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Abstract

The transverse motion of a projectile in an electromagnetic induction launcher is considered.
The equations of motion for translation and rotation are derived assuming a rigid projectile and a
flyway restoring force per unit length that is proportional to the local displacement. Transverse
forces and torques due to energized coils are derived for displaced or tilted projectile elements
based on a first order perturbation method. The resulting equations of motion for a rigid projectile
composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system
of equations and a simple stability condition is derived. The equations of motion are incorporated
into the 2-D Slingshot code and numerical solutions for the transverse motion are obtained. For the
20) meter navy launcher parameters we find that stability is achieved with a flyway spring constant

of k = 1x10% N/m2. For k = 1.5x10® N/m? and sample coil misalignment modeled as a sine wave
of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a
maximum of 4 mm. This growth is due to resonance between the natural frequency of the
projectile transverse motion and the coil displacement wavelength. This resonance does not persist
because of the changing axial velocity. Random coil displacement is also found to cause roughly
the same projectile displacement. For the maximum displacement a rough estimate of the
transverse pressure is 50 bars.
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I. Intr ion

The electromagnetic induction launcher accelerates a conducting armature by inducing

armature currents opposite to the coil current, which result in a repulsive axial force that accelerates
9 - . Coe .

the armature.'!%) Because of the finite resistivity the armature current decays and the magnetic
field diffuses into the armature. For a solid armature, if the firing position of the coils is advanced
(slipped) to account for tield diffusion, near constant axial acceleration can be maintained.”?) For
a wound armature,™) no slipping is needed, but there is still field diffusion due to the finite
resistivity resulting in an L/R decay of the acceleration. Because of the favorable distribution of
current density in a wound aramature, voltage reversal can be used to significantly improve
performance.

Although the acceleration is only in the axial direction, there are very large radial forces that
act on both projectile and coils. Slight mis-alignments of coils can result in net transverse forces
and torques on the projectile resulting in transverse motion. It is very important to insure that this
motion is stable and to estimate the maximum amplitudes and induced stresses that result. This is
the subject of this work. In section Il we derive the equations of motion for both translation and
rotation assuming a rigid projectile. It is assumed that the flyway tube restoring forces per unit
length are proportional to the local displacement. In sections I and IV we derive the
electromagnetic forces and torques that result when a projectile element is displaced or tilted from
the axis of a coil, based on a first order perturbation method. In section V we write the equations
of motion, for a multiple element projectile in a real launcher with many coils, in the form of
coupled oscillators and consider the question of stability. Implementation of the transverse motion
calculation in the Slingshot code® is then described in section V1. We also show numerical results
of transverse motion using the modified Slingshot for the 20 meter navy gun parameters for a solid
armature. Finally in section VI, the results are summarized. Presently we are working on an
implementation of transverse motion in Slingshot for a wound armature and also are considering
the etfects of more accurate flyway tube restoring forces. Since the physical restoring forces in
launcher are functions of the axial position, it is expected that transverse motion will be
significantly aftected by this dependence.

II. Transverse Equations of Motion

In the one dimensional case the projectile transverse motion can be described by two
variables x,,, the displacement of the projectile center of mass and 0, the angle of rotation of the
projectile axis with respect to the unperturbed axis. This is illustrated in Fig. (1). The projectile is
assumed to be rigid and symmetric with respect to the center of mass and is assumed to have no
spin. The extension to spinning projectiles and two transverse dimensions will be briefly
considered at the end of this section. The projectile displacement is given as a function of time and
distance along the projectile by:

y(6o') = x,+:2'sin6 ~x +2'0 (1)
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where z" is the length along the projectile measured from the center. We assume that the transverse
forces due to the coils are given per unit length by f.(t:z") and the flyway restoring force per unit
length is given by: f, (f;2') = —kx (£;z') . This later assumption needs to be modified according to
the physical response of the flyway tube material. Modification of the above force to act only on a
certain length of the projectile, for example the front or rear, results only in a change in the
coefficients in the equations of motion. We can write the equation of motion for the center of mass
by integrating over all the transverse forces and we get:

d, Lo

M = jdz'j,(r;z') —2klx (1) (2)
P2 ( 0
dt )

where My, is the total projectile mass and / is the half length. The equation for the rotation angle 0
is more complex and can be derived by considering the projectile angular momentum. The angular
momentum with respect to a fixed point (in the lab frame) located on the unperturbed axis is found
to be:

. , dx, [ de
L=M,(-xv,+—- 2+

— )P 3
AT Ve )

where v, is the axial speed and z is the distance of the projectile center of mass from the fixed
reference point. The equation of motion is: dL/dt = %, where T is the applied torque. The

resulting equation is:

2 5,2 l
dv, dx, 17/‘91 o o 3,
M, — X ti— g = sz (z'+2) (/. + 1) -—Jd rxF, 4)
Code g 3af ),
where F_ is the axial force per unit volume on the projectile, X is the moment arm given by:

= ' [ t . ‘ v . . N
X =x,+2'0+r'sin (@), and the integral over « 1" is over the projectile volume. that is

3 1 \ ] 1 ] 3 ' i . . . . N B
d'r' = r'dr'de'dz' with ¢ and @' measured with respect to the projectile axis. Since the axial
equation of motion just gives the acceleration in terms of the total axial force, that is

dv. , ) ‘
M/’_d‘tL = Jd"r'F?_, and (l“_\'”/(lf2 is described by Eq. (2), Eqg. (4) reduces to:
M, d% | )
{ . v -
Sl = J( 2z f (n2) =000 f, (12} ] —j(lxr" [rsing'| .= 200 (1) (5)
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where f, is the axial force per unit length, that is F, integrated over the projectile cross section. The
first term on the RHS of Eq. (5) is torque due to coil transverse forces and can be either stabilizing
or destabilizing. The second term is the torque due to the axial force and is stabilizing if the tforce
is concentrated toward the front of the projectile and destabilizing if it is concentrated toward the
rear. The third term is the torque due to asymmetry of the axial force in the azimuthal coordinate.
This also can be either stabilizing or destabilizing. The fourth term is the restoring torque due to
reaction of the flyway tube and is always stabilizing. Thus if the coil-projectile interactions are
known, the above equations can be solved and the flyway tube displacement and stress protiles can
be obtained.

For the case of a projectile with spin, all three dimensions have to be considered. If the
projectile spins with an angular frequency w, and the rotation angles along x and y are denoted by
By and 6y, then for small rotation angles, the angular momentum vector is given by:

a

L=1,0:+65+8679)

where I, is the moment of inertia givenby: [, = M K /2. With the assumption of axi-symmetry

(to zeroth order), the torque in the axial direction is zero and thus the axial component of dL/dt is

. . . dL (/9\» (/9\.
zero, which implies that w is constant in time. Thus we have: o= [, w( —)77,? + -77'_?) . The
¢ [¢ ¢

effect of these spin terms has to be compared with other terms in Eq. (5). For a fixed torque, and if
w is large, dB/dt will be small and thus spin will have the effect of reducing rotational motion. We
also note that since the spin term in the angular momentum equation is first order in do/dt, it is a
damping term. How much damping there is will depend on the relative magnitudes of the terms.

1L ' jecti i )i jectile &

We first consider the transverse force and torque on a projectile element that results when it
is displaced co-axially from 4 coil by a small amount. Using the fact that the magnetic flux at a

projectile element due to coil current I; is given by: (Dij = M;l;, where Mj; is the mutual

inductance between the coil (denoted by i) and the projectile element (denoted by j), we find that
the axial and radial magnetic fields can be written as:

B,(r,z) = z=—=",and B (r,z) = TTEP ~

S 2nror (®)

Now if the projectile element is displaced a distance x, we can still write the axial field along the
projectile element as:
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1,‘ a . 1,’ a ~
B, (y) = mé":M,‘j(I‘) . B.(y) = 'mg;M;j(") 7

where r and y are the radius and angle measured from the unperturbed center (see Fig. (2)), and

I; is the perturbed coil current. The net transverse force on the projectile element for small
displacements can be written as:

2n

Fo= [dy(rsing) 18, (y)

0

2n

= (aylisi (aMi/' IM,; )
= ;)-«—7{;[(\” ,-j.sln\p 5 +a,.3 (r—r)

Keeping lowest order terms in the displacement we find: ¥ = r+ xsin (y) and thus the trangverse
force to lowest order is given by:

F = _.’_/’\'W_)_ b (())

In writing Eq. (8) we have assumed that the current density of the projectile element under
consideration remains uniform and the current is along the azimuthal direction only. This is true
for projectiles that are thin compared to a skin depth or for litz type elements. For a solid projectile,
the current flow pattern might become very complex as the projectile is displaced and fields are
setup to maintain the magnetic field. To do this problem correctly a 3-D solution is required.
However, the above analysis yields an upper limit on the transverse force for the solid projectile
case. The reason for this assertion is the fact that for a perfectly conducting projectile, the magnetic
field would be frozen implying that the current would also be frozen with respect to unperturbed
space as the projectile is displaced. In this case the net transverse force would vanish. For finite
resistivity we expect that the net transverse force will be somewhere between the perfectly
conducting and uniform current density cases. The second derivative term of the mutual
inductance in Eq. (9) can (+) or (-) depending on the details of the geometry. Thus the transverse
force can be stabilizing or destabilizing. In general if Ll; <0, and if the projectile element radius is
smaller than the coil radius, this force is stabilizing for small axial separation and destabilizing for
large axial separations. As a numerical example we consider coil parameters (navy gun):
R;=0.105, Ry = 0.155, z; = 0.0 and z; = (.05 meters with 20 turns and projectile element
parameters: R; = 0.09, R, = 0.10, z; = 0.05 and zy = 0.06 meters, we find (using Slingshot
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; ¢ M, -5 M, -4 2

inductance caleulation): M;j; = 2.9x10™ H, 3 = 6.8x10™ H/m and —— 7 = 7.8x10™ H/m=,
‘ e 5
di

Thus the ratio between the transverse force (for x = 3x10°* m) and the total radial force {given
by: F, = Ijl OM;;/dr) for these elements is: Fy/F; = 1.7x1073, This is u relatively small force but
is not insignificant. This example gives a rough estimate of the transverse force between a coil
and 4 projectile element. Since the second radial derivative of the mutual inductance can vary
significantly with axial separation, the transverse force is also a strong function of the axial
separation.

In addition to the transverse force, there is a net torque due to the distribution of the axial
force in the azimuthal direction, which is given by the third term on the RHS of Eqy. (5). Using
the expression for the radial magnetic field given by Eq. (6), we find the axial force distribution
along the projectile element for small displacements is given by:

F.(y) = =/B.(y)

1J.(0M; OM,; )
I Y .
21y \dz dzor

/ (’.__’.)

where J; is the current density of the projectile element. This equation assumes that the cross
section of the element is small enough so that there is no significant field variation across it
Muitiplying by the moment arm, with respect to projectile axis (# sin (@') ), and integrating over
the volume and keeping lowest order terms in displacement we find (see Fig. (2)):

ST - lil; azMi,'
J(/ rrsing' | FLo(y) = »«51-1',\‘3;—-.(.);
- - (10

where 1 is the projectile element radius and x is the displacement. Equations (9) and (10) can
now be summed over coil and projectile elements and used in the equations of motion.

IV,

If the projectile element axis is tilted at an angle @ with respect to the unperturbed axis, we
can write the magnetic field due to the coil along the projectile element azimuth as:

B, ) o= ] —_—— . o1
Sy Zm'l‘ (ar 53 (rpesimy) J (11)



and

o (M oM,
B,.(y) = :’7{1—'," 3 —-)—»—i (rusiny) (12)
- “ 0z

In Egs. (11-12) we have assumed that p « 1 and kept only lowest order terms. Carrying out the
proper integrals over the projectile element azimuth, the lowest order transverse force is:

: Im/ B in ( iy OM,) 13
Fo= ‘,'(J; dyrB. (y) sin(y) = =5 Uraer (13)
The axial force per unit volume along the projectile element is F_(y) = =/;B, (y) and the

resulting torque is (third term on RHS of Eq. (5)):

n

J(lxr' [r'sing'| F,(y) = _I_/‘J(I‘V"Br(“’) [7siny]
0

= —,l.:[“,‘ .._-.j-_ ” (14)

Equations (13) and (14) are the required terms in the angular momentum equation. Also note that
the sign of the torque is already taken care of in Eq. (5). Another term that is not accounted for
in the angular momentum equation is the torque due to the zeroth order radial force,

Foly) = 1B, (y) siny, combined with a tilt. This torque results from the radial force acting

with a moment arm of magnitude —rysiny and is given by:

2n

T)' = —/.}.J‘(I\W‘Bl (W) siny [rasiny|
0

iy E)M"/
= =Lyt 5
2 l'“())‘ (15

e
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Equations (13), (14) and (15) are the force and torque on a tilted projectile element due to an
unperturbed coil. If the coil is tilted by an angle p, the projectile-coil system can be rotated by an
angle (-1t) and is thus equivalent to an unperturbed coil and a projectile element that is tilted by
an angle (-1) and displaced by an amount Zijsin(-u)‘ where Zij 1s the axial separation between
coil and projectile element. Since only small displacements and tilts are considered (only first
order terms are kept), the resulting transverse force and torque add linearly for a combined tilt
and displacement.

V. f

In a real electromagnetic launcher the projectile is made up of many elements, each of
which is acted upon by several coils. Since the projectile is assumed rigid, projectile-projectile
interactions need not be considered. We assume that each coil has a tilt 1 and displacement ;.
Thus the effective tilt for each projectile element is (0—y;) and the effective displacement is

(x,+8z,-Z,0,—x;), where z; is the element’s axiul position with respect to the projectile

center of mass and Z;; is the distance between centers of coil and element. Using the above
expressions for transverse force and torque due to displacement and tilt and summing over coils
and projectile elements (replace integrals over dz’ by summation over projectile elements), the
equations of motion become:

¢ 11,
= Y A A= 2k1x, (1) (16)
dr” goc
and
M, do 1.1, oM, oM 7
—i’-r;;z_ = 35 (A =20(0z5- = (8- ry =T - il“ke (N (17)
. ” e o o
where A;j and I%jj are given by:
2 2
/\ — . - e . Z M” . e MU
g = | Wt 38 Zyi) o5 T (8-
al
and
| M, oM,
Py = ("f S R e P A
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The sum over i is over all coils and sum over j is over all projectile elements. Equations (16) and
(17) can be easily incorporated in the Slingshot code and for a given coil displacement and tilt
profiles these equations can be solved to yield the projectile displacement and rotation as a

tunction of time, This can then be used to determine the stresses on the flyway tube.

Both coil displacement and tilt lead to projectile displacement and rotation of similar
magnitudes. Thus without loss of generality we restrict ourselves to the case with only coil
displacement. Since the equations of motion need to be solved for x, and 8 as functions of time,

it is useful to isolate these variables in Egs. (15) and (16). Doing this, and assuming all the p;’s

are zero, these equations can be written in the form:

d 2\'”

S = AN, R RO C
dr

'

‘ o= o+ PO+
dt”

where the coefficients are functions of time and are given by:

| LLoMy
A= MIHE} 1)’2“}

2 4.2
I-d’.

IM.. oM,
B = — (.LJ) (7,_‘« I'/_-,"__.._._.y)
M, & 2 " \"y,2 1droz

C =+ i3

P ar
o = 3[-}

JE

2 2 2 -
B = 3 z (Q!l) (~2wlj - 27,2&4_{1.{. ’2M',— 22?_/.‘./!'}
v S 2 I 9,2 Figroz T 52 J0z
I)
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L, Paw% oM

3
V= o 50 5y T
/m@%; 2\t drdz )

The terms C and 7y are the forcing terms and they are proportional to the displacement of the coils,
Since we only considered first order terms in displacement and rotation the equations of motion
are linear and thus are only valid for small perturbations.

Even though all the terms in the coefficients of Eys. (18) and (19) have strong time
dependence, we expect that these coefficients represented by the sums over coils and projectile
elements are only slowly varying in time similar to the axial acceleration. Of course we expect
very fast oscillations in these coefficients similar to those in the axial acceleration due to the
discreteness of the coils and tast rise time, but the amplitude of these oscillations is small and the
projectile transverse motion is not expected to respond to these oscillations. Another slow time
variation of the coefficients is expected because of finite slip speeds. Because of the slow time
variation (over many coils) we can approximate these coefficients by constunts and get a
reasonably good idea about the resonant frequencies of the launcher. These resonant frequencies
are found from the roots of the characteristic equation which is obtained by assuming solutions

it

of the form e™ in the homogeneous equations of motion, that is roots of the equations:

- (1)2.\‘“ -Ax,-B6 =0
- w8 -ox,-BO = 0
or:

(W' +A) (0 +P)—aB =0

with solutions:

-

ST (20)

DY = el

= (A+P) iﬁA~B)2+4aB
—— kg

Equation (20) shows that there is the possibility of unstable solutions, depending on the values

A Nve . N 0 ) 2 .
of the coetficients. If A und 3 are negative and |4 + f3] > M~ B)~ +4oaB then all solutions are
stable, otherwise projectile transverse motion is unstable. We note that for all values of the

coefficients, there exists a value of the flyway restoring force constant & that would make A+f3
large enough negative to stabilize the motion.

-12-



For a stable projectile, there are two frequencies given by Eq. (20) at which the projectile
can natu, ally oscitlate, If the cotls are displaced at a certain axial wavelength A the forcing terms

. 3 B N . . . R (g

given by Cand yin Eqs. (18,19) will have a time dependence roughly of the form ¢ where
w = (2ry) /A, and v, is the projectile axial speed. It w, matches one of the natural
frequencies, @ resonance condition will develop which will result in o secularly prowing
oscillation amplitude. However, since v, is a changing function of time, this resonance condition
will not be naintained. After the resonance. the projectile will continue to oscillate at its natural
frequencies with a contribution due to the forcing term. Physically it is expected that coil
displucement will be randomly distributed axially in the launcher. In such a case growth of the
displacement amplitude due to resonance will depend on the distribution of wavelengths in the
displacement profiles.

As mentioned previously, the complexity ot the coefficients of the equations of motion
necessitates a numerical solution in order to obtain quantitative information about stability and
displacement growth. Implementation of such a numerical solution is straightforward in the
Slingshot code. Slingshot is a 2-D simulation code that represents electromagnetic interactions
between coils and projectile elements by a circuit model. The circuit equations solved are very
similar to those in the WARP-10 code described in Ref. (3). In Slingshot the mutual inductances
and their radial and axial derivatives are calculated analytically for circular loops of rectungular
cross section using Lyle's method. The second order derivative terms in the coefficients of
Eqs. (18,19) are evaluated numerically using the Slingshot values of the tirst derivatives. The
equations of motion are then integrated using the normal Slingshot time step in a leap-frog
algorithm.

Several simulations were run for the 20 meter navy gun parameters, with a solid aluminum
armature. The parameters used are as follows:
Projectile:  r;=0.055m, r1,=0.095m, L=2/=04m
Coils (270 stages): ry=.105m, r,=0.185m, thickness = 0.06, fill factor = (.2
gap =0.015m,
Capacitors: € = 1600 puF
Voltage: 5@ 20kV, 5@ 24kV, 5@ 28 kV, 5@ 32kV, 5@ 35kV. 5@ 37kV,
240 @ 40 kV (1.2 Ml/stage)
Circuit Parameters: R, =1 m&, R =25 mQ, R =1 mi2,
Ly=00pH, Ly =25uH, L, =0.1 uH
Initial coil and projectile temperature = 20 C
Total projectile mass = 60 kg

[nitial speed = 10 m/sec

-13-




Proportional slip is used with o = 12x1073
Rise length =0.18 m
Number of turns: Determined by the code based on a fixed rise length.

For these parameters the final velocity is V¢ = 1791 m/sec. The grading of the coil energy for the

first 30 stages is for the purpose of controlling the temperature rise.®) For the above parameters,
the value of the flyway spring constant for which the displacement solution is stable is

k= 1.0x10° N/m2. This is also the value for which w2 (¢) is non-negative for all time.
2

We performed three simulations with k = 1.5x10® N/m? and using the following coil
displacement profiles:

2nz;
(1-2) x; = A(,sin(T)

1}

3)  x; = 24,[05-R]

!

where z; and x; are the axial location and displacement of the ith coil respectively and R is a

random number (between 0.0 and 1.0). In Fig. (3) the projectile axial history is shown and in
Fig. (4) the coefficients of the equations of motion A,B, a, and B and the resulting natural
frequencies ; and o\, are shown. These coefficients and frequencies are independent of the coil

displacement profile. The external force coefficients C and v along with the displacement and
rotation are shown vs. projectile axial position in Figs. (5-7) for three coil displacement profiles.
In these figures we also show plots of the displacement and rotation vs. time. As expected, the
forcing terms C and y show the nature of the coil displacements at the imposed wavelengths with
a time dependent amplitude. Although the coefficients vary with time, the basic mechanism for
growth of the transverse displacement and rotation is as discussed in the previous section, namely
due to resonant interaction with the driving forces. The case with random coil displacement also
shows significant amplitudes, but slightly less than the other two cases. The reason for this
growth is the existence of long wavelengths components in the driving forces as can be readily
seen in the plots of C and 7. For a more detailed description of the distribution of wavelengths,
an FFT could be applied.

In the figures, the transverse oscillations continue after the projectile leaves the launcher
(20 meters). This is because the flyway restoring forces are not turned off in the simulations after
the projectile leaves. After the projectile leaves, all the coil forces go to zero and the limit of the

natural frequency becomes: ®, = @, = ./kl/Mp. This causes the observed increase in

1 2

wavelength and amplitude.
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For a coil displacement of 1 mm, the transverse oscillation amplitude is approximately
4mm for a flyway constant of 1.5x108 N/m?. In this case the ansverse force per unit length
exerted by the flyway tube is: F, = kx, = 6x10° N/m. If this force is distributed over a fraction

1 of the circumterence, the pressure is: P = F,/ (2rRu) = 50 bars, which is reasonable. For a

more accurate estimate of the transverse pressure, the restoring force law needs to be modified
to account for the detailed structures used in the launcher. The projectile transverse velocity at
the muzzle is roughly 5 m/sec, which is less than 0.3% of the axial velocity. The rotation
frequency at the muzzle (d6/dt) is roughly 3 Hz, which can be easily spin stabilized.

VI. Summary of Results

The equations of motion for both translation and rotation of a projectile in an
electromagnetic induction launcher were derived. The electromagnetic interactions between
coils and displaced or tilted projectile elements were calculated based on a first order
perturbation method, assuming that the perturbed current flows in an azimuthally symmetric
fashion with respect to the displaced projectile element. To account for the breaking of this
symmetry a 3-D model is required in which fields and currents would have to be calculated at all
points in the projectile. The usefulness of the present model is the fact that it provides an upper
limit estimate of the transverse forces and displacements and the relative ease of incorporating it
in the 2-D Slingshot code.

Depending on the parameters, the transverse motion can be unstable. However, by
increasing the spring constant for the flyway tube the motion can be stabilized in those situations.
For the 20 meter navy gun parameters, and restoring force per unit length proportional to the local

displacement, the value of the spring constant for which stable motion occurs is & = [.0x10°
9 ) . " \ .
N/m*. Numerical simulations were performed for the 20 meter navy gun parameters with

k= 1.5x10" N/m? and the resulting displacements are of the order of 4 mm, for coil
displacements of 1 mm amplitude. For these values, a rough estimate of the transverse pressure
on the flyway tube is about 50 bars. The growth in amplitude is due to a resonant interaction
between projectile and the coil displacement profile. This resonant interaction does not persist
because of the rapidly changing axial velocity. The higher the axial velocity, the longer the
wavelength required for resonance.

The restoring force law used in the above analysis is highly idealized and is certainly not
adequate to describe the complex structure of a launcher. An accurate description of the restoring
force law is needed in which both axial and transverse dependences are prescribed. Such a
prescription can be easily implemented in the numerical solution.

-15-




References

. M. Cowan, M. M. Widner, E. C. Cnare, B. W. Duggin, R. J. Kaye and J. R. Freeman,
“Exploratory Development of the Reconnection Launcher 1986-1990,” IEEE Transactions
on Magnetics, Vol. 27, No. 1, January 1991.

. R.J. Kaye, E. L. Brawley, B. W. Duggin, E. C. Cnare, D. C. Rovang and M. W. Widner,
“Design and Performance of a Multi-Stage Cylindrical Reconnection Launcher,” IEEE
Transactions on Magnetics, Vol. 27, No. 1, January 1991.

. M. M. Widner, “WARP-10: A Numerical Simulation Model for the Cylindrical
Reconnection launcher,” IEEE Transactions on Magnetics, Vol. 27, No. 1, January 1991,

. M. Cowan and I. R. Shokair, “Advantages of a Wound Armature,” Sandia Internal memo,
March 15, 1993.

. B. M. Marder, Private Communication.

. I. R. Shokair and M. Cowan, “Summary of Navy Gun Simulations,” Sandia Internal memo
April 20, 1993.

Acknowledgments

The author would like to thank M. Cowan, R. Kaye, and B. Marder for useful discussions and

comments. This work was supported by the Department of Energy under Contract No.
DE-AC04-76DP00789.

-16-



Fig. |. Geometry of displaced projectile

Fig. 2. Cross section of displaced projectile
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