

1 of 1

Distribution
Category UC-700

SAND92-2932
Unlimited Release
Printed July 1993

**FIRE HAZARDS ANALYSIS FOR THE CENTER FOR NATIONAL
SECURITY AND ARMS CONTROL (CNSAC) FACILITY**

Eric W. Klamerus
Components and Structures
Safety and Reliability Department
Sandia National Laboratories
Albuquerque, NM 87185

Steven B. Ross
Engineering Services Division
Science and Engineering Associates, Inc.
Albuquerque, NM 87110

Abstract

This Fire Hazards Analysis is sponsored by Plant Engineering and is prepared to support the Safety Assessment for the CNSAC Facility. This is a preliminary fire hazards analysis of a yet to be constructed facility and is based upon the current building design and the current understanding of the potential occupancy hazards. The governing occupancy for this building is personnel offices. The CNSAC facility will be dedicated primarily to two activities: (1) arms control and verification technology and (2) intelligence. This report supplements the Safety Assessment for the CNSAC facility and follows the guidance of DOE Memorandum EH-31.3 and meets the objectives of paragraph 4 of DOE Order 5480.7A, "Fire Protection". This analysis demonstrates that under "worst case" assumptions a fire in the CNSAC facility will result in consequences which are below DOE offsite guidelines for accident conditions. This report is based upon preliminary design information and any major changes to the building design may require additional analyses.

MASTER

REPRODUCTION OF THIS DOCUMENT IS ILLEGAL

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Description of Facility Construction	2
3.0	Fire Protection Features	4
4.0	Description of Fire Hazards	5
5.0	Protection of Essential Safety Class Systems	5
6.0	Life Safety Considerations	6
7.0	Critical Process Equipment	6
8.0	High Value Property	6
9.0	Damage Potential from the Maximum Credible and Possible Fire Loss (MCFL and MPFL)	7
9.1	Maximum Possible Fire Loss Scenarios	7
9.2	Computer Fire Modeling	7
9.3	Source Term Determination	21
9.4	Offsite Consequences	22
9.5	Summary	29
10.0	Fire Department/Brigade Response	30
11.0	Recovery Potential	31
12.0	Potential for Toxic, Biological, and/or Radioactive Releases from a Fire	31
13.0	Emergency Planning	32

14.0	Security and Safeguards Considerations Related to Fire Protection	33
15.0	Natural Hazards (earthquake, flood, wind) Impact on Fire Safety	33
16.0	Exposure Fire Potential	33
17.0	References	34
	APPENDIX A	A-1
	APPENDIX B	B-1

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Description of Facility Construction	2
3.0	Fire Protection Features	4
4.0	Description of Fire Hazards	5
5.0	Protection of Essential Safety Class Systems	5
6.0	Life Safety Considerations	6
7.0	Critical Process Equipment	6
8.0	High Value Property	6
9.0	Damage Potential from the Maximum Credible and Possible Fire Loss (MCFL and MPFL)	7
9.1	Maximum Possible Fire Loss Scenarios	7
9.2	Computer Fire Modeling	7
9.3	Source Term Determination	21
9.4	Offsite Consequences	22
9.5	Summary	29
10.0	Fire Department/Brigade Response	30
11.0	Recovery Potential	31
12.0	Potential for Toxic, Biological, and/or Radioactive Releases from a Fire	31
13.0	Emergency Planning	32

14.0	Security and Safeguards Considerations Related to Fire Protection	33
15.0	Natural Hazards (earthquake, flood, wind) Impact on Fire Safety	33
16.0	Exposure Fire Potential	33
17.0	References	34
	APPENDIX A	A-1
	APPENDIX B	B-1

LIST OF FIGURES

Figure 2.1 CNSAC Facility Area Map	3
Figure 9.1 CNSAC Facility Maximum Possible Fire Loss Event Tree	8
Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree	9
Figure 9.3 FIRAC Room Model for the CNSAC Facility Basement Area	18
Figure 9.4 FIRAC Hot Layer Temperature History for the CNSAC Facility Basement Area	20

LIST OF TABLES

Table 9.1 Radionuclide Inventory	21
Table 9.2 Building Source Term for Selected Isotopes	23
Table 9.3 Consequence Calculations for the CNSAC Facility	28
Table 9.4 Centerline Dose (rem) Pu-239 (MACCS results)	29
Table 9.5 Centerline Dose(rem) Co-60 (MACCS results)	30

1.0 Introduction

This fire hazards analysis for the Center for National Security and Arms Control (CNSAC) contains all the elements required by paragraph 9.a.(2)(c) of DOE Order 5480.7A, titled "Fire Protection." These requirements are as follows:

1. Description of Construction
2. Fire Protection Features
3. Description of Fire Hazards
4. Protection of Essential Safety Class Systems
5. Life Safety Considerations
6. Critical Process Equipment
7. High Value Property
8. Damage Potential: Maximum Credible Fire Loss (MCFL) and Maximum Possible Fire Loss (MPFL)
9. Fire Department/Brigade Response
10. Recovery Potential
11. Potential for a Toxic, Biological and/or Radiation Incident Due to a Fire
12. Emergency Planning
13. Security and Safeguards Considerations Related to Fire Protection
14. Natural Hazards (Earthquake, Flood, Wind) Impact On Fire Safety
15. Exposure Fire Potential

This is a preliminary fire hazards analysis of a yet to be constructed facility and is based upon the current building design as documented in Reference 1 and the current understanding of the potential hazards. The governing occupancy for this building is personnel offices. The CNSAC facility will be dedicated primarily to two activities: 1) arms control and verification technology; and 2) intelligence. Laboratories will be devoted to such activities as developing methods to monitor certain types of radiation, creating methods to monitor the production or operation of certain military weapon systems, establishing improved methods of interpreting and manipulating the data provided by monitors, and developing and fabricating mechanical, electrical, and optical devices for detection and monitoring. Machine shops will turn out parts for prototype assemblies designed in the labs, machine jigs and fixtures used in experiments, and be used in certain mechanical testing. A small photo lab will provide a processing capability for certain classified photographic products. An unusual aspect of the facility is that approximately two thirds of it will be built to DOE Sensitive Compartmented Information Facility (SCIF)/TEMPEST requirements. A SCIF is a facility particularly constructed for handling and storing sensitive classified information and has special access control. TEMPEST is a code word for compromising emanations; e.g., the electromagnetic signals which are given off by operating equipment such as computers and which might be picked up outside the facility. Special design considerations are

required for access control and blocking signals generated in a SCIF facility, however those goals will not interfere with the goal of reaching full compliance with Environment Safety & Health (ES&H) regulations for the CNSAC facility. A threat assessment has been performed for the CNSAC facility using DOE/HQ guidelines and it has been determined that no special shielding of the SCIF portion of the building will be required. TEMPEST protection will be accomplished by the appropriate level of RED/BLACK separation of power and communication systems.

2.0 Description of Facility Construction

The Center for National Security and Arms Control (CNSAC) facility will be built in Technical Area 1 at Sandia National Laboratories on Kirtland Air Force Base located in Albuquerque, New Mexico. It will be built in the area bounded by 1 street on the north, 9th street on the east, KAFB perimeter fencing on the south and Sandia Buildings 805 and 807 on the west (See Figure 2.1). The area currently contains several temporary buildings and two older permanent buildings of substandard construction quality. Removal of these building will constitute the first phase of construction. The facility will house approximately four hundred people and will contain approximately 153,000 gross square feet and 86,000 net square feet.

The CNSAC facility consists of two structures: a four-story light Laboratory/Office structure and a Lobby/Conferencing structure. The entire facility was designed to the following codes: Uniform Building Code (UBC) 1988, DOE Order 6430.1A General Design Criteria, National Fire Protection Association (NFPA) 101 Life Safety Code, as well as other applicable building codes as required by DOE Order 6430.1A.

The Laboratory/Office side of the facility is rectangular in shape and consists of four stories, and a basement. Each floor is about 28,000 sq. ft. totalling around 140,000 sq. ft. for the entire structure. Although indicated to be almost identical to Building 962 at SNL, special DOE SCIF requirements for security separation walls, interior circulation and exit requirements, additional elevator requirements, and increased requirements for seismic loads necessitated complete vertical and lateral load analysis and redesign of all columns, walls, beams and foundations.

The structural framing system of the Laboratory/Office structure consists of cast-in-place concrete beams, columns, and endwalls with precast concrete double-tee floor and roof framing systems and precast concrete window panels. A cast-in-place concrete separation wall extending from the basement

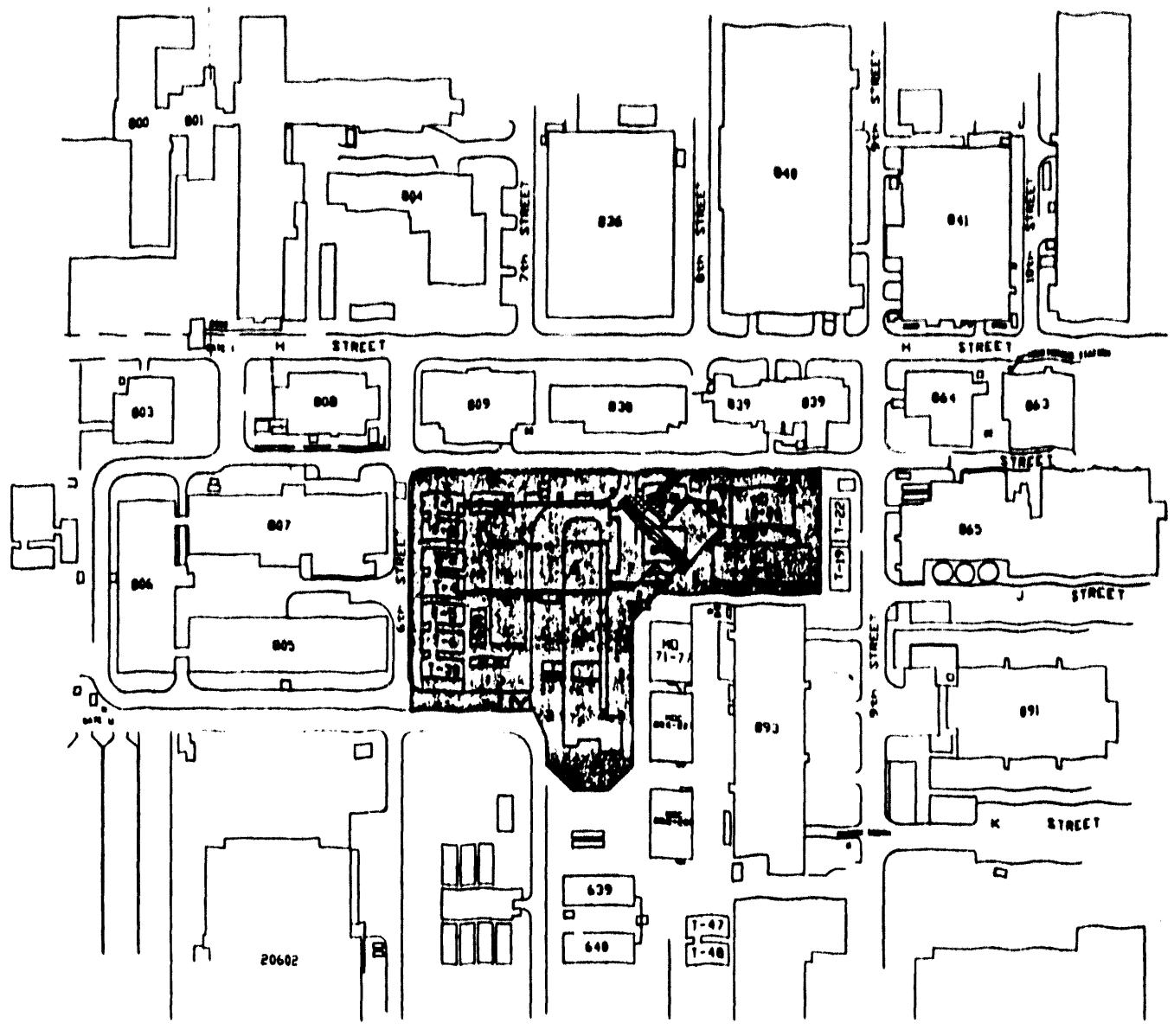


Figure 2.1 CNSAC Facility Area Map

to the roof divides the building into two separate security occupancy areas (DOE-Q and DOE-SC-II). The interior side of the perimeter walls will be constructed of metal studs, insulation batts, and gypsum board taped, textured and painted. A suspended lay-in ceiling will be installed on each floor.

The Lobby/Conference side of the facility will be a single story building attached to the east end of the four story Laboratory/Office structure and will encompass over 13,000 sq. ft. of additional interior space. The function of this section of the building will be to provide a controlled main entrance with a lobby and conferencing area.

The structural framing system of the Lobby/Conference structure consists of concrete masonry bearing walls with cast in place concrete roof beams and columns at large wall openings. Roof framing consists of open web steel joists and metal deck with a concrete topping slab. Interior walls will be framed using metal studs and gypsum board. Finishes for floors, ceiling, and all conference rooms will be added to the project during the Title II design. These finishes will include ceramic tile, vinyl wall covering, and carpeting.

Existing site utilities such as domestic and fire protection water, sanitary sewer, communications, and similar services will be extended to service the CNSAC facility. Electrical requirements will necessitate that a new master unit substation with a 115 kV subtransmission line be built. Construction around the building will consist of such modifications and improvements as walkways, landscaping, utilities extension, and paving to delivery areas.

3.0 Fire Protection Features

At the time of preparation of this document, details concerning the design of the fire protection systems in the CNSAC facility were not available. This section provides limited information concerning the design of the fire protection system available at the time of publication of this EIA. The CNSAC facility will be protected by a redundant (dual path), wet pipe, fusible link actuated, electrically supervised automatic fire sprinkler system to be designed in accordance with NFPA standards and DOE-6430.1A requirements. The fire protection system, designed to NFPA standards, provides a density of 0.16 gpm/ft² over a 3000 square foot area. Supervised manual pull stations will be installed throughout the CNSAC facility. Also, there will be fire detection equipment (smoke and/or heat detectors) throughout the ventilation system, the basement area, computer areas, and elevators and lobbies. The CNSAC facility will contain portable fire extinguishers to be located in designated areas as defined in

NFPA Standard #10.

The combustible loading per square foot in the CNSAC facility is considered to be light. The active, passive, and operational features of the fire protection design combine to make a significant fire an unlikely event. Automatic or manual fire suppression should overcome the "average" fire and even a severe fire should be contained in the room of origin.

4.0 Description of Fire Hazards

Common hazards (electrical, chemical, etc.,) in the CNSAC facility are typical for any personnel office occupancy in most of the facility and for an industrial type machine shop for part of the basement area.

A variety of chemicals are used in the operation of the machine shop and the photo laboratory. These chemicals are stored in accordance with DOE and SNL procedures and all personnel using these chemicals are properly trained. The hazardous chemicals used in these operations can be found in the CNSAC Facility Safety Assessment, Table 5-1 [Ref. 2].

Many of the radioactive sources to be used will be permanently stored in the facility. A storage area will be provided in the basement of the facility for these materials. All of the radioactive sources will be stored in locked fireproof containers. Access to the materials will be limited to those trained personnel whose job functions require the use of the radioactive materials. As these sources are required for laboratory use they will be moved to the appropriate laboratory in appropriate shielded containers so as to limit the exposure to personnel at all times. Tables 5.2-1 thru 5.2-4 of Reference 2 list the typical radioactive sources which will be used and stored in the CNSAC facility.

Most of the radioactive materials that will be used in the facility are sealed sources provided by commercial vendors, such as Isotope Products Laboratory and Amersham.

5.0 Protection of Essential Safety Class Systems

The majority of the CNSAC facility does not contain any systems structures or components whose failure would adversely affect the environment, employees, or the safety and health of the public. However, the basement area in the CNSAC facility will contain various amounts and types of radioactive

materials and will require additional safety features. Although the design of the basement area has not been specified, it is assumed that the failure of the ventilation system, the sprinkler system, or the radiation monitors could potentially have an adverse affect on the environment, employees, or the safety and health of the public. Therefore these systems will be designated as safety class systems.

6.0 Life Safety Considerations

Basic considerations for the construction and operation of the CNSAC facility call for operational procedures which reduce the likelihood of a fire or a fire related catastrophe and facility designs will help mitigate the consequences of such an event. The CNSAC facility was designed per NFPA 101 1981, Life Safety Code classification for a new business occupancy with a hazard of contents classification of ordinary hazard. All egress components have a two hour fire rating. The exit access corridors, stairs, and vertical open space have fire dampers in all the supply air grills. Appropriate exit signage and emergency lighting is within code requirements.

7.0 Critical Process Equipment

For the purpose of this fire hazard analysis all systems or components that could reasonably contribute to a fire incident are subject to review and analysis. The systems which may be critical would be those associated with the use of radioactive and/or combustible material. These systems include machining tools, fume hoods and typical lab equipment. These systems will be protected by the full coverage automatic fire protection systems provided in all areas. As a result, the fire threat to or because of critical process equipment is negligible.

8.0 High Value Property

The overall value of the CNSAC facility is estimated to be 30 - 40 million dollars. A review of facility operations indicates that there is not a particular area in the facility which contains high value property. However, there could be a significant interruption of facility operations in the event of a fire. Additionally, there will be information, classified and unclassified, stored at the facility that would be costly to replace and measures should be in place to store a backup of critical information at another facility and provide protected backups of information stored on computers.

9.0 Damage Potential from the Maximum Credible and Possible Fire Loss (MCFL and MPFL)

Maximum credible fire loss is defined by DOE Order 5480.7A, paraphrased, as that loss that might occur in a fire area if all installed fire protection systems work as designed and the value of manual fire fighting effects is omitted except for post-fire salvage and recovery. The maximum possible fire loss is, paraphrased, that loss within a fire area that could occur if both automatic and manual fire suppression efforts fail. A fire area is defined as an area bounded by a minimum of two hour rated construction. This includes doors, dampers and seals. Fire loss includes restoration costs for real and personal property less any salvage value and also includes related costs such as clean-up, production loss/interruption costs, fire extinguishment costs and consequent effects on related areas.

For the maximum credible fire scenario, it is assumed that the automatic fire suppression system is of adequate design to mitigate the consequences of the fire. It is assumed that the fire begins due to an electrical short and ignites combustibles (flammable liquids, paper products) in the area. The automatic fire protection system (FPS) then performs as designed and extinguishes the fire.

The following section presents the analysis of the maximum possible fire loss scenario. Included as part of this analysis is a discussion of the possible scenarios leading to the MPFL, computer modeling of the maximum possible fire scenario, source term determination and offsite consequence results.

9.1 Maximum Possible Fire Loss Scenarios

As stated above, it is assumed that for the MPFL scenario, both automatic and manual fire fighting efforts fail. The event tree in Figure 9.1 presents the sequence of "system" failures required given the occurrence of a fire in the basement area of the CNSAC facility. The specific system failures required for the maximum possible fire loss in the basement area of the CNSAC facility are presented in a fault tree in Figure 9.2. Although the fault tree has not been quantified it provides a picture of potential automatic and manual fire fighting failure scenarios which can lead to the MPFL. This fault tree covers the failure of automatic fire suppression system(s), the failure of early manual suppression by an employee in the area, and the failure of manual suppression of the fire by fire department personnel.

9.2 Computer Fire Modeling

As indicated in the DOE guidance on the Fire Hazard Analysis (FHA) [Ref. 3], an acceptable fire model

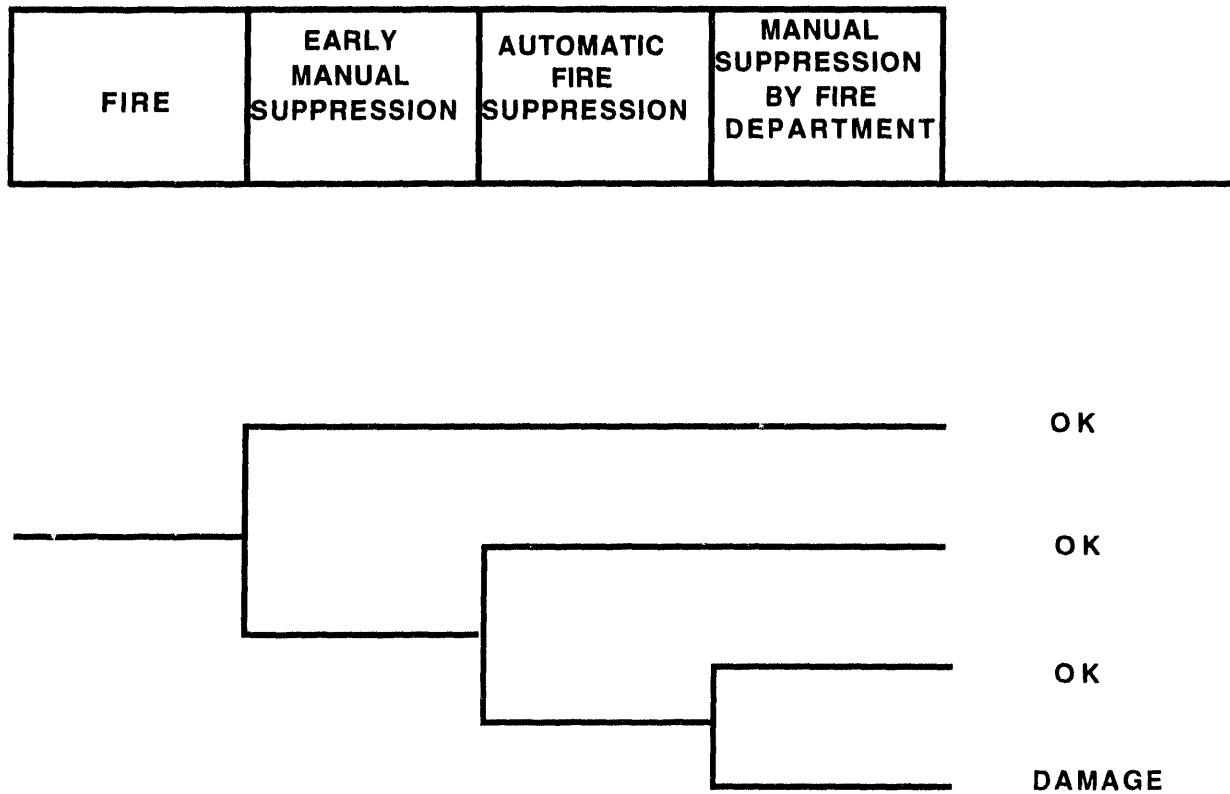


Figure 9.1 CNSAC Facility Maximum Possible Fire Loss Event Tree

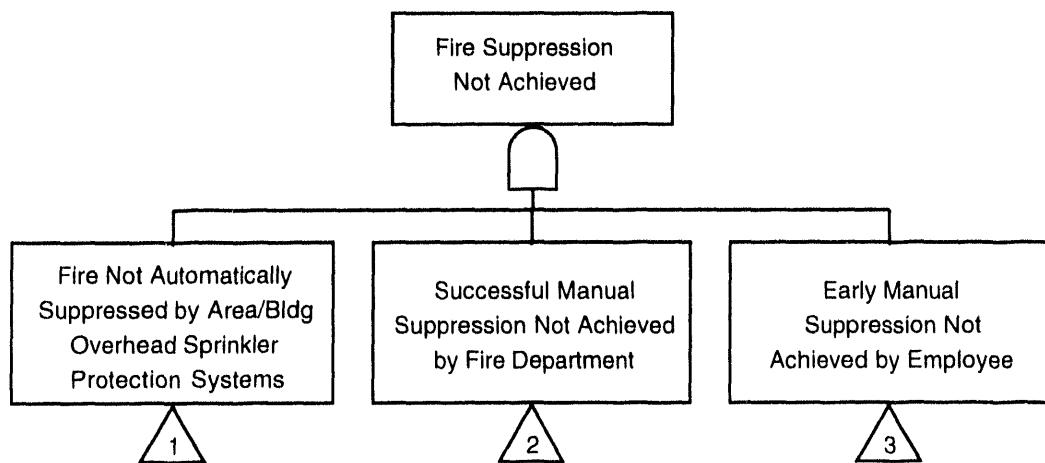


Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree

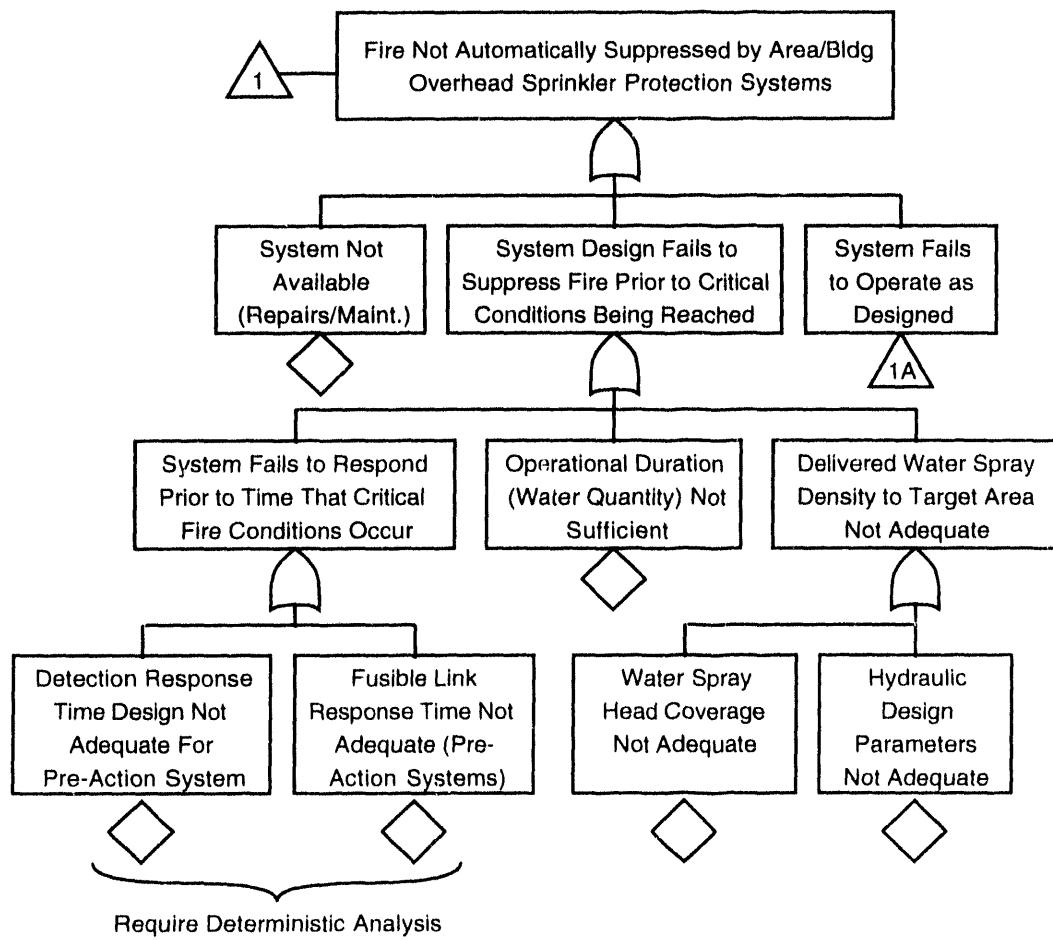


Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

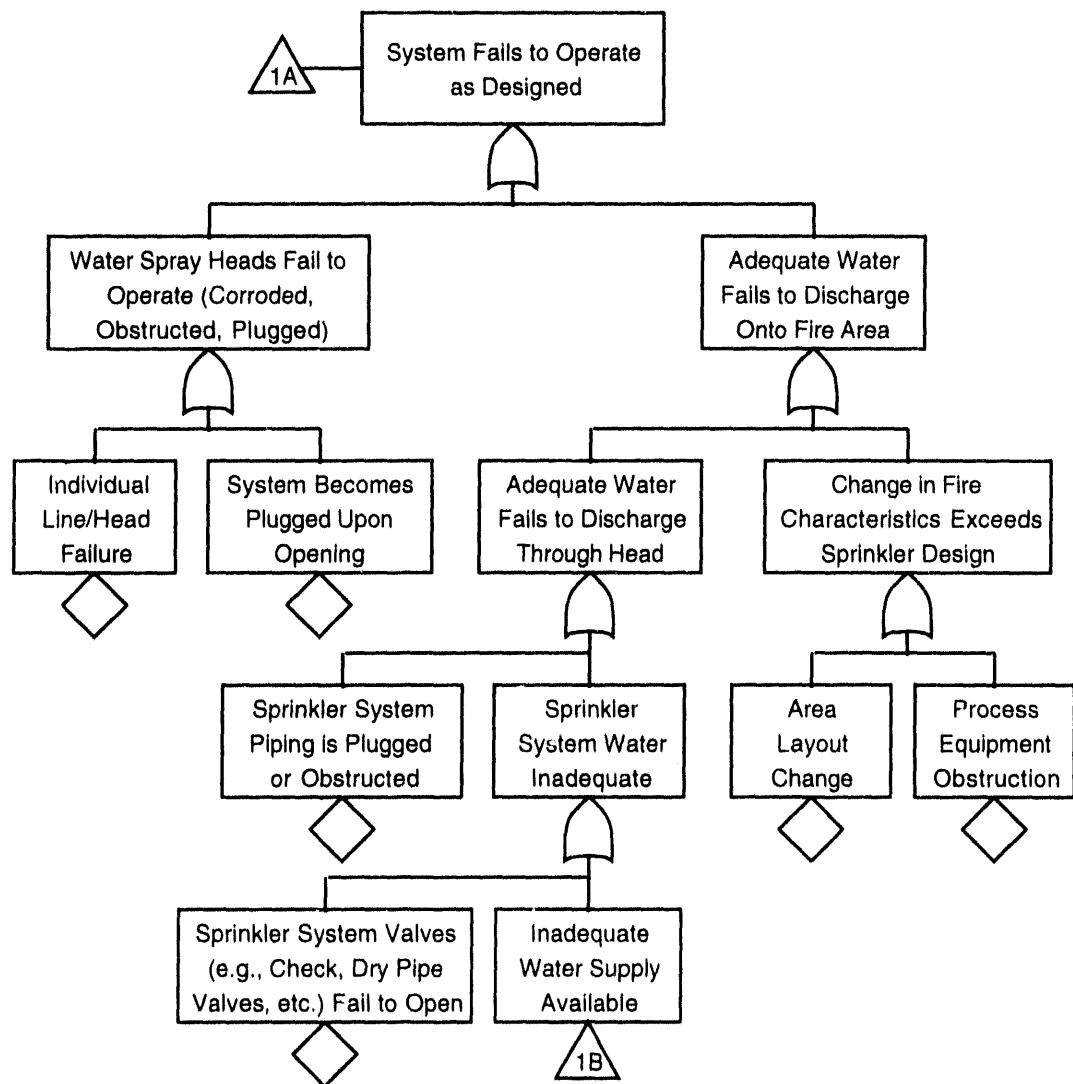
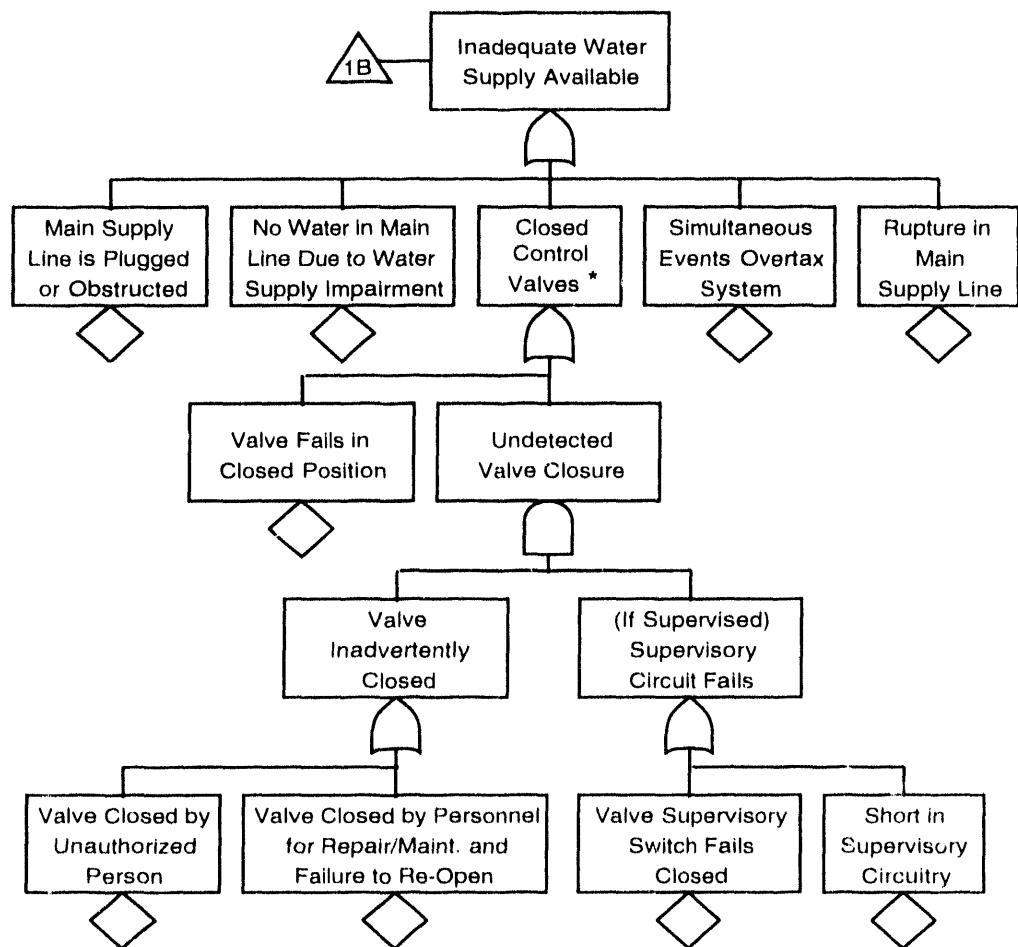



Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

* Control valves are usually outside screw and yoke (OS+Y) valves.

Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

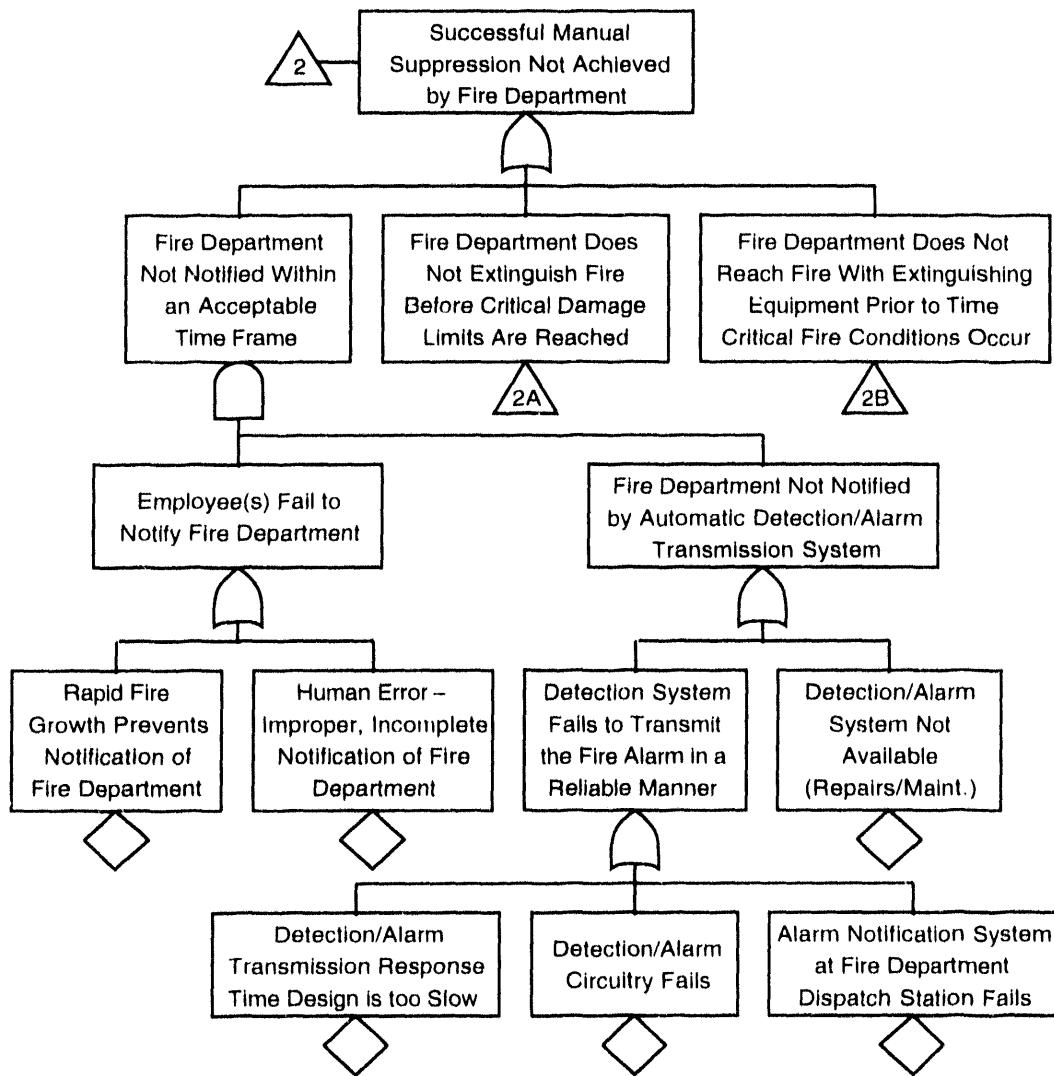


Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

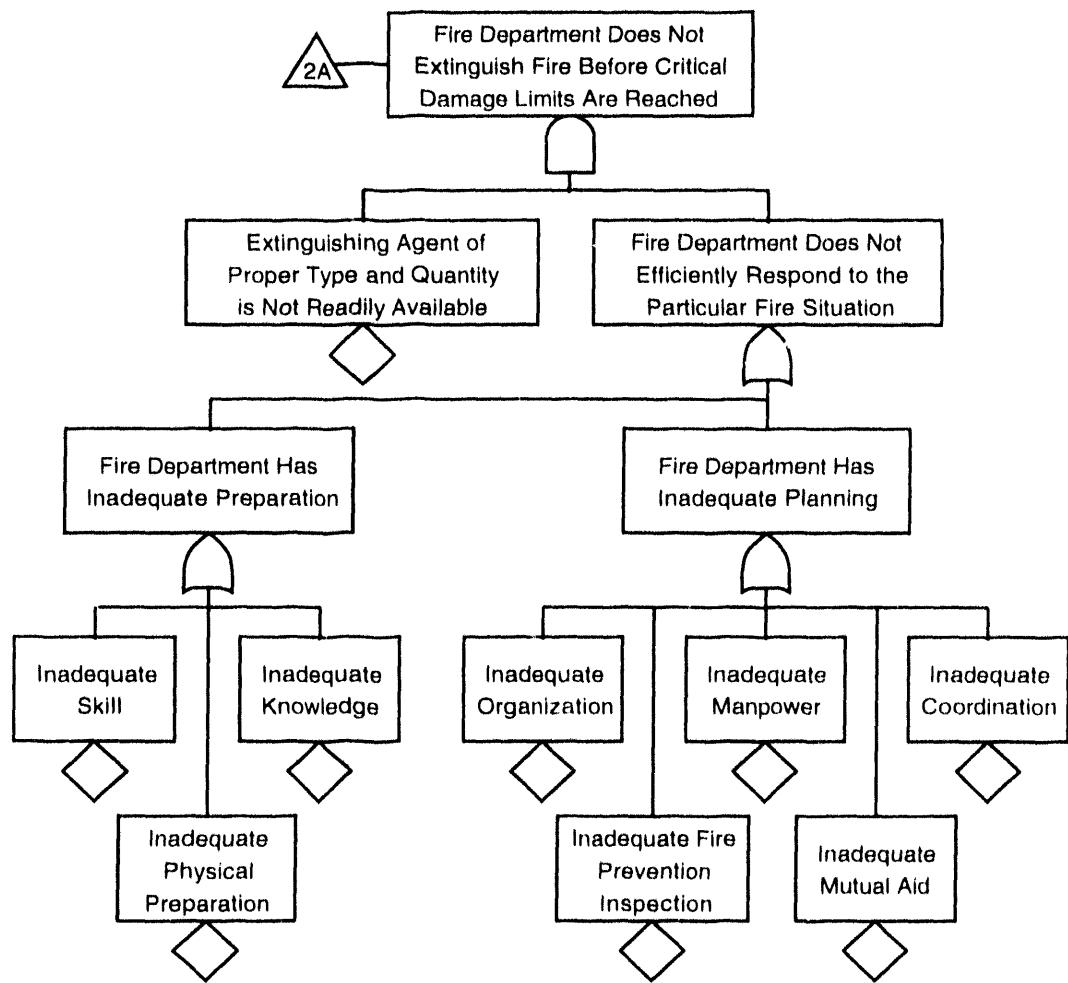


Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

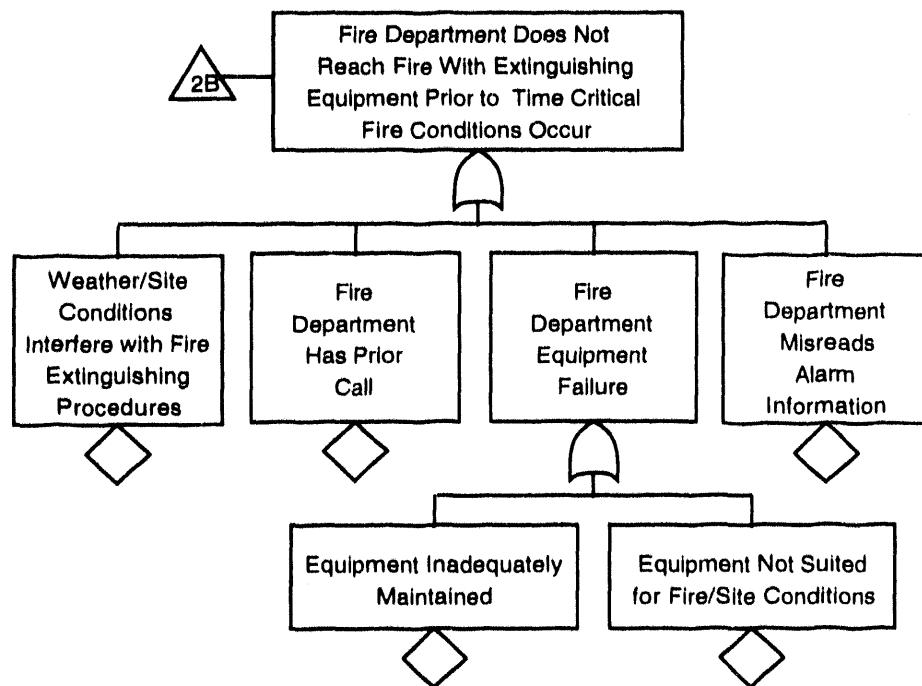
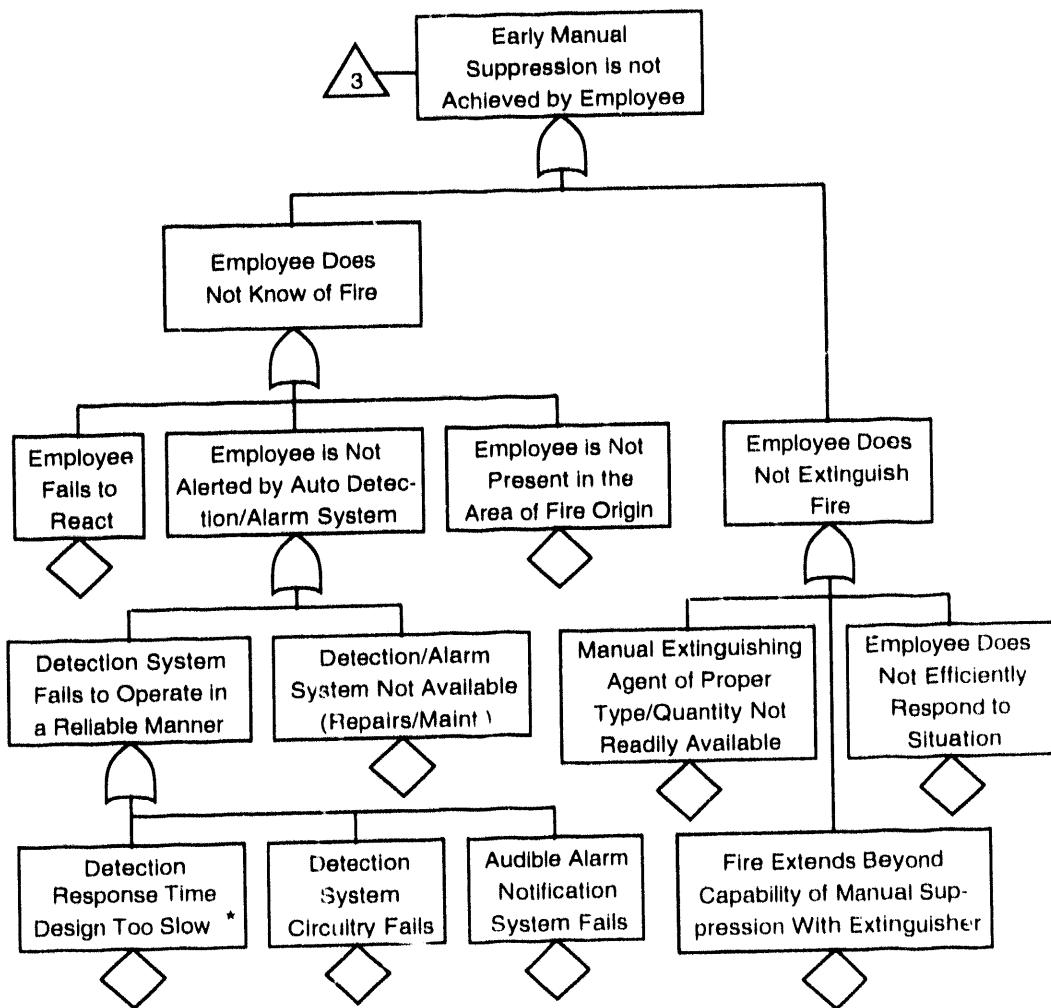



Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

* Application of deterministic fire models to assess response time ranges

Figure 9.2 CNSAC Facility Maximum Possible Fire Loss Fault Tree (cont.)

may be used as a tool in the development of the FFA. Such DOE guidance identified FIRAC [Ref. 4] as the model being considered for acceptance by DOE for this purpose. As such, the FIRAC computer code will be used to model the maximum possible fire scenario. The assumptions utilized in the input for FIRAC are outlined below:

- Combustibles are involved near the location where the initiating event (IE) occurs, staff or operators fail to suppress the fire, Fire Department and the automatic sprinkler system fail to suppress the fire such that the fire spreads to include the entire fire zone (or large part thereof) and radioactive material is assumed to be involved.
- Since little or no information on the actual configuration of safety, support, and process systems is known at this phase (shell design), a simple fire room model will be used to model a generic fire area within the office/lab area of the basement. The basement is chosen as the worst case due to the storage of radioactive materials in this area. This fire area will be assumed to have a length of 40 feet, a width of 40 feet, and a height of 13 feet. All the walls, ceilings, and floors will be assumed to be one foot thick concrete.
- Also, since no information is available on the ventilation rate, including exhaust rate, it will be assumed based upon guidance from Reference 5 that 5 to 6 air exchanges per hour will be typical of this fire area or about 2,000 ft³/min. No fans or blowers will be modeled, since no information on these are available at this time. The room pressure will be assumed to be about -0.55 in wg.
- As part of the simple fire modeling, the fire room with two ducts (inlet and outlet), and two boundaries (inlet and outlet) will be modeled as shown in Figure 9.3. The outlet and inlet elevations will be assumed to be at ceiling level (i.e., 13 feet) as shown in the Title II architectural drawings.
- In the FIRIN Module [Ref. 4] of the FIRAC computer code, the fire will be modeled until combustibles in the room are exhausted (approximately for one hour). No radioactive materials will be assumed in this FIRAC/FIRIN analysis, since the release rates and release fraction for radioactive materials available in the code do not represent in any way the form of the radioactive material assumed to be present within the CNSAC facility (i.e., sealed or metal matrix (non-pyrophoric sources)).

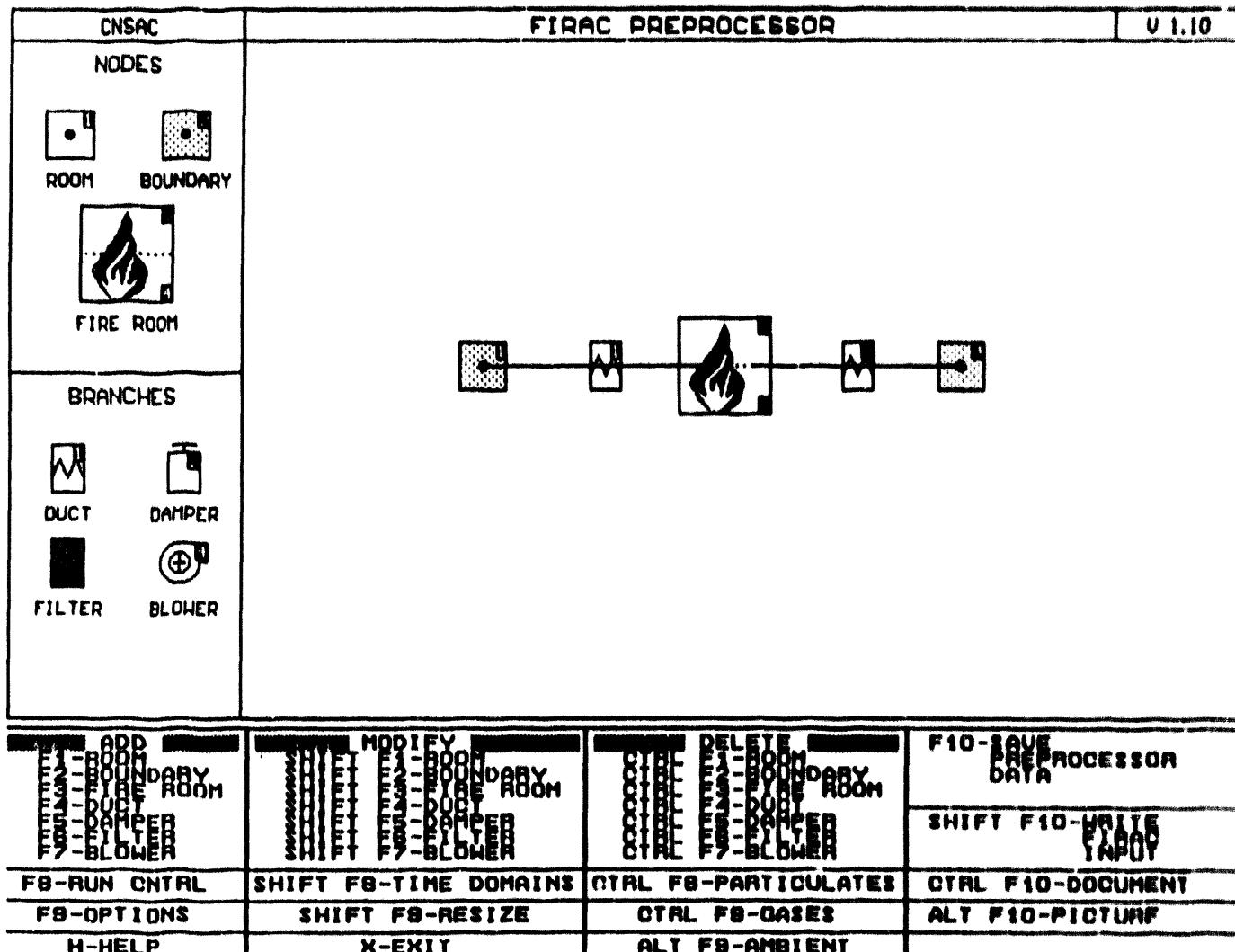


Figure 9.3 CNSAC Facility FIRAC Model

The release of radioactive materials that could potentially be involved in the maximum possible fire scenario will be addressed in the following section.

An ignition energy model will be used instead of the burning order method. This will automatically assign initially burning materials to a burning order of one, while materials at risk are assigned a burning order of two. Based upon walkdowns of other Sandia facilities and engineering judgement, it was assumed that initially 20.0 lbs of paper material, and 4.0 pounds of solvent will be involved in the fire (combustible material near the area in which the initiating event occurs); and that 150.0 lbs of wood, 4.0 lbs of plastic, 250.0 lbs of paper, and an additional 5.75 lbs of solvent material will be at risk in the vicinity of the area where the initiating event is postulated to occur.

Figure 9.4 presents the fire compartment thermal hot layer temperature results for this analysis. From this figure, one can see that in the first 10-15 minutes the temperature is still low enough for the possible suppression or control of the fire by the local staff, the amount of smoke generated and the local temperature (i.e., up to about 105°F) in these first 10-15 minutes will be sufficient to set-off any smoke and local heat detectors in the immediate area. From the time the fire department is assumed to show up (i.e. about 10 minutes after the fire initiates) to the time the sprinkler systems are assumed to be activated (i.e., 30 minutes) the temperature could be as high as 230°F (assuming no cooling).

It is important to notice that FIRAC does not model the action of the cooling of the fire by either the fire department or the sprinkler system mitigating actions. As such, the temperatures shown in Figure 9.4 are the maximum temperatures attained by the MCF, given the assumed fire loading in the fire area. In one hour, even without the mitigating action of the fire department and the sprinkler system, the fire temperature drops rapidly to about 110°F, assuming that no further combustibles are at risk as assumed by the event tree within the fire area.

Appendix A of this FFA, contains a copy of the FIRAC/FIRIN input file, along with a graphical summary of some of the results of the analysis, i.e., fire compartment thermal fire history effects like hot layer temperature, combustible mass burn rate, volumetric flow balance; and smoke source term vs. time accumulation.

It is assumed that, prior to the fire occurring, the bulk of the radioactive material stored and handled in the office/lab (basement) area is securely isolated from the fire by proper storage in their respective

Fire Compartment Thermal Effects

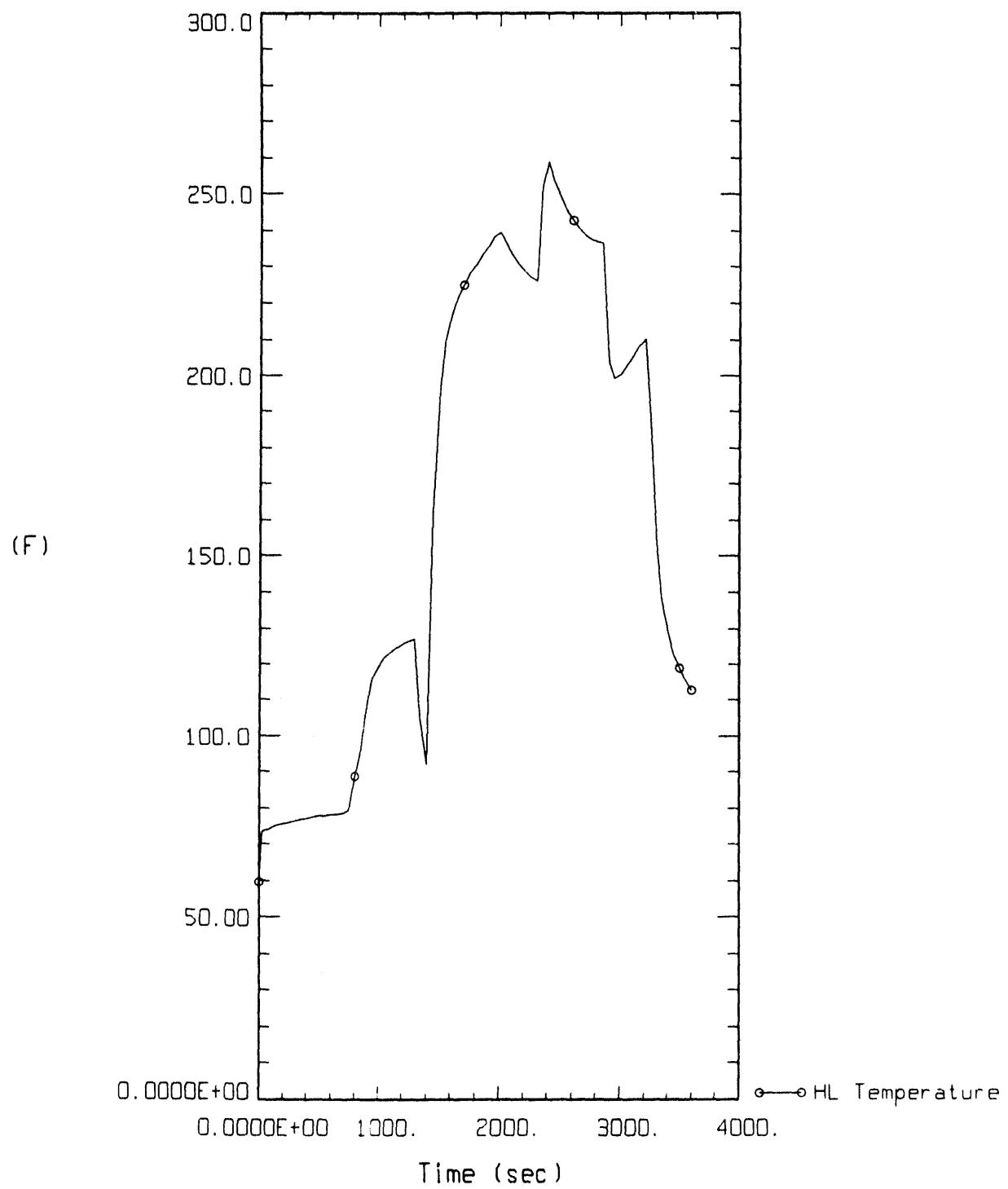


Figure 9.4 Fire Compartment Thermal History

fire rated vaults or cabinets. However, it is very likely that a few sources that may be out of their storage location(s) may be at risk or involved in the fire. In order to bound all the consequences from all credible fire scenarios, it will be conservatively assumed that one source representing each of the radiation types (gamma, neutrons, miscellaneous sources, and alpha/fissile material) will be involved in the fire. Table 9.1 presents the radionuclide sources and inventories (in Curies) selected to represent each of the source types. For consistency, the same sources modeled in the CNSAC Facility Safety Assessment [Ref. 2] were used for this analysis.

Table 9.1 Radionuclide Inventory

<u>Source Type</u>	<u>Radioisotope</u>	<u>Inventory - Curies (g)</u>
Gamma source	Co-60	3.8E-2 (3.4E-5)
Neutron source	Cf-252	75.0 (0.14)
Alpha/fissile source	Pu-239	24.5 (400)
Miscellaneous source	U-238	0.0033 (10,000)

9.3 Source Term Determination

This section identifies the radioactive inventories that are at risk or material-at-risk (MAR), and the initial and building source terms that are expected to be released from the maximum possible fire (MPF) accident scenario. It is expected that the consequences to the public will be dominated by the airborne radioactive material released as a result of the fire.

The bounding consequences to the public can be calculated based on the initial source term (IST) and the building source term (BST). The amount of airborne radioactive material released to the area (IST) where the accident is postulated to occur is dependent on the airborne release fraction (ARF) of the material involved, which itself depends on the energy source produced by the accident (i.e., fire) and the radionuclide involved. In order to determine the IST, the ARF and respirable fraction (RF) must be determined for each source and then multiplied by the quantity of material. Several experiments have been conducted on release fractions from fires, specifically involving Plutonium, Uranium, or corresponding surrogate materials, and the results of such experiments are well documented throughout the literature. Most of these release fractions have been summarized for the NRC and for DOE [Ref. 6 and 7, respectively]. These reports summarize the methodologies that are deemed acceptable by both

NRC and DOE in evaluating various accident scenarios in fuel cycle or similar facilities. However, this data is limited primarily to the burning release rates from metals consisting of Plutonium and Uranium.

NUREG-1320 [Ref. 6] gives a conservative airborne release rate for Plutonium of 8.9E-6% per second. For the maximum possible fire loss, this would result in a total ARF of 3.2E-4. It was also shown [Refs. 7 and 8] that in 60 minutes, complete oxidation of 455.5 g (close to the limit for the CNSAC facility) of Pu led to a total ARF of 3.9E-6 (which is substantially less than the assumed ARF), with a RF of 0.5. Therefore, for conservative purposes, the ARF of 3.2E-04 will be used for Plutonium metal along with a RF of 0.5.

However, because this source is a sealed source encapsulated in Aluminum or stainless steel, complete oxidation during a one hour fire is not expected to occur. It is therefore assumed that only 10% of the sealed source will oxidize, thereby reducing the ARF by one order of magnitude.

Uranium, unlike Plutonium, is non-pyrophoric and is therefore difficult to ignite. Experiments have shown that Uranium has an upper bound ARF of 8E-6 and RF of 1.0 [Ref. 7]. Also, since the Uranium stored in the CNSAC is not limited to sealed sources, there will be no further reduction of the ARF. Since little data is available on the ARFs of Californium or Cobalt sealed sources, the ARF and RF for Uranium will be used for conservative purposes.

Building source terms (BSTs) and ISTs are assumed to be the same because presently there are no plans to put HEPA filters in the CNSAC facility, and no decay or deposition of these airborne materials is assumed to occur within the building. Based on these assumptions the (ISTs) or (BSTs) can be computed for each of the radionuclides assumed to be exposed to the fire and these are summarized in Table 9.2.

9.4 Offsite Consequences

The offsite consequences from a release of radionuclides from the CNSAC facility due to the postulated maximum credible fire scenario is expected to be dominated predominantly by the inhalation and immersion pathways. That is, given the dry conditions and low amounts of food stuff grown in the local area (i.e. within 10 miles from the site), other exposure pathways (e.g., ingestion) are expected to have an insignificant contribution to the overall consequences from such postulated releases. The offsite consequences from accident releases will be calculated by hand, instead of using a standard

Table 9.2 Building Source Term for Selected Isotopes

Radionuclide	Inventory - Curies (g)	IST or BST - Curies (g)
Co-60	3.8E-2 (3.4E-5)	3.0E-7 (2.7E-10)
Cf-252	75.0 (0.14)	6.0E-4 (1.1E-6)
Pu-239	24.5 (400)	3.9E-4 (6.4E-3)
U-238	0.0033 (10,000)	2.6E-8 (8.0E-2)

code like MACCS [Ref. 9] since presently, MACCS is unable to model half of the radionuclides listed in Table 6.3-2 of the CNSAC Facility Safety Assessment [Ref. 2]. However, MACCS will be used to benchmark the consequence hand calculations for the Plutonium and Cobalt releases, since these are the only radioisotopes modeled included in the MACCS database and the dose or exposure from Plutonium is expected to dominate.

The following equation is used to calculate the 50-year committed effective dose equivalent (CEDE) from the inhalation of radionuclides released to the environment (committed dose to other organs are calculated in similar way).

$$\text{CEDE}_{\text{inhalation}} = \text{BST} * \text{SA} * \chi / Q * \text{BR} * \text{DCF}_{\text{inhalation}}$$

Where

$\text{CEDE}_{\text{inhalation}}$ is the committed 50-year dose equivalent received by the cohort from the inhalation of the radionuclide at a downwind distance X from the release (rem),

BST is the building source term or amount of airborne material released to the environment in curies or grams (Table 9.2)

χ / Q is the dispersion factor in sec/m³ (See Equation 3.2-1 of the CNSAC Facility Safety Assessment [Ref. 2])

BR is the breathing rate (3.3x10-4 m³/sec) [Ref. 2]

$DCF_{\text{inhalation}}$ is the committed effective - dose conversion factor from inhalation for a given radionuclide (rem/Ci) [Ref. 10]

SA is the Specific activity, converts grams to curies (Ci). Notice that, if Q is given in Ci already, SA is equal to 1.

The following equation is used to calculate the committed effective dose equivalent (CEDE) from immersion in the plume containing the radionuclides released to the environment (dose to other organs are calculated in a similar way).

$$CEDE_{\text{immersion}} = BST * SA * \chi / Q * DCF_{\text{immersion}}$$

Where

$CEDE_{\text{immersion}}$ is the committed effective dose equivalent received by the cohort immersed in a radioactive plume at a downwind distance X from the release (rem),

$DCF_{\text{immersion}}$ is the committed dose conversion factor from immersion in a plume containing a given radionuclide (rem-m³/Ci- sec) [Ref. 11].

The overall committed effective dose equivalent (CEDE) received by the receptor (i.e., onsite, or offsite) from airborne radioactive sources is calculated by adding the doses received from the two exposure pathways (i.e., inhalation and immersion). In other words, the total committed effective dose equivalent received is given by:

$$CEDE_{\text{Total}} = CEDE_{\text{inhalation}} + CEDE_{\text{immersion}}$$

Besides the above mentioned equations, the following assumptions will be used to determine the offsite consequences from the maximum credible fire scenario:

The BST in Curies for each of the radionuclides representing each of the radiation types is taken from Table 9.2.

- All respirable material will be assumed to have one particle size (i.e., 1 μm AMAD).
- No ingrowth and decay will be assumed for all the radionuclides released to the environment (i.e., BST).
- All exposure or concentration calculations will be made assuming a Pasquill stability class F, with no rain conditions and one meter per second wind speed.
- A breathing rate of $3.4 \times 10^{-4} \text{ m}^3/\text{sec}$ (heavy activity) will be assumed for conservative purposes.
- Release occurs at ground level. Under realistic conditions, during a fire scenario the release will tend to be elevated due to the buoyancy of the plume due to the heat generated, also due to the fact that the area in which the maximum credible fire scenario is postulated to occur (i.e., office/lab area of the basement) is exhausted through a dedicated exhaust system which will vent to the top of the CNSAC facility, about 20 meters in height).
- A release duration of one hour is assumed.
- Exposure calculations will be carried out to a distance of 1 Km (50, 100, 400, 600, 900 and 1000 meters), since exposures beyond that distance are expected to be below the de-minimus level.
- Building wake effects will be assumed (for conservatism purposes) only at short distances (i.e., <100 meters) since building wake effects will predominate at short distances. For distances greater or equal to 100 meters standard Gaussian plume models will be used (see equation 3.2-1 [Ref. 2]), and no credit will be taken for building wake effects (conservative approach). The following equation will be used to determine the volume created by the wake cavity [Ref. 2]:

$$\text{Volume wake cavity} = H \cdot W \cdot X_{\text{cavity}}$$

Where

H and W are the building height and width, respectively

X_{cavity} is the wake cavity length, and it is calculated from the following equation depending on the ratio between the building length (L) and its height (H), i.e., L/H:

For short buildings ($L/H \leq 2.0$)

$$X_{cavity}/H = L/H + A(W/H)/[1.0 + B(W/H)]$$

Where

$$A = -2.0 + 3.7(L/H)^{1/3}$$

$$B = -0.15 + 0.305(L/H)^{1/3}$$

Local concentration within the wake cavity will be calculated by dividing the amount of airborne material to the environment (BST) by the wake cavity volume calculated with the above equations. The height of the CNSAC facility is about 20 m (65.7 ft), its width about 18.9 m (62 ft), and its length about 37.2 m (122 ft). Using these data and the above equations, the volume of the wake cavity is calculated to be about $20,720 \text{ m}^3$ (731,649.6 ft³).

As stated before, the MACCS computer code is presently capable of only handling up to 60 radionuclides (in the DOS.DAT file, i.e., there is data on dose conversion factors for only 60 radionuclides). Future analyses at SNL will determine if additional radionuclides will be required for new versions of MACCS, especially in support on non-power-plant facilities (i.e., research facilities and non-reactor facilities). As such, MACCS will be used to benchmark the results of hand calculations for Pu-239 and Co-60, since the other radionuclides are not available in the database for MACCS. The MACCS computer code was run under the following assumptions and input:

- For benchmark purposes, MACCS was run under fixed meteorological condition, i.e., Pasquill E-stability, wind speed = 1 m/s and no rain.
- Consequences calculations were carried out at six intervals to a distance of 1.1 Km (the consequences beyond such a distance are expected to be below the de-minimus level)

- No relocation or evacuation of exposed individuals was considered. This assumes exposure to the total amount of material release for the duration of the accident. That is, mitigating actions (i.e., evacuation, sheltering, decontamination, interdiction, relocation, etc.) were ignored in the public consequence calculations, since the main objective is to determine the doses at the plant boundary, and at different locations around the facility.
- Potential economic impacts due to contamination and mitigating actions were ignored in this analysis.
- Both a release duration and plume duration of one hour was assumed.
- MACCS was configured to calculate the doses and health effects to the same organs evaluated by the hand calculations, i.e., effective whole body dose equivalent (EDE), lungs, bone marrow, and bone surface.
- Public health risks were only evaluated for total cancer latent fatalities; early fatalities were ignored due to the low activities released to the environment (i.e., BST).

Table 9.3 summarizes the results of the dose hand calculations for each of the radionuclides in Table 8.2 for both the inhalation and immersion pathways, and for the three different organs, using the equations presented in this section and the appropriate dose conversion factors.

As shown in Table 9.3, the total effective dose equivalent from all pathways and from all the radionuclides range from 1.3 to 0.028 rem at distances from 50 to 1000 meters respectively. These exposures are well below offsite guidelines (i.e., 25 rem) under accident conditions for the maximum offsite individual (MOI). Note that the area within 100 to 200 meters from the facility is restricted to personnel working for Sandia National Laboratories, and as such, no public will be expected to be located at shorter distances.

TABLE 9.3
CODE-REFERENCE CREDIMATOS FOR THE ECONOMIC CITY

Co-60	DISTANCE (m)	INHALATION DOSE (J/m³)						IMMERSION DOSE (J/m³)						TOTAL DOSE (J/m³)					
		LUNG	MARROW	BONE	EE	LUNG	MARROW	BONE	EE	LUNG	MARROW	BONE	EE	LUNG	MARROW	BONE	EE		
Pu-239	50	2.3E-06	2.8E-07	2.3E-07	5.8E-07	1.9E-08	3.8E-08	2.0E-09	2.0E-06	2.3E-06	3.2E-07	2.5E-07	6.1E-07	2.3E-06	3.2E-07	2.5E-07	6.1E-07		
	100	2.2E-07	2.7E-08	2.2E-08	5.5E-08	1.8E-09	1.8E-09	1.9E-09	1.9E-09	2.2E-07	2.9E-08	2.4E-08	5.7E-09	2.2E-07	2.9E-08	2.4E-08	5.7E-09		
	400	2.2E-08	2.7E-09	2.2E-09	5.6E-09	1.8E-10	1.8E-10	2.0E-10	2.0E-10	2.2E-08	2.9E-09	2.4E-09	5.8E-09	2.2E-08	2.9E-09	2.4E-09	5.8E-09		
	600	1.1E-08	1.4E-09	1.1E-09	2.9E-09	9.3E-11	9.4E-11	1.0E-10	1.0E-10	1.1E-08	1.5E-09	1.2E-09	3.0E-09	1.1E-08	1.5E-09	1.2E-09	3.0E-09		
	900	5.8E-09	7.1E-10	5.8E-10	1.5E-09	4.7E-11	4.8E-11	5.1E-11	5.1E-11	5.8E-09	7.6E-10	6.3E-10	1.5E-09	5.8E-09	7.6E-10	6.3E-10	1.5E-09		
	1000	4.8E-09	5.9E-10	4.8E-10	1.2E-09	4.0E-11	4.0E-11	4.3E-11	4.3E-11	4.9E-09	6.3E-10	5.3E-10	1.3E-09	4.9E-09	6.3E-10	5.3E-10	1.3E-09		
	50	2.8E+01	6.5E+00	8.1E+01	7.8E+00	5.2E-10	3.0E-10	8.6E-10	8.8E-10	2.8E+01	6.5E+00	8.1E+01	7.8E+00	2.8E+01	6.5E+00	8.1E+01	7.8E+00		
	100	2.6E+00	6.1E+01	7.6E+00	7.4E+01	4.9E-11	2.9E-11	8.1E-11	8.3E-11	2.6E+00	6.1E+01	7.6E+00	7.4E+01	2.6E+00	6.1E+01	7.6E+00	7.4E+01		
	400	2.7E-01	6.2E-02	7.8E-01	7.5E-02	5.0E-12	2.9E-12	8.3E-12	8.5E-12	2.7E-01	6.2E-02	7.8E-01	7.5E-02	2.7E-01	6.2E-02	7.8E-01	7.5E-02		
	600	1.4E-01	3.2E-02	3.9E-01	3.8E-02	2.5E-12	1.5E-12	4.2E-12	4.3E-12	1.4E-01	3.2E-02	3.9E-01	3.8E-02	1.4E-01	3.2E-02	3.9E-01	3.8E-02		
Ct-252	50	6.9E-02	1.6E-02	2.0E-01	2.0E-02	1.3E-12	7.6E-13	2.1E-12	2.2E-12	6.9E-02	1.6E-02	2.0E-01	2.0E-02	6.9E-02	1.6E-02	2.0E-01	2.0E-02		
	100	5.8E-02	1.4E-02	1.7E-01	1.7E-02	1.1E-12	6.4E-13	1.8E-12	1.8E-12	5.8E-02	1.4E-02	1.7E-01	1.7E-02	5.8E-02	1.4E-02	1.7E-01	1.7E-02		
	400	3.9E+01	1.0E+00	1.3E+01	5.3E+00	3.6E-10	1.8E-10	6.3E-10	1.3E-09	3.9E+01	1.0E+00	1.3E+01	5.3E+00	3.9E+01	1.0E+00	1.3E+01	5.3E+00		
	600	3.7E+00	9.7E-02	1.2E+00	5.0E-01	3.4E-11	1.7E-11	6.0E-11	1.2E-10	3.7E+00	9.7E-02	1.2E+00	5.0E-01	3.7E+00	9.7E-02	1.2E+00	5.0E-01		
	900	9.7E-02	2.6E-03	3.2E-02	1.3E-02	9.1E-13	4.5E-13	1.6E-12	3.1E-12	9.7E-02	2.6E-03	3.2E-02	1.3E-02	9.7E-02	2.6E-03	3.2E-02	1.3E-02		
	1000	8.2E-02	2.2E-03	2.7E-02	1.1E-02	7.6E-13	3.8E-13	1.3E-12	2.6E-12	8.2E-02	2.2E-03	2.7E-02	1.1E-02	8.2E-02	2.2E-03	2.7E-02	1.1E-02		
	50	3.7E+00	9.7E-02	1.2E+00	5.0E-01	3.4E-11	1.7E-11	6.0E-11	1.2E-10	3.7E+00	9.7E-02	1.2E+00	5.0E-01	3.7E+00	9.7E-02	1.2E+00	5.0E-01		
	100	3.7E-01	9.9E-03	1.2E-01	5.1E-02	3.5E-12	1.7E-12	6.1E-12	1.2E-11	3.7E-01	9.9E-03	1.2E-01	5.1E-02	3.7E-01	9.9E-03	1.2E-01	5.1E-02		
	400	1.9E-01	5.0E-03	6.2E-02	2.6E-02	1.8E-12	8.8E-13	3.1E-12	6.1E-12	1.9E-01	5.0E-03	6.2E-02	2.6E-02	1.9E-01	5.0E-03	6.2E-02	2.6E-02		
	900	9.7E-02	2.6E-03	3.2E-02	1.3E-02	9.1E-13	4.5E-13	1.6E-12	3.1E-12	9.7E-02	2.6E-03	3.2E-02	1.3E-02	9.7E-02	2.6E-03	3.2E-02	1.3E-02		
U-238	50	1.5E-03	3.8E-07	5.5E-06	1.8E-04	3.6E-14	5.9E-14	6.3E-14	7.2E-14	1.5E-03	3.8E-07	5.5E-06	1.8E-04	1.5E-03	3.8E-07	5.5E-06	1.8E-04		
	100	1.4E-04	3.6E-08	5.2E-07	1.7E-05	3.4E-15	5.5E-15	6.0E-15	6.8E-15	1.4E-04	3.6E-08	5.2E-07	1.7E-05	1.4E-04	3.6E-08	5.2E-07	1.7E-05		
	400	1.4E-05	3.7E-09	5.3E-08	1.8E-06	3.4E-16	5.6E-16	6.1E-16	6.9E-16	1.4E-05	3.7E-09	5.3E-08	1.8E-06	1.4E-05	3.7E-09	5.3E-08	1.8E-06		
	600	7.4E-06	1.9E-09	2.7E-08	9.0E-07	1.7E-16	2.9E-16	3.1E-16	3.5E-16	7.4E-06	1.9E-09	2.7E-08	9.0E-07	7.4E-06	1.9E-09	2.7E-08	9.0E-07		
	900	3.8E-06	9.6E-10	1.4E-08	4.6E-07	8.9E-17	1.5E-16	1.6E-16	1.8E-16	3.8E-06	9.6E-10	1.4E-08	4.6E-07	3.8E-06	9.6E-10	1.4E-08	4.6E-07		
	1000	3.2E-06	8.1E-10	1.2E-08	3.9E-07	7.5E-17	1.2E-16	1.3E-16	1.5E-16	3.2E-06	8.1E-10	1.2E-08	3.9E-07	3.2E-06	8.1E-10	1.2E-08	3.9E-07		
	50	6.7E+01	7.5E+00	9.3E+01	1.3E+01	2.0E-08	3.8E-08	2.2E-08	2.2E-08	6.7E+01	7.5E+00	9.3E+01	1.3E+01	6.7E+01	7.5E+00	9.3E+01	1.3E+01		
	100	6.3E+00	7.1E-01	8.8E+00	1.2E+00	1.9E-09	1.9E-09	2.1E-09	2.1E-09	6.3E+00	7.1E-01	8.8E+00	1.2E+00	6.3E+00	7.1E-01	8.8E+00	1.2E+00		
	400	6.4E-01	7.2E-02	9.0E-01	1.3E-01	1.9E-10	1.9E-10	2.1E-10	2.2E-10	6.4E-01	7.2E-02	9.0E-01	1.3E-01	6.4E-01	7.2E-02	9.0E-01	1.3E-01		
	600	3.3E-01	3.7E-02	4.6E-01	6.4E-02	9.7E-11	9.6E-11	1.1E-10	1.1E-10	3.3E-01	3.7E-02	4.6E-01	6.4E-02	3.3E-01	3.7E-02	4.6E-01	6.4E-02		
	900	1.7E-01	1.9E-02	2.3E-01	3.3E-02	5.0E-11	4.9E-11	5.5E-11	5.6E-11	1.7E-01	1.9E-02	2.3E-01	3.3E-02	1.7E-01	1.9E-02	2.3E-01	3.3E-02		
	1000	1.4E-01	1.6E-02	2.0E-01	2.8E-02	4.2E-11	4.1E-11	4.6E-11	4.7E-11	1.4E-01	1.6E-02	2.0E-01	2.8E-02	1.4E-01	1.6E-02	2.0E-01	2.8E-02		

Also, as predicted, the exposure to Pu-239 exceeds those of other radionuclides. Cf-252 gives a dose which is over 30% lower than that from Pu-239. Exposure from the rest of the radionuclides (i.e., Co-60 and U-238) are orders of magnitude smaller than those from Pu-239. The total dose from the exposure to Pu-239 (EDE in rem) ranges from 7.8 to 0.016 rem for distances from 50 to 1000 meters, respectively.

As stated before, for benchmark purposes, the MACCS computer code was run to determine the exposure from the release of Pu-239 under constant meteorological conditions. The results from MACCS are close to those calculated by hand. Table 9.4 summarizes the results from MACCS for a release of 24.5 Curies of Pu-239 and Table 9.5 summarizes the results from the exposure to 3.8E-2 Curies of Co-60.

As one can see from Table 9.4 and Table 9.5, the doses from MACCS are within the range of those calculated by hand. Notice that MACCS results are given for a given range and not a single location. Appendix B contains the complete results of the MACCS runs (i.e., CNSAC.OUT files).

9.5 Summary

Although it is very unlikely to expect that the automatic FPPs will not function as designed or that manual fire fighting efforts would not be effective, even under these "worst case" assumptions the consequences will be below DOE offsite guidelines for accident conditions.

Table 9.4 Centerline Dose (rem)
Pu-239 (MACCS results)

<u>Distance (m)</u>	<u>EDE</u>	<u>Lungs</u>	<u>Marrow</u>	<u>Bone</u>
0-100	2.1E+0	8.2E+0	1.7E+0	2.1E+1
100-200	2.7E-1	1.0E+0	2.1E-1	2.6E+0
200-400	8.0E-2	3.1E-1	6.3E-2	7.9E-1
400-600	3.1E-2	1.2E-1	2.4E-2	3.0E-1
600-900	1.4E-2	5.5E-2	1.1E-2	1.4E-1
900-1100	8.0E-3	3.1E-2	6.4E-3	7.9E-2

Table 9.5 Centerline Dose(rem)
Co-60 (MACCS results)

<u>Distance (m)</u>	<u>EDE</u>	<u>Lungs</u>	<u>Marrow</u>	<u>Bone</u>
0-100	1.3E-6	6.9E-6	4.2E-7	3.5E-7
100-200	1.6E-7	8.7E-7	5.3E-8	4.4E-8
200-400	4.8E-8	2.6E-7	1.6E-8	1.3E-8
400-600	1.9E-8	1.0E-7	6.1E-9	5.1E-9
600-900	8.6E-9	4.7E-8	2.8E-9	2.4E-9
900-1100	4.8E-9	2.6E-8	1.6E-9	1.3E-9

10.0 Fire Department/Brigade Response

The DOE has a formal Interdepartmental Support Agreement with Kirtland Air Force Base (KAFB) to furnish fire protection service to all of SNL's facilities. Such services are required to include: responding to all fire alarm calls, performing periodic familiarization tours of all buildings and preparing and keeping current fire plans and run cards for appropriate buildings and making inspections and flow tests of fire protection systems as required by NFPA Standards.

Kirtland Air Force Base maintains a well trained, professionally staffed fire department. All fire detection monitors in the CNSAC facility will be connected directly to the fire department facility. Upon fire detection, it is estimated that the fire department will arrive at the scene within 10 minutes.

The DOE Albuquerque Operations Office furnishes the Kirtland AFB fire department with recommended fire fighting procedures on KAFB facilities which are considered hazardous or warrant special fire fighting techniques. In the event the CNSAC facility is involved in a fire, the DOE Albuquerque Operations Office shall furnish technical consultants when certain hazardous materials are present.

11.0 Recovery Potential

Recovery from the most likely fire (such as an electronic appliance fire, a waste paper fire in a trash container or an office machine fire) is likely within approximately one week. Some lost time would be caused by the evacuation of employees, investigation of area/cause and some level of concern/excitement by the employees. However, restoration of any affected fire safety system (e.g., alarms, detectors, sprinkler heads) would be prompt and any cosmetic cleanup would be facilitated because most of the walls are masonry with enamel paint. Sprinkler operation would be unlikely since a reasonable projection of trained employee reaction would be the use of available fire extinguishers.

The occurrence of the maximum credible fire loss would result in damage to the basement area, but no potential for radioactive contamination. Cleanup time would be 4 - 10 days due to the actuation of the automatic sprinkler system.

Recovery potential will depend of the exact processes taking place in the CNSAC facility. The 1st thru 4th floors will consist of mostly office space and probably at least one computer room. The largest potential for long term loss would be from the destruction of important information stored on the computers. Therefore, it is recommended that all important information stored on the computers be backed up at regular intervals and stored in another facility.

The basement of the CNSAC facility has a much larger potential for loss and recovery. This is due to the specialized equipment and experiments taking place in this area. If a fire were to destroy part or all of the basement, the recovery time would depend on the exact nature of the experiments, whether they could be moved to another location, and on the amount of time it takes to replace damaged equipment.

12.0 Potential for Toxic, Biological, and/or Radioactive Releases from a Fire

A fire in the CNSAC facility is likely to produce toxic by-products. Common office machines such as photocopiers have produced toxic pyrolysis products. The combustion or partial combustion of plastic materials used in electrical wiring and in packing materials can produce toxic smoke.

There will not be any storage or use of materials which may pose a biological threat. Therefore, there is no potential for a biological release.

A variety of relatively low level radioactive sources are maintained in the building for testing and calibration of detectors. All of these sources have very small amounts of radioactive material. As such, they are exempted from special packaging and labeling requirements for shipment. When not in use, these radioactive sources are kept in locked, fireproof containers. The sources are used and disposed of with DOE and SNL approved procedures, training, signage, and equipment that insure regulatory compliance.

In addition to the sealed sources, pieces of Thorium, Uranium, Neptunium, and Plutonium will occasionally be brought into the facility temporarily for special experiments. Most of these pieces would be expected to have a mass of less than 10 grams with the exception of two pieces of Uranium and one of Plutonium which are in the 100s of grams range. While in the CNSAC facility (according to SOPs), and not in use, these sources will be stored in locked, fireproof containers. Upon completion of the experiments, the sources should be removed from the facility to other storage locations. Packaging and transportation will be in accordance with Federal, State and local regulations.

A radioactive material release is possible and is considered in the maximum possible fire loss (Section 9). However, since most of the sources utilized in the CNSAC facility are sealed sources the potential for radioactive material release from a fire is greatly reduced.

13.0 Emergency Planning

Emergency Operating Procedures have not been developed for CNSAC facility, but will be completed before occupancy. Other emergency planning will require: Safe Operating Procedure's (SOP's) for handling and storing flammable and/or combustible chemicals, and combustibles in general. Permanent occupants of the basement will be required to take fire extinguisher training due to the presence of flammables, combustibles and machinery. All fire detection monitors will be required to send signals to the SNL Headquarters Communication Center and the Kirtland Air Force Base Alarm Room. Also, Operational Safety Requirements (OSRs) will be developed based upon the results of the Safety Analysis. The OSRs will define the conditions, safe boundaries and the bases thereof, and the management or administrative controls required to assure the safe operation of the facility.

14.0 Security and Safeguards Considerations Related to Fire Protection

From a security standpoint, the Department of Energy Albuquerque Office (DOE/AL) and/or DOE/AL contractor guard forces shall be in charge of entry into secured areas. Kirtland AFB guard forces shall be in charge of entry into Kirtland AFB areas under such emergencies. DOE/AL shall handle press releases for fires occurring within DOE/AL areas.

Fire safety measures will not affect the security of the facility. However, in the event of a fire or the actuation of fire alarms, the CNSAC facility would need to be evacuated and access provided to qualified fire protection and emergency response personnel.

The SCIF portion of each floor will have one opening into the non-SCIF portion and one exit leading directly to a building exit. These doors will be equipped with emergency opening devices to allow egress to persons inside the SCIF during an emergency. In addition, the main entrance door to the SCIF will be open during normal operating hours and will not be closed and locked while anyone is in the SCIF area.

15.0 Natural Hazards (earthquake, flood, wind) Impact on Fire Safety

The CNSAC facility is designed to the facility use category of important or low hazard facility per UCRL 15910 Natural Phenomena Guidelines. The design basis natural phenomena events are based on the Sandia site specific information and the usage category of the facility. Natural hazards are not anticipated to affect the operability of the fire protection systems, but could impair the ability of the emergency response personnel to respond to a fire alarm and/or a fire. Therefore this facility would withstand the design basis earthquake and the design basis wind. External flooding is considered highly unlikely, due to the arid climate and the long distance to the nearest river or arroyo. However, the facility is being designed to the maximum credible flood as required by UCRL-15910 [Ref. 12].

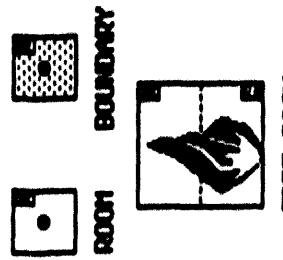
16.0 Exposure Fire Potential

There are several buildings in the vicinity of the CNSAC facility which could pose an exposure fire potential. However, it is expected that with automatic fire suppression available in these buildings in combination with the response of the fire brigade the exposure fire potential is minimal.

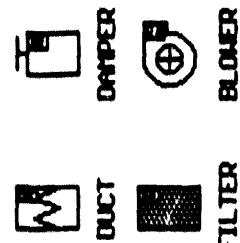
Additionally, the threat from transportation fires was considered minimal due to the response of the

fire brigade and the magnitude and proximity of the fire required to present an exposure fire potential.

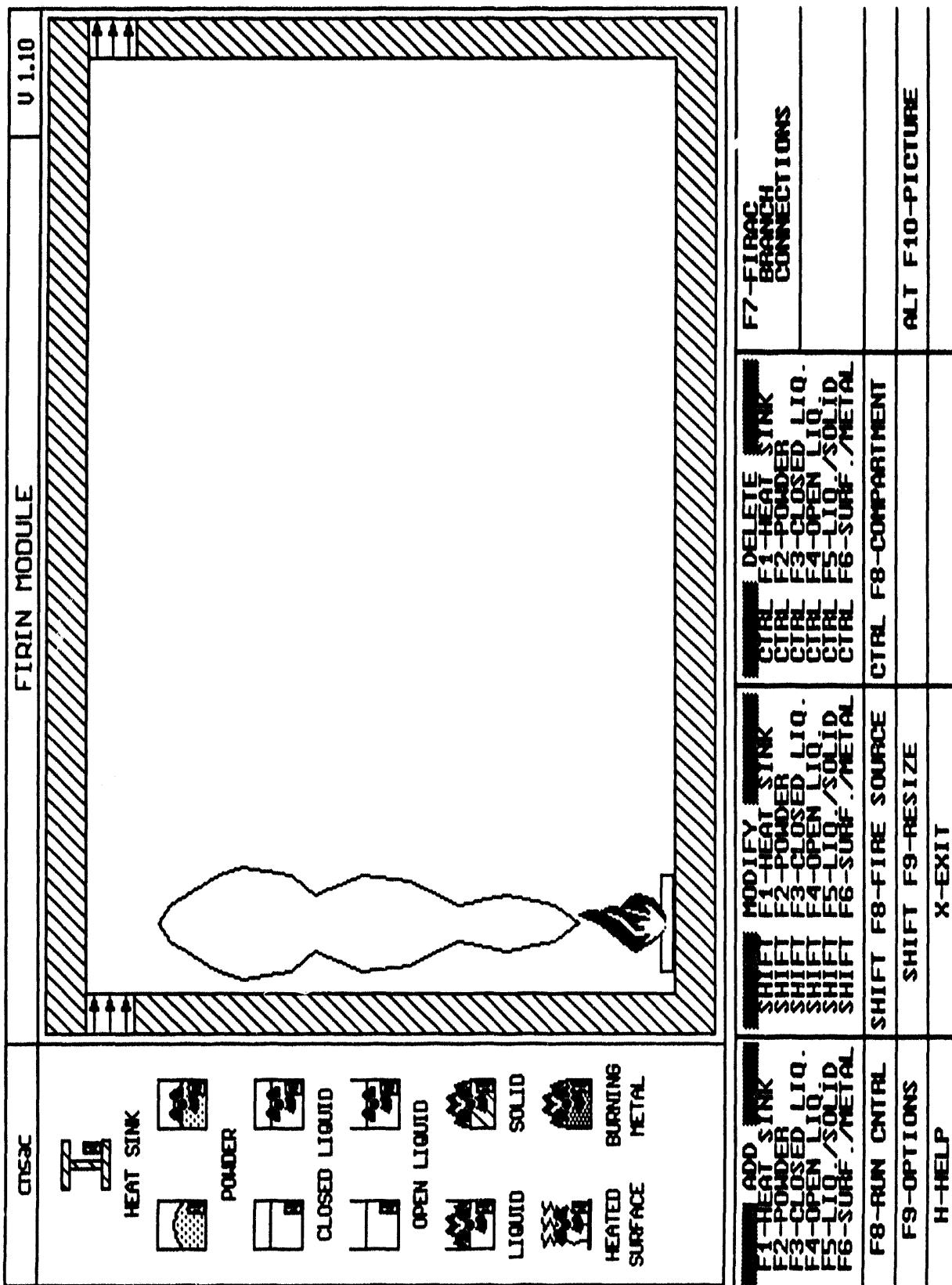
The environment does not support severe growth of trees and bushes in the vicinity of the CNSAC facility. Additionally, there will be an overlay of concrete, stones and gravel to prevent the growth of underbrush.


17.0 References

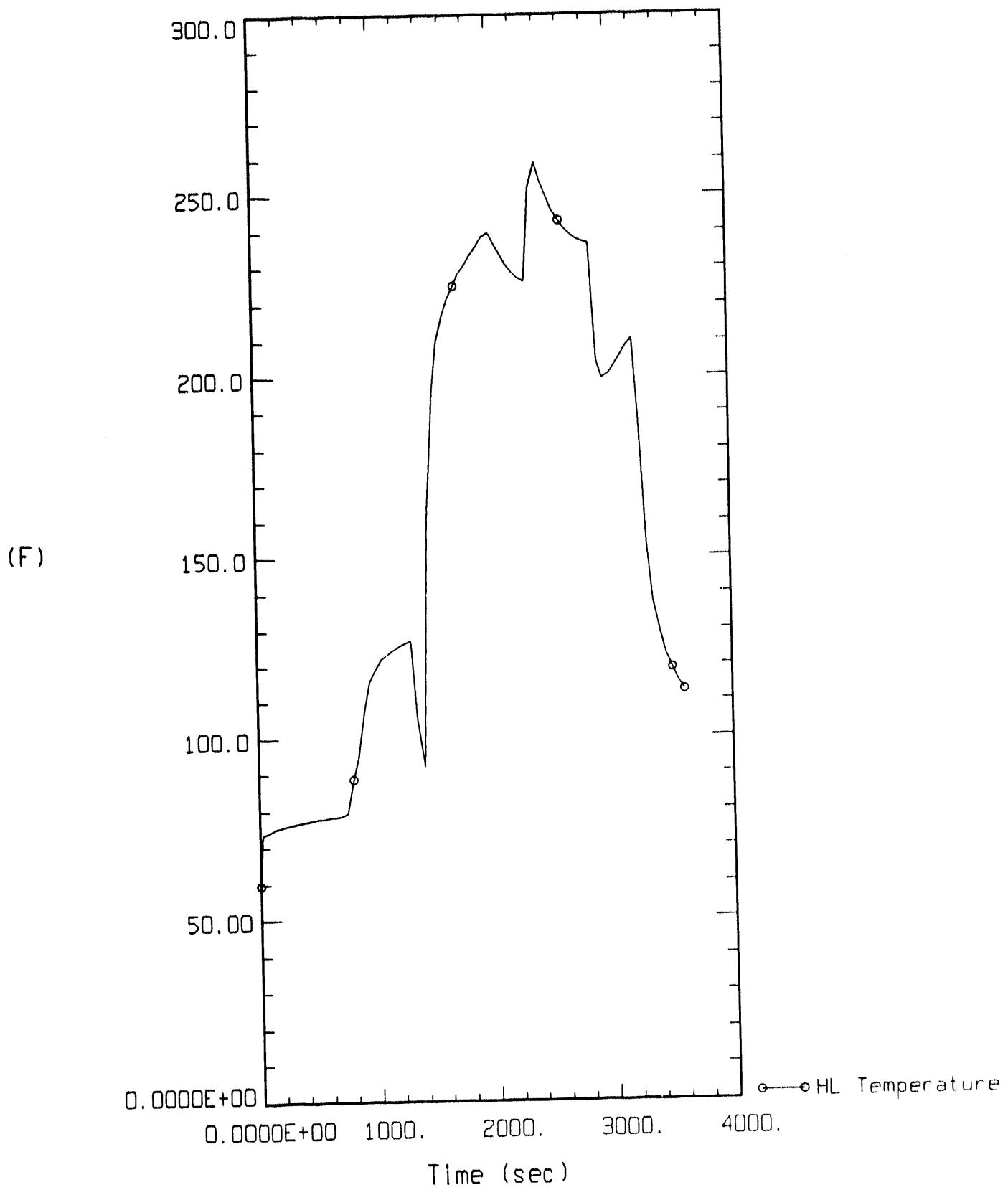
1. Architectural/Structural/Civil Design Analysis, CNSAC Facility, Sandia National Laboratories, Design Professionals Incorporated, Title II Submittal, February, 24, 1992.
2. Safety Assessment for the Center for National Security and Arms Control (CNSAC), SAND92-2170.
3. Guidance on the Performance of Fire Hazards Analysis, US DOE Memorandum EH-31.3, November 7, 1991.
4. "FIRAC Users Manual: A Computer Code to Simulate Fire Accidents in Nuclear Facilities", B.D. Nichols and W.S. Gregory, Los Alamos National Laboratory
5. A Guide to Good Practices at Plutonium Facilities, PNL-2086, Rev. 1, July, 1987.
6. J. E. Ayer, et. al., Nuclear Fuel Cycle Facility Accident Analysis Handbook, NUREG 1320, U.S. NRC, May 1988.
7. J. Mishima, Recommended Values and Technical Bases for Airborne Release Fractions (ARFs), Airborne Release Rates (ARRs), and Respirable Fractions (RFs) - Draft Rev. 1 Defense Programs Nuclear Facility Safety Survey, U.S. DOE, July 1992.
8. J. Mishima, Plutonium Release Studies II. Release from Ignited, Bulk Metallic Pieces, BNWL-B-257, Pacific Northwest Laboratory, Richland, WA, November, 1966.

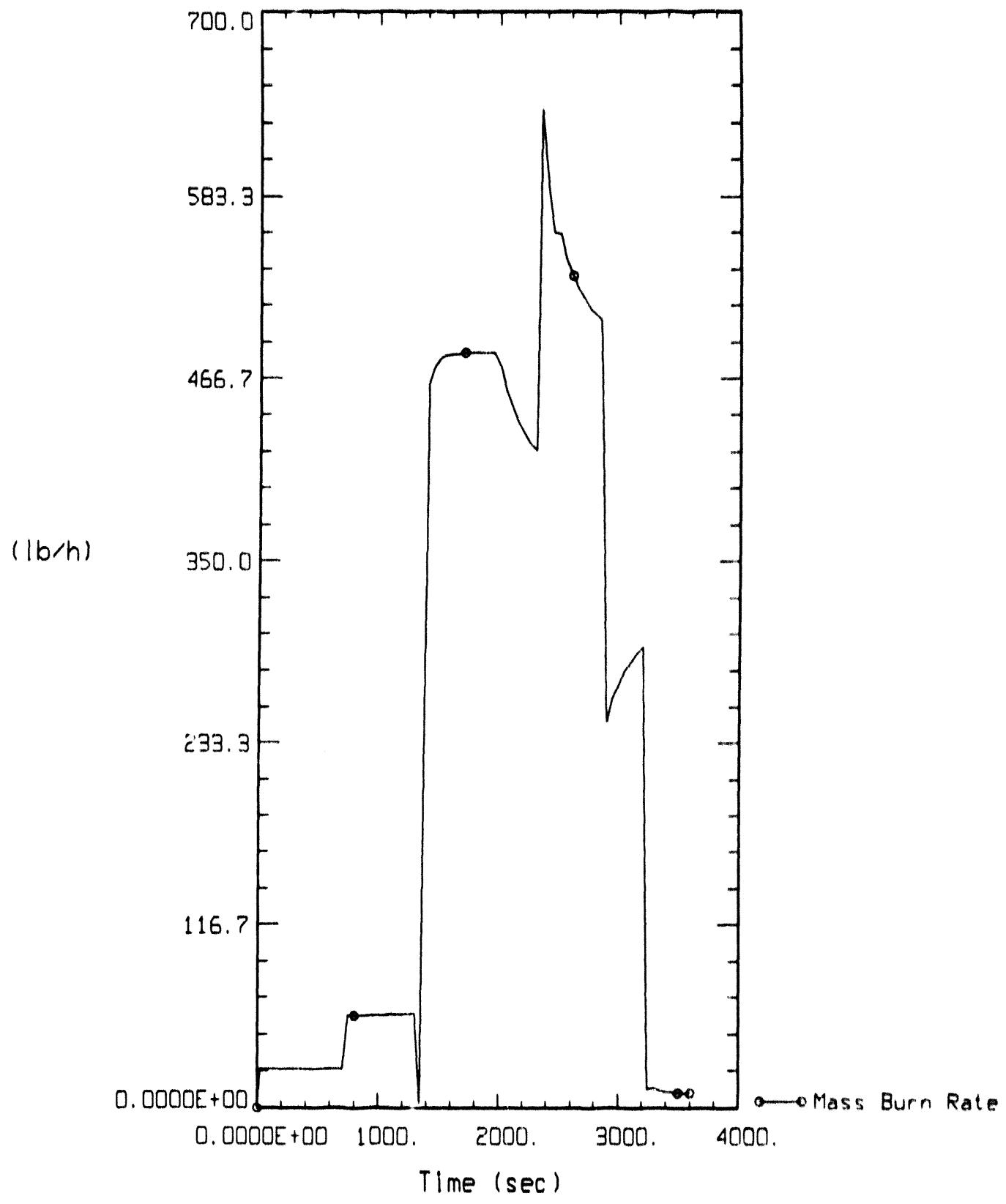

9. MACCS - MELCOR Accident Consequence Code System, D.I. Chardin et. al., NUREG/CR-4691, February 1990.
10. Annals of the ICRP , Publication 30, Limits for Intakes of Radionuclides by Workers, Pergamon Press, Elmsford, NY, 1980.
11. External Dose Rate Conversion Factors for Calculation of Dose to the Public, DOE/EH-0070, US DOE, July 1988.
12. R.P. Kennedy, et. al., Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards, UCRL-15910, LLNL, Livermore , CA, May, 1989.

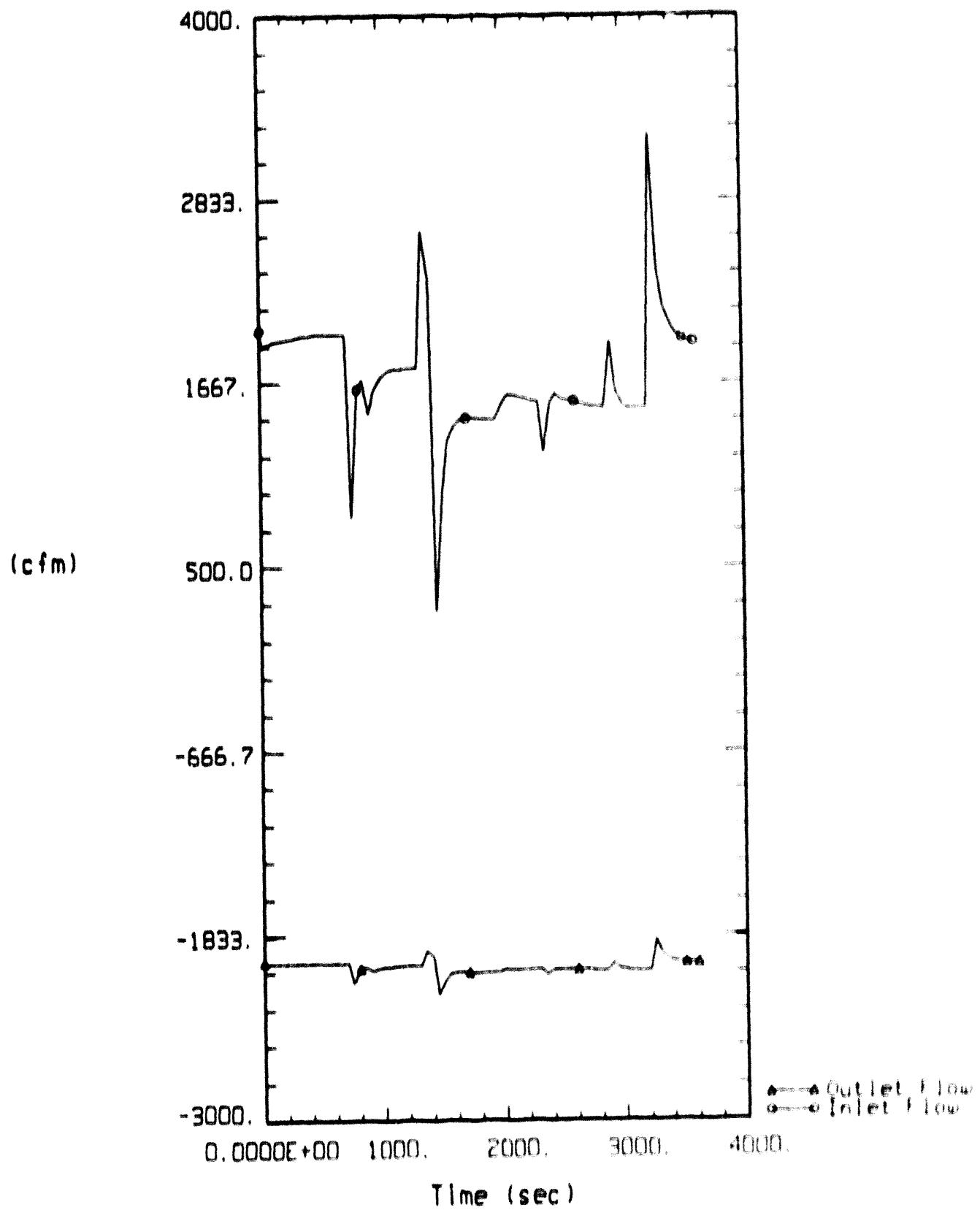
APPENDIX A

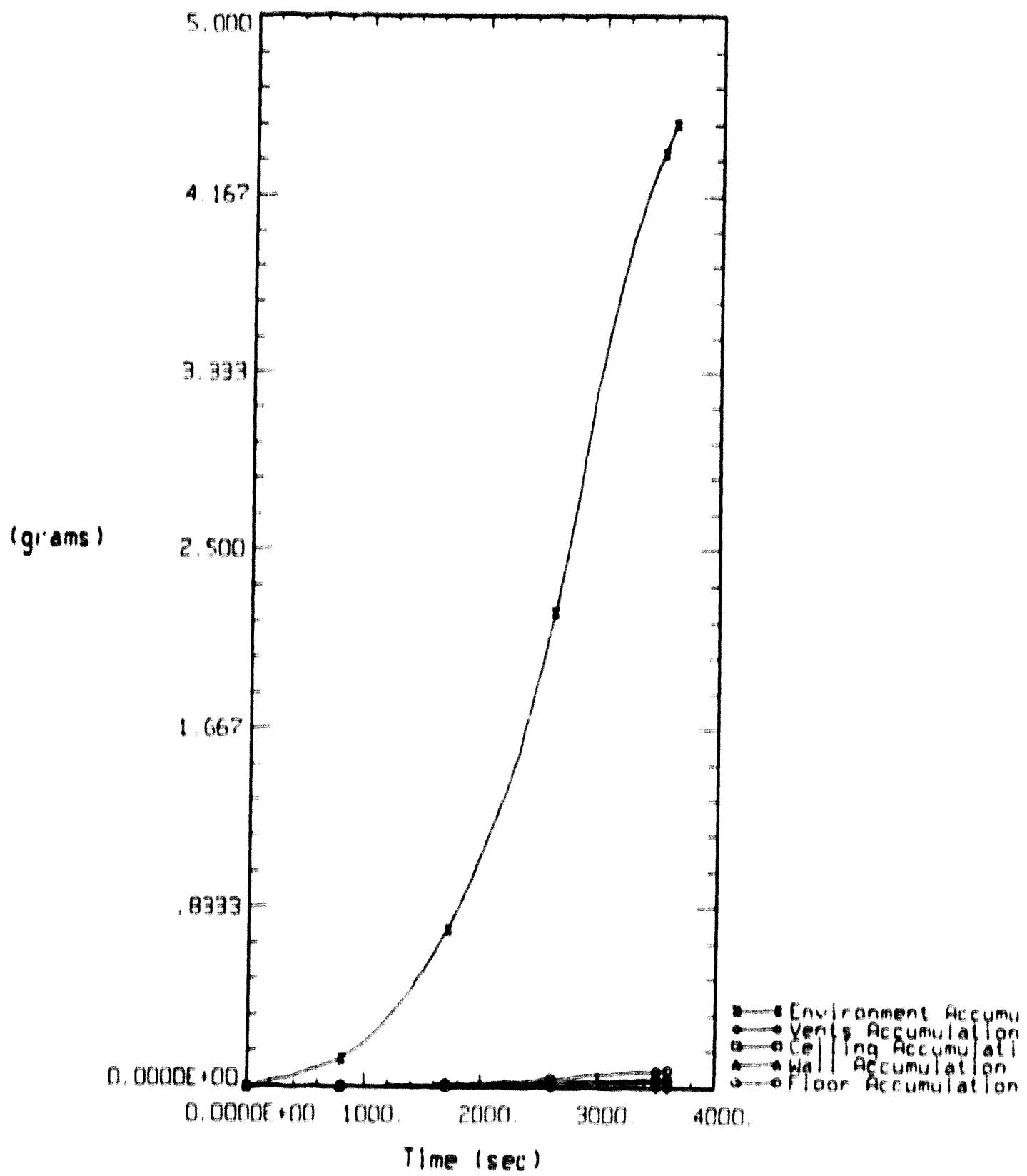

FIRAC INPUT & OUTPUT

C1-SEC
NOTES


BRANCHES


ADD		MODIFY		DELETE		F10-SAVE PREPROCESSOR DATA	
SHIFT F1-ROOM	CTRL F1-ROOM	SHIFT F2-BOUNDARY	CTRL F2-BOUNDARY	SHIFT F3-FIRE ROOM	CTRL F3-FIRE ROOM	SHIFT F4-DUCT	CTRL F4-DUCT
F1-ROOM		F2-BOUNDARY		F3-FIRE ROOM		F4-DUCT	
F2-BOUNDARY		F3-FIRE ROOM		F5-DAMPER		F6-FILTER	
F3-FIRE ROOM		F4-DUCT		F7-BLOWER		F8-BLOWER	
F4-DUCT		F5-DAMPER					
F5-DAMPER		F6-FILTER					
F6-FILTER		F7-BLOWER					
F7-BLOWER							
F8-RUN CNTL		SHIFT F8-TIME DOMAINS		CTRL F8-PARTICULATES		CTRL F10-DOCUMENT	
F9-OPTIONS		SHIFT F9-RESIZE		CTRL F9-GASES		ALT F10-PICTURE	
H-HELP		X-EXIT		ALT F9-AMBIENT			


Fire Compartment Thermal Effects


Fire Compartment Thermal Effects

Fire Compartment Thermal Effects

Smoke Source Term Effects

PAGE 1 FIRAC DOCUMENTATION FILE: CNSAC.doc

FP VERSION 1.10

FILE: CNSAC.doc

/* ***** RUN CONTROL DATA ***** */

Run Control Option: ST

Initial Output Time (s): 0.0

Time between Outputs (s): 0.5

Last Output Time (s): 3600.0

No. Special Output Times (s): 0

First:

Second:

Third:

Fourth:

Fifth:

Max. Iterations:

Convergence Criterion:

Particle Deposition:

Particle Entrainment:

Initial Pressure Input:

Initial Temperature Input:

Buoyancy Term:

/* ***** AMBIENT CONDITIONS ***** */

Pressure (psia): 14.696

Temperature (F): 60.0

/* ***** BOUNDARY NODES ***** */

Number of Boundary Nodes: 4

Description: INLET BOUNDARY

Node Number: 1

Node Type: 0

Initial Pressure (in w.g.): 0.0

Pressure Function I.D.: 0

Initial Temperature (F): 60.0

Temperature Function I.D.: 0

Elevation (ft): 0.0

Description: FIRE INLET

Node Number: 2

Node Type: 1

Initial Pressure (in w.g.): 0.0

Pressure Function I.D.: 0

Initial Temperature (F): 60.0

Temperature Function I.D.: 0

Elevation (ft): 0.0

Description: FIRE OUTLET

Node Number: 3
Node Type: 1
Initial Pressure (in w.g.): 0.0
Pressure Function I.D.: 0
Initial Temperature (F): 60.0
Temperature Function I.D.: 0
Elevation (ft): 0.0

Description: EXHAUST BOUNDARY

Node Number: 4
Node Type: 0
Initial Pressure (in w.g.): -1.0
Pressure Function I.D.:
Initial Temperature (F): 60.0
Temperature Function I.D.:
Elevation (ft): 0.0

/* ***** ROOMS ***** */

Number of Rooms: 0

/* ***** BRANCHES AND DAMPERS ***** */

Number of Branches: 2

Number of Control Dampers: 0

Description: INLET DUCT

Branch Number: 1
Upstream Node Number: 1
Downstream Node Number: 3
Initial Flow (cfm): 2000.0
Flow Area (ft²): 3.14
Duct Length (ft): 10.0
Component Type: D
Pressure Differential (in w.g.): 0.0
Blower Curve I.D.:
Forward Resistance Coefficient: 1.60534
Reverse Resistance Coefficient: 1.60534
Filter Type:
Duct Height (ft):
Floor Area (ft):
Heat Transfer Option: 0
Roughness Height (m):
Bend Angle (rad):
Bend Radius (m):
Drag Coefficient Factor:
Shape Indicator:

Description: EXHAUST DUCT

Branch Number: 2

Upstream Node Number: 2
Downstream Node Number: 4
Initial Flow (cfm): 2000.0
Flow Area (ft²): 3.14
Duct Length (ft): 10.0
Component Type: D
Pressure Differential (in w.g.): 0.0
Blower Curve I.D.:
Forward Resistance Coefficient: 1.60534
Reverse Resistance Coefficient: 1.60534
Filter Type:
Duct Height (ft):
Floor Area (ft):
Heat Transfer Option: 0
Roughness Height (m):
Bend Angle (rad):
Bend Radius (m):
Drag Coefficient Factor:
Shape Indicator:

/* ***** FILTERS ***** */

Number of Filter Types: 0

/* ***** PARTICULATE SPECIES ***** */

Number of Particulate Species: 0

/* ***** GAS SPECIES ***** */

Number of Gas Species: 0

/* ***** BLOWER CURVES ***** */

Number of Blower Curves: 0

/* ***** PRESSURE FUNCTIONS ***** */

Number of Pressure Functions: 0

/* ***** TEMPERATURE FUNCTIONS ***** */

Number of Temperature Functions: 0

/* ***** ENERGY FUNCTIONS ***** */

Number of Energy Functions: 0

/* ***** MASS FUNCTIONS ***** */

Number of Mass Functions: 0

/* ***** PARTICULATE SPECIES FUNCTIONS ***** */

Number of Particulate Species Functions: 0

/* ***** GAS SPECIES FUNCTIONS ***** */

Number of Gas Species Functions: 0

/* ***** TIME DOMAINS ***** */

Time Domain: 1

Dtmax (s): 0.5

Tend (s): 100.0

Edint (s): 1.0

Time Domain: 2

Dtmax (s): 1.0

Tend (s): 3600.0

Edint (s): 10.0

/* ***** ***** */

/* ***** FIRIN MODULE ***** */

/* ***** ***** */

IFIRIN flag: 0

Inlet Node Number: 2

Outlet Node Number: 3

Third Node Number 0

Inlet Branch Number: 1

Inlet Branch Diameter (ft): 2.0

Outlet Branch Number: 2

Outlet Branch Diameter (ft): 2.0

Third Branch Number:

Third Branch Diameter (ft):

Third Branch Elevation (ft):

Third Branch Flow Direction:

/* ***** RUN CONTROL DATA ***** */

Fire Duration (s): 3600.0

Fire Start Time (s): 0.0

Print Interval (time steps): 50

/* ***** HEAT SINKS ***** */

Number of Heat Sinks: 0

/* ***** POWDER CONTAINERS ***** */

Number of Powder Containers: 0

/* ***** CLOSED LIQUID CONTAINERS ***** */

Number of Closed Liquid Containers: 0

/* ***** OPEN LIQUID CONTAINERS ***** */

Number of Open Liquid Containers: 0

/* ***** BURNING LIQUIDS ***** */

Number of Burning Liquids: 0

/* ***** BURNING SOLIDS ***** */

Number of Burning Solids: 0

/* ***** HEATED SURFACES ***** */

Number of Heated Surfaces: 0

/* ***** BURNING METALS ***** */

Number of Burning Metals: 0

/* ***** FIRE SOURCE DATA ***** */

Ignition Energy Flag: 1

0=Burning Order

1=Ignition Energy

2=Burning Rate

Maximum Burning Order: 2

Burning Order: 1

Combustible 1 Fuel Mass (lbm):

Surface Area (ft²):

Combustible 2 Fuel Mass (lbm):

Surface Area (ft²):

Combustible 3 Fuel Mass (lbm):

Surface Area (ft²):

Combustible 4 Fuel Mass (lbm):

Surface Area (ft²):

Combustible 5 Fuel Mass (lbm):

Surface Area (ft²):

Combustible 6 Fuel Mass (lbm): 20.0

Surface Area (ft²): 6.0

Combustible 7 Fuel Mass (lbm): 4.0

Surface Area (ft²): 1.5

Combustible 8 Fuel Mass (lbm):

Surface Area (ft2):
Combustible 9 Fuel Mass (lbm):
Surface Area (ft2):

Burning Order: 2
Combustible 1 Fuel Mass (lbm):
Surface Area (ft2):
Combustible 2 Fuel Mass (lbm):
Surface Area (ft2):
Combustible 3 Fuel Mass (lbm): 4.0
Surface Area (ft2): 2.0
Combustible 4 Fuel Mass (lbm):
Surface Area (ft2):
Combustible 5 Fuel Mass (lbm): 150.0
Surface Area (ft2): 48.0
Combustible 6 Fuel Mass (lbm): 250.0
Surface Area (ft2): 35.0
Combustible 7 Fuel Mass (lbm): 5.75
Surface Area (ft2): 4.0
Combustible 8 Fuel Mass (lbm):
Surface Area (ft2):
Combustible 9 Fuel Mass (lbm):
Surface Area (ft2):

/* ***** USER DEFINED FUELS ***** */

/* ***** USER DEFINED MATERIALS ***** */

/* ***** FIRE COMPARTMENT DATA ***** */

Length (ft): 40.0
Width (ft): 40.0
Height (ft): 13.0
Ceiling Thickness (ft): 1.0
Wall Thickness (ft): 1.0
Floor Thickness (ft): 1.0
Ceiling Material: 1
Wall Material: 1
Floor Material: 1
Number of Additional Flow Paths:
Compartment Temperature (F): 60
Compartment Pressure (in w.g.): -0.55001
Inlet Vent Elevation (ft): 13.0
Outlet Vent Elevation (ft): 13.0
Flame Base Elevation: 0.00
Floor Temperature (F): 60.0
Ceiling Temperature (F): 60.0
Wall Temperature (F): 60.0

/* ***** ADDITIONAL FLOW PATHS ***** */

Number of Flow Paths: 0

APPENDIX B

MACCS INPUT & OUTPUT

76	INCPARTS01	0.8	(JAN WELTON AFTER JONES, 1986)
	SET DEPOSITION DATA BLOCK, LOADED BY INPUT, STORED IN /INCPARTS/		
	NUMBER OF PARTICLE SIZE GROUPS		
77	INCPARTS01	1	DEPOSITION VELOCITY OF EACH PARTICLE SIZE GROUP (CM/S)
78	INCPARTS01	0.81	(VALUE SELECTED BY S. AGRESTA, INC)
	DISPERSION PARAMETER DATA BLOCK, LOADED BY INPUT, STORED IN /INCPARTS/		
	SIGMA = A X + B WHERE A AND B VALUES ARE FROM TANER AND GIL (1987)		
	LINEAR TERM OF THE EXPRESSION FOR SIGMA-Y, 6 STABILITY CLASSES		
	STABILITY CLASS: A	0	C
		0	E
		0	F
79	INCPARTS01	0.3658	0.2751
		0.2009	0.1476
		0.1046	0.0722
	EXPONENTIAL TERM OF THE EXPRESSION FOR SIGMA-Y, 6 STABILITY CLASSES		
	STABILITY CLASS: A	0	C
		0	E
		0	F
80	INCPARTS01	.9051	.9051
		.9051	.9051
	LINEAR TERM OF THE EXPRESSION FOR SIGMA-Z, 6 STABILITY CLASSES		
	STABILITY CLASS: A	0	C
		0	E
		0	F
81	INCPARTS01	2.5E-4	1.9E-3
		.2	.3
		.4	.2
	EXPONENTIAL TERM OF THE EXPRESSION FOR SIGMA-Z, 6 STABILITY CLASSES		
	STABILITY CLASS: A	0	C
		0	E
		0	F
82	INCPARTS01	2.125	1.4021
		.8545	.6532
		.6021	.4020
	LINEAR SCALING FACTOR FOR SIGMA-Y FUNCTION, NORMALLY 1		
83	INCPARTS01	1.	
	LINEAR SCALING FACTOR FOR SIGMA-Z FUNCTION, NORMALLY 1		
	INITIATOR FACTOR DATA BLOCK, LOADED BY INPUT, STORED IN /INCPARTS/		
	TIME BASE FOR EXPRESSION FACTOR (SECONDS)		
84	INCPARTS01	1.27	
	INITIATOR TIME (SECONDS)		
	INITIATOR BREAK POINT FOR FORMULA CHANGE (SECONDS)		
85	INCPARTS01	3400.	(1 HOUR)
	INITIATOR BREAK POINT FOR FORMULA CHANGE (SECONDS)		
86	INCPARTS01	3400.	(1 HOUR)
	EXPONENTIAL EXPRESSION FACTOR NUMBER 1		
87	INCPARTS01	0.2	
	EXPONENTIAL EXPRESSION FACTOR NUMBER 2		
88	INCPARTS01	3400.	

- TIME OF RELEASE FOR EACH PLUME (S AFTER SIMAN)
- A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS

102 ROPRELATION 0.

- PARTICLE SIZE DISTRIBUTION OF EACH NUCLEUS GROUP
- YOU MUST SPECIFY A COLUMN OF DATA FOR EACH OF THE PARTICLE SIZE GROUPS

103 ROPSD1ST001	1.
104 ROPSD1ST002	1.
105 ROPSD1ST003	1.
106 ROPSD1ST004	1.
107 ROPSD1ST005	1.
108 ROPSD1ST006	1.
109 ROPSD1ST007	1.
110 ROPSD1ST008	1.
111 ROPSD1ST009	1.

- INVENTORY (PU-Z99 only - 26.5 Ci)
- INVENTORY (PU-Z99 only - 26.5 Ci)

112	NUCINV(001)	CD-58	0.0E+00	172	NUCINV(001)	5.0E-02	• UNITS
113	NUCINV(002)	CD-60	0.0E+00		• RELEASE FRACTIONS FOR ISOTOPE GROUPS IN RELEASE		
114	NUCINV(003)	CR-65	0.0E+00		• ISOTOPE GROUPS:		
115	NUCINV(004)	CR-65M	0.0E+00		NE/UR 1 CS TE SR RU LA CE BA		
116	NUCINV(005)	CR-67	0.0E+00	173	NUCINV(001) 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0		
117	NUCINV(006)	CR-68	0.0E+00		OUTPUT CONTROL DATA BLOCK, LOADED BY INPUT, STORED IN /STOPPE/, /AIRD		
118	NUCINV(007)	CR-68	0.0E+00		FLAG TO INDICATE THAT THIS IS THE LAST PROGRAM IN THE SERIES TO BE RUN		
119	NUCINV(008)	SR-69	0.0E+00		NAME OF THE NUCLIDE TO BE LISTED ON THE DISPERSION LISTINGS		
120	NUCINV(009)	SR-69	0.0E+00	174	OCCIDATION001 .FALSE. (SET THIS VALUE TO .TRUE. TO SKIP EARLY AND CHRONIC)		
121	NUCINV(010)	SR-91	0.0E+00	175	OCCIDATION001 1		
122	NUCINV(011)	SR-92	0.0E+00		NAME OF THE NUCLIDE TO BE LISTED ON THE DISPERSION LISTINGS		
123	NUCINV(012)	T-90	0.0E+00	176	OCCIDATION001 PU-Z99		
124	NUCINV(013)	T-91	0.0E+00		METEOROLOGICAL SAMPLING DATA BLOCK		
125	NUCINV(014)	T-92	0.0E+00		METEOROLOGICAL SAMPLING OPTION CODE:		
126	NUCINV(015)	T-93	0.0E+00		MET100 = 1, USER SPECIFIED DAY AND HOUR IN THE YEAR (FROM NET FILE),		
127	NUCINV(016)	28-95	0.0E+00		2, WEATHER CATEGORY BIN SAMPLING,		
128	NUCINV(017)	28-97	0.0E+00		3, 120 HOURS OF WEATHER SPECIFIED ON THE ATMOS USER INPUT FILE,		
129	NUCINV(018)	BB-95	0.0E+00		4, CONSTANT NET (BOUNDARY WEATHER USED FROM THE START),		
130	NUCINV(019)	BB-99	0.0E+00		5, STRATIFIED RANDOM SAMPLES FOR EACH DAY OF THE YEAR.		
131	NUCINV(020)	TC-99M	0.0E+00	177	WHEATOOD001 4 (BOUNDARY WEATHER USED FROM THE START)		
132	NUCINV(021)	RU-103	0.0E+00		LAST SPATIAL INTERVAL FOR MEASURED WEATHER		
133	NUCINV(022)	RU-105	0.0E+00	178	WOLINSPOD01 0		
134	NUCINV(023)	RU-106	0.0E+00		BOUNDARY WEATHER MIXING LAYER WEIGHT		
135	NUCINV(024)	RU-107	0.0E+00		WHEATOOD001 1000. (METERS)		
136	NUCINV(025)	SR-127	0.0E+00		BOUNDARY WEATHER STABILITY CLASS INDEX		
137	NUCINV(026)	SR-129	0.0E+00		W21BOST001 6 (F-STABILITY)		
138	NUCINV(027)	TE-127	0.0E+00		BOUNDARY WEATHER RAIN RATE		
139	NUCINV(028)	TE-127M	0.0E+00				
140	NUCINV(029)	TE-129	0.0E+00				
141	NUCINV(030)	TE-129M	0.0E+00				
142	NUCINV(031)	TE-131M	0.0E+00				
143	NUCINV(032)	TE-132	0.0E+00				
144	NUCINV(033)	TE-133	0.0E+00				
145	NUCINV(034)	TE-132	0.0E+00				
146	NUCINV(035)	TE-133	0.0E+00				
147	NUCINV(036)	TE-134	0.0E+00				
148	NUCINV(037)	TE-135	0.0E+00				
149	NUCINV(038)	TE-133	0.0E+00				
150	NUCINV(039)	TE-135	0.0E+00				
151	NUCINV(040)	CS-134	0.0E+00				
152	NUCINV(041)	CS-136	0.0E+00				
153	NUCINV(042)	CS-137	0.0E+00				
154	NUCINV(043)	CS-137	0.0E+00				
155	NUCINV(044)	BA-140	0.0E+00				

181 K2ND0001 0. (IN/M/S)
 * BOUNDARY WEATHER WIND SPEED
 182 K2ND0001 1. (IN/S)
 * START DAY IN THE YEAR FOR THE SINGLE WEATHER SEQUENCE
 183 K2ND0001 157 (START TIME FOR PEAK ECONOMIC COST OF SAMPLE PROBLEM
 * START HOUR IN THE DAY FOR THE SINGLE WEATHER SEQUENCE
 184 K2ND0001 10 (START TIME FOR PEAK ECONOMIC COST OF SAMPLE PROBLEM
 ***** TERMINATOR RECORD ENCOUNTERED -- END OF BASE CASE USER INPUT *****

 USER INPUT PROCESSING SUMMARY - BASE CASE
 NUMBER OF RECORDS READ - 371
 NUMBER OF BLANK OR COMMENT RECORDS READ - 206
 NUMBER OF TERMINATOR RECORDS - 1
 NUMBER OF RECORDS PROCESSED - 184
 NUMBER OF PROCESSED RECORDS DUPLICATED - 0
 NUMBER OF PROCESSED RECORDS SORTED - 184

1 RELEASED INVENTORY OF ALL PLUMES

CD-53 0.00E+00
 CD-60 0.00E+00
 CR-65 0.00E+00
 CR-65N 0.00E+00
 CR-67 0.00E+00
 CR-90 0.00E+00
 CR-96 0.00E+00
 SR-69 0.00E+00
 SR-90 0.00E+00
 SR-91 0.00E+00
 SR-92 0.00E+00
 Y-90 0.00E+00
 Y-91 0.00E+00
 Y-92 0.00E+00
 Y-93 0.00E+00
 ZR-92 0.00E+00
 ZR-97 0.00E+00
 SR-95 0.00E+00
 RZ-99 0.00E+00
 TC-99W 0.00E+00
 RU-103 0.00E+00
 RU-105 0.00E+00
 RU-106 0.00E+00
 RU-105 0.00E+00
 SR-127 0.00E+00
 SR-127 0.00E+00
 TE-127 0.00E+00
 TE-127W 0.00E+00
 TE-129 0.00E+00
 TE-129W 0.00E+00
 TE-131W 0.00E+00
 TE-132 0.00E+00
 Y-131 0.00E+00
 Y-132 0.00E+00
 Y-133 0.00E+00
 Y-134 0.00E+00

USER INPUT IS READ FROM UNIT 25
 RECORD IDENTIFIER FIELDS 11 CHARACTERS LONG ARE EXPECTED.
 THE FIRST 100 COLUMNS OF EACH INPUT RECORD ARE PROCESSED.
 THE MAXIMUM NUMBER OF IDENTIFIER RECORDS THAT MAY BE SAVED AS THE BASE CASE IS

RECORD
NUMBER

RECORD
 * NAMES early input file, CRASIC facility
 1 K2ND0001 'Maximum possible fire scenario'
 * FLAG TO INDICATE THAT THIS IS THE LAST PROGRAM IN THE SERIES TO BE RUN
 * DISPERSION MODEL OPTION CODE: (SET THIS VALUE TO .TRUE. TO SKIP CRASIC)
 2 K2ND0001 .TRUE.
 * 0 DISPERSION MODEL OPTION CODE: 1 * STRAIGHT LINE
 * 2 * WIND-SHIFT WITH ROTATION
 * 3 * WIND-SHIFT WITHOUT ROTATION
 3 K2ND0001 1 (*STRAIGHT LINE PLUME)
 * NUMBER OF FINE GRID SUBDIVISIONS USED BY THE MODEL
 4 K2ND0001 7 (3, 5 OR 7 ALLOWED)
 * LEVEL OF DEMS OUTPUT REQUIRED. NORMAL RUNS SHOULD SPECIFY ZERO
 5 K2ND0001 0 (TURN OFF THE DEMS PRINT)
 * LOGICAL FLAG SIGNIFYING THAT THE BREAKDOWN OF RISK BY WEATHER CATEGORY
 * SIN ACE TO BE PRESENTED TO SHOW THEIR RELATIVE CONTRIBUTION TO THE RISK
 * RISKIN
 6 K2ND0001 .FALSE.
 * FLAG INDICATING IF WIND-ROSES FROM ATROS ARE TO BE OVERLAPPED
 7 K2ND0001 .FALSE. (USE THE WIND ROSES CALCULATED FOR EACH WEATHER SIN)

10	POPULATION DISTRIBUTION DATA BLOCK, LOADED BY INDOCA, STORED IN /IN/INDA	19	SEISMOSTIM1 1.3025 (2.11 DAYS)
11	POPULATION DENSITY UNIFORM	20	EVACUATION ZONE DATA BLOCK, LOADED BY INDOCA, STORED IN /IN/INDA, /EVACUATION/
12	POPULATION 1 (SPATIAL, INTERNAL AT WHICH POPULATION RESIDES)	21	SPECIFIC DESCRIPTION OF THE EMERGENCY RESPONSE SCENARIO BEING USED
13	POPULATION1 1000. (POPULATION DENSITY (PEOPLE PER SQUARE KILOMETER))	22	THE TYPE OF WEIGHTING TO BE APPLIED TO THE EMERGENCY RESPONSE SCENARIO
14	CRASH DEFINITIVE DATA BLOCK, LOADED BY INDOCA, STORED IN /IN/INDA	23	YOU MUST SUPPLY A VALUE OF 'TIME' OR 'PEOPLE'
15	NUMBER OF CRASHES DEFINED FOR HEALTH EFFECTS	24	ENVIRONMENT 'PEOPLE'
16	CRASHDEFIN1 5	25	WEIGHTING FUNCTION APPLICABLE TO THIS SCENARIO
17	VALUES OF THE CRASHES DEFINED FOR HEALTH EFFECTS	26	EVACUATION 0.0
18	CRASHDEFIN1 'NULL', 'EMERGENCY', 'LURK', 'RED HABIT', 'WHITE SHIR'	27	LAST RISE IN THE HIGHEST ZONE
19	SHELTERING AND EXPOSURE FACTORS, LOADED BY INDOCA, STORED IN /IN/INDA	28	EVACUATION 0. ONE FOR EACH PROTECTION FACTOR ARE SUPPLIED.
20	THREE VALUES OF EACH PROTECTION FACTOR ARE SUPPLIED.	29	EVACUATION 0. ONE FOR EACH PROTECTION FACTOR.
21	ONE FOR EACH TYPE OF ACTIVITY:	30	EVACUATION 0. ONE FOR EACH PROTECTION FACTOR.
22	ACTIVITY TYPE:	31	SHELTER AND RELOCATION ZONE DATA BLOCK, LOADED BY INDOCA, STORED IN /IN/INDA
23	1 - EMERGENCY WHILE INDOCA	32	TIME TO TAKE SHELTER IN THE INNER SHELTER ZONE (SECONDS FROM ORLAND)
24	2 - NORMAL ACTIVITY IN SHELTERING AND EVACUATION ZONE	33	TIME 15.0 (INNER SHELTER ZONE)
25	3 - SHELTERED ACTIVITY	34	SHELTER IMMEDIATE IN THE INNER SHELTER ZONE (SECONDS FROM ORLAND)
26	CLOUD SHELTERING FACTOR	35	TIME 15.0 (INNER SHELTER ZONE)
27	SITE 05.70. SEE SEE 2700	36	LAST RISE OF THE OUTER SHELTER ZONE
28	SHELTERING 6.7 0.5 0.65 0.6 0.7	37	TIME 15.0 (OUTER SHELTER ZONE)
29	EMERGENCY NORMAL SHELTER	38	SHELTER IMMEDIATE IN THE OUTER SHELTER ZONE (SECONDS FROM ORLAND)
30	SECSFACTOR 1.0 1.0 1.0 • NO REDUCTION FACTORS	39	TIME 15.0 (OUTER SHELTER ZONE)
31	PROTECTION FACTOR FOR INSULATION	40	TIME TO TAKE SHELTER IN THE OUTER SHELTER ZONE (SECONDS FROM ORLAND)
32	SEISMOSTIM1 1.0 1.0 1.0	41	SHELTER IMMEDIATE IN THE OUTER SHELTER ZONE (SECONDS FROM ORLAND)
33	CREATING RATE (CRITICAL METERS PER SECOND)	42	TIME 15.0 (OUTER SHELTER ZONE)
34	SEISMOSTIM1 3.4E-4 3.4E-4 3.4E-4	43	TIME OF THE EMERGENCY PULSE (SECONDS FROM PLATE AERIAL)
35	SKIN PROTECTION FACTOR	44	TIME 15.0 (OUTER SHELTER ZONE)
36	SEISMOSTIM1 1.0 1.0 1.0	45	Critical time for reduction necessary
37	GROUND SHELTERING FACTOR	46	SHIELDING 'SHIELD'
38	SITE 05.70. SEE SEE 2700	47	OUT SPOT RELOCATION TIME (SECONDS FROM PLATE AERIAL)
39	SHELTERING 0.25 0.1 0.2 0.2 0.1	48	SHIELDING 7200. (NO RELOCATION)
40	SECSFACTOR1 1.0 1.0 1.0	49	INTERNAL RELOCATION TIME (SECONDS FROM PLATE AERIAL)
41	REINSPECTION INSULATION INSUL CONCENTRATION COEFFICIENT (LAYERED)	50	SHIELDING 7200. (NO RELOCATION)
42	REINS1 = 1.E-4-15 APPROPRIATE FOR MECHANICAL INSUSPENSION BY VEHICLE	51	SHIELDING 7200. (NO RELOCATION)
43	REINS2 = 2.11 DAYS CRASHES 1.E-6 TO DECAY IN ONE WEEK TO 1.E-5. THE V	52	SHIELDING 7200. (NO RELOCATION)
44	IS OF RECORD USED IN THE FIRST TERM OF THE LONG-TERM INSUSPENSION (LAYERED)	53	OUT SPOT RELOCATION TIME (SECONDS FROM PLATE AERIAL)
45	REINS1 = 1.E-4 (INSUSPENSION 15 TURNED ON)	54	SHIELDING 0.5 (NO SPOT RELOCATION TIME (SECONDS FROM PLATE AERIAL))
46	INSUSPENSION CONCENTRATION COEFFICIENT HALF-LIFE (SECS)		

卷之三

卷之三

三

卷之三

卷之三

THE JOURNAL OF CLIMATE

卷之三

CHINESE PAPERS, 1890-91

卷之三

THE BIBLE

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

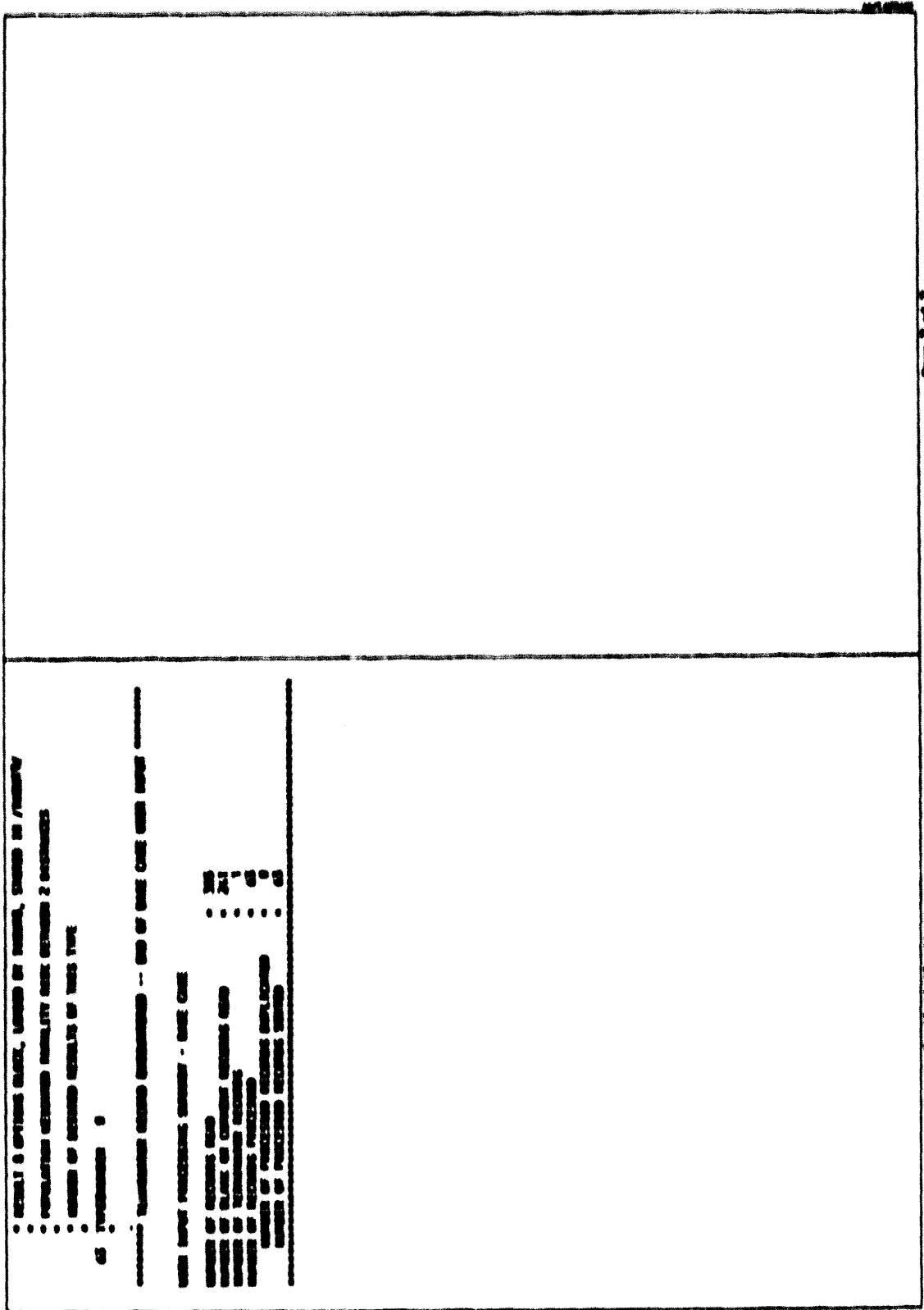
卷之三

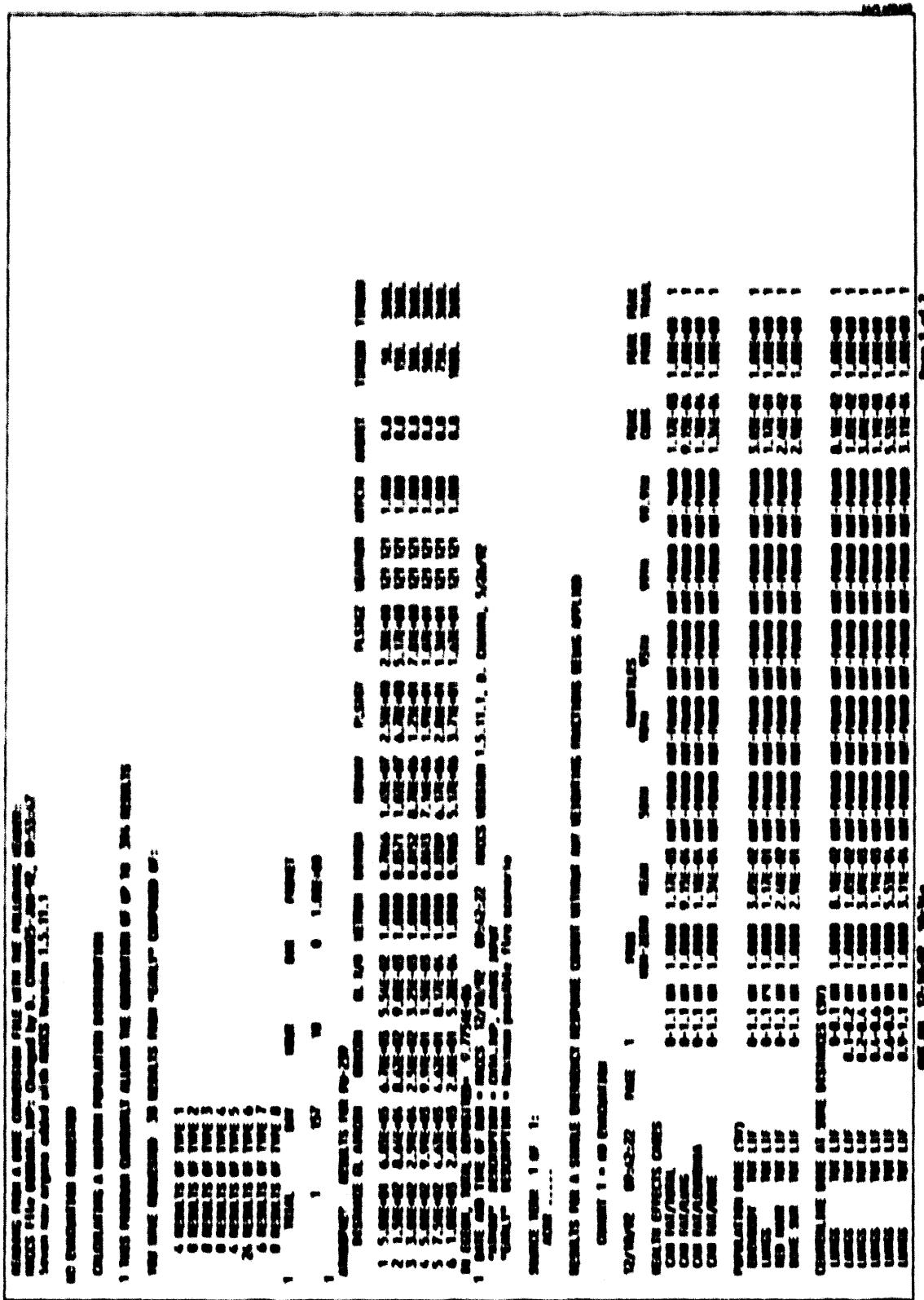
卷之三

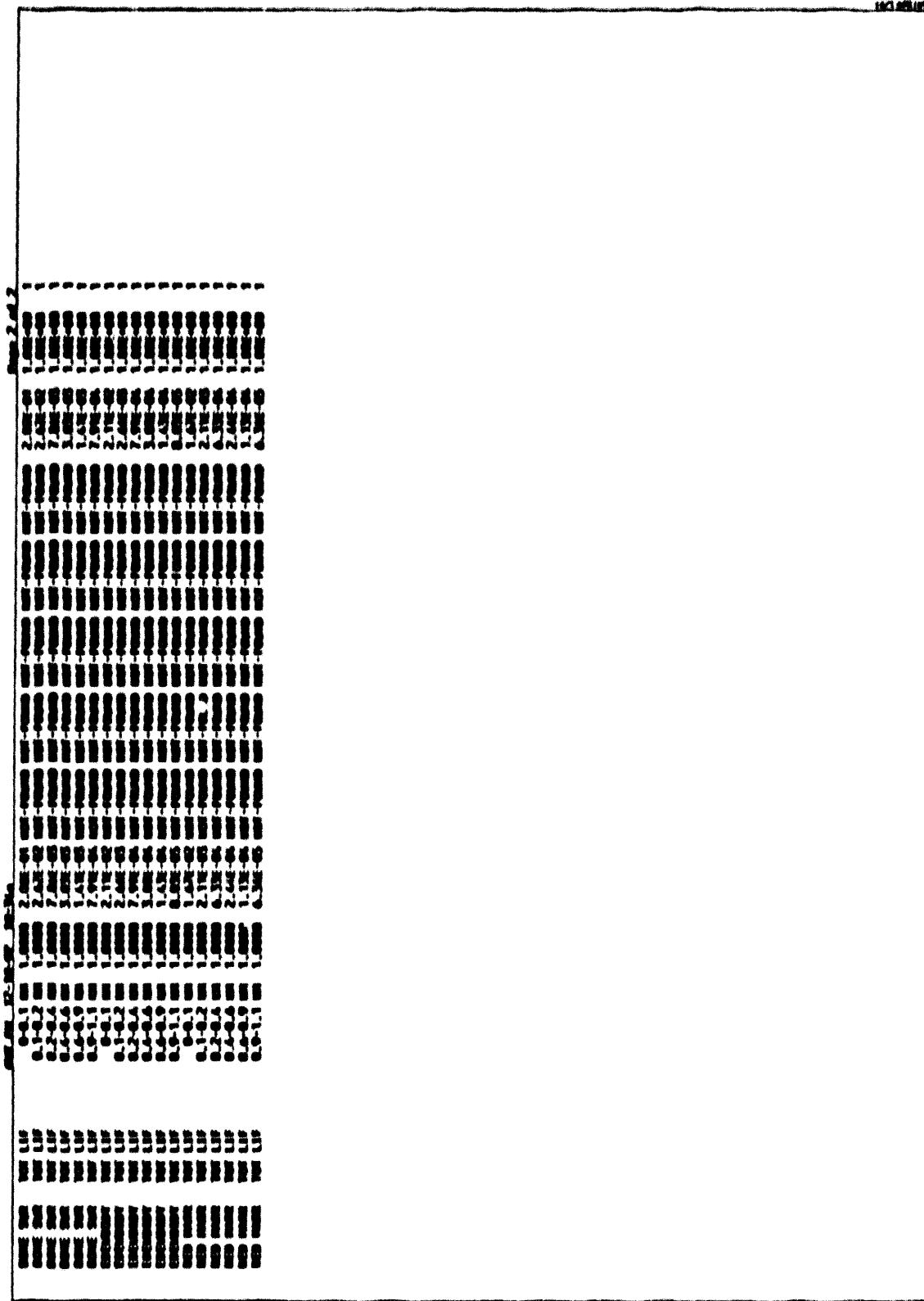
Remove all debris, 2 mm or more, from around the 2 trees.

卷之三

i


卷之三


卷之三


卷之三

卷之三

卷之三

DISTRIBUTION:

6400 N. R. Ortiz
6449 M. P. Bohn
6449 E. W. Klamerus (3)
6449 J. A. Lambright
6523 L. F. Restrepo
7942 J. C. Dawson (3)
8523-2 Central Technical Files
7141 Technical Library (3)
7151 Technical Publications
7613-2 Document Processing DOE/OSTI (10)

S. B. Ross
Science & Engineering Associates
6100 Uptown Blvd. NE
Suite 700
Albuquerque, NM 87110
(2 Copies)

**DATE
FILMED**

12/7/93

END

