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ABSTRACT

Fully coupled thermomechanical analysis solves the thermal prob-
lem on the deforming geometry and incorporates thermal loads
into the mechanical problem. In contrast, traditional thermal
stress analysis is based on an uncoupled approach in which the
thermal problem is solved on a fixed geometry, and the resulting
temperatures are then used to load a mechanical problem. Ther-
rnal contact, in which heat flow paths depend on the mechanical
deformations of adjacent surfaces, is 2 major component of many
fully coupled thermomechanical analyses. This paper presents the
development of a thermomechanical finite element formulation, in-
cluding contact. The proposed approach accommodates arbitrar-
ily large relative motions of contact surfaces, fully unstructured
meshes, pressure-dependent contact resistance, conduction across
small gaps, and approximate models for convection and radia-
tion. The theory described herein has been implemented in the
Lawrence Livermore National Laboratory public code PALM2D
and has been used to solve a diverse set of thermomechanical
problems. Examples illustrating the performance of this code on
large deformation thermomechanical problems are presented and

discussed.

1. INTRODUCTION

Coupled thermomechanical effects arise in many physical prob-
lems where mechanical deformation generates heat, where defor-
mations are large, or where multiple bodies come into contact and
exchange heat across the interface. These problems are fully cou-
pled, in contrast to the classical thermal stress problem where the
temperature field drives the mechanical response but the mechan-
ical response has no effect on the thermal problem. Although nu-
merical methods for the classical thermal stress problem have re-
ceived much attention over the years, much less consideration has
been given to the fully coupled problem. Further, the computa-
tional treatment of general thermomechanical contact conditions
in a finite element context has similarly received little attention.

This paper discusses an efficient nonlinear finite element method
for the fully coupled thermomechanical problem, and highlights
the development of a general thermomechanical contact capabil-
ity and fully adaptive solution algorithm.

Fully coupled thermomechanical problems arise in many arei
of engineering. For example, in the analysis of explosives con-
tainers subjected to fire environments, deformations may be suffi-
ciently large that they affect the solution to the heat transfer prob-
lem, thus requiring a coupled solution for accurate results. Sim-
ilarly, the simulation of metal forming manufacturing operations
frequently requires the ability to include heat generation by me-
chanical deformation and thermomechanical contact effects in the
analysis. For example, in the extrusion of metal parts, the large
plastic deformations can generate enough heat to cause thermal
softening of the material, and evolving thermomechanical contact
affects the cooling of the workpiece through heat transfer to the
die. These effects combine to produce temperature gradients in
the workpiece which strongly affect subsequent deformation pat-
terns. Such metal forming process simulations allow production
operations to be optimized, and therefore reduce waste and cost.
These examples illustrate some of the diverse problem areas which
require a fully coupled thermomechanical analysis.

The objective of this research was to develop a powerful ther-
momechanical contact capability and an adaptive solution method-
ology for the solution of fully coupled thermomechanical problems.
In addition, it was desirable to develop a numerical method which
was highly vectorizable to yield gaod performance using modern
supercomputers on real engineering analysis problems.

The outgrowths of this research have been implemented into
the Lawrence Livermore National Laboratory (LLNL) coupled

thermomechanical code PALM2D (Engelmann, Whirley, and Shapiro,

1990). The initial version of PALM2D introduced an implemes-
tation of the staggered step formulation which integrates por-
tions of the LLNL NIKE2D (Engelmann and Hallquist, 1991) and
TOPAZ2D (Shapiro and Edwards, 1990) codes to solve the fully




coupled thermomechanical problem. The work described herein

has substantially extended the capabilities of PALM2D beyond
those of the initial version and has allowed the solution of new
classes of interesting problems.

2. FORMULATION

This section describes the formulation of the proposed adaptive
staggered step approach to coupled thermomechanical analysis
with contact First, the governing equations are stated and the
appropriate boundary conditions are given, highlighting the state-
ment of thermomechanical contact conditions. The development
of semidiscrete matrix equations is then briefly outlined for both
the energy equation and the momentum equation. Next, a brief
summary of algorithms for the adaptive solution of the nonlinear
algebraic equations is presented. Finally, the coupling methodol-
ogy and its implementation is discussed in some detail.

2.1 The Energy Equation

For an anisotropic solid, the energy equation on a continuum do-
main Q may be written

(ki Ty )i + QT + QM = pcT, (1)

where T is temperature, &;; is the thermal conductivity tensor, QT
is the volumetric rate of heat generation from thermal sources, @
is the volumetric rate of heat generation from mechanical sources,
p is the material density, and c is the heat capacity.

The solid has a boundary I which can be divided into a bound-
ary ['rr where temperatures are prescribed, a boundary ['rr where
heat flux is prescribed, and a boundary I'r¢c where flux conditions
such as convection, radiation, and interface conduction depend on
the position of the body relative to other bodies.

Conditions on 'rr and '7r may be written as:

Specified Temperature.

T= T'(za t) on I"I'Tv (2)

where T? is a given function, ® is a position vector in {2, and ¢ is
time, or

Specified Surface Heat Flux.

gini = —¢'(x,t) on Irr, (3)

where ¢* is a given function, ¢; are components of the heat flux
vector, and n; are components of the outward surface normal vec-
tor.

Conditions on 'r¢ may be written as the sum of several heat
flux contributions,

qini = qcr + qc1 + 9r1 + qRF, (4)

where gcr is the heat flux due to natural or forced convection,
gcr is the heat flux due to interface conduction, gas is the heat
flux due to interface radiation, and qgr is the heat flux due to far-
field radiation. The boundary conditions on I'r¢ are schematically
depicted in Figure 1.

Convection.
gcr = hcr(T = T,) on Irc, (5)

where hcr is the convective heat transfer coefficient and T, is the
free-streamn temperature. Motivated by the discussion in (Welty,
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Figure 1: Schematic depiction of the thermal boundary conditions.
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Wicks, and Wilson, 1976), the specific form of hAcr has been cho-
sen to be

her = k(gn)hor(2,t, T)T — T.)°, (6)

which can characterize various types of free convection for nonzero
exponents a. Multiplier x(gy ) has the effect of stopping or slowing
convective heat transfer when adjacent bodies come close or touch
and thereby inhibit the convective transfer process. The function
k(gn) is defined as

1 o if gy 2> dyun
K(gn) = U if dey < gy < dyu (7)
ing S dcuh

where d;y; and dg, are empirically determined distances. Thus,
when another body approaches 'rc closer than d.,, then it is
assumed that boundary layer interaction prevents significant con-
vective fluid motion and the convective flux is set to zero. When
an approaching body is farther away than dy,, then boundary
layer interaction is assumed negligible and the full convective heat
flux is used in the computation. For approach distances between
dyy and dey, a linear interpolation is used as represented in (7).
vspace.25in

[nterface Conduction.
gcr = he1(T, = Ty) on Trc, (3)

where T, and T}, represent the surface temperature of body a and
body b, respectively. The specific form of conductance h¢; de-
pends on whether two adjacent bodies are in contact. When hod-
ies are in contact (ty < 0), the conductance h¢; is an empirically
based function of contact pressure and temperature,

her = her(tn, T), (9)

and depends on such things as material properties and the shape
and distribution of surface asperties (i.e., surface roughness). When




two adjacent bodies are not in contact (¢x = 0), but are close to
‘one another, heat is (potentially) conducted across the interface
through the medium filling the gap and thus

her = her(gn,t). (10)

Generally, conductance across the interface will diminish as the
bodies move away from one another, perhaps dropping off as 5‘;
in simple cases.

Interface Radiation.
qrt = hpi(gn, TY(T = T)) on Tre, (11)

where hp; is the interface radiation coefficent. Radiative beat
transfer takes place between surfaces of adjacent bodies. When
bodies are close together, coefficient hg; can be determined based

on the same considerations as radiation between two parallel planes.

F ield jati
qrF = hrp(2, T, t) (T} = TS) on Trc, (12)

where hgpp is the far-field radiation coeflicient which may be a
function of position, time, or temperature, and T, is the exchange
body temperature. The coefficient hgp characterizes the effect of
geometric view factor, emissivity, and reflectivity on the amount
of radiative heat transfer between boundary I'r¢ and a far away
body.

In order to properly handle the case where one body is initially
close to another body so that interface radiation dominates, and
subsequently moves far away so that far field radiation dominates
at a later time, a linear interpolation from qg; to qpr based on
distance gy is postulated. The interface (near-body) radiative
mechanism is considered dominant when two bodies are closer
than a given distance d,.,,, the far-field radiative mechanism is
considered dominant when two bodies are farther apart than a
given distance dy,,. In an analogous way to that described above
for convection, linear interpolation based on the distance gy is
used ‘o find the radiative heat flux contribution for dpeey < gy <
dlor

{n addition, for transient problems, temperature initial condi-
tions of the form

T(2,0) = To(z) V2 € Q (13)
must be specified.

2.2 The Momentum Equation

The continuum equations of motion on a domain 2 may be written
oi; + b = pi, (14)

where o, is the Cauchy stress tensor, b; is the body force density
per unit volume, p is the mass density, and u; are the displace-
ments. Superimposed dots denote differentiation with respect to
time, lower-case indices are assumed to range from one to three,
and repeated indices are summed.

Figure 2: Discretization of the contact boundary showing the gap
function gn, the “effective one-dimensional conduction element,”
and the interface element area A.

The continuum boundary I’ can be divided into a boundary
['smyu where displacements are prescribed, a boundary [y where
surface tractions are prescribed, and a boundary ['ysc where me-
chanical contact conditions apply. Conditions on the boundary
may be written as

u; = u(e,t) on Tmu, (1)
where u is a gtven function, or
oijn; = t!(x,t) on Tamr, (16)

where t!(x,t) is a given function and n; denotes the outward sur-
face normal vector, or

oining = tN(z) on 'me, (17)

where ty is the normal surface traction (negative in compression)
arising from the contact of two bodies. To define the mechanical
conditions on ['p¢, it is convenient to introduce a gap function
gn which is the “distance” between a point on one body and its
closest point projection on another, as shown in Figure 2. The
mechanical contact conditions can then be written

ty(2) <0, (18)
gn(z) 20, (19)
tn()gn(z) = 0. (20)

Thus. the normal traction ty is nonzero only when the gap gv is
zero. and conversely, the gap gy is greater than zero only when
the normal traction ty is zero.

In addition, initial conditions on velocity

ti(,0) = to(z) Yz € O (21)

must be specified for dynamic problems.

2.3 Matrix Equations

The weak forms of the momentum equation and the energy equa-
tion are constructed separately using standard techniques. After
introducing a spatial finite element discretization this results in a
set of second order and first order nonlinear ordinary differential
equations in time. This process is briefly outlined below.




Energy Equation. Constructing the weak form of the energy
equation (1), using boundary conditions (2) - (4), and using a
finite element spatial discretization yields a coupled system of first
order ODEs of the form

CT + G™(T) = R(T,Q%,QM, 1), (22)

where C is a capacitance matrix, T' is a vector of nodal tempera-
tures, G is a vector of internal nodal heat fluxes, R is a vector of
external nodal heat fluxes which also includes contributions from
internz: heat generation, Q7 is a vector of element thermal heat
generation rates, and QM is a vector of element mechanical heat
generation rates. )

If steady-state conditions are assumed, then T = 0 in (22) and
a nonlinear algebraic equation is obtained. This equation is then
solved using an incremental approach described in the following
section. If transient thermal effects are considered, the ODEs (22)
are discretized in time using the midpoint rule, again yielding a
nonlinear algebraic system to be solved at each time step.

Momentum Equation. Constructing the weak form of the mo-
mentum equation (14), using boundary conditions (15) - (17), and
spatially discretizing the resulting equations using finite elements
yields a coupled system of second order ODEs of the form

Mi+ F™(u,q,T) = P(u,b,t,T), (23)

where M is a mass matrix, F'™ is an internal nodal force vec-
tor, P is an external nodal force vector, u is a vector of nodal
displacements, and T is a vector of nodal temperatures.

Note that, in general, both the internal nodal force vector
F'™ and the external nodal force vector P°* are functions of
temperature T. In addition, the external nodal force vector P
contains contributions from mechanical boundary conditions and
loads as well as from contact pressure arising from the contact of
two or more bodies.

For “quasistatic” analysis, @ = 0 in (23), but the equations
may still be time-dependent if viscous effects are incorporated
into F™, such as from a rate-dependent constitutive equation.
For the special case where F'™ is not explicitly time-dependent,
then (23) is a set of nonlinear algebraic equations to be solved at
each load step of an incremental approach. For time-dependent
analysis, (23) may be discretized in time using the Newmark-8
time integration scheme. This results in a similar set of nonlinear
algebraic equations which must be solved at each time or load
step.

2.4 Thermomechanical Contact

The contact algorithms presented herein are based on a slave node
on master segment concept. Search algorithms are used to find
the closest point projection of a slave node onto a master segment,
as shown in Figure 2,

The external nodal forces arising from mechanical contact are
derived using a penalty or augmented Lagrangian approach for the
enforcement of the inequality constraints (18)-(20). The details
of this procedure are discussed in {Laursen, 1992) and are not
repeated here.

The nodzl heat fluxes arising from thermal contact are found
by assuming one-dimensional heat conduction between the slave
node and the closest point on the master segment in a maaner sim-
ilar to that discussed in the excellent paper, (Zavarise, Wriggers,

Stein, and Schr fler, 19‘:)'2").‘An‘a'}éfaéewtributa.ry area A, shown
in Figure 2, is computed for the slave and master node pair and
is used to compute the total heat flux across the contact surface.
Some care must be used in the computation of this average area
for the case in which one or both sides of the interface is sharply
curved,

2.5 Solution Algorithms and Coupling

A “staggered step” approach is used to achieve the thermome-
chanical coupling in an efficient and versatile setting for use with
adaptive solution methods. In this approach, thermal calculations
are performed on the geometry calculated at the end of the pre-
vious step. The resulting temperature field is then used in the
mechanical calculations to find the updated geometry and stress
fields. The thermal problem and the mechanical problem are each
solved using an implicit formulation, although an explicit formula-
tion could be used for either component with only minor changes
to the coupling algorithm. At each time step, a set of nonlin-
ear algebraic equations is generated for the thermal problem, and
another set is generated for the mechanical problem. These two
systems of nonlinear equations are individually solved using a lin-
earization and iteration procedure.

The alternative to the staggered step formulation is a fully im-
plicit coupling, wherein all thermal and mechanical unknowns are
assembled into one large, nonlinear algebraic system of equations.
These equations are then solved simultaneously for the updated
thermal and mechanical response variables. The fully implicit for-
mulation enjoys more robust time stability properties than does
the staggered step formulation, but requires substantially more
computer memory and execution time, and is somewhat less flex-
ible with adaptive methods. Further, time stability has not been
observed to be a difficulty for the engineering problems studied
thus far, and the technology for fully implicit coupling may not
exist for some coupled thermomechanical-chemical problems of in-
terest,

It is often desirable to use different step sizes in the thermal
and mechanical solution procedures due to differing physical time
constants. For example, during a phase change the thermal prop-
erties of a material may evolve very rapidly, and thus a very small
thermal time step must be used. It is often possible to use a
much larger mechanical step size and still obtain an accurate so-
lution to these problems. Conversely, a large deformation prob-
lem may require relatively small mechanical steps while tolerating
quite large thermal steps in achieving a solution. The staggered
step approach facilitates “substepping” within either the thermal
or mechanical step to accommodate these problems. Frequently,
these regimes are intermingled and occur during different stages
of the same problem, It is therefore highly desirable to have an
adaptive solution methodology which can automatically adjust
the thermal and mechanical step sizes, based on given criteria, to
obtain a solution.

The staggered step formulation in PALM2D is interfaced with
the adaptive solution control language ISLAND (Engelmann and
Whirley, 1991) to incorporate adaptive time steps and solution
procedures for the thermal and mechanical problems. ISLAND,
Interactive Solution Language for an Adaptive Nike Driver, is a
solution control language which allows the flexible specification of
adaptive solution procedures. Adaptivity may be based on evolv-
ing solution quantities such as incremental change in temperature,
strains, or strain rates, or on past iteration convergence behavior.




TWLAND in PALM2D may change the time step size for either the
%hermal or mechanical problem, may alter the iterative solution
alyorithm, or may back up (in solution time) in case of noncon-
vergence and retry the next step with altered solution control
parameters. ISLAND in PALM2D can also be used to control
boundary conditions and loads based on the evolving solution.
This capability can be used to solve coupled thermomechanical
problems subjected to external constraints, such as maintaining
target strainrates in a superplastic forming problems.

2.6 Implementation

This section briefly outlines the solution procedures as imple-
mented in PALM2D. In the following, subscripts refer to time step
number, and it is assumed for simplicity that substepping is not
used. The extension of these ideas to accommodate substepping
.18 straightforward but notationally intensive.
For both the steady state and transient cases, the nonlinear al-
gebraic system for the thermal problem arising from (22) is solved
_by an incremental Newton-Raphson iteration procedure to find
the nodal temperature vector T'y4, assuming that all quantities
at time ¢, are known. During this solution procedure, all spatial
integrals and derivatives in (22) are evaluated on the mort recent
geometry &, and incorporate the current mechanical volumetric
rate of heat generation Q. The mechanical contact conditions
are held constant throughout the thermal step, and therefore the
gap parameter appearing in the thermal contact equations is also
constant. This assumption facilitates the use of a consistent lin-
earization of the energy equation in the iterative solution process.
Similarly, the nonlinear system for the mechanical problem
arising from (23) is solved by a linearization and iteration pro-

cedure for the displacement vector u,4+; assuming that all me-
chanical quantities at time t, are known and thermal quantities
at time f,y, are known. Our experience has indicated that of-
ten quasinewton methods, such as BFGS, offer cost-effective so-
lutions to (23). A complete discussion of the nonlinear solution
procedures in PALM2D and NIKE2D is given in (Engelmann and
Whirley, 1991) and their implementation is discussed in (Whirley
and Engelmann, 1991).

3. APPLICATIONS

The new version of the LLNL public code PALM2D described
herein has been used to solve a variety of coupled problems at
LLNL.

3.1 Thermal Contact Example

In order to illustrate the behavior of the various thermal contact
boundary conditions in a simple context, the two body thermo-
mechanical problem shown in Figure 3 was solved with PALM2D.
Th top and bottem three inch square blocks are given initial
temperatures of 1000° and 0°, respectively, and the temperature
of the gas in the gap region is 200°. The temperature of the bot-
tom surface of the bottom block is prescribed to be 0°, and the
temperature of the top surface of the top block is prescribed to be
1000°. The sides of the blocks are insulated. Initially separated
by a two inch gap, the blocks are first moved into contact, and
then pressed into one another. Next, the top block is slid across
the bottom block, while maintaining th contact pressure, until it
slips off the bottom block and elastically rebounds.

Figure 4 shows the temperature at several points on the lower
block as a function of time. The vertical lines in the figure serve
to delineate the various contact regimes. The interface conduc-
tion is assumed to be both gap and pressure dependent to illus-
trate this flexibility. For times between 0 and 2500, the blocks
have only convective heat transfer with the gas in the gap region,
and reach a thermal equilibrium. Gap conduction becomes ac-
tive at ¢ = 2500 and increases until ¢ = 10,000, when the blocks
come together. The heat transfer rate into the lower block, and
thus its temperature, is increasing during this process. Contact
pressure increases between times of 10,000 and 12,500, and fur-
ther increases the heat transfer rate. Sliding motion occurs from
t = 12,500 tot = 15,000, when the top block slides off of the bot-
tom block. During this sliding, the leftmost part of the bottom
block first loses contact with the warmer top block, begins losing
heat to the gas by convection, and thus cools first. The middle
and right top locations on the bottom block are subsequently ex-
posed, and thus begin the cooldown process at successively later
times as shown by the dotted and dashed lines in the figure. The
top block remains stationary for t > 15,000 and temperatures
in the lower block return to thermal equilibrium with the gas,
exchanging heat only through convection. This example demon-
strates the lower block first attaining thermal equilibrium, next

Figure 3: Geometric sequence of motion showing the onset of
contact, sliding motion, and separation.

being perturbed from equilibrium by contact with a moving hot
block, and finally returning to equilibrium once the hot block has
passed.

3.2 Solidification Analysis

The second example is a solidification analysis performed at LLNL.
The objective of this simulation was to determine the shrinkage
and residual stresses in an aluminum melt as it solidified in a
steel can. The axisymmetric finite element model is shown in Fig-
ure 5. Mechanical loads arising from gravity were included. as
were radiation and convection heat transfer on the top surface of
the melt and the outside surface of the can. Thermomechanical




slidelines were defined between the aluminum and steel. Inter-
face conduction was enabled across the slideline with a gap and
pressure dependent conductance.

The melt was given an initial temperature of 940° K, slightly
above Tt = 933° K. The can cools by exchanging heat with its
environment, and the molten aluminum solidifies and shrinks by
6.6% (by volume). This shrinkage causes the aluminum to pull
away from the can wall, diminishing further heat transfer across
the interface. A time sequence of heat flux vector plots at four
stages of the solidification is shown in Figure 6. The early stage
plot shows that heat is flowing smoothly from the melt into the
can wall all along the boundary since the aluminum is initially in
contact. Subsequent figures show the melt solidifying and pulling
away from the can wall. Aluminum initially separates from the
can wall at the top, and then “unzips” progressively further down
the can wall until, at the final stage, contact is retained only in the
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Figure 4: Temperature at left, center, and right top edge of lower
block as a function of time. Note the dramatic influence of thermal
contact conditions on the temperature variations.

corner region. This simulation is representative of a fully-coupled
problem, and the importance of a general thermomechanical con-

tact boundary is clear.
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Figure 5: Axisymmetric finite element mesh on the original ge-
ometry (left) and the final geometry (right) for the solidification
of an aluminum melt in a steel can. '
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Figure 6: Time sequence of heat flux vectors showing the effect of
changiig contact conditions on the heat flow path.

4. SUMMARY

This paper has presented a general thermomechanical contact for-
mulation including aspects of pressure and gap dependent inter-
face conduction, convection in gap regions, and interface radia-
tion. The concepts were presented in the context of a staggered
step approach for the solution of fully coupled thermomechanical
problems. An effective adaptive solution strategy for the result-
ing equations was outlined and discussed. The thermomechanical
contact algorithms and adaptive solution methodologies have been
implemented into the LLNL public code PALM2D. The applica-
tion of PALM2D to a simple slider problem and a solidification
problem were discussed to illustrate the performance of the pro-
posed formulation in actual engineering applications.
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