o

H .
|

22 Nl

I= 1

i 1322
Bomae

122 12

122

ey e

IS

Il






. (i ( Q31013 )- -3

)

UCRL-JC-112639
PREPRINT

Automated Analysis Tools for Reducing
Spacecraft Telemetry Data

T.]. Voss

This paper was prepared for submittal to the
1993 International Telemetering Conference
Las Vegas, Nevada
October 25-28, 1993

April 26, 1993

Thisisa preprintofapaperintended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

author.

MASTER

OGUMENT IS UNLIMITED

o 1*”},
b

‘\"D)

DISTRIBUTION OF THIS D




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
wouldnotinfringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.




AUTOMATED ANALYSIS TOOLS FOR REDUCING SPACECRAFT
TELEMETRY DATA

T.J. Voss
Lawrence Livermore National Laboratory

Keywords
telemetry analysis, data reduction, software toolkit
Abstract

A practical description is presented of the methods used to reduce spacecraft telemetry data using a hier-
archial toolkit of software programs developed for a UNIX environment.

Introduction

A project requiring the design, implementation and test flight of small, lightweight spacecraft was
recently conducted. This spacecraft development required hundreds of tests and integrations of sub-
systems on several special purpose testbeds, with each test creating large amounts of telemetered data.
This paper focuses on the automated analysis and reduction of data which is telemetered from one of the
key subsystems, the Probe. The telemetry system for the Probe is described in [1] and in [2]. A typical
telemetry stream from a testbed run averaged 50 Megabytes of raw data, containing over 1600 system
variables. The large telemetry file (raw data) sent from the Probe was decoded and decomposed into a
large number of smaller Break Out Files (BOFs) containing variables with timestamps, and image files.

Motivations and Current Practice

Key motivations for automating the analysis process came from the requirements for reducing large
amounts of data in short time periods into small digestible chunks which could be used by engineers and
scientists to make observations of the subsystems for which they had responsibility. Without the aid of
these automated tools, the predominant methods of performing data analysis could be described as repet-
itive, manual, visual inspection of two-dimensional data plots, followed by heuristic evaluations. A vari-
ety of tools (computer programs) and steps were used by the individuals performing the analyses. It was
common for an analyst/engineer/scientist to receive complete telemetry dumps from half-a-dozen or
more experimental “runs’ in a single day. This meant that each person was repeating the same data reduc-
tion techniques while trying to correlate experimental changes found in the data to changes in, or
attributes of, their respective subsystem. Generally, an individual could not inspect all the experimental
runs.

What was needed was a systematic yet flexible, reusable, set of tools that could be quickly customized to
the needs of the individual analyst in order to reduce the enormous amount of data into useful informa-
tion. Additionally, a set of tools that could grow in complexity to meet the changing needs of the experi-
ment was sought.




Design Approach to Automating Analysis

These steps outline the process of automating the data analysis:
1. Critical subsystems were selected as candidates for automated analysis.
2. Existing analytical practice as it applied to the selected subsystem was studied.
3. Whereever heuristic methods were used they were transformed into numetical methods.

4. Numerical methods requ.red for any analysis were organized into a hierarchy of tools by taking
advantage of the similarities of different data analysis processes, and using a top-down approach.

5. A common format was selected for data storage and interchange.

6. A set of primitives were created that could perform basic numerical and logical functions, data
reductions or comparisons.

7. A set of intermediate level utilities were created that utilized the primitives to accomplish larger
tasks.

8. A set of high level, specialized routines were developed that could organize and report useful infor-
mation, again using the lower level codes.

Implementation
An example case is presented which follows this methodology.

The Probe Attitude Control System (ACS) was selected as a candidate for telemetry data analysis auto-
mation.

Existing practice was described and documented by one of the controls engineers working on the ACS.
Here are the steps taken to automate a portion of the ACS analysis.

The engineer’s heuristic method was stated as, “check for consistency between inertial position informa-
tion [measured gyro data) and calculated/estimated position information.”
This was transformed into numerical methods as:

i) compute the difference between estimated and inertial (gyro) values for every available time point
for any given run. The existing telemetry stream contained:

* estOMEGA(x,y,z) == estimated positions for each of 3 axes
e gyro(x,y,z) == measured gyro positions for each of 3 axes

* gyroBIAS(x,y,z) == measured/dynamic gyro biases for each of 3 axes

Thus:
estVSgyroDIFF (x) = estOMEGA (x) =20 (gyro (x) - gyroBIAS (x)) (EQ D
estVSgyroDIFF (y) = estOMEGA (») - 20 (gyro(y) — gyroBIAS (y)) (EQ 2)
estVSgyroDIFE (2) = estOMEGA (z) - 20 (gyro(z) ~ gyroBIAS (2)) QY



[Note: scalar multiply by 20 was needed for units conversion since estimated values and inertial (gyro)
values were scaled differently by the reporting subsystems].
ii) find the mean and standard deviation of this difference over the time-sampled interval; where
mean is given by " , and the standard deviation is given

Zx(i)

i=1

u:

n

iii) Define a threshold of acceptable difference, such as a small factor times the standard deviation:

t=ko ,where kell, 23]

iv) Check and report all points in time where the variable of interest has a distance from the mean
which is greater than the acceptable threshold: if (|p-x(i)]21) then report x(i) and timestamp(i).

The points reported by this detection then will represent those instances where the estimated position and
the measured inertial position differ by a significant amount, and deserve closer scrutiny. Further analysis
could entail taking the time values of the points above, x(i) and timestamp(i), and using the sift_p! prim-
itive to extract other variables of importance around an interval denoted by each timestamp(i) value, and
then using paste_pl or vmerge_pl primitives to assemble these variables followed by invoking a graphics
plotting tool for visual examination, or other cross-correlation tools.

Common Data File Storage Format

A common format for data storage was defined. The dot-pl file used by a local popular interactive 2-D
graphics plotting and analysis tool, p.x//, was chosen because of its simple human-readable, plain ASCII
text input format. (The project widely used UNIX platforms). Additionally, this allowed all the intermedi-
ate results to be readily input to either p.x/] or to a popular commercial data analysis package, IDL/TADA,
for graphing and visual inspection.

A dot-pl file has a simple header of a few lines (all denoted by a leading poundsign “#” or single quote
") containing descriptive comments, title, list of variables contained in the file by column position, and
an end-of-header marker. This header is then followed by the columns of data as defined in the header
variable list, each column separated by whitespace, and each record of data delimited by a NEWLINE
character. Common practice was to record timestamps in the first column followed by a family of related
variables sampled at that time. Any number and mix of variables might be present. The variables found in
any particular dot-pl file were determined by the telemetry decoder which dissected the composite telem-
etry stream into telemetry Break-Out Files (BOFs).

In order to allow complete flexibility in analysis it was necessary to allow decomposition of these BOFs
into separate files each containing a single variable and its corresponding timestamps; hence a rwo-col-



umn dot-pl file became the common file formar upon which all of the automatic analysis tools operate;
where the first column gives the timestamp and the second column gives the variable value at that time, (a
consistent Mission Time was used throughout the Probe flight software).

Primitive routines

A set of primitives were created to perform basic file manipulations, numerical and logical operations, i.e.
logical AND of conditions (logical OR can be done by simply concatenating or pasting the desired sub-
sets of data together). Additional primitives were created to perform more specialized reductions; i.e.
compute mean & standard deviation and threshold detection, compute duty cycle and peak value, detect
and count zero-crossings, compute linear best fit by least squares, etc. (See Table 1).

TABLE 1. Primitive Analysis Routines

routine name function performed

getcols_pl get a variable or list of variables

getvars_pl get a variable or list of variables

paste_pl concatenate together two sets of variables

vmerge_pl merge together two sets of variables

add_pl scalar add to dependant variable

sub_pl scalar subtract from dependant variable

scale_pl scalar multiply dependant variable

vdiff_pl vector difference two dependant variables

shift_pl (time) shift variables N

interp_pl interpolate variables

subtime_pl scalar subtract from time (independant) variable

tsift_pl filter (logical AND) variables

trimMP_pl trim variables to Mission Phase (time interval)

analyze_pl compute mean, standard deviation, perform threshold
detection

dutycycle_pl compute duty cycle and peak value ratio

leastsqrs_pl compute linear best fit by least-squares

zerocrossings_pl | detect and count zero crossings

Intermediate Routines

Once the data format and primitives were created then a set of intermediate level utilitics were imple-
mented which utilized the primitives to accomplish the larger task of spacecraft ACS analysis.

In this example case, with the objective of checking the consistency between inertial and computed posi-
tion, routines were created to perform each of ten necessary comparisons for the ACS analysis. These




intermediate level codes (See Table 2) used several primitives to do their computations and analysis.

TABLE 2. Intermediate Routines for ACS Analysis

routine name function performed

ck_cst_vs_gyro.(x,y,z} analyzes estimated vs. measured X,Y,Z-axis position
ck_est_vs_pred_q(1,2,3,4) analyzes estimated vs, predicied Quaternion® 1,2,3,4
ck_cst_vs_pred_w.{x,y,z} analyze estimated vs. predicted X,Y,Z-axis position

a. Quaternions are position information often used in spacecraft control systems as they reduce the
amount of coordinate computations nccessary for attitude control.,

High-Level Routines

Finally, specialized high-level routines were created to perform a summary reduction and report the anal-
ysis results in a single concise format, which for this example case was done by routine acsEstimator-

Consistency.

Additionally, the routine acsEstimatorConsistency can be invoked as a subordinate process from routine
run_acs, which can be given a list of “runs” to batch process, allowing the unattended examination and
reduction of a series of runs from a single invocation.

A run summary report is shown in Table 3., which indicates the count of the occurrences (num_GTL)

TABLE 3. Summary Report of ACS Estimator Consistency
# Probe Telemetry Report
# ACS State Estimator Consistency
# Run Identifier: r10.06.92¢
# This report generated on 10/07/92;08:57:15 by tjv

Nvals Mean Std_Dev num_GTL | test

813 -0.000102 0.001317 ¢ esl_w.x vs. gyro_data.x 9

813 0.000021 0.000387 9 estw.y vs. pyro_datay

813 -0.000011 0.000419 7 est_w.z vs. gyro_data.z, '

813 0.000007 0.000086 | 7 est_ql vs. neycle_pred gl |

813 0.000002 0.000018 4 est_q2 vs. neycle_pred_g2

813 0.000010 0.000052 6 est_g3 vs. neyele _pred_g3

813 0.000000 0.000001 8 est_g4 vs. neycele_pred_g4

813 0.000229 0.002454 O est waxovs, neycle_pred. wox
N

813 -0.000062 0.000720 7 est_w.y vsoneycle pred wy

813 0.000013 0.000809 7 estw.z vs neyele_pred_w.z




when the mean difference between expected and computed position was greater than allowed. Detailed
reports are also available as an option which itemize the points by timestamp to reveal when (in Mission
Time) the anomalies occurred This report gives the controls engineer a quick look at ten different compu-
tations showing the length of the experimental run (Nvals), the mean difference between estimated and
measured parameters (Mean), the standard deviation of that difference for that run (Std_Dev), the number
of points which exceed a selected threshold difference (num_GTL), and the test/variable names (test).

Following this quick-look, the analyst also could organize these run reports and perform various statisti-
cal operations on them; for example, catalog all the experimental runs by number of differences exceed-
ing a threshold, as done by utility, rankAcsByErrors and shown in Table 4.; thus giving an idea of

TABLE 4. Top Ten Runs by num_GTL based on gyro_data.x vs. est_w.x

rank | run_id nVals Mean Std_Dev num_GTL
T | 08.1892b 1097 0000006 | 0.000006 0
2 108.13.92i 327 0.000212 0.000672 2
3 r09.22.92a: 817 -0.000015 0.000810 2
4 108.13.92h 327 -0.002558 0.004322 3
5 r10.06.92a 885 0.000091 0.001037 4
6 r10.06.92d 821 0.000009 0.001220 4
7 108.13.92d 592 -0.000157 0.001550 5
8 r08.13.92f: 779 -0.000212 0.001379 5
9 108.18.92i 3323 -0.000013 0.000748 5
10 r08.13.92b 674 -0.000022 0.001575 6

experimental progress or regression. While this example is straight-forward, the methodology and set of
primitives created allowed for many varied and complex analyses. For example, variables could be stud-
ied over a specific mission time phase, and/or correlated with combinations of other variables or func-
tions, by using other primitives.

Profile Comparisons and Adaptive Analysis

A data “profile” (example waveform with a specified error margin) could be taken from previous experi-
mental data, and then used as the basis of comparison for future runs - updating the profile as needed to
refine the system under study. If this feedback process were used consistently it would form the basis of 4
simple adaptive automated analysis process.

This also allows the analysis to be uniquely customized to the system under test (allowing arbitrary wave-
forms) rather than requiring comparisons be confined to computed static numerical functions.

Performance of Automatic ACS Analysis
The quick-look automated analysis summarizes and pin-points areas which require more detailed analy-

sis, while helping to insure that problem areas do not go undetected, since all the experimental data can
now be examined for every run in a short time period.




A typical ACS analysis took under 3 minutes on a Sun SPARCstation IPC, with the files remotely
mounted from a Sun-4 server over an Ethernet 10Mbps LAN; and under 2 minutes on a Sun-4/490 with
locally mounted files; thus performing the examination of that batch of half-a-dozen experimental runs
per day in under 12 minutes!

Conclusion

The development of a re-usable, flexible toolkit to perform data reduction and analysis of telemetry
streams from experimental runs helps shorten and simplify ihe design and implementation of complex
systems. The forte of automatic analysis tools is reducing amounts of data that humans would find over-
whelming and may tend to gloss over, into consistently analyzed informative reports, which allows the
analyst/engineer/scientist the ability to rank outcomes of experiments and measure progress.

The approach used provided a hierarchial structure, which allowed for flexible expansion, while minimiz-
ing the amount of effort required to build the toolkit. The complete set of primitives were completed in 4
period of two weeks, followed by intermediate and higher- level routines which often were completed in
less than an hour - this was the result of two beneficial factors: (1) the higher-level routines had the
advantage of calling primitives to organize and perform tasks, and (2) the UNIX file system and shell
environment provided an easy inter-connection and easy authoring of programs.

Many data analysis packages excel at either batch processing or interactive operition. Experimental sci-
ence often demands both - a good interactive tool (typically graphical) which permits the user to visualize
and analyze-as-they-go, and a good batch processing capability (typically mathematical & statistical) to
allow the consistent reduction of data to be performed automatically once the methods have been devel-
oped; which implies the need for a good language which permits the user to express their analytical
desires and incorporate them into automatic reduction methods worthy of reuse.

The toolkit discussed contains a few of the many analysis routines one might need to form a broad-based
kit, and it performs its functions in batch processing style resultins in tabular statistical numeric reports -
requiring that the user invoke other routines to provide interactive graphical interfaces. Two things
directly impact the interconnection of routines: (1) sharing a common data format for information inter-
change; and (2) a method of invoking a peer or subordinate routine, which will operate on any data given
1o it; In this toolkit the author chose the ASCII dot-pl file format as the common data format, and the
UNIX C-shell language, with its inherent pipes and redirectors, argument passing, et.al. capabilities, as
the means of invoking subprocesses able to operate on data passed to them.

All of the utilities and their manual pages are available as public domain sources. The utilities are written
in the C programming language and in the UNIX C-shell language. The dot-pl file header processing is a
modular code piece which can be readily modified to accommodate different storage file formats, thus
requiring minimal changes to the main portions of the codes for those needing to analyze data stored in
other formats.

lgork4performed under the auspices of the U,S. DOE by LLNL under contract no, W-7405-
ng-48.




" DATE
FILMED
11 /17/93







