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Error Analysis of the Quadratic Nodal Expansion Method in Slab
Geometry

R. C. Penland !

Y. Y. Azmy
P. J. Turinsky

Oak Ridge National Laboratory
P.O. Box 2008 MS 6363
Oak Ridge, TN 37831-6363

As part of an effort to develop an adaptive mesh refinement strategy for use in state-
of-the-art nodal diffusion codes[1], we derive error bounds on the solution variables of the
quadratic Nodal Expansion Method(NEM) in slab geometry. The discrete variables utilized
by the quadratic NEM for cell i = 1,..., N, are the node average flux (¢)}, the east surface
flux ¢ and the west surface flux ¢%. Use of the nodal basis functions described in [2]
results in a system of nodal balance equations similar to that of a central finite difference

approximation,

-2 +ol] 1, (s
6[ — }—-L—zw) =L (L2)

and current continuity constraints,
D? ; ; i1 D i-1 i1
2 [-26, + 69 - a6t] = - 46" — 6@ + 267 (Lb)

where D is the diffusion coefficient, L is the diffusion length, Az is the mesh spacing and
(s) is the average neutron source in cell 7. Closure of the system is obtained through flux

(dis)continuity relationships and boundary conditions.

First we establish the uniqueness of the solution to the NEM equations via a “Maximum

Principle”(3]. For this purpose it is necessary to assume a uniform mesh and homogeneous
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nuclear properties, as well as continuity of the flux across the cell boundaries. Thus the
notation will now reflect that ¢* is the flux at the surface located at z; on the right boundary

of node 1.

Hypothesize the existence of two solutions to the discrete equations {{¢)?, #*} and {(¥)?, %%},
and let (€) = (¢)* — ()* and & = ¢* — 9. If we now form the difference of the two sets
of NEM equations in these two solutions, we obtain an analogous homogeneous set in the
difference variables with homogeneous boundary conditions ¢® = 0 and ¢¥ = 0. Close
inspection of the coefficients in (1.2) reveal that | (¢)* |< maz {| €1 |,| £ |} implying the
maximum absolute difference occurs at a cell boundary, say cell k, hence [¢¥| > |¢¢| and
[€%] > |(€)?| for all 5. Solving the current continuity expression for £&* and substituting for
the node-average quantities we obtain a 3-point difference scheme involving only surface
quantities, £F = a(¢F~1 + ¢, a = [6 — ATz;z:]/[12 +4—Af‘”;]. Note that |o| < %, and @ >0
for Az < V6L, a condition that must be satisfied in the limit Az — 0 that is necessary
for the error analysis. Applying the Triangle Inequality[4], |¢¥| < |o] ( [€51| + |§"+1|). If
|€¥+1] > |€5=1| then we conclude, [¢¥] < 2|a| |¢F+!| < [€¥F)], and it follows that |¢¥| =
64411, Similarly J¢4+1] < |65 yields ¢4] = J¢~1| so that |g¥] = mas {€**1], |gE~11).
Now suppose [¢¥] = [¢¥+1] > |¢51], then |¢¥] < |a(€F~1] + 1€5HH]) < [€F] = [€F), a
contradiction that implies |¢5~!| = |¢¥| = |¢%*1|. We conclude that if a maximum does in
fact occur in the interior of the interval then |¢%| is constant, i = 0,...,N. The boundary
conditions, ¢% = 0 and ¢V = 0, then imply that ¢ is identically zero at all surfaces and for

all node averages, and the solution of the NEM equations is unique.

Turning now to the question of bounding the error in the solution, start with the nodal
balance equation and subtract from each side —6®* + 12(®)* — 6@*~! where @ implies the
exact solution. The error in the NEM solution is then {e)? = (@)} — (®)?, €' = ¢* —&*. The

nodal balance and current continuity analogs in the error variable are given by,

—6¢* +12(e)’ — 66! = Az?r(5,Ax),1 <i< N (2.2)
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—2¢71 4 6(e) — 8¢l + 6(e)*! — 2" = Az (3,Az),1<i<N-1  (2b)

where the components of the discretization error are defined by,

~2(®) + @1 1 m g
Az? T Az 74y AT2

m1(i, Az) = —®(z)dz (3.2)

201 — 6(d)* + 40¢ + 43 — 6(®)**! 4 204+1

7(i, Az) = Az ~

(3.b)

We now show that the truncation errors in the node average and surface fluxes are bounded
by a combination of the components of the discretization error. We solve (2.a) for the node
average flux error in nodes i and i +1 then substitute into (2.b) to get an expression in only
the surface flux errors,

8— _23_2 ¢ = —2+—i—2- (e + e 1) +
12 + 4% 12+ 5%

126A sz" [n1(i, Az) + 11 (i — 1, Az)] — Azra(i, Az) (4)

The most important property of 7, (¢, Az) to establish is that it approahes zero in the limit
as Az — 0 since this guarantees the truncation error will also approach zero. We also
determine in the case that the exact flux solution is sufficiently smooth the rate at which
the local discretization error components approach zero. Expanding the exact flux in a
Taylor series assuming it is sufficiently smooth about the surface at z; the discretization
error components can be written exclusively in terms of the exact solution derivatives at

z;. Substituting these expressions into (4), then using the Triangle Inequality, we obtain

2] 72 M™Ag?
[8 12 + Az,]e‘s‘—4+12+%z;_ el + 12+ 45 ®

where M(®) = maxgcz<a | o(iv) (z3) |

This expression is true for all nodes including the node where the maximum absolute surface
flux error,|e|, is actually attained. There are two branches we can follow depending on the

magnitude of the term inside the absolute value. We will only examine the inequality under
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the assumption that this term is positive, Az? < 6L? since this is true in the limit of small
Az. We may solve for the maximum surface flux error bound as,

MivL2

Returning to (2.2) and applying the Triangle Inequality, we complete our analysis by finding
an upper bound on the node average flux error,

M(iv) L2

(€)' I =5 —as® (6.b)

implying second order convergence of the quadratic NEM.

In order to verify the analysis presented above, we compare the quadratic NEM to the ana-
lytic solution of a test problem. The test problem for this investigation is a one-dimensional
slab [0,20cm] with L? = 6.495cm? and D = 0.1429¢m. The slab has a unit neutron source
distributed uniformly throughout and zero flux boundary conditions. The analytic solution
to this problem is used to compute the node-average fluxes over a variety of meshes, and
these are used to compute the NEM maximum error on each mesh. The system of NEM
equations is solved in double precision using established double precision LU factorization
(DGECO) and solver (DGESL) routines from the LINPACK library[5]. The number of
nodes used in the solution was increased until the behavior of the error was observed to be
asymptotic. Results of this comparison are presented in Figure 1 and comfirm our analysis
of the error order as quadratic. The error bound predicted is larger than the computed
value by a factor greater than five in the asymptotic region. This is due to the “worst case”
assumed bythe analysis. Work is underway extending this analysis to higher order nodal

methods in multi-dimensions.
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Figure 1: Comparison of the computed maximum absolute error and the upper bound on
the node-average flux error for the quadratic NEM solution to the test problem on various
uniform meshes.
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