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" The electronic and structural properties of the (v/3 x v/3) R30° Ag/Si(111)
and (v/3 x v/3) R30° Au/Si(111) surfaces are investigated using first principles total
energy calculations. We have tested almost all experimentally proposed structural
models for both surfaces and found the energetically most favorable model for each
of them. The lowest energy model structure of the (v/3 x v/3) R30° Ag/Si(111)
surface consists of a top layer of Ag atoms arranged as “honeycomb-chained-trimers”
lying above a distorted “missing top layer” Si(111) substrate. The coverage of Ag is
1 monolayer (ML). We find that the honeycomb structure observed in STM images
arise from the electronic charge densities of an empty surface band near the Fermi
level. The electronic density of states of this model gives a “pseudo-gap” around the
Fermi level, which is consistent with experimental results. The lowest energy model
for the (v/3 xv/3) R30° Au/Si(111) surface is a conjugate honeycomb-chained-trimer
(CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au
atoms lying above a “missing top layer” Si(111) substrate with a honeycomb-chained-
trimer structure for its first layer. The structures of Au and Ag are in fact quite
similar and belong to the same class of structural models. However, small variation

in the structural details gives rise to quite different observed STM images, as revealed




in the theoretical calculations. The electronic charge density from baunds around the
Fermi level for the (v/3 x \/5) R30° Au/ Si(111) surface also gives a good description
of the images observed in STM experiments.

First principles calculations are performed to study the electronic ang structural
properties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, and TiAy in
the B2 structure. Calculations are also done for Tj in bec structure and hypothet-
ical B2-structured TiAl, TiAg, and TiCu. Our results show corelation between the
Martensitic transformation temperature (M) of these alloys and the électronic prop-
erties such as the total electronic density of states at the Fermi level, occupation of
the Ti d states, and the degree of localization of the d states of the second element in
the alloys. Angular momentum decomposition of the electronic states indicates that
the bonding of d electrons of the two elements plays an important role in the g tability
of the binary alloys. Correlations between My and optimized structura] parameters

such as lattice constants and bulk moduli are also found.
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CHAPTER 1. INTRODUCTION

The behavior of noble metal overlayers on semiconductor surfaces has been a
topic of great technical and fundamental interest for many years [1]. Technological
importance of these systems comes from the potential applications of the Au/Si and
Ag/Si interfaces in semiconductor devices. Fundamental interest arises because a
wide variety of coverage-dependent structural arrangements occur, including ordered
metal overlayers on reconstructed semiconductor surfaces, the formation of surface
alloys, and the alteration of semiconductor reconstructions by trace amounts of metal-
lic adsorbate. These interfacial rearrangements pose challenging problems for surface
science, causing the application of many experimental and theoretical techniques to
the determination of atomic positions, the nature of metal-semiconductor bonding,
and the electronic structure of the interfaces.

The Ag on Si(111) surface system has been regarded as a prototypical metal/
semiconductor interface partly because there is limited reaction or intermixing be-
tween the two species. Ag growth proceeds in a layer-by-layer-like fashion at room
temperature with the overlayer showing features characteristic of bulk Ag after a few

monolayers (ML) (see ref. [1] and references therein). Above 200°C, the growth

process turns to a Stranski-Krastanov mode: at approximately one monolayer, the

surface structure is characterized by a (\/?: X \/ﬁ) R30° (\/§ for short) periodicity




and further deposition results in the nucleation of three dimensional (3D) Ag crys-
tallites. In the submonolayer region, the v/3 phase undergoes a transformation to a
3x1 structure when the surface is annealed at temperatures high enough to induce
some desorption of Ag. This 3x1 structure converts to a 6x1 structure upon cooling
to room temi)erature. The atomic arrangements for each of these structures have not
been totally solved.

The (V3 x v/3) R30° Ag/Si(111) surface (v/3-Ag, for short), in particular, is
probably one of the most heavily studied metal on semiconductor system in the
history of surface science [1-44]. Since the first study on this surface was reported
more than twenty years ago [2], almost all surface sensitive experimental techniques
have been applied to study the structure of this system and a number of conflicting
structural models have been proposed [1-44]. However, although this surface can be
prepared relatively easily in a reproducible manner, experimentalists have, for a long
time, failed to reach a consensus on its atomic structure and other physical properties
of these systems. Even the basic properties such as whether the Ag coverage is 2/3
or 1 ML and whether the Ag atoms form the topmost layer or are embedded below
a Si layer have been controversial.

For the (v/3 x v/3) R30° Au/Si(111) surface (v/3-Au), although there are not
as many experiments performed on it as compared with the v/3-Ag surface, the
situation is no less confusing [45-61]. Experimental techniques of impact-collision
ion scattering spectroscopy (ICISS) [45, 46], medium-energy ion scattering (MEIS)
[47],- scanning tunneling microscopy (STM) [49-52], X-ray diffraction (XRD) [53],

Auger electron spectroscopy (AES) [54], angle-resolved photoelectron spectroscopy

[55], LEED [56-59], and electron microscopy (60, 61] have been used for this surface.




Just from various ion-scattering experiments, different models have been proposed,
which include the modified triplet coplanar model (MTC) [45], the simple honeycomb
with centered hexagons (HCH) model [46], and the missing top layer twisted trimer
models (MTLTT) [47]. All these experimentally proposed models for the V3-Au
surface have a nominal Au coverage of 1 ML [45, 47] (or close to 1 ML, as in the
HCH model [46] ).

Due to the complexity of the reconstruction and the wild variations in the ex-
perimental interpretations, theoretical investigation of this problem is quite difficult
(63-69]. Empirical techniques are not accurate enough to provide dcﬁnitive answers,
and ﬁrst-priﬁciples calculations, even with the state-of-the-art supercomputers, are
still very computer time-consuming. Nevertheless, we will summarize in this thesis
our effort to study the structures of these systems via first principles calculations and
show that many key issues can be settled with careful theoretical calculations.

Early calculations of the electronic structure of bulk crystals became available
in the 1960s. The pseudopotential [70] approach allowed a determination of the
energy band spectrum for dozens of solids. Within thesé early models [71], surface
would be treated as the end of perfect solid, no reconstructions, surface states, or
redistribution of the electronic charge were possible. To allow for charge distribution
and surface reconstruction, two principal methods were developed. In one approach
[72], 2 matching of decaying orbitals to the propagating bulk electronic wavefunctions
allowed for a description of surface states and charge redistribution, which is a direct
solution to the breaking of the translational symmetry caused by the surface. The

second approach [73], involved the use of supercells [74] to accommodate localized

geometries. An artificial supercell models a surface by assuming a slab geometry




containing certain layers of Si atoms with a vacuum region on both sides. The slabs
are repeated infinitely, and the top and bottom layers of the slab are associated with
the solid surfaces. A self-consistent calculation of the electronic states is performed
[72-74]. This approach could help to understand the electronic structure of surfaces
and the consequences of surface reconstruction for electronic behavior.

.Bulk structural calculations improved dramatically around 1980. By using ab
initio pseudopotential [75-80] and a momentum space formalism {81}, it became pos-
sible to calculate the total energy for different arrangements of atoms to find the
lowest energy structure [82]. The extension of total energy techniques designed for
bulk properties to surfaces came through the use of supercells (83-85].

Today’s advancement and development of computer technology is allowing the
study of newer systems using modern band theoretical methods. At present, the most
satisfactory approach to the description of electron-electron interaction in crystals
is based on the local-density-functional (LDF) formalism {102]. The central quan-
tity of LDF is the total energy, which is a variational minimum of the real ground
state charge density. By accurately evaluating the ground state total energy self-
consistently as a function of atomic position, we can determine surface geometries.
For a surface, the energy is computed as the geometry is changed, and the minimum
energy configuration is the local minimum energy structure. Related to this approach
is the calculation of the Hellmann-Feynma.ﬁ forces on the surface atoms [103]. With
the density fixed with a starting geometry, the forces on each surface atom in the
slab supercell are computed, and the atoms are moved then in the direction of the

forces. The procedure is repeated with the new geometry until the forces are zero.

The force calculation helps to find the minimum energy structure quickly. Many




surface geometries have been accurately determined by using this approach [86-101].
In this thesis, we study the complex reconstruction of Ag and Au on Si(111) surface
using first-principles total energy calculations. These calculations also allow us to
investigate the microscopic electronic causes of these geometries. We also use local-
density-functional theory to explain the physical causes of the reconstruction of Ag
and Au on Si(111).

Throughout our calculations, we use the frozen core approximation. In this ap-
proximation, the nuclei plus the core electrons are considered as rigid ions which
are assumed to be unresponsive to the change in their chemical environment. Since
the electronic properties of crystalline solids are most of the times dictated by the
outermost electrons, we do not have to consider the inner electrons. The interac-
tion of the cores and the valence electrons is then simulated by angular-momentum-
dependent (non-local) pseudopotentials, which are génera.ted using the “Norm Con-
serving” scheme [77]. In the pseudopotential approach, the core states are eliminated
from the problem. Unlike the all electron wave-functions, the pseudo-wave-functions
are smooth with no radial nodes.

The localized character of the d electrons in Ag and Au makes the expansion
for the wave-function in plane waves uneconomical. We use an energy independent
mixed-basis set containing plane waves and Bloch sums of localized orbitals to rep-
resent the electronic wave-function. To facilitate the calculation of the total energy,
a momentum space representation is used [81]. To accelerate the convergence of the
self-consistent loop, we use a dielectric matrix scheme to calculate the new input

potential that drastically reduces the number of iterations [104]. In our slab calcula-

tions, the interatomic distances are fully relaxed with the help of Hellmann-Feynman




forces [105).
Ti-base binary alloys belong to a class of metallic alloys exhibiting the shape-

memory (SM) effect. Most of these alloys undergo Martensitic transformations (MT)
when their structural phase changes from CsCl (B2) to monoclinic primitive (B19) or
other structures. The nature of such a transformation is of great interest by itself due
to its promising rich physics. On the other hand, the study of such phase transitions is
of great technological interest as a group of promising materials for high temperature
applications due to their low density, high melting temperature with strength reten-
tion at elevated temperatures, excellent thermal conductivity, and good oxidation
resistance. The physical properties of these materials such as electrical resistivity,
magnetic susceptibility, internal friction, specific heat, linear expansion and optical
properties have been extensively studied [106, 107]. However, a microscopic theory
of the SM effect is still elusive. Recently, there are experimental data suggesting
empirical relations between the transformation temperatures (Ms) and fundamental
parameters of electronic and crystal structures of the alloys [106]. In this thesis, we
perform first principles calculations to study the electronic and structural proper-
ties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, TiCu, TiAg, TiAu,
and TiAl alloys in their B2 structure. Results show correlation between the MT
temperature of these alloys and the electronic properties of the alloys.

The properties of the ab initio pseudopotentials used in our calculations are
described in Chapter 2.

In Chapter 3, the formulation for the first-principles total energy calculations

in solids, using a momentum-space formalism, is reviewed. A brief description of

the mixed basis approach for the expansion of the electronic wave-function, and the




self-consistent loop are given. In this chapter, we also review briefly the Hellmann-
Feynman theorem.

In Chapter 4, we study the (v/3 x v/3) R30° Ag/Si(111) surface using first-
principles calculations. Various feasible structural models are investigated, and we
find that the Honeycomb-Chain-Trimer model (HCT-1) is the energetically most
favorable structural model for this surface ssﬁstem: The Ag coverage for this model is
1 ML. The electronic properties of selected models are carefully examined. The HCT-
1 model is the only one that gives a pseudo-gap in the electronic density of states.
This model can also explain the experimental STM image of the (v/3 x v/3) R30°
Ag/Si(111) surface. Surface band structures of HCT-1 model are studied. Surface
bands around the Fermi level are found to be contributing to the honeycomb structure
of the STM image. |

In Chapter 5, the structure of the (v/3 x +/3) R30° Au/Si(111) surface is in-
vestigated using first principles total energy calculations. Most models proposed by
experiments have been tested. The lowest energy model is a conjugate honeycomb-
chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed
by Au atoms lying above a “missing top layer” Si(111) substrate with a honeycomb-
chained-trimer structure for its first layer. The electronic charge densities from bands
around the Fermi level gives a good description of the images observed in STM ex-
periments.

In Chapter 6, we study the electronic and structural properties of a series of Ti-
based binary alloys TiFe, TiNi, TiPd, TiMo and TiAu in the B2 structure by using

first principles calculations. Calculations are also done for Ti in bcc structure and

hypothetical B2-structured TiAl, TiAg and TiCu. Results show corelation between




the Martensitic transformation temperatures (M) and the electronic properties of

these alloys.




CHAPTER 2. NORM-CONSERVING PSEUDOPOTENTIALS

Introduction

A solid state system is a congregation of atoms, which is a many particle system
of atomic nuclei and electrons. To study the properties of any such system is to solve
a complicated Schrédinger (or Dirac) equation. Due to the large mass difference
between the nuclei and electrons, the many-body system can be approximated by
assuming that the electrons are adiabatically following the nuclei and are always in
their ground state with respect to the actual nuclear configuration. That is well
known as the Born-Oppenheimer approximation, in which the motions of the nuclei
and the electrons can be considered separately. That leaves us with a many electron
system subject to the Coulomb potential from the nuclei in many studies of solid
state physics.

However, it is still too difficult a problem to tackle without further simplifica-
tions. It is still impossible to calculate the wavefunction for all the electrons in a solid
even with today’s computer capabilities, therefore we have to pick out the essential
factors that describe the problem and drop out other minor effects, as long as that
does not affect thé solution in a significant way. We find that a solid can also be
fhought of as a set of rather tightly bound spherical ions (the atomic cores) sitting

in the electron cloud formed by the valence electrons. These valence electrons are
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responsible for almost all the ordinary physical and chemical properties. The idea of
pseudopotential was then introduced to simplify electronic structure calculations by
eliminating the atomic core states and the strong potentialsvresponsible for binding
them [108].

The concept of pseudopotentials has developed over a few decades. At the be-
ginning, two distinct lines of development were discernible: in one, ion pseudopoten-
tials of enforced smoothness were empirically fitted to reproduce experimental energy
bands [109]. Consequently, wave-functions were only approximately described. The
second one has its origin in the Orthogonalized-Plane-Wave (OPW) method for band
structure calculations introduced by Herring [110]. For the wavefunctions of the elec-
trons in the crystal he used a linear combination of core states and plane waves that
he made orthogonal to the filled core states. This approach produces wave-functions
that are plane wave-like except in the core region where they must have enough os-
cillations in order to be orthogonal to the core-state wave-functions. In the late ’50s,
Phillips and Kleinman [111] showed that Herring’s wave-functions can be derived as
solutions for a problem in which a repulsive potential cancels much of the core po-
tential, producing a net weak pseudopotential. These pseudopotentials are generally
strongly repulsive at the origin, making it difficult to employ Fourier analysis in solids
because of the large number of basis functions required. The resulting wave-functions
generally exhibit the correct shape outside the core region; however they differ from
the real wave-functions by a normalization factor.

Computationally, pseudopotentials are easier to deal with since the charge den-

sity from a pseudopotential is less sharp than that from the full potential. For this

reason, empirical pseudopotential method was further developed where the pseudopo-
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tential is usually fitted to atomic data [70]. After a process of refining the concept of
pseudopotential, the modern pseudopotentials are generated such that they exactly
reproduce the all-electron valence orbital outside some core radius. There are usually
additional conditions imposed, such as norm-conservation [77] and the smoothness of
the potential [78, 126]. Recent efforts are being made in developing softer and more
transferable pseudopotentials [127-129]. In our studies, norm-conserving pseudopo-

tentials are used.

Concept of Norm-conserving Pseudopotentials

Since the pseudopotential is a device to eliminate the core states from the
problem, the pseudo-wave-functions need only to reproduce the true valence wave-
functions in the valence region. There is no need to refer to the core states and the
pseudo-wave-functions do not need to be orthogonal to the core-state wavefunctions.
This is the idea of the “Norm-Conserving” pseudopotential developed by Hamann,
Schliiter, and Chiang [112]. Their new family of energy-independent pseudopotentials

have the following properties:

1. The pseudopotential must reproduce the corresponding eigenvalues from an

all-electron calculation.

2. The pseudo-wave-function, after normalization, must be identical to the true

valence wave-function outside a chosen “core radius” r¢

3. The integrals from 0 to r of the real and pseudo charge density agree for r > r¢

for each valence state (norm conservation)

/rp s(r)dr = /rp (r)dr,r > ¢ (2.1)
0 P 0 el = ?
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4. The logarithmic derivatives of the real and pseudo-wave-function and their first

energy derivatives agree for r > r¢.

Properties (3) and (4) are crucial for the pseudopotential to have optimum trans-
ferability among a variety of environments in self-consistent calculations in which the
pseudo charge density is treated as a real physical object. Property (3) guaran-
tees, ’through Gauss’s theorem, that the electrostatic potential produced outside r¢
is identical for the real and pseudo charge distributions. |

The pseudopotential obtained in this way converges identically to the atomic
Coulomb potential outside the core region for each valence state. In general, pseu-

dopotentials are not unique and are non-local operators.

Fitting Procedure for Norm-conserving Pseudopotential

The generation of our pseudopotentials is done according to the scheme of
Hamann, Schliter, and Chiang [112]. They freed the construction of the atomic

pseudo-orbital from reliance on core states. The construction proceeds as follows:

1. We first choose an appropriate atomic reference configuration, which often dif-
fers somewhat from the ground state, and carry out an ab initio self-consistent
all electron calculation using a Herman-Skillman-like program [113]. The local-
density-function approximation is used, and for the exchange correlation po-
tential we use the Wigner [116] or Hedin-Lundqvist [114] form. We retain both
the potential V(r) and also uj(r), defined as r times the valence wavefunction

with angular momentum .
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2. For each valence state /, we obtain the potential in the form:

Vi) = V()L = f(r/r o)) + e f(r/rep),s (22
where r; is the cutoff radius for each I. The restrictions are that f(z) is a
smooth “cutoff function” which approaches 0 as z — o0, approaches 1 at least
as fast as 3 as z — 0, and cuts off for z ~ 1. The constant ¢; is adjusted so
that the nodeless solution wy; of the radial Schrodinger equation with Vj; has
energy €); equal to the original eigenvalue ¢;. This potential converges to V(r)

for r» > Tol-

Property (1) of the last section is now satisfied, and the normalized\function

wyy satisfies property (2) within a multiplicative constant,

wy(r) = yuy(r), forr >re (2.3)

e

e
2
§

3. Now we have to satisfy the norm-conserving constraint (conditions 2-4). We

modify the intermediate pseudo-wave-function wy; to

way(r) = ylwy(r) + &191(r /7 )], (2.4)

where gy(z) cuts off to zero for z > 1, and behaves as z!+1 at small z. The
chosen asymptotic behavior of f(z), and g(z) guarantees the potential to be
finite at the origin. The choice of cutoff functions used by Hamann, Schliter,
and Chiang is f(z) = ezp(~z€), and gi(z) = :z:H'le:np(—zc) where c is varied
in the fitting to assure the pseudo-wave-function woy(r) is a smooth function.
The §; is determined by the smaller solution of the quadratic equation resulting

from the normalization requirement of the wave-function:

i /Ooo[wll(r) + 8191(r/rep)|2dr = 1 (2.5)
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4. The final screened pseudopotential V- o] defined as that potential which produces
the nodeless pseudo-orbital weg; with eigenvalue €9] = €}, 1s found by inverting

the radial Schrédinger equation. The result is given by:

1 42 d2
Voi(r) = Vu(")+[w21(r) Zavalm) — — l(r) Z2wu(r)  (26)
6191(r/re) [(1+1)

T ouy()+ 5zgz(r/rc)[ ) -

1 42 gi(r/rc)
g(r/re)  dr2

] + V]_l(‘l‘).

5. The final step is to obtain the ionic pseudopotential V. s, l(r) by unscreening
Voi(r):
Vps,l(") = Voi(r) = (Vg (r) + Vae(r)), (2.7)

where Vi (r) and Vzc(r) are the Hartree and the exchange-correlation potential,

respectively, which can be calculated from the pseudo charge distribution.

Applications to Zr

We have used in our calculations non-local ionic pseudopotentials generated us-
ing the norm-conserving scheme of Hamann, Schliiter, and Chiang. These angular-
momentum-dependent pseudopotentials are constructed by constraining their pseudo-
wave-functions'to match the ground-state, all-electron, valence-electron wave-functions
exactly outside some “core-radius,” as well as reproducing the same atomic eigenval-
ues for the valence states. The resulted pseudopotentials and pseudo-wavefunctions
for Zr are shown in Figures 2.1 and 2.2.

The relativistic Dirac equation [130] for the Zr atom is solved for the all-electron

atomic eigenvalues, wavefunctions, and the total energies. Atomic configurations with




15

POTENTIAL (Ry)

O 1.0 2.0 3.0 4.0
R (auw)

Figure 2.1: The angular-momentum-dependent pseudopotentials for Zr
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Figure 2.2: Comparison of the pseudowavefunctions (solid lines) and the corre-
sponding all-electron valence wavefunctions for the ground state con-
figuration of Zr
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excitation energies less than 1 Ry are calculated. Since the 4p electrons are located
farther away from the nucleus, they are sensitive to the configuration of the atom.
Thus they are treated as valence electrons to achieve good core-valence separation
and to improve the transferability of the pseudopotential to different surroundings.
Compared with the partial core correction schéme [131], this approach is simpler and
more straightforward in its physical concept.

To check the transferability of our pseudopotential, we compare the eigenvalues
and excitation energies for various atomic configurations above the ground state
obtained from the pseudopotentials with the corresponding all-electron values. The

results are listed in Tables 2.1. We see that the pseudopotential results reproduced the

all-electron results with an error of less than 0.008 Ry for all excited configurations.
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Table 2.1: Eigenvalues and excitation energies of the pseudoatom for different con-
figurations of Zr. Values in parentheses are results from corresponding
all-electron self-consistent calculation

Eigenvaulues Excitation energy
(Ry) (Ry)
Configuration d s p (AE4pt)
4d2552 -0.2830 -0.3423 -0.1220 0.0
(-0.2806) (-0.3440) (-0.1197)
4d35s1 -0.1887 -0.3027 -0.1005 0.0887
(-0.1888) (-0.3028) (-0.0991) (0.0902)
4d4550 -0.1306 -0.2784 -0.0903 0.2221
(-0.1307)  (-0.2764) (-0.0888) (0.2213)
4d?5515p1 -0.3562 -0.3954 -0.1644 0.2270
(-0.3585) (-0.3984) (-0.1631) (0.2295)
4d35p1 -0.2591 -0.3565 -0.1442 0.2989

(-0.2619)  (-0.3567)  (-0.1433) (0.2983)
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CHAPTER 3. GENERAL FORMALISM FOR TOTAL ENERGY IN
SOLIDS

Local Density Functional Theory

To simplify the complicated many-particle solid state system, we have intro-
duced the Bdrn-Oppenheimer approximation and the pseudopotentials in the previ-
ous chapter. We now have a many-electron (valence electrons only) system with the
pseudopo'tentials from the atomic cores. This system can be further reduced to a
one-electron problem where the pseudopotentials the many-body interactions among
electrons are represented by an effective single-electron potential. Many schemes have
been developed over the years, such as the Hartree approximation, the Hartree-Fock
approximation, and the local density approximation (LDA) in the density functional
(DF) formalism [102], among which the LDA approach has been particularly success-
ful, hence most widely used, in the study of ground state properties of solid state
systems [115]. The electronic and structural properties of the surfaces and Ti-base
alloys considered in this thesis are calculated with the density functional formalism.

Hohenberg and Kohn showed that the ground state total energy of a many-
electron system in the presence of an applied external potential (in our case, the
valence electrons in the presence of the ionic potentials) is a unique functional of the

charge density p(r), and this functional has its minimum value at the correct charge
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density p(r) with respect to variation of the charge density subject to the constraint
of electron number conservation (known as the Hohenberg-Kohn theorem). Unlike
the Hartree-Fock type approximation, the basic variable in the DF approach is the
electron density in stead of the electron wavefunction. In this approach, the total

energy can be expressed in atomic units (a.u.) as:

Pl =Tl + 3 [ [ 22 arar 1 puct + [ Vis)ple)ar + Beve (@)

where T'[p] represents the kinetic energy of a system of non-interacting electrons of
density p, the second term the electronic Hartree energy, the third term the exchange
correlation energy, the fourth term the electron-core interaction energy (V(r) is the
external poténtial, in this case the potential due to the cores), and the last term
represents thé‘ core-core interaction.

Within the LDA, the exchange-correlation functional is expressed as:

Eaclp(r)] = [ eaclp(r))dr, (3.2)

where ezc(p(r)) is ‘the exchange-correlation energy per electron of an uniform electron
gas of density p(r). ezc(p(r)) is not known exactly for an arbitrary charge density, but
approximations such as Hedin-Lundqvist local exchange-correlation potential [114],
the Wigner interpolation formula [116], and analytical fit to Ceperley-Alder’s Monte
Carlo results [117] are often used. We use in this thesis the Hedin-Lundqvist form
for the exchange-correlation functional in the calculation of alloys, and Wigner form
for surfaces.

The variational principle, which is demonstrated in the second statement of the

Hohenberg-Kohn theorem {102}, together with the local density approximation results
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in the following set of equations (in atomic units):

[~ 7% +V, 1 £10(x) = e(x), (3.3)
y 2
p(r) = Zl nilb(r)|%, (3.4)

where n; is the occupation number of state i and N is the total number of electrons

in the system.

The effective potential, V, £ is given by:

Veff[P(r)] = Ve(r) + Vy(r) + Vac(r) | (3.5)
_ 20(r') §(Ezcle(r)])
= v+ [ P+ 25

These equations are to be solved self-consistent for the charge density p(r), which

in turn will determine the ground state properties of the system under consideration.

Up to this point, the density functional (DF) formalism together with the local
density approximation (LDA) basically reduces a many body problem to solving a

set of one-particle Schrdinger-like equations.

Momentum-space Formalism for the Total Energy of Solids

A momentum-space formalism for calculating the total energy of solids designed
particularly for application with the self-consistent pseudopotential method was first
derived by Ihm, Zunger, and Cohen [81]. Assuming non-overlapping ion cores, Equa-

tion (3.1) can be written in atomic units as:

/
Ep =Y n; < ¥l - v > +2//2”(r P(T) grar’ (3.6)
2

+ [ eac(p(r))dr + D3] [ )V - R = rydr
7
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+Zn <%V, 3l(r— - 7)Byl; >]
/ 2Z
hul Vv
+2 ; ,|R+1'——R'—‘r|
R,R’ ’T’

where the prime in the summation means the |R + r — R/ — 7/| = 0 term is excluded;
R denotes the lattice vector; 7 denotes the basis vector; Zy, is the effective ionic
charge; and Vp% is the local part of the pseudopotential that acts equally on all the

angular momentum components of the wave-function. The non-local part defined as:

VI 1) = Vo 1) = Vi (), (3.7)

where Vps,l and Pl are the core pseudopotential and the projection operator for

angular momentum I, respectively.
Thus, the long range part (singular part) of the pseudopotential has been isolated
VN L

into the local part, making sl short range.
To simplify equation (3.6), we multiply on the left of equation (3.3) by ¢2‘(r),
integrate over r and sum over i, and substitute it into equation (3.1). The total

energy per primitive cell becomes in reciprocal space:

(oce.) ! 8|p(G)?
ET =2 % Wkénk — cel 5 EG: IGI2 (38)
1 2Zi?'/
2 G eze(@) vzl @+ 5 X mrT

R,7,T
The first term is the sum of the occupied band energies, wy is the weight of each
sampled k-point, and n is the band index, Q. is the volume of the primitive cell,

and G denotes the reciprocal lattice vector.
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In practice, some mathematical manipulations are necessary to calculate Ep

272
RaT’TI |R+T—
ually divergent quantities. First we solve the band-structure eigenvalue problem,

from equation (3.8) because V7 ,,,/(0), Vps (0) and %Z T’I are individ-
with Vi7,,1(0) and Vps(0) set equal to zero. This corresponds to a constant shift
of the potential. To compensate for the arbitrary shift we add (ajZ + v Ewald) to
the total Energy. 7g,,414 is the Coulomb interaction energy of the positive ion cores
together with the neutralizing homogeneous background, and can be evaluated using

the Ewald method [118]. a7 is give by

Na

_Na 1L 22y
= | Vpa(n + =, (3.9)

o]
where Ng is the number of atoms per primitive cell and Qg is the atomic volume.

The final expression for the total energy per unit cell is:

(oce.) 2
1 87ip(G
Ep=2 Y wkenk— chu[§ > “—“—:(;2)' (3.10)
nk la|50

+ %: P(G)(ezc(G) — v2c(G)) + (212 + VEwald)

Equation (3.10) is rewritten to facilitate the self-consistent calculations as follows:
87lp(G) 2

P (3.11)

; 1
nk G |c|#0

el Z p(Glezc(G) + (a1 Z + VTEwald)>
G
where fpy in the first term is the weight of each state, and V:g’ in the second term is
the reciprocal space component of the input screening potential for the self-consistent

band calculation given by

+ vze(G) (3.12)
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Mixed-basis Approach to the Electronic Structure

In most band-theoretical methods, the electronic wave-function is expanded in
a set of basis functions and the solutions to the Schrodinger equation are obtained
by variational procedures. It is important to choose a small, yet physically complete,
set of functions. For the systems we are dealing with, the localized character of the d
electrons makes the expansion for the wave-functions in plane waves uneconomical.
In order to treat a system such as this, with atomic-like character as well as extended
plane-wave-like character, an energy-independent basis set containing both plane
waves and Bloch sums of localized orbitals are used to represent the electronic wave-

functions [119].
1 .
ak(t) = —= 3" an(k + G)et(k+6) (k)¢ (K, ), 3.13

with

tk-(R+7;

¢jm(ka r) = 71‘17‘ %:e ])f]m(r -R- 7‘]) (3.14)

In these equations, {1 is the crystal volume, N is the number of atoms, and m is the

label for the orbital on the jth atom. In many cases, we use for fjm(r) Gaussian

local orbitals of the form:
2
fm(r) = N'r2e= 7%y, (7), (3.15)

to represent the localized part of the d electronic wavefunction, where N is the
normalization constant, and A is the Gaussian exponent.
In the cases of silver and gold, due to the fact that the 4d and 5d states are very

localized, we have used for the local orbitals a numerical basis of the form:

fr) = Bf(r)[l - ezpl—a(re — r)?]),r < 7c (3.16)
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where f(r) is a radial function closely related to the radial distribution of the atomic
d wave function, B is a normalization constant, and a is determined variationally
[120, 121].

This mixed-basis leads to the following matrix eigenvalue problem:
(H- ES)A =0, (3.17)

where H is the Hamiltonian matrix, S is the overlap matrix, and A is a column vector
with elements Aq,...,An corresponding to the expansion coefficients , 4 in equation
(3.12)

When evaluating the matrix elements involving the local orbital, if we are using
the Gaussian as local orbital we make use of the on-site approximation [119], but
when using the numerical basis, the “on-site” approximation becomes exact if r¢ is
smaller than the nearest-neighbor distance.

The valence charge density is then calculated from:

pr) =23 6(c; - enic) [¥n x(x)12, (3.18)

where 8(z) is the step function and ¢ f is the Fermi energy and is determined from

the number of electrons per primitive cell, z, by the equation:
z = 22 9(€f - 5nk) (3.19)
nk

In practice, the k summation is restricted to the irreducible part of the Brillouin zone
determined by symmetry and only the part of the charge density invariant under all

the space group operations is retained.
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Dielectric Matrix Scheme for Fast Convergence

The one-electron wave-functions are obtained from the Schrédinger equation:

(- V2 +V)¥nkx = Enxdnk, | (3.20)

where the crystal potential V is constructed as the sum of three components V..,
Vi, and Vge. Vj,p, is the superposition of the potentials due to the bare ions on
the various atomic sites, Vp is the Hartree potential, and Vi is the local exchange-

correlation potential. Vi, and Vg are obtained from the electronic density p by the

following equations:

szH = ——47r62p(r), (3.21)

Vac(r) = —B(3/m) 1/ 3e2p(r)1/3 (3.22)

where 3 can be a constant or a function of p(r) [114, 122]. We start with an initial
guess V;,, for Vg + V¢, and find the solution of equation (3.20). With these wave-
functions we can obtain the electron density using equation (3.18) that we write here

again:

p(r) =23 frxltn k()2 (3.23)
nk

where fnx is the occupation factor and 2 is the spin factor. From this electron den-
sity, the Hartree screening potential and the exchange-correlation (Hedin-Lundqvist
form [114]) potential of the electrons are calculated. With these two potentials, an

output potential V,,; is constructed. Self-consistency requires that this procedure




27

be repeated until V;,, is equal to V, ;. Usually this is achieved by putting in a new

V;n constructed by mixing the old V;,, and Vout as following:
. .
VEEU(G) = V(@) + (1 - oV2(G) (3.24)

where the mixing coefficient, c, is a function of G which corresponds to screening
the charge density oscillation by a Fermi-Thomas type dielectric function. However,
for surface calculations, with large unit cell, the low G components of the potential
converge very slowly and, furthermore, the various Fourier components are found to
be strongly coupled so that a simple mixing scheme like the one above is no longer

adequate.

Ho et al. {104] devised a scheme that drastically reduces the number of iterations
required to reach self-consistency in electronic-structure calculations. Suppose the
input and output potentials for the nth iteration are V;,, and V,,; respectively. We

want §V;,, such that:
Vin +8Vin = Vout + §Vout (3.25)
6Vout can be expressed in terms of §V;,, using perturbation theory,
1
8p(G) = o= 2 X(G,G)8V;y(G), (3.26)
C G’
where (¢ is the cell volume, and the susceptibility x is given by:

(3.27)

. . 7
< nkl|e "¢ T|p'k > < n'k|e'C T|nk >
X(G,G)= -2 X (g~ fy ) SRk > kT
n,n' x ’ !k ok

We know that

5V0‘u,t = 5VH + 5Vmc (328)




28

where §Vp and 6Vzc can be derived from equations (3.21) and (3.22). Using equa-
tions (3.24), (3.25) and (3.26) we obtain:

> G, G )8V (G) = Vit (G) — Vi (G), (3.29)
G,c/

1
G, G =6§(G-G) - G 2 vze(G - GNx(c",G" - %X(G, G') (3.30)
G”

where vz¢(G) is the Fourier transform of the exchange correlation interaction vzc(r),

which is the functional derivative of the exchange-correlation potential:

vze = 6}5/;0 (3.31)

Thus, given Vj4, and V;;,, we can obtain §V;,, by a matrix inversion.
Since only the low Fourier components are strongly coupled, it is only necessary

to calculate (G, G') for only few stars of reciprocal lattice vectors.

Hellmann-Feynman Forces

The use of the Hellmann-Feynman theorem helps us minimize the number of trial
geometries needed to determine the equilibrium geometry, and allow us to relax all
the layers simultaneously. It was first proved for the case of the all-electron problem
[105], and then extended to the case of pseudopotential calculations [81]. We start
with the expression for the total energy per Brimitive unit cell given in equation
(3.11), and suppose that the position of one of the atoms in the unit cell is changed
by a displacement §r. This change in the displacement causes a change in the total

energy given by:
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§Ep = 3 (frxbenk + 8fnxenk) — QoY p(G)SVER(G) (3.32)
nk G
. 2
+ S 6 C)VE(C) + %% T v2e(G))] + 5V Batd:

because the self-consistency criteria guarantees that

ViG) = ST'rg—(lzG) +vzc(G) (3.33)

the term involving §p(G) drops out, and equation (3.28) becomes:

SEp = ) (frxbenk + Sfnxent) — Qeepr Y A(G)SVE(G) + 87pyqarq-  (3-34)
nk G

To evaluate the first term in equation (3.30) (the change in band energies) we use

- perturbation theory:

> faxbenk = D (frk < Ynxl6Von + 6VE2 ¥y > (3.35)
nk nk

= S (frk < nxl6Vipn|¥nk > 40y 32 p(G)SVIR(G),
nk G

where §V;,,, is the change in the jonic potential:
Vien(r) = 3 Vpgy(r— R~ r)B. (3.36)
R,7,l
Using equations (3.30) and (3.31) we can calculate the force on each atom. This force

can be divided into two terms:

—§E
F= L =Fion + Fyp (337)
where
5y
Fion = ——L2uald, (3.38)
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' oV; )
Fot = = S frk < vkl 02 o > + Ty (3.39)
nk T T

F;on is the ionic restoring force, and F; is the electronic force which is made up of

contributions from all the occupied states.

Calculational Procedures

In this section, we describe the calculation procedures used in the self-consistent

band calculations.

1. Choose the initial position of the atoms (most of the times we use the coordi-

nates of the atoms at the ideal bulk positions for the initial positions).

2. Solve for the eigenvalues and the wavefunctions via equation (3.3) in the mixed

basis approach. Our basis contains plane waves with energy |k + G|2 up to

certain E ., ;, and a set of Gaussian or a numerical basis as local orbitals.

3. Determine the band occupancy for each sampled k-point in the irreducible

Brillouin zone (IBZ), and calculate the Fermi Energy using equation (3.19).

4. The total pseudo valence charge density is calculated via equation (3.18). The
charge density is expanded in reciprocal space with' approximately 2300 plane
waves for Au, and 8000 plane waves for Ag. From the charge density, the
Hartree screening potential and the exchange-correlation energy (Wigner or

Hedin-Lundqvist form) of the electrons is calculated.

5. At each iteration step n, a new input potential for the (n+1)th iteration is

obtained using the dielectric matrix scheme.
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6. The total ground state energy is calculated using equation (3.11).

We repeat steps 2 through 6, until self-consistency is achieved (V;,, = V).
After that, forces on each atom are calculated using the Hellmé,nn-Feynman
theorem. The use of Hellmann-Feynman forces minimizes the number of trial
geometries needed to determine the equilibrium geometry, especially because

all the layers are relaxed simultaneously.

7. With the forces calculated before, the new positions of the atoms are predicted.

Using the forces calculated from few first geometries, we deduce a force-constant

matrix that couples the different layers, and guides us in choosing the new

position of the atoms.

In Figure 3.1 a diagram of this self-consistency loop is shown.

s
£
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Figure 3.1: Schematic chart of the self-consistent procedure
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CHAPTER 4. THE (v3 x v/3) R30° Ag/Si(111) SURFACE

Introduction

As has been mentioned in Chapter 1, the atomic geometry of the (V3 x V3)
structure observed during the adsorption of Ag on Si(111) is a problem that has baf-
fled surface scientists for over a decade [1-44]. Many experimental techniques, which
include low and medium energy ion-scattering and impact-collision ion scattering
spectroscopy (ISS, MEIS, ICISS) [3-12], high-energy ion channeling [13], LEED [14-
16], reflection high energy electron diffraction (RHEED) [17-19], X-ray diffraction
and X-ray standing wave (XRD,XSW) [20-25], Auger electron spectroscopy (AES)
[26-29], X-ray photoelectron diffraction (XPD) [30-33], photoemission [34-37], sur-
face extended X-ray absorption fine-structure spectroscopy (SEXAFS) [38], scanning
tunneling microscopy (STM) [39-42], and scanning and reflection electron microscopy
(SEM, REM) (43, 44], together with some theoretical efforts [63-68], have been used
to study the surface. However, the surface structure remains elusive. The main
complexity of the problem comes from the large number of plausible and conflicting
models that have been proposed for this surface, each model having support from
some experiments.

Using first principles total energy calculations, we have examined the equilibrium

geometries and electronic properties for many plausible models. We found a struc-
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tural model [67] which not only has the lowest surface energy but can also explain
most of the available experimental data on the system. In particular, we find that the
honeycomb structure observed in STM images arises not from the top layer atomic
positions but rather from the wavefunction behavior of empty surface electronic states

above the Fermi level.

First-principles Calculations

We have used in our calculations non-local ionic pseudopotentials generated us-
ing the norm-conserving scheme of Hamann, Schliter, and Chiang [112]. The total
energies are calculated within the local-density-functional formalism [102] with the
Wigner form [116] of the local exchange-correlation energy. The wave-functions are
expanded by means of an efficient mixed-basis set [119] consisting of plane waves
with energy (k + G)2 up to 10.5 Ry plus a set of localized functions centered at the
atomic sites to describe the d orbitals. For Ag, due to the fact that the 4d are tightly
bound states, we use for the local orbitals numerical functions which are more flexible
and hence can better represent the local orbitals. The shape of the local orbitals,
described by equation (3.16), is determined variationally [120, 121]. The optimized
values for @ and r¢ are 0.70 and 2.70 a.u., respectively. The pseudo-potential mixed-
basis method has been used in previous investigations of the structural properties
of bulk Si and Ag and of the reconstruction of the Ag(110) surface with excellent
results {100, 120]. The theoretical results of bulk properties obtained by this method
are compared with the experimental results in Table 4.1.

A slab of Si(111) layers is used to describe the Si(111) surface. Ag atoms are

added to the slab surfaces. Periodicity along the direction perpendicular to the sur-
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Table 4.1: Comparison of the theoretical bulk properties of Si and Ag with experi-
mental results.

Si Theory | Experiment [134]
Lattice Constant (A) | 5.45 5.43
Bulk Modulus (Mbar) | 0.92 0.99
Cohesive Energy (eV) | 4.81 4.63

Ag Theory | Experiment [134]
Lattice Constant (A) | 4.11 4.09
Bulk Modulus (Mbar) | 1.04 1.00
Cohesive Energy (eV) | 3.00 2.95
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face is absent. As usual in surface calculations, an artificial periodicity along this
direction must be retained so that we can use the well—established tools of the pseu-
dopotential theory to obtain the electronic structure of our system. This artificial
periodicity is achieved by utilizing the “supercell” technique [83]. The “supercell”
used in our calculation has 6 layers of Si beneath the Ag layer, plus a vacuum re-
gion above the Ag layer. The length of the whole cell in the < 111 > direction is
equivalent to the thickness of 12 Si(111) layers. The thickness of the vacuum and the
substrate layers has been tested to be large enough so that the influence of the mutual
interaction between slabs are small for the quantities we are interested. The effect of
vacuum thickness on the total energy result is less than 1.5 mRy per atom (equiv-
alent to 0.02 eV/atom). Its effect on surface energy which we will use to compare
different structural models will be even smaller, and it will not affect the accuracy of
the comparison.

If the Ag layer is in an embedded geometry, there are additional Si atoms above
the Ag layer, which results in 8 Si layers in thé the supercell. We have repeated
the calculation for some models with different number of layers in the Si slab. By
comparing the results of the same model calculated with 6-layer and 8-layer Si slabs
(both fully relaxed), the error in surface energy due to finite slab thickness is esti-
mated to be about 7 mRy per surface atom (equivalent to 0.1 eV /surface-atom or 0.1
J/ mz), which will not affect the accuracy of the surface energy comparison between
diﬁ’erént structural models.

In the calculation of electronic charge density during the iteration to self-consistency,
we use an even-spaced sampling grid of 7 k-points in the irreducible wedge of the 2-D

surface Brillouin zone (SBZ) (Figure 4.1). In order to check if this many k-points
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are enough for an accurate energy result, we have repeated the calculation for some
models with 15 k-points in the SBZ. The total energy difference is less than 2 mRy
(0.03 eV) per atom, which is small. Forces on the atoms are calculated for each
model and the atoms are fully relaxed (laterally and vertically) to their zero-force
equilibrium positions within the symmetry constraints imposed by the model. In
some cases, multiple starting configurations are tested to minimize the possibility of

landing on local rather than global minimum.

Structural Models

The two basic quantities of the v/3-Ag surface, the Ag coverage and the posi-
tions of Ag atomic layer relative to the Si top layer, have been at the center of the
controversy from experiments. There is no consensus from experimentalists whether
the Ag coverage is 1 monolayer (ML for short; 1 ML coverage is one adatom for each
surface Si atom) or % ML and whether the Ag atoms form the topmost layer or are
embedded under a Si layer. Such uncertainties have given rise to numerous structural
models. Even the same type of experimental techniques, such as STM (39, 40] and
X-ray diffraction [20-24] studies, respectively, can yield different structural models,
depending on how the results are interpreted.

The experimental models for v/3-Ag can be divided into four groups by the
different coverages and positions proposed for the Ag atoms: (i) % ML Ag coverage
models with a top Ag layer arranged in a honeycomb-like structure, which includes
the simple honeycomb (HC) model [4, 40], and various “missing top layer” (MTL)
models [19, 32, 36]; (ii) % ML of Ag atoms forming a honeycomb embedded (EHC)
in the first double layer of Si (3, 15, 38]. (ili) 1 ML Ag coverage models, with Ag
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Figure 4.1: The 2-D Brillouin zone of Si(111) Surface. The irreducible parts of the
Brillouin zone are shaded.
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atoms embedded under a top honeycomb layer of Si (with % vacancies), including the
embedded trimer (ET) model [39], the substitutional trimer (ST) model (5], silver
honeycomb-chained-trimer (SHCT) models of Vlieg et al. (Vlieg-ILIII) [23], and
silicon adatom-vacancy (SAV) model [7]; (iv) 1 ML of Ag atoms forming a top layer
above all the Si atoms, with atop Ag trimers (AT) [14] or a honeycomb-chained-trimer
(HCT) arrangement of the Ag layer [19-23].

In this study, we have examined many feasible models, including three of the four
groups of the experimental models. For many of the models, different Ag registries are
considered to locate the one with the lowest energy. The coverage and the position
of the Ag layer of these models and their variations are listed in Table 4.2. To
help visualize these models, we have plotted the ideally truncated Si(111) surface in
Figure 4.2, both top view and side view, followed by Figure 4.3, in which all the
structural models that we have invéstigated in this study for the \/§—Ag surface are
schematically shown. It should be noted that these are the initial non-reconstructed
positions of the atoms. After they are fully relaxed, both the vertical and lateral
positions will be changed, sometimes dramatically.

Since there are two possible coverages and hence different stoichiometries, the
quantity that governs the relative stability of different models is, as we have men-
tioned previously, the surface energy per (\/3 X 4/3) unit cell of the composite Ag/Si

system. We define it to be
1
Es = 5(Btot = NggPag ~ Ns5iEsi); (4.1)

where Ej,; is the total energy of the slab, N Ag and Ng; are the number of Ag and

Si atoms in the slab respectively, and E Ag and Eg; are the total energy per atom

of bulk Ag and Si. The factor half is because there are two surfaces in a slab. This
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Table 4.2:  Lists of structural models and their surface energies. The coverage is in
the unit of ML, and the surface energy in the unit of J /m2. (1J/ m? =
2.4 eV per V3 % v/3 surface unit cell.)

Models Ag coverage | Ag position | Surface Energy
HC 2/3 on top 1.394
MTL I 2/3 on top 1.439
MTL II 2/3 on top 1.510
ET-1 1 embedded 1.830
ET-2 1 embedded 2.670
ST-1 1 embedded 2.231
ST-2 (Vlieg II) 1 embedded 2.291
SHCT (Vlieg III) 1 embedded 3.308
HCT-1a 1 on top 0.879
HCT-1a’ 1 on top 0.831
HCT-1a" 1 on top 0.689
HCT-1b 1 on top 0.857
HCT-1c 1 on top 0.824
HCT-2a 1 on top 1.620
HCT-2b 1 on top 1.426
HCT-2¢ 1 on top 1.317
CHCT 1 on top 1.290
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43

definition is illustrated by Figure 4.4. In case (a) is a Si(111) surface wetted by a
layer of metal atoms, while in case (b) the metal atoms forms 3D islands (and are
assumed to be in a bulk crystalline environment) above the Si surface. The energy
for (a) is the total energy of the slab: Eq = Ey,¢. The energy for (b) is the bulk
energy of the metal, say Ag in our case, and the substrate Si, plus the surface energy
of Si(111), assuming that the number of atoms on the surface is small compared with

that in the bulk: Ep = N AgE AgT Ng;Eg; +7g;- The difference between these two
Eq— Ep = Etot —NggEpg — NgiEg; —75; = Es — 15 (4.2)

measures the stability of surface (a) relative to (b), where 7g; represents the surface
energy of clean Si(111) surface. The relative stability among different models of dif-
ferent stoichiometries can be compared by considering the quantity Eg, if we assume
that the v/3 system is in equilibrium with bulk Ag (i.e. any excess Ag will form
3D islands, which is observed experimentally). In general, E 4, in Equation (4.2)
should be replaced by the chemical potential of Ag. The smaller its Eg is, the more
energetically favorable the model should be. For Those models that have their Eg
lower than vg;, i.e. Eq < Ep, the Ag atoms will wet the Si surface. The calculated
surface energies of the three groups of structural models for the +/3-Ag surface are
listed in Table 4.2.

The first group of models that we have considered is the % ML atop Ag models
including HC and MTL models (Figure 4.3 (2)). For the MTL model, two different
registries of the Ag atoms have been studied. One has the Ag atoms above the 5th
layer of Si (MTL-1), and the other above the 3rd layer of Si (MTL-2). The first one

has a lower surface energy by 0.07 J/ m2. In this group, the HC model has the lowest

surface energy, which is 0.05 J/ m?2 lower than MTL-1.
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Figure 4.4: Illustration of surface energy definition for +/3-Ag surface in our calcu-
lation.
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Th¢ second group is the 1 ML embedded Ag models which includes the ET model,
ST model, and two of Vlieg’s models (see Figure 4.3 (b)). For this group, the topmost
layer consists of :2; ML Si atoms. In the ET model, the Ag atoms are positioned above
the Si atoms of the 4th layer. In the ST models, the Ag atoms substitute the top
layer of the intact double layers, while additional % ML of Si adatoms are situated
either above the second (ST-1) or above fourth (ST-2) Si layers. The second ST
configuration is the same as the model II proposed by Vlieg, et al. Their model III
(SHCT) has also been considered. The initial configuration of this model is shown
in Figure 4.3 (b). The ET model has the lowest energy in this group, while the two
ST models have approximately the same energy.

In both of the above groups, the top layer has a vacancy to account for the
honeycomb STM images observed in experiments [39, 40]. For quite a long time,
the bright spots in such honeycomb shaped images have been considered to indicate
the positions of atoms in the topmost layer. The third group of structural models
we have studied is the 1 ML atop Ag models in which there is no vacancy in the
top layer, hence no honeycomb from the atomic positions. This group includes the
various configurations of the HCT model with different Ag registries or different Si
substrate structures (Figure 4.3 (c)). We also investigated the CHCT model, which
we have found is the best for Au/Si(111) surface (see Chapter 5).

The surface energy results for a number of models at their respective lowest
energy configurations are compared in Figure 4.5. Experimental surface energy
for (2 x 1)8i(111) is quoted from ref. [123]. Since there is no experimental data

available for the surface energy of (7 x 7)Si(111), the result we use here is derived

from (2x1)8i(111). Theoretical calculation has estimated that the surface energy of
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(7x7)Si(111) surface is about 0.05 J/m?2 lower than that of the (2x1) surface [124].
The (1x1) Ag/Si(111) marked with (MTL) has a “missing-top-layer” Si substrate
while the (1 x 1) Ag/Si(111) (unmarked) has an intact double-layer Si substrate. We
found that all the models in the second group (IML embedded Ag) tend to have
much higher energies than models in the other groups due to the large number of Si
bonds broken to make the top Si honeycomb layer. .Some of the models (e.g. model
IITin Ref. [23]) have energies so high that they are not shown in Figure 4.5. We note
that the HCT-1 model (it really means the lowest energy configuration of the HCT-1
models, see the next section) not only has a lower surface energy than all other com-
peting models, but it is also the only class of model tested that has a surface energy
lower than the reconstructed clean Si(111) surfaces. This indicates that the Ag atoms
should wet the Si surface for at least one layer, before having 3D island growth on
the surface, which is consistent with the observed Stranski-Krastanov growth mode

of Ag layers on this surface.

HCT-1 Model

The lowest energy structure of the HCT-1 model is shown schematically in Figure
4.6 (a) (top view) and Figure 4.6 (b) (side view). The HCT-1 model is named after
the HCT arrangement proposed for the Ag atoms by Takahashi, et al. from their X-
ray diffraction experiment [20]. The special features of our theoretical model HCT-1
include, besides the HCT arrangement for Ag atoms, that the Si slab has an MTL
structure and the first layer Si atoms form trimers beneath the top Ag layer, that
the Ag atoms are above the 5th Si layer, and that the Ag trimers are centered above

the third Si layer.
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Figure 4.5: Comparison of the surface energies for various models.




Figure 4.6: Geometrical structure of the HCT-1 model: (a) top view; (b) side view.
Shaded and empty circles are Ag and Si atoms, respectively.
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To insure that we have obtained the right configuration that has the lowest
surface energy, we have done various tests to the HCT models. List in Table 4.2 are
eight variations of HCT that we have studied. HCT-1a is the first one we considered,
in which we have 6 layers of Si in the slab, plus 1 ML of Ag on top. Atoms in the
same layers are put in the same vertical level along < 111 > direction. However, all
the 5i atoms in the 3rd layer are not equivalent to each other in terms of symmetry.
They do not have to be restricted in the same level during the relaxation. We take
this into account in model HCT-la.’ by allowing the third layer Si atoms to buckle,
and that lowers the surface energy by 0.05 J/ m2, which means the structure is more
favorable. To further test the effect of slab thickness, we increase the slab from 6
layers to 8 layers, in model HCT-1a/. The deep layers are still allowed to buckle. The
surface energy difference is found to be 0.14 J /m2 between the 6-layer and 8-layer
models (see Table 4.2). That is small compared with the energy difference between
the HCT models and other models.

We have also investigated different registries of Ag atoms in the HCT models.
In model HCT-1b, we take the same HCT arrangement for Ag atoms and the same
MTL structure of the Si slab as in HCT-1a, but change the positions of Ag with
respect to Si. The Ag atoms are now positioned above the third layer instead of
the 5th layer of Si, and the Si atoms form trimers above the 5th layer. See Figure
4.7 (a) for a schematic picture of this model. As seen in Table 4.2, HCT-1b has a
slightly higher surface energy than HCT-1a. The difference is small, therefore it may
be possible that the two different registries co-exist, as observed in STM experiment
[41].

Besides the HCT model proposed by Takahashi, et al., model II of Vlieg et al.
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(23] is equivalent to HCT-1a if the top Si honeycomb layer is discarded (see Figure
4.3). That extra layer of Si atoms makes the model less favorable energetically.
Ichimiya’s model [19] is also similar to HCT-1a except for an extra twisting of the
Si trimers. In fact, we have tested Ichimiya’s model by giving an initial rotation to
the Si trimers and letting the system relax to a local minimum. That is HCT-1c as
shown in Figure 4.7 (b). We see from Table 4.2 that the surface energy of HCT-1c is
close to the model without rotation, but higher.

While expérimental works and our theoretical calculation about the structure
of the Ag atoms seem to be converging into the HCT arrangement, experimental
data do not provide a conclusive structure for the underlying Si substrate. We have
substituted the MTL structured Si substrate by an intact double layer Si substrate,
and that give us models HCT-2. The first Si layer still form trimers. The HCT array
of Ag atoms are positioned at three different positions as shown in Figure 4.3 (c).
The top view of the resulted structures are indicated in Figure 4.8 (a-c). All the
three configurations have a much higher energy than the HCT-1 group.

We have also considered more variations of the Si substrate structures and they
all give higher energy. The CHCT model, which is borrowed from the +/3-Au surface
system (see Chapter 5), has a surface energy which is close to that of models HCT-2.
From the above discussion, we conclude that the HCT-1a is the energetically most
favorable structural model for this surface. It will be referred to simply as HCT-
1, when there is no confusion involved. Several recent experimental investigations
[12, 21] have proposed models essentially identical to the theoretical HCT-1 structure.

Our structural parameters are compared with those reported in RHEED and X-ray

experiments in Table 4.3.
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Table 4.3: Comparison of the theoretical structural parameters of the lowest-energy
HCT-1 model with experimental results. The z-Ag and z-Si are the
vertical distance of the top Ag and MTL Si layers above the first Si
double layer.

RHEED [19] | X Ray [22] | X Ray [23] | HCT-1
d(Ag-Ag) 3.36 3.426 3.43 3.45
d(Ag-Si) 2.593 2.57 2.54

2.596 2.63 2.60

d(Si-Si) 2.75 2.308 2.32 2.51
z-Ag 2.95 3.055 3.05[24] | 3.15

2-Si 2.2 2.259 2.26 [25] | 2.30
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As shown in Figure 4.6, the HCT-1 structure can be envisioned as follows: Start
with a clean “missing top layer” Si (111) surface (i.e. each top layer atom has 3
dangling bohds). Put one monolayer of Ag above the 5th (or 6th) Si layer, so that
it is 0.85 ‘A above the 1st Si layer and 3.15 A above the 2nd Si layer (the first intact
double layer). The Ag layer reconstructs, with lateral displacements characterized by
a parameter x (see Figure 4.6 (a)) which is found to 0.43 a (a is the lattice parameter
of the surface unit cell). After the reconstruction, the Ag-Ag has nearest neighbor
(n.n.) distance of 3.45 A. The in-plane n.n. Si-Si distance in the top Si layer is
substantially smaller than that on an ideal surface so that two of the three broken
bond of the top Si layers are reformed by the Si trimers. The remaining dangling
bond is satisfied by the Ag atoms. The n.n. Ag-Si distance is 2.54 A. The third
 Si layer has a buckling of about 0.2 A, with 2/3 of the atoms positioned above the
other 1/3. We note that if we impose a (1 x 1) surface unit cell (lateral relaxation
not allowed), one ML of Ag on top of an intact double layer Si surface actually has
lower surface energy than the one with a MTL configuration. It is the substantial
lateral reconstruction of the top layer Si atoms allowed in the MTL configuration

that makes it more favorable in the (v/3 x +/3) unit cell.

STM Image and Electronic Density of States

Since the atoms in the top Ag layer are not arranged in a honeycomb structure,
our model has to be reconciled with the observed STM images. Since the STM images
are governed by the spatial distribution electronic states involved in the tunnelling
process [125], we examined the wavefunctions of electronic states in the energy range

from -2.5 eV to 2.0 eV around the Fermi level (Ef = 0 eV). We found that the
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charge distributions for the occupied states (-2.5 eV to 0 eV) resemble the atomic
honeycomb-chained-trimer arrangement. Above the Fermi level, from 0 eV to 1 €V,
the electron charge distribution is dominated by a band of empty surface states.
Figure 4.9 shows a charge density plot of the states from 0 to 1 eV in a plane parallel
to and 1.54 above the top Ag layer. The plots exhibit the honeycomb pattern
observed by STM. This result is consistent with the bias-voltage dependence of the
STM images: the best resolved honeycomb images were obtained for bias conditions
where the electrons are tunnelling from the tip into the empty states which we will
show in the next section are from a surface band. We also observe from Figure 4.9
that the maxima of the electronic distribution for the empty states occur at the center
of the Ag trimers and are situated over the fourth Si layer, in agreement with the
registry determined by Wilson and Chiang [40].

Figure 4.10 shows the electronic densities of states (DOS) of the slab for several
structural models including the HCT-1 model. The DOS are obtained from the
eigenvalues of 37 evenly spaced k points in the IBZ with a Gaussian smearing of 0.2
eV. We have tested the results with different numbers of k points. DOS computed
with 16, 37 and 70 k points show little change. We notice in the result for the HCT-
1 model that the Fermi level £ ¥ is located near the bottom of a “pseudo-gap”: a
region of about 1 eV wide where the DOS drops to a very low value. HCT-1 is the
only class of model we have studied that gives something close to a gap in the DOS
near E I Earlier photoemission experiments have reported a gap for the (v/3 x v/3)
surface. It is possible that the small density of states in the pseudogap region could
have escaped detection in those experiments. However, surface charging effects may

also be important for the interpretation of the photoemission data. Quantitative




Figure 4.9: Electronic charge-density plot for unoccupied surface states on a hori-
zontal plane 1.5 4 above the top Ag Layer. Calculated results of HCT-1
model. The black dots mark the position of the Ag atoms.
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comparison between our results and photoemission and STM experiments will have
to include the effects of surface charging [36] and surface band-bending, as well as the
shift of energy position of the surface band relative to the bulk states as the surface

becomes charged.

Surface States

We have seen that those states in the gap range of about 1 eV wide above the
Fermi level form the honeycomb shape STM image, we are thus motivated to calculate
the surface band structure of the v/3-Ag surface. For better and easier identification
of the surface states or resonances, we increase the slab thickness from six to eight
layers in the HCT-1 model. The iteration are continued until the atoms in the
configuration are fully relaxed by using the Hellmann-Feynman force calculation. The
self-consistent potentials are obtained by iterating with 7 k-points in the irreducible
SBZ. After reaching self-consistency, the electronic band structures of the systems are
calculated along the symmetry directions I' — K — M. To facilitate the identification
of the surface states, we also calculate the projected band structure for the Si(111)
surface. This is done by projecting thc bulk band structure of Si on to the two
dimensional (111)-SBZ. Results are shown in Figure 4.11 where the zero of the energy
corresponds to the Fermi energy. For the HCT-1 model, the Hamiltonian matrix
‘have reflection symmetry (see Figure 4.6) about the plane perpendicular to the (ill)
surface that passes along the I' — M line. For such reflection symmetry, the electronic
states with wave-vectors along these symmetry lines can be separated into two groups

with even and odd symmetries, and they are represented in F igure 4.11 by dashed

and solid lines.
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Figure 4.10: Electronic density of states (DOS) for different models: (a) ET; (b)
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Figure 4.11:

Surface states and resonances in the I' — K — M direction. Dashed and
solid lines are theoretical results for even and odd states respectively;
Open and filled circles and squares are experimental results taken from
Fig.4 in Ref. [37]. The Fermi level is set at 0 eV for both theory (left

axis) and experiment (right axis).
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Several criteria guided us to locate the surface states and resonances in the
surface band structure. Surface states usually appear as extra energy levels in the
gaps of the projected bulk bands, and since a slab geometry has two surfaces, they
usually occur in almost degenerate pairs (slightly split by the interaction of the surface
states). The key criterion we used is to look for states with wavefunction amplitudes
(representing charge density) highly localized (more than 50%) within the first one
or two layers of the surface according to the degree of localization at the surface.

Displayed in F igure 4.11 as dashed or solid lines are states with charge localized
mainly on the Ag layer. It is clear that the states in the energy region of about 1 eV
above the Fermi level comes from a surface band (57) whose minimum is located at
the center of SBZ. This band overlaps with the valence band top at the center of the
surface Brillouin zone by less than ~0.1eV, and then rises sharply with increasing k
away from the zone center giving rise to the very low value of DOS in this region. The
charge density contours plotted in Figure 4.9 are in fact from this surface band with
its charge localized above the Ag layer, which has been observed in STM experiment.

This surface state has been observed by Johansson, Landemark, Karlsson and
Uhrberg (37] in their polarization-dependent angle-resolved photoemission experi-
ment. They clearly established that the (/3 x \/?_;) surface has a mirror plane contain-
ing the surface normal and the [112] direction, a threefold symmetry of the surface,
and existence of a highly dispersive surface state ($7) with its minimum close to the
Fermi level at the I point in SBZ. These observations offer strong support for the
HCT-1 model that we have found for the \/§-Ag surface. The HCT-1 model, shown

in Figure 4.6, does have the mirror plane, a three-fold rotational symmetry, and the

51 surface state, as found in the experiment. The existence of this surface band gives
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a natural explanation to the big band bending shift upon formation of the V3-Ag
surface and the pinning of the Fermi level close to the valence band top [37].

In additiori, the HCT-1 model also has other surface resonances besides the
Sq surface states that matches well with the photoemission data [37]. We show
in Figure 4.11 surface states and resonances in the I' — K — M direction, within
about 2 eV of the valence band maximum, and compared with the surface states
observed in the photoemission experiment. Surface states in this direction are either
even or odd with respect to reflection of the mirror plane mentioned above, and
they are marked by dashed and solid lines respectively. Since the Sé states are
found to be even and Sé states to be odd in the photoemission experiment, the
dispersion and the symmetry properties of these states have good agreement between
theory and experiment, lending further support for the HCT-1 model. Due to surface
band-bending and surface charging effects, and also the reported time dependence
of the Fermi level position, it is difficult to compare the absolute position of the
surface states. Hence, for comparison purposes, we have aligned the theoretical and
experimental surface band structures at the energy where the Sé and Sé states cross
each other. We note that in the HCT-1 model, the Sé and Sé states cross each other
at 0.72 eV below the bottom of the S surface state in our calculation, whereas in
the experiment, it is about 1.0 eV below the bottom of the 57 state. We also note
that in our model, the bottom of the §; surface state is slightly (le‘ss than 0.1 eV)
below the valence band maximum (VBM), whereas in the experiment, it is 0.1 eV
above the VBM for a new surface and 0.1 eV below VBM for an old surface. A

self-consistent LCAO-Xa band structure calculation [68] with a six layer slab based

on structural coordinates determined from a coaxial impact-collision ion scattering
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spectroscopy and energy minimization using the Keating model [12] found a gap of
0.54 eV for this system. The slab we employed in our first principles calculations
contains eight layers of Si, which is thick enough for the determination of surface
atomic arrangements but it is desirable to have thicker slabs for an unambiguous

identification of surface resonances.

Summary

In summary, we have used first principles calculations to determine the structure
of the v/3-Ag surface. Many plausible models have been tested. Our calculations
show that the energetically most favorable structures for the v/3 — Ag surfaces is the
1 ML coverage HCT-1 model. This is the only model structure with surface energy
that wets the Si surface. It gives a pseudo-gap which explains the photoemmision

experimental results. This model also has electronic properties that are consistent

with the observed STM images.
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CHAPTER 5. STUDY OF THE SURFACE STRUCTURE OF
(V3 x v/3) R30° Au/Si(111)

Introduction

With detailed studies of the geometry of the (+/3 x v/3) R30° Ag/Si(111) surface
[66, 67], we have obtained unambiguously a ground state atomic arrangement (see
Chapter 4), win'ch agrees with experimental evidence from X-ray diffraction [20-24],
photoelectron diffraction [31], and ion-scattering experiments [3-12]. An interesting
‘twist in the ground state structure is that, unlike most of the proposed models,
the top layer atoms do not form a honeycomb structure. The honeycomb pattern
observed in scanning tunneling microscopy (STM) experiments {39, 40] is shown from
our calculations to arise from the electronic charge density of an empty surface band
near the Fermi level and does not represent the positions of the atoms in the top layer.
Motivated by the chemical similarity of Ag and Au, we extend our calculations to
investigate the corresponding (v/3 x v/3) R30° Au/Si(111) surface (hereafter referred
to as v/3-Au surface).

Surprisingly, STM studies performed on the v/3-Au surface [48-51] revealed im-
ages which are qualitatively different from the v/3-Ag surface: the STM images dis-
play only one bright spot per v/3 x /3 unit cell instead of two bright spots for the

honeycomb pattern observed on the Ag adsorbed surface [39, 40]. However, Chester
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and Gustaffson [47] suggested from ion-scattering experiments that the geometry of
V/3-Au surface is closely related to the ground state structure for the V/3-Ag surface.
The missing top layer twisted trimer models (MTLTT) [47] proposed in their paper
differ from the ground-state v/3-Ag geometry only by an additional rotation of the
top layer Ag and Si atoms about the three-fold axes. In other ion-scattering exper-
iments, Oura et al proposed a competing modified triplet coplanar model (MTC)
[45] while Huang and Williams proposed a model consisting of a mixture of simple
honeycomb and centered hexagons (HCH) [46.]. Many other experimental techniques
have also been used to study this surface system [54-61].

In this chapter, we present calculated results for the surface structure of the
v/3-Au surface and compare the ground state geometry with that of the v/3-Ag
surface. The lowest energy geometry obtained from our first principles calculations is
consistent with available experimental data; in particular, the observed STM images

are accurately reproduced.

First-principles Calculations

We have performed first-principles total energy calculations for many proposed
structural quels for the v/3-Au surface. The calculations were performed within the
local density functional formalism [115] using the Wigner [116] form of local exchange-
correlation potential. Norm-conserving pseudopotentials [77] are used to represent
the interactions between the valence electrons and the ion-cores and, in the electronic
structure calculations, the Bloch wavefunctions are expanded in a mixed basis set
[119, 120] comprised of both plane waves (with a 10.5 Ry cutoff) and numerical

orbitals centered at the Au atomic sites. The optimized values for a and r. are 0.70
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and 2.70 a.u., respectively. For each structural model we have tested, a “supercell”
geometry (equivalent in thickness to 12 Si’ layers in the < 111 > direction) is used
to model the surface system. There are 6 layers of Si beneath the Au layer. For
models in which the Au layer is in an embedded geometry, an additional Si layer is
put above the Au layer. Self-consistency is obtained with seven k-points in the 2-
dimensional irreducible Brillouin zone. All atoms are allowed to relax both laterally
and vertically (within the symmetry constraints imposed by the individual models)
according to the calculated Hellmann-Feynman forces until the zero-force equilibrium
positions are obtained. In some cases, several starting configurations are tested to

avoid the possibility of being trapped in local energy minima.

Structural Models

All the experimentally proposed models for the v/3-Au surface have a nominal Au
coverage of 1 ML [47, 45], (or close to 1 ML, as in HCH [46] ). Our previous calculation
for v/3-Ag surface indicated that the most energetically favorable structure for the
V3-Ag surface (the HCT-1 model) [67] also has 1 ML Ag coverage. Therefore in the
present work, we have focused our attention on geometries with 1 ML Au coverage.
The models we have investigated are listed in Table 5.1. They can be classified into
two groups by the stoichiometry of the first Si layer: (1) models with one Si vacancy
per /3 surface unit cell in the first Si layer and the Au atoms are either on top (MTC
model [45]) or embedded (a conjugate missing layer model (CMTL) and embedded
trimer (ET) model [39] ); (2) models with no vacancy for the first Si layer which is
beneath a layer of Au atoms on the top: MTLTT model [47], HCT-1 model [67] and

a conjugate HCT-1 (CHCT-1) model (see Figure 5.1).
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Table 5.1: Lists of structural models and their surface energies. The Si vacancy is
in unit of ML, and the surface energy in unit of J/ m2. 1J /m2 =24
eV per V3 x /3 surface unit cell.)

Models Top Si vacancy | Ag position | Surface Energy
ET (MTC) 1/3 embedded 2.487
CMTL 1/3 on top 1.292
HCT-1 0 on top 0.844
CHCT-1 (MTLTT) 0 on top 0.402
CHCT-2 0 on top 0.478




[(4)]

Figure 5.1: Comparison of (a) HCT-1 and (b) CHCT-1 models. The largest dots are
Au atoms. The rest are Si atoms from three layers, with sizes decreasing
from the surface to deeper layers.
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The CMTL model is related to the MTL model [19] proposed by several authors
for the v/3-Ag surface, by having the Au and first layer Si atoms interchanged so that
the Au coverage is 1 ML. The MTC model could be viewed as a variant of the ET
model. The difference between them is only whether the Au layer is embedded below
or situated above the first Si layer. In our calculation, we find that the MTC model
is energetically much less favorable than the ET model. Au trimers initially put on
top of the Si substrate always relax downward and become embedded, resulting in
the ET structure.

For the second group of models, we start from the same initial structure: 1 ML
Au atoms sitting on top of a “missing top layer” (MTL) Si substrate, with Au atoms
positioned above the 5th layer Si atoms. If the first layer Si atoms cluster around the
third layer Si sites to form isolated trimers, while the top layer Au atoms relax away
from the third layer Si sites to form a network of “honeycomb-chained-trimers,” as
depicted in Figure 5.1 (a), the resulting configuration is the so-called “HCT-1” model.
Alternatively, the Au atoms can cluster around the third layer Si sites to form trimers
while the Si atoms form an array of honeycomb-chained-trimers, as shown in Figure
5.1 (b). Since this structure is just the “conjugate” of the HCT-1 model, we call it the
“CHCT-1” model. Thus both models can be obtained by the superposition of two
ordered arrays, one of Si trimers and the other of Au trimers, both centered about
the third layer Si aﬁoms, respectively. If we allow these Au and Si trimers to rotate
freely about the three-fold axes through the third layer Si atomic sites, while also
allowing the trimers to contract, we can obtain a series of intermediate structures of
lower symmetries that allow the surface to vary continuously between the HCT-1 and

the CHCT-1 models. The structures 1 and 2 of the MTLTT model can be generated
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in this manner (see Figure 5.2). In our calculation, we find that these intermediate
structures are less stable than the CHCT-1 structure. We have tested the MTLTT
structures explicitly by using the suggested parameters as starting configurations.
After relaxation, both structures relax back to the CHCT-1 structure. Actually, For
any initial rotational angles we have tested, the surface always relaxes itself to the
CHCT-1 structure, which has higher symmetry and is more stable.

The relative stability of different models can be obtained by comparing the
surface energy per (v/3 x v/3) unit cell of the composite Au/Si system: it is defined
as 5(Egot — Ny E gy — Ng;Eg;), where Eyoy is the total energy of the slab, N q,,
and Ng; are the number of Au and Si atoms in the slab respectively, and E 4,, and
Eg, are the total energy per atom of bulk Au and Si. The factor % is because there
are two surfaces in a slab. The surface energy results fro‘m our calculation are listed
in Table 5.1. In decreasing order of surface energy, the models we have tested can
be listed as follows: the CMTL model, the ET model, the HCT-1 model, and the
CHCT-1 model. A schematic surface energy diagram is shown in Figure 5.3. For the
CHCT-1 model, the energies for 2 possible registries of Au are shown.

Due to the use of the local density approximation, it is difficult to estimate the
absolute error in the surface energy. For different geometries that are calculated with
the same basis set, k-point sampling, and slab and vacuum thickness, we estimate
that the relative surface energies can be trusted to about 0.1 J /m2. It is therefore
quite certain that within the limitation of the LDA, CHCT-1 is the most energetically
favored model within the class of models we have considered. It should be noted,
however, that within the same class of models, the surface energy difference between

different registries of the Au atoms is close to the uncertainty of the calculations.
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Figure 5.3: Schematic surface energy diagram for a few models of Au/Si(111). For
comparison, the surface energy of clean Si(111) (2x1) is about 1.24
J/m? [123].
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The ground state configuration of the CHCT-1 model for the v/3-Au surface also
has a surface energy lower than that of reconstructed clean Si(111) surface, which
assures that the Au atoms wet the Si(111) surface. The fact that the surface energy
of the CHCT-1 structure is even lower than that of the HCT-1 structure indicates
that strong Au-Au bonding is the dominant factor determining the structure of the
Vv/3-Au surface.

As shown schematically in Figure 5.1, the structure of the CHCT-1 model could
be viewed as obtained from the HCT-1 model by reversing the lateral relaxation di-
rections of the Au and top Si atoms, while keeping the Au atoms as the topmost
layer. As a result, the Au atoms form isolated trimers, while the first layer Si atoms
take the honeycomb-chained-trimer arrangement. The Au trimers are centered above
the third layer Si atoms, giving the surface threefold symmetry which has been re-
ported from experimental observations [60]. In the ground state configuration, the
Au trimers have a nearest neighbor (n.n.) distance of 2.83 A. The Au layer is posi-
tioned 0.56 A above the first Si layer, 2.92 A above the second Si layer and 3.74 4
above the third Si layer. The in-plane n.n. distance for Si top layer atoms is 3.50
A, just slightly smaller than that of Si on an ideally truncated surface (3.864). The
interplanar n.n. Au-Si bond length is 2.45 A. In Table 5.2, structural parameters of
our theoretical CHCT-1 model are compared with those of experimental models for
the v/3-Au surface.

For the CHCT model, we have tested different registries. In CHCT-1, the Au
atoms sit above the 5th layer Si atoms, while in CHCT-2 the Au atoms are above
the 3rd Si layer (see Figure 5.4). In Table 5.1, we see that CHCT-2 has a slightly

higher surface energy.




R A R B S R TR A4

Table 5.2:

Comparison of structural parameters of our theoretical model CHCT-1
and experimental data. d’s are bond lengths between nearest neighbor
atoms in the Au and first Si layers. z is the vertical distance between Au
and Si layers. All values are in A.

ICISS [45] [ ICISS [46] | MEIS [47] | XRD [53] | LEED [56] | CHCT-1
d(Au-Au) 2.9 3.84 3.0/2.9 2.80 2.80 2.83
d(Au-Si) 2.53 2.8 2.6/2.8 2.416 2.45

2.404 2.38
d(Si-Si) 3.84 3.2/3.2 3.50 3.50
2(Au-Si) 0.3 0.7-2.0 | 1.6/1.8 0.56 0.56
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Comparison of the v/3-Au and +/3-Ag Surfaces

Comparing our results for the v/3-Ag and +/3-Au surfaces, we note that the
different atomic geometric structures can be accounted for by the difference in the
binding energies of Au and Ag relative to that of Si. In the v/3-Ag case, both the
Ag-Ag and Ag-Si bonds are weaker relative to the Si-Si bonds. The primary process
of reconstruction thus involves the rebonding of surface Si atoms to form trimers, and
the Si layer reconstruction forces the Ag atoms into an array of “honeycomb-chained-
trimers.” Two of the three Si dangling bonds (in the distorted missing-top-layer
configuration) can be satisfied by the trimer formation, with the remaining dangling
bond satisfied by the Ag atoms. Au, on the other hand, has a higher cohesive energy
than Ag (by ~0.9 eV/atom [134]). The Au-Si bond is also stronger than the Ag-Si
bond. In this case, the Au-layer reconstructs to form a network of trimers, and the’
Si forms a network of HCT. In this configuration, the Au-Au n.n. distance (2.83 A)
is much closer to that in bulk Au than it could be in a (1 x 1) situation.

The most significant difference in electronic properties between the v/3-Ag and
the v/3-Au surfaces observed experimentally is the difference seen in STM images
[39,40,48-51]. This could now be explained by the structural models we have ob-
tained for v/3-Ag and /3-Au surfaces respectively. By studying the properties of the
electronic states for the v/3-Au surface, we find that, similar to the case of the V3-Ag
surface, the bright spots in the STM images are not the images of individual atoms,
but rather reflect the patterns of the electronic charge from electronic states near the
Fermi level. For states in the energy range from -2.0eV to +4.0eV (Ef=0eV), the
charge density in a plane parallel to and above the Au layer of the v/3-Au surface (as

shown in Figure 5.5) gives a pattern that is similar to that observed by STM: one
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“bright spot” in each +/3 unit cell. The “bright spot” corresponds to a trimer of Au
atoms and has a triangular shape quite similar to that observed in STM experiment
[49]. We note that there is another subtle difference in the electronic behavior near
Ef For \/§-Ag, we found that there exists an asymmetry between occupied and
unoccupied states and only the unoccupied states give a clear “honeycomb” pattern
with 2 “bright-spots” per unit cell; while for 1/3-Au, both the occupied and unoccu-
pied states near £ f give the same hexagonal pattern (one “bright spot” per unit cell).
This is in agreement with the bias-voltage dependences in the STM experiments for
the v/3-Ag and v/3-Au surfaces (39, 40, 51]. However, the orientations of the tri-
angular charge density spots for the v/3-Au surface are different for the unoccupied
states and the occupied states. In Figure 5.5, we can see that the pattern for the
unoccupied states has triangular spots (Figure 5.5 (a)) with the same orientation as
the Au trimers; for the occupied states, the triangles (Figure 5.5 (b)) are rotated by
an angle of 30°.

We have also calculated the electronic density of states (DOS) of the surface for
the CHCT-1 model structure. The DOS result is plotted in Figure 5.6. It is obtained
from the eigenvalues of 16 evenly spaced k points in the irreducible Brillouin zone with
a Gaussian smearing of 0.2 eV. The result shows no clear gap at the Fermi level. The
position of the Fermi level (about 0.4 eV towards the valence band) suggests that
the surfaceiis metallic, which is in agreement with observations in photoemission

experiment [55].




(4

Figure 5.5: Contour plots of the electronic charge density for states around the
Fermi level (E f=OeV) in a plane 2.0 A above the Au layer. (a). For

unoccupied states in (0, 4eV); (b). For occupied states in (-2eV, 0).
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Figure 5.6: Electronic density of states (DOS) for CHCT-1 of the v/3-Au surface.
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Summary

In summary, we have used first principles calculations to determine the structure
of the v/3-Au surface. Most plausible models have been tested. Our calculation shows
that the CHCT-1 model is the energetically most favorable structure. Among various
models proposed by experiments, the models proposed by Chester and Gustafsson
[47] is the closest to the CHCT-1 model This model also has electronic properties

that are consistent with available experimental results.
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CHAPTER 6. STUDY OF Ti-BASE BINARY SHAPE MEMORY
| ALLOYS

Introduction

Martensitic phase transition has been a hot topic for several decades due to the
shape memory effect and many other peculiar properties present during the transition
[106]. A lot of experimental and theoretical works have been devoted to the study
of this phenomenon, yet many aspects of the transformation are still elusive. Ti
based alloys are one member of this family that have attracted great interest in this
field. In many Ti compounds, Martensitic transition occurs when they transform
from the high temperature CsCl structure (B2) to the monoclinic primitive structure
(B19') or rthombohedral ( R) structure during quenching. The transformation starts at
Martensitic transformation temperature My and finishes at a lower temperature M f:
When some of these alloys are reheated, they can regain their original form, which
has been known as shape memory effect. Recently, experiments have established
some empirical correlation between the Martensitic temperature Mg and electronic
properties of the alloys [106].

Using first principles method, we have performed total energy calculations and

electronic structure analysis for a series of Ti based alloys in the B2 structure, the high

temperature parent structure of these Martensitic alloys. For theoretical comparison,
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we have done not only for the binary alloys TiFe, TiNi, TiPd, TiMo and TiAu which
do exist, but also for Ti bcc metal and hypothetical B2-structured TiAl, TiAg and
T‘iCu which are not found in nature. Qur results reveal correlations between the
Martensitic transformation temperature (M ) and the electronic properties of these
alloys.

The rest of the chapter is organized as follows: r.I‘he first principles method is
introduced in Section II. The optimization of the lattices of the alloys and the heat
of formation results are discussed in Section III. The calculated density of states and
the angular distribution of the electrons are presented in Section IV. The last section

is a summary.

First Principles Method

In our calculations, norm-conserving ionic pseudopotentials [77] are used for
the atomic cores. The total energies of the elemental metals and the alloys formed
by these elements are calculated within the local density functional formalism [115]
with the Hedin-Lundqvist form [114] of the local exchange-correlation energy. The
electronic wave-functions are expanded by means of an efficient “mixed basis” set
[119] consisting of plane waves with kinetic energy (k + G)Z up to a cutoff energy
E.yt = 15.0 Ry and a set of localized Bloch functions centered at the atomic sites
to describe the d-orbitals. Numerical functions are used for the radial part of the
localized orbitals. The shape of the local orbitals are determined variationally from
bulk calculations of the individual components of the alloy to optimize the conver-
gence of the basis set. In this mixed basis scheme, the number of place waves needed

for convergence is then reduced, leading to smaller Hamiltonian matrices and hence
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less computation time. For the total energy calculations, 56 k-points are used in the
irreducible Brillouin zone (IBZ). For the calculation of the electronic density of states
(DOS), 256 k-points are used.

For optimized lattice constants, the electronic properties are analyzed by calcu-
lating the electronic density of states and angular momentum decomposition of the

electron occupations.

Optimization of the Lattices

The bulk energy of the elemental metals are calculated first. The structures
we employ is the ground state structures for the metals. The lattice constants are
obtained by optimizing the total energy with respect to the volume. By comparing
the total energy for the bulk with the atomic energy calculated by first principles
with the same pseudopotentials, we obtain the cohesive energy. The experimental
ground state configuration of the atoms are used in the atomic calculations. The
results of optimized lattice constants and cohesive energy are shown in Table 6.1.

The lattice constants for the alloys in the B2 structure are then obtained. For
each alloy, the total energy of the B2 structure is calculated for different volumes of the
unit cell (Figure 6.1). A total energy versus volume curve is fitted, whose minimum
gives the optimized lattice constants and the equilibrium total energy (see Figure
6.2). The curvature at the minimum gives the bulk modulus. The heat of formation
for the alloy is the difference between the total energy of the alloy and the sum of
the ground state bulk energies of the elemental metals. Results of the optimized
lattice constants, total energy and cohesive energy for these alloys are listed in the

Table 6.1. The results for those alloys that actually exist in B2 structure are plotted
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Table 6.1: Results of the optimized lattice constants and bulk properties. Lattice
constant ag is in A, cohesive energy E and heat of formation H are in
Ry per unit cell, and bulk modulus By is in Mbar.

Element | Bulk Structure | aqg E Alloy aq H By
Ti hep -0.458 || Ti(bcc) | 3.204 | -.01795 | 1.240
Al fcc -0.293 TiAl | 3.130 | 0.03755 | 1.207
Mo bee -0.493 || TiMo | 3.148 | 0.01997 | 1.918
Fe bee 3.379 | -0.474 TiFe | 2.892 | 0.07518 | 2.581
Ni fcc 3.447 | -0.377 TiNi | 2.977 | 0.05066 | 1.853
Pd fcc -0.351 || TiPd | 3.146 | 0.05952 | 1.717
Au fcc 4.118 | -0.289 TiAu | 3.229 | 0.04097 | 1.724
Ag fcc 4.106 | -0.206 TiAg | 3.260 | 0.05047 | 1.224
Cu fcc 4.397 | -0.275 TiCu | 3.068 | 0.01081 | 1.432
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in Figure 6.3 versus their experimental Martensitic transformation temperatufe M.
From the figure, we see that corresponding to increasing M, the heat of formation
decreases, lattice constant of B2 structure increases, and bulk modulus decreases.
Smaller heats of formation, larger lattice constants, and smaller bulk modulus are
consistent with a structurally weaker B2 phase, and thus consistent with a higher
M; (which means that the B2 phases are relatively less stable). The negative value
of the heat of formation for Ti B2 structure indicates that the the hcp structure of

Ti is energetically more favorable, which is in agreement with experiment.

Electronic Properties

The total density of states (DOS) are calculated for these alloys at their equi-
librium volume. The results are show in F igures 6.4-6. The DOS are obtained from
the eigenvalues of 256 k points in the IBZ with a Gaussian smearing of 0.2 eV. First
of all, we focus on the positions of the Fermi level. For the most stable alloy TiFe,
that‘ is, the one with the lowest Mg, the Fermi level is located at the minimum of the
DOS. When going to TiNi, TiPd, and TiAu, Ms becomes higher (the B2 structure
becomes relatively less stable), the Fermi level shifts to the higher energy region and
are situated on higher peaks. For TiMo, the Fermi level shift towards the lower energy
side, and is also on a peak. For TiCu and TiAg that do not exist in B2 structure, the
Fermi levels are at sharp high peaks of the DOS. From this, we see the correlation
between M and the position of Fermi level.

We note that in the series TiMo, TiFe, TiNi, TiPd, and TiAu, the number
of valence electrons in the second alloying element Fe, Ni, Pd, and Au increases.

Roughly speaking, the DOS for these alloys have a generic twin peak structure and
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Figure 6.1: Unit cell of B2 (CsCl) structure, where one kind of atoms sit at the
center and the second kind of atoms at the corners.
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Figure 6.3: Relations of B2 phase stability and the structural properties. (a) M,
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formation. The circles are calculated results.
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Figure 6.6: Total electronic density of states (DOS) for Ti-base alloys in B2 phase.
Results for TiAu, TiCu, and TiAg.




91

the E f for TiFe falls right at the minimum, in the valley between the two peaks. Ni,
Pci, Au has more electrons, which moves the E f to higher energy and higher DOS
at £ £ while Mo has less electrons and that moves the E ¥ to lower energy and also
higher DOS at £ £ Both serves to destablize the B2 structure.

Correlation is also found between Mg and the value 6f DOS at the Fermi level,
as show in Figure 6.7. A clear trend is observed that higher Mg corresponds to higher
DOS value at the Fermi level, which indicates that the Martensitic transformation is
related to the electronic states around the Fermi level. We know that states around
the Fermi level are mainly from the Ti d orbitals. Therefore, the above correlation
suggests that we should inquire into the details of the Ti d states.

By decomposing the electronic wavefunctions into angular momentum compo-
nents at the sites of the constituent elements, we calculate the Ti d state DOS, which
is shown in Figures 6.8-10. We also calculate the numbers of electrons in Ti s, p,
and d states by integrating inside a sphere with the Wigner-Seitz radius. The results
are listed in Table 6.2. The number of Ti d electrons inside the Wigner-Seitz sphere
is plotted against Mg in Figure 6.11. Except Ti of bec structure, all other alloys
fall to a descent line that increasing Ms corresponds to decreasing number of Ti D
electrons.

The amount of Ti d electrons below the Fermi level decreases with decreasing
B2 stability from TiFe to TiNi, TiPd, and TiAu. The more amount of Ti d states
is occupied, the stronger the interbondiné between the d electrons from the the two
elements. These results show us the relation between the d electron bonding and the
stability of the B2 structure alloys.

From the above results, we see the correlation between the electronic properties
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Figure 6.7: B2 stability vs total density of states at the Fermi level.
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Figure 6.9: Electronic density of states (DOS) of Ti d states for Ti-base alloys in B2

phase. The shaded areas are occupied states. Results for TiFe, TiNi,
and TiPd.
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Figure 6.10: Electronic density of states (DOS) of Ti d states for Ti-base alloys in
B2 phase. The shaded areas are occupied states. Results for TiAu,
TiCu, and TiAg.
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Table 6.2: Occupatioin numbers of Ti s, p, and d states in the alloys. Lattice
constant ay and the Wigner-Seitz radius ™(WS) are in A.

Alloys ap | Element MW S) s p d s+p+d | total
Ti(bec) | 3.197 Ti 2.98 | 0.648 | 0.632 | 2.660 | 3.940 | 4.021
Ti-Mo | 3.137 Ti 2.98 | 0.666 | 0.749 | 2.751 | 4.165 | 4.353
Mo 292 10.564 | 0.519 | 4.745 | 5.828 | 5.927

Ti-Fe | 2.904 Ti 298 |0.717 | 0.973 | 2.797 | 4.487 | 4.792

- Fe 2.67 |0.713 | 0.783 | 6.778 | 2.275 | 2.368

Ti-Ni | 2.995 Ti 2.98 |0.629 | 0.785 | 2.568 | 3.982 | 4.179

Ni - 2.56 |0.725 | 0.630 | 8.538 | 3.893 | 9.932

Ti-Pd | 3.137 Ti 2.98 10.590 | 0.717 | 2.474 | 3.782 | 3.991
Pd 2.87 |0.771 | 0.687 | 8.697 | 4.156 | 4.234

Ti-Au | 3.229 Ti 2.98 |0.522 | 0.681 | 2.467 | 3.671 | 3.854
Au 3.03 |1.089 [0.940 | 9.228 | 5.258 | 5.364

Ti-Ag | 3.260 Ti 2.98 |0.526 | 0:585 | 2.382 | 3.493 | 3.602
Ag 3.04 | 0.856 | 0.868 | 9.591 | 5.315 | 5.393

Ti-Cu | 3.068 Ti 2.98 | 0.581 | 0.679 | 2.510 | 3.770 | 3.902
Cu 2.67 | 0.804 | 0.755 | 9.475 | 5.033 | 5.073
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and the B2 structure stability of the Tj based alloys.

Summary

We performed first principles calculations to study the electronic and structural
properties of a series of Ti-based binary alloys TiFe, TiNi, TiPd, TiMo and TiAu
in the B2 structure. Calculations are also done for Ti in bec structure and hypo-
thetical B2-structured TiAl, TiAg and TiCu. Our results show corelation between
the Martensitic transformation temperature (M) of these alloys and the electronic
properties such as the total electronjc density of states at the Fermi level, occupation
of the Ti d states, and the degree of localization of the d states of the second element
in the alloys. Angular momentum decomposition of the electronic states indicates
that the bonding of Ti and the second element d electrons plays an important role in

the stability of the binary alloys. Correlations between M3 and optimized structural

parameters such as lattice constants and bulk moduli are also found.
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