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ABSTRACT

Fully coupled thermomechanical analysis solves the thermal prob- This paper discusses an efficient nonlinear finite element method
lem on the deforming geometry and incorporates thermal loads for the fully coupled thermomechanical problem, and highlights
into the mechanical problem. In contrast, traclitional thermal the development of a general thermomechanical contact capabil-
stress analysis is based on an uncoupled approach in which the ity and fully adaptive solution algorithm.
thermal problem is solved on a fixed geometry, and the resulting Fully coupled thermomechanical problems arise in many are_,,'
temperatures are then used to load a mechanical problem. Ther- of engineering. For example, in the analysis of explosives con-
rnal contact, in which heat flow paths depend on the mechanical tainers subjected to fire environments, deformations may be suffi-
deformations of adjacent surfaces, is a major component of many ciently large that they affect the solution to the heat transfer prob-
fully coupled thermomechanical analyses. This paper presents the lem, thus requiring a coupled solution for accurate results. Sire-
development of a thermomechanical finite element formulation, in- ilarly, the simulation of metal forming manufacturing operations
cluding contact. The proposed approach accommodates arbitrar- frequently requires the ability to include heat generation by me-
i[y large relative motions of contact surfaces, fully unstructured chanical deformation and thermomechanical contact effects in the
meshes, pressure-dependent contact resistance, conduction across analysis. For example, in the extrusion of metal parts, the large
small gaps, and approximate models for convection and radia- plastic deformations can generate enough heat to cause thermal
tion. The theory described herein has been implemented in the softening of the material, and evolving thermomechanical contact
Lawrence Livermore National Laboratory public code PALM2D affects the cooling of the workpiece through heat transfer to the
and has been used to solve a diverse set of thermomechanical die. These effects combine to produce temperature gradients in

problems. Examples illustrating the performance of this code on the workpiece which strongly affect subsequent deformation pat-
large deformation thermomechanical problems are presented and terns. Such metal forming process simulations allow production
discussed, operations to be optimized, and therefore reduce waste and cost.

These examples illustrate some of the diverse problem areas which

1. INTRODUCTION require a fully coupled thermomechanical analysis.
The objective of this research was to develop a powerful ther-

Coupled thermomechanical effects arise in many physical prob- momechanical contact capability and an ._taptive solution method-
lems where mechanical deformation generates heat, where defor- ology for the solution of fully coupled thermomechanical problems.

mations are large, or where multiple bodies come into contact and In addition, it was desirable to develop a numerical method which

• exchange heat across the interface. These problems are fully con- was highly vectorizable to yield good performance using modern
pied, in contrast to the classical thermal stress problem where the supercomputers on real engineering analysis problems.
temperature field drives the mechanical response but the mechan- The outgrowths of this research have been implemented into
ical response has no effect on the thermal problem. Although nu- the Lawrence Livermore National Laboratory (LLNL) coupled
merical methods for the classical thermal stress problem have re- thermomechanical code PALM2D (Engelmann, Whirley, and Shapiro,
ceived much attention over the years, much less consideration has 1990). The initial version of PALM2D introduced an implemen-

been given to the fully coupled problem. Further, the computa- tation of the staggered step formulation which integrates por-
tional treatment of general thermomechanical contact conditions tions of the LLNL NIKE2D (Engelmann and Hallquist, 199l) and
in a finite element context has similarly received little attention. TOPAZ2D (Shapiro and Edwards, 1990) codes to solve the fully
i .....



coupled thermomechAnlcaJ problem. The work described herein ._JI..YefJdg_.
has substa_atisJly extended the capabilities of PALM2D beyond

throe of the initial version and has allowed the solution of new qCF = hcF(T - T_) on Frc, (5)
classes of interesting problernM.

where her is the convective heat transfer coefficient and Te is the

2. FORMULATION free-stream temperature. Motivated by the discussion in (Welty,

This section describes the formulation of the proposed adaptive q_ qct

staggered step approach to coupled thermomechanical analysis 'l lwith contact First, the governing equations are stated and the ii ill

appropriate boundary conditions are _iven, highlighting the state- ..._ qcF _ _ _- !

ment of thermomechanical contact conditions. The development '
of semidiscrete matrix equations is then briefly outlined for both

the energy equation and the momentum equation. Next, a brief ......... ._qm qm

algebraic equations is presented. Finally, the coupling methodol-
ogy and its implementation is discussed in some detail.

2.1 The Ener_5' Equation

For an anisotropic solid, the energy equation on a continuum do- Figure 1: Schematic depiction of the thermal boundary conditions.
main fl may be written

(kilT,:)i + QT + QM = pc1', (1) Wicks, and Wilson, 1976), the specific form of hcf has been cho-sen to be

where T is temperature, kij is the thermal conductivity tensor, Qr hCF -- X(gN)hcF(Z, t, T)(T - T,) _, (6)

is the volumetric rate of heat generation from thermal sources, QM which can characterize various types of free convection for nonzero

is the volumetric rate of heat generation from mechanical sources, exponents a. Multiplier x(gN) has the effect of stopping or slowing
p is the material density, and c is the heat capacity, convective heat transfer when adjacent bodies come close or touch

The solid has a boundary F which can be divided into a bound- and thereby inhibit the convective transfer process. The function
ary Frr where temperatures are prescribed, a boundary ['TF where _¢(g_) is defined as
heat flux is prescribed, and a boundary Fro where flux conditions

such as convection, radiation, and interface conduction depend on _ 1 if gN >_dlult

the position of the body relative to other bodies, x(gN) = / (aN-d/,,) if d_t < gN < dlutt (7)
(dl,,u-d_,,,)

Conditions on FTT and FrF may be written as: 0 if gN <_ d_,,

Specified Temperature. where d/,tt and d_t axe empirically determined distances. Thus,
when another body approaches Frc closer than d_,, then it is

T = T'(z, t) on FTT, (2) assumed that boundary layer interaction prevents significant con-
vective fluid motion and the convective flux is set to zero. When

where T ° is a given function, z is a position vector in ft, and t is
an approaching body is farther away than dl,tl , then boundary

time, or layer interaction is assumed negligible and the full convective heat
flux is used in the computation. For approach distances between

Specified Surface Heat Flux. d1,.tt and d_t, a linear interpolation is used as represented in (7).

qini = -q°(z,t) on FTF, (3) vspace.25in
I.nterface Got_ducti01a.

where q' is a given function, qi are components of the heat flux
vector, and ni are components of the outward surface normal vec- qct = hct(T_ - Tb) on Fro, (8)

tor. where T_ and Tb represent the surface temperature of body a and
Conditions on FTc may be written as the sum of several heat body b, respectively. The specific form of conductance hct de-

flux contributions, pends on whether two adjacent bodies are in contact. When bod-

qini = qcF + qoI + qRl + qllF, (4) ies are in contact (tN < 0), the conductance hct is an empirically
based function of contact pressure and temperature,

where qcF is the heat flux due to natural or forced convection,
qct is the heat flux due to interface conduction, qnt is the heat hot = hct(tN,T), (9)
flux due to interface raAiation, and qnf is the heat flux due to far-
field radiation. The boundary conditions on Fro are schematically and depends on such things as material properties and the shape
depicted in Figure 1. and distribution of surface asperties (i.e., surface roughness). When
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tw_adjacentbodiesarenotincontact(tlv- 0),butarecloseto 1
'oneanother,heatis(potentially)conductedacrosstheinterface _ _,,,,,.v,m _"'"_"'
throughthemedittmfillingthegap and thus

hc_= hct(gN,t). (I0) a_

Generally,conductanceacrosstheinterfacewilldiminishas the /.

i

bodiesmove away fromoneanother,perhapsdroppingoffas !glv Slavestm%m

insimplecases, sJ-_,**_

"One_" elem_
InterfaceRadiation.

qRl = hRI(gN, T)(T_ - T_) on FTC, (11)
Figure 2: Discretization of the contact boundary showing the gap

where hat is the interface radiation coefficent. Rzxliative heat function gN, the "effective one-dimensional conduction element,"
transfer takes place between surfaces of adjacent bodies. When and the interface element area A.
bodies are close together, coefficient hRt can be determined based The continuum boundary P can be divided into a boundary

• on the same considerations as raxtiation between two parallel planes, rMU where displacements are prescribed, a boundary ['Mr where
surface tractions are prescribed, and a boundary FMC where me-

Far Field Radiation. chanical contact conditions apply. Conditions on the boundary

qaF = hRF(a_,T,t)(T_- 4T_) on FTC, (12) may be writtenas

u, = u_(z,t) on r_,t,, (15)
where haF is the far-field radiation coefficient which may be a
function of position, time, or temperature, and Toois the exchange where u_ is a given function, or
body temperature. The coefficient ha_' characterizes the effect of
geometric view factor, emissivity, and reflectivity on the amount a_jn_ = t_(z, t) on FMT, (16)
of radiative heat transfer between boundary rrc and a far away where t_(z, t) is a given function and n; denotes the outward sur-
body. face normal vector, or

In order to properly handle the case where one body is initially
close to another body so that interface radiation dominates, and aijn,nj = tN(Z,) on FMC, (17)

subsequently moves far away so that far field radiation dominates where tN iS the normal surface traction (negative in compression)
at a later time, a linear interpolation from qt_t to qaF based on arising from'the contact of two bodies. To define the mechanical
distance gN is postulated. The interface (near-body) radiative conditions on FMC, it is convenient to introduce a gap function
mechanism is considered dominant when two bodies are closer gN which is the "distance" between a point on one body and its
than a given distance dne,r, the far-field radiative mechanism is closest point projection on another, as shown in Figure '2. The
considered dominant when two bodies are farther apart than a mechanical contact conditions can then be written
given distance dlG_. In an analogous way to that described above
for convection, linear interpolation based on the distance gN is tN(z) _<0, (18)
used 4o find the radiative heat flux contribution for d,e,_ < gN < gN(a_) >_O, (19)

d/,, tN(Z)gN(Z)= O, (20)
in addition, for transient problems, temperature initial condi-

tions of the form Thus. the normal traction tN is nonzero only when the gap 9._ is
zero. and conversely, the gap g_, is greater than zero only when

T(z,O) = To(z) Vz £ _t (13) the normal traction tN is zero.

must be specified. In addition, initial conditions on velocity
6_(z,0) = ,10(z)V_e fl ('.'l!

2.2 The Momentum Equation must be specified for dynarnic problems.

The continuum equations of motion on a domain fl may be written

2,3 Matrix Equations
aij_ + bi = gfii, (14)

The weak forms of the momentum equation and the energy ,,q,m-
where ai_ is the Cauchy stress tensor, bi is the body force density tion are. constructed separately using standard techniques. After

, per unit volume, p is the mass density, and ui are the displace- introducing a spatial finite element discretization this results tn a
ments. Superimposed dots denote differentiation with respect to set of second order and first order nonlinear ordinary differential
time, lower-cue indices are assumed to range from one to three, equations in time. This process is briefly outlined below

• and repeated indices are summed.
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En_y Equation. Constructing the weak form of the energy Stein, and S_lrfler, 1_2i.-An average-tributarY area ,4, shown
equation(I),usingboundaryconditions(2)-(4),and usinga inFigure2,iscomputedfortheslaveand masternodepairand '
finiteelementspatialdiscretizationyieldsacoupledsystemoffirst isusedtocomputethetotalheatfluxacrossthecontactsurface.

orderODEs oftheform Some caremustbe usedinthecomputationofthisaveragearea
forthecaseinwhichone orbothsidesoftheinterfaceissharply

C7' + G'i'_t(T)= R(T, Q/',QM t), (22) curved.

whereC isa capacitancematrix,T isa vectorofnodaltempera- 2.5 SolutionAlgorithmsand Couplin_
tures,G isa vectorofinternalnodalheatfluxes,R isa vectorof

externalnodalheatfluxeswhichalsoincludescontributionsfrom A "staggeredstep"approachisusedtoachievethethermome-

intern_heatgeneration,QT isa vectorofelementthermalheat chanicalcouplinginan efficientand versatilesettingforusewith
generationrates,and QM isa vectorofelementmechanicalheat adaptivesolutionmethods.Inthisapproach,thermalcalculations

generationrates, areperformedon thegeometrycalculatedattheendofthepre-
Ifsteady-stateconditionsareassumed,thenT = Oin(22)and viousstep.The resultingtemperaturefieldisthenusedinthe

a nonlinearalgebraicequationisobtained.Thisequationisthen mechanicalcalculationstofindtheupdatedgeometryand stress
solvedusingan incrementalapproachdescribedinthefollowing fields.The thermalproblemand themechanicalproblemareeach

section.Iftransientthermaleffectsareconsidered,theODEs (22) solvedusinganimplicitformulation,althoughanexplicitformula-
arediscretizedintimeusingthemidpointrule,againyieldinga tioncouldbeusedforeithercomponentwithonlyminorchanges
nonlinearalgebraicsystemtobesolvedateachtimestep. tothecouplingalgorithm.At eachtimestep,a setofnonlin-

earalgebraicequationsisgeneratedforthethermalproblem,and

anothersetisgeneratedforthemechanicalproblem.ThesetwoMomentum Equation.Constructingtheweakformofthemo-
mentum equation(14),usingboundaryconditions(15)-(17),and systemsofnonlinearequationsareindividuallysolvedusingafin-

spatiallydiscretizingtheresultingequationsusingfiniteelements earizationand iterationprocedure.
yieldsa coupledsystemofsecondorderODEs oftheform The alternativetothestaggeredstepformulationisafullyim-

plicitcoupling,whereinallthermalandmechanicalunknownsare

Mfi + Fi'_t(u, ti, T) = P(u, b, t, T), (23) assembled into one large, nonlinear algebraic system of equations.
These equations are then solved simultaneously for the updated

where M is a mass matrix, F _"t is an internal nodal force vec- thermal and mechanical response variables. The fully implicit for-
tor, P is an external nodal force vector, u is a vector of nodal mulation enjoys more robust time stability properties than does
displacements, and T is a vector of nodal temperatures, the staggered step formulation, but requires substantially more

Note that, in general, both the internal nodal force vector computer memory and execution time, and is somewhat less flex-
F i'_t and the external nodal force vector p,=t are functions of ible with adaptive methods. Further, time stability has not been
temperature T. In addition, the external nodal force vector P observed to be a difficulty for the engineering problems studied
contains contributions from mechanical boundary conditions and thus far, and the technology for fully implicit coupling may not
loads as well as from contact pressure arising from the contact of exist for some coupled thermomechanical-chemical problems of in-
two or more bodies, terest.

For "quasistatic"analysis,fi= 0 in(23),but theequations Itisoftendesirabletousedifferentstepsizesinthethermal
may stillbe time-dependentifviscouseffectsareincorporated and mechanicalsolutionproceduresduetodifferingphysicaltime

intoF i't,suchas froma rate-dependentconstitutiveequation, constants.Forexample,duringaphasechangethethermalprop-

ForthespecialcasewhereF i'tisnotexplicitlytime-dependent, ertiesofa materialmay evolveveryrapidly,and thusaverysmall

then(23)isa setofnonlinearalgebraicequationstobesolvedat thermaltimestepmust be used. Itisoftenpossibleto usea
eachloadstepofan incrementalapproach.Fortime-dependent much largermechanicalstepsizeand stillobtainan accurateso-
analysis,(23)may be discretizedintimeusingtheNewmark-_/ lutiontotheseproblems.Conversely,a largedeformationprob-

timeintegrationscheme.Thisresultsinasimilarsetofnonlinear lemmay requirerelativelysmallmechanicalstepswhiletolerating
algebraicequationswhichmust be solvedat eachtimeor load quitelargethermalstepsinachievinga solution.The staggered
step. stepapproachfacilitates"substepping"withineitherthethermal

2.4 ThermomechanicalContact ormechanicalsteptoaccommodatetheseproblems.Frequently,
theseregimesaxeintermingledand occurduringdifferentstages

The contactalgorithmspresentedhereinarebasedonaslavenode ofthesame problem.Itisthereforehighlydesirabletohavean
on mastersegmentconcept.Searchalgorithmsareusedto find adaptivesolutionmethodologywhichcan automaticallyadjust

theclosestpointprojectionofaslavenodeontoamastersegment, thethermaland mechanicalstepsizes,basedon givencriteria,to
asshowninFigure2. obtainasolution.

t

The externalnodalforcesarisingfrommechanicalcontactare The staggeredstepformulationinPALM2D isinterfacedwith
derivedusingapenaltyoraugmentedLagrangianapproachforthe theadaptivesolutioncontrollanguageISLAND (Engelmannand

enforcementoftheinequalityconstraints(18)-(20).The details Whirley,1991)to incorporateadaptivetimestepsand solution
ofthisprocedurearediscussedin(Laursen,1992)and arenot proceduresforthethermaland mechanicalproblems.ISLAND,

repeatedhere. InteractiveSolutionLanguageforan AdaptiveNikeDriver,isa

The nodalheatfluxesarisingfromthermalcontact:arefound solutioncontrollanguagewhichallowstheflexiblespecificationof
by assumingone-dimensionalheatconductionbetweentheslave adaptivesolutionprocedures.Adaptivitymay bebasedon evolv-

nodeandtheclosestpointonthemastersegmentinamannersire- ingsolutionquantitiessuchasincrementalchangeintemperature,

ilartothatdiscussedintheexcellentpaper,(Zavarise,Wril[ga_S_,strains,orstrainrates,oron pastiterationconvergencebehavior.
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"_AND in PALM2D may ch_-1_ethe time step size for either the Figure 4 shows the temperature at several points on the [ow_
'thermalormechanicalproblem,may altertheiterativesolution blockasa functionoftime.The verticallinesinthefigureserve,

al_borithm,ormay backup (insolutiontime)incaseofnoncon- todelineatethevariouscontactregimes.The interfa_conduc-
vergenceand retrythenextstepwithalteredsolutioncontrol tionisassumedtobe bothgap and pressuredependenttoillus-

parameters.ISLAND in PALM2D can alsobe usedtocontrol tratethisflexibility.Fortimesbetween0 and 2500,theblocks
boundaryconditionsand loadsbasedon theevolvingsolution, haveonlyconvectiveheattransferwiththegasinthegapregion,

Thiscapabilitycan be usedto solvecoupledthermomechanical and reacha thermalequilibrium.Gap conductionbecomesac-
problemssubjectedtoexternalconstraints,suchasmaintaining tireatt= 2500and increasesuntilt= 10,000,when theblocks

targetstrainratesina superplasticformingproblems, come together.The heattransferrateintothelowerblock,and
thusitstemperature,isincreasingduringthisprocess.Contact

2.6 Implementation pressureincreasesbetweentimesofI0,000and 12,500,and fur-therincreasestheheattransferrate.Slidingmotionoccursfrom

Thissectionbrieflyoutlinesthe solutionproceduresas imple- t= 12,500tot= 15,000,when thetopblockslidesoffofthebot-

mentedinPALM2D. Inthefollowing,subscriptsrefertotimestep tom block.Duringthissliding,theleftmostpartofthebottom
number,and itisassumedforsimplicitythatsubsteppingisnot blockfirstlosescontactwiththewarmertopblock,beginslosing
used.The extensionoftheseideastoaccommodatesubstepping heattothegasby convection,and thuscoolsfirst.The middle

,isstraightforwardbutnotationaUyintensive, and righttoplocationson thebottomblockaresubsequentlyex-
Forboththesteadystateand transientcases,thenonlinearal- posed,and thusbeginthecooldownprocessatsuccessivelylater

gebraicsystemforthethermalproblemarisingfrom(22)issolved timesasshown bythedottedand dashedlinesinthefigure.The

.by an incrementalNewton-Raphsoniterationprocedureto find top blockremainsstationaryfort > 15,000and temperatures
thenodaltemperaturevectorT,+t assumingthatallquantities inthe lowerblockreturnto thermalequilibriumwiththegas,

attimetoareknown.Duringthissolutionprocedure,allspatial exchangingheatonlythroughconvection.Thisexampledemon-

integralsand derivativesin(22)areevaluatedon themortrecent strafesthelowerblockfirstattainingthermalequilibrium,next

geometryz,,and incorporatethecurrentmechanicalvolumetric
rateofheatgenerationQ_. The mechanicalcontactconditions
are heldconstantthroughoutthethermalstep,and thereforethe IllIli] ]
gap parameter appearing in the thermal contact equations is also Ill Ill l1Illlilll
constant.Thisassumptionfacilitatestheuseofa consistentfin- IllIIIII

earizationoftheenergyequationintheiterativesolutionprocess. III[I[llllllII ....
Similarly,the nonlinearsystemforthemechanicalproblem II[fill l

arising from (23) is solved by a llnearization and iteration pro- _ II I ! I[

cedureforthedisplacementvectoru,+1assumingthatallme- _ll_l i [I I[lI
li Illi-

chanicalquantitiesattimet,areknown and thermalquantities IIIIIIIll _' ._=.N=.. _==._ _

attimet_+lareknown. Our experiencehas indicatedthatof- i_i_
ten quasinewton methods, such as BFGS, offer cost-effective so- _ i 1
lutionsto (23).A completediscussionofthenonlinearsolution [[!!!![[! c_
proceduresinPALM2D and NIKE2D isgivenin(Engelmannand ......_-

Whirley,1991)and theirimplementationisdiscussedin(Whirley • IIIlllllll dllllllil

and Engelmann,1991). ' [l _ .....

3. APPLICATIONS
The new versionof theLLNL publiccodePALM2D described
hereinhasbeen usedto solvea varietyofcoupledproblemsat

LLNL. Figure3: Geometricsequenceof motionshowingtheonsetof

3.1 ThermalContactExample contact,slidingmotion,and separation.

Inordertoillustratethebehaviorofthevariousthermalcontact beingperturbedfromequilibriumby contactwitha movinghot

bounda.,Tconditionsina simplecontext,thetwo body thermo- block,andfinallyreturningtoequilibriumoncethehotblockhas

mechanicalproblemshowninFigure3 wassolvedwithPALM2D. passed.
Th top and bottom threeinchsquareblocksaregiveninitial .'.

' temperatures of 100O° and 0", respectively, and the temperature
of the gas in the gap region is 200". The temperature of the hot- 3,2 Solidification Analysis
tom surface of the bottom block is prescribed to be 0°, and the The second exampleis a solldification analysis performed at LLNL.

' temperature of the top surface of the top block is prescribed to be The objective of this simulation was to determine the shrinkage
1000°. The sides of the blocks are insulated. Initially separated and residual stresses in an aluminum melt as it solidified in a

by a two inch gap, the blodm ate. ftrst moved into contact, and steel can. The axisymmetric finite element model is shown in Fig-
then pressed into one tnother. Next, the top block is slid across ure 5. Mechanical loads axislng from gravity were included, a_
the bottom block, while maintaining th contact pressure, until it were radiation and convection he_t transfer on the top surface of
slips off the bottom block and elastically rebounds, the melt and the outside surface of the can. Thermomechanical

$



slidelines were defined between the aluminum and steel. Inter- _, :;: _[]'Nface conduction was enabled across the slidellne with a gap and illl[ *

pressure dependent conductance. ____] (b)The melt was given an initial temperature of 940° K, slightly

aboveT=ea= 933° K. The cancoolsbyexchangingheatwithits ....... _' iiiiii ..,/,_

environment,and themoltenaluminumsolidifiesand shrinksby [i['J_i_"_)A!_!_!

6.6_ (byvolume).Thisshrinkage causes the aluminum topull fill_!!!!!!_fl,_!_i

away from the can wall, diminishing further heat transfer across

the interface. A time sequence of heat flux vector plots at four ! ,,_,_ ===!
stages of the solidification is shown in Figure 6. The early stage
plot shows that heat is flowing smoothly from the melt into the ::::::: : :: :.:.==:
can wall all along the boundary since the aluminum is initially in :::: :;;: :::::::=:
contact. Subsequent figures show the melt solidifying and pulling
away from the can wall. Aluminum initially separates from the FI_,"I

can wall at the top, and then "unzips" progressively further down [[[[[the can wall until, at the final stage, contact is retained only in the (c) (d)
b

T0' _ ............ " ....... ° .....

g0, tl

_' , k/i Figure 6: Time sequence of heat flux vectors showing the effect of

z. | / -- am,, changi:_g contact conditions on the heat flow path.

2e _ ..........,0./ ] I
0 , - , - I - . I

o 2._ sm 750oloooou._o 15ooo175oo2oooo 4. SUMMARY
vm

This paper has presented a general thermomechanical contact for-

Figure 4: Temperature at left, center, and right top edge of lower mulation including aspects of pressure and gap dependent inter-
block as a function of time. Note the dramatic influence of thermal face conduction, convection in gap regions, and interface radia-

contact conditions on the temperature variations, tion. The concepts were presented in the context of a staggered
step approach for the solution of fully coupled thermomechanical

corner region. This simulation is representative of a fully-coupled problems. An effective adaptive solution strategy for the result-ing equations was outlined and discussed. The thermomechanical
problem, and the importance of a general thermomechanical con- contact algorithms and adaptive solution methodologies have been
tact boundary is clear, implemented into the LLNL public code PALM2D. The applica-

tion of PALM2D to a simple slider problem and a solidification
problem were discussed to illustrate the performance of the pro-

' posed formulation in actual engineering applications.
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