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Abstract

In this dissertation the possibility that chaos and simple determinism are governing the dynamics of
reversed field pinch {RFP) plasmas is investigated. To properly assess this possibility, data from both
numerical simulations and experiment are analyzed. A laige repertoire of nonlingar analysis techniques
is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincaré
sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In
addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to

extract any underlying deterministic dynamics.

Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which
models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models
drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos
and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and
consist of a wide array of both global and local diagnostic signals. None of the signals shows any
indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools
indicate the experimental system is very high dimensional with properties similar to noise. Nonlingar

noise reduction is unsuccessful at extracting an underlying deterministic system.
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1.__Introduction
Chaos: “...deterministic chaos denotes the irregular or chaotic motion which is
generated by nonlinear systems whose dynamical laws determine the evalution of a

state of the system .,."!

Figure 1.1 compares three time series. One of the traces is data produced by a numerical random
number generator, one trace is data from one of the standard diagnostics on the Madisan Symmetric
Torus (MST), and the third is generated from a simple deterministic equation. [t is not obvious which
signal/s is/are deterministic simply from inspection. Moreover, the data from the deterministic system
is indistinguishable from random data using most conventional tests for randomness. Advances in
nonlinear analysis teghnigues within the last decade however, now make it possible to distinguish the
two using only their time records. It is the goal of the work presented in this dissertation to establish
whether the signal from the MST may also be governed by simple deterministic equations of is better

described as a stochastic process.
11.  Brief History of Nonlinear Dynamics

Complex behavior in a system has traditionally required complex systems of equations to describe this
behavior. Work over the past 30 years or so has demonstrated that extraordinarily rich and complex
behavior can result from trivially simple systems of equations. The term “chaos” first came into use in
the late ‘'70s. However, long before this the dynamics of nonlinear equations of motion were explored
by a few hardy souls. The most influential of these, the likely father of nonlingar dynamics, was Henri
Poincaré {1854-1912). His work stressed global, qualitative understanding of a system's dynamics.
Other important characters during this earfy analyticai period include A.M. Lyapunov and G.D. Birkhoff.
Most of this work remained largely unnoticed by the general scientific community for much of this

century. The advent of electronic computers helped promote the field. In 1961, Edward Larenz, using a
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Figure 1.1. Depicted are three time traces, one from a known chaotic system, one from Gaussian
distributed random numbers and one is a measurement signal from an MST discharge.!

primitive digital computer, accidentally discovered the sensitivity to initial conditions of a simple set of
nonlinear equations used to model atmospheric convection. This set of equations now bears his name.
Using computer graphics B. Mandelbrot “discovered” the fractal set which bears his name. M.J.
Feigenbaum discovered a number of features universally present in a certain class of chaotic maps.
Around 1980 work began to turn towards identifying chaotic systems and quantifying the degree of

chaas, which is where we stand now.

This waork has led to the identification of several real systems which are governed by low dimensional
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chaotic dynamics. Low dimensional chacs ond simple determinism have been identified in the electrical
activity of the brain, heartbeats, the pattern of childhood epidemics and stellar pulsar amivily.2 Equally
important are those studies which find no evidence of a low chaotic dimension or simple determinism.

A good example is the business cycle.d
1.2.  Chaos in Plasmas

The search for evidence of chaos in plasmas has yielded mixed results. A wide range of chaotic
processes has been reported, including the transition to turbulence and the formation of magnetic
islands.? Several groups have reported identifying chaos and perio¢ uoubling behavior in glow
discharges and pulsed machines.>87:8 Low dimensional chaos has also been identified with drift wave
turbulence both in experiment and simulations.®17 In toroidal, fusion caliber devices chaos has been
reported in low frequency Mirnov oscillations in the DITE tokamak."" In TFTR low dimensional chaos
has been reported in density fluctuations measured by CO laser scattering.12 The dimension of the
system is wavenumber dependent. Finally, chaos of dimension near 7 has been reported in broadband
(0-100kHz) oscillations of both the poloidal and toroidal magnetic fields in the HBTX1A reversed field
pinch.'3 In contrast, a group measuring broadband magnetic and density fluctuations in the TCA

tokamak finds no evidence of low dimensional chaos.'

These results provide a starting point for a better understanding of plasma processes using the tools of
nonfinear dynamics. Most of these results were obtained nearly a decade ago when these tools were
new or nonexistent. In the intervening time a better understanding of the application of these methods
exists and several new techniques for identifying low dimensional chaos have been developed. Initial
reports of chaos in other systems have been reexamined and found to be lacking. Without being
specific, | think in light of this new understanding that several of the reported positive results may not

stand up to more rigorous tests.

The Madison Symmetric Torus (MST) reversed figld pinch (RFP) provides a particularly good instrument

for investigations in nonlinear dynamics in fusion plasmas. It is a large toroidal confinement device with
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discharges characterized by a spontaneous reversal of the toroidal magnetic field at the edge of the
plasma. Discharges exhibit broadband fluctuations in most measured quantities. However, most of the
fluctuation power (~ 90%) is concentrated in a few long wavelength mndos. We believe we understand
the mechanism behind these tearing mode fluctuations well, both on the basis of experimental
evidence and from numerical simulations using magnetohydrodynamic {(MHD) models of RFP
discharges. Bispectral analysis of magnetic fluctuations from experiment and simulations indicate a
three wave coupling process, linking two m =1 modes to an m =2 mode.' The point is, that although
the signals appear stochastic, the principal dynamics of the davice can be modeled computationally.

Hence, they may be the result of a chaotic or other simple deterministic process.

One of the major obstacles in achiaving viable thermonuclear power is the fluctuation-driven particle
and energy transport. The past decade has seen a tremendous effort towards correlating experimentally
observed transport with hydrodynamic models. Drift wave modals in particular have shown promise
towards explaining the anomalous ion heat loss in tokamaks. Studies of these models indicate that the
dynamics are low dimensional, despite the large number of interacting modes in the system.
Essentially, a system of ax10° equations, one for each mode, can be reduced to a system with a
topological dimension of less than 3.0 This is a very important result; Although the original phase
space is 1000 dimensional the dynamics of the system contract to a three dimensional object, an
enormous simplification. This identification of a low dimensional attractor could mean a significant
reduction in the complexity of the models needed to accurately describe the system. The applicability of
drift wave models to RFP tr:ansport is more tenuous. However, the models are sufficiently general that
many of the results are relevant to RFP physics.

Once chaos has been identified in a system, one is led to ask, aside from purely academic interest,
what good is it? Three benefits can immediately be cited. The most useful and ambitious objective
would be to simplify the equations describing the system. A plasma comprised of A particles can be

described by O(6N) ordinary differential equations. MHD simplifies this by restricting the system to a
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set of partial differential equations with only @ finite number of modes. Nonlinear processes
considerably complicate this approach, yet MHO has been particufarly successful in duscribing the
gssentials of plasma dynamics. If, however, g low dimensional chaotic attractor is identified, a lower
bound can be placed on the number of equations needed to adequately describe the system. Empirica!
evidence suggests that this number scales in some fashion with the dimension of the system, although
no concrete law exists. With such a sot of equations, one could determing the parameter space for best

confinemant or heating, determine scaling laws, etc

An objective in harnessing fusion power is control of the system. One method of control which has
recently received a lot of attention is the phenomenun of entrainment. 18171819 o, important example
of entrainment is the action of a pacemaker on the heart. Chaotic systems are densely interwoven with
nearby perioaic orbits. Small, periodic perturbations can sometime force a system to osciltate around a
periodic trajectory rather than its natural chaotic one. The converse is also true, where it may be the
objective to drive a system away fram an undesirable stablo trajectory. The applicability of entrainment
to plasma systems is untested, however it could have important consequences in controlling the growth

of certain unstable modes.

A final benefit is short term predictability. If the system shows svidence of fow dimensional chaos, then
the system is deterministic, which implies that it has short term predictability. As will be discussed,
prediction is possible even without the governing equations. This property may be used in conjunction
with the above in order to control the system, and may be particularly applicable to RFP plasmas. Most
RFP discharges are chaiacterized by aperiodic flux jumps: bursts of magnetic activity. These flux jumps
are both a boon and a bane. During flux jump activity the ions are strongly heated. However, transport
is also enhanced, resulting in tremendous particle and energy loss. In order to improve confinement, it
seems desirable to control the most severe of these flux jumps. Assuming there is a chaotic process
governing this discharge behavior, ong could predict the next flux jump occurrence a short time in the

future and possibly use feedback 10 suppress it.
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2. Essantial Chaps Theory

In light of the fact that chaos is a relatively new field of study | present here a brief overview of the
aysentials of nonlingar dynamics. The concapts prasented here ara the foundation of the rest of the
dissertation. For a more detailed treatment, the reader is invited to refer to the bibliography presented

at the end of the dissertation.
2.1,  Chaotic Systems
2.1.1. Maps

The simplast form of equations exhibiting chaos is the class of maps: x,,1=f(x,). An example is the

shift map given by:
x,+1 = 2x, mo(“ . (2-”

Figure 2.1 shows the behavior of this system as time progresses. The time series shows erratic,
random-like behavior with no detectable pattern. The signal generated by this map would pass most

tests for uniformly distributed random numbers: a histogram plot is essentially flat, as is the power
spectrum,

Not ail maps, however, exhibit chaotic behavior. For axample, the map

TYTTTYTTTTTIYY

o
~
11

Figure 2.1, Tima evolution of the shift map for the first 100 points. The system is difficult to distinguish
from random white noise.
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X=X +a  modl (2.2)

is not chaotic. In order for an equation to be chaotic the system must exhibit some form af “mixing”
behavior. The equation {2.2) does not mix in the sense that two neighboring points will always be
spatially close together as the system evolves. For the shift map eq. (2.1) however, points quickly
separate within the confines of the system. This mixing usually manifests itself as stretching and
folding. The system expands in one direction, while folding back on itself at the same time. Figure 2.2

demonstrates this behavior for the shift map. The factor of 2 stretches the system, while mod 1 folds

the range back onto the domain, effectively mixing the system.

Critical in this type of system is that there exists a set of unstable points which map back to themselves
after a finite number of iterations. Any point satisfying x = p /2™, where p and m are integers, will be
mapped onto 0 and remain there. These points are unstable in the sense that a small perturbation will
destroy this mapping andwesuit in a chaotic mapping instead. Although there are an infinite number of
such points, they comprise a set of measure zero; the likelihood of arbitrarily choosing any one is
infinitesimally small. Nonetheless it is this density of non-chaotic initial conditions which guarantees

effective mixing. These points effectively work as rocks in the flow of the system.20

In order to illustrate the more general behavior of chaotic systems | will use a system known as the

e _

4

IR
L I 3

Figure 2.2 The schematic illustrates the stretching and folding of a system which resuits in chaotic
dynamics. The twa black dots represent points initialiy close which separate exponentially.
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logistic map. This map was first developed as a model for population growth of a species constrained

by finite available resources. The map is given by:
(2.3

x40 = axy(1-x)
a is called the control parameter. Changing the value of the control parameter dramatically changes the
dynamics of the system, as shown in Fig. 2.3. For a < 3 the system approaches a fixed value. For a
slightly greater than 3, the system exhibits periodic behavior. This spontaneous transition to periodic
behavior is known as period doubling. For a = 1+V6 the period two solutions again double in period to
give stable period 4 solutions. This period doubling behavior continues as « is increased until a =
3.569..., at which point the period becomes infinite. The salution is chaatic, exhibiting random like, non
repeating behavior. The period doubling behavior can be made clearer by plotting the limiting solutions
of x versus the control parameter a, as in Fig 2.4. One can graphically see why points where period

doubling occurs are known as pitchfork bifurcations.

An important feature of chaotic dynamics is the sensitivity to initial conditions. Points spatially close

1
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Figure 2.3 The time behavior of the logistic map for 3 values of the control parameter a. The system |
exhibits stable, periodic and chaatic behavior.
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Figure 2.4 The stable solutions of the logistic map plotted as a function of the control parameter a. The
pitchfork bifurcations are clearly visible. There is a period 3 window distinguishable at «=3.8.

together initially will, on average, diverge exponentially in time within the confines of the system. This
phenomena is illustrated in Fig. 2.5. Two points separated by a distance of 1x10°% have completely
uncorrelated behavior after about 15 iterations of the logistic map. This sensitivity to initial conditions
has become the standard criterion for chaotic behavior. It is characterized by the Lyapunov exponent to

be discussed later.

Although the logistic map provides an excellent illustration of several of the basic properties of chaotic
systems, both it and the shift map are examples of symplectic chaos. This is a term applied specifically

to maps which denotes systems which have no dissipation. In this dissertation | wil! be concerned with
1

0.8

15 20 25 30 35 40
t

Figure 2.5. The evolution of the logistic map for two closely spaced initial conditions. This illustrates
the exponential divergence of chaotic trajectories.
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dissipative dynamical systems: systems whose phase space volume contracts in time. Hamiltonian
systems, though they may be chaotic, have phase space volumes which do not contract. As such, there

is no region of space, an attractor, to which nearby trajectories of the system evolve.

An example of a dissipative two dimensional map exhibiting chaos is the Hénon map introduced by M.
Hénon in 1976.2" It is defined by

Xy =1= w‘,z +y

Yie1=bx; (2.4)
The map is a quadratic map very similar to the logistic map. If & =0, a = 0, the map can in fact be
transformed into the logistic map. For @ and b both small and positive the map ¢ xhibits the same period
doubling behavior in two space as a is increased. For large enoug:. values of @, and b <1, (for b > 1
trajectories are unbounded) the map has chaotic solutions. Solutions of the map in the x y plane are
plotted in figure 2.6. The object depicted is known as a strange attractor. The atiractor is embedded on
the inertial manifold which is the contiguous region of space on which all trajectories lie. As shown in
the right half of figure 2.6, the attractor shows self similar structure on small scales, a property typical

of fractals. Fractals are geometric objects which usually have a non-integer dimension.

0.5 0.22
0.21 “;j‘-.’;'_ g
0.25 020,
0.19
> 0 >
0.18
.0.25 017
" 0.16
.—u'/f \-. B
05 Lo ] 1 | 0.15 1 1 [ L

15 4 0.5 0 0.5 1 15 0.76 0.8 0.85 X 0.9 0.95 1

Figure 2.6. The two dimensional Hénon map for @ = 1.3 and & = 0.35. The right figure shows an
expanded scale detaiting the self similar fractal structure of the strange attractor.
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The same stretching and folding that takes place in Hamiltonian systems is evidunt in dissipative
systems. However, because they are dissipative, the stretching takes place in only one dimension,
while tha total phase space volume decreases. An illustration of the process for the Hénon equation is
given in figure 2.7. It shows the action of two successive iterations of the Hénon equations on a circle
of initial conditions. The stretching and folding of the circle are evident, as is the overall volume

decrease.
2.1.2.  Ordinary Differential Equations and Strange Attractors

Although maps provide simple systems for numerical studies of chaos, they are inappropriate models
for most real systems because they are not continuous. Real systems are usually described by systems
of differential equations. The chaotic behavior gvident in one and two dimensional maps results from
the fact that the systems do not have to deform continuously from one state to the next in time.
Mapping allows the system to “jump” from one state to the next state, avoiding the intervening points.
In actuality maps are infinite dimensional systems. The restriction that the system be continuous in

time severely limits the dynamics in one and two dimensions.

A system x = F{x,1,c), where x is an d dimensional vector and ¢ is a set of & control parameters, will

have an orbit or trajectory through the d dimensional space describing its motion as the system

Figure 2.7, The action of two successive iterations of the Hénon equations on a circle. The stretching
and folding of the circle are evident, as is the overall volume decrease.
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progresses with time. (In keeping with current literature, bold notation is no longer used to indicate
vectors.) For any autonomous system. one which does not depend explicitly on time, this trajectory

cannot cross itself in space. Were the case otherwise, orbits would not be unique.

If a system of ODEs is confined to one dimension, regardless of how complex the equations, it can
exhibit only ane of two behaviors as time progresses. The trajectory of the system is either attracted to
a paint, known as a fixed point {some authors use the terms critical point or equilibrium point) usually
denoted by x*, or the trajectory tends towards infinity. The system may have several fixed points, each
with its own basin of attraction which defines the set of paints, the limit of whose trajectory is the
fixed point. A simple example would be radioactive decay, = —ax, which has a fixed point at x* =0,

though x* is only attainable after an infinite time.

Fixed points may be either stable or unstable. Any (noise free) system which finds itself at the fixed
point will remain there forever. However nearby points will either tend towards the fixed point, in
which case the fixed point is stable, or away from the fixed point, making it unstable. There is a third
class of fixed points called semi-stable or saddle points where the fixed point is stable when

approached from one direction and unstable when approached from the other.

In two dimensions the additional degree of freedom allows for a third type of behavior: the limit cycle.
A limit cycle is essentially a two dimensional fixed point. Any system that finds itself on the limit cycle
will remain on that trajectory. As with fixed points, limit cycles may be either stable, unstable or semi-
stable depending on the trajectory of nearby orbits. The van der Pol equations t=y,
v=gll- .rz)y - x, provide an example of a limit cycle for small e. The limit cycle is stable for £> 0,

and unstable for € < 0. An example of a stable cycle is shown in figure 2.8.

In three dimensions the dynamics hecome far more rich. The simplest extension of the dynamics of one
and two dimensions is the two torus. This is the superposition of two limit cycles in perpendicular
directions, which spiral around a torus. If the frequencies are commensurate, the trajectory is periodic.

They need not be commensurate though, and the trajectory will cover the torus in the limit of infinite
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Figure 2.8. A stable limit cycle generated by the van der Pol equations with £ = 0.5. The trajectory of
nearby orbits is depicted as they spiral onto the limit cycle.

time. An example of a system whose trajectory is confined to a two torus is a double pendulum - a
mass attached to a ridged rod in turn attached to a second mass and rod ~ confined to a plane. The

equations of motion are:

. 2mwgre
et B

myty + mor

2

wre
dp =L~

4
F=anz | i=wplr={¢) (2.5)

where r =\ x2+yZ, m are the masses of the pendulums, ¢ the lengths and e the frequencias of
oscillation. Note that this system has no dissipation, and hence the torus on which the trajectory lies is

not an attractor.

The nove! situation in three dimensions is the strange attractor. A strange attractor shows no periodic
behavior. For maps, as with the Hénon map above (fig. 2.6}, this means the attracting set becomes an
infinite set of discrete points. (The set is finite for periodic solutions.) For ODEs, however, all

trajectories, periodic or chaatic, must be continuaus. The trajectory of a strange attractor thus traces
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out a complicated pattern in the three space, never crossing itself, but still remaining cunfined to a
finite region. The trajectory has infinite length, yet never fills the bounded space it occupies. In addition
to infinite period, strange attractors exhibit fractal structure; they are self similar in the limit of small

scales.

A classic example of a strange attractor is the Lorenz attractor, The attractor is generated by a set of
gquations introduced in 1963 by Edward Loranz as simple modul of Rayleigh-Benard convection in the

atmosphere.2 They are:
x=oly-x)
y=xlr—zj~y
2=xy—be (2.6)

The system will be described in more detail in chapter 3. A 2D projection of the attractor is plotted in
figure 29. As can be seen in the figure, the orbit spends most of its time around either of a pair of
conjugate unstable fixed points. The trajectory is extremely sensitive to initial conditions. However, any
set of initial conditions within the basin of the attractor will quickly converge onto the inertial manifold
generating an attractor similar to the one depicted. As with the Hénon map, the structure is fractal, and

the self similarity is evident with sufficient magnification.

Figure 2.9. The l.orenz strange attractor.



22.  (Quantifying Chaos
2.2.1. Phase Delay Plots and Poincaré Sections

The definition of chaos given in the introduction is a rather qualitative one. On simple inspection a
sequence of values may appear “chaotic”, but this is nbt sufficient to establish that the signal is
chaotic. One needs to be able to show that the signal is a) deterministic, and b) not periodic. What is
needed is a way to quantify chaos. Hopefully one can, on the basis of this, estimate how many
equations are needed to describe the essential dynamics of the system, and ultimately to reproduce

these equations.

One method of determining whether a system exhibits low dimensional chaos was alluded to in the
previous sections. Simply plotting the trajectory in space can indicate chaos by visual inspection. If the
trajectory spirals to a fixed point or limit cycle, chaos can be ruled out. If the orbit is boundedbut never

closes, chaos is a possibility.

In general, one does not have access to all the independent variables of the system, and for
experimental data, it may not at all be clear which variables are independent. An alternative is to plot a
single variable in a phase-delay plot. One plots x (¢) versus x(t4t) versus x (t+2¢), etc. where 7 is some
appropriately chosen time constant. F. Takens has proven that for chaotic systems, a single variable will
capture all the relsvant dynamics of the system subject to certain conditions.2® Specifically, given a
system Fle) = [x{s), ylt), z{1), ...] there is a diffeomorphism — a differentiable, reversible mapping - ffom
the manifold containing the attractor to that containing the attractor in de'uyed coordinates Xlr) =
[bxle), e+l X427, ..., xir+mal), so long as m 2 24+, where d is the dimension contain!ng the
original attractor. The m dimension space is known as th- ~mbedding space of the attractor. The
necessity of 2d+1 components is to insure that the etmbedding space is orthogonal. Often values of m

less than2d+1 suffié for proper reconstruction of the original system.

Unfortunately, for systems with dimensions greater than two phase-delay plots are of limited use; the

projection of a four dimensional attractor onto a plane usually looks like a ball of wool. Another useful



17

method of visualizing a chaotic system is the Poiccarg section or puncture plot. The dimension of the
system can be reduced by one by passing a hyperplane through the orbit and marking the trajectory
gach time it crosses the plane. This is schematically illustrated for three dimensions in fig. 2.10. Note
that a Poincaré section is distinctly different from strobing a time signal at regular intervals. In general,
strobing will not reduce the dimension of the system unless one fortuitously chooses a time increment
related to a natural frequency of the system. Often Poincaré sections give strong indications of chaotic
behavior. The Takens theorem can of course be applied, and a single time record used for creating the
Poincaré section. A method for reducing the dimension by 2 using a “double” Poincaré section has been

developed for periodically driven syslems.24 The method does nat appear to be generally applicable,

however.

22.2. Fractals

One characteristic property of chaotic systems mentioned earlier is their geometric structure. For
strange attractors, this structure is self simifar at small scales. Such objects are known as fractals, a

term coined by Mandelbrot to indicate the fact that the topological structure usually has a fractional

dimension.?5 The Hénon map, for example, has an attractor greater than dimension 1; however, it fails

to fill a two dimensional space. Thus its fractal dimension is somewhere between 1 and 2.

As an example of a simple fractal, consider the triadic Cantor set. it consists of a line segment from

which the middle third has been removed, and the middie third of the remaining two segments has

——

Figure 2.10. Schematic illustration of the process in creating a Poincaré section of an attractor.
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been removed, ad infinitum (see Fig. 2.11). The set is obviously more than a simple collection of points
{dimension 0), but is not a complete line segment {dimension 1). Its fractal dimension lies somewhere
between the two. A well known example of 8 more complex fractal structure is the boundary of the
Mandelbrot set. This set is generated by the equation:

el = x: +c . {2.7)

where xand ¢ are complex. All points that do not diverge are members of the set (see Fig. 2.11).

223, Spatial Measures

Fractal structure has been identified and used to characterize a variety of phenomena in nature, from
cloud shapes to coastlines. In order to be useful though, there must be a quantitative way to compute
the fractal dimension. The most basic and intuitive measure is the Hausdorff dimension, which
measures a fractal's space filling ability. One subdivides the region of space containing the fractal into
equal volume sub-regions and counts what fraction of the regions contain part of the fractal. Because
an ideal fractal is self-similar, as one continues to subdivide the region into smailer and smaller
volumes the fraction containing the fractal will approach a constant. One would expect N{r) o< (1/ rP

in the limit of small r. The Hausdorff dimension is then defined as:

Figure 2.11. The triadic Cantor set and Mandelbrot set are: examples of fractals.
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Dy = lim In Nir) ,

r0In{1/r) (2.8)

where N{ is the number of hyperspheres or hypercubes of linear dimension » needed to cover the

attractor.

In the example above af the Cantor set, the fractal dimension is easily computed analytically. In the first
step, 2 boxes of length 1/3 are needed. For the n' successive step, 2" boxes of length (1/3)" are

needed. Thus the fractal dimension of the Cantor setis Dg=1In 2" /In 3" = 0.631.

For most systems the Hausdorff dimension is not so straightforward to calculate. Additionally, rarely
does one have the governing equations to perform an analytical calculation. Typically one measures &
time series record from one or a faw of the systam variables. In arder to calculate the fractal dimension,
one must first embed the data in a space presumed to contain the dynamics of the system. This space
is then partitioned and the number of hypercubes containing points is counted. If for several
embeddings the calculated dimension remains constant, this value can be assigned as the fractal
dimension. If, on the other hand, the attractor continues to fill the space, the data must be assumed to
reprasent @ higher dimensional or possibly random system. In ither case, computation of the Hausdortf
dimension is extremely computationally intensive, and other, simpler methads have been found to

estimate the fractal dimension.

For dynamical systems one can define a hierarchy of generalized fractal dimensions, Dy, each
characterizing different properties of the fractal geometry of the attractor.?® Given the region
containing the attractor, subdivide it into cells. Count the number of points N; in each cell. The

probability of finding a point in a given cell is then:

. N
= lim =L ,
Y 29)

where N is the total number of points. From this one can define the fractal dimensions as:
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can show that Dy.q 2 D, and thus the correlation dimension provides a lower bound on the Hausdorff

dimension. The Hausdorft and correlation dimensions usually agree closely, and often differ by no more
than a few percent.

Typically, in computing the correlation dimension, one computes the correlation integral for various
radii r and plots log C{r} vs. log ». Qver some region in log r, known as the scaling region, the slope is
constant, and the value of this slope is taken as the correlation dimension. The correlation integral is
said to saturate at a constant slope. For clarity, in this dissartation | will plot the two point slope
&llog Clr)l/ 8llog r] versus log r. This yields a plateau at the value of the correlation dimension,
allowing a better determination of the scaling region. Examples illustrating the application of this

technique will be given in the next chapter.
2.24. Dynamical Measures

In addition to fractal dimension, another property of chaotic systems alluded to earlier is sensitive
dependence on initial conditions. This property can be characterized quantitatively by the Lyapunov
exponents which measure the average divergence and convergence of the attractor in phase space.
Trajectories of chaotic systems spatially close at some time ¢y will, on average, diverge (converge)
exponentially in time. For the one dimensional continuous map x(f} = f,{xp), with two initial
conditions separated by &x the average separation after a time ¢ is &, = 5x0e’1‘. Taking the limit of

infinitesimally separated points and infinite time the characteristic or Lyapunov exponent A is defined

by
A=tm 1 tim | s i Il
f—oa t Gxg—0 |04 oot | dx [2.14)

If this exponent A is greater than zero, trajectories separate exponentially in time within the confines

of the system. This criterion, a positive 1argest Lyapunov exponent, has become the standard definition

of a chaotic system,

Any dissipative system is bounded, hence the exponential expansion cannot occur indefinitely. After |
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few exponents, although negative values show very sensitive behavior. The subtisties of calculation of
the Lyapunov exponents will be discussed in the next chapter.

Kaplan and Yorke have conjectured a general formula which relates the Lyapunov exponents to the

fractal dimension:3

J
2\
Dygy=j+i&l—~ Dy .
a1 (2.16)
Dyy is the Kaplan-Yorke or Lyapunov dimension. The Lyapunov exponents are ordered such that
A;>A;,q. andj is the largest index for which )f“,lﬁ.; > 0. The conjecture appears to hold rigorousty only
i=

for homogeneous attractors. However, it does hold approximately for many cases.

23.  Nonlinear Prediction

Ultimately, the goal of identifying and characterizing chaotic behavior in experimental data is to
develop a set of model equations for the system. These equations can never hope to yield an exact
replica of the time series being analyzed, owing to the sensitivity on initial conditions. However, global
properties of the system ~ average Lyapunov exponents, dimensions and power spectra ~ should be
preserved. In addition, because these systems are not random but governed by deterministic dynamics,
short term prediction must be possible. Given a set of initial conditions approximating those of the
experimental system in question, the next several time steps of the model system should mimic those

of the actual data.

Unfortunately, even though a system may have been fully characterized with regards to its chaotic
properties, developing a set of nonlinear model equations is not a trivial exercise. Although much
research has been devoted to extracting model equations from the data of the system, no general
method has yet been found. 3 A lgss ambitious goal is simply to predict the short term behavior of a
system without knowing the governing equations explicitly. With this goal in mind, several methods of

doing so have been developed.
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some time the expansion crosses the fold in the attractor and the trajectories may converge again. The
exponential divergence characterized by the Lyapunov exponent is still reflected in the information foss
of the system, despite the fact that spatial trajectories are no longer diverging. For example, the shift
map, in computer lingo, represents a left shift, leading digit truncation. Even with double precision
accuracy of 1018 after 23 iterations all information about the initial conditions is lost. It is this

information loss that the Lyapunov exponents measure.

For systems of more than one dimension there is a collection of Lyapunov exponents, one for each
dimension of the system. Each exponent corresponds to one of the principle axes of an ellipsoid
centered on the trajectory and characterizes the local expansion or contraction of the attractor. The
orientation of this ellipsoid changes as the trajectory evolves in time. The spectrum of Lyapunov

exponents is given by:

A < im l|nM Jd=12..n .
{—yoa o (2.15)

Any continuous system must have at least three dimensions and hence three Lyapunov exponents. If
the system is dissipative their sum must be negative to reflect the contraction of phase space. The least
negative exponent controls the flow of perturbed trajectories onto the inertial manifold.2% A chaotic
system has a positive largest exponent, and any system continuous in time must have at least one
Lyapunov exponent equal to zero corresponding to the lack of divergence (on average) tangent to the

flow.30 Thus a three dimensional chaotic system has Lyapunov exponents {+,0,-).

Calculation of the largest Lyapunov exponent is relatively straightforward, though computationally
intensive. Wolf, et al. have developed a method for catculation of the largest exponent from the time
series of a single variable of the chaotic system.23 Essentially, it tullows the trajectory of neighboring
points and calculates the average separation as they progress in time. The spectrum of Lyapunov
exponents is more difficult. Ruelle and Eckmann have developed a methad whereby one estimates the

Jacabian from the tangent space matrix.' This can usually lead to reasonable estimates of the first
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All of the methods developed thus far use essentially the same procedure, with more or less
sophistication. %38 The time series is first embedded in an appropriate space using the method of time
lags. The initial point for prediction is chosen, and the space is searched for its nearest neighbors. In
the simplest method, the average of the neighbors' short term trajectory becomes the basis for
predicting the evolution of the initial paint, The naighbors of this predicted point are then found and the
process is repeated. More sophisticated methads fit higher order polynomials to the focal space which

can result in better prediction accuracy.

In addition to actual prediction, one can characterize the determinism of a system with a quantity
known as the translation error” The translation error quantifies the coherence of the flow of the
system through phase space. In simple deterministic systems nearby trajectories should paraliel each
other, at least in the short term. The translation error measures the deviation of nearby points from the

average flow of the group. More concisely.
-

=0 (217

where v; is the translation f{x;} —x; and flx) is the map of xjin the embedding space. v is the
average translation of the set of & neighbors. The normalization Mz makes the measure ey ¢
insensitive to attractor size. For a random signal, the value of eya5 Should remain a constant value of
about one, regardiess of the embedding dimension; random signals fill the embedding space they
occupy. Deterministic signal will have low values of ey, for embeddings near the proper dimension of
the system, reflecting the coherent flow of the neighboring trajectories. For embeddings much below
the dimension of the system the translation error will be larger; in the truncated space distant points
may be artificially close. In‘migher embeddings, the finite number of points in the data record means
that the space will be more sparsely filled, and nearby points will not be as well correlated.

Unfortunately, the translation error is @ poor measure for high dimensional attractors, as will be shown

in the next chapter.
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24, Summary

As outlined in this chapter, a number of techniques exist for identifying and quantifying low
dimensional chaos and simple determinism. These include phase delay plots and Poincaré sections,
fractal dimensions, Lyapunov exponents and short term predictability. There are some subtleties in
applying these techniques to data, as will be discussed in the following two chapters. These are the
tools, then, with which | will analyze numerical and experimental plasma systems for evidence of

simple determinism.
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3. Analysis Techniques Applied to Known Numerical Systems

Three numerical systems whase chaotic properties are well understood are presented here to itlustrate
the techniques for nonlinear analysis. These analysis techniques will then be applied to the data from
numerical simulations of plasmas, as well as experimental data from MST. Two of the systems, the
Lorenz equations and the Mackey-Glass equation are known chaotic systems. The third system is
Gaussian distributed random noise. The rasults obtained from investigation of these systems provide a

standard by which to compare unknown data records.
3.1.  Phase Delay Plots and Poincaré Sections

3.1.1.  Lorenz Attractor

As mentioned in chapter 2, the Lorenz attractor is generated by a set of equations introduced in 1963 by

Edward Lorenz as a simple model of Rayleigh-Benard convection in the atmosphere. Once again;
x=oly-x)
y=xlr—z-y
Z=xy~bz (3.1)

The equations are 1n Fourier space, with x representing a single mode of the velocity fiow, and y and z
two Fourier components of the temperature field. r is the normalized Rayisigh number, o is the Prandtl
number, and b is a geometrical facinr. The system has three fixed points, one at the origin, and two at
z=r-l,x=y= :t\/[_)F 1. Forr< unly the fixed point at the origin exists and is stable. For r > 1,
the origin becomes unstable and the two other stable fixed points emerge. These fixed points become

unstable for appropriate values of r, b, and o, and the Lorenz strange attractor emerges.

The feft plot in Figure 3.1 shows a two dimensional projection of the phase-delay reconstruction of the
attractor for the standard parameters r = 28, b =8/3 and o= 10, plotting x (1 ) versus x {t +15) versus x

{¢ +.3). Comparing this with figure 2.9 one can see that tha phase delay plot captures the basic structure
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o

Fgure 3.1. The Loren: attractor. The left plot shows the x component of the attractor in phase delay
representation. Tha right is a Poincaré section taken at the gray plane on the left.

of the attractor: a pair of conjugate unstable fixed points about which the trajectory spirals. The gray
plane cutting through the attractor is the plane of the Poincaré section in the right figure. Structure is
gvident, indicating the low dimensional simple detarminism. There are a few spurious points which are

the result of poor polynomial fits used to determine the point where the trajectory crosses the plane.

3.1.2. Mackey Glass

A second example of a strange attractor is generated by the Mackey-Glass equation.® The Mackey-
Glass equation is a single delay-differential equation developed to madel hematopoiesis, the process
by which the bone marrow creates blood cells.
e"pPi-T

) -g'n:ﬁi_—?)l"_ i 32)
P is the density of circulating mature cells and T is the delay time between initiation of cell
production and the release of mature cells into the bloodstream. B g, 6, a, and y, are constants. The
system is actually infinite dimensional: one needs to specify an infinite number of initial conditions for

the function between x {r) and x {r +T). In practice, howaver, the system collapses to a much smaller
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dimension, and adjusting the delay time T determinas the fractal dimension of the system over a wide
range of values. The system is thus especially usaful as a mode! in studies of relatively high

dimensional dynamics.

Figure 3.2 shows a phase-delay plot (the only possible option!) for the Mackey-Glass attractor with a
delay of T = 20s. Equation (3.2) was solved using a 4 order Runga-Kutta integration scheme using a
step siza of 0.01 and storing every 10 point. The attractor ;ppears to have structure, an indication that
the system is probably low dimensional. The left plot of figure 3.3 shows a Poincaré saction of the
attractor for the same parameters. The attrartor was delay-embedded in 3 dimensions with a delay
time of =85, and the section was taken at the plane x{t+2¢) =1.1. The value of ¢ was chosan as will be
discussed in section 3.2. Because the attractor Is low dimensianal (about 2.1) for this value of T,
structure is readily apparert. The right plot is a Poincaré section for a system with identical paramaters,
except the delay time T = 50s. No obvious structure is apparent here because the attractor has a

dimension greater than four. Phase delay plots and Poincaré sections are of limited usefumess for

P(t+0.2)

P(1+0.1)

Figure 3.2, Phase-delay plot of the Mackey-Glass attractor for delay time T = 205,
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Figure 3.3. Poincard sections of the Mackey-Glass attractor. The lgft plot is for an squation delay time
of T'= 20s which has a fractal dimension of about 2.1, The right plot is for T = 50s which has a fractal
dimension greater than 4.

attractors with dimension greater than 3.
3.13.  Random Numbers

The tinal numerical system to be analyzed is a system of random noise. There are several typus of
noise, the most familiar being Gaussian distributed white noise, The power spactrum of such a time
record is flat, having equal power at all frequencies, hence the name. Colored nolse, also known as
fractional Brownian motion, has a preponderance of low frequencies, and the power spectrum is
proportional to f %, where £ is the fraquency. A simple method for ganerating colored noise with such |
a spectral density is given by.”
2
X = %TM"“(ZK})FG] cos(z-%li& + ¢k) :

k=1 3.3)

A is the amplitude and ¢ x are N /2 random phases.

Random systems provide a comparison for a truly high {infinite) dimensional system. The data are also a |

chack against spurious indications of chaos resulting from severe data manipulation. In particular, noise |
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Fgure 3.4, Phase-delay plot and Poincaré section of Gaussian distributed random numbers.

with some degree of short term correlation - either colored noise or noise which has been lowpass
filtered ~ will give spurious indications of simple determinism. | will use the term “correlated noise”
when speaking of such systems in general, Methods for distinguishing between correlated noise and

systems which are truly chaotic will be discussed in this chapter and the next,

In figure 3.4 is plotted a phase-delay plot of Gaussian white noise plotting x{r} versus x(e+1) . As
axpucted, no structure is apparent; random numbars will densely fill the space they occupy. A Poincard

section taken at the plane x{r+2) =0 {s no improvement.
32.  Correlation Dimension

Calculation of the correlation dimension D, has become a standard technigue in tha repertoire of tools
for analyziny chaotic systems because it not only identifies a system as having underlying simple
reteiminism, 1t also quantifias the degree to which the system is chaotic, Conventional wisdom has it
that the number of indepandent equations needed to describe the system is only slightly greater than
its correlation dimension, i e. an unknown system with dimension 3.2 would need four or possibly five

equations to describe it. Thus, determination of the correlation dimension is a first step in



N
revanstructing the system'’s governing equations. Work by Sproll“o. howaver, has shown for a certain
class of systems -~ maps and ODEs dascribed by polynomial and other simple functions - that the
average correlation dimension is of the order of the square root of the number of equations. The

number of equations needed may ba far greater than the fractal dimension indicates.

That notwithstanding, the correlation dimension is still widely used as measure of the degree of chaos
in a system. Unfortunately, although it is simple to implement, calculation is computationally intensive,
often requiring many CPU hours for large data sats. Several methods have been developed to speed
computation, most of which favar calculation of only some distance pairs — the closest ongs — and
omitting most others. | prefer another method which makes use of certain radundancies in the
calculation to speed computation.#! Although not as fast as some of the other methods, it computes all

distance pairs, which can be important in determining the parameters for proper calculation of Dy

Figure 3.5 presents typical results for the Loranz attractor. 10,000 points were analyzed. The top plot
shows the correlation integral log Clr) plottad versus log » {logarithm base 10), where r is the radius of
the hypersphere, for several embedding dimensions. The scaling region of tonstant slope is indicatad
by a straight line fit. The stope of this line should be the same for ail embeddings. The lower plot is the
two point slope of the upper one. Here the scaling region, now a plateau, is much more apparent, and it
can be seen that all embeddings do indeed saturate to the same slope. For clarity, only some of the
points ara indicated by symbols. At large radii the slope falls to zero indicating that the hyperspheres
are encompassing the entire attractor. At small radii one is limited by the number of points in the finite
data record, statistics get poorer and the dimension increases. The best fit to a straight line over this
scaling region {admitting 8 somewhat arbitrary determination) yields a value for the correlation
dimension of D, = 2.000 % .003, where the error is from the goodness of fit, This is close to the

accepted value of the Hausdorff fractal dimension of 2.05.
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Figure 3.5. Plots used in determining the correlation dimension of the Lorenz attractor. The solid line in
the top figure is & best fit to the constant slope scaling region. As seen in the bottom plot, the
correlation dimension remains constant in several embedding dimensions over a region of at lgast a

decadein r.

The subtleties of determining the correlation dimension are discussed in some detail in {42], however

two important points are worth mentioning here. Critical in calculating the correlation dimensiog is the

value of the time lag 7. The time lag must be chosen appropriately such that vector components are

independent. Choosing t too small can result in spustbus correlation and an artificially low correlation

dimension. At the otWer extrems, due ta the finite length of any raal data record and sensitivity to initial
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conditions, too large a valuw of ¢ lgads to decorrelation and an overastimate of the cortelation

dimansion. The autocorrelation function generally provides a guod critericn for the choice of choice of
time lag: ¢ times the embedding dimension should be 2 to 3 times the ¢ -folding time. However, the
correlation dimension should be computed for various ¢ in order to find an optimal valug. Over some
range of t the slopes of the log Clr) versus log + plots overlay in a givon embedding. The time lag
must be chosen somewhere within this range. There is an excellent discussion in Albano, ef o/ whete
thay show that there is a range of *window lengths* (m-1)t over which the Grassberger-Proccatia

algorithm provides an accurate estimate of the correlation dimension. #

Typically, one wants to sample data frequently enough so that the autocorrglation time is several timo
steps. Sampling infrequuntly will yield data that is not properly correlated; sampling too often will
confine the dynamics to only a portion of the attractor. Best results for Dy, and all other analysis

methods presented here, are abtained when the autocorrelation time is between 10 and 20 time steps.

Another possible source of error is dascribed by Thigler.* In addition to vector components buing
corralated, vectors close in time may be correlated o sach other. This rasults in a spurious D =0
region of the carrelation plot. Thieler suggests introducing @ parameter W and computing the
correlation function only for vectors such that ¢ > ; +W. An appropriate choica for W is indicated by

the disappearance of the Dz = 0 region; usually W is small, on the order of 5¢.

As mentioned praviously, the fractal dimension, and hence correlation dimension of the Mackey-Glass
attractor is dependent on the equation delay time 7. The behaviot is evident in the two plots of figure
3.6 which show correlation dimension for T = 23s and 100s. As expucted from figure 3.2, the Mackuy-
Glass attractor is low dimensional for T'=23s. The accepted value is D 5 = 2.44 £ 0.5, For 7= 1008 the
dimension increases to Dy = 7.5, which is the acceptud valuu.*® For the latter case, tha correlation
dimension drops at small radii indicating enhanced correlation on small scales. This can be attributed to
the relatively small number of points used. In high dimensional embodding spacos there are only a few

nearby trajectories. Thus, at small radii trajectories are correlated only with thomselves, which results
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equation delay time T.

# gn antificially high currelation raction relative to the total,

A uignifican! drawback of the correlation dimansion I8 that it can make no estimate of the dagree of
cutacy of the computed dimension (no error bars). Another problem is apparent when comparing the
two Mackey-(lass attractors: the xcaling region for the T 1008 case Is significantly shorter than for
T3 23 This is due to the number of points required to obtain adequate saturation in higher
<thehisions pOINtE dtg more sparse in highar dimensional spaces. Several groups have estimated the
“etibt 6f pointy requited for o reliable estimation of the correlation dimension. Estimates range from
wevetal hundrend to 42 47 Tyonis provides a more reasonable rule of thumb : Nipee 102942, which
ale coincidos with my ammm\cn.” Porhaps the best rula is: For adequate confidence In a correlation

dimensigh detprminabion o scohng region which spans at least a decade in r is requirad.48

Random ogmbers densely fill the space they occupy, and this is reflected in the correlation dimension
plut 37, Ataach embadding the correlation dimension asymptotes to the dimension of the embedding

spiat No cluar scaling rogion s avidom,
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Figure 3.7. Correlation dimension for Gaussian distributed random numbers. No clear scaling region
exists.

33.  Lyapunov Exponents

As mentioned in chapter 2, computation of the largest Lyapunov exponent is relatively straightforward.
The method of Wolf, et a1 follows the trajectory of a single component in phase delay space, known
as the fiducial trajectory. A nearby orbit is found, and their average divergence over some time period is
measured. Because all chaotic attractors are, on average, contracting in phase space, the exponential
divergence cannot continue indefinitely. Consequently, after some time period a new orbit closer to the
fiducial trajectory must be found. The vector cannecting this new orbit to the fiducial trajectory must
preserve the orientation in phase space of the original vector in order to compute the Lyapunov
exponent properly. This procedure amounts to a reorthonormalization of the tangent space vectors
describing the expansion/contraction of the attractor. This process continues throughout the time

record, and is illustrated schematically in figure 3.8.

Although the procedure is effective, it is incomplete. A single Lyapunov exponent can only indicate that
a system is chaotic, but tells nothing about the dimension of the system. Noise also has a positive

largest Lyapunav exponent. One really needs the entire spectrum of exponents to ascertain whether



36

t3

v
Figure 3.8. The figure schematically depicts the computation of the largest Lyapunov exponent by
following a fiducial trajectory in time and calculating the divergence of nearby trajectories.
underlying simple determinism exists. A positive Lyapunov exponent accompanied by a negative one

would indicate the presence of chaos.

A method proposed by Eckmann, et al. and modified by Briggs computes the spectrum of exponents by
approximating the Jacobian of the local trajectory of the dynamical system.:"'49 In the method of
Briggs, the time series is embedded in phase delay-space, a group of nearest neighbors is found, and
their trajectory is fit to a polynomial function. This function can then be differentiated analyfically to

obtain the Jacobian of the local dynamics. The Lyapunov exponents are then given by:

A < fim llnIJf”l .

t—ool (34)

where HJ;‘)H is the i eigenvalue of the Jacobian after advancing the system a time ¢ {see [26] for &

thorough discussion).

Finding the eigenvalues of real, nonsymmetric matrices is not trivial, and often the eigenvalues are
complex, whereas Lyapunov exponents are real. This is because the tangent space of the system is not
necessarily aligned with our {arbitrary) coordinate system. Computation of the Lyapunov exponents is
facilitated by GR decomposition. Any matrix can be written as M=QR where @ is an orthogonal matrix
and R is upper right triangular with positive diagonal elements. This is known as the ";kinny'
decomposition, and it is unique. We can write x{t) = £ (xg), and since the time series to be analyzed is

descretized, by the r)éin rule, 041 = 0 /0x1= J; dp.q.. .. Given a set of matrices Jq, Jp,...d; . one
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can decompose them as:

Ji=0QRyy
320y = ARy

90—y =y (35)
The Jacobian then becomes J; 41 = Jd; ... dgdq = QiRyy). . .Rig)Ryy). The effect of the products J@ is to
successively orient the Jacobian matrices along the principal axes of the tangent space of the attractor.

The Lyapunov exponents can be computed from;

A= Sinfyy -

J=1 (3.6)
Implementation of the algorithm is not difficult on a computer, and several routines exist to do the A
decomposition.?’a'51 Most of the CPU time is spent searching for nearest neighbars rather than in actual
calculation of the exponent. The Briggs methad gives superior results to the original method proposed
by Eckmann and Ruelle, because in fitting an arbitrary polynomial it includes the curvature of the local
space. This is particularly true in embedding dimensions higher than the spatial dimension of the
attractor. A sample of the results are contained in table 3.1. The Kaplan-Yorke dimension is also

presented for comparison.

Critical in obtaining accurate results is the choice of the component delay time ¢ and the number of
time steps to evolve the trajectory before measuring the expansion. In all cases, the best results are
obtained by evolving T time steps before computing each Jacobian. The optimum choice of = is made
in the same way as for the correlation dimension: ¢ times the embedding dimension is 2 to 3 times the .
e -folding time of the autocorrelation function. The number of neighbors is also important, but it does
not influence the results as strongly. | have found that it is best to use all neighbors up to a predefined |
maximum within a given fixed radius, rather than a fixed number of neighbors; choosing too many |
neighbors in sparsely populated regions can skew the predicted trajectory, and choosing too few in |

densely populated regions may mean most points lie on the same trajectory. A radius of about 10% of |
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system T Dyy Lyapunov exponents

Lorenz 0.9s 2.09 1.387 £ 9.1% -0.067 £5100%  -14.874 £ 26%

accepted A 2 08s 200 | 1633£68%  0067:>100% -18.3524 14%

1.497, 0.0, -22.46 -45

Mackey-Glass, 7'=23 Bs 268 00965+ 115%  -0.007 £>100% -0.131+154%

accepted A 39 dt=05s -0.391 £ 8.2%

0956, 0.0, -. 119, -.344

Mackey-Glass, 7' = 100 5s 8.9 14293+09%  07830+13% 041331 1.8%

dt=1s 0.1871£36% 00085+ 746% -0.0790+ 10.5%

03188+£32%  -07277£1.9%  -1.7798+1.4%

Random Numbers 2 3.868 0.256 £ 1.0% 0.093+48%  -0.068+82%
0327 £3.1%

461 0200+2.1% 0094+38% 0011+337%
-0.1014£5.1% -0.337 £29%

5.47 0.198422% 0106+32%  0.031+10.1%
-0.040 £ 9.3% 0.133+42%  -0.348+2.9%

Table 3.1. Computed Lyapunov exponents for several systems. The parameters for the Lorenz system
were: r=45.92, b= 4.0, o= 16.0. For the Mackey-Glass system: f=0.2, y=0.1, n =10.

the maximum extent of the attractor usually gives good results,

Results for the Lorenz system are in excellent agreement with the accepted values, even the large
negative value. Negative exponents are notoriously difficult to caiculate because of their extreme
sensitivity to the quality of the data. The zero exponent is easily identifiable both by its smal) absolute
value relative to the others and the large standard deviation. Typically, the “zero” exponent has a
magnitude about a factor of 10 smaller that the next largest value. During computation this value
fluctuates wildly, sometimes positive sometimes negative, and has a very large {>100%) standard
deviation. In the next largest embedding space, the first three exponents remain constant and a fourth
negative exponent appears. The Kaplan-Yorke dimension remains essentially constant, indicating that

an embedding of 4 is unnecessary.



39
The Mackey-Glass system proved more difficult to analyze; the system is fairly sensitive to the value of
. Results are nonetheless goud, with the largest exponent being within 4% of the accepted value.
Choosing a shorter sampling time (more data points per time step) can make the system lpss sensitive
to the choice of t , though the number of matrices available, and hence the statistics, is thus
decreased. For the system with an equation delay time 7' = 100s, no saturation in the Kaplan-Yorke
dimension is seen up to an embedding of 10. Howaver, the values of the exponents remain essentially
unchanged as the embedding dimension is increased. This indicates that the positive exponents are

prabably nearly correct. It has besn estimated that Dyy is greater than 10,45

Random numbers can be identified by several characteristics. First, they continue to fill the space they
are embedded in, as evidenced by the KY dimension. In fact, for some cases, the Dy is actually
greater than the embedding dimension. Second, although there are negative exponants, no convincing
2670 exponent exists. The fact that there are negative exponents indicates that the set is bounded { Lxl <
6 in this case), so that points near the edge are pulled back into the set. This is not, however, gvidence
of an attractor. Finally, during the calculation of the exponents, finding sufficient nearest neighbors is a
problem, even for rather large radii. Random points are evenly and sparsely distributed in the
embedding space. The positive exponents do not change appreciably as the embedding increnses,

which indicates that they may be correct,
34,  Predictability

Both the Lorenz and Mackey-Glass systems are governed by simple deterministic equations, and as
such should be predictable in the short term. Sugihara and May have proposed a very simple method
for predicting the short term behavior of such systems.36 In their method one finds the minimum
number of nearest neighbors to a “predictee” needed to form a simplex - D +1 points - in the
embedding. The simplex is then evolved a number of time steps into the future. The predicted evolution
of the predictee is then the weighted mean of the simplex, where the weights are the exponentiated

original predictee-neighbor distances. In practice, a portion of the data record is desmed the database
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of neighbors and the remaining points are the predictee values. Each predictes is evolved several time

staps into the future, and one then compares the predicted trajectory with the actual trajectory .

In order to characterize the degree of short teim predictability Sugihara and May use the linear
correlation coefficient to measure the correlation betwaen the original trajectory and the predicted one.
This is a poor measure for several reasons. The linaar corralation coefficient will give a value of 1 if the
predicted trajectory (y) equals the actual trajectory (x) for all points considered. Unfortunately, it will
also give a value of 1 if y = ax . We are assuming the attractor is chaotic, and trajectories diverge
aexponentially rathar than linearly. Secondly, the correlation coefficient does not indicate whether the
observad correlation is significant because it contains no information about the distributions of x and y.
Finally, it is generally only a reasonable measure for large (>20) sample populations. Typically, because
of the exponential divergence of chaotic trajectories, predicted trajectories are reasonable for only
about ten time staps. A batter measure simply computes the average daviation of the predicted from
the actual values, normatized to the distance propagated. Bacause a single poor prediction {say in a
sparsely populated region of phase space) can strongly skew the mean, the median is a better measure

of the average normalized deviation.

As a result of its simplicity, the Sugihara-May method is not a very good predictor even for short times.
It is a 0™ order method, in that there is no x dependence, and it does not even attempt to capture the
underlying dynamics of the system. A superior mathed fits a linear or higher order polynomial to the
local trajectory in order to do the prediction. The method is similar to one proposed by Farmer and
Sidorowich® except that a generalized polynomial is fit to the local trajactory. The generalized
polynomial can be written as
) Fix)=fip+ X fux+ X foxxt... . (37)

F;{x] is the map of the i th component and the sums are over all components in the embedding space
(f;1 is an m dimensional vactor, f7 is an mxm tensor, etc.). To implement the methad, one (as usual)

chooses an appropriate time-delay embedding based on the autocorrelation function. A window length




41
11/2 to 2 times the autocertelation time usually works best. Shorter window longths will give better
predictions, but this is artificial, since points close in time may retain spurious corralations. Corralated
noise is notorious for this proparty. As with the Sugihara-May method, the degree of pradictability is

characterized by the normalized deviation.

Results for the systems presented in this chapter are summarized in figure 3.9. Time steps arg
measured in units of ¢ . Correlated noise, if it is frequently sampled, can give very small prediction
errors if one chooses time steps equal to the sampling time rather than . One can see the short term
predictability for all three chaotic systems is reasonably good (small error], while white noise
consistently has 100% error. Predictability of the Lorenz system is extremaly goud. The reason for this
is reflected in the Lyapunov exponents. The least negative exponent (smatlest in absoiute value)
governs the contraction of the systern onto the inertial manifold containing the attractor. For tha Lorenz
systam, this is very large, and the attractor is extremely stable to perturbations. This also accounts for
its predictability. In the random signal, the initial error of less than 100% is an artifact of advancing t
time steps. Because a delay embedding is used, after ¢ time staps many of the vector components are

identical. The error is nonetheless large (~50%), and after 2 time staps it is equal to 100%.

The translation error (Eq. {2.17)) for these systems is plotted as a function of embedding dimansion in
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Figure 3.9. The prediction error for several systems versus the number of time steps into the future
measured in units of ¢ . The deterministic systems show a high degree of predictability while random
noise does not.
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Figure 3.10. The translation error for several systems as a function of embedding dimension.

Deterministic systoms have low valugs which incraase with embedding. Random noise has values near

1, and shows no such increase. Filtered noise also shows some degree of pradictability although it is

not deterministic.

103t
o 1 2

figure 3.10. The simple deterministic systems, Lorenz and Mackey-Glass, both show low valuas for the
translation error, indicating coherent flow. The error decreases until the system is properly embedded
and then increases again in higher ambeddings whare points are more sparsely distributed. Gaussian
random noise gives consistantly high values, close to or aqual to 1, in all embeddings. In addition, there
is no strong trend in the data. Also plotted is a correlated noise series created by lowpass filtering
Gaussian white noise. Tha data show short term predictability due to the finite autocorrelation time of
the data, although the system Is not daterministic. This effect will be discussed at length in the next

chapter.
35,  Summary

I have discussed the application of the analysis mathods used to identify chaotic and simple
datarministic systems using two systems know tu be chaotic, the Lorenz and Mackey-Glass systems,
and Gaussian random noise. Low dimensional systems may show struclure in phase-delay
reconstruction plot and Poincuré sections. High dimensional systems usually show no structure, as is
true of noise. For chaotic systems, the correlation dimension plots show a cloar plateau aver the scaling

region which corresponds to the dimension of the system. Random noise fills the embedding space and
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show no saturation in any embedding dimension. The spectrum of Lyapunov exponents for chiaotic
systems is marked by consistent exponents in larger smbeddings, thy Koplan-Yorke dimension
approuching o constant valug, and o clear “rero” axponent indicated by bath u simall maynitude and
fargue standard deviation. Proper estination of the exponents is more ditheult for highet dimensional
systom. For tandom system, Dyy doos not saturate and there is no cloar zoro exponont. Chaotic
systums are characterizod by good short term predictabitity and coberonce of low. These ara measuared

by the prodiction vtror and translation error, respectively. Random noise has poor prodictability and

flow coharencg.



4.__Extracting Simple Daterminiam from |ntransigant Data

The techniquas outlined in section 2.2 for identifying undarlying simple daterminism are robust in
theory. Practical application of the methods is tarely straightforward. One must be certain that the
presumed simple determinism is real and not a result of improper analysis technique. In addition, all
systams real or numerical suffer from noise corruption. This chapter deals with the practical
application, preceutions and pitfalls of applying the methods of chapter 2 to real systems. The first
saction addrasses the issug of spurious low dimensionality in high dimensional systems. The next two
sactions deal with technigues for rasolving a corruptad underlying attractor.

41 Surragate Data Sets

Once a chaotic systam has been Identified, one needs to confirm that the identification Is indeed
corract and not an artifac® of the analysis procedure. A simple mathod for doing so involves the creation
of surrogate data sets. A surrogate sot Is similar to the original attractor, but randomized in soma way
.0 destroy the simple determinism. The analysis mathods should then be reapplied to this new data set.
All tests should yield very ditferant (negative!} results, thereby confirming the original assessment of
imple determinism. If there still ramain indications of simple detarminism, more than likely one is
+itnassing an artifact of tha analysis mathod.

ina method of creating 2 surrogate data record is simply to shutfle all the data points in the record.
his will create a random signal, all moments of which are the same as the original, but will destroy
ny corrglation in the original signal. The method is too drastic, however. It destroys essentiaily all
nformation contained in the original system: power spectrum, structure, atc. The method Is little better
han generating a random noise system of the appropriate amplitude. A better method involves using
he data from the original system and randomizing the phases of the Fourier components, This
resarves the original power spectrum, but creates a data set in which small scale correlation is lost.
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The method preserves global quantitios of the systom: the power spectrum {obviously), macrostructure
in alt embeddings {simitar periodicity and amplitude) and atso the awtocorrelation time. Yet any simple

determinism is destroyed.

Figura 4.1 depicts a time record of the originel Lorenz system and a surrogate data set creatod by phase
randomization. The neighboring plot depicts the two dimensional phase-delay reconstruction of the
surrogate. This should be compared with figure 3.1. It is svidant that the two signals arg structurally
similar, though the phase-randomized data does not show the same coherency of flow as the original
data. Figure 4.2 shows the correlation dimension for the phase-randomized surrogate of the Loren?
system on the left and of the Mackey-Glass system with 7= 100s on the right. The surrogate sets show
the same behavior as random noise; there is no scaling region bacause the system fills the embedding

space. Thesa plots should be compared with those of the original systems shown in figures 3.5 and 3.6,

Figura 4.3 compares the prediction error and translation error for the two systems with thair surrogates.

The prediction error measures the short term pradictability of the system while the translation arror

e [ S | 1 { A
220 baasaaa s saa s 46 40 5 0 5 10 18 20 25,
t

0 b tmes 10 1 x(1)

Flgure 4.1, The left figure shows the timp series of a phase-randomized surrogate for the Lorenz
attractor. The original signat is in gray. Tha right figure shows the 2 dimensional phase-delay plot of |
just the surrogata. This should be comparad with figure 3.1 The two appear structurally very similar, but|
the surrogate dous not have simple determinism.
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Figure 4.2, Tha corralation dimension of the surrogate data sets for the Lorenz attractor and the
Mackey-Glass system with I =100s. Neithier show any evidence of low dimensional chaos. The plots
should be compared with figures 3.5 and 3.6.

measures the coharence of flow. The two are closely related. The surrogate systems exhibit behav'or
similar to random numbers: There is a steep tise over 1-2 prediction steps in error from modest values
{20-30%) to 100% error. The initial correlation is artificial. Since prediction arror is measurad in units of
t. the component tima lag, all signals will show initial spurious predictability bacause components are
shared among successive points. For the Lorenz system the surrogate shows worse predictability by
sevaral orders of magnitude. This is typical of low dimensional systems. Higher dimensional systems
show a less dramatic changa. It is nonathaless significant (over a factor of 3) for the Mackey-Glass
system with T =100. The fact that the translation error for the Mackey-Glass system is so close to that
of its surrogate is disconcerting. As will be discussed later, the translation error is an unreliable

measure of simple determinism for high dimensional systems.

Table 4.1 shows the Lyapunov exponents of the Mackey-Glass and Loranz systems comparad with their
surrogate data sets. The Kaplan-Yorke dimension of the surrogates continues to increase with larger
embeddings. There is no clear zero exponent, normally characterized by its small magnitude and large

standard deviation, which would indicate that the system is continuous in time. The positive exponents
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Figure 4.3. The prediction arror and translation error plotted for the Lorenz attractor and the Mackey-
Glass attractor and their phase-randomized surrogates. The pradiction error clearly distinguishes the
original data from the surrogates for both systems. Thera is & marked difference in translation error for
the Lorenz data, but the higher dimensional (T =100s) Mackey-Glass data is not as clesrly
distinguishable from its surrogate.

of the surrogate systems may be correct, howsver, reflecting the space-filling properties of the random
data.

An additional use for surrogate data sets was described recentiy by Bauer, et al® They use dimension

densities to characterize high dimensional chaotic systems. tsing the usual correlation dimansion, they

_ Alo Clr)
Do/ m= oy &) 1)

where m is the embadding dimension. Clr) is the correlation intagral of an attractor with the same

define tha dimension density as

macrostructure as the original system, but without the small scale coherent structure. Yo this end, the
phase randomized surrogate is ideally suited. (For reasons of simplicity, thay advocate a ditferant

method for obtaining a Surrogate data set and computing Dy, which is not strictly corract.)! In their

tin creating their surrogate, they measure the probabifity distribution of tha paints of the original system in the embedding
m, and then randemize this distribution. In order to simplify calculations, they use the maximum norm in computing the
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Mackey-Glass, T =238 13 266 0.1043£16.6%  -0.0050 £89.9%  -0.1495 +20.4%
0.3643 £109%  -1.0808+5.4%

Mackay-Glass sumogate 18 404 07326+32% 0264 +11.1%  -0.1627 £19.9%
06977 +£7.0%  -2.1967 £ 3.8%

Lorens 0.03 212 01637 £6.6%  0.0335+400% -1.5606+2.1%
49448 £1.3% -10.7600+ 0.8%

Lorenz surrogate 0.3 5.16 129658 +1.6% 58749+29%  0.8818+18.7%
4.181815.1% -13.4014£29%

Fitered Gaussian naise 1 713 2223 £10% 13121£168%  0.6516+35%
0.1557£192%  -04627+88% -1.0514+55%
207118+39% 4.127+26% 9232115%

Table 4.1. Te Lyapunov exponants the Mackey-Glass system, Lorenz system and their surrogates. The
surrogotes show no saturation in the Kaplan-Yorke dimension with higher embeddings, and no clear
r8ro axponent. The exponants of & filtered noise data set are discussed in section 4.3.

article, they measure & dimansion density of about 0.8 in an embedding of 15, which for their system of
1000 coupled oscillators corresponds to a dimension of 800. They have not as yet tried applying the

method to low dimensional systems, but they intand to use it to study Taylor-Couette fluid flow (a

known real system with low dimension).53 Unfortunately, my studies using the Lorenz attractor with
both randomized and phase randomized surrogates indicate that the methad is not very effective for
this case. The plateau length is extremely short (ca. 0.5 decades), and no plateau exists at large radii,
the very region the method is supposed to compensate for. It does show some promise, though much

research still needs to be done.
42. Noise Reduction

All systems, numerical or)experimantal, are corrupted by some degree of noise. Its simplest, most

benign form is measurement noise. By this | mean that by some non-invasive process one measures the

lation dimension, rather than the Euclidean nomm. In a private communication they acknowledged that this does not
tely measure D; at all scales, but justified it on the grounds that at small scales €1r) is not as limited by statisucs.
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dynamics of a system, however the instrumentation used in the measurement adds a noise component
to the signal. Given a system x,,q = flx,), this additive noise process can be modeled as y =x + r,
where r is the added noise, and y is the measured signal. In computational systems this may occur
unintentionally by truncating the data when storing it. In a more insidious process the diagnostic tool
may distort the signal through filtering or other means, i.e. y=glx). Nonetheless, the diagnostic is
separate from the system, and in thecry — though not in practice — one can extract the relevant signal
by “reverse processing” the data. A different problem is the one of dynamical noise or stationarity of
the system. In this instance, the system itself is naisy, which alters the (noise-free) dynamics as the
system evolves. In this case, x , = f (x,+ 7}, and the measured signal is x. For example, a contro!
parameter, ostensibly constant, may fluctuate as the system evolves. If conditions affecting the
dynamics of the system change in time identification of the underlying attractor may be impossible
because no stationary attractor exists. This can be true even for the seemingly benign situation of
small, slow perturbations to the system. In numerical systems the “noise” process may be as subtle as
computational roundoff error. [n all cases, the noise tends to increase the true dimension of the system,
and may corrupt the underlying system so strongly that no dimension is identifiable at all. As a further
complication, in addition to the destruction of underlying simple determinism, often the analysis
techniques can identify spurious low dimensional chaos where none actually exists. This is especially
true for systems which have been subjected to linear filtering and other noise reduction technigues.

Very recently, Schreiber has developed a method for estimation of the noise level in chaotic systems.54

His analytical results indicate that a noise level of more than about 2% can be catastrophic, obscuring
any scaling region and making estimation of the correlation dimension impossible. Fortunately, there
exist noise reduction methods for nonlinear systems which can help to overcome this problem. These

will be discussed in the next three sections.
4.2.1. Principal Component Analysis

Principal component analysis (PCA} is a technique that relies an singular value decomposition (SVD) to |
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extract the dominant dynamics of a system. It can be a powerful noise reduction technique. In contrast
to Fourier decomposition which approximates the system as a finite subset of sine and cosine
functions, SVD will decompose the system into a unique set of orthonormal eigenfunctions and
eigenvalues. In applying this technique, it is hoped that the dominant eigenfunctions - those with the
largest eigenvalues — will capture the relevant dynamics of the system. The set is then truncated,
rataining only those eigenfunctions with the largest eigenvalues. From this set any of the techniques
outlined in chapter 2 can be applied to describe quantitatively the chaotic dynamics of the original

system.

SVD is based on a theorem of linear algebra, which states that any m by n matrix A with m >n , can be
decomposed into the product of an m by n column-orthogonal matrix U and two n dimensional square
matrices: one diagonal with positive elements W, and the transpose of an orthoganal matrix V. This is
illustrated schematically in fig. 4.4. This decomposition is unigue up to a corresponding permutation of
the columns of U, W, and V.

Typically this technique is applied to time records of a single system variable. An n -dimensional system
is created using the Takens method of lags. This matrix is then decomposed with SVD. The
eigenfunctions are contained in the matrix V, the eigenvalues in W. UW is then the projection of the
original system onto the eigenvector space. The columns of UW represent the dominant dynamics of
the system. By retaining only the first faw columns of UW it is hoped that noise, which tends to be

uniformly distributed in eigenvector space, can be reduced and the relevant dynamics extracted.

The process of principal component analysis is depicted in figure 4.5. The top left plot shows the

Wy

Figure 4.4, Schematic illustration of the singular value decomposition of a matrix (after [55]).



51

original signal from the Lorenz attractor and the neighboring plot shows the same signal corrupted by
50% rms additive Gaussian white noise. Singular value decomposition in an embedding dimension of
seven identifies 3-4 large sigenvalues, shown in the center plot, two of whose corresponding
eigenvectors are depicted in the lower left plot. An offset has been added to separate the two. The sum
of these two largest eigenvectors results in a signal considerably cleaner than the original noise
contaminated one as shown in the lowar right plot. Note that by using only some of the principal

components to recreate the signal a slight time shift is introduced.

4.2.2. Lowpass filtering

The most obvious and basic method of noise reduction is simple, linear lowpass filtering. In most all
experimantal situations some level of filtering takes place. This can be either unintentional, i.e. the
finite bandpass capability of the diagnostic equipment, or intentional filtering to extract desired low
frequency dynamics. Of the latter, there are two methods to achieve the desired results. Causal filtering
fifters in the time domain, and is typically implemented with hardware before the signal is recorded.
The second method is acausal. Data are post-processed, after being recorded, in the frequency domain
with software. Work with chaotic systems has shown that acausal filtering is generally better than
causal filtering.s’& While it is impossible to eliminate unintentional filtering effects of the diagnostic
equipment, one should avoid hardware filtering when possible. This places a restriction on the

sampling frequency, requiring a sampling rate fast enough to avoid aliasing the signal.
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Figure 4.5. Shown is the process of principal component analysis for removing noise from a system.
The top left plot show the uncorrupted signal from the Lorenz system. The neighboring plot is the same
series corrupted by 50% rms Gaussian white noise. Principal component analysis identifies 3-4 major
gigenvalues, two of whose component vectors are depicted in the lower left plot, Their sum (lower
right} gives a cleaned version of the naisy signal which better approximates the original. The normalized
eigenvalues are plotted in the center graph.
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Actually, one should avoid linear lowpass filtering altogethar. When applying a linear filter to data, one
tacitly assumes that the relevant dynamics for the system are confined to a particular frequency range
and the noise to a separate regime. This is rarely the case with chaotic systems because their Fourier
spectra are typically broadband. In addition, when one attempts to filter a signal one is usually primarily
concerned with amplitude reduction. As a consequence linear filtering can distort the phase information
of the Fourier components of the signal. As should be apparent from the previous section, phase is
crucial to the dynamics of a chaotic system. Another problem is that heavily filtered data can artificially
show evidence of low dimensional chaos. If one considers the logical extreme, any signal sufficiently
bandpass filtered will yield a simple sine wave. Unfortunately, dire consequences occur long before this
limiting case is reached. Heavy fiftering distorts the signal enough to give indications of a low fractal
dimension where none actually exits. For this reason, in part, | go into some detail about the effects of
linear filtering. An additional reason is that the analysis results on MST data are suggestive of a white
noise signal which has been lowpass filtered. | will identify in this chapter the characteristics of such a

signal for comparison with the data in chapter 6.

In order to illustrate the effects of linear filtering, | will use as examples three of the most common
types used. (See [57] for a thorough discussion.) The Butterwarth filter is the simplest to implement. its
virtue is that it has maximally flat { A;, = A5, ) amplitude characteristics in the passband, the tradeoff
being that it has a slow transition region from passband to stopband. A cousin is the elliptic filter
where the flatness of the passband is compromised somewhat in order to achieve a steeper transition
region. Finally, the Bessel filter, or constant delay filter, has poor amplitude characteristics (a very slow
transition region), however, it has a linear phase ralation with respect to frequency well into the
stopband. The amplitude and phase characteristics of the Bessel and Butterworth filters are plotted in

figure 4.6.

The power spectrum of the Lorenz system is plotted in figure 4.7. It is broadband and exhibits an

exponential fall off in power which is common in chaotic systems. Power spectra for the Mackey-Glass
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Figure 4.6, The amplitude and phase characteristics of the Bessel and Butterworth filters. The
Butterworth filter has good amplitude characteristics, but distorts the phase. Bessel filters have a
nearly linear phase response until well into the stopband, but poor attenuation performance.

system are very similar. This provides another obstacle for linear filtars: Linear filters are generally

designed as power law functions, though not exclusively so.

In figure 4.8 the top plot shows the power spectrum of the Lorenz time serigs when corrupted by 50%

rms added Gaussian white noise. The original spectrum is plotted in gray for comparison. Beneath it are

the effects of an 8-pole elliptic filter and 8-pole Besssl filter on the corrupted spectrum. In both cases

the cutoff frequency was chosen to match the original power spectrum as closely as possible. Although
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Figure 4.7. The power spectrum for the Lorenz attractor. It is broadband and shows an exponential

falloff in power which is common in chaotic systems.
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Figure 4.8, The top plot shows the power spectrum of the Lorenz attractor corrupted by noise. Tho
lower two plots show the resulting spactra when noise reduction is attempted with an elliptic and a
Bessel filter, respectively.

both do & fairly good job over much of the region, neither is able to recover the shape of the original

spectrum at high frequency.
The filtered signals are plotted in figure 4.9. Both show significant improvement over the original noisy
signal plotted in figure 4.5. This similarity, however, does not indicate whether the relevant simple

determinism has been recavered. As will be demonstrated in the next section, neither filtering method
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Fi,ure 4.9, The noise corrupted signal of the Lorenz attractor as processed by two linear filters. The
original signal is outlined in gray. Qualitatively, the two signals appear nearly identical, though the
filtering methods are very different in principal. Note the delay introduced by the Bessel filter.

is able to recapture the underlying chaotic dynamics of the orlginal signal.
4.23. Nonlingar Noise Reduction

While simple lowpass filtaring may be appropriate in some cases, in general it is an inferior method.
This Is because linear filters do not take into account the inherent nonlinear dynamics of the system
being filtered. The method simply attenuates all signal components greater than 8 certain frequency.
This may, however, attenuate some of the relevant dynamics of the system, while emphasizing spurious

components at lower frequencies.

Saveral similar alternative mathods of filtering specifically aimed at reducing noise in chaotic Systems
have bean developed®-®. The methods make use of the spatial structure of the underlying attractor
and are similar in implementation to the prediction methods outlined in section 2.3. In a nutshell, the
time record of a single cnn}ponent of the system is embedded using the method of lags. For each point
in the embedding space the nearest neighbors are found. The average local trajectory of these paints is

found which becomes the functional map of the point being filtered.
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The mathod as outlined lacks salf consistency, however. One begins with a singlo time record and
croates from it an array of time records, one corresponding to each dimansion of the embedding space.
The method for correcting this constitutes the various approaches to the filtering. One approach simply
updates only a few of the components in the embedded space. For a given point in the ambedded space
(xte), x{e +1), (e +27), ...], the filterexd image point is [y{r +At), vit +At +1), ... At +At+n1l, ),
whare y is the filtarad signal. Thus, each naw basis vector consists of some components from the
filtered trajectory and the remaining components from the original signal. My own invastigations
indicate that updating only one, the first component, yields the best results. The method achiaves
axcellent results for sets of ODEs with modast noise lavels {<100%), racovering the original trajactory
almost exactly. The method is iterative, with several itarations required for best rasults. Unfortunataly,
the method does not work well with maps. A slightly modified version appears to achieve very good
results with maps, yet fails for ODEs. With this method, one updates the leading component in the
ginbedded space so that the trajectory is mapped to [x{s +A¢), xit +At +1), ..., v(t +Ar+m7)). This has
the effact that after several filter steps tha trajectory is completely ditferent from that of the original
signal. With both methods the global properties of the system - fractal dimension and largest Lyapunov

sxponent - are recovered to a close approximation.

Mare sophisticated methods®83 10 achieve self consistency use a8 window of p points and find the
bast fit trajectory using a least squares method. In practice they achieve results no hetter than the

above method and require significantly more computation time. I'll stick with the simpler method.

An aitemative filtering method developed by Sauer®® makes use of singular value dacompasition and
local lowpass digital filtering. A window of w points on the trajectory is lowpass filtered by zercing ali
but the n /2 lowest components of the FFT. Tha inverse FFT returns a vector x in R™*. Neighborhoods
are constructed in this space and SVD is applied to the vectors in each local group. Tha vectors are
projected onto the right singular vectors corresponding to the largest eigenvaluas. The process is then

reversad to extract a filtered version of the original trajectory of w points. The mathod is somewhat
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complicated to implement, and as such, Dr. Sauer agreed to try to procass time series records from the

MST. At tha timu of this dissertation, however, he had not managed to carry this out.

Figure 4.10 shows the signal resulting from nonlingar filtering on the same noisy sighal usad in testing
the lineur filters. Results are clearly bettor, especially with respact to recovering the original power

spectrum. Qualitatively, at Isast, nonlingar filtering appears to do a better job of noise reduction.

Cruclal, however, is that regardiess of appearance, the dynamics of the original system must be
preserved. In order to tast this the corrslation dimension was computed for all four filtering methods.
Results are plotted in figure 4.11. The poorest method is principal component analysis, which may not
be surprising, since the filtered signal lookad the “least clean”. Further, singular value decomposition is
a linear mathod, with all its inherent drawbacks. The two other linear filtaering methods, elliptic and
Bassal, show naurly identical results. Thera is some tendency to saturate to a plateau at large radii,
which quickly disappears at smal! scalas; linear filtering methods cannot recover the small scale
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Figure 4,10. An example of the effect of nonlinear filtering on the Lorenz attractor. Although the lime
series looks comparable to that obtained with linear filtering, the power spactrum much more closely
matches the original.
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Figure 4.11, Correlation dimension for noisy Loronz data after processing with various filtering
methods. None of the linear mathods, elliptic, Bessel, or PCA ara able to recover the nonlingar
dynamics of the original system. The nonlinear method yields s credible plateau of at least one decade.
microstructure of nonlingar systems. The result is curious in that Bessel filters better preserve the
critical phase information of the original (noisy) signal. Ong might have naively thought it would
produce batter results than the alliptic filter, which is not the case. The nonlingar method clearly does
best, yielding & cradible plateau over at least one decade and a slow rise at small radii whare the small

scala structure could not ba completely recovered.

As an additional test, the prediction error was checked for all four methods. This is plotted in figure
4.12. No mathod even remotely recaptures the short term predictability of the original signal. The
nonlinear method does show avidence of limited short term predictabllity, though this quickly vanishes

after 3 time steps. The other threw mathods have the prediction behavior of the original noisy system.
43.  Correlated Noise

As mentionad several timay, correlated noise, and in particular noise which has been lowpass filtered
can give indications of low dimensional chaos or simple determinism whera none is present. Colored
noise can be generated by integrating Gaussian white noise. Lowpass filtering is a similar, but
distinctly different process. Because the pole in a lowpass filler is located off-axis in the complex plane

it distorts the phase information in the signal. {Inteyration doesn't requiry complex algebra.)
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Figure 4.12. The prediction error for the various filtered signals. Only the nonlinear method shows any
predictability differant from correlated noise.

To illustrate this effect, figure 4.13 prasents the correlation dimension of Gaussian white noise,
lowpass filtered with a two pole Butterworth filter. The filter knee was at 10 kHz for a random process
*digitized” at 500 kHz. As mentioned previously, Butterworth filters do not have a particularly steep
transition region, especlally with only 2 poles. There appears to be a short saturation region in al
embeddings at a value of about £, Without further investigation, one might wrongly conclude one was
analyzing a chaotic system. The obvious admonition s to be particularly suspicious of filtered data.

In chapter 8, | will present the analysis of experimental data from MST and argue that the signals are
10
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Figure 4.13. The correlation dimension of heavily filtered Gaussian white noise. There appears to be .
spurious saturation at a dimension near 6 in all embeddings.
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more typical of correlated noise processes rather than deterministic systems. (This is not to say that

there is no information in them!} | prasant an example here to which the MST data will be compared.

figure 4.14 shows the time record and the power spectrum of filtered Gaussian white noise. The data
wera genarated at 500kHz, and then filtered with an elliptic !'tur with a bandpass of 0-80kHz. This
signal is contrived in this way because it very nearly reproduces the power spectrum of both 4, and

I'p. The signal itself also strongly resembles these signals in its structure.

Figure 4.15 shows the translation error for the lowpass filtered noise signal along with that for
Gaussian white noise. As mentioned in section 4.1, the translatinn error is 8 poor measure of simple
determinism for high dimensional systems. As shown plotted hera, without the benelit of a
corresponding surrogate plot one might suspect there was some degree of simple determinism. As
remarkad above, for high dimensional signals, even surrogates cannot help in clearly distinguishing
random from coherent processes. Because of this, for the remainder of this dissertation | will not use

the translation error as a mgasure of simple determinism.

Table 4.1 in section 4.1 shows the Lyapunov expunenis vbtained from filtered Gaussian noise in an

embedding dimension of 9. Tha Kaplan-Yorke dimension is approaching a constant value even though
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Figure 4,14, The signal from lowpass filtered noise shows a time behavior similar to the MST signals
analyzed in chapter 6. The power spectrum has been contrived to closely match that of 8,,, and p
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Figure 4.15. The translation error for fiitered noise and Gaussian white noise. Correlations in the
filtered noise lead to short term carrelation in the system flow which gives an artificially low translation
arror. This is often indistinguishabie from high dimensional chaotic systems. {see figure 3.10)

the system is random. Two things help to distinguish this system from a deterministic process. The
spectrum is augmented by both positive and negative exponents as the embedding dimension
increases, and no credible zero exponent is apparent, which would indicate the system is continuous in

time.

Finally, | plot in figure 4.16 a comparison of the original filtered noise signal and the same signal after

processing with one iteration of the nonlinear filtering algorithm. The purpose in this is to show that the
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Figure 4.16. A comparison of lowpass filtered noise with the same signal after processing with the
nonlingar filtering method. The signals are nearly identical, a phenomenon also seen in MST data.
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two signals nearly overlay. This same phenomenon accurs when processing the MST signals, and
seems unique to them. Neither white nor colored noise exhibits this behavior. It is exceedingly curious,
since the filtering algorithm typically uses 40 nearest neighbors in a nine dimensional embedding
space. A check reveals that neighbors are distributed throughout the time record, quelling the idea that

this is an artifact resulting from correlations of points close in time.

This behavior seems to occur in systems with a non-zero correiation time when the “noise” time scale
is comparable to the “system” time scale. The noise reduction method is most effective if the noise
fluctuations are faster by about 3 to 4 times the fluctuations of the underlying dynamical system.
Correlated noise /s the dynamical system, and hence a “random noise” component cannot be filtered

out.
44,  Stationarity

Another prablem, similar in nature to noise is the issue of stationarity. The filtering methods outlined
above are effective only for addilive noise: noise corruption that occurs independently of the dynamical
system. The issue of stationarity is one of internal noise to the system. During the evolution of the
dynamical system some of the control parameters may change. This can be minimized with a proper

experimental situation, However parameter drift can never be completely eliminated.

There is little work in the literature dealing with the problem of stationarity and internal system noise.
My own studies with the Lorenz attractor have shown that even relatively slow perturbations of modest
amplitude can increase the fractal dimension of the attractor by as much as 1 or even destroy
completely any evidence of chaos.*? Figure 4.17 illustrates the problem. Depicted on the left is the
Hénon attractor generated by eq. (2.4). To the parameter a was added a random fluctuation with an
amplitude of +0.1. One can see in comparing figure 4.17 with 2.6 that the trajectory now has a “fuzzy”
quality. The right plot shows the effect of this perturbation on the correlation dimension. The long
plateau has been destroyed, leaving a scaling region of at most half a decade. Nonlinear noise

reduction cannot correct this problem because the noise is inherent in the system, not external. From
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Figure 4.17. The Hénon attractor after perturbing the parameter a with a small random component. The
attractor is now “fuzzy”, while the correlation dimension shows a very poor scaling region.

the data, one might guess that the system is low dimensional, but the evidence is not convincing.

For parameter fluctuations which are deterministic in nature, for example parameters which drift as
functions of time, the problem is not as severe. Even with the non-stationary parameters the system is
still deterministic, with a dimension increase of one for each additional dynamical variable added to the
original system. A parameter that fluctuates as a function of the existing system variables and time
would increase system dimension by at most two: one dimension corresponding to the parameter itself
and one to time. Unfortunately, there is not much that can be done to correct this non-stationarity, since
one is basically asking to eliminate one (or several) of the system variables. The real problem is that the
number of points now required to reliably estimate the dimension increases a factor of 2.5 for each
fluctuating quantity (using the Tsonis criteria Npin=< 1024040 ) For a system with a modest dimension
(greater than 5) where seweral of the quantities are perturbed the requirement on the number of points

needed quickly becomes unrealistic.

This issue is particularly relevant to studies of phenomena such as pulsed discharge plasmas in the

MST. Even if a low dimensional attractor does govern the system, does the system ever achieve a
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stationary regime during the discharge?
45. Summary

As demonstrated, noise corruption can pose a considerable problem when trying to identify low
dimensional chaos and simple determinism in a system. Standard linear filtering techniques are
inappropriate for most applications because 1) chaotic signals are typically broadband and 2} linear
filters distort the phase information crucial to the small scale correlations. Nonlinear noise reduction
techniques do show some success in reconstructing the original dynamics with modest noise levels
{<100%). However some information is irrevocably lost resuiting in a shortened plateau for the
correlation dimension and poorer short term predictability. Another consequence of linear filtering is

that in certain circumstances it can give indications of low dimensional chaos where none exits.

The issue of system stationarity poses an essentially insurmountable problem. If one or several of the
ostensibly constant system parameters fluctuate or drift during the experiment the dimension of the
system can increase dramatically. Although the system remains chaotic, this dimension increase may

mean an impractical number of points is needed to identify the chaas and simple determinism.
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5. Numerical Simulations of Plasmas

In this chapter | present analysis results for data from two numerical simulations of plasma processes.
The first data set is from a code that models global RFP dynamics. The second model is for drift wave
turbulence, a process thought to be responsible for transport in the core of tokamaks. Both models

show strong evidence of low dimensional chaos and simple determinism.

5.1.  DEBS Code

The DEBS code is a 3 dimensional magnetohydrodynamic (MHD) numerical simulation, which with
proper initialization will model reversed field pinch (RFP) discharges.sf"%m'68 The model has helped
considerably in understanding long wavelength oscillations in RFP plasmas, specifically in
understanding tearing mode fluctuations. As mentioned in the introduction, bispectral analysis of
tearing mode fluctuations from both the code and experiment reveal a nonlinear coupling process from
the m =1 to m =2 modes. This corroboration lends credibility to the code’s ability to model real plasma

processes.

Although the simulation correctly models these phenomenon, there are some limitations. The model is
pressureless, and thus does not include pressure driven modes. In addition, in order to have a
reasonable computation time, the model uses a rather small value for the magnetic Reynolds number,
or Lundquist number S = 7, /7, . 7, is the resistive diffusion time, given by 7, =4ma 2 zn ,where a
is the scale size of the system and 7 is the plasma resistivity. 74 is the Alfvén time and is equal to a
divided by the Alfvén speed vy = BQ/M where pg is the density. The Lundquist number
measure the ratio of the time it takes the magnetic field to diffuse resistively outward to the time it
takes a perturbation to travel along the field lines. Larger values of 8 increase the computation time
significantly because the system becomes more turbulent and requires a smaller time step size to

accurately follow the wave dynamics. In the simulation presented here, the Lundquist number was set
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to S = 6x103. This is particularly small, since S for the experiment is measured to be of the order of 106,
Despite this low value, the simulation required over 60 hours of computation time over the space of 1
1/2 years on a CRAY-Il computer in order to accumulate a time record of sufficient length for the
analysis. When this project was begun it was hoped to try several values of S in order to investigate

scaling laws of dimension versus Lundquist number. This has proved impractical.

5.1.0. The Model

The cole solves a reduced set of the MHD equations via the semi-implicit methed. This allows for the
use of relatively long time steps to track the nonlinear phenomena of interest by modifying the
evolution of the destabilizing fast time-scale Alfvén modes. Details of the method can be found in the
references. The dimensionless equations solved are:
dA _ ¢
L=V xB-nJ
ot 7
Y - _SpV.VV+5Ix B+ vWiV
Plor =P (5.1

The magnetic field B is measured in units of the characteristic field strength Bg. V is the fluid velocity
in units of the Alfvén speed. 4 is the vector patential and J is the current density. p is the mass density
measured in units of pg. Finally, v is the viscosity coefficient v =vgt,/ a?, where vp is the
characteristic viscosity. Both the viscosity and the mass density are assumed to be spatially constant;
furthermore, the mass density is not evolved. The equations are solved in cylindrical geometry which is

periodic in the z direction.

The equations were solved for 9 toroidal and 3 poloidal modes with 127 radial mesh points. The system
was monitored at regular intervals during which nine quantities were recorded. These were the parallel
glectric field £, the average electric field Eyy = -S(VxB), and the ohmic electric field Eg =nJ/ at
both the edge and the core, and the average toroidal and poloidal magnetic fluctuations, ¢B, /dt and
dBy /dt , and toroidal loop voltage Vi, . Because of the long autocorrelation times of the signals the

160,000 plus data points were reduced to about 20,000 for each signal. The records span about 1.65
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resistive diffusion times. Direct comparison with MST discharges is not possible because of the
compressed time scales used in the code. Howaver, by comparing tearing mode time scales, one arrives

at a duration corresponding to about 55 ms for a standard MST discharge.
5.1.2. Analysis

The top plot in figure 5.1 shows the time histary of average poloidat magnetic field fluctuations. Time is
measure in units of the resistive diffusion time 7, The trace may be compared with figure 6.2 which
shows a plot of the raw magnetic fluctuation data from MST. Figure 5.1 shows evidence of flux jumps ~
bursts of magnetic field energy — which are also characteristic of MST discharges. Beneath is shown
the power spectrum, The signal is broadband, indicating that it is not periodic. The falloff is similar to
both the Lorenz and Mackey-Glass systems, although the shape of the power spectrum is not an

indicator of low dimensional chaos.
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Figure 5.1. The tap plot is the time trace for the fluctuations of the average poloidal magnetic field. It
‘s in many respects similar to data from the MST experiment. The lower trace shows the corresponding
Jower spectrum.
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A phase-delay plot is depicted in figure 5.2. It is not very informative, indicating only that any dimension
is likely greater than 2. The neighboring Poincard sectiun, obtained by embedding the system in 3
dimensions and inserting a plane at x (¢ +6)=0, suggests that the reduced system Is nearly linear. That
would imply the original system is nearly 2-dimensional. However, this affect may be due to lack of

points rather than low dimensionality. Only 182 “punctures” were abtained from the data record.

The correlation dimension for several of the signals analyzed is presented in figure 5.3. Most signals,
inctuding Bp, £, and Eg shawed long saturation regions (at least a decade) at a dimension between
three and four. Eg and E4ye showed identical behavior. The top two plots compare the correlation
dimension for Bp and its phase randomized surrogate. The original signal shows a long clear plateau
region. The surrogate shows a short region of spurious low dimension which is similar to the behavior
seen in correlated noise. One can conclude that these signals show good evidence of low dimensionial
chaos. The bottom left figure shows the correlation dimension for Vi, . No clear saturation region is
evident. This is probably to be expected. The simulation constrains the current to remain within a

predetermined narrow range. In order to achieve this, the loop voltage is adjusted as the current drifts
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Figure 5.2. The phase delay plot and Poincaré section from dB,, /dr . The Poincaré section suggests
that the reduced system is nearly linear.
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Figure 5.3. Correlation dimension for several signals from the DEBS code simulation. The top two plots
compare the B,, signal with its phase randomized surrogate. The original shows a clear scaling region
not present in the surrogate. The plot for V,,, shows no saturation, which is expected. Egye also
shows a good scaling region.

outside these limits. The correction is essentially an occasiona! kick, evident in the loop voltage signal,

which shows rapid oscillations over a narrow range.

The prediction error for several of the signals is plotted in figure 5.4. The left plot shows the prediction
error for Bp, Eg and their surrogates. Soth signals shaw fair predictability, better by a factor of three

than their corresponding phase randomized surrogate. Howaver, an embedding greater than 18 was
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Figure 5.4. The left plot show reasonably good predictability for both Bp and Ep , better by a factor of
three than their surrogates. The right plot shows that neither £y nor ¥y, shows any pradictability.

required before any evidence of short tarm predictability was seen. The behavior is odd considering that
the dimension of the system is no greater than 5, requiring an embedding of at most 11 to reconstruct
the attractor faithfully . This may be attributable to the small number of points available to reconstruct
the attractor. As seen in the right plot, £y shows very poor predictability; the surrogate and original
signal are nearly identical. Again, this may be attributable to the small number of points. Vi, 8s

expected, also has poor predictability.

Table 5.1 shows the Lyapunov exponents calculated for two of the representative quantities. In both
cases, the Kaplan-Yorke dimension asymptotes to a constant value, and the Lyapunov exponents
remain relatively stable as embedding dimension increases. Both systems show a clear zero exponent
value with a small magnitude and large standard deviation. All continuous Systems must have at least

one exponent equal to 0.
5.1.3. Summary

The simulation of an RFP discharge shows strong evidence for low dimensional chaos and simple

determinism in nearly all signals. There are some anomalies, notably, the poor predictability of £,
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0.96 531 03738£33%  012474£73% 00129+ 76.8%
0.0836421.0% -02184£8.1% -0.7700+4.4%
0.88 5.85 03838£28%  0.1341:63% 001131 748%
00535+ 17.8% 01620+ 71% 03565 £4.1%

0.9002 £ 3.2%

Eyve 0.9 830 | 03669£31%  0.1537:6.0%  0.0262431.6%
0003 £009% 00760+ 140% 0.2208+82%
7677 36%

0.80 882 03080£28%  0.1981:4.4%  0.0404 £18.7%
0.0091£698% -0.08401112%  .0.1888£5.5%
03791 £3.8%  -0.88974 3.0%

Table 6.1. The Lyapunov exponants for two of the quantities analyzad from DEBS code. Both show
consistent exponant values at higher embeddings, a small "zero” exponant and saturation of the
Kaplan-Yorke dimension.

which may be reconcllal')‘le with more data. By and large, however, the results indicate that low
dimensional chaos might be expected in RFP discharges. There are several caveats, howevar. One is
that the code simuiation used a very small value for the Lundquist number and only a few modes ware
included. In addition, high frequency oscillaticns are not prasent in the code In order to modal the more
pertinent long wavelength oscillations in a reasonable time. Finally, the addition of a finite prassure

tould change these results considerably.
52,  Dissipative Trapped Efectron Mode Madel (DTEM)

A topic of intanse research in the fusion plasma community is the issue of anomalous particle and
energy transport. In tokamaks, one mechanism possibly responsible for this transpart is the fong
wavelangth drift wave tusbulence associated with dissipative trapped lon and electron modes. The
existance of these modes Is indicated by several experiments,3707" aithough their fink to confinement

is still speculative.

The specific model is probably not directly applicable to RFP physics, in part because the oscillations
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are plactrostatic, The magnetic topology in an RFP is too complicated to ignore magnetic effects.
Howevar, the basic structure of the model provides an Instructive archetypg for long wavelength
turbulence in genaral. In particular, one of the nonlinearitias, the polarization drift nonlingarity, has a
direct correspondence to one of the MHD nonlinearities. Thus, although the modsl differs in the details,
some of the global properties: saturation, spectral distribution of energy and transport, should be

similar to those seen In RFP physics.
5.21. The Model

The DTEM model possesses two nonlinearities that govern its behavior. These are the ExB
nonlinearity and the polarization drift nonfinearity. The interplay of these two nonlinearities was
axplorad by Newman, who showed that the model has several spectral ranges where each of the

nonlinearities and thair cross terms dominate the dynamics.”2 The model equation is given by

Y| @A prv Py YA+ pe, Vi x 2. VoV 4 uV
a:“’ 9)’+yﬁ+09y2 Lvayxz Va+pc,Viixz - VpVei+uVia=, 52)

whers A is the fluctuating ion density, v* is the diamagnetic drift wave velocity (cT, /eB)/L , L isa
density gradient scale length, ¥ is a long wavelength collisional damping coefficient, p is the ion
gyroradius evaluated at the elactron temperature and c, is the ion sound speed. D is a negative
diffusivity dascribing the destabilization of DTEM modes with D = 32yt (1+% N}/ ye where v, is
the elactron collisional damping coefficient and n = dInT /dinn is the electron temperature gradient
parametar. Finally, u is the coefficient of hyper-viscasity introduced to modal strong damping at high
wavenumber k . The important nonlinear terms are the 5" tgrm which Is the ExB nonlinaarity and 6th

term, the polarization drift nonlinearity.

The code is purely spectral, meaning all computations are done in Fourler space. The system is
initialized with a mode spectrum symmetric about the origin and allowed to evolve until transient
behavior has vanished. The magnetic field is oriented along the z axis and the density gradient is in the

x direction. In tha jargon of the code, a 13x13 case contains the modes 0 though 16 in both thex and y
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directions. For the work prasented here the system was driven with a linear driving term {the 4th term)
at long wavelengths and damped at short wavelengths, The intermediate wavelength range of no
damping or driving is known as the inertial range. Nondriven/nardamped systems were examined and
appear also to be chaotic, howaver | will concentrate here on the more physical model. Several cases
wera examined, including 13x13, 21x21 and 29x29. Most of the analysis results are presented for the
21x21 case, however the results are genarally applicable. The 13x13 case has a very short inertial
range (2 modes), and hence is a poor example, while abtaining sufficient points for proper analysis of
the 29x29 case proved difficult. Reference will be made at appropriate points to results from other
systems. The data records analyzed Included the fluctuating energy from each of the modes in the
inertial and dampad regimes and the total fluctuating energy and enstrophy (mean squared vorticity).
The tesults, which are presented below, indicate low dimensional chaos and simple determinism in

most cases examined with a dimension dependent on the regime exemined.

A similar model used to study #; turbulence has been investigated for low dimensional chaos by
Parsson and Nordman. % In contrast to the modal investigated here, the n; model contains only one
nonlinear term, the ExA nonlinearity. They examined individual mode energies in a system of 64x64
modas and found the dimension of the system to be high in the weak turbulence regime where the
linear terms dominate and low, with a dimension fess than 3, for the strong turbulence where the

nonlingar terms dominate,
5.2.2. Analysis

in figure 5.5 is presented a typical time trace of a single mode energy of the 21x21 mode case; this one
is the (0,8) mode. Here, the convention is (y .x), in accordance with Newman. The moda is part of the
damped regime. Below it is depicted the power spectrum. Although in no way Indicative of chaos, it is

interesting to note that the shape is very simifar to that of both the Lorenz and Mackey-Glass systems.

The top two plots in figure 5.6 show the correlation dimension for the (0,8) mode and the correlation

dimansion for its phase randomized surrogate. There is a clear plateay region at a dimension betwaeen 8
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Figure 5.5. The energy of the (0,8) mode of a 21x21 mode system. This mode is in the damped regime.
Bengath it is shown the power spactruin,

and 9 which is not evidunt in the surrogate plot, The low number of points available (40,000) accounts
for the discrepancy between embeddings of 14 and 17, and the roll off to low dimension at small radii
is for reasans similar to thosa discussed in connection with the Maciey-Glass system (see section 3.2).
The divot seen in the surrogate plot near a dimension of 8 is typical of the spurious plateau seen with
correlated noise as discussed in chapter 4 . The bottom two plots show the correlation dimension for
the (0,6) mode, which is in the inertial range where no driving or damping is present, and the total
anergy. Both show a cloar plateau region with a dimansion around 6, whilu their surrogates {not shown)

show a behavior similar to white noise.

Most signals examined from the DTEM system showed similar correlation dimension plots, with the
inertial range having a dimension around 6 and the damped regime somewhat higher. This behavior is
not unreasonable and is consistent with the results rapurted in [10]: the ragime in which the lingar

terms dominate (damping, (0,8) mode) shows a higher dimension than does the nonlinear regime
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Figure 5.6. Plotted is the correlation dimension for several cases from the 21x21 mode spectrum. The
top two plots compare the dimension of the (0,8) mode and its surrogate. There is a clear scaling region
for the original signal at a dimension between 8 and 9. The dip in the surrogate is reminiscent of
correlated noise as discussed in chapter 4. The lower two plots show the correlation dimension for the

, (0.6) mode and the total energy.

(inertial range, (0,6} mod(;). The results are also consistent with experimental results which indicate a

dimension dependent on the wavenumber.'! The different measured dimensions may be explainable on

the basis of turbulence theory, however the explanation is still speculative. This will be discussed in

more detail in the summary section at the end.
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In the 13x13 case {not depicted) a saturation region was also apparent, though not as clearly defined.
The dimension was somewhat lower, between 4 and 5. The poorer saturation may be due to the fact
that the regimes are so close to each other that no stable transfer pattern is established. The 39x39
case showed some tendency to saturate at a dimension near 7, though many more points are needed

before a reliable estimate can be made.

Figure 5.7 demanstrates the short term predictability of the signals. Plotted are the prediction error from
the {0,6) mode, the {0,8) mode and the total energy and the error of their phase-randomized surrogates.
One can see that the short term predictability of the (0,8) mode is especially good: at least an order of
magnitude better than its surrogate. The predictability of the energy is also good, though not quite as
dramatic as the (0,8) mode. The predictability of the (0,6) mode is poor, showing a high prediction error

that is comparable to its surrogate’s. The possible reasons for this will be discussed in the summary
section at the end.

Table 5.2 shows the Lyapunov exponents for the {(0,6) and (0,8) modes in several embedding
dimensions. Both systems have positive exponents, indicating that the modes are chaotic. The (0,8)

mode has a higher Kaplan-Yorke dimension before it saturates, as expected. The exponents are very

1 o 8 F] § ? B85
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Figure 5.7. The prediction error for the {0,6), {0.8) modes and total energy of the 21x21 mode spectrum.
Predictability is good for both the {0,8) mode and the total energy. It is poor for the {0,6) mode for
reasons explained in the text.
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system T Dy |L yapunov exponents
mode (0,6) 0.09s 8.10 17775+ 2.4% 1.0174 £ 3.1% 05018+ 5.5%
0.0950£27.4%  -0.0222+999% -04130+8.1%
-09218+43%  -16575+34%  -3.8867+28%
0.08s 8.55 1.7148+22%  09704+3.1% 0.4574+5.7%
0.0757 £31.0%  -0.0525151.0% -0.2167 £13.4%
-06746+£50% 119451 36%  -1.9802+3.0%
-4.4591 +2.6%
mode (0,8) 0.05s 9.09 88462+ 16%  4.9430+22%  25281+34%
1.1618+73%  0.0490£999% -0.3610+27.6%
-1.2486£10.0% -39239+73%  -22991+55%
-29,0221 4 3.7%
0045 963 8.9888+ 1.3% 57238+ 1.8% 33N22+27%
13845+ 6.3%  0.14311682%  -0.44981+26.3%
19071 +£7.1%  -3.7892+43% 65160+ 3.0%
-10.8685+2.3% -23.434511.7%

Tahle 5.2. The Lyapunov exponents for two modes of the DTEM model in several embedding
dimensions.

stable from one embedding to the next, remaining at approximately the same value. This is a good
indication that the values are probably very nearly correct. In addition, any system continuous in time
must have at least one exponent equal to zero. Both show at least one and possibly two zero values

with small magnitude and large standard deviation.
5.2.3. Summary

Analysis of the data from the DTEM model shows strang indications of low dimensional chaos and
simple determinism. The individual mode energies and the total energy show a clear plateau region
with a dimension dependent on which mode one examines. All signals show evidence of short term
predictability, though the quality is mode dependent. Finally, the Lyapunov expanents yield a Kaplan-

Yorke dimension which corroboi ates the results obtained from the correlation dimension.

Initially, one should expect a single system to have a single dimension characterizing its topolagical
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structure. Although this should in no way be taken as fact, | can offer some speculation as to why the
different modes show different dimensions and predictability. The DTEM mode! has two very different
regimes which govern the dynamics of the system. The inertial range, modes 3 through 7 in the 21x21
case, contains no linear damping. The only dissipation is through the nonlingar coupling process to the
other modes. The damping regime contains a large dominant linear damping term. In many ways the
dynamics of the damping regime are independent of the inertial range; the reverse, however, is not
true. One can make a loose analogy to an amplifier with a high input impedance: the input signal should
be unaware of the amplifier's existence. Thus, it may not be unreasonable that the two regimes have
different dimensions when examining the large scale structure. At very small scales this difference
should disappear, reflecting the fact that it is coupled system. However, the number of points required
and computational constraints restrict the ability to explore this limit of infinitesimal hypersphere radii.
In any case, the difference in dimension is very small, about 2, in comparison to the number of

equations used to describe the system: 441,

The difference in predictability may be explainable as follows. The inertial range is a much more
turbulent regime, and in addition it is very nearly Hamiltonian. The only damping is from the nonlinear
interaction with the other modes. Thus, the trajectory is not strongly drawn to the attractor, Through the
interaction with the other modes it experiences a perturbation from the inertial manifold of the
attractor, and cannot quickly converge back that manifold. The {0,8) mode is in the damped regime
which is far less turbulent and thus more stable. This dissipation insures that the trajectory remains

close to tha inertial manifold, thus accounting for its superior predictability.

The Lyapunov exponents tend to corroborate this explanation. If one ignores probable zero values, those
with large standard deviations, the least negative exponent (the one with smallest absolute magnitude)
is larger for the (0,8} mode {-1.249) than for the (0,6) (-0.413). This value contrals the collapse of the
trajectory onto the inertial manifold (the topological region containing the attractor) of the attractor.

This larger value for the {0.8) mode would imply & faster convergence to the attractor and hence better
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predictability.
| must emphasize that these explanations are largely speculative. More work in this area is planned
with the intention of trying to explain these phenomena. Clearly, however, the system is low
dimensional, and one might therefore expect real plasma system to alsc show evidence of low

dimensional chaos.
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61. The Data

In order to ascertain whether simple determinism governs cischarges of the Madison Symmeatric Torus
(MST) a wide range of signals was analyzed comprising both global and local measurements, Global
signals included fluctuations in the average toroidal magnetic tield at the wall, dBy,, /dt , fluctuations
in the plasma current, di, /dt , chord averaged density fluctuations, both optical and soft x-ray
radiation, and toroidal and poloidal gap voltages, V;, and Vpg- Local signals included local poloidal and
toroidal magnetic field fluctuations, ion saturation current, Jy,, , and plasma potential fluctuations. All
the data analyzed cannot be presented here without seversly compromising the reader’s attention span.

Rather, | will concentrate on a representative sample drawing from both groups.

As mentioned in the introduction, none of the analysis tachniques applied yielded any evidence of
simple determinism. On the contrary, circumstantial evidence would suggest that the signals analyzed
are similar to lowpass filtered white noise. Results for the analysis will be presented in the same
format as in the last chapter, and at the appropriate points | will remark about the similarities of the

data to noise.

Comprising the global set of signals to be presented are fluctuations in the toroidal magnetic field at
the wall and fluctuations in the plasma current. Because of the large voltage spikes in both gap
voltages the digitizer resolution is poor, and the signals cannot be analyzed properly. The data for
dBy,, /dr were abtained from a set of four Rogowski 3¢ .Is around the feed legs for the poloidal current.
The signal was first nardware filtered with a 6 pole Butterworth lowpass filter with a cutoff fraquency
at 157 kHz. The filtering proved unnecessary, since the natural bandwidth of the signal is well below
this lavel. The signal was then attenuated by a factor of 3 and sampled at 500 kHz over the duration of
the discharge. di, /dr is obtained using a Rogowski coil located inside the torus. The signal was

filtered and digitized in the same way as dB,,, /dr, however no attenuation was necessary. In view of
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the effects of linear filtering presented in section 4.2.2, it should be noted that several signals which

were not filtered have been analyzed yielding similar results.

The group of local measurements consists of the ion saturation current obtained from a Langmulr probe
and the local fluctuating poloidal and toroidal magnetic field components obtained fron the set of
dense array coils. The dense array is a set of small, closely-packed magnatic pickup coils located at the
wall designed to measure shart, high frequency fluctuations and magnetic field correlations. The coll
signals are amplified by a factor of 2 to 5 and then digitized at 250 kHz. One coil in each of the toroidal

and poloidal field directions was used.

Table 6.1 summarizes the relevant parameters of the signals presented here. Notice that all signals
with the exception of Jg,, have extremely short autocarrelation times. If this wers due purely to the
dynamics of the system, identification of the quantities charactarizing the chaotic dynamics would be
very difficult. As discussed In chapter 3, a reasonably large T is necessary to properly estimate the
correlation dimension, Lyapunov exponents, etc. Noting this, sevaral of the quantities were remeasured
using double the digitization rate to extend the autocorrelation time. There was no difference in the
analysis results. The number of points avallable for analysis, by the Tsonis rule Nype< 1024942, would
mean it is possible to measure reliably a maximum dimension of 6 or so for &, and 7, 5 for the

magnetics and 4 for J,, .

The data for dBp, /dt , d1, ldt , and Jyg , were all taken on 22 September 1892. The flat-topping

network was in operation for the data taken on this day, and peak plasma current was typically about

Signal dt Points during flat-top | Autocorrelation (dr steps) | Date and Shat
By 2108 20,000 ? 22 Sap 92, #41
iy 2x10° 20,000 2 22 Sep 92, #41
s 1x10°8 4,000 35-40 22 Sep 92, #41
B, ax10°® 7,500 23 2Jun 93, #124
B 4x10°® 7,500 1 2Jun 93, #124

Table 6.1. Summary of relevant parameters for the MST signals examined for simple determinism.
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290 kA. | will concentrate on a particular shot, #41, aithough several others were analyzed with simitar
results. The magnetic fields during the discharge are depicted in figure 6.1 along with the chord
averaged electron density from the FIR interferometer. There is a significant flat-top period extending
from about 17 to 57 ms. Tti2 data were all analyzed Juring this period since it seems likely that if the
plasma is to achieve "squilibrium”, it would be during this period. Data from both startup and
rampdown periods have also been analyzed with similar results. The data for the magnetic field
fluctuations were taken on 2 June 1993. Again, flat-topping was operational, this time with peak
plasma current around 400 kA. The flat-top period was somewhat shorter, owing to the higher currents,

and extended from approximataly 10 to 40 ms.

6.2.  Analysis

The raw signals are plotted in figure 6.2. Digitization means all signal amplitudes are measured in volts.
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Figure 6.1, MST discharge #41, 22 September 1992, The top plat shows the average toroidal magnetic
field and the toroidal field at the wall. The lower trace shows the chord averaged electron density. The
data presented here were analyzed during the flat-top period from about 17-57 ms.
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Figure 6.2. The raw signals from the MST to be analyzed in this chapter. The data represent both
global and local quantitie§
Evident in all signals are the flux jumps, bursts of magnetic field energy, characteristic of the MST
discharges. Otherwise, except for in Jyg, . there is no other structure apparent in the signal. A detail of

dBy,, /ds is shown in figure 6.3 around the time of a flux jump. Although in no way indicative of the
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ligure 8.3, Detall of the By, /dt shawing the structure during a flux jump. There is some qualitative
structural similarity to lowpass filtered noise depicted in figure 4.3
lack or presance of simple detarminism, the signal should be compared with figure 4.3, which shows a

time traca of lowpass filtared Gaussian whita noise. The two are qualitatively very simllar in structure.

Figure 6.4 shows the power spactra of each of the signals over the flat-top region. The B, spectrum, not
shown, is similar to B, All signals are clearly broad spectrum, which probably accounts for the short
autocorrelation times. The power spectra are not at all similar to either the known chaotic systems or
the numerica! systems presented in the last chapter. Power spectra are not, however, in any way
indicative of low dimensfonal chaos. One can conclude that the signals are not periodic, and thus at
least candidates for chaos. By design, the power spectra for dBy, /dt and di, /dt are qualitatively
similar to that of lowpass filtered noise depicted in figure 4.14. Notice that the spectra for both B,

and / p fall off significantly before the hardware filter roll off fraquency of 157 kHz.

The phase delay plots, shown in figure 6.5, show no apparent simple structure. The plot for dByy, /dt is
a 3.4 ms window (1700 points) with a lag of 3 time steps. The Jy4 plot covers 10 ms and 1,000 points.
Essentially, they appear as a ball of wool with occasional excursions into hyperspace during flux jumps.

Again, phase portraits are typically only useful for dimensions less than 2.

Figure 6.8 presents the correlation dimension plots for all signals. Thera is no saturation with increasing
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Figure 6.4, The power spectra for the MST signals.

embedding for any signal, These plots exhibit no evidence for low dimensional chaos or simple
determinism in the raw signals from MST. Ali plots are typical of noise systems. There appears to be a
hint of saturation in the J,,, plot for an embedding of 9 at a dimension near 8. It disappears, however,
in higher embeddings. The behavior is more typical of correlated noise, as discussed in section 4.3,
rather than any real indication of low dimensional chaos. in addition, the number of points available
would not allow for a credible determination of a dimension this high. Figure 6.7 shows a comparison of
the correlation dimension of B,w and its phase randomized surrogate. The two sets of curves are

indistinguishable, confirming that B,, is not a low dimensional chaotic process.
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Figure 6.5, Phase delay plots for By, on the left and Jy,, on the right. For By, 1700 points are
plotted covering 3.4 ms; for Jy,, there are 1000 points covering 10 ms. Phase delay plots for the ather
signals are just as illuminating.

Figure 6.8 shows the transiation error of the MST signals along with their phase randomized
surrogates. Recall that the translation error measures the coherence of flow in simple deterministic
systems. The left plot shows the global signals By, and ip. Given only the data from the original
signals, one might be persuaded that some degree of predictability and flow coherancy exists. The
valugs in several embeddings could {marginally) be considered small. However, the surrogate data
shows an almost exactly similar trend, indicating that the presumed coharence is spurious. These small
values are likely due to the choice of 7= 1 for tima lags. Even though the signal loses correlation on this
tima scale, this choice of T means that neighbors are very likely to be on the same trajectory. Hence
their flow is in a similar direction. This emphasizes the need to sampla data fraquently enough to have
an autocorrelation time of several time steps. However, data sampled at a higher frequency, 1 MHz,
allowing the use of a larger  (21), did not yield significantly different results. As discussed in chapter
3, the translation error is a poor indication of simple determinism for even modestly high (>4 or 5)

dimensional systems. It is presented here only in the interest of completeness.

The neighboring figure shows the local signals Jy,, , By, and B,. The same conclusions as above
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Figure 6.8, The correlation dimension of the MST signals. None show any evidence of saturating to a
constant value which would indicate low dimensional chaos.
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apply. Notice that since /g, has a relativaly long autocorrelation time due to the fact that the signal Is

not differentiated, the proper choice of = yields very large values for the translation error.

Figure 8.9 deplets the preliction error for the MST signals. The prediction error measures short term
predictabillty, should be small for 8 simple deterministic system. In a nutshell, none of the signals are
even remotely predictable in the short term. The steep rise from a modestly high value (20 - 30%) to
saturation at 100% within 2-3 time steps is typical of correlated noise systems. As mentioned
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Figure 8.7. Comparison of the correlation dimension of By, with its surrogate date set. Both show
vary similar behavior, indicating that By, is not governed by a low dimensicnal chaotic process.

previously, the initial short term predictabllity Is an artifact of the short term corralations seen when

measuring time steps in units of ¢,

Table 6.2 presents the calculated Lyapunov exponents for the data. With each increase in embedding,
the Kaplan-York (KY) dimension increases significantly, although it does not fill the embsdding space.
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Figure 6.9. The prediction error for MST signals. The low values in some of the signals for the first step
is due to spurious correlations due to measuring time steps in units of 7.

Recall from section 4.3 that this behavior is typical of lowpass filtered noise. In contrast, several of the
systems, Jgg, Bp and B, show credible zero exponents values, which wauld indicate the pracesses
are continuous in time. 3m and 1 p do not show a zero exponent. Because the KY dimension never
stabilizes, the Lyapunav negative exponents cannot be considered to reflect any real value, despite the
fact that some of the larger values appear relatively stationary. The positive vaiues may be correct, and

reflect the space filling property of the high dimensional or stochastic system.

In addition to time series analysis, MST discharges were analyzed spatially using the set of magnetic
pickup coils distributed around the torus. Rather than using time-delay embedding to reconstruct the
phase space, vectors were created by using signals from separate coils as individual vector
components. The purpose was to address the issue of stationarity by analyzing data from a very short
time period, and yet have a sufficient number of vectors for adequate analysis. The data were taken on
8 October 1992, and digitized at 500 kHz. Figure 6.10 show the correlation dimension obtained when
using 2000 spatial vectors over a duration of 4ms of the discharge. The number of coils used
corresponds to the embedding dimension. The results are consistent with the time series analysis: No

evidence for simple determinism was seen in MST discharges.
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system T Dyy Lyapunov exponents
By, 2us 402 [ 01570+ 07% 00691+ 17% -00342:52%
01790+ 1.6% 05480 + 0.9%
615 | 01186+07%  00701+£12%  0.0288+32%
00162+£76%  -00569+29% -0.1134x2.0%
02057 +14% 04776+ 09%
Ip 2us an 0.1589+07%  0.0670%18% -0.0205%7.8%
-0.1472+£1.8% 05068 +0.9%
624 | 01227+07%  00726+11%  0.0295+30%
00083+122%  -00536+30% -0.1100+21%
-02157 £1.4%  0.4387 £ 0.9%
Jsar Wus 403 | ..0432+48%  00159+130% -0.0081429.1%
A/10 00411£78% 01047 £56%
507 | 00509:45%  00232+76% 0.0019:+100%
00181£133%  -0.0481+72%  -0.1427+51%
B, 4ps 404 | 00670+14% 00257 +35% -0.0149+7.1%
0063623%  -0.1731+1.6%
666 | 00567+15%  0.0342:20%  0.0147 +43%
00009+729%  -0.0174+45% -0.0399+25%
00723+£20% 01751+ 1.6%
B, dus 419 | 00698+15%  0.0317+29% -0.0102£10.5%
-00599+26%  -0.1645+1.7%
877 | 00881+15%  00350:20%  0.0169+38%
00005+ 100%  -0.0173+45% -0.0377+25%
00718+1.9%  -0.1708 + 1.6%

Table 6.2. Lyapunov exponents for the MST signals, measured in u s The Kaplan-Yorke dimension

shows no indication of saturation in any embedding.
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Figure 6.10. The correlation dimension derived by creating vectors from magnetic coils distributed
around the MST vacuum vessel. It too shows no evidence of chaos.

63. Hitering

Although there is no evidence for simple determinism in the raw data, the possibility remains that the
signals are noise corrupted. Thus, all signals were low pass filtered in order to extract any possible low
frequency chaotic dynamics. Despite the admonitions against linear lowpass filtering presented in
chapter 4, | first filtered with an 8-pole elliptical filter with the knee at 20kHz. The resulting phase delay
plot for By, is shown in figure 6.11. The signal does appear to be cleaned up considerably, and the
phase-delay portrait is quite a bit smoother then the comparable one in figure 6.5. However, as
indicated in the right plot, there is still no evidence of low dimensional chaos. Plotted is the correlation
dimension for the filtered signal and the phase randomized surrogate of the filtered signal. The two
. show nearly identical behavior, dispelling any hope that linear filtering may extract underlying chaotic
dynamics. In chapter 4, however, | presented evidence that linear filtering often destroys rather than
extracts simple determinism for a corrupted signal. The results obtained here are thus not too

surprising.

The signals were next pracessed using principal component analysis {PCA) in hapes of recovering the
relevant dynamics. As can be seen in figure 6.12, PCA has distinguished about four dominant dynamical

components; there appears to he a break in the eigenvalue spectrum after the fourth component.
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Figure 6.11. The left hand figure shows the resulting phase delay-plot when By, is filtered with a
Jowpass elliptical filter with the cutoff at 20kHz. It corresponds to the same time frame as in figure 6.5.
Despite the more attractive “attractor” there is still no evidence for simple determinism, as seen in the
right figure. The plot compares the correlation dimension for both the filtered signal and its phase
randomized surrogate. The two are indistinguishable.

Plotted in the lower figure are the three largest eigenvectors multiplied by their respective eigenvalues.
It appears that the original system can be separated into processes on different time scales. The
dominant component has a much lower frequency than the other two. This would lead one to hope that
there is some underlying low dimensional system, ca. 4-5, obscured by noise. PCA hopefully has
relegated these noise components to the eigenvectors corresponding to the smallest eigenvalues,

leaving the relevant dynamics to the largest few vectors.

Unfortunately, as shown in figure 6.13, this is not the case. Depicted is the correlation dimension for
the largest eigenvector from the PCA of B,,. It shows no indication of saturation to a small correlation |
dimension value. The other two largest eigenvectors show similar behavior. In addition, | attempted a |
second processing of the largest eigenvector, hoping to achieve iterative “cleaning” of the signal.

Results were similar to those from a single iteration.
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Figure 6.12. Principal conponent analysis of By, . The upper plot shows the eigenvalue spectrum with
what appears to be a break after 4th value. The three largest components are shown in the lower plot.
The decomposition distinguishes a low frequency vector with the largest eigenvalue (amplitude) from
several smaller high frequency components.

Nonlingar noise reduction, the process outlined in section 4.2.3, does not yield results different from
the above. Plotted in the right of figure 6.14 is a detail from the By, time series compared with the
same series after one iteration of the nonlinear filtering process. The signals are nearly identical. In

section 4.3 | discussed this phenomenon in conjunction with lowpass filtered Gaussian white noise.

This behavior seems unique to the MST signals and the filtered noise signal. Possible reasons for this
were discussed in that section. Although the evidence is purely circumstantial, it would indicate that

MST signals are similar to filtered noise. The right plot of figure 6.14 show the result after six
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Figure 6.13. The correlation dimension for the principle component corresponding to the largest
eigenvalue from the SVD of By, . There is still no indication of chaotic dynamics. :

iterations. Qualitatively, the two signals do not differ significantly from one another.

Figure 6.15 shows the correlation dimension for the MST signals after processing with the nonlinear

dBtw/d( filtered
{(+3 offset)

tw
———— B, filtered

TTTIT YT

4| : 1 Ao

.2 .
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Figure 6.14. The effect of nonlinear filtering on By, is depicted. The left figure shows a detail after
one iteration. It is nearly identical to the original signal. After six iterations, difference between the twa
are only superficial {right).
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Figure 6.15. The correlation dimension for the MST signals after processing with the nonlinear noise
reduction method. The are still no indications of low dimensional chaos.
filtering algorithm. B, which shows similar behavior to B, has been omitted. There is still no
evidence of low dimensional chaos in any of the data.

L]
The plot for B, shows a’curious behavior at large scales, with what looks like a plateau region of

dimension less than one for -1 < logr < 0. The origin of the behavior can be seen in figure 6.16. The

nonlinear filtering has had a different effect on the local magnetic fluctuation signals ( B; and B, show
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Figure 6.16. Shown is a detail from B,, after processing with the nonlinear filtering routine. All signal,
save the bursts corresponding to flux jumps, has been nearly eliminated. This feature is responsible for
the spurious D5 = 0 region of the correlation dimension depicted in figure 6.15.

the same behavior) than on B,,. Essentially all signal has been eliminated except the bursts during
flux jumps. The likely reason for this is the small amplitude of the signal between fiux jumps. The signal
level was less than 1/2 volt during this period, corresponding to fess than 50 digitizer bits, Additionally,
the sampling frequency of B, was 1/2 that of By,,. This resulted in a shorter autocorrelation time,
making the signal between flux jumps appear more like Gaussian noise. This “noise” was reduced by
the noise reduction process, leaving only the large amplitude flux jump signal. Aside from the fact that
the filtering has obviously severely distorted the signal, the plateau region can be discounted as
indicating any real dimension on the basis that real systems must have a fractal dimension greater than
wo. The Jg,, signal also shows a hint of a plateau at a dimension near 7-8. This behavior is similar to

that seen in correlated noise and is probably not indicative of chaos.

Prediction also indicates that no simple determinism is present. Figure 6.17 shows the prediction error
for the MST signals after nonlinear noise reduction. They actually show poorer predictive behavior than

before filtering was attempted.



98

Qe
9 8 8
w1 b =] - R g g g 5
' f oy 8
s °
=
§ - B O dB /it A dB/dt
a [ 0 d|p/dl X Jsat
o dBp/dl

0.1 i J 1 SN N S S SO e —

0 1 2 3 4 5 6 7 8 9 10 11 12

time steps (inT)

Figure 6.17. Prediction error for MST signals after processing with the nonlinear filter. Predictability
has deteriorated in most signals relative to the unfiltered case {see figure 6.9},

64, Summary

Several quantities characterizing the discharges of the Madison Symmetric Torus (MST) have been
analyzed for evidence of low dimensional chaos and simple determinism. These included global and
local quantities: By, b+ Jsat. Bp, and B,. Analysis of the raw signals shows no indications of low
dimensional chaos from either the correlation dimension, Lyapunov exponents or short term
predictability. The data were also filtered using a variety of linear and nonlinear filtering techniques.
Nonetheless, evidence for simple determinism remained elusive. The analysis suggests, on the basis of
circamstantial evidence (similarities in the signals’ structure, power spectra, Lyapunov spectrum,
translation error, the effect of nonlinear filtering) that the data more closely resemble lowpass filtered
Gaussian white noise. The system is certainly high dimensional. Given the number of points available
for analysis, one can place a lower bound of the fractal dimension of MST plasmas. Using the Tsonis
criterion, Npine< 102042 3t a minimum Dy must be greater than 5.75. The ramifications of this result

in light of the results of chapter 5 will be discussed in the final conclusions chapter.
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1. Di ion and Conclusi
71.  Summary

In this dissertation | have examined the possibility that low dimensional chaos and simple determinism
govern the dynamics of fusion-caliber plasma discharges by looking at both numerical simulations and
experimental data. Several previous Studies have been done analyzing experimental ar numerical data,
but these have yielded conflicting results. The study presented here attempted to be more thorough by
comparing experiment to simulation. In addition, since the time of most of these earlier studies several
new analysis methods have been developed along with a better understanding of how to apply the

existing techniques.

| examined data from two numerical Simulations which model plasma processes. The first model, the
DEBS code, is a numerical simulation of reversed field pinch discharges. Several quantities from the
code were analyzed and found to show strang evidence of chaos. These were the toroidal and poloidal
magnetic field fluctuations, the toroidal loop voltage and various manifestations of the global electric
field. All signals. with the exception of loop voltage, showed evidence of low dimensional chaos with a
tong scaling region for the correlation dimension at a dimension of 3 to 4. This was corroborated by the
spectrum of Lyapunov exponents which yielded a correspondingly low value for the Kaplan-Yorke
dimension. The fact that the loop voltage showed na plateau region is not Surprising since this quantity
is advanced differently by the code than the others. Most signals also had good short term

predictability, which is evidence of simpte determinism. Notably, the parallel electric figld did not.

Data from the DTEM model, which models long wavelength drift wave turbulence, were also examined.
The energy of the individual modes was analyzed, and all modes showed a good correlation dimension
scaling region with the dimension dependent on the mode. Dimensions ranged from 6 to 9. The total

energy also showed evidence of a low correlation dimension. Predictability was good for all cases,
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though better for Mades in the linear regime than for those in the inertial range. As discussed in section
5.2.3, the different dimensions measured and the difference in predictability may be explainable. The

measured Lyapunov exponents appear to Corroborate these findings.

Several signals from the Madison Symmetric Torus were analyzed comprising both local and global
quantities. Despite concerted effort, including the application of linear and nonlinear filtering
techniques. no evidence of low dimensional chaos or simple determinism could be found. Moreover,
circumstantial evidence suggests that the signals more closely resemble correlated noise rather than a
deterministic process. This claim is on the basis of similarities in the signal’s structure, the behavior of
the Lyapunov exponents and short term predictability, and the action of the nonlinear noise reduction

procedure On the signal.
72. Discussion

The fact that the experimental data from the MST show no evidence of simple determinism must be
contrasted with the posiive results of both the numerical simulations and previous results from other
experiments, Addressing first the discrepancy between code and experiment, there are several likely
origins. The DEBS code. although it seems to model some RFP processes well, makes several crucial
simplifications, As mentioned earlier, the model includes no temperature or pressure effects. Although
one cannot predict with certainty the effect of including a finite temperature, it seems reasonable to
assume that including the additional quantities in the system of equations would result in an increase

in the dimension of the system.

Another simplification is the small number of modes included in the system. The number of modes was
9 toroidal by 3 poloidal, a very limited subset. Results from the DTEM model indicate that the
dimension no jonger scalgs with the number of interacting modes once the system is farge enough.
However, this saturation is evident only after more than 400 modes are present. The 27 modes used in

the DEBS code is probably far too few to madel the highly turbulent system of the experiment.

The magnitude of the Lundquist number S also probably contributes to the difference between the
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experiment and simulation. The dynamics of the code change significantly as S changes from 19° to
10" In narticular, the nonlinear interaction among the modes increases with increasing Lundquist

number. One could reasonably expect that the dimension should also increase.

Finally, in order to efficiently model the long wavelength tearing modes of the plasma, the code does
not treat fast time scale fluctuations correctly. Although most of the power is concentrated in low
frequency oscillations, a significant fraction is in the higher frequency dynamics. This is apparent from
the broadband nature of power spectra of all signals, and especially the prominent second peak seen in

the By, spectrum at about 70 kHz (see figure 6.4).

The fact that low dimensional chaos is seen in the CTEM model and not in the experimental data from
MST may not be too disconcerting. The simulation models a specific process, drift wave turbulence,
which is believed not to be significant in RFP plasmas. Yet the model is in many ways general enough
that one should expect to see similar resuits despite this difference. The code suggests that one should
see simple determinism in individual mode amplitudes. Further, the simulation suggests that once &
sufficient number of interacting modes is present the dimension is not strongly affected by increasing
that number. However, analysis of individual mode amplitudes from magnetic fluctuations in MST
yielded negative results, The simulation does, however, model only ane of several processes occurring

simultaneously in a real plasma. This omission could account for the difference.

One can probably account for the discrepancy of the experimental data and the numerical simulations
on the basis of the simplifications made in the models. However, the results presented here also
disagree with results obtained by several other groups working with data from experiments, including
RFPs. In short, | think the inconsistency is due to improperly applied analysis techniques by several of

the groups reporting positive results. When most of these results were reported the correlation

|

dimension was essentially the only technigue available for analysis, and it was relatively new. None of |

t private commumication from Carl Sovinec.
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the reported results include a plot of the slope logCir} versus logr, which aids in identifying the
scaling region, and none shows a scaling region of at least one decade. One group reports identifying
two scaling regions of different slopes,'! which seems both an implausible result and an improper
interpretation of the analysis. Verification of the results using phase-randomized data sets was not
done. In my estimation, the only group that did a thorough examination of the data is Sawley, et a/. [14]
who reported negative results. As further confirmation, 1 point out that no group Studying fusion-caliber

plasmas has, to my knowledge, reported positive results in recent history (since 1987).

Thus far | have concentrated on explaining the inconsistency of the results by citing the faults in the
numerical models and previous experimental results. Let me now focus on the expsiimental data to
understand why no chaos is seen in it. Looking first just at the quality of the data, there are three
concerns which are very closely related. These are the time length of the record, the number of points
and the autocorrelation time. To the first issue: Typically, one requires several hundred ¢ cle times of
the “dominant™ period of the system for proper estimation of the dimension. For the Lorenz attractor
this period would be once around either of the lobes. Let us suppose that the dominant dynamics, the
tearing mode fluctuations, are a low dimensional chaotic process. For MST data, one would need
several tens of milliseconds at @ minimum to determine the dimension. Higher dimensional systems
require more cyclgs, and the interaction of the tearing modes with other modes may mean the cycle
time is longer than the typical 2 to 5 ms between flux jumps. The duration of the flat-top period is about

40 ms, corresponding to only 10 to 15 flux jump periods.

At the opposite end of the spectrum, the time interval between data points is too long. As discussed in
section 3.2, when using delay embeddings, proper choice of the time lag T is crucial to proper
estimation of the dimension, and this is linked to the autocorrelation time of the data. With the
exception of Jy,, all the data had extremely short autocorrelation times, on the order of 2-3 time steps.
In high dimensional embeddings, any correlation is probably lost even when choosing 7=1 for the time

lag. Finally, there are too few points available for analysis. The MST system is probably high
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dimensional, and most authors estimate that the number of points required scales exponentially with
the dimension of the system. Estimating the dimension of the Mackey-Glass system with 7 =100s
required 40,000 peints for a reasonable plateau length at the accepted dimension of 7.5. For the 20,000

points available for analysis, one could possibly expect to measure a dimension of only 6-7 at most.

The latter two issues were addressed to some extent in data that were not presented here. 32,000 data
points digitized at 1MHz for By, and ip were taken during the flat-top period of an MST discharge.
The increased sampling time meant an autocorrelation time of 4-5 time steps. Analysis of these data

yielded results nearly identical to those presented in chapter 6.

On the basis of this analysis, one must conclude that the system is probably high dimensional. | would
estimate that it is very probably greater than a dimension of 15. This lower limit is based largely on
conjecture from examining the data. Typically when analyzing a system, even if all parameters -
embedding delay time, embedding dimension, number of points, etc. — are not optimally determined
there is at least some indication of a plateau in the correlation dimension plots. The data from the MST
show not the slightest hint of a plateau, even for embeddings up to 30. The behavior of the correlation

plots is very similar to high dimensional or random data.

An issue separate from the data itself is whether the data are truly representative of the MST
dynamical system. An obvious possible problem is that the signals are contaminated by noise. Even &
small amount of noise can obscure the simple determinism, especially fof high dimensional systems.
The question is, what is the source of the noise? The diagnostic equipment used to gather the data is
largely noise free, contributing a noise level of perhaps 1 to 2 parts in 10% at most to the signal.
Another passible source of noise is the plasma itself. The dominant dynamics are thought to be the
10 kHz oscillation of the tearing mode fluctuations. Yet there is significant power in higher frequency
fluctuations as well. If the tearing mode dynamics are governed by a low dimensional chaos, perhaps

these high frequency oscillations are obscuring the chaos.

One cannot, however, consider this a "noise” process in the sense that it is concealing the true
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dynamics of the system. The high frequency oscillation as well as the tearing mode oscillations are part
of the same dynamical system; they cannot be separated into dynamical and noise component.
Although the two processes may occur on different scales as was suggested to explain the results of
the DTEM model, they are presumably coupled, and so are both part of the dynamical system.

Ultimately, the true dimension of the system is determined by the highest dimension process.

A second problem is the issue of stationarity. As demonstrated in section 4.4, even a very slight
perturbation of the system can make the dimension immeasurable. In the DEBS code, both the plasma
current and the toroidal loop voltage remain fairly constant during the discharge. This is not the case in
MST discharges. With the flat-topping network operational the plasma current remains fairly constant
over a period of up to 40ms. The loop voitage, however, fluctuates wildly during this period. The salient

question is whether the system is in any sense “stationary” at any time during the discharge.

in part, | think the issue of stationarity begs the question. Assuming we have a noise free system (no
random disturbances), then if one of the "parameters” fluctuates in time one needs to re-designate it as
ane of the “variables™. This can increase the dimension by at most two if the fluctuations of the
parameter are time dependent. If the loop voltage of the system fluctuates, then that is the dynamical

system, not a lower dimensional system with non-stationary loop voltage.

The issue of stationarity does, however, become pertinent if one of the system parameters is modified
randomly — or by a very high dimensional process — during the discharge by some mechanism
independent of the system. | think this may be the case in MST. One such process is the influx of
impurity ions into the plasma. The presence of impurities has a strong deleterious effect on the
plasma's behavior, and substantial effort has baen made to control the impurity fraction in the MST.
Yet the process is largely uncontrollable. The interaction of the plasma with the MST containment

vessel results in an influx df impurities by a process which is probably very high dimensional.

The plasmas of the MST constitute a highly turbulent system of weakly coupled modes and minimal

damping. This corresponds in many ways to the inertial range of the DTEM model. Assuming an
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attractoi exists, if it has a weakly attracting inertial manifold, this impurity influx may perturb the
trajectory from the attractor. As demonstrated in section 4.4, even small perturbations can result in a
“fuzzy” attractor and destroy any simple determinism in the system. The impurity problem is only one

example, and there may be other processes which also affect the stationarity.

My own feeling is that it is probably impossible to identify and quantify a low dimensional chaotic
system in MST discharges. This is not to say that | believe that the system is stochastic. [t has been
shown that for hydrodynamic turbulence {in 2D) the maximum dimension of the system is proportional
to the Reynolds number squared.73 Assuming this applies to magnetohydrodynamic systems, this does
puts an upper bound of 10" on the dimension of the system. It may be much lower. The major
difficulties | see in identifying this possible low dimension are the length of the flat-top period of the
discharge and the related problem of stationarity. The former problem is a hardware/maney problem,
which in principle could be addressed. The latter may be impossible to remedy. Because of the nature
of the system, even tiny random perturbations probably destroy any stationarity and dramatically

increase the dimension of the system.
13.  Future Work

For the future, | see several avenues which can be pursued in continuing to study chaos in plasmas and
especially RFPs. Using the DEBS code, issues which should be addressed are the scaling of dimension
with the Lundquist number and the number of modes in the system. A version of the code now exists
which includes finite pressure effects. Pressure effects on the dimension should also be studied. In the
DTEM model, we need to understand better how the dimension scales with truly Jarge systems and
why there are differences between the damping and inertial ranges. David Newman and | have plans to
continue these investigations.

in the MST, despite the fact that deterministic chaos cannot be identified, continuing studies may stiil

prove useful. Should the machine evolve so that systerm is more “stationary” - long flat-top period,

reduced flux jumps and loop voitage spikes — it mey be possible to identify a low dimensional attractor.
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Also, with the development of new techniques, e.g. dimension densities, it may be possible to identify
relatively high dimensional chags in the MST at some time in the future. Finally, in controlling chaotic
systems, one does not necessarily need to know the dimension of the system. it is only necessary that
the system be deterministic. Investigations should continue into the feasibility of controlling the MST

discharges using chaotic feedback and entrainment.
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