tangent stiffuess tensors provide a wealth of information about hoth
diffuse and discontinuous bifurcation modes and aid in the identification of constrained
bifurcation modes. Here, it is shown that the cigensystem for an elastic tangent stiffness
tensor can be casily obtained. In subsequent sections, eigensystems for tangent stitfness
tensors associated with plastic and damaging processes are obtained,

For an elastic increment in an isotropic material, the tangent stiffuess tensor is equal to
the elasticity tensor, E; which is repeated here for convenience:

E = JAP* 4 2(/P* (4.21)

where K is the bulk modulus and ¢/ is the shear modulus for the elastic material, The
bulk and shear moduli are related to Young’s modulus, £, and Poisson’s ratio, 1, as

follows:
I . I
I. = —— (,’ e S . -2A
YT R0 20 30+ 0) (1.:22)



The fourth-order spherical projection operator, P*?, and the deviatoric projection oper-
ator, P, are given by

1

sp =
P }

icoi P!=1-P" (4.23)

Here I is the symmetric fourth-order identity tensor and i is the second-order identity.
The spherical projection operator, P*?| has ouly one nonzero eigenvalue of one with a
corresponding eigentensor equal to the second-order identity. All of the other eigentensors
for P are in a deviatoric space, a space of synunetric second-order tensors orthogonal
to i. The deviatoric projection operator, P?, has an eigenvalue of one with a multiplicity
of five. The corresponding five eigentensors are orthogonal to i and span the deviatoric
space. The second-order identity is also an eigentensor for P* with a corresponding
eigenvalue of zero. With this information and the expression for E, one observes that
E has an eigenvalue of 3K with a multiplicity of one and an eigenvalue of 27 with a
multiplicity of five. The corresponding eigentensors are the second-order identity and
any set of five tensors which are orthogonal to the identity and span the deviatoric
space, respectively. Specifically, the components in a Cartesian coordinate system of the
normalized eigentensors, e;, for E can be chosen to be the following:

~-10 0 -100 010 001 000 100
=020 0 00{,|100|,55]000 001 010
6 Y V2 Y V2 ' V2 Y V2 ' V3
v 0 0-1 -j- 0 01 000 Vi 100 *010 -&-001
(4.24)
with corresponding cigenvalues of A; = 2/ for ¢+ = 1,5 and A\¢ = 3K. The set of

cigentensors given above is not unique; however, the set must always span the space
of symmetric second-order tensors. Also, note that if Poisson’s ratio equals zero then
2(/ = 3K = E and all of the eigenvalues are equal to E and E = FI. Since, the elastic
tangent stiffness tensor, E, is symmetric and positive definite, bifurcations cannot oceur
during elastic loading or unloading.

4.5 Eigenanalysis of the Plastic Tangent Stiffness Tensor

A plasticity model is characterized by a yield function, ¥, which defines a surface in
stress space separating elastic and plastic regimes and a flow rule

€ = pg (4.25)
where g is a second-order tensor which defines the orientation of the plastic strain incre-

ment and p is a monotonically increasing parameter. The tangent stiffness tensor for a
plastic increment is given by

I
D:—-E—-A—E:goiof:E (4.26)



where £ is the normal to the yield surface defined by the yield funetion W:

. OV _
f= 5 (4.27)
do
The scalar A is given by
A:”+g‘E.f (‘1.28)
where /1 is the generalized strain hardening modulus given by
owv .
==l 1.29
der (1.29)

which is positive, zero, or negative for strain hardening, perfect, and strain softening
plasticity, respectively, Plastic loading oceurs when W =0 and f 1 E: € > 0.

Consider the cigensystems of E 1 (A, e;) and D* ¢ (wi, x;) as presented previously. The
clastic tangent stiffness tensor, E, is symmetric and positive definite. Also, the cigen-
vectors for E span the space of symmetrie second-order tensors. The eigenvalues and
cigenvectors for the symmetrie part of the plastic tangent stiffness tensor, D?) will de-
pend on the specifie plasticity model being used. Since, the eigentensors of E span the
space of symmetric second-order tensors, we can express £ and g as a linear combination
of the cigentensors of E. Suppose £ and g can be expressed as a linear combination of
two of the elastic cigentensors (say the first and second to he speeific). Then

f=[fie; + frey g = g€ + g€y (1.30)
and

E:f=/iAe + fudies E:g=gihe +g\e (1.31)

Postulate an eigentensor for D?* of the form

x ={1ey + ey (1.32)
Then (. E B
, CErx Ex o
D' x=E:x - TE ‘g - g———z—;‘-**E = w(ée + &ey) (1.33)

which shows that the postulated form of Equation 4.32 is valid,  After equating the
cocflicients of e, and ey, the result is

(2Aw = 240 + 201 1AD) (i fahide + g2 fi M) Gl _J0 (1.34)
(/i A+ g o X)) (24w = 24X, + 202 505) | L &) L0 ;

For a nontrivial solution to exist, the determinant of the coeflicient matrix must equal
zero. The quadratic characteristic equation yields the two cigenvalues wy, wy and the
corresponding normalized cigentensors x; and x5 are obtained by determining the asso-
ciated values of € and €. The remaining four cigenvalues and cigentensors of D* coincide
with those of E and span the remaining space of symmetric second-order tensors. The
I”_’““"lllm can be extended in a similar manner to the case where f and g are members
of any subspace of the space spanned by the eigentensors of E.

48




4.6 Bifurcation Analysis of Plasticity Models

In this section, bifurcation analyses are performed on several existing plasticity models
to characterize the nature of the bifurcations predicted by these models and determine
il any existing models can capture the bifurcations exhibited by cellular solids,

4.6.1 Drucker-Prager

Consider a Drocker-Prager plasticity model with a yield funetion given hy

W= \/"4 T~ (1.45)

where Wy is the second invariant of the deviatorie stresses and [y is the first invariant of

the total stress tensor as follows:

Jy = %a o, Lh=0:i (+1.36)

where ot is the stress deviator. The normal to the yield surface, £ is given hy

o

P o L (4.37)
~ o) ‘

and the orientation of the plastic strain increment is

«l /
“uvh T3

The tangent stillness tensor for a plastic step is given by Equation 4,26,

(1.38)

Unfortunately, an cigenanalysis of the plastic tangent stifftess tensor for this material
is rather diffienlt. because two of the cigenvalues and two of the cigentensors depend
on the hardening modalus. However, using the procedv.. ontlined in Section 4.5, we
can obtain values for the eritical hardening moduli for v ious bifurcation eriteria. For
any loading, the tensors £ and g can he written as a linear combination of two of the
clastic cigentensors, one from the deviatorie space and one from the spherical space.
For example, for nniaxial tension in the wy direetion £ and g can be written as linear
combinations of e and e from Equation 4.24 as {ollows:

f=fie + foeq g = g1 + gseq (1.39)

Two of the eigentensors associated with D* can also bhe written as linear combinations of
e, and ey as [ollows:

X) = e+ e Xo = p1€) + peeq (1.40)

The remaining four cigentensors for D have corresponding eigenvalues of 20/ and are
given by
X, = ei ) = u,O‘ 4 |) (’l.’l l)
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From Equation L34, we obtain the eigenvalues associated with x; and xg. The necessary
condition for a general bifurcation is first satisfied when the fundamental cigenvalue, wy,
obtains a value of zero, which occurs when the generalized hardening modulus obtains a
value of

H = LGP @FRT ¥ KGGE + 3%) - 3G = Luik (4.12)

Any diffuse or discontinuous bifurcation mode can be written as a linear combination
of the eigentensors associated with D*. For a discontinuous bifurcation to oceur in the
&=y plane, (e Gy and ¢y must all equal zevo, The conditions ¢y = 0 and ¢,y = 0
imply that oy and oy equal zero in Equation 1L 19 and that the mode is restricted to the
following form

€ = Xy + Xy + anXy + agXg (149

or

€ = (7 + aepr)e) + ey + azey + (Y4 + aspe)eg (1)

subject to the following constraint which is needed to satisly the requirement that ¢,
cquals zero

| o ”

~ el 4 asm) + o + F (% + aupa) =0 (115)

The general bifurcation condition, Equation 4.20, provides the following additional con
straint:
Wy = “'(\‘:UJ? - ﬂ’%w‘:; - (!f-)u.)(; (ll())

Using the above equations and maximizing wy with respect to the independent variables,
vy, g and g, we obtain equations for the fundamental cigenvalue associated with loss
of strong ellipticity. Then by iteratively solving the eigenvalue problem and the above
equations with monotonically decreasing values for the hardening modulus, we identify
the eritical hardening modulus for the loss of strong ellipticity.

For this material and loading, Rudnicki and Rice (1975) have obtained the following
expression for the hardening modulus associated with a classical discontinuous bifurcation

w_ | =B et B V) o

The critical hardening moduli predicted by the various criteria for uniaxial tension are
plotted as a function of g for various values of 4 in Figure L3, Figure 4.3a shows
critical values of the dimensionless hardening modulus, (H/FE), as a function of the
internal friction parameter g with the dilatancy parameter @ fixed at 0.3, Loading
is characterized by decreasing values of (H/E). Throughout this chapter, a value of
0.3 is used for Poisson’s ratio. The general bifurcation condition is always reached first
for all values of y # 4. When p = 8 = 0.3, the general bifurcation and limit point
bifurcation criteria coincide as they should for an associated law. Similarly, the strong
ellipticity condition is always attained prior to the classical discontinuous bifurcation
condition unless y¢ = 4 = 0.3 where the two discontinuous bifurcation criteria coineide
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Figure 4.3. Critical Hardening Moduli for a Drucker-Prager Material with
Non-Associated Flow.
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as they should for an associated law. Figures 430 and 43¢ show similar results when
the dilatancy parameter /4 is figed at 0,0 and 0.3, respectively,

All of these results indicate that the fisst general bifurcation point is reached in the
hardening regime when the flow is non-associative g # 4. When the flow is associative,
the tangent stiffness tensor is symmetric, D = D?, and the general bifureation eriterion
and the limit point bifurcation eriterion both identify the limit point as the first general
hifurcation point. Likewise, when the flow is associative, the classical discontinuous
bifurcation eriterion and the loss of strong ellipticity eriterion identify the same point in
the softening regime as the first discontinuons hifurcation point. To reach a discontinuous
bifurcation puint, the material must exhibit cither strain-softening or non-associative
fow. When the flow is non-associative, the loss of strong ellipticity eriterion is satisficd
prior to the classical discontinnous bifurcation eriterion, as expected.

To analyze a Dracker-Prager material with associated flow for a general stress path,
we can simply repeat the process used in the fiest part of this section and let po= 7.
For an associated flow rule, we lind that the fundamental cigenvalue for D* obtains
a value of zero when H oequals zero and that a negative H, strain-softening, leads to
a negative fundamental cigenvalue, The fundamental eigentensor corresponding to the
zoro cigenvalne at the limit point is

o .

L ok 1R
STV R A
Four of the cigentensors of D?* are orthogonal to i and @ and span the remaining devi-
atoric space, These eigentensors have corresponding cigenvalues of 20/, T'he remaining
cigentensor is given by

d
T
Xg =1~ s (1.49)
u"g
and has a corresponding eigenvalue of
SNG4 208K G
wi L BAG 2 R (4.50)

((r' + /tz I\’)
Note that when poobtains a value of zero, x5 = 1 and wy = 3K, Variations in the
hardening modutus, 1, lead to changes in wy and wg and their correspouding cigentensors,
A negative I eads to a negative fundamental cigenvalue,

The eritical hardening moduli predicted by the various criteria for uniaxial tension are
plotted as a function of y in Figure 4.4, Note that for an associated flow rule, the
general hifurcation and limit point bifurcation criteria both predict the limit point as the
first bifurcation point independent of g, Also, when the flow is associative, the strong
ellipticity eriterion and the elassical discontinuous bifurcation eriterion generate identical
predictions for the amount of strain-softening needed for localization. For localization
o ocenr, the material must strain-soften or exhibit a significant amount of pressure
dependence. Specifically, g must equal V3/2 for a discontinmous hifurcation to oceur
withont strain-softening,




U ————
—det(D") = 0
-.-det(Q") = 0

0 — =

oot ,,/'/
--.2 - ‘/. -y
7/
7z
Vs
N4
- ’A A . e AT Y FYTO | Al
-1.0 -5 0 B 1.0
m

Figure 4.4, Critical Hardening Moduli for a Drucker-Prager Material with

Associated Flow.

4.6.2 von Mises

In this section, we analyze a simple von Mises plasticity model with associated flow and

a vield function given hy

W=~k

f = B a.rl
"RV

and the tangent stiffness tensor for a plastic step is given by

Then

20 oty et

D:E»(Ilﬂ»(}) ol ol

The plastic tangent stiffuess tensor is symmetrie, D = D*,

The fundamental cigentensor for D is

o.d

Xy = 1
(ot o)l

with a corresponding ecigenvalue of

!
wy = 20+ (m)

(1.51)

(1.53)

(4.55)

which varies from 2(/ to 0 as H varies from oo to 0 and becomes negative for negative
. "The remaining cigentensors for D are a set of four tensors which span the remaining
space of symmetrie second-order deviatorie tensors with corresponding cigenvalues of 2¢¢
and the second-order identity with a corresponding eigenvalue of 3K, Note that for this
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model none of the eigentensors and ouly oue eigenvalue, the fundamental one, depend on
the hardening modualus, H. The fundamental eigentensor does, however, depend on the
current stress state,

A general bifurcation may first oceur when the fundamental eigenvalue obtaing a value
of zero, At this point, the hardening modulus, H, equals zero, The character of the
bifurcation is given by the fundamental cigentensor. For example, when the material is
subjected to uniaxial tension,

-10 0
Xi= e 020 (4.56)
00-1

which represents a general bifurcation since %y has no zero cigenvalues. If constraints
are present, the material may be loaded into a strain-softening regime without exhibit-
ing localized deformation associated with the first general bifurcation mode. In the
strain-softening regime, the fundamental cigenvalue is negative, and numerous alternate
bifurcation modes may be activated,

Any bifurcation mode can be written as a linear combination of the cigentensors as given
in Equation 4.19. For a discontinuous bifurcation to oceur in the ¢y — iy plane, 3, €43
and ¢33 must all equal zero. This implies that ay and oy equal zero and the mode is
restricted to the following form:

-10 0 0 [—100 w010 a [ 100
' - 2 AR} [}
e:*/-\}-i 020 (+—=|000]+—|100]+——=]010 (4.57)
Loo] VEloor] V2looe] V3loo

subjeet to the constraint

A (4.58)

Il LI

Vi VeV
which is an equation for a straight line in the oy —ag plane, Note that ey is arbitrary, The
general bifurcation condition, Fquation 4,20, gives the following additional constraint

20008 4+ 2002 + 3K od = —w, (4.59)

which is the equation for an ellipse in the oy — a plane. Note that when w, equals zero,
the general bifurcation regime is a single point with oy = a3 = ag = 0. As H and w,
become negative, the size of the general bifurcation regime grows. The first discontinuous
bifurcation mode is reached when H obtaing a value of —E/12, At this point, ¢y =
V(L4 0)/(5 = v), ag = V2(1 = 20)/(5 = v), and oy = 0 (Figure 4.5). Ottosen and
Runesson (1991) analyzed the acoustic tensor and also showed that the first discontinuous
bifurcation mode is reached at this point for a von Mises material subjected to unjaxial
tension.  If the hardening modulus decreases beyond —E/12 additional discontinnons
bifurcation modes may be activated,
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Figure 4.5. Bifurcation Regimes for a von Mises Material Subject to Uniaxial
Tension.

NSince the fundamental eigentensor depends on the stress state, the amount of softening
needed to reach a discontinuous bifurcation will also depend on the stress state. For
example, viien the von Mises material is subjected to a pure shear stress in the &, — xy
plane, the components of the fundamental eigentensor are

~100
X = 7‘, 8 (1)8 (4.60)

which indicates that the necessary condition for a discontinuous bifurcation is satisfied
al the limit point when H = 0. The important point here is that by altering the
stress path, the amount of strain-softening needed to satisfy the necessary conditions
for a discontinuous bifurcation can be significantly changed. This oceurs because the
fundamental eigentensor for this material model depends on the stress state.

4.6.3 Mohr-Coulomb

Next, consider a simnle Mohr-Coulomb model with a yield function given by
U = 3(01 — 03) + Loy + 03)sind — ccos (4.61)

where ¢ is the internal friction angle, ¢ is the cohesion, and the coordinate system is chosen
. . . . . . (4 3l
such that oy and @, are the maximum and minimum principal stresses, respectively. Then
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for an associated flow law
1 + sing 0 0
f=g=>3| 0 —l+smng0 (4.62)
0 0 0

and the tangent stiffness tensor for a plastic step is again given by Equation 4.26. For this
model, the bifurcation at the limit point, H = 0, is always a discontinuous bifurcation
since the fundamental eigentensor for D? is equal to f which has the characteristics
required for a discontinuous mode. The nature of the discontinuous bifurcation, as given
by the eigentensor, indicates that the components of n and m are as follows:

vi+ sing 1 V14 sing
n=( J/T—sing » =cq tan(¥ + %) , m= 1{ —/T—sing (4.63)
0 0 0

It is not surprising that the Mohr-Coulomb model predicts a discontinuous bifurcation
at the limit point and that the orientation of the localized zone depends on the internal
friction angle because this model was developed to capture this type of failure. A shear
localization is obtained when ¢ = 0 and a discontinuous opening mode iz obtained when
¢ = m/2. This analysis indicates that a Mohr-Coulomb model is appropriate for materials
that exhibit localization at the limit point with an orientation that is dependent on an
internal friction angle.

A Tresca model with associated flow is identical to a Mohr-Coulomb model with the
internal friction angle set equal to zero. Thus, the previous results indicate that a Tresca
model is appropriate for materials that display localization at the limit point with an
orientation of 45 degrees in the plane of maximum and minimum principal stresses.
This model does not predict the generation of necking or diffuse bifurcation modes that
are sometimes observed experimentally in metals and is, therefore, not appropriate for
metals.

4.6.4 Principal Stress

In this section, we consider the principal stress theory of Rankine which uses a yield
function given by

.1
U=10:P:0)2 - h(e) (4.64)
where P* is the principal projection operator. This model has a flow law given by

e =wg=whn-o-n)n®n (4.65)

For proportional loading, the first possible bifurcation occurs at the limit point and
is characterized by the fundamental eigentensor for D°. The fundamental eigentensor
for D* is equal to g which has the characteristics of a discontinuous opening mode
bifurcation. Thus, this model predicts localization at the limit point with the orientation
of localization given by the orientation of the maximum principal st. -ss.



4.7 Evaluation of von Mises Plasticity for Metals

A von Mises plasticity model with associated flow has been used extensively to describe
the plastic deformation of metals. This model does an excellent job of capturing the
initiation of plastic deformation in metals. In this section, we use the previous analyses
to determine if there is any relationship between the bifurcations predicted by this model
and experimentally observed necking and localized deformations in metals. Several dif-
ferent experimental investigations that may enhance an understanding of the necking
and localized deformation in metals are reviewed.

4.7.1 Axisymmetric Rod Subjected to Uniaxial Tension

First consider a metallic, axisymmetric rod subjected to uniaxial teasion. The first
tvpe of bifurcation that is generated in metal rods is necking at some section along the
length of the rod. In some rods, for example aluminum rods tested at high temperature,
(Nadai, 1950), the applied load slowly decreases as the rods continue to neck until the
cross-sectional area in the necked region is reduced to a point. In other materials, the
initiation of necking is quickly followed by the formation of a crack either at an angle or
perpendicular to the applied loading. Here we interpret a crack or the formation of very
thin localized deformation zones as evidence of a discontinuous bifurcation, and necking
as evidence of a diffuse bifurcation.

Needleman (1972), Hutchinson and Miles (1974) and Miles (1975) have all investigated
the necking of rods subjected to uniaxial tension using Hill’s (1958) general bifurcation
criterion. These researchers have all shown that the initiation of necking is coincident
with the attainment of maximum load. The necking in the rod is related to activation of
the first general bifurcation mode and is characterized by the fundamental eigentensor,
X1, which is equal to the normalized deviatoric stress tensor (Figure 4.6).

Materials that neck until failure do not strain-soften and therefore do not allow for the
activation of any other general or discontinuous bifurcation modes. The fundamental
eigentensor associated with the tangent stiffness tensor for a von Mises material is de-
pendent on the stress state. As the necked region evolves, the stress state in the necked
region changes. This leads to a local change in the stress deviator and thus a change in
the fundamental eigentensor. Specifically, as necking occurs, a shear stress component is
introduced which directly leads to the introduction of a shear strain component in the
fundamental eigentensor which explains the formation of a necked region without the
generation of any incompatibilities in the neck.

In other materials, a small amount of necking is quickly followed by the formation of
a crack either at an angle or perpendicular to the applied loading. The analyses given
above indicates that a von Mises material subjected to a pure shear stress can localize
without softening but that a von Mises material subjected to a uniaxial tensile stress
must exhibit a significant amount of softening to localize. As the necked region evolves
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Figure 4.6. Activation of First General Bifurcation Mode in a Rod Subject to
Uniaxial Tension.

in the bar, the stress state deviates from a homogeneous uniaxial tensile stress state
and strictly speaking the results from the above analyses do not apply. However, if the
amount of necking is not significant, then it seems reasonable to expect the stress state
in the necked region to approach that of the original homogeneous uniaxial tensile stress
state and to conclude that the material must exhibit strain softening for the localization
to occur. Of course, the localization could also be due to pressure dependence of the yield
surface, non-associated flow, or a combination of softening, pressure dependence, and non-
associativity, An accurate study of the evolution of the necked region and subsequent
potential localization wounld require a numerical study similar to that of Needleman (1972)
which would allow a characterization of the stress state in the evolving necked region,

4.7.2 Axisymmetric Rod with Lateral Displacements Constrained

Next, consider the same axisymmetric rod subjected to uniaxial tension with the artificial
constraint that lateral displacements be identical along the entire length of the bar as
shown in Figure 4.7. This constraint will not allow the bar to neck and will thus constrain
the first general bifurcation mode. Furthermore, the first discontinuous bifurcation mode
given by Equation 4.57, which is characterized by the formation of a localized zone at an
angle of 48.8 degrees from the loading axis will also he constrained. With continued soft.-
ening of the material, the first unconstrained discontinuous bifurcation that will actually
lead to localization is an opening mode discontinuous bifurcation with an orientation, n,
parallel to the loading axis. To activate this mode, ag in Equation 4.57 is equal to 7'3, v
and vy are equal to zero, and H = —[£/(6 = 6v). This example shows that when the first
possible discontinuous bifurcation is constrained, the localization that is ultimately gen-
erated is not characterized by the mode associated with the first possible discontinnous
bifurcation but rather by the first unconstrained discontinuous bifurcation.
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Figure 4.7. Localization in Rod with Lateral Displacements Constrained to be
ldentical.

4.7.3 Thin Plate Subjected to Uniaxial Tension

Experiments on thin metal plates subjected to uniaxial in-plane tension indicate that
necked regions form at angles of between 55 and 65 degrees from the loading axis (Nadai,
1950; Aronofsky, 1951) and not perpendicular to the applied loading as with axisymmetric
rods. Again, the formation of the neck is sometimes followed by the formation of a crack
plane, and at other times the material just continues to neck until failure.

Necking in a thin plate is again associated with the activation of the first general bifurca-
tion and characterized by the fundamental eigentensor. In the rotated coordinate system
shown in Figure 4.8, the components of the fundamental eigentensor for D* based on
Equation 4.54 are

2s5in?(0) — cos*(0)  3cos(f)sin(f) O
X1 = I 3cos(033i71,(9) 2co.92(0)0—-.92'n2(9) 0l (4.66)

For a thin necked region to form in the plane of the plate, the z; - z; plane, and to
remain compatible with the surrounding material, the perturbation to the strain field in
the necked region is subject to the constraint that the 11 component of the fundamental
eigentensor in the rotated coordinate system must equal zero. This requirement would
be that of a discontinuous bifurcation if the third eigenvalue of x; is zero instead of -1.
Therefore, there is a potential incompatibility in the z; direction. The in-plane constraint
yields 2sin?(8) — cos?(8) = 0 or § = 35.3 degrees. In other words, the predicted necked
region is oriented at an angle of 54.7 degrees from the loading axis which corresponds to
many experimental observations and is identical to the orientation predicted by Nadai
(1950) and Thomas (1961) using similar in-plane compatibility arguments. However,
these authors did not address the potential incompatibility in the 3 direction. The
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Figure 4.8. Activation of General Bifurcation Mode in a Plate Subject to Uniaxial
Tension.

neck is characterized by the fundamental eigentensor which, for a von Mises material, is
dependent on the stress state. As the neck evolves, the stress state in the neck and thus
the fundamental eigentensor change. The components of the fundamental eigentensor are
expected to vary continuously as a function of location within the neck which explains
the formation of the neck without the generation of any incompatibilities which were
introduced and left unexplained in Thomas’ (1961) analysis of this thin plate problem,

As shown in Figure 4.8a, the orientation of m which represents the orientation of relative
velocities of regions on opposite sides of the necked region indicates that at least one end
of the specimen must be free to move in the xy direction for the neck to ocenr as shown.
Vardoulakis (1978) has developed a device that allows for this lateral displacement; how-
ever, many specimens are tested in devices that do not allow lateral displacement. This
leads to the formation of two necked regions and relative motion of the bodies on opposite
sides of the necks as shown in Figure 4.8b.

Aronofsky (1951) shows that the variation in the orientation of the necked region from
25 to 35 degrees could be due to material anisotropy. The analysis presented in the
previous sections allows an alternative explanation of this phenomenon if the loading
device provides a constraint which allows the material to be loaded into a strain softening
regime. For example, consider the strain perturbation given by

é = X1 + Jgiixg (1.67)

which satisfies the instability condition of Equation 4.20. Components of the strain
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Figure 4.9. Effect of Strain-Softening on the Predicted Orientation of Localization,

perturbation in the rotated coordinate system become

2sint(0) — cos?(0) + 3 3cos(0)sin(0) 0
€ = 7"-) Jeos(0)sin(0) 2c08%(0) — sin?(0)+ 4 0 (4.68)
0 0 1+ 4

The predicted orientation of the necked region is plotted as a function of the amount of
softening needed to satisly the general bifurcation condition in Figure 4.9.

When the hardening modulus, H, has a value of —E/10 an orientation of 25 degrees
(65 degrees from the loading axis) is predicted. Even less strain softening is needed to
activate modes with orientations between 25 and 35 degrees. These results suggest that
the experimentally observed variations in orientation could be caused by the combination
of loading constraints and some strain-softening. Also, when the hardening modulus
obtains a value of —F£'/(6 — 6v) an orientation of 0 degrees and a discontinuous opening
mode bifurcation is predicted which corresponds to lecalization perpendicular to the
applied loading. Such a localization is sometimes observed experimentally which would
suggest that some metals must exhibit a significant amount of strain softening, pressure
dependence or non-associativity at failure,

4.7.4 Thin Plate Subjected to Equal Biaxial Tension

Metal sheets are often formed by subjecting them to equal biaxial tension with a hemi-
spherical punch. At some point in the forming process intersecting shear bands form at
angles through the thickness (Beaver, 1983) as shown in Figure 4.10. The necking that is
generated prior to localization in thin plates subjected to uniaxial tension is not observed
in thin plates subjected to equal biaxial tension. Thus, the change in load path to equal
biaxial tension apparently inhibits the activation of any diffuse bifurcation modes prior
to localization.
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Figure 4.10. Activation of Discontinuous Bifurcation Mode in a Thin Plate Subject
to Equal Biaxial Tension.

Storen and Rice (1975) suggest that that localization of plates subject to equal biaxial
tension provides experimental evidence of the formation of vertices in the yield surface.
Recently, Hill (1991) has shown that anisotropic hardening could also lead to the observed
localization, Here we present an alternative explanation. For equal biaxial tension in the
xy — &y plane (the plane of the plate), the components of the stress tensor and the stress
deviator prior to localization are as follows:

100 Sfroo
c=0|000], a'"=>7¥- 0-20 (4.69)
1001 1o ool

For this problem the fuudamental eigentensor which is the normalized stress deviator
is not. compatible in the plane of the plate becanse the eigenvalues associated with the
ry — .y plane are both positive. Thus, no orientation can he found for which a pertur-
bation to the strain rate field given by the fundamental eigentensor is compatible in the
&y = ay plane with the surrounding material. As the material begins to strain soften,
numerous alternate bifurcation modes may be activated. However, by considering all
linear combinations of the eigentensors associated with D*, we quickly find that the first
bifurcation mode which satisties the constraint to remain compatible in the @ — .4 plane
is a discontinuous bifurcation given by

I 00 —-100 100
(4D) Yg

E= de [0-20|+—2] 000 +—2]010 (4.70)

001 V2 0 01 ﬁ()()l

which satisfies the instability condition of Equation 4.20. This discontinuous bifurcation
mode is activated when H = —=E/12, ag = —V3(1 + v)/(h —v) and g = —V2(1 =
20)/(5 — v). This bifurcation mode represents shear bands forming at angles of 48.8
degrees from the o, axis which is exactly the type of localization that was observed by
Beaver (1983). The formation of intersecting shear bands leads to an apparent necking
due to the relative motion of material on opposite sides of the shear bands (Figure 4.10).
Instead of the requirement of vertices (Storen and Rice, 1975) or of anisotropic hardening

1§
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Figure 4.11. Activation of a Discontinuous Bifurcation at the Limit Point in a
Pressurized Cylindrical Pressure Vessel,

(Hill, 1991), this analysis shows that with a sufficient degree of softening, conventional
von Mises plasticity with associated flow can predict the localization in a plate subject
to equal biaxial tension. Furthermore, this analysis helps to explain why the necking
that is observed in thin plates subject to uniaxial tension is not observed in thin plates
subjected to equal biaxial tension.

4.7.5 Thin-Walled Cylindrical Pressure Vessel

Several investigations (e.g., Needleman and Tvergaard, 1984), have involved thin-walled
cylindrical pressure vessels subjected to internal pressure. These pressure vessels fail
rather catastrophically, with cracks forming along the axis of the cylinder and at an
angle through the thickness (discontinuous bifurcation) as shown in Figure 4.11.

Prior to localization the components of the stress tensor and the stress deviator are as
follows:

100 ,[roo
o=>0|0.50], a"=>§- 00 0 (4.71)
000 00 -1

We see that the stress deviator is different from the stress deviator found in the previous
examples. For this example, the fundamental eigentensor for D* which is equal to the
normalized stress deviator represents a discontinuous bifurcation mode. Furthermore,
the fundamental eigentensor indicates that a shear band oriented at 45 degrees through
the thickness and along the axis of the specimen will occur at the limit point. This
predicted localization was observed experimentally by Needleman and Tvergaard (1984).
Comparing this result with the previous ones, we see that the stress state generated in
the wall of a cylindrical pressure vessel has a detrimental effect on the apparent ductility
of the material.
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These examples show that the type of hifurcation, diffuse or discontinnous, exhibited
by metals apparently depends not only on the material hut also on the geometry and
the pre-bifurcation stress state. A simple von Mises plasticity model with associated
flow predicts both the necking and the localization that is observed experimentally. 'T'his
analysis indicates that strain softening can account for many featurves observed in metals.
Most previous analyses have foensed primarily on pressure dependence, nonassociativity
and vertex development in the yield surface to account for the experimental observations,
A close correlation hetween theoretical predictions and experimental data is needed to
provide answers concerning which effect is dominant for any given material,

4.8 Bifurcation Analysis of Continuum Damage Models

[ this section, bifurcation analyses are performed on various continnum damage theories
to evaluate the appropriateness of existing theories for cellular solids. Continnnm damage
theories have a constitutive relation of the form

o=S8:¢ (4.72)

where e is the total stress tensor, 8 is the damaged elastic stiffuess tensor and € is the
total strain tensor. To determine il additional damage is beiug generated during the
current load step, we postulate the existence of a damage function, W, which defines a
surface in stress or strain space separating the elastic and damaging processes

V="1o:P:o-yS) W=1de:R:e—g(S) (1.73)
where Pis a positive-definite fourth-order tensor that defines the model and R = S : P
S. We also postulate the existence of an evolution equation for § which is analogous to
a flow rule in plasticity. A possible damage evolution equation is given by

S = —-wR (4.71)

where Ris a fourth-order tensor which defines the ovientation of the damage inerement
and w a monotonically inereasing parameter that characterizes the magnitnde of the
damage inerement. Note that hoth the damage function and the evolution equation have
heen chosen to use the fourth-order tensor R,

Using the consistency condition, the tangent stiffness tensor, D, for a damaging process
such that o = D @ € is obtained

I
D=S§ - z(R:eO{Jf:S) (1.7h)
where £ is the normal to the damage surface defined by the damage function W:
v
f I ——— P : 4.76
e o (4.76)
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The sealar A and the generalized hardening modulus, 11, are given by

A=H4+f:R:¢€ II:%::R (4.77)

The hardening modulus, 1 is positive, zero or negative for strain hardening, perfeet, and
strain softening damage, respectively. Damage will ocenr when W = 0 and £:S: € - 0.
The tangent stiffness tensor, D, is symunetric when R is chosen such that R e = £ S,
This is analogous to plasticity models that have symmetrie tangent stiffness tensors when
the low rule is chosen to he associated with the vield funetion,

4.8.1 Simple Scalar Damage

In this section, we analyze a simple isotropic, scalar damage model with the following
A ] |

damage fnetion: ,
V=1e:E:e—y(S) (1.78)

and an evolution equation for the clastic stiffness tensor as follows:
S = ~-wE (4.79)

The tangent stitfuess tensor for & damaging process is given by

|
(I -~ w)ite: o

D=§- (o) (41.80)

Sinee the tangent stiffness tensor is symmetrie, hifurcations may first ocenr at the limit
point when the hardening modulus, ., and the fundamental cigenvalue obtain a value
of zero, The corresponding fundamental cigentensor for D s the strain tensor, €, whicl
means that the type of bifurcation that may be activated at the limit point depends on the
strain state. For example, a scalar damaging material subject to a plane strain condition
would exhibit a discontinnons hifurcation and localization at the limit point, but the
same material subjected to untaxial tensile stress would exhibit a diffuse hifurcation and
necking at the limit point,

4.8,2 von Mises Damage

In this section, we analyze a simple von Mises damage model which has a damage function
that is identical to the yield function for von Mises plasticity

V=lg:P'a - gS) (4.81)
The damage evolution equation is characterized by

f=P':0=o" R = 4¢P (4.82)




and the tangent stiffness tensor is given by
4¢7*

N | 1N
et iorr ) ) t.a4)

D=§S-

The tangent stiffuess tensor is symmetrie and has a fundamental cigenvalue and corre-
sponding cigentensor given by

Z(I'II Xy = a-" 1 ﬁ/l)
(H + 200! o) b= (1.

For this model the first possible bifurcation is characterized by the stress deviator, The
type of bifurcation that may oceur at the limit point in this material will depend on
the stress state. Il the material is subjected to a pure shear stress then localization
may oceur at the limit point but if the material is subjected to uniaxial tension then a
diffuse bifurcation leading to necking may be activated at the limit point. If the material
strain softens with continued loading then numerous other bifurcation modes which are
written as linear combinations of the cigentensors as in Equation 4.19 and which satisfy
the general bifurcation criterion of Equation 4.20 may be activated.

Wy =

4.8.3 von Mises Damage with Alternate Damage Evolution

In this section, consider a vou Mises damage model which has a damage function which
is identical to the yield function for von Mises plasticity

W ::-517:?" r o — g(8) (4.80)

and
f=P':0=0" (4.86)

Il we choose the orientation of the damage increment to he given by

R=S§ (4.87)
then the tangent stiffness tensor is as follows:
20/

D=8 —————(o0a' (1.88)

(a7 al+ 1)

The tangent stiffuess tensor for this model is not symmetrie. An cigenanalysis of the
symmetric part of this tangent stiffness tensor is more difficult than the vigenanalysis
presented in the previous seetion. For this model, the necessary condition for a bifurcation
is first satistied in the hardening regime when H obtains a value of

l("
H = %\ﬂa" rot) ,—j—l—\r(d" col) o on) - (et o) (-1.89)

With this model, bifurcations may oceur in the hardening regime, 1> 0, unless the
stress state is purely deviatorie. When the stress state is parely deviatorie, bifurcations
may first occur at the limit point,
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4.8.4 Principal Stress Damage

In this section, we analyze a damage model which uses a principal stress projection
operator and a damage evolution equation in which the compliance of the material is
increased in the direction of maximum principal stress,  Consider a model with the
damage function

V'=1le:P':o-y(S) (4.90)

where Pt is the principal projection operator given by
P =n"tn'wonon' . (4.91)

and n' is a vector oriented ina principal stress direction, This yield funetion represents
a cube in principal stress space. For proportional loading, the normal to one face of the
damage surface is given by f* and the flow rule is characterized by R where

ff=P:e¢=(n e n)nwoun R'=8:P":S (4.92)

The tangent stiffuess tensor is as follows:

l t, DU '
D“‘S“‘(a:pv:s:P-‘:a+H)(S'P o te: P S) (4.93)

The tangent stiffuess tensor for this model is symmetric and at the limit point has a
fundamental cigenvalue of zero with a corresponding fundamental cigentensor given hy

xi=P':e=(n e n)n'en' (4.94)

This cigentensor, X, has the kinematically compatible form of € in BEquation 4.4, Thus,
this model prediets localization at the limit point in the form of a discoutinuous opening
mode bifurcation with an orientation in the direction of the principal stress,

4.8.5 Principal Strain Damage

In this seetion, we analyze a principal strain damage model with a damage funetion given

by
V' =¢:P':e— h(S) V=g:C:P':C:0—-y(S) (4.95)

where C is the compliance of the material, C = 87!, and P* is the principal projection
operator. This yield function represents a eube in principal strain space, For proportional
loading, the normal to one face of the damage surface is given by

f=C:P':C:0o (4.96)

By selecting a damage evolution equation with the following form

R = P" (’1.97)
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we obtain a symmetric tangent stiffness tensor:

) l t, . . {
Dhsu(e:P":C:P‘:e+H)(P.ﬂjc'P) (1.58)

At the limit point, H = 0, this tangent stiffness tensor has a fundamental eigenvalue
equal to zero with a corresponding fundamental eigentensor given by

x=C:P':¢ (1.99)

An interesting feature of this model is that the character of the bifurcation depends on
the elastic response of the material as reflected through € in Equation 4,99,

The bifurcation analyses presented in this chapter provide a connection between local-
ization and constitutive theories, A bifurcation analysis along with careful observation of
localization in material specimens subject to varions loading conditions can provide valu-
able confirmation of the appropriateness of the constitutive theory chosen for a specifie
material,
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5. NUMERICAL SIMULATION CF
LOCALIZATION

A large number of researchers have used finite element methods to investigate localization
phenomena (Bazant and Lin, 1988; Belytschko, Fish and Engelmann, 1988; deBorst,
1986; Larsson ac-l Runesson, 1991 Leroy and Ortiz, 1989; Needleman, 1972; Needleman
and Tvergaard, 1984; and Ortiz, Leroy and Needleman, 1987). These researchers show
that diffuse bifurcations can he captured using standard finite element codes, but that
mesh dependent solutions are obtained when localization occurs, The first section in this
chapter includes finite element analyses of hifurcation problems using standard finite
clement codes, Following these analyses, modifications which enhance onr ability to
numerically simulate localization phenomena are discussed.,

5.1 Analyses with Existing Finite Element Codes

In this section, several quasi-static, boundary value problems are numerically analyzed
to determine if existing finite element codes can prediet the general and discontinnous
bifurcations which are predicted by the bifurcation analyses in the previous section.
Several different combinations of geometry, loading and material are considered.

5.1.1 Rod Subjected to Uniaxial Tension - von Mises Plasticity

The first series of analyses was performed using three different two-dimensional, axisym-
metric models of a rod (Fignre 5.1). The rods were given an initial imperfection by
reducing the radius of the finite element mesh one percent near the center. The anal-
yses were performed using SANTOS (Stone, 1992) which is a finite element code that
uses dynamic relaxation to solve non-linear, quasi-static problems. A von Mises, clas-
tic, perfeetly plastic material with the properties given in Table 5.1 were used in these

analyses,

Three different analyses were performed using various element sizes to determine if the
solution converged with mesh refinement.  Plots of the deformed mesh subject to an
axial displacement of 0.05 inches are shown in Figure 5.2, These plots show that the

Table 5.1. von Mises Material Parameters.

Young’s Modulus = 30.0E4-06 psi
Poisson’s Ratio = 0.30
Yield Strength = 30.0E+03 psi
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Figure 5.1. Axisymmetric Finite Elemient Models of a Rod.

necking associated with activation of the first general bifurcation mode is predicted by the
finite element analyses. The bifurcation analyses presented in Section 4.7 also predicted
activation of the first general bifurcation mode for this problem. Plots of applied load
versus end displacement are shown in Figure 5.3. These plots indicate that the numerical
results have converged to an accurate solution with mesh refinement.

Next, the effects of strain-softening on the numerical simulation were investigated by
analyzing the behavior of rods constructed from strain-softening materials. Two analyses
with different amounts of strain-softening were performed using the 256 element model
shown in Figure 5.1. In the first softening analysis, the material was given a softening
modulus of —E/12 which according to the bifurcation analysis is sufficient to initiate
localization at the limit point. A plot of applied load versus end displacement and a
plot of the deformed mesh at the last solution step are shown in Figure 5.4. These
plots indicate that the solution algorithm remains stable well into the inelastic regime.
The contour plots of equivalent plastic strain indicate that localized shear bands may
be starting to form at the last stable solution step. The first possible bifurcation is not
activated at the limit point in this analysis because it is associated with a mode which is
not axisymmetric and this axisymmetric analysis will not allow deformations which are
not axisymmetric. If the rod had been reprusented by a three dimensional model, this
bifurcation mode may have been predicted. When the rod was given a softening modulus
equal to —E/(6 — 6v) the solution algorithm became unstable during the first load step
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(a) 16 elements (b) 64 elements (¢) 256 elements

Figure 5.2. Deformed Shape of Finit= Flement Models Subject to an Axial
Displacement of 0.10 in. - Elastic, Perfectly Plastic von Mises Material.

1000 v

800; F\\

= 600 |

>

O 400 ¢ ]
— Elements

- — 16 .

200_- -—— B84 1

i -.- 2056 ]

PURE BTV NV S T S VAT U T U Y

0 - ORI W B
-~01 .00 .01 .02 .03 .04 .05
DISPLACEMENT in

Figure 5.3. Applied Load vs. End Displacement - Elastic, Perfectly Plastic von
Mises Material.
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into the softening regime (Figure 5.5.) The contour plot of equivalent plastic strain or
the deformed mesh plot at the last solution step provide little information about the
reason for the instability. However, the bifurcation analysis presented in the previous
section indicates that the initiation of a discontinuous opening mode bifurcation which is
axisymmetric should be expected at the limit point in a rod with this amount of softening.

5.1.2 Rod Subjected to Uniaxial Tension - Principal Stress Plasticity

The next series of analyses was performed using the same models as in the previous
analyses (Figure 5.1); however, in these analyses, an elastic strain-softening material
which uses the principal stress criterion of Rankine was used. Material parameters given
in Table 5.2 which are appropriate for a brittle foam were used.

Table 5.2. Principal Stress Material Parameters.

Young's Modulus = 3000 psi
Poisson’s Ratio = 0.0

Tensile Strength = 300 psi
Softening Modulus = -100 psi

Plots of the deformed mesh are shown in Figure 5.6. The 16 and 64 element models have
been subjected to an end displacement of 0.06 inches and the 256 element model has
been subjected to an end displacement of 0.042 inches. At this point in the simulation,
the axial stress in the 256 element model has been nearly reduced to zero due to the
large amount of softening in the middle row of elements. These plots show the formation
of a discontinuous opening-mode bifurcation in one row of elements. The width of the
localized zone depends on the size of the elements being used. The bifurcation analysis
of this problem also predicts the initiation of a discontinuous opening mode bifurcation
at the limit point. Plots of applied load versus end displacement are shown in Iigure
5.7. These plots show that the solution is not converging with mesh refinement and that
the predicted applied load versus end displacement depends on the size of the elements
used in the simulation.

5.1.3 Thin Plate Subjected to Uniaxial Tension - von Mises Plasticity

The next series of analyses were performed using JAC-3D (Biffle, 1989). JAC-3D is
a three-dimensional finite element code which uses the conjugate gradient method to
solve large deformation, quasi-static, solid mechanics problems. In these analyses, three-
dimensional models of 3.0 inch square plates which are 0.30 inches thick (Figure 5.8)
were subjected to uniaxial tension and equal biaxial tension to determine if the behavior
predicted by the bifurcation analyses would be exhibited. The plates were given an initial
imperfection by reducing the plate thickness near the center to 0.29 inches.

In the first analysis in this series, a von Mises plasticity theory with the properties
given in Table 5.1 was used. The thin plate was subjected to uniaxial tension in the
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(a) 16 elements (b) 64 elements (¢) 256 elements

Figure 5.6. Deformed Shape of Finite Element Models Subject, to Uniaxial Tension -
Principal Stress Plasticity.
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Figure 5.7. Applied Load vs. End Displacement - Principal Stress Plasticity.
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(a) 576 elements (b) 3456 elements

Figure 5.8. Finite Element Models of a Thin Plate.

y-direction shown in Figure 5.8. The deformed shape of the model and contours of out-
of-plane displacement are shown in Figure 5.9. The displacement contours clearly show
the initiation of necked regions oriented at an angle of approximately 60 degrees from the
loading axis, which is very close to the orientation predicted hy the bifurcation analysis.
A second analysis of this problem was then performed using the fine mesh to evaluate the
accuracy of the coarse mesh solution. A comparison of results from this analysis (Figure
5.10) with results obtained with the coarse mesh indicate that the coarse mesh solution

is acceptably accurate,

5.1.4 Thin Plate Subjected to Equal Biaxial Tension

[n the next analysis, the same plate was subjected to equal biaxial tension in the x-y plane,
The deformed shape of this model and contours of out-of-plane displacement are shown
in Fignre 5.11. The numerical analysis indicates that bifurcations will not be generated
for an elastic perfectly plastic, von Mises material. The theoretical bifurcation analysis
performed previously indicates that plates subject to equal biaxial tension would have
to be constructed from a material which exhibits a significant amonnt of strain-softening
for bifurcations to ocenr. Thus, both the bifurcation analysis and the numerical analysis
indicate that this material and loading will not generate any general or discontinnous
bifurcations.

To simulate localization phenomena, we would like to be able to obtain solutions that
are numerically stable beyond discontinuous bifurcation points. When the numerical
procedure fails to converge, we really don't know if a discontinunous hifurcation point
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Figure 5.11.  Normal Displacement. Contours for a Thin Plate Subjected to Equal
Biaxial Tension.

has heen reached or if the solution algorithm is unstable. To be able to say anything
about the initiation and nature of the localization we must be able to obtain convergent
solutions beyond the point of localization. The second problem which must be addressed
is that of mesh dependence. To feel comfortable with solutions to localization problems
or any problems we need solutions that converge with mesh refinement. ITn the next two
sections, we briefly address these two problems associated with the munerical simulation
ol localization phenomena.

5.2 Modifications to Obtain Numerical Solutions

Localization phenomena are generally very diflicult to simulate numerically. Localization
oceurs when the material is softening and the structure is unstable. The load generally
does not monotonically increase; thus, it is generally not possible to solve localization
problems in which the load is prescribed. In the example problems presented in the pre-
vious sections, solutions were obtained by prescribing displacements which monotonically
inerease. However in some localization problems, the load-displacement curve exhibits
snap-back (Schreyer and Chen, 1986) which cannot be followed by simply prescribing
displacements (Figure 5.12). To follow these paths we must resort to more complex pro-
cedures for advancing the problem. Riks (1979) and Crisfield (1981) have developed an
arc-length control procedure which can solve some structural mechanies problems exhibit-
ing softening, With this procedure, the solution is incremented a certain distance along
the load-displacement curve during each load step and the prescribed loads or displace-
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Figure 5.12. Load-Displacement Curve Exhibiting Snap-Back.

ments are functions of this constraint. However, de Borst (1986) and Chen, Neilsen and
Schreyer (1991) have found that the arc-length control procedure is not robust enough
to obtain solutions to many localization problems. Robustness of the are-length control
procedure is improved significantly by using a norm of the incremental displacements as-
sociated with nodes near the localized zone in place of a global norm as the constraint (de
Borst, 1986). Chen, Neilsen and Schreyer (1991) propose a solution procedure in which
the increment in damage or plastic deformation generated in some critical element is the
constraint, With this procedure, the damage or plastic strain increment is prescribed
to monotonically increase an.d the load needed to generate the preseribed increment in
plastic strain or damage is computed. This solution procedure has been successfully used
in the solution of a number of localization problems.

5.3 Modifications to Eliminate Mesh Dependence

Even if the solution algorithm is robust enough to solve the problem, we find that so-
lutions to localization problems are mesh dependent as shown in Section 5.1,2. If the
mesh is oriented along the localized zone, the size of the localized deformation zone will
be equal to the dimension of the elements being used. The first and simplest approach
for coping with the mesh dependence is to simply use elements that are the same size
as the expected localized deformation zone. With this approach there is really no way
to evaluate the accuracy of the solution with mesh refinement because the predicted
size of the localized deformation zone is mesh dependent. The second approach is to
use non-local constitutive theories which have some internal length scale as a material
parameter. When this approach is used, elements which are smaller than the width
of the localized deformation zone are usually required to capture the localization. The
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third approach is to view localization and the size of the localized deformation zone as u
structural property which iy independent of the material or constitutive response and to
assume that the localized deformation zone is embedded within an element, With this
approach, clements which are larger than the width of the localized deformation zone
cati be used which is appealing because the size of localized deformation zones observed
in experiments involving various materials are generally much smaller than the structure
being analyzed. Pietruszeak and Mroz (1981), Ortiz, Leroy and Needleman (1987), Be-
lytschko, Fish and Engelmann (1988), and Neilsen, Chen and Schreyer (1991) have used
varions approaches to embed localized deformations zones within elements. Pietrusacak
and Mroz (1981) assume that material outside the localized deformation zone is rigid
and that element deformations are governed by deformations within the localized defor-
mation zone, Ortiz, Leroy and Needleman (1987) enhance the shape functions to allow
for deformations associated with the first possible discontinuous bifurcation. Belytsehko,
Fish and Engelmann (1988) modify the strain nodal-displacement matrix to account for
the existence of the localized deformation zone within the element. With this approach
the standard mapping between element strains and nodal displacements is replaced by
mappings between softening zone strains and nodal displacements and unloading zone
strains and nodal displacements. Neilsen, Chen and Schreyer (1991) investigate the use
of embedded elements with damaging materials. In the next section, we discuss the use
of clements with embedded localized deformation zones and reanalyze the problem of
Section H.1.2. which was severely mesh dependent using standard finite elements.

5.4 Elements with Embedded Localized Deformation Zone

Consider a finite element of length a which is subjected to a uniaxial stress, e, (Figure
A1) and constructed from an elastic-plastic material with the constitutive relation shown
in Figure 5.14. When the bar is loaded into the inelastic regime, softening is assumed
to oceur uniformly in a region of length s that extends through the bar (s is a material
parameter). Material outside the softening zone elastically unloads. If the bar is modeled
with finite elements and the elements are chosen such that the softening zone is modeled
with a single element, then a conventional finite element approach can be used. The
difficulty arises when the softening zone is smaller than a single element. The constitutive
relation in Figure 5.14 describes the material behavior, but cannot completely deseribe
the behavior of an element in which some of the material is strain-softening and the
remaining material is elastically unloading,

If the material ontside the softening zone is elastically unloading then the strain rate in
the unloading region, ¢, is given by

o
: "
= (h.1)
-
where £ is the elastic modulus. The strain rate in the softening zone, ¢,, is as follows:
. d 0.‘ )
ty = =+ =— (‘r)'z)
E - H
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Subjected to Uniaxial Tension.
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Constitutive Relation for Elastic-Plastic Material.

Figure 5.14.
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Figure 5.15. Applicd Load vs, End Displacement Predictions Obtained Using Finite
Elements with Embedded Softening Zones,

where I is the hardening modulus for the material, The average element strain rate, o,
is given by

.

) a y SO
(= — 4 —
ol all

Feuation 5.3 indicates that an element which is constructed entirely from a material with

(5.3)

a hardening modualus, H,, as follows:

i, = e (5.1)
8

will have the same axial response as the element with the embedded softening zone and a
material softening modulus of 1. Using this information, the problem of Seetion 5,12 was
reanalyzed using element softening moduli which ave mesh dependent, Tn this analysis,
the material has a softening modulus of H0 psi and the softening zone is assumed to have
afixed dength of 0.0125 inehes. Thus, the 16 element mesh was analyzed with an element
soltening modnlus of 200 psic the 64 element mesh with an element softening modulus of
100 psi-and the 256 clement mesh with an element softening modulus of 50 psic Results
from these analyses (Figure 5.15) show that solutions which are not mesh dependent can
be obtained by assuming that the softening zone has a fixed size and is embedded within
a single element.

A similar approach can be used to relate the material response to the element response if
the material is elastic-damaging with the constitutive relation shown in Figure 5.16. 1f we
assume that material outside the softening zone is not damaged and is simply clastically
nnloading, then strain in the unloading region, ¢, is given by

(w = 7

1
1
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Figure 5.16. Constitutive Relation for Elastic-Damaging Material,

Strain in the softening zone, ¢,, is given by
o
(!

— ——— .f""
*T B0 = w0) (5.6)

where w is damage in the softening zone material. The following expression for average
element strain, ¢,, can be derived using the two previous equations

]
(= [l —w+ =we (h.7)
a
If the element stress, o, and strain, ¢., are related by
o=kl —-w)e (h.8)

where w, is thie equivalent element damage, then it can be shown that the element damage
is related to damage in the softening zone material, w, by the following equation.

S

(5.9)

e = [@ = aw + sw)

As with plasticity, there is a relationship between inelastic material level parameters and
equivalent inelastic element level parameters. This relationship depends on the size of
the softening zone and on the size of the elements heing used.

In the example plasticity problem presented in this section, the localized zone was an
opening mode oriented across a single row of elements, For general applications in two
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and three dimensions, the embedded localized deformation zone approach must be able
to handle both opening and shearing localizations with various orientations and locations
within an element. For example, the localized deformation zone may cross the center of
the element or possibly only the corner. It is not clear that the current approaches for
elements with embedded localized deformation zones are able Lo solve general localization
problems, Larsson and Runesson (1991) and others have shown that using finite element
meshes which are aligned along localized deformation zones significantly enhances our
ability to solve general localization problems, Perhaps a combination of adaptive mesh
refinement along with embedded localized zone techniques should be considered for the
numerical solution of localization problems. A significant amount of research and de-
velopment remains to be done in this area before localization problems can be solved
routinely.

8
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6. A MODEL FOR POLYURETHANE FOAM

Experimental investigations by Shaw and Sata (1966) and Patel and Finnie (1969) indi-
cate that the initial yield surface for polyurethane foam can be described using a principal
stress theory. Recent experiments (Donald and Maji, 1992) indicate that polyurethane
foam exhibits localization, plastic deformation and damage when it is crushed. For com-
pressive and tensile loads, the localized deformation zones arve oriented in a direction
normal to the principal stresses. The bifurcation analyses of principal stress plasticity
models indicate that these models do predict the localized deformations exhibited by
polyurethane foams. Thus, the principal stress plasticity model for polyurethane foam
developed by Neilsen, Morgan and Krieg (1987) does capture the localized deformations
exhibited by rigid polyurethane foams. The original polyurethane foam model along
with modifications that reflect skeleton damage and improved hehavior at lock-up are
presented in this section.

6.1 Description of the Foam as a Mixture

The first step in the development of the constitutive theory for polyurethane foams was
~an examination of the individual components of the foam structure. Rigid polyurethane
foams consists of closed polymer cells with air inside the cells. Therefore, each foam
consists of two structural components: (1) the polymer structure or skeleton, and (2)
a mixture of air and polymer particles. In applications where the air cannot escape
from the skeleton during loading, the air contribution may be significant. For example,
in hydrostatic and triaxial compression tests that were performed by Donald and Maji
(1992). the samples were jacketed and the air could not escape. Thus, a model which
considers the contribution of the air to the overall structural response of the foams is
needed to capture the foam behavior exhibited in these tests. Total foam response can
be decomposed into the response of the skeleton and the response of the air in series with
the polymer wall material as shown in Figure 6.1,

Since, the air/polymer does not resist any shear deformation, the air/polymer contribu-
tion is completely volumetric. For convenience, the skeleton is assumed to occupy the
same space as the foam. This implies that the skeleton strain is equal to the foam strain.
Also, the foam stress. o, is given by the following equation

ol = o — i (6.1)

**is the skeleton stress and pi represents the air/poiymer contribution. The

where o
pressure in the wmixture of air and polymer particles, p, is positive in compression. 'To

better understand this equation, consider a hydrostatic compression test in which the

~
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Figure 6.1. Decomposition of Foam Response into Skeleton and Air/Polymer

Responses.

foam sample is jacketed and the air is not allowed to escape. If the foam consisted
of loosely connected particles of polymer, then the skeleton contribution to the foam
response would be negligible and the external pressure applied to the foam would equal
the internal air/polymer pressure. This foam would not be able to resist any deviatoric
loading. In most foams, however, the skeleton is structured so that it can carry load
and the contribution of the skeleton must be added to the air/polymer contribution to
determine how much load the foam can carry. In the next section, an expression for the
air/polymer contribution as a function of the foam strain is derived.

6.2 Air/Polymer Response

An expression for the air/polymer pressure, p, was obtained by assuming that the air
trapped within the cells is a perfect gas and that the foam compression is an isothermal
process. The isothermal assumption is made because the air is in intimate contact with
the polymer that makes up the cell walls and the thermal mass of the polymer 1s signifi-
cantly larger than the thermal mass of the air. These equations indicate that the perfect
gas equation of state can be used for the air and that

airy s air airysair Y
pttVeT =ttty (6.2)

wir
O

where p*" is the current air pressure, V* the current air volume, p*” the original air
pressure, and V" the original air volume. The original air volume is related to the
original foam volume, V, by

VT = V(1 — ) (6.3)

where @ is the volume fraction of solid material. If we assume that the volume of the
polymer is fixed when the foam is manufactured and merely changes its position as the
foam deforms, an expression for the engineering volume strain, €,,. is

Avuir

Cool = =7 (6.4)
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Prior to loading, we assume that the internal air pressure, p&™, is in equilibrium with the

environment, i.e., p&" = 14.7 psi at sea level or pg'" ~ 12.5 psi here in Albuquel que, New
Mexico. The change in internal air pressure due to the loading p = p*" — pa" is related

to the change in air volume as follows

-pVo(l — @)

Avuir — .
pe'T +p

(6.5)

Combining the above equations we obtain the following expression for the air contribu-
tion, p, in terms of the current engineering volume strain, €,y

_ palr
P et 1o 9) (6.6)

This equation is used by Neilsen, Morgan and Krieg (1987) in their foam model and also
by Gibson and Ashby (1988). In the development of Equation 6.6, a critical assumption
is that the volume of the polymer does not change during loading. This assumption is
only valid when the pressures are small. If the pressures are large, the volume of the
polymer which makes up the cell walls will change according to the bulk modulus of the
polymer, K7 as follows

~pV,®

Kpoly

AVl = (6.7)

The bulk modulus for polyurethane is approximately 150,000 psi. The expression for
engineering volume strain is now given by

AVair + Avr)oly
€yol = v

(6.8)

Finally, by combining the above equations the following quadratic equation is obtained
Op? + [p27@ + KP(1 — @ + €,00)]p + 0 K787 = 0 (6.9)

This equation can be easily solved and only one root is shown to be physically realistic.
Plots of air pressure as a function of volume strain using Equations 6.6 and 6.9 are
shown in Figure 6.2. This figure clearly shows that the effect of considering the elastic
bulk response of the polymer is only significant for large pressures.

If the air is allowed to escape then the response of particle interaction is given by Equation
6.9 with the initial air pressure, p&'" set equal to zero. With pd"" equal to zero, Equation

6.9 reduces to
Jopoly

o
These equations describe two intersecting lines. The response of the polymer when the

air is allowed to escape can be approximated by simply prescribing a small value for the
initial air pressure as shown in Figure 6.3.

p=0 or p=-— (1 —®+eyy) (6.10)
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Figure 6.2. Air/Polymer Response for a 20 pcf Polyurethane Foam.
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Figure 6.3. Air/Polymer Response for a 20 pef Polyurethane Foam with Air Allowed
to Escape.
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6.3 Plasticity Theory for the Skeleton

Neilsen, Morgan, and Krieg (1987) developed a plasticity model to describe the contri-
bution of the skeleton to the overall foam response. The yield function for their skeleton
model is given by

U= 1o P U)% —A<IlI"> +B(1 + Ceyy) (6.11)
where P is the principal projection operator, 11’ is the second invariant of the deviatoric
strains, <> is the Heaviside step function, and e,y is the engineering volume strain.
The yield stress in each principal stress direction is a function of both the volume strain
and the deviatoric strain. A, B, and C are material constants. The constant B is the
yield stress of the skeleton for purely hydrostatic loading, and the product of B and
(" is the slope of the skeleton volumetric response after yielding for purely hydrostatic
loading. The constant A is equal to the difference between the axial yield stress for
hydrostatic loading and the axial yield stress for deviatoric loading. In Equation 6.11,
the term A < [I' > is active only if the loading is deviatoric. This yield function
was based on a series of uniaxial, hydrostatic and triaxial compression tests on low-
density rigid polyurethane foams which were completed by the Civil Engineering Research
Facility (CERF) at the New Mexico Engineering Research Institute (NMERI) in 1982,
Results from this experimental investigation are documented by Neilsen, Morgan and
Krieg (1987).

[n triaxial compression tests, the material is subjected to some level of hydrostatic com-
pression and subsequently additional load in one direction only. Results from NMERI's
triaxial tests on foam indicated that the foam exhibited a higher strength when the addi-
tional axial load was applied as opposed to hydrostatic compression only. The application
of additional axial load corresponds to the introduction of deviatoric strains which led
to the assumption that the yield surface grows when deviatoric strains are introduced.
A recent series of tests completed by Donald and Maji (1992) reveal that the apparent
increase in strength associated with the application of the additional axial load is actu-
ally due to the anisotropic character of the low density foams. During the NMERI tests
the additional axial load was always applied in the rise direction of the foam and the
foam is generally stronger in the rise direction than in directions perpendicular to the rise
direction. Therefore, for the improved model developed in the next section, we adopt an
anisotropic yield function that does not include a jump associated with the introduction
of deviatoric loading.

6.4 Coupled Theory for the Skeleton

Experiments completed by Donald and Maji (1932) indicate that the skeleton exhibits
both plastic deformation and damage as it is crushed. Therefore, a coupled plasticity,
continuum damage model for the skeleton would be more appropriate than the previously
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developed plasticity model. The experimental evidence suggests that a principal stress
based model is appropriate for polyurethane foams; thus, we adopt the following yield
(damage) function

(o : Pl :a‘)% ~ (A + Beyy) (6.12)

2| —

V=

t-

where P' is again the principal projection operator, A and B are material parameters
that are dependent on the current amount of damage in the current principal stress
orientation. Information about damage is stored in the damaged elastic stiffness tensor,
S. The evolution equations for plastic strain and damage are given by

e =pP o S=-uS:Pi:8 C = wP! (6.13)

The evolution equation for plastic strain indicates that plastic strains will be generated in
principal stress directions. The damage evolution equation indicates that the compliance
of the material will be increased in a direction parallel to the current maximum tensile
stress. Even if the skeleton stiffness is isotropic prior to loading, the damage evolution
equation indicates that the material will become anisotropic as it is damaged. Since
the material stiffness is not isotropic it cannot simply be represented by two scalars and
instead the entire stiffness or compliance matrix must be stored. However, by storing the
compliance matrix we have implicitly stored information about load history.

To complete this model we need an additional equation that prescribes the relative
amounts of damage and permanent strain generated during an inelastic step. The addi-
tional equation is given by

Mp=(1-Mw (6.14)
In this equation, we allow the magnitude of the non-negative material parameter M to
depend on the sign of the principal stress. Specifically, in compression the inelastic be-
havior is dominated by plasticity, whereas, in tension the inelastic behavior is dominated
by damage.

6.5 Simplified Isotropic Theory for the Skeleton

Most existing finite element codes were developed using only isotropic plasticity mod-
els and generally do not have the architecture required for the easy implementation of
anisotropic models. In this section, an isotropic, coupled plasticity damage model which
captures at least most of the behavior exhibited by the foam skeleton is developed. This
model uses the yield (damage) function given by Equation 6.12 and the flow law for
plastic strain increments given by Equation 6.13. However, for the material to remain
isotropic, we must adopt an isotropic evolution equation for damage.

[f we assume that the skeleton has a Poisson’s ratio equal to zero, then the undamaged
elastic stiffness tensor for the skeleton, E, is given by

E = E,I (6.15)
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where Ey is the initial or original elastic modulus and I'is the fourth-order identity tensor.
Thus, for this model we adopt a simple isotropic damage evolution equation given by

S = —wF,l (6.16)

With this simple scalar damage model, damage history is stored in a single scalar, the
damaged elastic modulus, E = (1 — w)Ey.

6.6 Analysis of Material Characterization Tests

A series of tests were recently performed in the Civil Engineering Department at the
University of New Mexico to characterize the behavior of rigid polyurethane foams and
aluminum honeycombs (Donald and Maji, 1992). In this section, several finite element
analyses of the material characterization tests are performed to determine if the consti-
tutive model developed in this chapter will analytically predict the foam behavior which
was observed during the experiments.

The constitutive model developed in this chapter was implemented in the finite element
code SANTOS (Stone, 1992). In SANTOS, the constitutive relations are expressed in
terms of the deformation rate and Cauchy stress in the unrotated configuration (Taylor
and Flanagan, 1986). The analyses were performed using SANTOS and the finite element
models of axisymmetric material specimens shown in Figure 6.4. The models were subject
to uniaxial compression, hydrostatic compression and uniaxial tension. The predicted
response of the foam from the finite element analyses was compared with the experimental
observations. Properties that are appropriate for a 5 pound per cubic foot foam were
used in this investigation (Table 6.1).

In the first analyses, the models were subject to uniaxial compression. A plot of the
undeformed and deformed 200 element mesh is shown in Figure 6.5. The deformed shapes
show that the model predicts only axial deformation when the material is compressed in
the plateau regime and a combination of axial and radial deformation when the material
is loaded into the lock-up regime. This deformation behavior is observed experimentally.
Mesh refinement had no significant effect on the predicted compressive response of the
material. A plot of the applied load versus end displacement predicted by the finite
element analyses is compared with the experimental result in Figure 6.6. This plot
shows that response predicted by the finite element analyses is qualitatively accurate;

Table 6.1. Material Parameters for a 5 pcf Polyurethane Foam.

Elastic | Poisson’s A B M A B M ¢
Modulus |  Ratio | Comp. | Comp. | Comp. | Tens. | Tens. | Tens.

(psi) (psi) (psi) (psi) | (psi)

3,000 0.0 110 0 0.1 110 | -100 | 1.0 |0.09
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however, the amount of crush required to lock-up the foam is smaller than the crush at
lock-up predicted by the analyses. One possible explanation for this discrepancy is that
the polymer particles which make up the cell walls actnally begin to contact cach other
and carry load before the volume fraction of solid material is close to unity. To correct
this discrepancy, an additional particle interaction contribution could be included or the
material parameter, @, could be modified to account for particle interaction.

In the next analyses, the models were subject to uniaxial tension. A plot of the deformed
meshes is shown in Figure 6.7. The deformed shapes show the formation of a discon-
tinuous opening mode bifurcation which is also observed in polyurethane foam samples
subject to uniaxial tension. A plot of the applied load versus end displacement predicted
by the finite element analyses is compared with the experimental result in Figure 6.8,
Both the loading and unloading responses predicted by the finite element analyses are
shown. The behavior predicted during loading in the softening regime is clearly mesh-
dependent. This result was expected because a non-local feature was not incorporated
in the current model. As expected, the unloading curves pass through the origin which
indicates that the model predicts only damage when the material is subjected to uniaxial
tension.

In the final analyses, the models were subject to hydrostatic compression. Plots of the
deformed meshes are shown in Figure 6.9. The size of the original undeformed sample
is indicated by the dashed lines in Figure 6.9. These analyses predict the generation of
rather nnusual deformed shapes and localization during hydrostatic compression tests.
A bifurcation analysis of this model and stress state indicates that localization is not
expected since the fundamental eigentensor for the tangent stiffness tensor is equal to
the second-order identity which has no zero eigenvalue. However, if the stress state is not
purely hydrostatic due to numerical roundoff then the bifurcation analysis indicates that
localization as exhibited by the finite element analyses may occur. Also, recent studies
by Benallal, Billardon and Geymonat (1989, 1990) of instabilities at the boundary of a
solid may help to explain these numerical results.

A plot of applied pressure versus engineering volume strain predicted by the finite cle-
ment analyses is compared with the experimental result in Figure 6.10. This plot shows
that response predicted by the finite element analyses matches the experimental result
reasonably well. Even though the deformed shapes were rather mesh dependent the plots
of applied pressure vs. volume strain were not mesh dependent.
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Figure 6.4. Axisymmetric Finite Element Models of Foam Specimens.
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Figure 6.5. Deformed Shape of 200 Element Model Subject to Uniaxial Compression.
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Figure 6.7. Deformed Shape of Models Subject to Uniaxial Tension.
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Figure 6.9. Deformed Shape of Models Subject to Hydrostatic Compression.
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7. ALUMINUM HONEYCOMB MODEL

Experiments on aluminum honeycomb indicate that localization and plastic deforma-
tion is generated when the material is crushed. Thus, a plasticity model developed for
aluminum honeycomb should predict localization when the material is loaded into the
plateau regime. The localization exhibited by honeycomb is oriented along geometrie
lines which is not a typical characteristic of other materials, The only existing model
that predicts localizations which are similar to those observed in honeycomb is the Molir-
Coulomb model which predicts localization with an orientation which is dependent on
the internal friction angle and the orientation of the principal stresses. A plasticity model
which predicts localization with an orientation that is dependent on the geometry will
require a yield function that is dependent ou the geometry. Such a model was devel-
oped by Klintworth and Stronge (1988). Their model along with a bifurcation analysis
is presented in the next section,

7.1 In-piane Response

A number of researchers have investigated the in-plane behavior of aluminum honeycomb
(Klintworth and Stronge, 1988; Gibson and Ashby, 1988) and developed expressions for
the initial yield surfaces for this material. Klintworth and Stronge (1988) have investi-
gated the response of aluminum honeycomb subjected to in-plane stresses as shown in
Figure 7.1, Their investigation indicates that the yield surface for in-plane loads consists
of a family of interseeting vield surfaces with yvield funetions given hy

V= aa,, +bay, +c(a,, + ) —d (7.1)
where achyes and o are material paranaceters that depend on the coll geometry,

The experimental compression tests indicate that the yield surfaces do not change sig-
nificantly in the plateau regimes thus, we can assume that the parameters a, b, e and d in
the above yield functions are constant in the platean regime. Furthermore, if we assime
the material exhibits associated flow then

. acl
f::g:g:y-::» cb( (7.2)
oo 000

The hifurcation analyses of plasticity thearies with associated flow rules indicate that the
first possible bifurcation occurs at the limit point. The mode associated with this bifur-
cation is characterized by the normal to the yield surface, f, which is dependent on the
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) T
Figure 7.1. In-plane Loading of Aluminum Honeycomb Clells.

material parameters and thus cell geometry. For example, when the honeycomb is sub-
jected to uniaxial compression in the @ direction, the active yield surface is characterized

by

R
TTE T
b= —;1— -+ %- (7.3)
Ay Y
] 1
“= Ty, T,
d=1

where £, 5, and X, are elastic buckling parameters and T,,T, and Y., are plastic
collapse parameters defined as follows:

$ Tl Et
“ T A2L%(H + Lsin)cos0
“ _ TiE
YT 12L3c0s0sind
'21;.’(’3
By = e . (74)
‘ 12L3(L 4+ Hsind)
T, = Loy
T 2L(H 4 Lsin®)sind
t'zrfy
Ty = 212c0s2%0
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where L, H.i, and 6 are the dimensions and angle that describe a typical cell as shown
in Figure 7.1. F is the elastic modulus for the solid material and o, is the yield strength
for the solid material. Parameters for a typical aluminum honeycomb are given in Table
7.1.

T

Table 7.1. Parameters for a 0.125-5052-.002 Aluminum Honeycomb.

E oy H L t 0
psi psi in. in. in. | degree
10.0E6 | 24000 | 0.072 | 0.072 | 0.002 30

Using these material parameters we obtain the following values for the yield function
constants: a = -0.0884 in?/lb, b = 0.0785 in?/lb, ¢ = 0.0425 in?/lb. By substituting
these constants into the expression for f, Equation 7.2, and performing the bifurcation
analysis we find that this plasticity model predicts localization at the limit point with an
orientation of 30.0 degrees which is very close to the experimentally observed orientation
(Figure 7.2.) Furthermore, the orientation of m indicates that the bifurcation is primarily
a shearing type bifurcation which is also consistent with experimental observations.

When the foam is subjected to uniaxial compression in the y direction, the active yield
surface is characterized by '

__ 1
a= 5t
1 1
b= —————— — — 7.5
T T03460,%, T, (7:5)
c=20
where Leind
stn

Using the material parameters given in Table 7.1 we obtain the following yield function
constants: ¢ = 0.0736 in?/Ib, b = -0.0952 in?/1b, ¢ = 0.0 in?/lb. By substituting these
constants into the expression for f and performing the bifurcation analysis we find that
this plasticity model predicts localization at the limit point with an n oriented at an
angle of 48.7 degrees from the x axis which is again reasonably close to the orientation
which is observed experimentally (Figure 7.3).

These bifurcation analyses indicate that the plasticity model developed by Klintworth
and Stronge (1988) does capture the localized deformations for the load cases that were
analyzed. It was beyond the scope of this paper to evaluate all of the yield surfaces
required to describe all possible load paths.
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Figure 7.2. Comparison of Bifurcation Analysis Predictions with Experimental
Observations of Localization in Aluminum Honeycomb Subjected to
Uniaxial Compressica in the x-Direction.

Figure 7.3. Comparison of Bifurcation Analysis Predictions with Experimental
Observations of Localization in Aluminum Honeycomb Subjected to
Uniaxial Compression in the y-Direction.



Figure 7.4. Localized Deformation Exhibit by Aluminum Honeycomb Subjected to
Uniaxial Compression Along its Generator Axis.

7.2 Generator Axis Response

When aluminum honeycomb is used in impact limiters the material axes are usually
oriented such that the material will be crushed along its generator axis during an ac-
cidental impact event. This material exhibits a significantly higher strength when it is
loaded along its generator axis as opposed to in-plane. Uniaxial compression tests along
the generator axis (Donald and Maji, 1992) indicate that this material exhibits localized
deformation oriented in a direction normal to the loading axis when it is loaded into the
plateau regime (Figure 7.4). This localized deformation can be captured with an associ-
ated flow law and a yield function which uses the principal projection operator, P*, as
follows

V=0 :P°:0 — e(e€P) (7.7)

The bifurcation analysis of such a plasticity model presented in Section 4.6.4 indicates
that this model will predict localization oriented normal to the principal stress direction
at the limit point.

7.3 A Baseline Model

The analyses in the previous sections indicate that the rather complex combination of
yield functions developed by Klintworth and Stronge (1988) would capture the localized
deformations that are generated when the honeycomb is subjected to in-plane loads.
In most impact limiter applications, the honeycomb is oriented such that the primary
loads are oriented along the generator axis and the material is expected to absorb energy
by crushing along the generator axis; thus, to simulate these impact cvents the most
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Figure 7.5. Yield Surface for Aluminum Honeycomb.,

important behavior that must be captured is the crush of the material along the generator
axis. A yield function which uses the principal projection operator, Equation 7.7, is
able to predict the localization which occurs when the material is subjected to uniaxial
compression along the generator axis. By using this yield function to describe planar
caps for the yield surface described by Klintworth and Strong’s (1988) in-plane yield
functions, we obtain the yield surface shown in Figure 7.5.
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8. FINITE ELEMENT ANALYSIS OF AN
IMPACT EVENT

A typical impact problem was analyzed using the two-dimensional finite element model
shown in Figure 8.1 and the code PRONTO-2D (Taylor and Flanagan, 1986). This
plane strain model represents an infinitely long steel cylinder surrounded by a foam
layer which is covered with a thin aluminum shell. Three analyses were performed using
different constitutive theories for the foam material to investigate the effects of the foam
constitutive theory on the predicted response of the impact limiter.

ALUMINUM

5 PCF FOAM ,...

STEEL — '...

ns'a®
Node 175 =““"":"

N\ &Y
Figure 8.1. Finite Element Model Used in Dynamic Analyses.
The package was dropped onto a rigid surface at an initial velocity of 528 inches per
second, and the resulting deformations and accelerations were comnputed. The impact

velocity of 528 inches per second results from a regulatory drop of 30 feet onto an un-
yielding target for nuclear waste shipping containers.

Material properties used in these analyses are given in Table 8.1. Properties typical of
a 5 pound-per-cubic-foot rigid polyurethane foam were used for the foam layer. In the
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first analysis, the foam layer was modeled using & von Mises plasticity model for which
properties were determined based on results from uniaxial compression tests on the foam.
For this model, the material was assumed to be elastic-perfectly plastic and was given a
yield strength equal to the platean stress for the foam. In the second analysis, the foam
was modeled using the original foam plasticity model developed by Neilsen, Morgan
and Krieg (1987). In the final analysis, the foam was modeled using the new theory
consisting of plasticity coupled with isotropic continuum damage. Results from both the
uniaxial and the hydrostatic tests were used to determine material properties for the
foam plasticity and new coupled models.

Results from these analyses are shown in Figures 8.2 to 8.6. Displaced shapes of the
finite element model at maximum crush-up are shown in Figure 8.2. When the von
Mises plasticity model (Figure 8.2a) is used for the foam material, the foam is not able
to exhibit permanent volume changes and is forced to try to flow from beneath the
impacting cylinder. On the other hand, when the original foam plasticity model or the
new foam model are used, the permanent volume changes exhibited by foam are captured

(Figures 8.2b and 8.2c).

The predicted vertical displacement, velocity and acceleration of Node 175 (see Figure
8.1) in the steel cylinder is plotted as a function of time from initial impact in Figures
8.3, 8.4 and 8.5. The new coupled theory predicts a slightly larger amount of foam
crush and a higher rebound velocity than the original plasticity theory. The acceleration
time histories generated nsing the original foam plasticity model and the coupled foam
model are very similar. An accurate prediction of the acceleration time history is very
important as it provides a measure of the amount of protection provided by the impact
limiter.  The displacement, velocity and acceleration predictions generated using the
von Mises plasticity theory are significantly different than the predictions generated with
cither of the foam theories. When the foam is modeled with a von Mises plasticity theory,
itis not allowed to exhibit any permanent volume changes and unrealistic foam behavior
is predicted. Thus, the von Mises theory predicts a peak acceleration level and a rebonnd
velocity that is imuch higher than that predicted by either foam theory.

Finally, a plot of damage in the foam material at maximum crush-up is shown in Figure
8.6. This plot shows that the largest amount of foam damage is generated in the foam
material near the sides of the steel evlinder and not between the steel eylinder and
the impact surface. Damage occurs here because the originally cireular impact limiter is
deformed into an oval shape during the impact event which leads to the generation of large
tensile stresses and thus damage near the sides of the steel eylinder. In these analyses,
we have assumed that the limiter is foamed in place and that the foam remains bonded
to the steel cylinder. The analyses with the coupled theory suggests that debonding or
foam failure will occur near the sides of the steel cylinder.
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Table 8.1. Material Parameters Used in Finite Element Analyses.

Aluminum:

Young’s Modulus = 10.0E4+06 psi
Poisson’s Ratio = 0.30
Density = 2.5E-04 1b ¢*/in*

Steel:

Young's Modulus = 29.054+06 psi
Poisson’s Ratio = 0.30
Density = 7.01-04 1b s%/in*

Foam:

(von Mises Plasticity Model)
Young’s Modulus = 3000.0 psi
Poisson’s Ratio = 0.0

Density = 7.5E-06 b s%/in*
Yield Strength = 110.0 psi
Hardening Modulus = 0.0 psi

Foam:

(Original Plasticity Model)
Young’s Modulus = 3000.0 psi
Poisson’s Ratio = 0.0

Density = 7.5E-06 b §2/in*
Volume Fraction, & = 0.09

Initial Air Pressure, p{}“’ = 14.7 psi
Yield Fune. Constant, A = 49.2 psi
Yield Fune, Constant, B = 60.8 psi
Yield fune, Constant, (" = -0.5

Foam:

(Coupled Model)

Young's Modnlus = 3000.0 psi
Poisson™s Ratio = (.0

Density = 7.515-06 1h 33/i||"
Volume Fraction, & = (.09

nitial Air Pregsure, pt” = [4.7 psi

Compressive Yield Constant, A = 110.0 psi
Compressive Yield Constant, 8 = 0.0 psi
Compressive Damage Ratio, M = 0.1
Tensile Yield Constant, A = 110.0 psi
Tensile Yield Constant, 13 = -100.0 psi

Tensile Damage Ratio, M = 1.0
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Figure 8.6. Damage in Ioam Layer Predicted with Coupled Constitutive Theory.
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9. CONCLUSIONS AND FUTURE WORK

The primary focus of this rescarch was the development of constitutive theories for eel-
lular materials that not only capture the elastic response of these materials hut also
the plastic deformation, damage and localized deformation that is generated when these
materials are subjected to crushing loads. The constitutive relations developed for these
materials use a combination of plasticity and continuum damage theories. Plasticity is
a constitutive theory with a well-developed structure. Continuum damage theories, on
the other hand, are just currently being developed (Krajcinovic, 1989). In this paper, a
rather general continuum damage theory with a structure similar to existing plasticity
theories is developed. Use of a similar structure simplifies the development of coupled
plasticity-continuum damage theories which share common yield (damage) surfaces. In
this report, a coupled theory was developed for rigid polyurethane foam.

When cellular solids are loaded into the inelastic regime, they often exhibit deformations
that are localized into small regions at some point in the loading process. Localization
is often associated with satisfaction of the classical discontinuous bifurcation criterion.
Here we propose that the loss of strong ellipticity condition should be used in place of the
classical discontinuous bifurcation criterion as a necessary condition for localization. The
application of the strong ellipticity criterion implies that a bhifurcation mode associated
with loss of positive definiteness of the symmetric part of the acoustic tensor must he
identified rather than a mode associated with the first zero eigenvalue of the acoustic
tensor itsell. The eigensystem for the symmetric part of the tangent stiffness tensor is
obtained for several different plasticity and continuum damage models. This cigensystem
provides information about hoth ditfuse and discontinuons bifurcations. Material prop-
erties, boundary conditions, and body geometry are all shown to affect the diffuse and
localized deformation modes that are generated. Numerous experimental observations
of necking and localization in metal specimens subject to various houndary conditions
are oxplained with a bifurcation analysis of a von Mises plasticity model. Bifureation
analyses were then performed on potential constitutive theories for cellular solids, A
comparison ol results from the hifurcation analyses with experimental observations of
localized deformations helped in the identification of appropriate constitutive theories

for coellular materials,

Constitutive relations for alur“aum honeycombs and rigid polyurethane foams were de-
veloped and implemented in both static and dynamic finite element codes. A mumber
of static tests on rigid polyurethane foam were analyzed and the results from the finite
clement analyses were compared with experimental observations, Finally a typical im-
pact problem was analyzed using various constitutive models for the polyurethane foam
to demonstrate the effects of using various constitutive descriptions for the foam,
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Cellular solids exhibit some additional features that are not captured by the constitutive
theories which were developed in this work. First, dynamic tests on cellular solids indicate
that the strength of these materials is strain-rate dependent. The models developed in
this paper could be modified to capture this rate dependence. For example, the yield
function for the skeleton part of the models could be modified to include the strain-rate
dependence. Next, the cyclic tests on this material indicated that a hysteresis loop is
generated by unloading and reloading in the elastic regime. For the models developed in
this paper, the elastic response is assumed to be linear. The hysteresis exhibited in the
experiments may be due to the behavior of the polyurethane cell wall material or to the
escape and reentry of the air from the sample during the cyclic loading. The motion of
the fluid would have to be modeled and coupled with the skeleton model to capture the
effect of fluid low. The coupling between the fluid flow calculation and the structural
calculation could be rather complex. For example, a large pressure gradient could cause
damage and the amount of damage generated by crushing or fluid flow would have an
effect on the rate of fluid flow. The solution of this coupled problem was beyond the
scope of the current work. Finally, it is clear that a significant amount of work is still
needed in the area of developing robust numerical procedures before it will be possible
to routinely solve localization problems.

The response of cellular materials is complex with several modes of localized deforma-
tion exhibited when stress paths arc allowed to span a large range. One aspect of the
verification of a constitutive model is to show that the predicted orientation and nature
of these localized deformation modes agree with experiments. Because of the lack of a
routine procedure for theoretically obtaining such modes, this type of verification is prac-
tically never done for any material model, let alone those developed for cellular materials.
The study of bifurcation phenomena presented here represents a significant enhancement
to current technology, and provides an additional important mechanism for evaluating
constitutive theories.
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