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Abstract

The transverse motion of a projectile in an electromagnetic induction launcher is considered.
The equations of motion for translation and rotation are derived assuming a rigid projectile and a
flyway restoring force per unit length that is proportional to the local displacement. Transverse
forces and torques due to energized coils are derived for displaced or tilted projectile elements
based on a first order perturbation method. The resulting equations of motion for a rigid projectile
composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system
of equations and a simple stability condition is derived. The equations of motion are incorporated
into the 2-D Slingshot code and numerical solutior, s for the transverse motion are obtained. For the
2(i)meter navy launcher parameters we find that stability is achieved with a flyway spring constant

of k = lx 1()8 N/m 2. For k = 1.5x 108 N/m 2 and sample coil misalignrnent modeled as a sine wave
of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a

• maximum of 4 ram. This growth is due to resonance between the natural frequency of the
projectile transverse motion and the coil displacement wavelength. This resonance does not persist
because of the changing axial velocity. Random coil displacement is also found to cause roughly
the same projectile displacement. For the maximum displacement a rough estimate of the
transverse pressure is 50 bars.

• ,_, .r_,'_,
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1. !nlrodu¢liUn

The electromagnetic induction launcher accelerates a conducting armature by inducing

arnlature currents opposite to the toil current, which result in a repulsive axial force that accelerates

the arnlature. / 1-2) Because of the finite resistivity the armature current decays and the magnetic

field diffuses into the armature. For a solid armature, if the firing position of the coils is advanced

(slipped) to account for field diffusion, near constant axial acceleration can be maintained. (3) For

a wound armature, (4) no slipping is neecled, but there is still field diffusion due to the finite

resistivity resulting in an L,/R decay of the acceleration. Because of the favorable distribution of

current density in a wound aramature, voltage reversal can be used to significantly improve

performance.

Although the acceleration is only in the axial direction, there are very large radial forces that

act on both projectile and coils. Slight mis-alignments of coils can result in net transverse forces

and torques on the proiectile resulting in transverse motion. It is very important to insure that this

motion is stable and to estimate the maximum amplitudes and induced stresses that result. This is

the subject of this work. In section 11we derive the equations of motion for both translation and

rotation assuming a rigid projectile. It is assurned that the flyway tube restoring forces per unit

length are proportional to the local displacement, in sections 11I and IV we derive the

electromagnetic forces and torques that result when a projectile element is displace(i ()r tilted from

the axis of a coil, based on a first order perturbation method. In section V we write the equations

of motion, for a multiple element projectile in a real launcher with rnany coils, in the form of

coupled oscillators and consider the question of stability. Implementation of the transverse motion

calculation in the Slingshot code (5) is then described in section VI. We also show numerical results

of transverse motion using the modified Slin!gshot t:or the 21)meter navy gun parameters for a solid

armature. Finally in section VII, the results are summarized. Presently we are working on an

implementation of transverse motion in Slingshot for a wound armature and also are considering

the effects of more accurate flyway tube re:;toring forces, Since the physical restoring forces in a

launcher are functions of the axial position, it is expected that transverse motion will be

significantly affected by this dependence.

II. rl'rRn_v_r_;_ Equa|ign_ 9f Motion

In the one dimensional case the projectile transverse motion can be described by two

variables xo, the displacement of the proiectile center of mass and 0, the angle of rotation of the

projectile axis with respect to the unperturbed axis. This is illustrated in Fig. (1). The pro iectile is

assumed to be rigid and symmetric with respect to the center of mass and is assumed to have no
spin. The extension to spinning projectiles and two transverse dimensions will be briefly

considered at the end of this section. The proiectile displacement is given as a function of time and

distance along the projectile by:

.r(,t;:') = .r,+z'sinO --y,,+z'O (1)
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where z' is the length along the projectile measured from the center. We asstune that the transverse

forces due to the coils are given per unit length by fc(t:z') and the flyway restoring force per unit

length is given by:/',. (t;z') = -kx (t;z'). This later assumption needs to be modified according to

the physical response of the flyway tube material. Modification of the above force to act only oll a

. certain length of the projectile, for exalnple the front or rear, results only in a change in the

coefficients in the equations of motion. We can write the equation of motion for the center of mass

by integrating over all the transverse forces and we get:

d _.r<,

Mr' _ - I dz"f_' ( t;z') - 2klx,, ( t) (2}
dt" _/

where Mp is the total projectile mass and / is the half length. The equation for the rotation angle 0

is more complex and can be derived by considering the projectile angular momentum. The angular

momentum with respect to a fixed point (in the lab frame) located on the unperturbed axis is found
to be:

dx ,, 12dO

f. = + z + ) 9 (3)

where vz is the axial speed and z is the distance of the projectile center of mass from the fixed

reference point. The equation of motion is: dL/dt = {, where "_ is the applied torque. The

resulting equation is:

" /_ i
dl' z ( x <, 12d_] z)

Mr, -x<,_ + "-_ + .... , = dz' (z'+ (/_.+./;.) -Sd:_r'.'rFz (4)
• "dt 2 3 dt 2 ) -/

where F z is the axial force per unit volume on the projectile, ._:is the momerlt arm given by:

._ = x<+z'O+r'sin (q)'), and the integral over ti:_r' is over the projectile volurne, that is

d:_r' = r'dr'rhp'dz' with r' and cp' measured with respect to the projectile axis. Since the axial

equation of motion just gives the acceleration in terms of the total axial force, that is

dvz _ f _. M/,i_ - d3r'Fz, and dLr,/dt" is described by Eq. (2), Eq. (4)reduces to:

,.)

i f 2- dz'z'l/<.(t;z') -O(t)./_(t;z')l- d3r'[r'sinq_']F., - -jl3kO(t) (5)3 ,'It' " "-i
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where fz is the axial force per unit length, that is F z integrated over the projectile cross section. The

first term oll the RHS of Eq. (5) is torque due to coil transverse forces and call be either stabilizing

or destabilizing. The second term is the torque due to the axial force and is stabilizing if the force
is concentrated toward the fi'ont of the projectile and destabilizing if it is concentrated toward the

rear. The third term is the torque due to asymmetry of the axial force in the azimuthal coordinate. i

This also can be either stabilizing or destabilizing. The fourth term is the restoring torque due to

reaction of the flyway tube and is always stabilizing. Thus if the coil-projectile interactions are

known, the above equations can be solved and the flyway tube displacement and stress profiles can
be obtained.

For the case of a projectile with spin, all three dimensions have to be considered. [f the

projectile spins with an angular frequency m, and the rotation angles along x and y are denoted by

0x and 0y, then for small rotation angles, the angular momentum vector is given by:

£ = /.to(_+O3-+Ov.p)

where 1o is the moment of inertia given by:/,, = M/,R"/2. With the assumption of axi-symmetry
_x

(to zeroth order), the torque in the axial direction is zero and thus the axial component of dL/dt is
...x

dL dO dO
zero, which implies that (o is constant in time. Thus we have: dt - l"t°(-71-tx+-d-l/y)" The

effect of these spin terms has to be compared with other terms in Eq. (5). For a fixed torque, and if

m is large, d0/dt will be small and thus spin will have the effect of reducing rotational motion. We

also note that since the spin term in the angular momentum equation is first order in d0/dt, it is a

damping term. How much damping there is will depend on the relative rnagnitudes of the terms.

ili. Coil-Projectile Interactions- l)isDlaced Pr_)jectile Element

We first consider the transverse force and torque on a projectile element that results when it

is displaced co-axially from a coil by a small amount. Using the fact that the magnetic flux at a

projectile element due to coil current i i is given by" _6 = Mi/ii" where Mij is the mutual
inductance between the coil (denoted by i) and the projectile element (denoted by j), we find that

the axial and radial magnetic fields can be written as:

li OM,ii -! i t-)M,7
B z (r, z) - and Br (r, z) - (6)2xr0r ' 2rcr0z

Now if the projectile element is displaced a distance x, we can ,,;till write the axial field along the

projectile element as"
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Bz(4t) - 2_:Mij(i'), Br(_) = 2-_7._zMij(7") (7)

where 7" and _ are the radius and angle measured from the unperturbed center (see Fig. (2_), and

li is the perturbed coil current. The net transverse force on the projectile element for small
displacements can be written as:

2r_

F_ = I d_ (rsin_lt) liBz (4t)
()

1 (oM/o2M,j )
- 2g I d_tI-li-lisinlltt,_" + _ ('r- r) ) (8)cl ' 0r2

Keeping lowest order terms in the displacement we find' 7"= r+ xsin (41) and thus the transverse
force to lowest order is given by:

• _ liljxO2M_j (9)
Fr 2 Or2

In writing Eq. (8) we have assumed that the current density of the projectile element under
consideration remains uniform and the current is along the azimuthal direction only. This is true
for projectiles that are thin compared to a skin depth or for litz type elements. For a solid projectile,
the current flow pattern might become very complex as the projectile is displaced and fields are
setup to maintain the magnetic field. To do this problem correctly a 3-D solution is required.
However, the above analysis yields an upper limit on the transverse force for the solid projectile
case. The reason for this assertion is the fact that for a perfectly conducting projectile, the magnetic
field would be frozen implying that the current would also be frozen with respect to unperturbed
space as the projectile is displaced. In this case the net transverse force would vanish. For finite
resistivity we expect that the net transverse force will be somewhere between the perfectly
conducting and uniform current density cases. The second derivative term of the mutual
inductance in Eq. (91)can (+) or (-) depending on the details of the geometry. Thus the transverse

force can be stabilizing or destabilizing. In general if lilj < 0, and if the projectile element radius is
smaller than the coil radius, this force is stabilizing for small axial separation and destabilizing for

" large axial separations. As a numerical example we consider coil parameters (navy gun):
Ri=(I.l(15, Ro = I).155, zI = 0.1)and z2 = 0.05 meters with 20 turns and projectile element

parameters: R i = I).{)9, Ro = ().1(), zI = ().05 and z2 = 0.06 meters, we find (using Slingshot
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aM,/ ;)2M
inductance _:alculation): Mi i = 2.9x1{}"6 H, _; • = 6.blxl(} 5 Him and 7-:_ ,/ : 7._xl{I 4 Him 2,at"

Thus the ratio between the transverse force (for x = 3x 1I}4 m) arid the total radial force (given

by' Ft.- lili 0Mij/Or) for these elements is: Fx/F r = l.'7xl{} -3. This is a relatively small force but

is not insignificant. This example gives a rough estimate of the transverse force between a ct}il

and a projectile element. Since the second radial derivative of the mutual inductance can vary

significantly with axial separation, the transverse force is also at strong function of the axial

separation.

In addition to the transverse force, there is a net torque due to the distribution of the axial

force in the azimuthal direction, which is given by the third term on the P,HS of Eq. (5). rising

;he expression for the radial magnetic field given by Eel, (6), we find the axial force distributima

along the projectile element for small displacements is given by:

F: ( _It) = -JIB, ( _ )

where J,i is the current density of the projectile element. This equation assumes that the cross

section of the element is srnall enough so that there is no significant field variation across it.

Multiplying by the moment arm, with respect to projectile axis {r' sin {q_') ), and integrating over

the volume and keeping lowest order terms in displacement we find (see Fig. (2)):

1,1/ a2M,:/
Id_r ' [r'sintp'] ( ) =F z /'.To-) /'[)y.

, {l(})

where r is the projectile element radius and x is the displacement. Equations (9) and (1(}) can

now be summed over coil and projectile elements and used in the equations of motion.

IV. C_oiI-Proiectile Interaetiqn_- Tilted Projeglile Elem_nl

If the projectile element axis is tilted at an angle _ with respect to the unperturbed axis, we

can write the magnetic field due to the coil along the projectile element azimuth as'

_ o% )B:(_I') 2=,' 'k,aT {-},.az (rbLsin/l/} (11)
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Equations (13), (14) and (15) are the force and torque on a tilted projectile elelnent due to an
unperturbed coil. If the coil is tilted by an angle It, the projectile-coil system can be rotated by an
angle (-It) and is thus equivalent to an unperturbed coil and a projectile element that is tilted by

an angle (-_) and displaced by an amount Zijsin(-la), where Zij is the axial separation between
coil and projectile element. Since only small displacements and tilts arc considered (,only first
order terms are kept), the resulting transverse force and torque add linearly for a combined tilt
and displacement.

V. Analysis/of Projectile Stabilit_ for_a Mulli-Cgjll4tunchq;r

In a real electromagnetic launcher the projectile is made up of many elements, each of
which is acted upon by several coils. Since the projectile is assumed rigid, projectile-projectile
interactions need not be considered. We assume that each coil has a tilt lai and displacement xi.

Thus the effective tilt for each projectile element is (0-pi) and the effective displacenaent is

(X, + Ozj- Zij_i- xi), where zj is the element's axial position with respect to the projectile

center of mass and Zij is the distance between centers of coil and element. Using the above
expressions for transverse force and torque due to displacement and tilt and summing over coils
and projectile elements (replace integrals over dz' by summation over projectile elements), the
equations of motion become:

-)

t,)

and

Mp 12d20 lil i r-)Mii _)Mii "_
-- -oO(t) Z.--- " -- (0 _.li) " ' --Fij ) -- ( (

l]

where Aij and l-'i.i are given by:

A j.. = (x +zjO-._'i-Z(j_i)._. c-)r2 -tj(O-_ti)-_/_-

and

a2Mu '17Fij = t)(x,,+ ZiO-xi-Z6pi)OrOz Oz.. .
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The sun1 over i is over till coils and sum over j is over all projectile elements. Equations (16) and

(17) can be easily incorporated in the Slingshot code and for a given coil displacement and tilt

F_rofiles these equations can be solved to yield the projectile displacement and rotation as a
function of time. This can then be used to determine the stresses on the flyway tube.

Both coil displacement and tilt lead to projectile displacement and rotation of similar

magnitudes. Thus without loss of generality we restrict ourselves to the case with only coil

displacelnent. Since the equations of motion need to be solved for ×o and 0 as functions of time,

. it is useful to isolate these variables in Eqs. (15) and (16). Doing this, and assuming all the lai's

are zero, these equations can be written in the form:

d ":v,,
..........,= A.v, + BO + C (18)
dt"

d'O
............_ - ocx,,+ _0 +7 (19)
dr"

where the coefficients are functions of time and are given by:

l Ui ( a2M,j)B - MI, E(-2-) zJZ¢_ -ri_)U

-i iil t' O2Mii

c= .i.j 2 _r"

o_=3 B
..)

i"

3 ill i (.,'_'_"mij , O'Mij r2_) M(i 2

' _} - 12Mp _ij ( _ ) I"'f_ _ - 2"JtJ_[70_ + j _ - 2zj_z rjr_' - -jkl3
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Y 12Mt, 6 ,- k Or .lOrOz

The terms C and _,are the forcing terms and they are proportional to the displacement of the coils.
Since we only considered first order terms in displacement and rotation the equations of motion
are linear and thus are only valid for small perturbations.

i,

Even though all the terms in the coefficients of Eqs. (18) and (19) have strong time
dependence, we expect that these coefficients represented by the sums over coils and projectile
elements are only slowly varying in time similar to the axial acceleration. Of course we expect
very fast oscillations in these coefficients similar to those in the axial acceleration due to the
discreteness of the coils and fast rise time, but the amplitude of these oscillations is small and the
projectile uansverse motion is not expected to respond to these oscillations. Another slow time
variation of the coefficients is expected because of finite slip speeds. Because of the slow time
variation (.over many coils) we can approximate these coefficients by constants and get a
reasonably good idea about the resonant fretillencies of the launcher. These resonant frequencies
are found from the roots oi"the characteristic equation which is obtained by assuming solulions

of the form ei(°tirathe homogeneous equations of motion, thai ix roots of the equations:

-.)

- co'x,-Ax,,- BO = t)

-1:020-0'.X-[30 = ()

or:

,_ ,-}

(to'-+A) (_'-+ [3)-o_B = ()

with solutions:

ff "l, -(A+_) _+ (A-_)'+4c_B
(o- = (21))2

Equation (21))shows that there is the possibility of unstable solutions, depending on the values

of the coefficients, if A and 13are negative and ]A + [3[> J(A - {3)2+ 4(y.B then all solutions are
stable, otherwise projectile transverse motion ix unstable. We note that for all values of the

coefficients, there exists a value of the flyway restoring force constant k that would make A+_
large enough negative to stabilize the motion.
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For a .,,;t;abl¢f_rojuctil¢, lhott, itl't" twt,Jfreqm.,nui¢,,,;giw.,n hy Eq. (2())at Which the proj,,.'utii¢
can natu..,lly oscillal,,.'. If tl]¢ coil,',;life' Ctisplaccd al ;a t.'Ul'lilill axial vvavC]_'ll_lll)L. lh¢ f()l'cill_ terllls

i(I) i

_ivcn by (" and 7 it] l:::t],',,;.(I 8,19) will haw: a tiln¢ _,telwnd,,.,ncerougl]ly (.if iliu i'lwl'n _.' , vvh,,,rc

(i.) --- (2ZI'.)/_, illl(l Vz iS lht' ]_rojcclilc axial spc'cd. If (g, inatcllt's ont" i_l" lilt, lliiltlrill

. frc'tltwnui¢.s, a rc'sowdnuc condili_m will develop which will renull in a seuularly _rowing
osc'illalii_n atllpliludt'. I lowew.,r, since v,, ix a chan_in_ l'unulion M, liln¢, lhis lus_tnam:tt c:itndilion

will nol he tnaitliaii]u'_l. After lhc' rcsc_nance,II]¢ lwojeclilu will t,onlinu¢ h-ti_scillale al ils nalliral
frrtlut'nuie,,; with it c,ltrliril:,utiCtrl due to II1¢ lk_rcizl._lernt, l_i]y.',;iuizlly il in t,xlx, c.l_'CIlhill ,,.'_til
displaccnsenl will lw randomly (lislrilmlttd uxially in lht" launcl]cr. In slluh il CilSt,_mwlh ol lht'
disl_lac¢iilcnl anlplilud¢ due Iort, sormm.'c"will dt'fwml _ttl lhe di.slrilmlicm _I wav_'lenglhs ill lht'
displaccnwnl l_rofiles.

Vl, Numerical _9!lilion and Re_zlls

As mentioned f_reviously, the uomplexiiy __t the c_)efficierus of the ecltialitms _tt"rnltii_til
twcCssitate,',;it ntinwrical ,,,;_luti_.tnin order lit _fl'_taitlqtmntitative inlormati_ttl alxtut stability anll
disl_lacetnenl _rowtl]. Iml_lemontatillrl oI" such it numerical ,_olutiot] is .strai_l]tl'orward it] the

Slingshot code. ,",ilingsl-w_tis a 2-I) simulation code lha! represents elcc'lromagnt'tiu inleraciions
between coils and pr_tjectile elemt'nis by a circuit model. The uin.'uil t'qualion,_ s_Ived arc w:ty

.similar to thi)su' in lhu WARI'-I()code described in Rcf. (3). In Slingshot llle mtiltlal inductatlce.s
aml their radial and axial derivatives arc c'alculated analytically for circtular loops of I't'utangtilar
cross ,,,;¢cti_n using l.,yle's rnetht_d. The :,;ct'ond order derivative terms in the coefficients ill

Eq,,;. (18,19) are evaltmted numerically using the Slingslml values of the firsl derivalivcs. 'l'h¢

equations c_f motion are then integrated using the normal ,Slingshot time step in a Icap-l'rog
alD_rilhrn.

Several simulations were run for lhe 2() rnt'ter navy _un parlimelers, will] a solid aluminum
arnmiure. The l_ararneters u,,,;edare m,;follow,,,;:

Projectile: ri = ().(155m, r_,= (1.1)95m, L = 21 = (1.4m

C_i]s (27() slagt,s): r i =. I()5 rn, r_ = (). 185 m, thickness =-(i.()6, fill l:aclor = ().2

gap =(i.()!5 m.

('apacitor,<_: C = 16()()I.tF

Volta_,¢'. 5 @ 2(i kV, 5 (Ct)24 kV, 5 (_iJ28 k V, 5 O) 32 kV, 5 (a) 35 kV, 5 (a) 37 kV,

24{1@ 4{1kV (1.2 M,I/stage)

('ircuit Parameters: Ra = I !1_1_,Rh _ 25 m_;l, Rc,= ! ln_,;_,

1,a = (). I t.llt, l-,h= 7.5 lollI, L c = I). 1 lull

' Initial coil lind projttclile l¢lllpt_l'altll't: -- 2() ('

"l'olal pr_tieuiile i1111,',;_= fill kg

lnilial speed = Ill m/see
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Proportional slip is used with o_= 12x10"3

Rise length = 0.18 m

Number of turns: Determined by the code based on a fixed rise length.

For these parameters the final velocity is Vf = 1791 m/sec. The grading of the coil energy for the

first 30 stages is for the purpose of controlling the temperature rise. (6) For the above parameters,
the value of the flyway spring constant for which the displacement solution is stable is

2
k = 1.0xl08 N/m 2. This is also the value for which _2 (t) is non-negative for all time.

We performed three simulations with k = 1.5x108 N/m 2 and using the following coil
displacement profiles:

21r,z i
(1-2) x i = Aosin (---_)

(3) xi = 2A o [0.5 - R]

where zi and xi are the axial location and displacement of the ith coil respectively and R is a
random number (between 0.0 and 1.0). In Fig. (3) the projectile axial history is shown and in
Fig. (4) the coefficients of the equations of motion A,B, ct, and 13and the resulting natural
frequencies co1 and 0,2 are shown. These coefficients and frequencies are independent of the coil

displacement profile. The external force coefficients C and 7 along with the displacement and
rotation are shown vs. projectile axial position in Figs. (5-7) for three coil displacement profiles.
In these figures we also show plots of the displacement and rotation vs. time. As expected, the
forcing terms C and Tshow the nature of the coil displacements at the imposed wavelengths with
a time dependent amplitude. Although the coefficients vary with time, the basic mechanism for
growth of the transverse displacement and rotation is as discussed in the previous section, namely
due to resonant interaction with the driving forces. The case with random coil displacement also
shows significant amplitudes, but slightly less than the other two cases. The reason for this
growth is the existence of long wavelengths components in the driving forces as can be readily
seen in the plots of C and 7. For a more detailed description of the distribution of wavelengths,
an FFF could be applied.

In the figures, the transverse oscillations continue after the projectile leaves the launcher
(20 meters). This is because the flyway restoring forces are not turned off in the simulations 'after
the projectile leaves. After the projectile leaves, all the coil forces go to zero and the Iimit of the

natural frequency becomes: coI = °)2 = _/kl/Mp. This causes the observed increase in
wavelength and amplitude.
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For a coil displacement of 1 mm, the transverse oscillation amplitude is approximately

4ram for a flyway constant of 1.5x108 N/m 2. In this case the transverse force per unit length

exerted by the flyway tube is: F r = kx o = 6x105 N/m. If this force is distributed over a fraction

of the circumference, the pressure is: P = Fr/(2_R_t) = 50 bars, which is reasonable. For a

• more accurate estimate of the transverse pressure, the restoring force law needs to be modified
to account for the detailed structures used in the launcher. The projectile transverse velocity at
the muzzle is roughly 5 m/sec, which is less than 0.3% of the axial velocity. The rotation

' frequency at the muzzle (d0/dt) is roughly 3 Hz, which can be easily spin stabilized.

Vl. Summary of Results

The equations of motion for both translation and rotation of a projectile in an
electromagnetic induction launcher were derived. The electromagnetic interactions between
coils and displaced or tilted projectile elements were calculated based on a first order
perturbation method, assuming that the perturbed current flows in an azimuthally symmetric
fashion with respect to the displaced projectile element. To account for the breaking of this
symmetry a 3-D model is required in which fields and currents would have to be calculated at all
points in the projectile. The usefulness of the present model is the fact that it provides an upper
limit estimate of the transverse forces and displacements and the relative ease of incorporating it
in the 2-D Slingshot code.

Depending on the parameters, the transverse motion can be unstable. However, by
increasing the spring constant for the flyway tube the motion can be stabilized in those situations.
For the 20 meter navy gun parameters, and restoring force per unit length proportional to the local

displacement, the value of the spring constant for which stable motion occurs is k-- 1.0xl08

N/m 2. Numerical simulations were performed for the 20 meter navy gun parameters with

k = 1.5xl() s N/m2 and the resulting displacements are of the order of 4 turn, for coil

displacements of 1 mm amplitude. For these values, a rough estimate of the transverse pressure
on the flyway tube is about 50 bars. The growth in amplitude is due to a resonant interaction
between projectile and the coil displacement profile. This resonant interaction does not persist
because of the rapidly changing axial velocity. The higher the axial velocity, the longer the
wavelength required for resonance.

The restoring force law used in the above analysis is highly idealized and is certainly not
adequate to describe the complex structure of a launcher. An accurate description of the restoring
force law is needed in which both axial and transverse dependences are prescribed. Such a
prescription can be easily implemented in the numerical solution.

o
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