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In thisdissertationthepossibilitythatchaosandsimpledeterminismaregoverningthedynamicsof

reversedfieldpinch(RFP)plasmasis investigated.Toproperlyassessthispossibility,datafromboth

numericalsimulationsandexperimentareanalyzed.Alargerepertoireof nonlinearanalysistechniques

isusedto identifylowdimensionalchaosif]thedata.ThesetoolsincludephaseportraitsandPoincare

sections,correlationdimension,thespectrumofLyapunovexponentsandshorttermpredictability.In

addition,nonlinearnoisereductiontechniquesareappliedto theexperimentaldatainanattemptto

extractanyunderlyingdeterministicdynamics.

Twomodelsystemsareusedto simulatetheplasmadynamics.Thesearethe DEBScode,which

modelsglobalRFPdynamics,andthedissipativetrappedelectronmode(DTEM)model,whichmodels

driftwaveturbulence.Datafrombothsimulationsshowstrongindicationsof lowdimensionalchaos

andsimpledeterminism.ExperimentaldatawereobtainedfromtheMadisonSymmetricTorusRFPand

consistof awidearrayof bothglobalandlocaldiagnosticsignals.Noneof thesignalsshowsany

indicationof lowdimensionalchaosorothersimpledeterminism.Moreover,mostof theanalysistools

indicatetheexperimentalsystemis veryhighdimensionalwithpropertiessimilarto noise.Nonlinear

noisereductionisunsuccessfulatextractinganunderlyingdeterministicsystem.
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1. Introduction

Chaos:"...deterministicchaosdenotesthe irregularor chaoticmotionwhichis

gel}eratedbynonlinearsystemswhosedynamicallawsdeterminethe evolutionof a

stateofthesystem..."1

Figure1.1comparesthreetimeseries.Oneof the tracesis dataproducedby a numericalrandom

numbergenerator,onetraceisdatafromoneof thestandarddiagnosticsontheMadisonSymmetric

Torus(MST),andtilethirdisgeneratedfromasimpledeterministicequation.It is notobviouswhich

signal/sis/aredeterministicsimplyfrominspection,Moreover,thedatafromthedeterministicsystem

is indistinguishablefromrandomdatausingmostconventionaltestsfor randomness.Advancesin

nonlinearanalysistechniqueswithinthelastdecadehowever,nowmakeit possibletodistinguishthe

twousingonlytheirtimerecords.It isthegoalof theworkpresentedinthisdissertationtoestablish

whetherthesignalfromtheMSTmayalsobegovernedbysimpledeterministicequationsor isbetter

describedasastochasticprocess.

1.1. BriefHistoryof NonlinearDynamics

Complexbehaviorinasystemhastraditionallyrequiredcomplexsystemsof equationstodescribethis

behavior.Workoverthe past30yearsor sohasdemonstratedthatextraordinarilyrichandcomplex

behaviorcanresultfromtriviallysimplesystemsofequations.Theterm"chaos"firstcameintousein

thelate'70s.However,longbeforethisthedynamicsof nonlinearequationsof motionwereexplored

byafewhardysouls.Themostinfluentialofthese,thelikelyfatherof nonlineardynamics,wasHenri

Poincar_(1854-1912).Hisworkstressedglobal,qualitativeunderstandingof a system'sdynamics.

OtherimportantcharactersduringthisearlyanalyticalperiodincludeA.M LyapunovandG.D.Birkhoff,

Mostof thisworkremainedlargelyunnoticedbythegeneralscientificcommunityfor muchof this

century.Theadventofelectroniccomputershelpedpromotethefield.In1961,EdwardLorenz,usinga
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I
Figure1.1.Depictedare threetimetraces,onefromaknownchaoticsystem,onefromGaussian
distributedrandomnumbersandoneisameasurementsignalfromanMSTdischarge,t

primitivedigitalcomputer,accidentallydiscoveredthesensitivitytoinitialconditionsof asimplesetof

nonlinearequationsusedto modelatmosphericconvection.Thissetof equationsnowbearshisname.

UsingcomputergraphicsB. Mandelbrot"discovered"the fractalsetwhichbearshis name.MJ.

Feigenbaumdiscovereda numberof featuresuniversallypresentinacertainclassof chaoticmaps.

Around1980workbeganto turntowardsidentifyingchaoticsystemsandquantifyingthedegreeof

chaos,whichiswherewestandnow.

Thisworkhasledtotheidentificationof severalrealsystemswhicharegovernedbylowdimensional

t
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ch_mticdynamics,Lowdimensionalchaosandsimpledetorminismhavebeenidentifiedintheelectrical

activityof tilebrain,heartbeats,thepatternof childhoodepidemicsandstellarpLJlSalactivity.2Equally

importantarethosestudieswhichfindnoevidenceof a lowchaoticdimensionorsimpledeterminism.

Agoodexampleisthebusinesscycle.3

12. ChaosinPlasmas

Thesearchfor evidenceof chaosin plasmashasyieldedmixedresults.A widerangeof chaotic

processeshasbeenreported,includingthetransitionto turbulenceandtheformationof magnetic

islands.4 Severalgroupshavereportedidentifyingchaosandperiod,,oublingbehaviorin glow

dischargesandpulsedmachines.5,8'7,8Lowdimensionalchaoshasalsobeenidentifiedwithdriftwave

turbulencebothinexperimentandsimulations.9,10Intoroidal,fusioncaliberdeviceschaoshasbeen

reportedin lowfrequencyMirnovoscillationsin theDITEtokamak.11InTFTRlowdimensionalchaos

hasbeenreportedindensityfluctuationsmeasuredbyCOzlaserscattering.12Thedimensionof the

systemiswavenumberdependent.Finally,chaosof dimensionnear7hasbeenreportedinbroadband

(O-lOOkHz)oscillationsof boththepoloidalandtoroJdalmagneticfieldsin theHBTX1Areversedfield

pinch,i3 In contrast,a groupmeasuringbroadbandmagneticanddensityfluctuationsin the TCA

tokamakfindsnoevidenceoflowdimensionalchaos,i4

Theseresultsprovideastartingpointforabetterunderstandingof plasmaprocessesusingthetoolsof

nonlineardynamics.Mostof theseresultswereobtainednearlyadecadeagowhenthesetoolswere

newornonexistent.Intheinterveningtimeabetterunderstandingof theapplicationof thesemethods

existsandseveralnewtechniquesfor identifyinglowdimensionalchaoshavebeendeveloped.Initial

reportsof chaosinothersystemshavebeenreexaminedandfoundto belacking.Withoutbeing

specific,I thinkin lightof thisnewunderstandingthatseveralof thereportedpositiveresultsmaynot

standupto morerigoroustests.

TheMadisonSymmetricTorus(MST)reversedfieldpinch(RFP)providesaparticularlygoodinstrument

forinvestigationsinnonlineardynamicsin lusionplasmas.It isa largetoroidalconfinementdevicewith
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discllargescharacterizedbya spontaneousreversaloftheIoreidalmauneticfield_ltthe_dIIoof the

plasma.Dischargesexhibitbroadbafldfluctuationsillmostmeasuredquantities.HoweveJr,mostofthe
P

fluctuationpower(- 90%)isconcentratedina fewIon0wavelenLlthm_ldos.We_h(;lit:ve_we understand

themechanismbehindthesetearingmodefluctuationswell,bothon thebasisof experimental

evidenceand fromnumericalsimulationsusingmaonetohydrodynamic(MHD)modelsof BFP

dischar0es.Bispectralanalysisofmagneticfluctuationsfromexperimentandsimulationsindicatea

threewavecouplingprocess,linkingtwom=1modestoanm =2mode.15Tilepointis,thatalthough

thesignalsappearstochastic,theprincipaldynamicsofthedevicecanbemodeledcomputationally.

Hence,theymaybetheresultofachaoticorothersimpledeterministicprocess.

Oneof themajorobstaclesinachievingviablethermonuclearpoweristhefluctuation-drivenparticle

andenergytransport.Thepastdecadehasseena tremendousefforttowardscon'elatln0experimentally

observedtransportwithhydrodynamicmodels.Driftwavemodelsinparticularhaveshownpromise

towardsexplainingtheanomalousionheatlossintokamaks.Studiesofthesemodelsindicatethatthe

dynamicsare low dimensional,despitethe largenumberof interactingmodesin thesystem.

Essentially,a systemof 4x103equations,oneforeachmode,canbereducedtoa systemwitha

topologicaldimensionof lessthan3.10Thisisa veryimportantresult:Althoughtheoriginalphase

spaceis 1000dimensionalthedynamicsof thesystemcontractto a threedimensionalobject,an

enormoussimplification.Thisidentificationofa lowdimensionalattractorcouldmeana significant

reductioninthecomplexity,ofthemodelsneededtoaccuratelydescribethesystem.TheapplicabilityofD
driftwavemodelstoFIFPtransportismoretenuous.However,themodelsaresufficientlygeneralthat

manyoftheresultsarerelevanttoBFPphysics.

Oncechaoshasbeenidentifiedina system,oneisledtoask,asidefrompurelyacademicinterest,

whatgoodisit?Threebenefitscanimmediatelybecited.Themostusefulandambitiousobjective

wouldbe to simpli_theequationsdescribingthesystem.A plasmacomprisedofN particlescanbe

describedby0(6N)ordinarydifferentialequations.MHDsimplifiesthisbyrestrictingtilesystemto a
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sot of partial differential (!cluation_with only a finit(_mmtbc_,rof modes N_vrflm(_a_proce_,_se_

collsider_blycomplicatetiffs approach,yet MHDhas t}(,'(mparticularlysuc'.cessfulin (le_s('ri{Ji;_the

essentialsof plasmadynamics.If, howuvur,a lowdimensionalchaoticattractoris id_ntifi(,,d,a Iow(_r

boundcanbuplacudon the mimberof eClUatiollsneededtoadequatelydescribe,thesystem.Empirical

evidencesuUgeststhal this I_umberscalesin somefashionwith thedimemsionof the ,_ystem,although

noconcretelaw exists.With sucha sot of eClUa_iot_s,onecouldcletermin[_tl_eparameterspaceforb_,,_l

confinementor heating,determinescalinglaws,etc

An objectivein harnessingfusion power is controlof thesystem.Onemethodof controlwhicll has

recentlyreceiveda lot of attentionis thephenomenu_lofentrainment.'18'17'1B'i9An importantexample

of entrainmentis theactionof a pacemakeron tile hearl.ChaoticsystemsaredelJselyinterwovenwith

nearbyperiouicorbits,Small,periodicperturbationscansometimeforcea systemtooscillatearounda

periodictrajectoryratherthan its naturalchaoticone. Theconverseis also true,where it maybe the

objectivetodrivea systemawayfromanundesirablestabletrajectory.Theapplicabilityof entrainment

toplasmasystemsis untested,howeverit couldhaveimportantconsequencesin controllingthegrowth

of certainunstablemodes,

A final benefit isshorttermpredictability.If thesystemshowsevidenceof lowdimensionalchaos,then

the systemis deterministic,which impliesthat it hasshorttermpredictability.Aswill bediscussed,

predictionis possibleevenwithoutthegoverningequations.Thispropertymaybe usedin conjunction

with the aboveinorderto control thesystem,andmaybeparticularlyapplicableto BFPplasmas,Most

RFPdischargesarechalacterizedby aperiodicfluxjumps:burstsof magneticactivity,Theseflux jumps

areboth aboonanda bane.Duringfluxjump activitythe ionsare stronglyheated,However,transport

isalsoenhanced,resultingin tremendousparticleandenergyloss.In orderto improveconfinement,it

seemsdesirableto controlthemost severeof these fluxjumps. Assumingthereis a chaoticprocess

governff_gthis dischargebehavior,onecould predictthenext flux jumpoccurrencea short time in the

futureandpossiblyusefeedbackm suppressit,
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2, EssentialChaosTheory

it] lightof the factthat chaosis a relativelynew fieldof studyI presentherea briefoverviewof the

essentialsof nonlineardynamics,Theconceptspresentedhereare the foundationof the restof the

dissertation.Fora moredetailedtreatment,the readeris invitedto refer to the bibliographypresented

at theendofthedissertation.

2.1. ChaotloS_ems

2,1.1, Maps

The simplestformof equationsexhlbJtingchaosis theclassof maps:xt+l=.f(xt ). All exampleis the

shiftmapgivenby:

•_t+l = 2xt modl . (2.1)

Figure2,1 shows the behaviorof this systemas time progresses.The time seriesshows erratic,

random.likebehaviorwith nodetectablepattern,The signalgeneratedby this mapwouldpassmost

tests for uniformlydistributedrandomnumbers:a histogramplot is essentiallyflat, as is the power

spectrum,

Not all maps,however,exhibitchaoticbehavior,Forexample,themap

1

0,8

0.6

0,4

0,2

0
0 2o 40 6o 8o 10o

t

R0uro 2.1,Timeevolutionof theshift mapfor thefirst 100points.Thesystemisdifficulttodistinguish
fromraz_domwhitenoise.
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xt+1= xt +a rood1 (2.2)

isnotchaotic.Inorderforanequationtobechaoticthesystemmustexhibitsomeformof "mixing_

behavior.Theequation(2.2)doesnotmixinthesensethattwoneighboringpointswillalwaysbe

spatiallyclosetogetheras thesystemevolves.Fortheshiftmapeq.(2.1)however,pointsquickly

" separatewithintheconfinesof thesystem.Thismixingusuallymanifestsitselfasstretchingand

folding.Thesystemexpandsinonedirection,whilefoldingbackonitselfatthesametime.Figure2.2

demonstratesthisbehaviorfortheshiftmap.Thefactorof2 stretchesthesystem,whilerood1folds

therangebackontothedomain,effectivelymixingthesystem.

Criticalinthistypeofsystemisthatthereexistsasetofunstablepointswhichmapbacktothemselves

aftera finitenumberof iterations.Anypointsatisfyingx =p/2 m,wherep andm areintegers,willbe

mappedonto0andremainthere.Thesepointsareunstableinthesensethatasmallperturbationwill

destroythismappingand_esultinachaoticmappinginstead.Althoughthereareaninfinitenumberof

suchpoints,theycomprisea setof measurezero;thelikelihoodof arbitrarilychoosinganyoneis

infinitesimallysmall.Nonethelessit isthisdensityofnon-chaoticinitialconditionswhichguarantees

effectivemixing.Thesepointseffectivelyworkasrocksintheflowof thesystem.20

InordertoillustratethemoregeneralI_ehaviorofchaoticsystemsI willuseasystemknownasthe

@,

FigureZ.2[he schematicillustratesthe stretchingand foldingof a systemwhichresults inchaotic
dynamics.[he twoblackdots representpointsinitiallyclosewhichseparateexponentially.
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logistic map. This map was first developed as a model for population growth of a species constrained

by finite available resources. The map is given by:

xt+l = axt{ 1- xt ) . (2.3)

a is called the controlparameter. Changing the value of the control parameter dramatically changes the

dynamics of the system, as shown in Fig. 2.3. For a < 3 the system approaches a fixed value. For a

slightly greater than 3, the system exhibits periodic behavior. This spontaneous transition to periodic

behavior is known as period doubling. For a = l+_/6the period two solutions again double in period to

give stable period 4 solutions. This period doubling behavior continues as a is increased until a =

3.569.... at which point the period becomes infinite. Thesolution is chaotic, exhibiting random like, non

repeating behavior. The period doubling behavior can be made clearer by plotting the limiting solutions I

of x versus the control parametera, as in Fig 2.4. One can graphically see why points where period I

doubling occurs are known as pitchfork bifurcations.

An important feature of chaotic dynamics is the sensitivity to initial conditions. Points spatially close

1

0.6
_ 0 C C C _
x 0.4 _ C C _-. C C C" C C 0 _ _ _ C _ 0 0

0.2
0 , _ I , _ , _ I , ,.., , I _ , , ,

I
0.8

0.6

0.4

0.2
0

I
0.8

0.6

_- 0.4

0.2

0 5 10 t 15 20 25

Figure 2.3 The time behavior of the logistic map for 3 values of the control parameter a. The system I
exhibits stable, periodic and chaotic behavior.
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1

0.8

0.6 _.

0.4 _ .......
• "_ IL,_ "_,.'_"

0
0 0.5 1 1.5 2 2.5 3 3.5 4

controlparametera

Rgure 2.4Thestablesolutionsof the logisticmapplottedasa functionof thecontrolparametera. The
pitchforkbifurcationsareclearlyvisible.Thereis a period3 windowdistinguishableat _=3,8.

togetherinitially will, onaverage,divergeexponentiallyin timewithin theconfinesof the system.This

phenomenais illustrated in Fig.2,5. Two pointsseparatedby a distanceof lx10"5havecompletely

uncorrelatedbehaviorafterabout15 iterationsof the logisticmap.Thissensitivityto initial conditions

hasbecomethestandardcriterionfor chaoticbehavior.It is characterizedby theLyapunovexponentto

bediscussedlater.

Althoughthe logisticmapprovidesanexcellentillustrationof severalof thebasicpropertiesof chaotic

systems,both it andtheshift mapareexamplesof symplecticchaos.Thisis a termappliedspecifically

to mapswhichdenotessystemswhich havenodissipation.Inthis dissertationI will beconcernedwith

0.6

o, --xo_-O,OOOOI v , vi, ' //', t'/ ',,'//I
o.2 -- x°--°'7°°°1I v _;V ' '

II
0

0 5 10 15 20 25 30 35 40

t

Figure 2.5. Theevolutionof the logisticmapfor two closelyspacedinitial conditions.This illustrates
theexponentialdivergenceof chaotictrajectories.
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dissipativedynamicalsystems:systemswhosephasespacevolumecontractsin time.Hamiltonian

systems,thoughtheymaybechaotic,havephasespacevolumeswhichdonotcontract.Assuch,there

isnoregionofspace,anattractor,towhichnearbytrajectoriesofthesystemevolve.

Anexampleof adissipativetwodimensionalmapexhibitingchaosistheHenonmapintroducedbyM.

H_nonin1976.21It isdefinedby

2+Ytxt+1= 1- axt
Yt+l = bxt (2,4)

Themapisa quadraticmapverysimilarto thelogisticmap.If b = O,a _ O,themapcall in factbe

transformedintothelogisticmap.Foraandb bothsmallandpositivethemapf xhibitsthesameperiod

doublingbehaviorin twospaceasa is increased.Forlargeenou_;,,Jalue,_of a,andb <1,(forb > 1

trajectoriesareunbounded)themaphaschaoticsolutions.Solutionsofthe mapintile x y planeare

plottedin figure2.6.Theobjectdepictedisknownasastrangeattractor.Theattractorisembeddedon

theinertialmanifoldwhichis thecontiguousregionofspaceonwhichall trajectorieslie.Asshownin

therighthalfof figure2.6,theattractorshowsselfsimilarstructureonsmallscales,apropertytypical

of fractals.Fractalsaregeometricobjectswhichusuallyhaveanon-integerdimension.

0.5 0.22,

"_'_ "_'_,'--- o.21_".-%

""-'"_ _-.,,._i,,_
0.25- "-,,.;._. 0.2..,, ....."_,-,.._,_

• "'-.'>,..\. -._.',_,

" - " I_'-. '...x,_'<:.":,_

-0.25 . ...-" ,..,,,,'J ..,,. ... ,.."%,. ".. , "_*1,

....,.../I""" 0.16 ",., "". ".,._,

.o.s ,--i...... , , , o_/ i , ,".. ,•1._.1 .o._o o._ 1 _._ o.7_o._ o._ o._ o.,_
x x

Figure2.6.ThetwodimensionalH(_nonmapfora = 1.3andb = 0.35.Therightfigureshowsan
expandedscaledetailingtheselfsimilarfractalstructureof thestrangeattractor.
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systems.However,becausetheyaredissipative,thestretchingtakesplaceinonlyonedimension,

whilethetotolphasespacevolumedecreases.Anillustrationof theprocessfortheH_nonequationis

giveninfigure2.7.Itshowstheactionof_o successiveiterationsof theH_nonequationsonacircle

of initialconditions.Thestretchingandfoldingof thecircleareevident,asis theoverallvolume

decrease.

2.12. OrdinaryDifferentialEquationsandStrangeAttractors

Althoughmapsprovidesimplesystemsfornumericalstudiesofchaos,theyareinappropriatemodels

formostrealsystemsbecausetheyarenotcontinuous.Realsystemsareusuallydescribedbysystems

ofdifferentialequations.Thechaoticbehaviorevidentinoneandtwodimensionalmapsresultsfrom

thefactthatthesyster_donothaveto deformcontinuouslyfromonestatetothenextintime.

Mappingallowsthesystemto"jump"fromonestatetothenextstate,avoidingtheinterveningpoints.

InactualiWmapsareinfinitedimensionalsystems.Therestrictionthatthe,_ystembecontinuousin

timeseverelylimitsthedynamicsinoneandtwodimensions.

Asystem,_= F(x,t,c),wherex isanddimensionalvectorandc isasetofk controlparameters,will

havean orbitortrajectorythroughthed dimensionalspacedescribingitsmotionasthesystem

) R1

Rgure2.7.Theactionoftwosuccessiveiterationsof theH_nonequationsonacircle.Thestretching
andfoldingof thecircleareevident,asistheoverallvolumedecrease.
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progresseswith time.(hikeepingwithcurrentliterature,bold11otationis nolongerusedto indicate

vectors.)Foranyautonomoussystl.,m,onewhichdoesnot dependexplicitlyontime,this trajectory

cannotcrossitselfinspace.Werethecaseotherwise,orbitswouldnotbeunique.

If a systemof ODEsis confinedtoonedimension,regardlessof howcomplextheequations,it can

exhibitonlyoneof twobehaviorsastimeprogresses.Thetrajectoryof thesystemisuitherattractedto

a point,knownasa fixedpoint(someauthorsusethetermscriticalpointorequilibriumpoint)usually

denotedbyx*, orthetrajectorytendstowardsinfinity.Thesystemmayhaveseveralfixedpoints,each

with itsowl)basinof attractionwhichdefinesthesetof points,the limitof whosetrajectoryis the

fixedpoint.Asimpleexamplewouldberadioactivbdecay,._-= -_, whichhasa fixedpointatx* =0,

thoughx* isonlyattainableafteraninfinitetime.

Fixedpointsmaybeeitherstableorunstable.Any(noisefree)systemwhichfindsitselfat thefixed

pointwill remainthereforever.Howevernearbypointswill eithertendtowardsthefixedpoint,in

whichcasethefixedpointisstable,orawayfromthefixedpoint,makingit unstable.Thereisa third

classof fixedpointscalledsemi-stableor saddlepointswherethe fixedpointis stablewhen

approachedfromonedirectionandunstablewhenapproachedfromtheother.

Intwodimensionstheadditionaldegreeof freedomallowsforathirdtypeof behavior:thelimitcycle.

Alimitcycleisessentiallya _o dimensionalfixedpoint.Anysystemthatfindsitselfonthelimitcycle

will remainonthattrajectory.Aswith fixedpoints,limitcyclesmaybeeitherstable,unstableorsemi-

stable dependingon the trajectoryof nearbyorbits. The van der Pol equations.i:=v,

= e(1-xz).y- .,:,provideanexampleof a limitcycleforsmalle.Thelimitcycleis stablefors > 0,

andunstableforE<0.Anexampleofastablecycleisshowninfigure2.8.

Inthreedimensionsthedynamicshecomefarmorerich.Thesimplestextensionof thedynamicsof erie

andtwodimensionsis thetwotorus.Thisis thesuperpositionof twolimitcy('lesin perpendicular

directions,whichspiralaroundatorus.If thefrequenciesarecommensurate,thetrajectoryis periodic.

Theyneednotbecommensuratethough,andtile trajectorywill covertiletorus]_lthelimitof infinite
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3-

2

1

-i

-2

-3
-3 -2 -1 0 1 2 3

x

Rgure 2.8.A stablelimit cyclegeneratedbythe vander Polequationswith _ = 0.5, Thetrajectoryof
nearbyorbitsis depictedastheyspiralontothe limit cycle.

time. An exampleof a systemwhosetrajectoryis confinedto a two torus is a doublependulum- a

massattachedto a ridgedrod in turn attachedto a secondmassand rod- confinedto a plane.The

equationsof motionare:

mlt_+ m2r2

i=_z ; z=m2lr-tl) 12,51

where r =._2+y2 m are the massesof the pendulums,l the lengthsand m the frequenciesof

oscillation.Note thatthis systemhasnodissipation,andhencethe torusonwhichthe trajectorylies is

not anattractor.

The novelsituationin threedimensionsis thestrangeattractor.A strangeattractorshowsno periodic

behavior.Formaps,as with the H_nonmapabove(fig. 2.6},this meansthe attractingset becomesan

infinite set of discrete points. (The set is finite for periodic solutions.) ForODEs,however, all

trajectories,periodicor chaotic,mustbe continuous.file trajectoryof a strangeattractor thustraces
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out acomplicatedpatternin the threespace,nevercrossingitself,butstill remainingcunfinedto a

finiteregion.Thetrajectoryhasinfinitelength,yetneverfills theboundedspaceit occupies.Inaddition

to infiniteperiod,strangeattractorsexhibitfractalstructure;theyareselfsimilarin thelimitofsmall

scales.

Aclassicexampleof a strangeattractoristheLorenzattractor,Theattractorisgeneratedbya setof

equationsintroducedin 1963byEdwardLorenzassimplemodt,iof Rayleigh-Benardconvectioninthe

atmosphere.22Theyare:

._= o'(y- x)

.9= x(r - Z)- y

= xy - bz (2.6)

Thesystemwill bedescribedinmoredetailinchapter3.A2Dprojectionof theattractoris plottedin

figure2.9. Ascanbeseeninthefigure,theorbitspendsmostof its timearoundeitherof apairof

conjugateunstablefixedpoints.Thetrajectoryisextremelysensitivetoinitialconditions.However,any

setof initialconditionswithinthebasinof theattractorwill quicklyconvergeontotheinertialmanifold

generatinganattractorsimilarto theonedepicted.AswiththeH_nonmap,thestructureisfractal,and

theselfsimilarityisevidentwithsufficientmagnification.

z

Figure2.9.TheLorenzstrangeattractor.



16

/.2. Quan_1tyingChaos

2.2.1. PhaseDelayPlotsandPoincar_Sections

Thedefinitionofchaosgivenintheintroductionisa ratherqualitativeone.Onsimpleinspectiona

sequenceof valuesmayappear"chaotic',butthisisn_tsufficienttoestablishthatthesignalis

chaotic.Oneneedstobeabletoshowthatthesignalisa)deterministic,andb)notperiodic.Whatis

neededisa wayto quantifychaos.Hopefullyonecan,onthebasisof this,estimatehowmany

equationsareneededtodescribetheessentialdynamicsof thesystem,andultimatelytoreproduce

theseequations.

Onemethodofdeterminingwhetherasystemexhibitslowdimensionalchaoswasalludedtointhe

previoussections.Simplyplottingthetrajectoryinspacecanindicatechaosbyvisualinspection.If the

trajectoryspiralstoa fixedpointorlimitcycle,chaoscanberuledout.If theorbitisbounded_utnever

closes,chaosisapossibility.

In general,onedoesnothaveaccessto all the independentvariablesof thesystem,andfor

experimentaldata,it maynotatallbeclearwhichvariablesareindependent.Analternativeistoplota

singlevariableinaphase-delayplot.Oneplotsx(t)_rsusx(t+r)versusx(t42_),etc.where¢ issome

appropriatelychosentimeconstant.F.Takenshasproventhatforchaoticsystems,asinglevariablewill

capturealltherelevantdynamicsof thesystemsubjecttocertainconditions.23Specifically,givena

system,=It)= [x(t),y(t),z(t).... ] thereisa diffeomorphism- adifferentiable,reversiblemapping- from

themanifoldcontainingtheattractorto thatcontainingtheattractorinde°_yedcoordinatesZlt) =

[(x(t),._(t+d,.,-'(t+2d..... x(t+md],solongasm > 2d+1,whered is thedimensioncontai_ngthe

originalattractor.Them dimensionspaceisknownasthr _mbeddingspaceof theattractor.The

necessityof2d+1componentsistoinsurethattheefnbeddingspaceisorthogonal.Oftenvaluesof tn
/

lessthan2d+1suffi_forproperreconstluctionoftheoriginalsystem.

Unfortunately,forsystemswithdimensionsgreaterthantwophase-delayplotsareof limiteduse;the

p,ojectionofa fourdimensionalattractorontoaplaneusuallylookslikeaballof wool.Anotheruseful
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methodol visualizinga chaoticsystemis thePoim_ar._sectionorpurlctureplot.lh_-_dimensionof the

systemcallbereducedbyoneby passingahyperptanethroughtheorbitandmarkingthetrajectory

eachtimeit crossestheplane,Thisisschematicallyillustratedforthreedimellsionsill fig.2.10.Note

thataPoincar_sectionisdistinctlydifferentfromstrobingatimesignalat regularintervals.Ingeneral,

strobingwill notreducethedimensionof thesystemunlessonefortuitouslychoosesa timeincrement

relatedtoanaturalfrequencyofthesystem.OftenPoincar_sectionsgivestrongindicationsofchaotic

behavior,TheTakenstheoremcanofcoursebeapplied,andasingletimerecordusedforcreatingthe

Poincar_sectiorl.Amethodforreducingthedimensionby2usinga"double"Poincar(_sectionhasbeen

developedfor periodicallydrivensystems.24Themethoddoesnotappearto begenerallyapplicable,

however,

2,2.2, Fractals

Onecharacteristicpropertyof chaoticsystemsmentionedearlieris theirgeometricstructure.For r

strangeattractors,thisstructureis selfsimilarat smallscales.Suchobjectsareknownasfractals,a

termcoinedbyMandelbrottoindicatethefactthatthetopologicalstructureusuallyhasa fractional

dimension,25TheH(monmap,forexample,hasanattractorgreaterthandimension1;however,it fails

tofill a twodimensionalspace.Thusitsfractaldimensionissomewherebetween1and2,

Asanexampleof asimplefractal,considerthetriadicCantorset,It consistsofa linesegmentfrom

whichthemiddlethirdhasbeenremoved,andthemiddlethirdof theremainingtwosegmentshas

i

Figure2,10,SchematicillustrationoftheprocessincreatingaPoincar_s(.'c:tiou_ofanattractor.
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beenremoved,adinfinitum(seeFig,2.11).Thesetisobviouslymorethanasimplecollectionof points

(dimension0),butisnotacompletelinesegment(dimension1).Its fractaldimensionliessomewhere

between_hetwo.Awell knownexampleofa morecomplexfractalstructureis theboundaryof the

Mandelbrotset.Thissetisgeneratedbytheequation:

_:2+c (22)
•I_l!+ 1 = " tl

where._andc arecomplex.Allpointsthatdonotdivergearemembersof theset(seeFig,2.11),

2.2.3. SpatialMeasures

Fractalstructurehasbeenidentifiedandusedto characterizeavarietyof phenomenainnature,from

cloudshapestocoastlines.Inorderto beusefulthough,theremustbeaquantitativewayto compute

the fractaldimension.Themostbasicandintuitivemeasureis the Hausdorffdimension,which

measuresafractal'sspacefillingability.Onesubdividestheregionof spacecontainingthefractalinto

equalvolumesub-regionsandcountswhatfractionoftheregionscontainpartofthefractal.Because

anidealfractalis self-similar,as onecontinuesto subdividethe regionintosmallerandsmaller

volumesthefractioncontainingthefractalwillapproachaconstant.OnewouldexpectN(r) _ (l/r) I:_

inthelimitof smallr. TheHausdorffdimensionisthendefinedas:

Fi_lure2.11.ThetriadicCantorsetandMandelbrotsetareexamplesoffractals.
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.--_oInI1/r) ' (2.8)

whereN(r_is thenumberof hyperspheresor hypercubesof lineardimensionr rleededtocovertile

attractor.

Intheexampleabovenf theCantorset,thefractaldimensioniseasilycomputedanalytically.Inthefirst

step,2 boxeso[ length1/3areneeded.Forthenthsuccessivestep,2" boxesof length(1/3)"are

needed,Thusthefractaldimensionof theCantorsetisDO=In2"/In 3"- 0.631.

FormostsystemstheHausdorffdimensionis notsostraightforwardtocalculate.Additionally,rarely

doesonehavethegoverningequationstoperformananalyticalcalculation.Typicallyonemeasuresa

timeseriesrecordfromoneora fewofthesystemvariables.Inordertocalculatethefractaldimension,

onemustfirstembedthedatainaspacepresumedtocontainthedynamicsof thesystem,Thisspace

is thenpartitionedandthe numberof hypercubescontainingpointsis counted.If for several

embeddingsthecalculateddimensionremainsconstant,thisvaluecanbeassignedas the fractal

dimension.If,ontheotherhand,theattractorcontinuestofill thespace,thedatamustbeassumedto

representah_gherdimensionalorpossiblyrandomsystem.Ineithercase,computationof theHausdorff

dimensionisextremelycomputationallyintensive,andother,simplermethodshavebeenfoundto

estimatethetractaldimension.

Fordynamicalsystemsonecandefinea hierarchyof generalizedfractaldimensions,Dq, each

characterizin_;jdifferentpropertiesof the fractalgeometryof the attractor,z8 Giventhe region

containingtheattractor,subdivideit intocells.Countthe numberof pointsNi in eachcell,The

probabilityof findingapointinagivencellisthen:

Pt = lira N--LN-,=, N ' (2,9)

whereNis thetotalnumberof points.Fromthisonecandefinethefractaldimensionsas:





4

21

canshowthatDq.1;,Dq, andthusthecorrelationdimen_iorlprovidesalowerboundontheHausdorff

dimension.TheHausdorffaredcorrelationdimensionsusuallyagreeclosely,andoftendifferbynomore

thanafewpercent,

Typically,in computingthecorrelationdimension,onecomputesthecorrelationintegralfor various

radiir andplotslogC(r}vs.logr. Oversomeregionin logr, knownasthescalingregion,theslopeis

constant,andthevalueof thisslopeistakenasthecorrelationdimension.Thecorrelationintegralis

saidto saturateat a constantslope.Forclarity,in thisdissertationI will plotthe twopointslope

&[logClr)]/&[log r] versuslog r. Thisyieldsa plateauat the valueof thecorrelationdimension,

allowinga betterdeterminationof thescalingregion,Examplesillustratingtheapplicationof this

techniquewillbegivenin thenextchapter.

2.2,4. DynamicalMeasures

In additionto fractaldimension,anotherpropertyof chaoticsystemsalludedto earlieris sensitive

dependenceoninitialconditions.ThispropertycanbecharacterizedquantitativelybytheLyapunov

exponentswhichmeasuretheaveragedivergenceandconvergenceof theattractorinphasespace.

Trajectoriesof chaoticsystemsspatiallycloseat sometimetOwill, onaverage,diverge(converge)

exponentiallyin time. Forthe onedimensionalcontinuousmap x(t)=.ft(xO), with two initial

conditionsseparatedby&_theaverageseparationaftera timet is_t '=&xoeA't.Takingthelimitof l

infinitesimallyseparatedpointsandinfinitetimethecharacteristicorLyapunovexponent3, is defined/

by

2.= lim 1 lira In = lim t d.x 't_ t &o_O t_oo (2.14)

If thisexponent3, is greaterthanzero,trajectoriesseparateexponentiallyin timewithintheconfines

of thesystem.Thiscriterion,apositivelargestLyapunovexponent,hasbecomethestandarddefinition

ofachaoticsystem.

Anydissipativesystemis bounded,hencethe exponentialexpansioncannotoccurindefinitely.After
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fewexponents,althoughnegativevaluesshowverysensitivebehavior.Thesubtletiesof calculatioflof

theLyapunovexponentswill bediscussedinthenextchapter.

KaplanandYorkehaveconjecturedageneralformulawhichrelatestheLyapunovexponentsto the

fractaldimension:32

J

DKy= j+ '-.L_!.---_ DO .

DKy is the Kaplan-Yorkeor kyapunovdimension.The kyapunovexponentsare ordered such that
J

_,i>_,i+1,andj is the largestindexforwhichI__ > 0. lhe conjectureappearstoholdrigorouslyonlyi=1
forhomogeneousattractors.However,itdoes holdapproximatelyformanycases.

2.3. NonlinearPredic_o_

Ultimately,the goal of identifyingand characterizingchaoticbehaviorin experimentaldata is to

developa set of modelequationsforthe system.Theseequationscan neverhopeto yieldan exact

replicaof thetimeseriesbeinganalyzed,owingtothesensitivityoninitialconditions.However,global

propertiesofthe system- averageLyapunovexponents,dimensionsandpowerspectra- shouldbe

preserved.Inaddition,becausethesesystemsarenotrandombutgovernedbydeterministicdynamics,

shorttermpredictionmustbepossible.Givena setof initialconditionsapproximatingthoseof the

experimentalsysteminquestion,thenextseveraltimestepsof themodelsystemshouldmimicthose

oftheactualdata.

Unfortunately,eventhoughasystemmayhavebeenfullycharacterizedwithregardsto itschaotic

properties,developinga setof nonlinearmodelequationsis not atrivialexercise.Althoughmuch

researchhasbeendevotedtoextractingmodelequationsfromthedataof thesystem,nogeneral

methodhasyetbeenfound.33,34A lessambitiousgoalissimplytopredicttheshorttermbehaviorofa

systemwithoutknowingthegoverningequationsexplicitly.Withthisgoalinmind,severalmethodsof

doingsohavebeendeveloped.
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sometimetheexpansioncrossesthefoldin theattractorandthetrajectoriesmayconvergeagain.The

exponentialdivergencecharacterizedbytheLyapunovexponentisstill reflectedin theinformationtoss

of thesystem,despitethefactthatspatialtrajectoriesarenolongerdiverging.Forexample,theshift

map,in computerlingo,representsa leftshift, leadingdigittruncation.Evenwithdoubleprecision

accuracyof 10"18after23 iterationsall informationaboutthe initialconditionsis lost. It is this

informationlossthattileLyapunovexponentsmeasure.

Forsystemsof morethanonedimensionthereis a collectionof Lyapunovexponents,oneforeach

dimensionof the system.Eachexponentcorrespondsto oneof theprincipleaxesof anellipsoid

centeredonthetrajectoryandcharacterizesthelocalexpansionorcontractionof theattractor.The

orientationof this ellipsoidchangesasthe trajectoryevolvesin time,Thespectrumof Lyapunov

exponentsisgivenby:

;_lt')=lim !In oi=1.2.... n .
t_ t 12.151

Anycontinuoussystemmusthaveat leastthreedimensionsandhencethreeLyapunovexponents.If

thesystemisdissipativetheirsummustbenegativeto reflectthecontractionof phasespace.Theleast

negativeexponentcontrolstheflowof perturbedtrajectoriesontotheinertialmanifold.29Achaotic

systemhasa positivelargestexponent,andanysystemcontinuousintimemusthaveat leastone

Lyapunnvexponentequalto zerocorrespondingtothe lackofdivergence(onaverage)tangentto the

flow.30Thusa threedimensionalchaoticsystemhasLyapunovexponents(+,0,-).

Calculationof thelargestLyapunovexponentis relativelystraightforward,thoughcomputationally

intensive.Wolf,et aLhavedevelopedamethodforcalculationof th_largestexponentfromthetime

sariesofasinglevariableof thechaoticsystem,z9Essentially,it tullowsthetrajectoryof neighboring

pointsandcalculatestile averageseparationastheyprogressin time.Tile spectrumof Lyapunov

exponentsis moredifficult.RuelleandEckmannhavedevelopeda methodwherebyoneestimatesthe

Jacobianfromthetangentspacematrix.31Thiscanusuallyleadto reasonableestimatesof thefirst
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Allof themethodsdevelopedthusfaruseessentiallythe sameprocedure,withmoreor less

sophistication,3_,36Thetimeseriesisfirstembeddedinanappropriatespaceusingthemethodoftime

lags.Theinitialpointforpredictionischosen,andthespaceissearchedforitsnearestneighbors.In

thesimplestmethod,theaverageof theneighbors'shorttermtrajectorybecomesthebasisfor

predictingtheevolutionoftheinitialpoint.Theneighborsof thispredictedpointarethenfoundandthe

processisrepeated.Moresophisticatedmethodsfithigherorderpolynomialstothelocalspacewhich

canresultinbetterpredictionaccuracy.

Inadditionto actualprediction,onecancharacterizethedeterminismofa systemwitha quantity

knownasthetranslalionerror.37Thetranslationerrorquantifiesthecoherenceof theflowof the

systemthroughphasespace.Insimpledeterministicsystemsnearbytrajectoriesshouldparalleleach

other,at leastintheshortterm.Thetranslationerrormeasuresthedeviationofnearbypointsfromthe

averageflowofthegroup.Moreconcisely.
t=

=-1 I"J-
etrans k+l_ v 'J-I c2171

wherevj isthe translationf(xj) -xj andf(xj) is themapofxj intheembeddingspace,V is the

averagetranslationof thesetof k neighbors.Thenormalization_2 makesthemeasureetn,,,s

insensitivetoattractorsize.Forarandomsignal,thevalueofe_.ans shouldremainaconstantvalueof

aboutone,regardlessof theembeddingdimension;randomsignalsfill th_embeddingspacethey

occupy.Deterministicsignalwillhavelowvaluesofetransforembeddingsneartheproperdimensionof

thesystem,reflectingthecoherentflowof theneighboringtrajectories.Forembeddingsmuchbelow

thedimensionof thesystemthetranslationerrorwillbelarger;inthetruncatedspacedistantpoints

maybeartificiallyclose.In]higherembeddings,thefinitenumberofpointsinthedatarecordmeans

thatthespacewill be moresparselyfilled, andnearbypointswill notbe as wellcorrelated.

Unfortunately,thetranslationerrorisapoormeasureforhighdimensionalattractors,aswillbeshown

inthenextchapter.
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2.4, Summary

As outlinedin this chapter,a numberof techniquesexist for identifyil]galld quantifyinglow

dimensionalchaosafldsimpledeterminism.TheseincludephasedelayplotsandPoincar6sections,

fractaldimensions,Lyapunovexponentsandshorttermpredictability.Therearesomesubtletiesin

applyingthesetechniquesto data,aswill bediscussedinthefollowingtwochapters.Thesearethe

tools,then,with whichI will analyzenumericalandexperimentalplasmasystemsforevidenceof

simpledeterminism.
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3, Anal_vsisTechniquesAppliedtoKnownNumericalSystems

Threenumericalsystemswhosechaoticpropertiesarewellunderstoodarepresentedhereto illustrate

thetechniquesfornonlinearanalysis.Theseanalysistechniqueswill thenbeappliedto thedatafrom

numericalsimulationsof plasmas,as wellasexperimentaldatafromMST.Twoof thesystems,the

Lorenzequationsandtile Mackey-131assequationareknownchaoticsystems.Thethird systemis

Gaussiandistributedrandomnoise,Theresultsobtainedfrominvestigationofthesesystemsprovidea

standardbywhichtocompareunknowndatarecords.

3,1, PhaseDelayPlotsandPointer6Sections

3,1.1. LorenzAttractor

Asmentionedinchapter2,theLorenzattractorisgeneratedbyasetof equationsintroducedin1963by

EdwardLorenzasasimplemodelof Rayleigh-Benardconvectionin theatmosphere.Onceagain:

.i"= o'(y- x)
= x(r - z)- y

_:= xy - bz (3.1)

TheequationsareinFourierspa:e,withx representingasinglemodeof thevelocityflow,andy andz

twoFouriercomponentsofthetemperaturefield,r isthenormalizedRayleighnumber,o" isthePrandtl

number,andb isa geometricalfact,_r.Thesystemhasthreefixedpoints,oneat theorigin,andtwoat

z =r -1,x = y = -t-_r - 1).Forr < 1u_lythefixedpointat theoriginexistsandisstable,Forr > 1,

theoriginbecomesunstableandthetwooth_rstablefixedpointsemerge.Thesefixedpointsbecome

unstableforappropriatevaluesofr, b, andor,andtheLorenzstrangeattractoremerges.

TheleftplotinFigure3,1showsa twodimensionalprojectionof thephase-delayreconstructionof tile

attractorforthestandardparametersr =28,b =8/3aridcr=10,plottingx (t) versusx (t +,15)versusx

(t +.3),Comparirlgthiswithfigure2,9onecanseethatthephasedelayplotcapturesthebasicstructure
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Rgure3.1,TheLorenzattractor.Theleftplotshowsthe,¢ componentoftheattractorinphasedelay
representation.TherightisaPotncardsectiontakenatthegrayplaneontheleft.

of theattractor:apairofconjugateunstablefixedpointsaboutwhichthetrajectoryspirals.Thegray

planecuttingthroughtheattractoristheplaneof thePoincarOsectionintherightfigure.Structureis

evident,indicatingthelowdimensionalsimpledeterminism.Therearea fewspuriouspointswhichare

theresultofpoorpolynomialfitsusedtodeterminethepointwherethetrajectorycrossestheplane.

3.1.2. MackeyGlass

AsecondexampleofastrangeattractorisgeneratedbytheMackey-Glassequation,38TheMackey-

Glassequationisasingledelay-differentialequationdevelopedtomodelhematopoiesis,theprocess

bywhichthebonemarrowcreatesbloodcells.

p= _o"P(t- T) rP(t)
8n + P(t- T)n (3,2)

P is thedensityofcirculatingmaturecellsandT is thedelaytimebetweeninitiationof cell

productionandthereleaseofmaturecellsintothebloodstream.,O0,e, n, alld_,,arecow_stants.The

systemisactuallyinfinitedimensional:oneneedstospecifyat1infi=litenumberofinitialcorlditionsfor

thefunctionbetweenx (t)andx (t +T), Inpractice,however,tilesystemcollapsestoamuchsmallur
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dimension,andadjustingthedelaytimeT determinesthefractaldimensionofthesystemoverawide

rangeof values,Thesystemisthusespeciallyusefulasa modelin studiesof relativelyhigh

dimensionaldynamics.

Figure3,2showsa phase.delayplot(theonlypossibleoptionl)fortheMackey-Glassattractorwitha

delayofT =20s.Equation(3.2)wassolvedusinga4thorderRunga-Kuttaintegrationschemeusinga

stepsizeof 0,01andstoringevery10thpoint.Theattractorappearstohavestructure,anindicationthat

thesystemisprobablylowdimensional,Theleftplotof figure3.3showsa Poincar_sectionof the

attractorforthesameparameters,Theattractorwasdelay.embeddedin3dimensionswithadelay

timeof r,,Ss,andthesectionwastakenattheplanex(t_)=1,1,Thevalueofrwas chosenaswillbe

discussedinsection3,2,Becausetheattractorislowdimensional(about2,1)forthisvalueofT,

structureisreadilyapparent,TherightplotisaPoincar_sectionforasystemwithidenticalparameters,

exceptthedelaytimeT= 50s,Noobviousstructureis apparentherebecausetheattractorhasa

dimensiongreaterthanfour.PhasedelayplotsandPoincar_sectionsareof limitedusefulnessfor

P(t'.PO.2)

P(t+0,1)
P(I)

/
Rguro3.2.Phase-delayplotof tileMackey.GlassattractorfordelaytimeT =20s,
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Route3.3,Poincar0sectionsoftheMackay-Glassattractor,Theleftplotisforanequationdelaytime
ofT,, 20swhichhasa fractaldimensionofabout2,1,TherightplotisforT =50swhichhasa fractal
dimensiongreaterthan4,

attractorswithdimensiongreaterthan3,

3,1,3, RandomNumbers

Thefinalnumericalsystemtobeanalyzedisasystemofrandomnoise,Thereareseveraltypesof

noise,themostfamiliarbeingGausslandistributedwhitenoise,Thepowerspectrumof suchatime

recordisflat,havingequalpoweratall frequencies,hencethename,Colorednoise,alsoknownas

fractionalBrownianmotion,hasa preponderanceof lowfrequencies,andthepowerspectrumis

proportionaltoJ"._r,where.f' isthefrequency,Asimplemethodforgeoeratingcolorednoisewithsuch

aspectraldensityisgivenby,39

NI2r /,., ,,,'l-(:z"J1/2

(3.3)

A istheamplitudeand(/)k areN/2 randomphastzs,

Raqdomsystemsprovideacomparisonfor_ trulyhigh(infinite)dimensionalsystem,Thedataarealsoo

checkagainstspuriousindicationsofchaosresultingfromseveredatama)lipulation,Inparticular,noise



withsomedegreeof sholttermcorrelation- eithercolorednoiseornoisewhichhasbeenIowpass

filtered- willgivespuriousindicationsof simpledeterminism,I willuse theterm"correlatednoise"

whenspeakingof suchsystemsin general,Methodsfordistinguishingbetweencorrelatednoiseand

systemswhichare trulychaoticwillbediscussedinthischapterandthenext.

In figure3.4is plotteda phase-delayplot of Gaussianwhitenoiseplottingx(t) versusx(t+l), As

expected,nostructureisapparent;randomnumberswilldenselyfill thespacetheyoccupy,A Poincar(_

sectiontakenat theplane.¢(t+2}=0 isnoimprovement.

3.2, CorrelationDimenzion

Calculatio=_ofthecorrelatiopdimellsionL_2hasbecomeastandardtechniquein the repertoireoftools

for analyzingchaoticsystemsbecauseit t}otos}tyidelltJfiesa systemas havingunderlyingsimple

r(r,,_,minisrn,it alsoqualltifiesthedegreetowhichthe systemis chaotic,Conventionalwisdomhas it

thatth(]nulntJerof in(k;perldelltequationslluededto describethe systemisonlyslightlygreaterthan

itscorreiatior]dimension,i e. artunktlownsystemwithdimensior}3,2wouldl}eed fourorpossiblyfive

equationsto describe it, Thus,determinationof the correlationdimensionis a first step in
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reronstructingtilesystem'sgoverningequations.WorkbySprott40,however,hasshownforacurtail1

classof systems-maps andODEsdescribedbypolynomialandothersimpletunctions- that the

averagecorrelationdimensionis of theorderof the squarerootof thenumberof equations.The

numberofequationsneededmaybefargreaterthar_thefractaldimensionindicates.

Thatnotwithstandif_g,thecorrelationdimensionisstillwidelyusedasmeasureofthedegreeofchaos

inasystem.Unfortunately,althoughit issimpletoimplement,calculationiscomputationallyintensive,

oftenrequiringmanyCPUhoursfor largedatasets.Severalmethodshavebeendevelopedto speed

computation,mostof whichfavorcalculationofonlysomedistancepairs- theclosestones- and

omittingmostothers.I preferanothermethodwhichmakesuseof certainredundanciesin the

calculationtospeedcomputation.41Althoughnotasfastassomeof theothermethods,it computesall

distancepairs,whichcanbeimportantindeterminingtileparametersforpropercalculationof,O2.

Figure3.5presentstypicalresultsfortileLorenzattractor.10,000pointswereanalyzed.Thetopplot

showsthecorrelationintegrallogC(r)plottedversuslogr (logarithmbase10),wherer is theradiusof

thehypersphere,forseveralembeddingdimensions.Thescalingregionofconstantslopeis indicated

byastraightlinefit. Theslopeofthislineshouldbethesameforallembeddings.Thelowerplotisthe

twopointslopeoftheupperone.Herethescalingregion,nowaplateau,ismuchmoreapparent,endit

canbeseenthatall embeddingsdoindeedsaturatetothesameslope.Forclarity,onlysomeof the

pointsareindicatedbysymbols.Atlargeradiitheslopefallstozeroindicatingthatthehyperspheres

areencompassinotheentireattractor.Atsmallradiioneislimitedbythenumberofpointsinthefinite

datarecord;statisticsgetpoorerandthedimensionincreases,Thebestfit toa straightlineoverthis

scalingregion(admittinga somewhatarbitrarydetermination)yieldsa valueforthecorrelation

dimensionof Dz = 2.000± .003,wheretheerroris fromthegoodnessof fit, Tiffsiscloseto the

acceptedvalueoftileHausdorfffractaldimensionof 2.05.
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Figure3.5.PlotsusedindeterminingthecorrelationdimensionoftheLorenzattractor.Thesolidlinein
the topfigureisa bestfit to theconstantslopescalingregion.Asseeninthebottomplot,the
correlationdimensionremainsconstantinseveralembeddingdimensionsoveraregionofat leasta
decadeinr,

Thesubtletiesof determiningthecorrelationdimensionarediscussedinsomedetailin{42],however

twoimportantpointsareworthmentioninghere.Criticalincalculatingthecorrelationdimensio_isthe

valueofthetimelagt':.Thetimelagmustbechosenappropriatelysuchthatvectorcomponentsare

independent.Choosing¢ toosmallcanresultinspuriouscorrelationandanartificiallylowcorrelation/
dimension.Attheot_r extreme,duetothefinitelengthofanyrealdatarecordandsensitivityto initial
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conditions,toolargea wflm)of r leadsto decorrelationandanove_f(_stimiltoof thucormlati(m

dimension,Theautocerrolatienfunctioflg(merallyprovides_J!icedcritericl_foetile}choi(:eofchei(;eof

timelag:r timestheembeddingdimensiollslleuldbe2 to:3time_sthee-foldingtime.Howt_ver.the!

correlationdirect)signshouldbecomputedforw_riousr inor(lettofindanoptimolw_tue.Ov_rsatin!

rangeof r theslopesof thelogC(r) versuslogr plotsoverlayina givenembeddingIhe timeI/Jil

mustbechosensomewherewithinthisrange.Th_JruisanexcellentdiscussioninAlUmina,ot ol.where

theyshowthatthereisa rangeof 'windowlengths'(m.t)r overwhlchtheGrassberger-Precca(:m

algorithmprovidesanaccurateestimateofthecorrelationdimension,43

Typically,onewantstosampledatafrequentlyenoughsothattheautocorrelatio,timeisseveraltim_

steps,Samplinginfrequentlywillyielddatathatis notproperlycorrelated;samplingtoooftlmwilt

confinethedynamicsto onlya portionoftheattractor,BestresultsforD2,andallotlteranalysis

methodspresentedhere,areobtainedwhentheuutocorrelationtimeisbetween10and20timesteps

AnotherpossiblesourceoferrorisdescribedbyThieler,44In additiontovectorcomponentsbeing

correlated,vectorscloseintimemaybecorrelatedtoeachother,riffsresultsina spuriousD2=0

regionof thecorrelationplot.Thielersuggestsintroducinga parameterW andcomputingtile

correlationfunctiononlyforvectorssuchthat0>ri+W, AnappropriatechoiceforWis indicatedby

thedisappearanceoftheD'z=0region;usuallyW issmall,ontheorderof5r.

Asmentionedpreviously,thefractaldimension,andhencecorrelationdimensionoftheMackgy.Glass

attractorisdependentontheequationdelaytimeT, Thebehaviorisevidentinthetwoplotsoffigure

3,6whichshowcorrelationdimensionfor7'=23sand100s.Asexpectedfromfigure32, theMackay-

Glassattractorislowdimer_sionalfor7'=23s,Theacceptedv:_lueisl) 2" 244:1:0,5,ForT =100sthl_

dimensionincreasesto D2 ,,,7,5,whichis theacceptedvalue.45Forthelattercase,lhocorrelaliu,

dimensiondropsatsmallradiiindicatingenhancedcorrelationonsmallscales,Thiscallt)eattributedto

therelativelysmallnumberofpointsused.Inhighdimensionale,rnbeddmgspacestllereareonlyafew

nearbytrajectories,Thus,at smallradiitraj_ctoriesarecorrelatedonlywiththemselves,whichresults





35
12

,ooopoints _ dim=7
10 'c=1 ---e--- dim=8

----a--- dim=9

_ dim=10._ 8 - _ _dim=ll

,.B6 -

4 -

2 -

0 , 1, _ _ I , t , _ I _ m _ _
-1.5 -1 -0.5 0 0.5

logradius

Figure3.7. Correlationdimensionfor Gaussiandistributedrandomnumbers.No clearscalingregion
exists.

3.3. LyapunovExponents

Asmentionedinchapter2, computationof the largestLyapunovexponentisrelativelystraightforward.

Themethodof Wolf,eta/.29followsthetrajectoryof a singlecomponentinphasedelayspace,known

asthe fiducialtrajectory.A nearbyorbitisfound,andtheiraveragedivergenceoversometimeperiodis

measured.Becauseall chaoticattractorsare,onaverage,contractinginphasespace,theexponential

divergencecannotcontinueindefinitely.Consequently,aftersometimeperioda neworbitcloserto the

fiducial trajectorymustbe found.Thevectorconnectingthis neworbit to the fiducial trajectorymust

preservethe orientation in phase spaceof the original vector in order to compute the Lyapunov

exponentproperly.This procedureamountsto a reorthonormalizationof the tangent spacevectors

describingthe expansion/contractionof the attractor. This processcontinuesthroughoutthe time

record,andis illustratedschematicallyin figure3.13.

Althoughtheprocedureis effective,it is incomplete.A singleLyapunovexponentcanonly indicatethat

a systemis chaotic,but tells nothingabout the dimensionof the system.Noisealso hasa positive

largestLyapunovexponent.Onereallyneedsthe entirespectrumof exponentsto ascertainwhether
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d

Figure3.8.Thefigureschematicallydepictsthecomputationof thelargestLyapunovexponentby
followinga fiducialtrajectoryintimeandcalculatingthedivergenceofnearbytrajectories.

underlyingsimpledeterminismexists.ApositiveLyapunovexponentaccompaniedbya negativeone

wouldindicatethepresenceofchaos.

AmethodproposedbyEckmann,et al.andmodifiedbyBriggscomputesthespectrumof exponentsby .

approximatingtheJacobianof thelocaltrajectoryof thedynamicalsystem.31,49Inthemethodof

Briggs,thetimeseriesisembeddedinphasedelay-spaca,a groupof nearestneighborsisfound,and

theirtrajectoryis fit toa polynomialfunction.Thisfunctioncanthenbedifferentiatedanal_callyto

obtaintheJacobianofthelocaldynamics.TheLyapunovexponentsarethengivenby:

x(zl= lim -1-1nJJ(t)_
t-_t |t | ' (3.4)

where_J_ is theitheigenva_ue_f theJac_bianafteradvancingthesystema timet (see[26_f_ra
thoroughdiscussion).

Findingtheeigenvaluesofreal,nonsymmetricmatricesisnottrivial,andoftentheeigenvaluesare

complex,whereasLyapunovexponentsarereal.Thisisbecausethetangentspaceofthesystemisnot

necessarilyalignedwithour(arbitrary)coordinatesystem.Computationof theLyapunovexponentsis

facilitatedbyQRdecomposition.AnymatrixcanbewrittenasM=QRwhereQ isanorthogonaLmatrix

andR is upperrighttriangularwithpositivediagonalelements.Thisisknownas the"skinny"

decomposition,andit isunique.Wecanwrite_t) =_ (xo),andsincethetimeseriestobeanalyzedis
/

descretized,byther_ainrule,Jt+l=[_fm/o_x]=,itJr.1...,io.GivenasetofmatricesJ1,Jz....Jr, one _
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candecomposethemas:

=
JzQ(1)= O(;t)R(z)

.o

JtO(t-1)=O(t)R(d (3.5)

TheJacobianthenbecomesJt +1=Jr...J2J1=O(t)R(t).,.R(2)R(1).Theeffectof theproductsJO isto

successivelyorienttheJacobianmatricesalongtheprincipalaxesofthetangentspaceoftheattractor,

TheLyapunovexponentscanbecomputedfrom:

/1

= 13.a)

Implementationofthe algorithmis notdifficultona computer,andseveralroutinesexist to dothe QR

decomposition.5°,_1MostoftheCPUtimeisspentsearchingfornearestneighborsratherthaninactual

calculationof theexponent.TheBriggsmethodgivessuperiorresultsto theoriginalmethodproposed

byEckmannandRuelle,becauseinfittinganarbitrarypolynomialit includestile curvatureofthe local

space.Thisisparticularlytruein embeddingdimensionshigherthanthe spatialdimensionof the

attractor.A sampleof theresultsarecontainedin table3.1.TheKaplan-Yorkedimensionis also

presentedforcomparison.

Criticalinobtainingaccurateresultsis thechoiceof thecomponentdelaytime_:andthenumberof

timestepstoevolvethetrajectorybeforemeasuringtheexpansion.Inallcases,thebestresultsare

obtainedbyevolving_:timestepsbeforecomputingeachJacobian.Theoptimumchoiceof_ ismade

inthesamewayasforthecorrelationdimension:1:timestheembeddingdimensionis2to3timesthe

e-foldingtimeof theautocorrelationfunction.Thenumberof neighborsisalsoimportant,butit does

notinfluencetheresultsasstrongly.I havefoundthat it isbestto useallneighborsuptoapredefined

maximumwithina givenfixedradius,ratherthanafixednumberof neighbors;choosingtoomany

neighborsin sparselypopulatedregionscanskewthepredictedtrajectory,andchoosingtoofewin

denselypopulatedregionsmaymeanmostpointslieonthesametrajectory.Aradiusofabout10%of
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_"_ ...... _ _ m= _ _ mm Ly_nO _ _ _ ........................

Lorenz , .0,9s 209 1,387± 9,1% -0067-1->100% .14.8"/4± ,2;6%

accepted3,:29 0.Ss 2.09 1,633± 6.8% 0067±>100% -18.352± 1.4%

1.4971O0t .22.46 ............ -4.5' ........

Mackey-Glass,7'= 23 6s 2.68 00965± 11,5% .0.007±>100% -0.131:L15.4%

acceptedZ :45 dt=O.5s .0.391± 8.2%

0956_O.Of..1!91.344 ....

Mackey-Glass,7'= 100 5s 8._ 1.4293± 0.9% 0.7830± 1.3% 0.4133± 1,8%

dt=ls 0.1871+3.6% 0,0095±74.6% -0.0798±10.5%

-0.3186:1:3.2% -0,7277±1.9% -1.7798± 1.4%
,..... ,,

RandomNumbers 2 3.86 0.258± 1.0% 0,093± 4.8% -0,068± 8.2%

-0327± 3.1%, ,, , ,, , , ,, ,,

4.61 0,200±2,1% 0.094+3.8% 0.011+33.7%

.... -0.101±5,1% -0.337,_2.9% ..

5.47 0.199±2.2% 0.105±32% 0.031+ t0.1%

....... •0.040±9,3% ;0.133±4.2%..... -0.348± 2.9%

Table3,1,ComputedLyapunovexponentsforseveralsystems.TheparametersfortheLorenzsystem
were:r=45.92,b=-4.0,o'=16.0.FortheMackey-Glasssystem:,60=0.2,7=0.1,n=10.

themaximumextentoftheattractorusuallygivesgoodresults.

Resultsfor theLorenzsystemare inexcellentagreementwith theacceptedvalues,eventhelarge

negativevalue.Negativeexponentsarenotoriouslydifficultto calculatebecauseof theirextreme

sensitivityto thequalityof thedata.Thezeroexponentis easilyidentifiablebothbyitssmallabsolute

valuerelativeto theothersandthelargestandarddeviation.Typically,the "zero"exponenthasa

magnitudeabouta factorof 10smallerthat the nextlargestvalue.Duringcomputationthis value

fluctuateswildly,sometimespositivesometimesnegative,andhasa verylarge(>100%)standard

deviation.Inthenextlargestembeddingspace,thefirstthreeexponentsremainconstanta_da fourth

negativeexponentappears.TheKaplan-Yorkedimensionremainsessentiallyconstant,indicatingthat

anembeddingof4 isunnecessary.
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TheMackay-Glasssystemprovedmoledifficulttoanalyze;thesystemisfairlys_nsitivetoth_:_w]luL_of

r. ResultsareNoneLhelessgood,withthelargestexponentbeingwithin4%of theacceptedvallle.

Choosif]gashortersampling[1time(moredatapointspertimr;step)canmakethttsyst(!rnle.sss(_rlsitive

to thechoiceof r, thoughthe numberof matricesavailable,aridhencethe slatistics,is thus

decreased.Fortile systemwithanequationdelaytimeT= 100s,nosaturationin theKaplan-Yorke

dimensionisseenup toanembeddingof 10.However,thevaluesof theexponentsremainessentially

unchangedastheembeddingdimensionis increased.Thisindicatesthat thepositiveexporlentsare

probablynearlycorrect.IthasbeenestimatedthatDKy isgreaterthan10.45

Randomnumberscanbeidentifiedbyseveralcharacteristics.First,theycontinuetofill lJlespacethey

areembeddedin,as evidencedby theKYdimension.In fact,for somecases,tileDKy iSactually

greaterthantheembeddingdimension.Second,althoughtherearenegativeexponents,noconvirlcing

zeroexponerltexists.Thefactthattherearenegativeexponentsindicatesthatthesetisbounded( Ixl<

6 in thiscase),sothatpointsneartheedgearepulledbackintotheset.Thisisnot,however,evidence

of anattractor.Finally,duringthecalculationof tileexponents,findingsufficientnearestneighborsis a

problem,evenfor ratherlargeradii,Randompointsareevenlyandsparselydistributedin the

embeddingspace.Thepositiveexponentsdo notchangeappreciablyastheembeddingincrenses,

whichindicatesthattheymaybecorrect.

3.4. Predictability

BoththeLorenzandMackay-Glasssystemsaregovernedbysiml:,!edeterministicequations,andas

suchshouldbepredictablein tileshortterm.SugiharaandMayhaveproposeda verysimplemethod

for predictingthe shorttermbehaviorof suchsystems.38In theirmethodonefirldstile rnir_imum

numberof nearestneighborsto a "predictee"neededto forrna simplex- D +1points- ill the

embedding.Thesimplexistherlevolvedarlumb_irof timestepsintothefuture.Thepredirtedevolutiol_

of thepredicteeis thentile weightedmeanof thesimplex,wheretheweightsaretheexporlentiated

originalpredicLee-rleighbordistances.Irlpractice,a portiol_of tiledatar[,,coldis deemedtiledatabase
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ofr=eighborsandtheremainingpointsarethepredicteevalues.Eachpredicteeisevolvedseveraltime

stepsintothefuture,andonethencomparesthepredictedtrajectorywiththeactualtrajectory.

Inordertocharacterizethedegreeof shortte_mpredictabilitySugiharaandMayusethelinear

correlationcoefficienttomeasurethecorrelationbetweentheoriginaltrajectoryandthepredictedone.

Thisisa poormeasureforseveralreasons.Thelinearcorrelationcoefficientwillgiveavalueof1if the

predictedtrajectory(y)equalstheactualtrajectoryk) forallpointsconsidered.Unfortunately,it will

alsogivea valueof 1 if y =ax. Weareassumingtheattractorischaotic,andtrajectoriesdiverge

exponentiallyratherthanlinearly.Secondly,thecorrelationcoefficientdoesnotindicatewhetherthe

observedcorrelationissignificantbecauseitcontainsnoinformationaboutthedistributionsofx andy.

Finally,itisgenerallyonlyareasonablemeasureforlarge(>20)samplepopulations.Typically,because

of theexponentialdivergenceofchaotictrajectories,predictedtrajectoriesarereasonableforonly

abouttentimesteps.Abettermeasuresimplycomputestheaveragedeviationof thepredictedfrom

theactualvalues,normalizedtothedistancepropagated.Becausea singlepoorprediction(sayina

sparselypopulatedregionofphasespace)canstronglyskewthemean,themedianisabettermeasure

of theaveragenormalizeddeviation,

Asaresultof itssimplicity,theSugihara-Maymethodisnotaverygoodpredictorevenforshorttimes.

It isa 0th ordermethod,inthatthereisnox dependence,andit doesnotevenattempttocapturethe

underlyingdynamicsof thesystem.Asuperiormethodfitsa linearorhigherorderpolynomialtothe

localtrajectoryinordertodo theprediction.ThemethodissimilartooneproposedbyFarmerand

Sidorowich35exceptthata generalizedpolynomialis fit tothe localtrajectory,Thegeneralized

polynomialcanbewrittenas

Fl(x)= f/o + _,f ll x + _'_f12xx+.... (3.7)

Fi (x)isthemapofthei thcomponentandtilesumsareoverallcomponentsintheembeddingspace

(.fit isanm dimensionalvector,.f,'2isanmxmtensor,etc.).Toimplementthemethod,one(asusual)

choosesanappropriatetime-delayembeddingbasedontheautocorrelationfunction.Awindowlength



41

1 1/2 to 2 timusthe autocorrelatiorltimuusuallyworksbest. ShorterwirldowIollgthswill givubt,_tti_r

predictions,but thisisartificial,sincepointsclosein timernayretair)spuriouscorrelations,Correlated

noiseis notoriousfor this property,Aswith thuSugihara-Maymethod,the degreeof predictabilityis

characterizedby the_lormalizeddeviation,

Resultsfor the systemspresentedin this cl_apterare summarizedin figure3,9, Timesteps awe

measuredin uzfitsof r . Correlatednoise,if it is frequentlysampled,cangiveverysmallprediction

errorsif onechoosestimestopsequalto the samplingtimeratherthanr. Onecanseethe shortterm

predictabilityfor all three chaoticsystemsis reasonablygood(smallerrofl, while white f_oise

consistentlyhas 100%error,Predictabilityof theLorellzsystemis extremelygood,Thereasonfor this

is reflectedin theLyapunovexponents.The leastnegativeexponent(smallestin absolutevalue)

governsthecontractionof thesystemontotheinertialmanifoldcontainingthe attractor.FortheLorenz

system,thisis verylarge,andtheattractoris extremelystabletoperturbations,Thisalsoaccountsfor

itspredictability,intherandomsignal,theinitialerrorof lessthan100%isanartifactof advancingr

timesteps,Becauseadelayembeddingis used,after "rtimestepsmanyofthevectorcomponentsare

identical,Theerrorisnonethelesslarge(-50%),andafter2 timestepsit isequalto100%,

Thetranslationerror(Eq.(2,17))for thesesystemsis plottedasa functionof emb;ddlngd!mensionin

A A o = 8 et e a

_10 4 El0
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figure 3,9,The predictionerrorfor severalsystemsversusthenumberof time stepsinto the future

measuredin unitsof r. Thedeterministicsystemsshowa highdegreeof predictabilitywhile random
noisedoesnot.
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Figure3,10,Thetranslationerrorforseveralsystemsas a functionof embeddingdimension,
DeterministicsystemshavelowvalueswhichiHcreasewithembottding.Randomrloisehasvaluesnear
1,andshowsnosuchirmrease,Filterednoisealsoshowssomedegreeefpredictabilityalthoughitis
notdeterministic.

figure3+10.Thesimpledeterministicsystems,LorenzandMackay.Glass,bothshowlowvaluesforthe

translationerror,indicatingcoherentflew.Theerrordecreasesuntilthesystemisproperlyembedded

andthenincreasesagaininhigherembeddingswherepointsaremoresparselydistributed,Gaussian

randomnoisegivesconsistentlyhighvalues,closetoorequalto1,it+allembeddings.Inaddition,there

isnostrongtrendinthedata.Alsoplottedisa correlatednoiseseriescreatedbyIowpassfiltering

Gaussianwhitenoise.Thedatashowshorttermpredictabilityduetothefiniteautocorrelationtimeof

thedata,althoughthesystemisnotdeterministic.Thiseffectwillbediscussedat lengthinthenext

chapter.

3.8, Summery

Ihave dJsclJSSOdtheapplicationof tim analysismethodsusedto identifychaoticandsimple

de]terministicsystemsusingtwosystemsknowtobechaotic,theLorenzandMackey-Giasssystems,

andGaussianrandomnoise.Lowdimensionalsystemsmayshowstructurein phase.delay

reconstrut:tiunplot_JllflPoinctJr(5st_ctiens.HighdimensionalsysttJmsusu_Jllyshownostructure,asis

trueoftmisu.Forch+)oti¢:systems,thecorrelation(Jimensionplotsshow+](:learplateauovertimst:alif+o

regionwhichcurrosl)ondsto thedimellsionof thesystem.Randomhoist]fillstile(mlboddingspaceand
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showno _iattJr,)lio_liIz_J_yt;_lzt)_cl(Jhzl}dim("lSiU_lL|he _l}z_(:trurlz_)fLy,plmL)vexpurtl}lltsfor (:h_Hltil:

systz.n_ i_ m_irk_}tlI)y (:t)tlsi_tt,,fltt_xl)um.'lltsill largL,r t}mbe(I{lill_l._,th(; Kal_l_.l-Yo_kt_tlirll(m_iurl

appi_jcbill_l_j_:urlstalllwillie, _lrltl_!(:lt,_lr"/ero" flxi;Url_!_lt,l(licdt(_iJt_ybulb ,I sm_lllm_iJt_itlt(l(_'_l_}(I

I,rgu st_]f_d,)r{I(It._viLtLiUlI,PIL)pUILJs|iIIliILi(.)I|Lltthzt|]XpOIt|_IilS i,_ Ili(}IU difficult for llillher (lirzi[,,r)si(}n_l

SySLUIII. Ft)I fiJfl(JL)[ll syStum,l)K¥ (10t_)._rl()t s(lturilt(]_111(lthi)r[] is lid [:li.)ar,tl.}loexl)()lltlllt,Ch{Iotic

sys|tJlll5_.llU{;h,lr(]dt}li/(}dt)y{)oodsht)ltit}rill[)tt)(li(;t{il)ilily_lll(J{',iJhi}fi,_ll(:(to( {low lhes(!ill(}m[}_ls_t_;(I

bythe l)rl,tdi(;tiorlurror{llld |l'{llZSJ_]tiullurror, re,_l)(}ctivt!ly.FI{Ill(IOIIiIILIl,_l.}'hi:i,_ poor l)rl)(lil:tilbility{1111l

flowcoh_}rt,i_:u,
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4. Z_aattnoIlmnleD,zleffalnlMtfromIntmnslnentData

Thetechniquesoutlinedinsection2.2foridentifyingunderlyingsimpledeterminismarerobustin

theory,Practicalapplicationof themethodsis rarelystraightforward.Onemustbecertainthatthe

presumedsimpledeterminismisrealandnota resultofimproperanalysistechnique,Inaddition,all

systemsreal or numericalsufferfromnoisecorruption.Thischapterdealswiththepractical

application,precautionsandpitfallsof applyingthemethodsof chapter2 torealsystems.Thefirst

sectionaddressesthei=uaofspuriouslowdimensionalityinhighdimensionalsystems,Thenexttwo

sectionsdealwithtechniquesforresolvingecorruptedunderlyingattractor.

4.1. SurrogateDartSen

Oncea chaoticsystemhasbeenidentified,oneneedstoconfirmthattheidentificationiSindeed

correctandnotanertlfa_oftheanalysisprocedure.Asimplemethodfordoingsoinvolvesthecreation

ofsurrogatedatasets.Asurrogatesotissimilartotheoriginalattractor,butrandomizedinsomeway

.odestroythesimpledeterminism.Theanalysismethodsshouldthenbereappliedtothis,'W,Ndataset.

_11testsshouldyieldverydifferent(negatlvef)results,therebyconfirmingtheoriginalassessmentof

impledeterminism.If therestillremainindicationsof simpledeterminism,morethanlikelyoneis

,vttnesslnganartifactoftheanalysismethod,

_nemethodofcreati%t surrogatedatarecordissimplytoshuffleall thedatapointsintherecord.

hiswillcreatearandomsignal,allmomentsofwhicharethesameastheoriginal,butwilldestroy

nycorrelationintheoriginalsignal.Themethodis toodrastic,however,It destroysessentiallyall

nformetioncontainedintitsoriginalsystem:powerspectrum,structure,etc,Themethodis littlebetter

hengeneratingarandomnoisesystemof theappropriateamplitude.Abettermethodinvolvesusing

he datafromtheoriginalsystemandrandomizingthephasesof theFouriercomponents,This

,resets theoriginalpowerspectrum,butcreatesadatasetinwhichsmallscalecorrelationislost.
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Tilenmthodpreservesglobaltlualltitiusof thesystem:thgpowerspectrum(obvio=Jsly),macrostructure

inallembmldhlgs(similarlmriodicitymidarwplitucle)an(Ialsotheautocorrelatiow=time.Yetanysimpl_

deturminismisdestroyed.

Figure4,1depictsa timerecordof theoriginalLort,nzsystemandasurrogatedatasetcreatedbyphase

randomization.Theneighboringplotdepictsthetwodimensionalphase-delayreconstructionof the

surrogate,Thisshouldbecomparedwithfigure3.1.It is evidentthatthetwosignalserestructurally

similar,ttmughthephase.randomlzeddatadoesnotshowthesamecoherencyof flowastheoriginal

data,Figure4,2showsthecorrelationdimensionforthephase-randomizedsurrogateof theLorenz

systemontimleftandof theMackey-GlasssystemwithT= lOOsontheright,Thesurrogatesetsshow

thesamebehaviorasrandomnoise;thereisnoscalingregionbecausethesystemfillstheembedding

space.Theseplotsshouldbecomparedwiththoseoftheoriginalsystemsshowninfigures3,5and3,6,

Figure4,3comparesthepredictionerrorandtranslationerrorforthetwosystemswiththeirsurrogates,

Thepredictionerrormeasurestheshorttermpredictabilityof thesystemwhilethetranslationerror

2 25

1 1++

+ ,1o

2 __L_+L+__,+_.+.+L__++..L+_.,..__+_++.+_ •I+ .........-J.......-L+...+.-_J........L.....,15 .10 ,+ 0 + 10 1+ 20 25
0 5 times 10 _ x(t)

Figure4,1,Theleft figureshowsthe timuseriesof a phase-randomizedsurrogatetartheLorenz
attractor,Theoriginalsiglmlis ill gray,Therightfigureshowsthe2dmensanalphase.delayplotof
justthesurrogate.Thisshouldbecomparedwith figure3,1Thetwoappearstructurallyverysimilar,but
thesurrogatedoesnothavesimpledeterrninism,
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Rgure4,2,Thecorrelationdimensionof thesurrogatedatasetsfortheLorenzattractorandthe
Mackay.GlasssystemwithT =iOOs.Neithershowanyevidenceof lowdimensionalchaos,Theplots
shouldbecomparedwithfigures3,5and3.6,

measuresthecoherenceof flow,Thetwoarecloselyrelated,Thesurrogatesystemsexhibitbehav?or

similartorandomnumbers:Thereisasteepriseover1-2predictionstepsInerrorfro=nmode_Lvalues

(20.30%)to100%error,Theinitialcorrelationisartificial,Sincepredictionerrorismeasuredinunitsof

r, thecomponenttimelag,allsignalswillshowinitialspuriouspredictabilitybecausecomponentsare

sharedamongsuccessivepoints,FortheLorenzsystemthesurrogateshowsworsepredictabilityby

severalordersofmagnitude,Thisistypicaloflowdimensionalsystems,Higherdimensionalsystems

showa lessdramaticchange.It isnonethelesssignificant(overa factorof 3)fortheMackay-Glass

systemwithT =100,ThefactthatthetranslationerrorfortheMackay-Glasssystemissocloseto that

of itssurrogateisdisconcerting,Aswill bediscussedlater,thetranslationerroris anunreliable

measureofsimpledeterminismforhighdimensionalsystems,

Table4,1showstheLyapunovexponentsof theMackey.GlassandLorenzsystemscomparedwiththeir

surrogatedatasets,TheKaplan-Yorkedimensionof thesurrogatescontinuesto increasewithlarger

embecidings.Thureisnoclearzeroexponent,normallycharacterizedbyitssmallmagnitudeandlarge

standarddeviation,whichwouldindicatethatthesystemiscontinuousintime,Thepositiveexponents
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Rgure 4,3,ThepredictionerrorandtranslationerrorplottedfortheLorenzattractorand theMackey.
Glassattractorandtheirphase-randomizedsurrogates.Thepredictionerrorclearlydistinguishesttto
originaldatafromthesurrogatesforbothsystems.Thereisa enarkeddifferencein translationerrorfor
the Lorenzdata, but the higher dimensional(T =100s) Mackay-Glassdata is not as clearly
distinguishablefromitssurrogate,

of thesurrogatesystemsmaybecorrect,however,reflectingthespace-fillingpropertiesof therandom

data.

Anadditionaluseforsurrogatedatasetswas describedrecentlybyBauer,et al,52Theyusedimension

densitiestocharacterizehighdimensionalchaoticsystems,Usingtheusualcorrelationdimension,they

definethedimensiondensityas

._logC(r)

wherem is the embeddingdimension,_'(r)is the correlatloqintegralof an attractorwlth thesame

macrostructureas theoriginalsystem,butwithoutthesmallscalecoherentstructure,To thisend,the

phaserandomizedsurrogateis ideallysuited.(Forreasonsof simplicity,theyadvocatea different

methodfor obtaininga surrogatedate setand computingD 2, whichis notstrictlycorrect.)t In their

t Increatingtheirsurrogate,theymeasuretheprobabilitydistributionoflhepointsoftheoriginalsystemill0teem_ddi,g
m,andthenrandomizethisdistribution.Inorderto simplifycalculalions,theyusetimmaximumnormincomputingthe
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T|bll 4,1,TheLyapunovexponentstheMackay-Glasssystem,Lorenzsystemandtheirsurrogates.The
surrogatesshownosaturationintheKaplan-Yorkedimensionwithhigherembeddlngs,andnoclear
zeroexponent.Theexprnentsof_=filterednoisedatasetarediscussedinsection4.3.

article,theymeasureadimensiondensityofabout0.8inanembeddingof15,whichfortheirsystemof

1000coupledoscillatorscorrespondstoadimensionof800.Theyhavenotasyettriedapplyingthe

_'mthodto lowdimensionalsystems,buttheyintendtouseitto studyTaylor-Couettefluidflow(a

=ownrealsystemwithlowdimension).53Unfortunately,mystudiesusingtheLorenzattractorwith

ruthrandomizedandphaserandomizedsurrogatesindicatethatthemethodisnotveryeffectivefor

hiscase,Theplateaulengthisextremelyshort(ca.0.5decades),andnoplateauexistsat largeradii,

theveryregionthemethodissupposedtocompensatefor.It doesshowsomepromise,thoughmuch

researchstillneedstobedone.

4,2, NoiseReduction

AIJsystems,numericalor)experimental,arecorruptedbysomedegreeof noise.Itssimplest,most
benignformismeasurementnoise.BythisI meanthatbysomenon-invasiveprocessonemeasuresthe

correlationdimension,ratherthantheEuclideannorm.Ina privatecommunicationtheyacknowledgedthat thisdoesnot

N:ctxatelymeasureD2atoilscales,butjustifieditonthegroundsthatat smallscales_r) isnotaslimitedbystatist¢s.
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dynamicsofasystem,howevertheinstrumentationusedinthemeasurementaddsanoisecomponent

to thesignal.Givena systemxt+1=f(xt), thisadditivenoiseprocesscanbemodeledasy =x + r,

wherer is theaddednoise,andy is themeasuredsignal.Incomputationalsystemsthismayoccur

unintentionallybytruncatingthedatawhenstoringit. Inamoreinsidiousprocessthediagnostictool

maydistortthesignalthroughfilteringorothermeans,i.e.y=g(x).Nonetheless,thediagnosticis

separatefromthesystem,andintheory- thoughnotinpractice- onecanextracttherelevantsignal

by"reverseprocessing"thedata.A differentproblemistheoneof dynamicalnoiseorstationarityof

thesystem.Inthis instance,thesystemitselfisnoisy,whichaltersthe(noise-free)dynamicsasthe

systemevolves.In thiscase,_+1=-f(xt+r),andthe measuredsignalis x. Forexample,a control

parameter,ostensiblyconstant,mayfluctuateas the systemevolves.If conditionsaffectingthe

dynamicsof the systemchangeintimeidentificationof theunderlyingattractormaybeimpossible

becausenostationaryattractorexists.Thiscanbetrueevenfor theseeminglybenignsituationof

small,slowperturbationstothesystem.In numericalsystemsthe"noise"processmaybeassubtleas

computationalroundofferror.Inallcases,thenoisetendstoincreasethetruedimensionof thesystem,

andmaycorrupttheunderlyingsystemsostronglythatnodimensionisidentifiableat all.Asafurther

complication,in additionto the destructionof underlyingsimpledeterminism,oftenthe analysis

techniquescanidentifyspuriouslowdimensionalchaoswherenoneactuallyexists.Thisisespecially

trueforsystemswhichhavebeensubjectedto linearfilteringandothernoisereductiontechniques.

Veryrecently,Schreiberhasdevelopedamethodforestimationofthenoiselevelinchaoticsystems.54

Hisanalyticalresultsindicatethatanoiselevelof morethanabout2%canbecatastrophic,obscuring

anyscalingregionandmakingestimationof thecorrelationdimensionimpossible.Fortunately,there

existnoisereductionmethodsfornonlinearsystemswhichcanhelptoovercomethisproblem.These

will bediscussedinthenextthreesections.

4.2.1. PrincipalComponentAnalysis

Principalcomponentanalysis(PCA]isatechniquethatreliesonsingularvaluedecomposition(SVD)to
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extractthedominantdynamicsofasystem.Itcanbeapowerfulnoisereductiontechnique.Incontrast

to Fourierdecompositionwhichapproximatesthe systemas a finite subsetof sineandcosine

functions,SVDwill decomposethe systemintoa uniqueset of orthonormaleigenfunctionsand

eigenvalues.Inapplyingthistechnique,it is hopedthatthedominanteigenfunctions- thosewith the

largesteigenvalues- will capturetherelevantdynamicsof the system.Theset isthentruncated,

retainingonlythoseeigenfunctionswith thelargesteigenvalues.Fromthissetanyof thetechniques

outlinedinchapter2 canbeappliedtodescribequantitativelythechaoticdynamicsof theoriginal

system.

SVDisbasedonatheoremof linearalgebra,whichstatesthatanym byn matrixAwithm >n, canbe

decomposedintotheproductof anm byn column-orthogonalmatrixUandtwon dimensionalsquare

matrices:onediagonalwithpositiveelementsW, andthetransposeof anorthogonalmatrixM.Thisis

illustratedschematicallyin fig.4.4.Thisdecompositionis uniqueupto acorrespondingpermutationof

thecolumnsof U,W,and1/.

Typicallythistechniqueisappliedtotimerecordsofasinglesystemvariable.Ann -dimensionalsystem

is createdusingthe Takensmethodof lags.Thismatrixis thendecomposedwith SVD.The

eigenfunctionsarecontainedinthematrixV,theeigenvaluesinW.UWis thentheprojectionof the

originalsystemontotheeigenvectorspace.Thecolumnsof UWrepresentthedominantdynamicsof

thesystem.Byretainingonlythefirst fewcolumnsof UWit is hopedthatnoise,whichtendsto be

uniformlydistributedineigenvectorspace,canbereducedandtherelevantdynamicsextracted.

Theprocessof principalcomponentanalysisis depictedin figure4.5.Thetop left plotshowsthe

A -- U • w2 . VT
.,.

Fioure4.4.Schematicillustrationofthesingularvaluedecompositionofamatrix(after[55]).
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originalsignalfromtheLorenzattractorandtheneighboringplotshowsthesamesignalcorruptedby

50%rmsadditiveGaussianwhitenoise.Singularvaluedecompositioninanembeddingdimensionof

sevenidentifies3-4 largeeigenvalues,shownin the centerplot, two of whosecorresponding

eigenvectorsaredepictedin thelowerleftplot.Anoffsethasbeenaddedto separatethetwo.Thesum

of thesetwo largesteigenvectorsresultsina signalconsiderablycleanerthanthe originalnoise

contaminatedoneasshownin thelowerrightplot.Notethatbyusingonlysomeof theprincipal

componentsto recreatethesignalaslighttimeshiftisintroduced.

4.2.2. Lowpassfiltering

Themostobviousandbasicmethodofnoisereductionis simple,linearIowpassfiltering.In mostall

experimentalsituationssomelevelof filteringtakesplace.Thiscanbeeitherunintentional,i.e.the

finitebandpasscapabilityof thediagnosticequipment,or intentionalfilteringto extractdesiredlow

frequencydynamics.Ofthelatter,therearetwomethodsto achievethedesiredresults.Causalfiltering

filtersin thetimedomain,andis typicallyimplementedwithhardwarebeforethesignalisrecor_Jed.

Thesecondmethodis acausal.Dataarepost-processed,afterbeingrecorded,in thefrequencydomain

withsoftware.Workwith chaoticsystemshasshownthatacausalfilteringis generallybetterthan

causalfiltering.58Whileit is impossibleto eliminateunintentionalfilteringeffectsof thediagnostic

equipment,oneshouldavoidhardwarefilteringwhenpossible.Thisplacesa restrictiononthe

samplingfrequency,requiringasamplingratefastenoughtoavoidaliasingthesignal.
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Rgure 4.5, Shown is the processof principalcomponentanalysisfor removingnoise from a system.
The top left plot show the uncorrupted signal from the Lorenz system. The neighboring plot is the same
series corrupted by 50% rms Gaussianwhite noise. Principal component analysis identifies 3-4 major
eigenvalues, two of whose component vectors are depicted in the lower left plot. Their sum (lower
right} givesa cleaned version of the noisy signal which better approximates the original. The normalized
eigenvalues are plotted in the center graph.
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Actually,oneshouldavoidlinearIowpassfilteringaltogether.Whenapplyinga linearfilterto data,one

tacitlyassumesthattherelevantdynamicsforthesystemareconfinedtoaparticularfrequencyrange

andthenoisetoaseparateregime.ThisisrarelythecasewithchaoticsystemsbecausetheirFourier

spectraaretypicallybroadband.Inaddition,whenoneattemptsto filterasignaloneisusuallyprimarily

concernedwithamplitudereduction.Asaconsequencelinearfilteringcalldistortthephaseinformation

of theFouriercomponentsof thesignal.Asshouldbeapparentfromthe previoussection,phaseis

crucialtothedynamicsof achaoticsystem,Anotherproblemisthatheavilyfiltereddatacanartificially

showevidenceof lowdimensionalchaos.Ifoneconsidersthelogicalextreme,anysignalsufficiently

bandpassfilteredwillyieldasimplesinewave.Unfortunately,direconsequencesoccurlongbeforethis

limitingcaseis reached.Heavyfilteringdistort_thesignalenoughto giveindicationsofa lowfractal

dimensionwherenoneactuallyexits.Forthisreason,in part,Igointosomedetailabouttheeffectsof

linearfiltering.AnadditionalreasonisthattheanalysisresultsonMSTdataaresuggestiveofawhite

noisesignalwhichhasbeenIowpassfiltered.I will identifyin thischapterthecharacteristicsof sucha

signalforcomparisonwith thedatainchapter6.

Inorderto illustratetheeffectsof linearfiltering,I will useasexamplesthreeof themostcommon

typesused.(See[57]forathoroughdiscussion,)TheButterworthfilteris thesimplestto implement.Its

virtueisthatit hasmaximallyflat (Ain=Ao,,t )amplitudecharacteristicsinthepassband,thetradeoff

beingthat it hasaslowtransitionregionfrompassbandto stopband.A cousinis theelliptic filter

wheretheflatnessof thepassbandiscompromisedsomewhatinordertoachieveasteepertransition

region.Finally,theBesselfilter,orconstantdelayfilter,haspooramplitudecharacteristics(averyslow

transitionregion),however,it hasa linearphaserelationwith respectto frequencywell intothe

stopband.TheamplitudeandphasecharacteristicsoftheBesselandButterworthfiltersareplottedin

figure4.6.

Thepowerspectrumof theLorenzsystemis plottedin figure4.7.It is broadbandandexhibitsan

exponentialfall off inpowerwhichiscommoninchaoticsystems.PowerspectrafortheMackey-Glass
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Figure4,6,Theamplitudeandphasecharacteristicsof theBesselandButterworthfilters.The
8utterworthfilterhasgoodamplitudecharacteristics,butdistortsthephase.Besselfiltershavea
nearlylinearphaseresponseuntilwellintothestopband,butpoorattenuationperformance.

systemareverysimilar.Thisprovidesanotherobstaclefor linearfilters:Linearfiltersaregenerally

designedaspowerlawfunctions,thoughnotexclusivelyso.

Infigure4.8thetopplotshowsthepowerspectrumof theLorenztimeserieswhencorruptedby50%

rmsaddedGaussianwhitenoise.Theoriginalspectrumisplottedingrayforcomparison.Beneathitare

theeffectsof anB-poleellipticfilterandB-poleBesselfilteronthecorruptedspectrum.Inbothcases

thecutofffrequencywaschosentomatchtheoriginalpowerspectrumascloselyaspossible,Although

1

10"2

10"4r

10.60 _, , , , I ..... I , ,,, A I J ,,,, t , , , , , I , , , , ,
3 6 frequengcy(Hz) 12 15 18

Figure4,7.Thepowerspectrumfor theLorenzattractor.It isbroadbandandshowsanexponential
falloffinpowerwhichiscommoninchaoticsystems.
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Flours 4.8. The top plot shows the power spectrum of the Lorenzattractor corrupted by noise. The
lower two plots show the resultingspectra whoa noise reduction is attempted with an elliptic anda
Besselfilter, respectively.

bothdoafairlygoodjobovermuchof theregion,neitheris ableto recovertheshapeof theoriginal

spectrumathighfrequency.

Thefilteredsignalsareplottedin figure4.9.Bothshowsignificantimprovementovertheoriginalnoisy

signalplottedinfigure4.5.Thissimilarity,however,doestierindicatewhethertherelevantsimple

determinismhast_eenrecovered.Aswill bedemonstratedin thenextsection,neitherfilteringmethod
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P,kare4.8,ThenoisecorruptedsignaloftheLorenzattractorasprocessedbytwolinearfilters.The
originalsignalisoutlnedingray.Qualitatively,thetwosignalsappearnearlyidentical,thoughthe
filteringmethodsareverydifferentinprincipal,NotethedelayintroducedbytheBesselfltar.

Isabletorecapturetheunderlyingchaoticdynamicsoftheoriginalsignal.

4,2,3, NonlinearNoise]_eductlon

WhilesimpleIowpassfilteringmaybeappropriateinsomecases,ingeneralit isaninferiormethod.

ThisIsbecauselinearfiltersdonottakeintoaccounttheinherentnonlineardynamicsofthesystem

beingfiltered.Themethodsimplyattenuatesallsignalcomponentsgreaterthanacertainfrequency.

Thismay,however,attenuatesomeof therelevantdynamicsofthesystem,whileemphasizingspurious

componentsatlowerfrequencies.

Severalsimilaralternativemethodsof filteringspecificallyaimedatreducingnoiseinchaoticsystems

havebeendeveloped58"64,Themethodsmakeuseofthespatialstructureof theunderlyingattractor

andaresimilarinimplementationtothepredictionmethodsoutlinedinsection2.3.Inanutshell,the

timerecordofasinglecor_ponentof thesystemisembeddedusingthemethodof lags.Foreachpoint

intheembeddingspacethenearestneighborsarefound.Theaveragelocaltrajectoryof thesepointsis

foundwhichbecomesthefunctionalmapofthepointbeingfiltered.
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Themethodasoutlinedlacksselfconsistency,I)owever.Onebeginswithasingletim()recordand

createsfromitat=arrayoftimerecords,onecorrespondingtoeachdimt_nsionoftheembeddingsp_tce.

Tilemethodforcorrectingthisconstitutesthevariousapproachestotilefiltering.Oneapproachsimply

updatesonlya fewofthecomponentsintheembeddedsplice.Foragivenpointintheembeddedspace

I._;(r),.¢(t+r), .,_(t+2r).... ],thefilteredimagopointis(.v(t+Ad,v(t+&t+r)..... _tt._,t +_,_r}.... ),

where), isthefilteredsignal.Thus,eachnowbasisvectorconsistsof somecomponentsfromthe

filteredtrajectoryandtheremainingcotnponentsfromtheoriginalsignal.My owninvestigations

indicatethatupdatingonlyone,tilefirstcomponent,yieldsthebestresults.Themethodachieves

excellentresultsforsetsofODEswithmodestnoiselevels(<100%),recoveringtheoriginaltrajectory

almostexactly,Themethodisiterative,withseveraliterationsrequiredforbestresults,Unfortunately,

themethoddoesnotworkwellwithmaps,A slightlymodifiedversionappearstoachieveverygood

resultswithmaps,yetfailsforODEs.Withthismethod,oneupdatestheleadingcomponentinthe

elnbeddedspacesothatthetrajectoryismappedto]x(t+At),x(t ._,t+d ..... .v(t+,&t+rod]. Thishas

theeffectthatafterseveralfilterstepsthetrajectoryiscompletelydifferentfromthatoftheoriginal

signal,Withbothmethodstheglobalpropertiesofthesystem- fractaldimensionandlargestLyapunov

exponent- arerecoveredtoacloseapproximation,

Moresophisticatedmethods58,63to achieveselfconsistencyuseawindowofp pointsandfindthe

bestfit trajectoryusinga leastsquaresmethod,Inpracticetheyachieveresultsnobetterthanthe

abovemethodandrequiresignificantlymorecomputationtime,I'llstickwiththesimplermethod,

AnalternativefilteringmethoddevelopedbySauere°makesuseofsingularvaluedecompositionand

localI_wpassdigitalfiltering,Awindowofw pointsonthetrajectoryisIowpassfilteredbyzeroingall

butthen/2 lowestcomponentsof theFIT.TheinverseFFTreturnsavector.¢in9{n,Neighborhoods

arP,constructedinthisspaceandSVDisappliedtothevectorsineachlocalgroup.Thevectorsare

projectedontotherightsingularvectorscorresporldirlgtothelargesteigenvalues.Theprocessisthen

reversedtoextracta filteredversionof theoriginaltrajectoryof ,, poirzts.Themethodissomewhat
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complicatedtoimplement,andassuch,Dr,Saeeragreedtotrytoprocesstime,_eriesrecordsfromthe

MST,Atthetimeoftillsdissertation,however,hehadnotmanagedtocarrythisout,

Figure4.10showsthesignalresultingfromnenlis)earfilteringonthesamenoisysignalusedin testing

thelinearfilters,Resultsareclearlybetter,especiallywithrespecttorecoveringtheorlgirlalpower

spectrum.Qualitatively,atleast,nonlinearfilteringappearstodoabetterjobofnoisereduction.

Crucial,however,is that regardlessof appearance,thedynamicsof theoriginalsystemmustbe

preserved,Inorderto testthisthecorrelationdimensionwascomputedforall fourfilteringmethods,

Resultsareplottedinfigure4,11.Thepoorestmethodisprincipalcomponentanalysis,whichmaynot

besurprising,sincethefilteredsignallookedthe"leastclean'.Further,singularvaluedecompositionis

a linearmethod,withall its inherentdrawbacks,Thetwootherlinearfilteringmethods,ellipticand

Bessel,shownearlyidenticalresults,Thereis sometendencytosaturatetoa plateauat largeradii,

whichquicklydisappearsat smallscales;linearfilteringmethodscannotrecoverthesmallscale
20
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Rgure4,1(I,Anexampleof theeffectof nonlinearfilteringontheLorenzattractor.Althoughthetime
serieslookscomparableto thatobtainedwithlinearfiltering,thepowerspectrummuchmoreclosely
matchestheoriginal,
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FI0uro4,11,Correlationdimensio,_fornoisyLorenzdataafterprocessinuwith variousfiltering
muthods,Noneof thelinearmethods,elliptic,l]essel,orPCAareabletorecoverthenonlinear
dynamicsof theoriginalsystem,TileIio_flinearmethodyieldsucredibleplateauofatleastonedecade.

microstructureof nonlinearsystems,Theresultiscuriousin thatBessolfiltersbetterpreservethe

criticalphaseinformationof theoriginal(noisy)signal.Onemighthavenaivelythoughtit would

producebetterresultstitantheellipticfilter,whichisqotthecase.Thenonlinearmethodclearlydoes

best,yieldingacredibleplateauoverat leastonedecadeandaslowriseatsmallradiiwherethesmall

scalestructurecouldnotbecompletelyrecovered.

Asanadditionaltest,thepredictionerrorwascheckedforall fourmethods,Thisisplottedin figure

4.12,Nomethodevenremotelyrecapturestheshorttermpredictabilityof theoriginalsignal,The

nonlinearmethoddoesshowevidenceoflimitedshorttermpredictability,thoughthisquicklyvanishes

after3timesteps.Theotherthreumethodshavethepredictionbehavioroftheoriginalnoisysystem,

4,3, CorrelatedNoise

Asmentionedseveraltime_,,:orrelatednoise,andinparticularnoisewhichhasbeenIowpassfiltered

carlgiveindicationsof lowdimensionalchaosorsimpledeterminismwhorenone]ispresent.Colored

noisecanbegeneratedby intugratirlgGaussiallwhitenoise,Lowpassfilteril=gis a similar,hut

distinctlydifferentprocess,BecausethepoleinaIowpassfilterislocatedoff-axisinth_complexplane

it distortsthepllaseii_formationin thesignal.(IntegratioHdoesn'truquirucomplexalgebra,)
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ROom4.13,Thepredictionerrorforthevariousfilteredsignals.Onlythenonlinearmethodshowsany
predictabilitydifferentfromcorrelatednoise.

Toillustratethiseffect,figure4,13presentsthecorrelationdimensionof Gaussianwhitenoise,

IowpassfilteredwithatwopoleauttenNorthfilter,Thefilterkneewasat10kHzforarandomprocess

"digitized"at 500kHz,Asmentionedpreviously,Butterworthfiltersdonothaveaparticularlysteep

transitionregion,especiallywithonly2 poles,Thereappearstobea shortsaturationregioninall

embeddlngsatavalueofabout_,Withoutfurtherinvestigation,onemightwronglyconcludeonewas

analyzingachaoticsystem,Theobviousadmonitionistobeparticularlysuspiciousoffiltereddata,

Inchapter6, I willpresenttheanalysisof experimentaldatafromMSTandarguethatthesignalsare
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ROom4.13,ThecorrelationdimensionofheavilyfilteredGausslanwhitenoise,Thereappearstobe ,
spurioussaturationatadimensionnear6inallembeddings,
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moretypicalofcorrelatednoiseprocessesratherthandeterministicsystems.(Thisisnottosaythat

thereisnoinformatior=in themI)l presentanexampleheretowhichtheMSTdatawill becompared.

Figure4,14showsthetimerecordandthepowerspectrumoffilteredGaussianwhitenoise.Tiledata

weregeneratedat500kHz,andthenfilteredwithat}ellipticfltturwithabandpassofO--60kHt.This

signaliscontrivedinthiswaybecauseitverynearlyreproducesthepowerspectrumof both/It., and

lp. Thesignalitselfalsostronglyresemblesthesesignalsin itsstructure°

Figure4.15showsthetranslationerrorfor the Iowpassfilterednoisesignalalongwith thatfor

Gaussianwhitenoise,Asmentionedin section4.1,thetranslatinnerroris apoormeasureof simple

determinismfor highdimensionalsystems.AsshownplottedIlera,without the benefitof a

correspondingsurrogateplotonemightsuspecttherewassomedegreeof simpledeterminism.As

remarkedabove,forhighdimensionalsignals,evensurrogatescannothelpinclearlydistinguishing

randomfromcoherentprocesses,Becauseof this,fortheremainderof thisdissertationI will notuse

thetranslationerrorasameasureof simpledeterminism.

Table4,1insection4,1showstheLyapunovexpuHul=¢subtolnedfromfilteredGeusslannoiseJnan

embeddingdimensionof 9,TheKaplan-Yorkedimensionisapproachingaconstantvalueeventhough

1,5 l 1
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Rgure4,14,ThesignalfromIowpassfilterednoiseshowsa timebehaviorsimilartotheMSTsignals

analyzedinchapter6.Thepowerspectrumhasbeenco_trivedtocloselymatchthatof BtwandJt_
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Rgure4.15.Thetranslationerrorfor filterednoiseandGaussianwhitenoise.Correlationsin the
filterednoiseleadtoshorttermcorrelationinthesystemflowwhichgivesanartificiallylowtranslation
error.Thisisoftenindistinguishablefromhighdimensionalchaoticsystems,(seefigure3,10)

thesystemis random,Twothingshelptodistinguishthissystemfromadeterministicprocess,The

spectrumis augmentedby bothpositiveand negativeexponentsas the embeddingdimension

increases,andnocrediblezeroexponentisapparent,whichwouldindicatethesystemiscontinuousin

time,

Finally,I plotin figure4.16acomparisonoftheoriginalfilterednoisesignalandthesamesignalafter

processingwithoneiterationofthenonlinearfilteringalgorithm.Thepurposeinthisisto showthatthe

'g or++,_,_n,,JI

o,+I nonlinearfilterI A

+,+0°-0.5 .

•1 _ 1 , ....

0 50 timestep 100 50

Rgure¢16,A comparisonof Iowpassfilterednoisewiththesamesignalafterprocessingwiththe
nonlinearfilteringmethod.Thesignalsarenearlyidentical,aphenomenonalsoseeninMSTdata.
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twosignalsnearlyoverlay.ThissamephenomenonoccurswhenprocessingtheMSTsignals,and

seemsuniquetothem,Neitherwhitenorcolorednoiseexhibitsthisbehavior,It isexceedinglycurious,

sincethe filteringalgorithmtypicallyuses40nearestneighborsin a ninedimensionalembedding

space.Acheckrevealsthatneighborsaredistributedthroughoutthetimerecord,quellingtheideathat

thisisanartifactresultingfromcorrelationsof pointscloseintime.

Thisbehaviorseemsto occurinsystemswithanon-zerocorreiJtiontimewhenthe"noise"timescale

is comparableto the"system"timescale,Thenoisereductionmethodis mosteffectiveif the noise

fluctuationsare fasterby about3 to 4 timesthefluctuationsof the underlyingdynamicalsystem.

Correlatednoiseis thedynamicalsystem,andhencea "randomnoise"componentcannotbefiltered

out.

4.4. Stationarily

Anotherproblem,similarinnatureto noiseis theissueof stationarity.Thefilteringmethodsoutlined

aboveareeffectiveonlyforadditivenoise:noisecorruptionthatoccursindependentlyof thedynamical

system.Theissueof stationarityis oneof internalnoiseto thesystem.Duringtheevolutionof the

dynamicalsystemsomeof thecontrolparametersmaychange.Thiscanbeminimizedwitha proper

experimentalsituation.Howeverparameterdriftcanneverbecompletelyeliminated.

Thereis littleworkin theliteraturedealingwiththeproblemofstationariblandinternalsystemnoise.

MyownstudieswiththeLorenzattractorhaveshownthatevenrelativelyslowperturbationsof modest

amplitudecan increasethefractaldimensionof theattractorbyas muchas 1 or evendestroy

completelyanyevidenceof chaos.42Figure4.17illustratestheproblem.Depictedonthe left is the

H(_nonattractorgeneratedbyeq.(2.4).Totheparametera wasaddeda randomfluctuationwithan

amplitudeof+0.1.Onecanseeincomparingfigure4.17with2.6thatthetrajectorynowhasa "fuzzy"

quality.Therightplotshowstheeffectof thisperturbationonthecorrelationdimension.Thelong

plateauhasbeendestroyed,leavinga scalingregionof at mosthalf a decade.Nonlinearnoise

reductioncannotcorrectthisproblembecausethenoiseis inherentinthesystem,notexternal.From
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Rgure4,17,TheHdnonattractorafterperturbingtheparameterowithasmallrandomcomponent.The
attractorisnow"fuzzy',whilethecorrelationdimensionshowsaverypoorscalingregion.

thedata,onemightguessthatthesystemislowdimensional,buttheevidenceisnotconvincing.

Forparameterfluctuationswhicharedeterministicinnature,forexampleparameterswhichdriftas

functionsoftime,theproblemisnotassevere.Evenwiththenon-stationaryparametersthesystemis

stilldeterministic,withadimensionincreaseofoneforeachadditionaldynamicalvariableaddedtothe

originalsystem.A parameterthatfluctuatesasa functionof theexistingsystemvariablesandtime

wouldincreasesystemdimensionbyatmosttwo:onedimensioncorrespondingto theparameteritself

andonetotime.Unfortunately,thereisnotmuchthatcanbedonetocorrectthisnon-stationarity,since

oneisbasicallyaskingtoeliminateone(orseveral)ofthesystemvariables.Therealproblemisthatthe

numberof pointsnowrequiredtoreliablyestimatethedimensionincreasesa factorof 2.5foreach

fluctuatingquantity(usingtheTsoniscriteriaNminO=102+0"4D). Forasystemwitha modestdimension

(greaterthan5)whereseveralof thequantitiesareperturbedtherequirementonthenumberofpoints

neededquicklybecomesunrealistic.

Thisissueisparticularlyrelevanttostudiesof phenomenasuchaspulseddischargeplasmasinthe

MST.Evenif a lowdimensionalattractordoesgovernthesystem,doesthesystemeverachievea
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stationaryregimeduringthedischarge?

4.5, Summery

As demonstrated,noisecorruptioncanposea considerableproblemwhentryingto identifylow

dimensionalchaosandsimpledeterminismin a system.Standardlinearfilteringtechniquesare

inappropriatefor mostapplicationsbecause1)chaoticsi_lnalsaretypicallybroadbandand2)linear

filtersdistortthephaseinformationcrucialto thesmallscalecorrelations.Nonlinearnoisereduction

techniquesdoshowsomesuccessin reconstructingthe originaldynamicswithmodestnoiselevels

(<100%).Howeversomeinformationis irrevocablylost resultingin a shortenedplateaufor the

correlationdimensionandpoorershorttermpredictability.Anotherconsequenceof linearfilteringis

thatincertaincircumstancesit cangiveindicationsof lowdimensionalchaoswherenoneexits.

Theissueof systemstationarityposesanessentiallyinsurmountableproblem.Ifoneorseveralof the

ostensiblyconstantsystemparametersfluctuateordrift duringtheexperimentthedimensionof the

systemcanincreasedramatically.Althoughthesystemremainschaotic,thisdimensionincreasemay

meananimpracticalnumberof pointsisneededtoidenti_thechaosandsimpledeterminism.
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5. NumericalSimulationsofPlasmas

InthischapterI presentanalysisresultsfordatafromtwonumericalsimulationsof plasmaprocesses.

ThefirstdatasetisfromacodethatmodelsglobalRFPdynamics.Thesecondmodelisfordriftwave

turbulence,aprocessthoughtto beresponsiblefortransportinthecoreof tokamaks.Bothmodels

showstrongevidenceoflowdimensionalchaosandsimpledeterminism.

5.1. DEBSCode

TheDEBScodeis a 3 dimensionalmagnetohydrodynamic(MHD)numericalsimulation,whichwith

properinitializationwill modelreversedfieldpinch(RFP)discharges.65'66's7'88Themodelhashelped

considerablyin understandinglong wavelengthoscillationsin RFPplasmas,specificallyin

understandingtearingmodefluctuations.Asmentionedin the introduction,bispectralanalysisof

tearingmodefluctuationsfromboththecodeandexperimentrevealanonlinearcouplingprocessfrom

them=1tom=2modes.Thiscorroborationlendscredibilitytothecode'sabilityto modelrealplasma

processes.

Althoughthesimulationcorrectlymodelsthesephenomenon,therearesomelimitations.Themodelis

pressureless,andthusdoesnot includepressuredrivenmodes.In addition,in orderto havea

reasonablecomputationtime,themodelusesarathersmallvalueforthemagneticReynoldsnumber,

orLundquistnumberS= "cr/'c,t . "cr istheresistivediffusiontime,givenby "cr =41ca 2/c277,wherea

isthescalesizeof thesystemand77istheplasmaresistivity._'Ais theAlfv(_ntimeandis equalto a

dividedby the Alfv(_nspeedvA= BO/4_[_0 whereP0 is the density.TheLundquistnumber

measuretheratioof thetimeit takesthemagneticfieldto diffuseresistivelyou_ardto thetimeit

takesa perturbationto travelalongthefieldlines.Largervaluesof S increasethecomputationtime

significantlybecausethesystembecomesmoreturbulentandrequiresasmallertimestepsizeto

accuratelyfollowthewavedynamics.Inthesimulationpresentedhere,theLundquistnumberwasset
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to S=6x103.Thisi_particularlysmall,sinceS fortheexperimentismeasuredtobeoftheorderof 108.

Despitethislowvalue,thesimulatio_requiredover60hoursofcomputationtimeoverthespaceof 1

1/2yearsof_a CRAY-IIcomputerin orderto accumulatea time recordof sufficie_tlengthfor the

analysis.Whenthisprojectwasbegunit washopedto tryseveralvaluesofS if1orderto investigate

scalillglawsofdimensionversusLundquistnumber.Thishasprovedimpractical.

5.1,1. TheModel

Thecodesolvesa reducedsetof theMHDequationsviathesemi-implicitmethod.Thisallowsforthe

useof relativelylongtimestepsto trackthe nonlinearphenomenaof interestby modifyingthe

evolutionof thedestabilizingfasttime-scaleAlfv(_nmodes.Detailsof themethodcanbefoundin the

references.Thedimensionlessequationssolvedare:

o_A= sv x B- rlJat

P_t = -SPY. VV+ SJx B+ vV2V (5.1)

ThemagneticfieldB ismeasuredinunitsof thecharacteristicfieldstrengthB0,V is thefluidvelocity

inunitsof theAlfv_nspeed.A isthevectorpotentialandJ isthecurrentdensity,p isthemassdensity

measuredin unitsof Po. Finally,v is the viscositycoefficientv =vo'rr/a2, where v0 is the

characteristicviscosity.Boththeviscosityandthemassdensityareassumedto bespatiallyconstant;

furthermore,themassdensityisnotevolved.Theequationsaresolvedincylindricalgeometrywhichis

periodicin thez direction.

Theequationsweresolvedfor9toroidaland3potoidalmodeswith127radialmeshpoints.Thesystem

wasmonitoredatregularintervalsduringwhichninequantitieswererecorded.Theseweretheparallel

electricfield E II,theaverageelectricfieldEare= -S(VxB),andtheohmicelectricfieldER=rlJ at

boththeedgeandthecore,andtheaveragetoroidalandpoloidalmagneticfluctuations,dBtIdt and

dBpldt, andtoroidalloopvoltageVtoop.Becauseof thelongautocorrelationtimesof thesignalsthe

160,000plusdatapointswerereducedto about20,000foreachsignal.Therecordsspanabout1.65
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resistivediffusiontimes.DirectcomparisonwithMSTdischargesis notpossiblebecauseof the

compressedtimescalesusedinthecode.However,bycomparingtearingmodetimescales,onearrives

atadurationcorrespondingtoabout55msforastandardMSTdischarge.

5.1.2. Analysis

Thetopplotinfigure5,1showsthetimehistoryofaveragepoloidalmagneticfieldfluctuations,Timeis

measureinunitsof theresistivediffusiontime¢r.Thetracemaybecomparedwithfigure6,2which

showsa plotoftherawmagneticfluctuationdatafromMST.Figure5,1showsevidenceof fluxjumps-

burstsofmagneticfieldenergy- whicharealsocharacteristicofMSTdischarges,Beneathisshown

thepowerspectrum.Thesignalisbroadband,indicatingthatit isnotperiodic.Thefalloffissimilarto

boththeLorenzandMackey-Glasssystems,althoughtheshapeof thepowerspectrumis notan

indicatoroflowdimensionalchaos.
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Rgure5.1,Thetopplotisthetimetraceforthefluctuationsof theaveragepoloidalmagneticfield,It
's inmanyrespectssimilartodatafromtheMSTexperiment.Thelowertraceshowsthecorresponding
)owerspectrum,
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A phase-delayplot is depictedinfigure5.2,It is notvery informative,indicatingonlythat allydimension

is likely greaterthan 2, The neighboringPoincar0sectiun,obtainedby embeddingthe system in 3

dimensionsandinsertinga planeat x (t +6)=0,suggeststhat the reducedsystemis nearlylinear.That

would imply theoriginal systemis nearly2-dimensional,However,this effect maybe due to lack of

pointsrather thanlowdimensionality,0nly 182"punctures"wereobtainedfromthedatarecord,

Thecorrelationdimensionfor severalof the signalsanalyzedis presentedin figure5,3, Most signals,

includingBp, E II,andER showedlongsaturationregions(at leasta decade)at a dimensionbetween

threeand four. E/t and Eare showedidentical behavior,The top two plotscomparethe correlation

dimensionfor Bp andits phaserandomizedsurrogate,Theoriginal signalshowsa longclear plateau

region,Thesurrogateshowsa short regionof spuriouslowdimensionwhich is similarto the behavior

seenin correlatednoise,Onecanconcludethat thesesignalsshow goodevidenceof low dimensional

chaos.Thebottomleft figureshowsthecorrelationdimensionfor Vloop. Noclearsaturationregionis

evident.This is probablyto beexpected.The simulationconstrainsthe current to remainwithin a

predeterminednarrowrange,Inorderto achievethis, the loopvoltageis adjustedasthe currentdrifts

0.02 0,02

0.01-
0.01 "

5"0_ J=. /
-0.oi - .

-0.01............. 0.02-- 1 i l
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Rgure 5,2.The phasedelayplot andPoincar0sectionfromdBp/dt, The Poincar(_sectionsuggests
that thereducedsystemis nearlylinear.
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Rgure5,3,CorrelationdimensionforseveralsignalsfromtheDEBScodesimulation.Thetoptwo plots

comparethe Bp signalwith itsphaserandomizedsurrogate.Theoriginalshowsa clearscalingregion

notpresentin thesurrogate,Theplot for Vloopshowsnosaturation,whichis expected,gavealso
showsa goodscalingregion.

outsidetheselimits.Thecorrectionis essentiallyanoccasionalkick,evidentinthe loopvoltagesignal,

whichshowsrapidoscillationsovera narrowrange.

Thepredictionerrorforseveralof thesignalsisplottedin figure5.4.Theleft plotshowstheprediction

for Bp, ER andtheirsurrogates.9othsignalsshow fairpredictability,betterbya factorof threeerror

than their correspondingphaserandomizedsurrogate.However,anembeddinggreaterthan18was
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Ruure5,4.TheleftplotshowreasonablygoodpredictabilityforbothBpandER,betterbya factorof

threethantheirsurrogates.TherightplotshowsthatneitherE IInorVtoopshowsanyprudictability.

requiredbeforeanyevidenceofshorttermpredictabilitywasseen.Thebehaviorisoddconsideringthat

thedimensionof thesystemisnogreaterthan5,requiringanembeddingofatmost11toreconstruct

theattractorfaithfully.Thismaybeattributahletothesmallnumberofpointsavailabletoreconstruct

theattractor.As seenin therightplot,Eli showsverypoorpredictability;thesurrogateandoriginal

signalarenearlyidentical.Again,thismaybeattributableto thesmallnumberof points.Vloo#,as

expected,alsohaspoorpredictability.

Table5.1showstheLyapunovexponentscalculatedfortwoof therepresentativequantities,Inbolh

cases,the Kaplan-Yorkedimensionasymptotesto a constantvalue,andtheLyapunovexponents

remainrelativelystableasembeddingdimensionincreases.Bothsystemsshowaclearzeroexponent

valuewithasmallmagnitudeandlargestandarddeviation.Allcontinuoussystemsmusthaveat least

oneexponentequalto0.

5,1.3. Summary

Thesimulationof arlRFPdischargeshowsstrongevidencefor low dimensionalchaosandsimple

determinismin nearlyall signals.Therearesomeanomalies,notably,the poorpredictabilityof E II,
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TableB,1,TheLyapunovexponentsfortwoofthequantitiesanalyzedfromDEBScode.Bothshow
consistentexponentvaluesathigherembeddings,a small"zero"exponentandsaturationof the
Kaplan.Yorkedimension,

whichmaybe reconcilablewithmoredata,Byandlarge,however,theresultsindicatethatlow

dimensionalchaosmightbeexpectedinRFPdischarges.Thereareseveralcaveats,however.Oneis

thatthecodesimulationusedaverysmallvaluefortheLundqulstnumberandonlya fewmodeswere

Included.Inaddition,highfrequencyoscillationsarenotpresentinthecodeinordertomodelthemore

pertinentlongwavelengthoscillationsina reasonabletime.Finally,theadditionofa finitepressure

couldchangetheseresultsconsiderably.

62. DissipativeTrappedElectronModeModel(DTEM)

Atopicof intenseresearchinthefusionplasmacommunityistheissueofanomalousparticleand

energytransport.Intokamaks,onemechanismpossiblyresponsibleforthistransportisthelong

wavelengthdriftwaveturbulenceassociatedwithdissipativetrappedionandelectronmodes.The
existenceof thesemodesisindicatedbyseveralexperiments,89,7°,71althoughtheirlinktoconfinement

isstillspeculative.

ThespecificmodelisprobablynotdirectlyapplicabletoRFPphysics,inpartbecausetheoscillations
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areelectrostatic,Themagnetictopologyin anRFPis toocomplicatedto ignoremagneticeffects,

However,thebasicstructureof themodelprovidesaninstructivearchetypeforlongwavelength

turbulenceingeneral.Inparticular,oneof thenonlinearities,thepolarizationdriftnonlinearity,hasa

directcorresponderlceto oneof theMHDnoJflinearitles.Thus,althoughthemodeldiffersin thedetails,

someof the globalproperties:saturation,spectraldistributionof energyandtransport,shouldbe

similarto thoseseenInRFPphysics.

5.2.1. TheModel

The DTEMmodelpossessestwo nonlinearitiesthat governIts behaviorTheseare the ExB

nonlinearityendthe polarizationdriftnonlinearity.Theinterplayof thesetwononlinearitieswas

exploredbyNewman,whoshowedthatthemodelhasseveralspectralrangeswhereeachof the

nonlinearitiesendtheircrosstermsdominatethedynamics,72Themodelequationisgivenby

• (5,2)

whereft is thefluctuatingiondensity,v° isthediamagneticdriftwavevelocity(cTe/eB }/I.,,L isa

densitygradientscalelength,1,' is a longwavelengthcollisionaldampingcoefficient,p is theion

gyroradiusevaluatedat theelectrontemperatureandcs is theionsoundspeed.D isa negative

diffusivitydescribingthedestabilizationof DTEMmodeswith D = e3/2v'2(1+Zj r/)/?e where?eis

theelectroncollisionaldampingcoefficientand17=dlnT/dlnn istheelectrontemperaturegradient

parameter.Finally,,uisthecoefficientofhyper.viscosltyintroducedtomodelstrongdampingat high

wavenumberk. Theimportantnonlineartermsarethe5thtermwhichIsthek"xBnonlinearityand6th

term,thepolarizationdriftnonlinearity.

Thecodeis purelyspectral,meaningall computationsaredonein Fourierspace.Thesystemis

initializedwitha modespectrumsymmetricabouttheoriginendallowedto evolveuntiltransient

behaviorhasvanished.Themagneticfieldisorientedalongthezaxisandthedensitygradientis inthe

x direction.Inthejargonofthecode,a13x13casecontainsthemodes0though:L-6inboththexandy
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directions.Fortileworkpresentedherethesystemwasdrivenwitha lineardrivingterm(the4thterm)

at longwavelengthsanddampedatshortwavelengths.Theintermediatewavelengthrangeof no

dampingordrivingisknownastheinertialrange.Nondriven/noe_dampedsystemswereexaminedand

appearalsotobechaotic,howeverI willconcentratehereonthemorepl_ysicalmodel.Severalcases

wereexamined,including13x13,21x21and29x29.Mostof theanalysisresultsarepresentedforthe

21x21case,howevertheresultsaregenerallyapplicable.The13x13casehasa veryshortinertial

range(2modes),andhenceisapoorexample,whileobtainingsufficientpointsforproperanalysisof

the29x29caseproveddifficult.Referencewillbemadeat appropriatepointsto resultsfromother

systems.Thedatarecordsanalyzedincludedthefluctuatingenergyfromeachof themodesinthe

inertialanddampedregimesandthetotalfluctuatingenergyandenstrophy(meansquaredvorticity),

Theresults,whicharepresentedbelow,indicatelowdimensionalchaosandsimpledeterminismin

mostcasesexaminedwithadimensiondependentontheregimeexamined.

A similarmodelusedtostudyr/,,turbulencehasbeeninvestigatedforlowdimensionalchaosby

PerssonandNordman,t° Incontrastto themodelinvestigatedhere,ther/_.modelcontainsonlyone

nonlinearterm,theb'Y,Bnonlinearity,Theyexaminedindividualmodeenergiesina systemof64x64

modesandfoundthedimensionof thesystemtobehighintheweakturbulenceregimewherethe

lineartermsdominateandlow,witha dimensionlessthan3, forthestrongturbulencewherethe

nonlineartermsdominate.

5,2,2. Analysis

Infigure5.5ispresentedatypicaltimetraceofasinglemodeenergyofthe21x21modecase;thisone

isthe(0,8)mode.Here,theconventionis(),,._),inaccordancewithNewman.Themodeispartof the

dampedregime.Belowitisdepictedthepowerspectrum.Althoughinnowayindicativeofchaos,itis

interestingtonotethattheshapeisverysimilartothatofboththeLorenzandMackay-Glasssystems,

Thetoptwoplotsin figure5.6showthecorrelationdimensionforthe(0,8)modeandthecorrelation

dimensionforitsphaserandomizedsurrogate.ThereisaclearplateauregionatadimensionbetweenB
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Rgure§,§,Theenergyof the(O,B)modeofa21x21modesystem.Thismodeisin theclampedregime.
Beneathitisshownthepowerspectrum,

and9whichisnotevidentin thesurrogateplot,Thelownumberofpointsavailable(40,000)accounts

forthediscrepancybetweenembeddingsof 14and17,andtherolloff tolowdimensionatsmallradii

isforreasonssimilartothosediscussedinconnectionwiththeMac;:ey-Olasssystem(seesection3,2}.

ThedivotseeninthesurrogateplotnearadimensionofBistypicalof thnspuriousplateauseenwitll

correlatednoiseasdiscussedinchapter4, Tilebottomtwoplots_l_owthecorrelationdimensionfor

the(0,6)mode,whichis in tile inertialrangewherenodrivingordampingispresent,andthetotal

energy.Bothshowaclearplateauregionwithadimensionaround6,whiletheirsurrogates(notshown)

showabehaviorsimilartowhitenoise.

MostsignalsexaminedfromtheDTEMsystemshowedsimilarcorrelationdimensionplots,withthi]

inertialrangehavingadimensionaround8aiIdthedampedregimesomewhalhigher,Thisbehavioris

notunreasonableandis consistentwitll theresults_epurtedit1[10J:theregimeinwhichthelinear

termsdominate(damping,(O,B)mode)silowsa higherdimensionthandoesthenonlinearregime
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! Rgure5.6.Plottedisthecorrelationdimepsionforseveralcasesfromthe21x21modespectrum.The
toptwoplotscomparethedimensionofthe(0,8)modeanditssurrogate.Thereisaclearscalingregion

I forthe at dimensionbetween8and9. Thedip inthe isreminiscentof
originalsignal a surrogate

correlated noiseas discussedin chapter 4. The lower two plotsshow the correlation dimensionforthe
i (0,6) modeand the total energy.

(inertialrange,(0,6)mode).Theresultsarealsoconsistentwithexperimentalresultswhichindicatea
/

dimensiondependentonthewavenumber.11Thedifferentmeasureddimensionsmaybeexplainableon

thebasisof turbulencetheory,howevertheexplanationis still speculative.Thiswill bediscussedin

moredetailin thesummarysectionattheend.
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Inthe 13x13case(not depicted)a saturationregionwas also apparent,thoughnotas clearlydefined.

Thedimensionwassomewhatlower,between4 and5. Thepoorersaturationmaybedue to thefact

that theregimesare so closeto eachother that nostable transferpatternis established.The39x39

caseshowedsometendencyto saturateat a dimensionnear7, thoughmanymorepointsare needed

beforea reliableestimatecanbemade.

Figure5.7demonstratestheshorttermpredictabilityof thesignals.Plottedarethe predictionerrorfrom

the (0,6)mode, the(0,8)modeandthe totalenergyandtheerrorof theirphase-randomizedsurrogates.

Onecanseethat theshort termpredictabilityof the{0,8)modeis especiallygood:at leastan orderof

magnitudebetter than its surrogate.The predictabilityof theenergyis alsogood, thoughnot quiteas

dramaticas the(0,8)mode.Thepredictabilityof the(0,6)modeis poor,showinga highpredictionerror

that is comparableto its surrogate's.Thepossiblereasonsfor this will be discussedin the summary

sectionat theend.

Table 5.2 shows the Lyapunovexponents for the (0,6) and (0,8) modes in several embedding

dimensions.Bothsystemshavepositiveexponents,indicatingthat the modesare chaotic.The (0,8)

modehasa higherKaplan-Yorkedimensionbefore it saturates,as expected.The exponentsarevery

o •

'8 m • 21x21(0,6)

10-1 0 21x21(0,6)ran• • 21x21(0,8)
• [] 21x21(0,8)ran

4, 21)(21energy
0 21x21energyran

10"; , HI., I ....... l I I I i I I I I . ]
0 1 2 3 4 5 6 7 8 9 10 11 12

timesteps( in_ )

Figure5,7,Thepredictiot]error for the(0,6),(0,8)modesandtotal energyof the21x21modespectrum.
Predictabilityis good for both the {0,8)modeand the total energy.It is poor for the (0,6) modefor
reasonsexplainedinthe text.
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rSY"om I I'yopo°ovo,ponen,,
mode(0,6) O.09s 8.10 1.7775+2.4% 1.0174+3.1% 0,5018±55%

0.0950-+-27.4% -0,0222±99.9% -0.4130±8.1%

-0.9218± 4.3% -1.6575± 3.4% -3.8867±2.8%

O,08s 8.55 1,7148±2.2% 0.9704± 3,1% 0.4574± 5.7%

0.0757±31.0% -0,0525±51.0% -0.2167±13.4%

-0.6746± 5,0% -1,1945± 3.6% -1.9802± 3,0%

4.4591± 2,6%
.......

mode(O,8) O.05s 9.09 8.8462+1,6% 4,9430±22% 2,5281+3,4%

1.1518±7,3% 0,0490+99,9% _,3610_27.8%

-12486+I0,0% -3,9239+ 7,3% -9,2991± 5.5%

-29.0221±3,7%
,...

0.04S 9,63 8.9888+1.3% 5,7238±1.8% 3.3122±2.7%

1,3845± 6,3% 0,1431+68.2% -0,4498+?6.3%

-1.9071±7.1% -3,7892± 4,3% -8,5180+ 3.0%

-10,8685± 2.3% -23,4345+ 1,7%............

Table 5.2.TheLyapunovexponentsfor two modesof the DTEMmodelin severalembedding
dimensions.

stablefromoneembeddingto thenext,remainingatapproximatelythesamevalue.Thisisagood

indicationthatthevaluesareprobablyverynearlycorrect.Inaddition,anysystemcontinuousin time

musthaveat leastoneexponentequaltozero.Bothshowat leastoneandpossiblytwozerovalues

withsmallmagnitudeandlargestandarddeviation.

5.2.3. Summary

Analysisof the datafromtheDTEMmodelshowsstrongindicationsof lowdimensionalchaosand

simpledeterminism.Theindividualmodeenergiesandthetotalenergyshowaclearplateauregion

with adimensiondependentonwhichmodeoneexamines.All signalsshowevidenceof shortterm

predictability,thoughthequalityis modedependent.Finally,theLyapunovexponentsyieldaKaplan-

Yorkedimensionwhichcorrobo_jtestheresultsobtainedfromthecorrelationdimension.

Initially,oneshouldexpecta singlesystemtohaveasingledimensioncharacterizingits topological
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structure.Althoughthisshouldinnowaybetakenasfact,I canoffersomespeculationasto whythe

differentmodesshowdifferentdimensionsandpredictability.TheDTEMmodelhastwoverydifferent

regimeswhichgovernthedynamicsofthesystem.Theinertialrange,modes3 through7 inthe21x21

case,containsnolineardamping.Theonlydissipationisthroughthenonlinearcouplingprocesstothe

othermodes.Thedampingregimecontainsa largedominantlineardampingterm.In manywaysthe

dynamicsof thedampingregimeareindependentof theinertialrange;thereverse,however,is not

true.Onecanmakea looseanalogytoanamplifierwithahighinputimpedance:theinputsignalshould

beunawareof theamplifier'sexistence.Thus,it maynotbeunreasonablethatthe_o regimeshave

differentdimensionswhenexaminingthelargescalestructure.At verysmallscalesthisdifference

shoulddisappear,reflectingthefactthatit iscoupledsystem.However,thenumberof pointsrequired

andcomputationalconstraintsrestricttheabilityto explorethislimitof infinitesimalhypersphereradii.

In anycase,the differencein dimensionis verysmall,about2, in comparisonto the numberof

equationsusedtodescribethesystem:441.

Thedifferencein predictabilitymaybeexplainableas follows.Theinertialrangeis a muchmore

turbulentregime,andinadditionit isverynearlyHamiltonian.Theonlydampingis fromthenonlinear

interactionwiththeothermodes.Thus,thetrajectoryisnotstronglydrawntotheattractor.Throughthe

interactionwith the othermodesit experiencesa perturbationfromthe inertialmanifoldof the

attractor,andcannotquicklyconvergebackthatmanifold.The{0,8)modeis in thedampedregime

whichis far lessturbulentandthusmorestable.Thisdissipationinsuresthatthetrajectoryremains

closetotheinertialmanifold,thusaccountingforitssuperiorpredictability.

TheLyapunovexponentstendto corroboratethisexplanation.Ifoneignoresprobablezerovalues,those

with largestandarddeviations,theleastnegativeexponent(theonewithsmallestabsolutemagnitude)

is largerfor the(0,8)mode(-1.249)thanfor the(0,6)(-0.413).Thisvaluecontrolsthecollapseof the

trajectoryontothe inertialmanifold(thetopologicalregioncontainingtheattractor)of theattractor.

Thislargervaluefor the(0,8)modewouldimplya fasterconvergenceto theattractorandhencebetter
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predictability.

I mustemphasizethattheseexplanationsare largelyspeculative.Moreworkin thisareaisplanned

with the intentionof tryingto explainthesephenomena.Clearly,however,the systemis low

dimensional,andonemightthereforeexpectrealplasmasystemto alsoshowevidenceof low

dimensionalchaos.



6_ ExperimentalDatafromtheMadisonSvnlmetficTorus

6,1, TheData

Inorderto ascertainwhethersimpledeterminismgoverns_ischargesof theMadisonSymmetricTorus

(MST)awiderangeof signalswasanalyzedcomprisingbothglobalandlocalmeasurements,Global

signalsincludedfluctuationsin theaveragetoroidalmagneticfieldat thewall,clB_vMr, fluctuations

in the plasmacurrent,dip /tit, chordaverageddensityfluctuations,bothopticalandsoft x-ray

radiation,andtoroidalandpoloidalgapvoltages,VtgandVpg,Localsignalsincludedlocalpoloidaland

toroidalmagneticfieldfluctuations,ionsaturationcurrent,,/s=, andplasmapotentialfluctuations,All

thedataanalyzedcannotbepresentedherewithoutseverelycompromisingthereader'sattentionspan.

Rather,I willconcentrateonarepresentativesampledrawingfrombothgroups.

Asmentionedinthe introduction,noneof thea,_lysistechniquesappliedyieldedanyevidenceof

simpledeterminism.Onthecontrary,circumstanfidlevidencewouldsuggestthat thesignalsanalyzed

aresimilarto Iowpassfilteredwhitenoise.Resultsfor theanalysiswill bepresentedinthe same

formatasin thelastchapter,andat theappropriatepointsI will remarkaboutthesimilaritiesof the

datato noise.

Comprisingtheglobalsetofsignalstobepresentedarefluctuationsin thetoroidalmagneticfieldat

thewall andfluctuationsin the plasmacurrent.Becauseof the largevoltagespikesin bothgap

voltagesthe digitizerresolutionispoor,andthesignalscannotbeanalyzedproperly.Thedatefor

dB_,/dr wereobtainedfromasetof fourRogowski:_Is aroundthefeedlegsforthepoloidalcurrent.

Tilesignalwasfirstt=ardwarefilteredwitha6poleButterworthIowpassfilterwithacutofffrequency

at 157kHz.Thefilteringprovedunnecessary,sincethenaturalbandwidthof thesignaliswell below

thislevel.Thesignalwasthenattenuatedbyafactorof 3andsampledat500kHzoverthedurationof

thedischarge,dlp Idt is obtainedusinga Rogowskicoil locatedinsidethe torus.Thesignalwas

filteredanddigitizedinthesamewayasdBt_vIdt, howevernoattenuationwasnecessary.Inviewof
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theeffectsof linearfilteringpresentedinsection4.2.2,it shouldbenotedthatseveralsignalswhich

werenotfilteredhavebeenanalyzedyieldingsimilarresults.

Thegroupof localmeasurementsconsistsoftheionsaturationcurrentobtainedfrt_maLangmuirprobe

andthe localfluctuatingpoloidalandtoroidalmagneticfield componentsobtainedfromtheset of

densearraycoils.Thedensearrayisasetofsmall,closely-packedmagneticpickupcoilslocatedat the

walldesignedto measureshort,highfrequencyfluctuationsandmagneticfieldcorrelations.Thecoil

signalsareamplifiedbya factorof 2to5andthendigitizedat 250kHz.Onecoilineacllofthetoroidal

andpoloidalfielddirectionswasused.

Table6.1summarizestherelevantparametersof thesignalspresentedhere.Noticethatallsignals

withtheexceptionofJsm haveextremelyshortautocorreladontimes.If thiswereduepurelyto the

dynamicsofthesystem,identificationof thequantitiescharacterizingthechaoticdynamicswouldbe

verydifficult.Asdiscussedinchapter3,a reasonablylarge_is necessarytoproperlyestimatethe

correlationdimension,Lyapunovexponents,etc.Notingthis,severalof thequantitieswereremeasured

usingdoublethedigitizationrateto extendtheautocorrelationtime.Therewasnodifferencein the

analysisresults.Thenumberof pointsavailableforanalysis,bytheTsonisruleNmln= 10z+°'4D,would

meanit ispossibleto measurereliablya maximumdimensionof 6 orsofor _ and_p, 5for the

magneticsand4forJsat.

ThedatafordBtwIdt, dip Idt, andJsat,wereall takenon22September1992.Theflat.topping

networkwasinoperationforthedatatakenonthisday,andpeakplasmacurrentwastypicallyabout

'Signal_ dt....... Pointsdurir_gflat'top Aiiocorrelatioi (tit s!ee,s,l DateandShotlillll II I I / _ I I I I

Bat, 2x10"6 20,000 2 22Sop92,#41

/p 2x10"6 20,000 2 22Sop92,#41
Js_t lx10.5 4,000 35-40 22Sop92,#41

Bp 4xl0.6 7,500 2-3 2Jun93,#124

Bt 4x10"6. 7,500 1 2Jun93,#124

Table6.1,Summaryof relevantparametersfortheMSTsignalsexaminedforsimpledeterminism.
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290kA. I will concentrateona particularshot,#41,althoughseveralotherswereanalyzedwith similar

results, The magneticfields during the dischargeare depicted in figure 6.1 along with the chord

averagedelectrondensityfromthe FIRinterferometer,Thereis a signHicantflat-top periodextending

fromabout17 to 57ms, ]rt,: data were all analyzedduringthis periodsinceit seemslikelythat if the

plasma is to achieve "equilibrium", it would be during this period. Data from both startup and

rampdownperiodshavealso been analyzedwith similar results. The data for the magnetic field

fluctuationswere taken on 2 June 1993,Again, flat-toppingwas operational, this time with peak

plasmacurrentaround400kA, Theflat-topperiodwassomewhatshorter,owingto thehighercurrents,

andextendedfromapproximately10 to 40ms,

62. Analysis

l'he rawsignalsareplottedin figure62, Digitizationmeansall signalamplitudesaremeasuredinvolts,
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Rllure 6,1, MSTdischarge#41,22September1992,Thetopplot showstheaveragetoroidalmagnetic
field andthe toroidalfield at thewall, Thelower traceshowsthechordaveragedelectrondensity.The
datapresentedherewereanalyzedduringtheflat-topperiodfromabout17.57ms.
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Rome6.2.TherawsignalsfromtheMSTtobeanalyzedinthischapter.Thedatarepresentboth

globalandlocalquantitie_j

Evidentinallsignalsarethefluxjumps,burstsof magneticfieldenergy,characteristicoftheMST

discharges.Otherwise,exceptforinJs=, thereisnootherstructureapparentinthesignal,A detailof

dBrwIdt isshowninfigure6.3aroundthetimeofa fluxjump.Althoughinnowayindicativeof the
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l"igure8.3,DetailofthedB_/dt showingthestructureduringa fluxjump.Thereissomequalitative
s_ructuralsimilaritytoIowpassfilterednoisedepictedinfigure4.3

lackorpresenceofsimpledeterminism,thesignalshouldbecomparedwithfigure4.3,whichshowsa

timetraceof IowpassfilteredGausslanwhitenoise.Thetwoarequalitativelyverysimilarinstructure.

Figure6,4showsthepowerspectraofeachofthesignalsovertheflat-topregion,TheBt spectrum,not

shown,issimilartoBp.Allsignalsareclearlybroadspectrum,whichprobablyaccountsfortheshort

autocorrelationtimes.Thepowerspectraarenotatallsimilartoeithertheknownchaoticsystemsor

thenumericalsystemspresentedinthelastchapter.Powerspectraarenot,however,inanyway

indicativeof lowdimensionalchaos,Onecanconcludethatthesignalsarenotperiodic,andthusat

leastcandidatesforchaos.Bydesign,the powerspectrafordBtwldt andclipIdt arequalitatively

similartothatofIowpassfilterednoisedepictedinfigure4.14,Noticethatthespectrafor bothBtw

and lp falloffsignificantlybeforethehardwarefilterrolloff frequencyof 157kHz.

Thephasedelayplots,showninfigure6,5,shownoapparentsimplestructure.TheplotfordBtwIdt is

a3.4mswindow(1700points}witha lagof3timesteps.TheJs= plotcovers10msand1,000points.

Essentially,theyappearasaballofwoolwithoccasionalexcursionsintohyperspaceduringfluxjumps.

Again,phaseportraitsaretvpicallyonlyusefulfordimensionslessthan2,

Figure6.6presentsthecorrelationdimensionplotsforallsignals.ThereIsnosaturationwithincreasing
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Rgure8,4,ThepowerspectrafortheMSTsignals.

embeddingfor anysignal,Theseplotsexhibitnoevidenceforlowdimensionalchaosorsimple

determinismintherawsignalsfromMST.Allplotsaretypicalofnoisesystems,Thereappearstobea

hintofsaturationinthe,/satplotforanembeddingot0atadimensionnear8. Itdisappears,however,

inhigtlerembeddings,Thebehavioris moretypicalofcorrelatednoise,asdiscussedinsection4.3,

ratherthananyrealindicationof lowdimensionalchaos,inaddition,thenumberofpointsavailable

wouldnotallowforacredibledeterminationofadimensionthishigh.Figure6,7showsacomparisonof

thecorrelationdimensionof Bin,anditsphaserandomizedsurrogate,Thetwosetsofcurvesare

indistinguishable,confirmingthatBtwisnotalowdimensionalchaoticprocess.
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Rgure8.5.Phasedelayplotsfor Bn_ontheleftandJzm ontheright.ForBtw1700pointsare
plottedcovering3,4ms;forJz=t thereare1000pointscovering10ms.Phasedelayplotsfortheother
signalsarejustasilluminating.

Figure6.8 showsthe translationerrorof the MSTsignalsalongwiththeirphaserandomized

surrogates,Recallthatthetranslationerrormeasuresthecoherenceof flowinsimpledeterministic

systems.TheleftplotshowstheglobalsignalsB_ andlp. Givenonlythedatafromtheoriginal

signals,onemightbepersuadedthatsomedegreeofpredictabilityandflowcoherencyexists.The

valuesinseveralembeddingscould(marginally)beconsideredsmall,However,thesurrogatedata

show_analmostexactlysimilartrend,indicatingthatthepresumedcoherenceisspurious,Thesesmall

valuesarelikelyduetothechoiceof 'r=1fortimelags.Eventhoughthesignallosescorrelationonthis

timescale,thischoiceof t: meansthatneighborsareverylikelytobeonthesametrajectory.Hence

theirflowisina similardirection,Thisemphasizestheneedtosampledatafrequentlyenoughtohave

anautocorrelationtimeof severaltimesteps.However,datasampledata higherfrequency,1MHz,

allowingtileuseofalargert' (21),didnotyieldsignificantlydifferentresults.Asdiscussedinchapter

3, thetranslationerroris apoorindicationofsimpledeterminismforevenmodestlyhigh(>4or 5)

dimensionalsystems.It is presentedhereonlyintheinterestofcompleteness.

Theneighboringfigureshowsthe localsignalsJ._.t, Bp, andBt. Thesameconclusionsas above
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figure6,8,ThecorrelationdimensionoftheMSTsignals,Noneshowanyevidenceofsaturatingtoa
constantvaluewhichwouldindicatelowdimensionalchaos.

apply,Noticethatsince,/'s=hasarelativelylongautocorrelatlontimeduetothefactthatthesignalIs

notdifferentiated,theproperchoiceof'r yieldsverylargevaluesforthetranslationerror,

Figure6.9depictsthepr_lctionerrorfortheMSTsignals.Thepredictionerrormeasuresshortterm

predictability,shouldbesmallfora simpledeterministicsystem,Inanutshell,noneofthesignalsare

evenremotelypredictableintheshortterm,Thesteeprisefroma modestlyhighvalue(20- 30%)to

saturationat 100%within2-3timestepsis typicalofcorrelatednoisesystems,Asmentioned
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figure6,7,ComparisonofthecorrelationdimensionofJ)_ withitssurrogatedataset,Bothshow
verysimilarbehavior,indicatingthatanyisnotgovernedbyalowdimensionalchaoticprocess,

previously,theinitialshorttermpredictabilityisanartifactoftheshorttermcorrelationsseenwhen

measuringtimestepsinunitsof¢,

Table6.2presentsthecalculatedLyapunovexponentsforthedata.Witheachincreaseinembedding,

theKaplan-York(KY)dimensionincreasessignificantly,althoughitdoesnotfilltheembeddingspace.

p III Bt [3 BI surrogate

_ 4, Bp 0 Bpsurrogate
0.01 _.._..L__._L ,.0 L._.

2 3 4 5 6 7 a 9 1 2 3 4 5 6 ? 8 9
embeddingdimension embedclngdmsndon

Figure§.8,Thetranslationerrorofglobalsignalsandtheirsurrogatesisplottedintheleftfigure,The
sameplotforlocalmeasurementsisshownontheright.Neithershowsanyevidenceofsimple
determinism,
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Rgure6.9,ThepredictionerrorforMSTsignals.Thelowvaluesinsomeofthesignalsforthefirststep
isduetospuriouscorrelationsduetomeasuringtimestepsinunitsof_:.

Recallfromsection4.3thatthisbehavioristypicalofIowpassfilterednoise.Incontrast,severalof the

systems,-/s=,Bpand_ showcrediblezeroexponentsvalues,whichwouldindicatetheprocesses

arecontinuousintime.B_ andIp donotshowazeroexponent.BecausetheKYdimensionnever

stabilizes,theLyapunovnegativeexponentscannotbeconsideredtoreflectanyrealvalue,despitethe

factthatsomeofthelargervaluesappearrelativelystationary.Thepositivevaluesmaybecorrect,and

reflectthespacefillingpropertyofthehighdimensionalorstochasticsystem.

Inadditiontotimeseriesanalysis,MSTdischargeswereanalyzedspatiallyusingthesetofmagnetic

pickupcoilsdistributedaroundthetorus.Ratherthanusingtime-delayembeddingtoreconstructthe

phasespace,vectorswerecreatedby usingsignalsfromseparatecoilsas individualvector

components.Thepurposewastoaddresstheissueofstationaritybyanalyzingdatafromaveryshort

timeperiod,andyethaveasufficientnumberofvectorsforadequateanalysis.Thedataweretakenon

8October1992,anddigitizedat 500kHz.Figure6.10showthecorrelationdimensionobtainedwhen

using2000spatialvectorsovera durationof 4msof the discharge.Thenumberof coilsused

correspondstotheembeddingdimension.Theresultsareconsistentwiththetimeseriesanalysis:No

evidenceforsimpledeterminismwasseeninMSTdischarges.
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system J r ! D_ Lyapunovexponents ...... , ,,, ,,

'm,' 2,US 4.02 0.1570+ 0.7% 0.0691+ 17% -0.0342+5,2%
-0,1790+ 1.6% -05480::1:0.9% .....

6.15 0.1186+0.7% 0.0701± 1.2% 0,0288:1:3.2%

-0.0162+ 7.6% -0.0569± 2.9% -0.1134+ 2.0%

-0.2057± 1,4% -0,4776+ 0.9%,,,

Ip 2 p s 4.11 0.1589+ 0.7% 0.0670± 1.8% -0.0205±7.8%
-0.1472± 1.8% -0.5068± 0.9%

6.24 0.1227± 0.7% 0.0726± 1.1% 0.0296± 3.0%

0.0093±12.2% -0,0536_+3.0% -0.1100±2.1%

-0.2157± 1.4% -0.4987+0.9% ,,

"]sat 10/_s 4.09 L.0432±4.8% 0.0159+13,0% -0.0081+29.1%
A/10 -0.041117.9% -0.1047± 5.6% =,,

5.07 0.0509±4.5% 0.0232±7.6% 0.00191100%

-0.0181+13.3% -0.0481± 7.2% -0.1427± 5.1%
......

Bp 4# s 4.04 0.0670± ± ±1.4% 0.0257 3.5% _0o01 49 7.1%

-O0636± 2.3% -0.1731± 1,6%....

6.66 0.0587± 1.5% 0.0342± 2.0% 0.0147+ 4.3%

-0.0009± 72.9% -0.0174+4,5% -0,0399+ 2.5%

-0.0723±2.0% -0.1751± 1.6%,,

Bt 4 p s 4.19 0.0698± 1.5% 0.0317± 2.9% -0.0102±10.5%
-0,0599±2.6% -0.1645± 1.7%

6.77 0,0581+ 1.5% 0.0350± 2.0% 0.0169± 3,8%

00005± 100% -0.0173:J:4.5% -0.0377±2.5%

-0.0718± 1.9% -0.1708± 1.6% ,,,

Table 6.2. Lyapunov exponents for the MST signals, measured in p s1. The Kaplan-Yorke dimension
shows no indication of saturation in any embedding.
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Rgure6.10.Thecorrelationdimensionderivedbycreatingvectorsfrommagneticcoilsdistributed
aroundtheMSTvacuumvessel.Ittooshowsnoevidenceofchaos.

6,3. Filtering

Althoughthereisnoevidenceforsimpledeterminismintherawdata,thepossibilityremainsthatthe

signalsarenoisecorrupted.Thus,allsignalswerelowpassfilteredinordertoextractanypossiblelow

frequencychaoticdynamics.DespitetheadmonitionsagainstlinearIowpassfilteringpresentedin

chapter4,I firstfiltered_vithan8-poleellipticalfilterwiththekneeat20kHz.Theresultingphasedelay

plotfor _ isshowninfigure6.11.Thesignaldoesappeartobecleanedupconsiderably,andthe

phase-delayportraitisquitea bitsmootherthenthe comparableonein figure6.5.However,as

indicatedintherightplot,thereisstillnoevidenceoflowdimensionalchaos.Plottedisthecorrelation

dimensionforthefilteredsignalandthephaserandomizedsurrogateof thefilteredsignal.Thetwo

shownearlyidenticalbehavior,dispellinganyhopethatlinearfilteringmayextractunderlyingchaotic

dynamics.Inchapter4,however,I presentedevidencethatlinearfilteringoftendestroysratherthan

extractssimpledeterminismfora corruptedsignal.Theresultsobtainedherearethusnottoo

surprising.

Thesignalswerenextpr(}cessedusingprincipalcomponentanalysis(PCA)inhopesofrecoveringthe

relevantdynamics.Ascanbeseeninfigure6.12,PCAhasdistinguishedaboutfourdominantdynamical

components;thereappearstoheabreakintheeigenvaluespectrumafterthefourthcomponent.
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Rgure 6,11, The left handfigureshowsthe resultingphasedelay-plotwhen B_ is filteredwith a
Iowpassellipticalfilterwitht.hecutoffat 20kHz.It correspondstothesametimeframeasinfigure6,5.
Despitethe moreattracti'_e"attractor"thereisstillnoevidenceforsimpledeterminism,asseeninthe
rightfigure.Theplot comparesthe correlationdimensionfor boththe filteredsignalandits phase
randomizedsurrogate.]he twoare indistinguishable.

Plottedin the lowerfigurearethethreelargesteigenvectorsmultipliedbytheirrespectiveeigenvalues.

It appearsthat the originalsystemcan beseparatedintoprocesseson different timescales. The

dominantcomponenthasa muchlowerfrequencythantheothertwo.Thiswouldleadoneto hopethat

there issomeunderlyinglowdimensionalsystem,ca. 4-5, obscuredbynoise.PCAhopefullyhas

relegatedthesenoisecomponentsto theeigenvectorscorrespondingto thesmallesteigenvalues,

leavingtherelevantdynamicsto thelargestfewvectors.

Unfortunately,asshownin figure6.13,thisis not thecase.Depictedis thecorrelationdimensionfor

thelargesteigenvectorfromthePCAof Bnv"It showsnoindicationof saturationtoa smallcorrelation

dimensionvalue.Theothertwo largesteigenvectorsshow similarbehavior,In addition,I attempteda J

secondprocessingof the largest eigenvector,hopingto achieveiterative "cleaning" of the signal.

Resultsweresimilar to thosefromasingle iteration.
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Rgure6.12.Principalcomponentanalysisof J_. Theupperplotshowstheeigenvaluespectrumwith
whatappearstobeabreakafter4thvalue.Thethreelargestcomponentsareshowninthelowerplot.
Thedecompositiondistinguishesalowfrequencyvectorwiththelargesteigenvalue(amplitude)from
severalsmallerhighfrequencycomponents.

Nonlinearnoisereduction,theprocessoutlinedin section4.2.3,doesnotyieldresultsdifferentfrom

theabove.Plottedin therightoffigure6.14is adetailfromthe _w timeseriescomparedwith the

sameseriesafteroneiterationof thenonlinearfilteringprocess.Thesignalsarenearlyidentical.In

section4.31discussedthisphenomenoninconjunctionwith IowpassfilteredGaussianwhitenoise,

ThisbehaviorseemsuniquetotheMSTsignalsandthefilterednoisesignal.Possiblereasonsforthis

werediscussedinthatsection.Althoughtheevidenceis purelycircumstantial,it wouldindicatethat

MSTsignalsare similarto filterednoise,Therightplot of figure6.14showtheresultaftersix
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Figure 6,13, The correlation dimension for the principle component correspondingto tile largest

eigenvaluefrom the SVDof B_. There isstill no indicationof chaoticdynamics.

iterations. Qualitatively,the two signalsdo not differ significantly from one another.

Figure6.15 shows the correlation dimension for the MST signals after processingwith the nonlinear

1,5 6- "'"

dBtw/dt filtered
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-1 _0
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Figure 6,14, The effect of nonlinear filtering on Btw is depicted. The left figure shows a detail after

one iteration. It is nearly identical to the original signal. After six iterations, difference between the two
are only superficial (right).
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Rgure 6,15, The correlation dimension for the MST signals after processing with the nonlinear noise
reduction method. Theare still no indications of low dimensional chaos.

filtering algorithm, Bt, which shows similar behavior to Bp, has been omitted. There is still no

evidence of low dimensional chaos in any of the data.

The plot for Bp shows a]curious behavior at large scales, with what looks like a plateau region of

dimension less than one for -1 < Iogr _ 0, The origin of the behavior can be seen in figure 6.16. The

nonlinear filtering has had a different effect on the local magnetic fluctuation signals ( Bt and B,oshow
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Figure6.16, Shownisa detailfromBp afterprocessingwiththenonlinearfilteringroutine.All signal,
savetheburstscorrespondingtofluxjumps,hasbeennearlyeliminated.Thisfeatureis responsiblefor

thespuriousO2= 0 regionof thecorrelationdimensiondepictedin figure6.15.

the samebehavior)thanon _rw. Essentiallyall signalhas beeneliminatedexcepttheburstsduring

fluxjumps.Thelikelyreasonfor thisis thesmallamplitudeof thesignalbetweenfluxjumps.Thesignal

levelwaslessthan1/2voltduringthisperiod,correspondingto lessthan50digitizerbits.Additionally,

thesamplingfrequencyof Bp was 1/2that of Bn_.This resultedin a shorterautocorrelationtime,

makingthesignalbetweenflux jumpsappearmorelikeGaussiannoise.This"noise"wasreducedby

the noisereductionprocess,leavingonlythe largeamplitudefluxjumpsignal.Asidefromthefact that

the filteringhasobviouslyseverelydistortedthe signal,the plateau regioncanbe discountedas

indicatingany realdimensiononthebasisthatreal systemsmusthavea fractaldimensiongreaterthan

two.The./sat signalalsoshowsa hintof a plateauata dimensionnear7-8.Thisbehavioris similarto

thatseenincorrelatednoiseandisprobablynot indicativeofchaos.

Predictionalso indicatesthat nosimpledeterminismis present.Figure6.17showsthe predictionerror

forthe MSTsignalsafter nonlinearnoisereduction.Theyactuallyshow poorerpredictivebehaviorthan

beforefiltering wasattempted.
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Rgure6.17.PredictionerrorforMSTsignalsafterprocessingwiththenonlinearfilter.Predictability
hasdeterioratedinmostsignalsrelativetotheunfilteredcase(seefigure6.9).

6.4. Summary

Severalquantitiescharacterizingthedischargesof theMadisonSymmetricTorus(MST)havebeen

analyzedforevidenceof lowdimensionalchaosandsimpledeterminism.Theseincludedglobaland

localquantities:Bn_,Ip, "/sat,"Bp,and_. Analysisof therawsignalsshowsnoindicationsof low

dimensionalchaosfrom eitherthe correlationdimension,Lyapunovexponentsor short term

predictability.Thedatawerealsofilteredusingavarietyof linearandnonlinearfilteringtechniques.

Nonetheless,evidenceforsimpledeterminismremainedelusive.Theanalysissuggest,s,onthebasisof

circjmstantialevidence(similaritiesin the signals'structure,powerspectra,Lyapunovspectrum,

translationerror,theeffectof nonlinearfiltering)that thedatamorecloselyresembleIowpassfiltered

Gaussianwhitenoise.Thesystemis certainlyhighdimensional.Giventhenumberof pointsavailable

foranalysis,onecanplacea lowerboundof thefractaldimensionof MSTplasmas.UsingtheTsonis

criterion, NminOC102+04"O,ata minimumD2 mustbegreaterthan5.75.Theramificationsof thisresult

in lightoftheresultsof chapter5willbediscussedinthefinalconclusionschapter.
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7.. DiscussionandConclm;ion_;

7.1. Summary

InthisdissertationI haveexaminedthepossibilitythatlowdimensionalchaosandsimpledeterminism

governthe dynamicsoffusion-caliberplasmadischargesbylookingatbothnumericalsimulationsand

experimentaldata.Severalpreviousstudieshavebeendoneanalyzingexperimentalornumericaldata,

butthesehaveyieldedconflictingresults.Thestudypresentedhereattemptedto bemorethoroughby

comparingexperimentto simulation.Inaddition,sincethetimeofmostoftheseearlierstudiesseveral

newanalysismethodshavebeendevelopedalongwith a betterunderstandingof howto applythe

existingtechniques.

I examineddatafromtwonumericalsimulationswhichmodelplasmaprocesses.Thefirst model,the

DEBScode,is anumericalsimulationof reversedfieldpinchdischarges.Severalquantitiesfromthe

codewereanalyzedandfoundto showstrongevidenceofchaos.Thesewerethetoroidalandpoloidal

magneticfieldfluctuations,thetoroidalloopvoltageandvariousmanifestationsof theglobalelectric

field.Allsignals,withtheexceptionof loopvoltage,showedevidenceof lowdimensionalchaoswitha

longscalingregionforthecorrelationdimensionatadimensionof3to 4.Thiswascorroboratedbythe

spectrumof Lyapunovexponentswhichyieldeda correspondinglylowvaluefor the Kaplan-Yorke

dimension.Thefactthattheloopvoltageshowednoplateauregionis notsurpr;singsincethisquantity

is advanceddifferentlyby the codethan the others.Mostsignalsalso hadgoodshortterm

predictability,whichisevidenceof simpledeterminism.Notably,theparallelelectricfielddidnot.

DatafromtheDTEMmodel,whichmodelslongwavelengthdriftwaveturbulence,werealsoexamined.

Theenergyoftheindividualmodeswasanalyzed,andallmodesshowedagoodcorrelationdimension

scalingregionwith thedimensiondependentonthemode.Dimensionsrangedfrom6to 9.Thetotal

energyalsoshowedevidenceof a low correlationdimension.Predictabilitywasgoodfor allcases,
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thoughbetterformodesinthelinearregimethanforthoseintheinertialrange.Asdiscussedinsection

5.2.3,thedifferentdimensionsmeasuredandthedifferencein predictabilitymaybeexplainable.The

measuredLyapunovexponentsappearto corroboratethesefindings.

SeveralsignalsfromtheMadisonSymmetricToruswereanalyzedcomprisingbothlocalandglobal

quantities.Despiteconcertedeffort, includingthe applicationof linearandnonlinearfiltering

techniqueS,noevidenceof lowdimensionalchaosorsimpledeterminismcouldbefound.Moreover,

circumstantialevidencesuggeststhatthesignalsmorecloselyresemblecorrelatednoiseratherthana

deterministicprocess.Thisclaimisonthebasisof similaritiesin thesignal'sstructure,thebehaviorof

theLyapunovexponentsandshorttermpredictability,andtheactionof thenonlinearnoisereduction

procedureonthesignal.

72. Discussion

ThefactthattheexperimentaldatafromtheMSTshownoevidenceof simpledeterminismmustbe

contrastedwith thepositiveresultsof boththenumericalsimulationsandpreviousresultsfromother

experiments.Addressingfirst thediscrepancybetweencodeandexperiment,thereareseverallikely

origins.TheDE[IScode,althoughit seemstomodelsomeRIPprocesseswell,makesseveralcrucial

simplifications.Asmentionedearlier,themodelincludesnotemperatureorpressureeffects.Although

onecannotpredictwithcertaintytheeffectof includingafinitetemperature,it seemsreasonableto

assumethat includingtheadditionalquantitiesin thesystemofequationswouldresultinanincrease

inthedimensionof thesystem.

Anothersimplificationisthesmallnumberof modesincludedinthesystem.Thenumberofmodeswas

9 toroidalby 3 poloidal,a very limitedsubset.Resultsfromthe DTEMmodelindicatethat the

dimensionnolongersca_swiththenumberof interactingmodesoncethesystemis largeenough.

However,thissaturationis evidentonlyaftermorethan400modesarepresent.The27modesusedin

theDEBSCodeisprobablyfartoofewtomodelthehighlyturbulentsystemoftheexperiment.

Themagnitudeof the LundquistnumberS alsoprobablycontributesto thedifferencebetweenthe
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experimentandsimulation.Thedynamicsof the codechangesignificantlyas S changesfrom103to

104.t In particular, the nonlinear interactionamongthe modesincreaseswith increasingLundquist

number.Onecouldreasonablyexpectthatthedimensionshouldalsoincrease.

Finally,in orderto efficiently model the longwavelengthtearingmodesof the plasma,the codedoes

not treat fast time scale fluctuations correctly.Although mostof the power is concentratedin low

frequencyoscillations,a significantfractionis in thehigherfrequencydynamics.Thisis apparentfrom

thebroadbandnatureof powerspectraof all signals,andespeciallytheprominentsecondpeakseenin

the /_v spectrumat about70kHz(seefigure6.4).

Thefact that low dimensionalchaosis seeninthe DTEMmodelandnot in theexperimentaldatafrom

MSTmay not be too disconcerting.The simulationmodelsa specificprocess,drift wave turbulence,

whichis believednot to besignificantin RFPplasmas.Yet themodelis in manywaysgeneralenough

thatoneshouldexpectto seesimilarresultsdespitethis difference.Thecodesuggeststhat oneshould

seesimpledeterminismin individualmodeamplitudes.Further,the simulationsuggeststhat oncea

sufficient numberof interactingmodesis presentthedimensionis not stronglyaffectedby increasing

that number.However,analysisof individualmodeamplitudesfrom magnetic fluctuationsin MST

yieldednegativeresults,Thesimulationdoes,however,modelonly oneof severalprocessesoccurring

simultaneouslyina realplasma.Thisomissioncouldaccountfor thedifference.

Onecanprobablyaccountfor thediscrepancyof the experimentaldataandthe numericalsimulations

on the basis of the simplifications made in the models.However,the results presentedherealso

disagreewith resultsobtainedbyseveralothergroupsworkingwith data fromexperiments,including

RFPs.In short, I think the inconsistencyis dueto improperlyappliedanalysistechniquesbyseveralof

the groupsreporting positive results. When most of these results were reported the correlation

dimensionwas essentiallythe onlytechniqueavailablefor analysis,andit wasrelativelynew.Noneof ]

t PrivatecommunicationfromCarlSovinec.
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the reportedresultsincludea plotof theslopeIogC(r)versusIogr, whichaidsin identifyingthe

scalingregion,andnoneshowsascalingregionofat leastonedecade.Onegroupreportsidentifying

twoscalingregionsof differentslopes,11whichseemsbothan implausibleresultandan improper

interpretationof theanalysis.Verificationof theresultsusingphase-randomizeddatasetswasnot

done.Inmyestimation,theonlygroupthatdida thoroughexaminationof thedataisSawley,et al.114]

whoreportednegativeresults.Asfurtherconfirmation,Ipointoutthatnogroupstudyingfusion-caliber

plasmashas,to myknowledge,reportedpositiveresultsinrecenthistory(since1987).

ThusfarI haveconcentratedon_xplainingtheinconsistencyoftheresultsbycitingthe faultsin the

numericalmodelsandpreviousexperimentalresults.Letmenowfocusontheexpc,'imentaldatato

understandwhynochaosis seenin it. Lookingfirstjustat thequalityof the data,therearethree

concernswhichareverycloselyrelated.Thesearethetimelengthoftherecord,thenumberofpoints

andtheautocorrelationtime.Tothefirstissue:Typically,onerequiresseveralhundredclcletimesof

the "dominant"periodofthesystemforproperestimationofthe dimension.FortheLorenzattractor

thisperiodwouldbeoncearoundeitherof thelobes.Letussupposethatthedominantdynamics,the

tearingmodefluctuations,area lowdimensionalchaoticprocess.ForMSTdata,onewouldneed

severaltensof millisecondsat aminimumto determinethedimension.Higherdimensionalsystems

requiremorecycles,andthe interactionof thetearingmodeswithothermodesmaymeanthecycle

timeislongerthanthetypical2 to5msbetweenfluxjumps.Thedurationoftheflat-topperiodisabout

40ms,correspondingtoonly10to15fluxjumpperiods.

At theoppositeendof thespectrum,thetimeintervalbetweendatapointsistoolong.Asdiscussedin

section3.2,whenusingdelayembeddings,properchoiceof the timelag • is crucialto proper

estimationof thedimension,andthis is linkedto the autocorrelationtimeof the data.Withthe

exceptionofJs_tall thedatahadextremelyshortautocorrelationtimes,ontheorderof2-3timesteps.

Inhighdimensionalembeddings,anycorrelationisprobablylostevenwhenchoosing_1 for thetime

lag. Finally,therearetoo few pointsavailablefor analysis.TheMSTsystemis probablyhigh
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dimensional,andmostauthorsestimatethat thenumberof pointsrequiredscalesexponentiallywith

thedimensionof the system.Estimatingthedimensionof theMackey-Glasssystemwith7"=lOOs

required40,000pointsforareasonableplateaulengthattheaccepteddimensionof7.5.Forthe20,000

pointsavailableforanalysis,onecouldpossiblyexpectto measureadimensionofonly6-7atmost.

Thelattertwoissueswereaddressedto someextentindatathatwerenotpresentedhere.32,000data

pointsdigitizedat 1MHzfor _ andip weretakenduringtheflat-topperiodof anMSTdischarge.

Theincreasedsamplingtimemeantanautocorrelationtimeof 4-5timesteps.Analysisofthesedata

yieldedresultsnearlyidenticaltothosepresentedinchapter6.

Onthebasisofthisanalysis,onemustconcludethatthesystemisprobablyhighdimensional.I would

estimatethat it isveryprobablygreaterthana dimensionof 15.Thislowerlimit is basedlargelyon

conjecturefromexaminingthe data.Typicallywhenanalyzinga system,evenif all parameters-

embeddingdelaytime,embeddingdimension,numberof points,etc.- arenotoptimallydetermined

thereisat leastsomeindicationofaplateauinthecorrelationdimensionplots.ThedatafromtheMST

shownottheslightesthintof aplateau,evenforembeddingsupto30.Thebehaviorof thecorrelation

plotsisverysimilarto highdimensionalor randomdata.

An issueseparatefromthe data itself is whetherthe dataaretrulyrepresentativeof the MST

dynamicalsystem.Anobviouspossibleproblemis thatthesignalsare,contaminatedbynoise.Evena

smallamountof noisecanobscurethesimpledeterminism,especiallyfo_highdimensionalsystems.

Thequestionis,whatisthesourceof thenoise?Thediagnosticequipmentusedto gatherthedatais

largelynoisefree,contributinga noiselevelof perhaps1to 2 partsin 103at mostto thesignal.

Anotherpossiblesourceof noiseis theplasmaitself.Thedominantdynamicsarethoughtto bethe

10kHzoscillationof thetearingmodefluctuations.Yetthereis significantpowerinhigherfrequency

fluctuationsaswell. If thetearingmodedynamicsaregovernedbya lowdimensionalchaos,perhaps

thesehighfrequencyoscillationsareobscuringthechaos.

Onecannot,however,considerthisa "noise"processin thesensethat it is concealingthetrue
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dynamicsofthesystem.Thehighfrequencyoscillationaswellasthetearingmodeoscillationsarepart

of the samedynamicalsystem;theycannotbeseparatedintodynamicalandnoisecomponent.

Althoughthetwoprocessesmayoccurondifferentscalesaswassuggestedtoexplaintheresultsof

the DTEMmodel,theyare presumablycoupled,andso arebothpart of the dynamicalsystem.

Ultimately,thetruedimensionofthesystemisdeterminedbythehighestdimensionprocess.

Asecondproblemis theissueof stationarity.As demonstratedin section4.4,evenaveryslight

perturbationof thesystemcanmakethedfmensionimmeasurable.IntheDEBScode,boththeplasma

currentandthetoroidalloopvoltageremainfairlyconstantduringthedischarge.Thisisnotthecasein

MSTdischarges.Withtheflat-toppingnetworkoperationaltheplasmacurrentremainsfairlyconstant

overaperiodofupto40ms.Theloopvoltage,however,fluctuateswildlyduringthisperiod.Thesalient

questioniswhetherthesystemisinanysense"stationary"atanytimeduringthedischarge.

Inpart,I thinktheissueofstationaritybegsthequestion.Assumingwe havea noisefreesystem(no

randomdisturbances),thenif oneofthe"parameters"fluctuatesintimeoneneedsto re-designateit as

oneof the "variables'._hiscanincreasethe dimensionbyat mosttwo if thefluctuationsof the

parameteraretimedependent.If theloopvoltageofthesystemfluctuates,thenthatisthedynamical

system,nota lowerdimensionalsystemwithnon-stationaryloopvoltage.

Theissueof stationaritydoes,however,becomepertinentif oneof thesystemparametersis modified

randomly- or by a veryhighdimensionalprocess- duringthe dischargeby somemechanism

independentof thesystem.I thinkthismaybethecasein MST.Onesuchprocessis theinfluxof

impurityionsinto the plasma.Thepresenceof impuritieshasa strongdeleteriouseffecton the

plasma'sbehavior,andsubstantialefforthasbaenmadeto controltheimpurityfractionin theMST.

Yettheprocessis largelyuncontrollable.Theinteractionof the plasmawiththe MSTcontainment

vesselresultsinaninfluxdf impuritiesbyaprocesswhichis probablyveryhighdimensional.

Theplasmasof theMSTconstituteahighlyturbulentsystemofweaklycoupledmodesandminimal

damping.Thiscorrespondsinmanywaysto the inertialrangeof the DTEMmodel.Assumingan
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attracto_exists,if it hasa weaklyattractinginertialmanifold,this impurityinfluxmayperturbthe

trajectoryfromtheattractor.Asdemonstratedinsection4.4,evensmallperturbationscanresultina

"fuzzy"attractoranddestroyanysimpledeterminisminthesystem.Theimpurityproblemisonlyone

example,andtheremaybeotherprocesseswhichalsoaffectthestationarity.

My ownfeelingis that it is probablyimpossibleto identifyandquantifya lowdimensionalchaotic

systemin MSTdischarges.Thisis notto saythatl believethat thesystemis stochastic.It hasbeen

shownthat forhydrodynamicturbulence(in2D)themaximumdimensionofthesystemis proportional

to theReynoldsnumbersquared.73Assumingthisappliestomagnetohydrodynamicsystems,thisdoes

putsan upperboundof 1012on thedimensionof the system.It maybemuchlower.Themajor

difficultiesI seein identifyingthispossiblelowdimensionarethelengthoftheflat-topperiodof the

dischargeandtherelatedproblemofstationarity.Theformerproblemis ahardware/moneyproblem,

whichin principlecouldbeaddressed.Thelattermaybeimpossibleto remedy.Becauseof thenature

of thesystem,eventinyrandomperturbationsprobablydestroyanystationarityanddramatically

increasethedimensionofthesystem.

7.3. FutureWork

Forthefuture,I seeseveralavenueswhichcanbepursuedincontinuingto studychaosinplasmasand

especiallyRFPs.UsingtheDEBScode,issueswhichshouldbeaddressedarethescalingof dimension

with theLundquistnumberandthenumberof modesinthesystem.Aversionofthecodenowexists

whichincludesfinitepressureeffects.Pressureeffectsonthedimensionshouldalsobestudied.Inthe

DTEMmodel,weneedto understandbetterhowthedimensionscaleswith trulylargesystemsand

whytherearedifferencesbetweenthedampingandinertialranges.DavidNewmanandIhaveplansto

continuetheseinvestigations.

IntheMST,despitethefactthatdeterministicchaoscannotbeidentified,continuingstudiesmaystill

proveuseful.Shouldthemachineevolvesothatsyste_-_is more"stationary"- longflat-topperiod,

reducedfluxjumpsandloopvoltagespikes- it rn_tbepossibleto identifya lowdimensionalattractor.
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Also,with thedevelopmentof newtechniques,e.g.dimensiondensities,it maybepossibletoidentify

relativelyhighdimensionalchaosintheMSTatsometimeinthefuture.Finally,incontrollingchaotic

systems,onedoesnotnecessarilyneedto knowthedimensionof thesystem.It is onlynecessarythat

thesystembedeterministic.InvestigationsshouldcontinueintothefeasibilityofcontrollingtheMST

dischargesusingchaoticfeedbackandentrainment.
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