L A-SUB—-9F-/#/
QUANTICS incorporated

801 Springddle Drive, Exton, PA 19341 « (610) 993-9993

UNCLASSIFIED

Prototype Integration of the Joint Munitions
Assessment and Planning Model
with the OSD Threat Methodology

June 1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

QM 29:94
Prepared for: Prepared by:
Los Alamos National Laboratory Roger Y. S. Lynn
Military Systems Analysis J. J. Bolmarcich
and Simulation Group (A-5)
Los Alamos, New Mexico 87545 Under Contract No.
9-X53-1599F-1

UNCLASSIFIED

MASTER

S | (;z%ff
quantitative guidance for decision making"
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

OB, e, e IS P

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

QUANTICS incorporated

801 Springdale Drive, Exton, PA 19341 e (610) 993-9993

UNCLASSIFIED

MEMORANDUM (QM 29:94)

30 June 1994

Contract No. 9-X53-1599F-1

To: Los Alamos National Laboratory
Military Systems Analysis and Simulation Group (A-5)
Los Alamos, New Mexico 87545
Attn: Mr. Douglas P. Anson

From:

Subject:

Roger Y. S. Lynn and J. J. Bolmarcich

Prototype Integration of the Joint Munitions Assessment and

Planning Model with the OSD Threat Methodology

The purpose of this Memorandum is to propose
a prototype procedure which the Office of Muni-
tions might employ to exercise, in a supportive
joint fashion, two of its High Level Conventional
Munitions Models, namely, the OSD Threat Meth-
odology and the Joint Munitions Assessment and
Planning (JMAP) model.

Reference [a] describes the OSD Threat Meth-
odology as comprising two parts: First, the OSD
Threat Split Model, running within the R:BASE
database manager, has the job of estimating how all
types of enemy targets in the scenario will likely
end up being killed by all types of "friendly" forces
put there to combat them. And second, the OSD
Threat Model (described in detail in reference [b]),
running as a stand-alone application, estimates the
munitions stockpiles needed to let the war turn out
to match the OSD Threat Split Model estimates.
Actually, the Threat Model prudently overestimates
war reserve stockpiles by determining munitions
both for expenditures and for safety stocks. These
safety stocks take the form of the non-expended
portions of munitions loadouts which are needed to

assure that rounds are at the right place at the right
time. Both Models consider time only in the aggre-
gate; they can be considered independent of time in
comparison to dynamic combat models.

JMAP, as described in references [c], [d], and
[e], provides a means to optimize the allocation of
munitions and platforms (shooters) to targets con-
sistent with some user designated goal priorities.
JMAP is a means of trading-off some munitions for
others while applying hard constraints to munitions
available and imposing specific goals on munition
usage, target kill, shooter attrition, and costs.
JMAP is basically designed to show how to kill the
most scenario targets while consuming the fewest
dollars from the existing investments in stocks of
munitions and shooters.

The joint application of JMAP and the OSD
Threat Methodology provides a tool to optimize
munitions stockpiles. From JMAP's point of view,
the Threat Methodology can help it work more
realistically with stockpile limits because in war-
fare not all of a stockpile can be expended at the

UNCLASSIFIED

‘quantitative guidance for decision making”

A £ Mt R e Sl AR

A YA LN AT O SR 4

SO vl AR eV

UNCLASSIFIED

enemy and the optimal shooter/muntion combina-
tion may not acquire each target. The Threat Mod-
el brings to JMAP the ability to consider the cost of
all munitions needed to support the scenario, the
expenditures plus safety stocks; JMAP can thus be
made to operate on whole stockpiles instead of just
on expenditures. From the Threat Methodology
point of view JMAP gives it a way to trade-off one
munition for another. JMAP supplies the ability to
improve the allocation of shooters and munitions to
targets in such a way as to reduce cost while meet-
ing goals priorities concerning kills and attrition.
JMAP can also force minimum expenditures of a
munition type as well as limit expenditures of
munitions which can no longer be obtained.

To make the subject prototype integration man-
ageable, we modify JMAP's Version 1.0 Production
formulation of reference [e]; we use the data from
the Maritime Prototype of reference [d], filling in
data gaps using the LANL MRC-West database;
and we employ the multi-objective linear goal pro-
gramming solver of Schniederjans utilized by the
Mobile Hard Prototype of reference [c] as well as
by the Maritime Prototype.

The joint application idea discussed in this

minimum and maximum rates of expenditure to
aggregate expenditure constraints. We also add to
JMAP a set of upper and lower constraints on the
number of targets of each type a particular shooter
type can kill; this is a critical output of the Threat
Methodology. We privilege the Threat Methodo-
logy this way because it has passed both LANL's
technical (references [f] and [g]) and the OM's util-
ity (reference [h]) evaluations. We also suspend the
quickest-kill munition selection within the Threat
Methodlogy so that it can initialize JMAP properly.

The JIMAP/Threat Pair works fine when JMAP
is operated as originally designed, that is, when
JMAP is free to make any allocation of shooter/
munition combination to targets; in this case all
targets turn out to be taken by aircraft with JMAP
optimizing the allocation of aircraft/munition
combinations to target type. The Pair also works
fine when the minimal Threat Methodology shoot-
er/target allocation constraint is applied; Exhibit 0
displays the stockpile preferred by the JMAP/
Threat Pair in this constrained case as compared to
the now robust stockpile produced by the Threat
Methodology alone. Whereas the Threat Methodo-
logy spreads out the combat activity over all shoot-
ers and munitions brought into the scenario, the

memorandum involves the cyclic
application of JMAP and the OSD
Threat Methodology until a solution
emerges. The procedure is: (1) allow
the OSD Threat Methodology: (a) to
initialize the allocation of shooter/
munition combinations to targets, (b)
to then generate a set of munitions
expenditures, and (c) to then calculate
the necessary safety stocks needed to
support those expenditures; (2) invoke
JMAP to apply constraints after factor-
ing JMAP's munition costs to include
the cost of the safety stocks — JMAP
will then produce a more cost-efficient
allocation; (3) feed this new allocation
back to the Threat Model and let it re-
calculate the concomitant safety
stocks, and (4) repeat steps (2) and (3)
until a stable solution obtains.

To make this process work
smoothly, we need to modify the for-
mulation of JIMAP Version 1.0 We re-
move the remaining time considera-
tions from Version 1.0 by converting

Munitions Stockpile Solution Comparison

MK-84 (n105)
IR Maverick
Walleye 1DL
Walleys2 DL [R5

LGB-82 J:
Lop-on |
ee-a4 [:

Srppr (129)

Harpoon AGM]

MKR-48 MOD 4

EXHIBIT 0

Threat Methodology Original |l JMAPThreat Parr

UNCLASSIFIED

<u>

LS S T LRI Sl M AT I S R Pt Pt CAn T AP

UNCLASSIFIED

JMAP/Threat Pair concentrates combat activity
onto specific shooter/munition combinations.

You can see that submarines are forced to kill
some minimum number of targets, which are then
most efficiently taken with Harpoon and not with
TASM or torpedoes. Surface ships are also forced
to kill some minimum number of targets, which are
then most efficiently taken with Harpoon and not
TASM. Airplanes handle the remaining targets,
which are then most efficiently taken with Mk-84
(shown in units of 10) and, so it seems, Skipper
(shown in units of 2). But the allocation to Skipper
is by forcing 450 expenditures (as in reference [d])
which translates into Exhibit 0's recommended
stockpile of 871. The JMAP/Threat Pair also works
fine when JMAP is constrained to make exactly the
Threat Methodology's allocation of shooters to
targets but with the choice of munition free.

However, when the Pair is partially constrained
in this allocation, we have sometimes observed
erratic convergence behavior. One particular erratic
behavior pattern is the bi-stable solution; this is
one which oscillates alternatively from one type of
allocation to another. We have also observed
multi-stable solutions and other erratic behavior,
including non-convergence. We surmise that con-
vergence to a single solution fails because: (1) the
cost factor changes introduced into each JMAP iter-
ation could be a likely source of the observed mul-
ti-stable solutions from alternative linear goal pro-
gramming runs, and (2) the cumulative effect of
numerical rounding on many thousands of iterative
calculations carried out in both the Threat Model
and in the 181x330 dimensional JMAP linear goal
program could be the other likely source.

The operation of the JMAP/Threat Pair is not as
clean and automatic as we had hoped. Some modi-
fications to our approach might solve these diffi-
culties but we were unable to conduct extensive
tests at the present time. Nevertheless, we believe
there is value to the Pair concept for it provides a
better conventional munitions planning tool than
either model separately. For example, the Pair
could be used to optimize the incremental cost of
adding munitions to existing stockpiles. It would
do this by costing the munitions in existing stock-
piles at zero (encouraging their use) and costing the
additional munitions required in excess of current
stockpiles at the projected buy price (which could
be set to infinity for munitions which were out of

UNCLASSIFIED

production). The Pair could thus provide a conven-
tional munitions fiscal programming tool where
neither of the original models could.

The remainder of this Memorandum comprises
five parts. The first is a description of the structure
and use of the OSD Threat Methodology. The
second is a description of JMAP and its use. The
third discusses the concept of the joint application
of JMAP and the OSD Threat Methodology. The
fourth displays sample output of the joint applica-
tion. The fifth is a summary and epilogue.
Finally, three appendices contain details of the
formulation, data, and computer code.

References

[a] "Final Report for the Task 1 Implementation of the OSD
Threat Methodology on the MRC-West Scenario”, by J. J.
Bolmarcich, Linda C. Thiel, and Elizabeth F. Armold,
QUANTICS incorporated (QM 54:93a), Malvern PA
19355, 21 July 1993 UNCLASSIFIED

[b] "Technical Documentation of the NATO Threat Method-
ology", by J. J. Bolmarcich, M. A. Carchidi, and G. B. Orr,
QUANTICS incorporated (QR 9:91), Malvern PA 19355,
December 1990 UNCLASSIFIED

[c] "Joint Munitions Assessment and Planning Model (JMAP):
A Methodology Developed to Assess Conventional
Munitions Capabilities — Final Report", The Los Alamos
National Laboratory LA-UR-89-3896, 15 November 1989
UNCLASSIFIED {The Mobile Hard Prototype}

[d] "Description of the Maritime Module of the Joint Muni-
tions Assessment and Planning Model (JMAP)", by
'W.L.May, R.L.Bivins, M.L.Stein, and R.C.Gordon III, LA-
UR-92-1868, Military Systems Analysis Group, Los
Alamos National Laboratory, May 1992 UNCLASSIFIED
{The Maritime Prototype}

[e] "JMAP Version 1.0 User Guide", by Alanna Burke and
Kym Kittel, Military Systems Analysis & Simulation
Group, Los Alamos National Laboratory, October 1993
UNCLASSIFIED {Version 1.0 Production Model}

[f] "High Level Conventional Munitions Models: A Technical
Evaluation”, by Douglas P. Anson, A-5:93-183, Military
Systems Analysis & Simulations, Los Alamos National
Laboratory, September 1993 UNCLASSIFIED

[g] “Statistical Analysis of QUANTICS' Threat Model: A
Technical Evaluation”, by Paul Kvam and Rick Picard,
TSA-1, Los Alamos National Laboratory, May 1994
UNCLASSIFIED

{h] "High Level Munitions Models Evaluation: Utility and
User Friendliness", by Jay Mandelbaum, ODASD PR,
November 1993 UNCLASSIFIED

{i] "Estimating Target Overlap for Tank Warfare Sustaina-
bility", by J. J. Bolmarcich, G. B. Orr, and D. M. Pasceri,
QUANTICS incorporated (QR 1:91), Malvern PA 19355,
January 1991 UNCLASSIFIED

<iii>

. em

AR T oL O AR DR IS AR e N

UNCLASSIFIED

1. The Structure and Use of the OSD Threat
Methodology

The purpose of this section is to discuss the
structure and use of the OSD Threat Methodology.
We briefly discuss the basic approach, how the
approach is implemented, which software products
are used, how the methodology is best used, and
what information of potential importance to the
Office of Munitions it can not provide on its own.

The purpose of the OSD Threat Methodology is
to estimate how many munitions of various types
each of the Services need to win a future war.
Because today's war-reserve munitions' stockpiles
were primarily designed to fight a global war that
has not come off, it is only prudent now to redesign
them so as to "right-size" munitions' stockpiles for
more likely future wars. Once this is done, muni-
tions inventory analysts can create an explicit,
feasible plan to manage the transition from the
current stockpiles to the new desired stockpiles.

The basic approach of the OSD Threat Method-
ology to the sizing of munitions' stockpiles is to
achieve robustness through controlled overstock-
ing: If you were fighting a war today, you might
reasonably arrive at the stockpile you need tomor-
row by simply replacing what you expended yester-
day. But if you are not fighting today, then how do
you proceed? The Threat Methodology proceeds by
first assuming: (1) that you view your job as one
of providing a robust stockpile so future command
can improvise in response to the unexpected, and
(2) that you trust future wartime command deci-
sions to take the stockpile you provide, set combat
goals, resolve combat uncertainties as they arise,
and win. The Methodology thus purposely avoids
forecasts of unpredictable combat action details; it
uses skeleton scenarios, general employment con-
cepts, and simple models in order to get the muni-
tions stockpiles roughly right.

The major implementation assumptions and
concepts are: (1) count up all the targets in the sce-
nario, (2) assume shooters kill targets, on average,
in proportion to shooters' TASCFORM™ figures of
merit, and their length of time in scenario, (3) aug-
ment average targets to be killed by munition type
on the basis of past wars' kill variability — for
robustness, (4) assume shooters select munitions
which provide the quickest kill of each target type,
and (5) compute the munitions required to kill X%
of the augmented targets on average, or to kill at

UNCLASSIFIED

least X% of the targets with Y% assurance. For the
prototype application discussed here, we select the
former measure of effectiveness since it is simpler
to implement.

In order to accomplish its job, the OSD Threat
Methodology uses two kinds of software. First,
R:BASE is used: (1) to hold the OSD threat data
base, (2) to allot targets to shooter types, (3) to
select the quickest-kill munition type for a shooter
type to use against a target type, (4) to allocate
overlap and false targets to each munition type's
average target allotment, and (5) to construct input
files for the next piece of software — the OSD
Threat Model — one file for each munition type of
each Service. (QUANTICS has also constructed
specialized WINDOWS-based database editors which
can build and maintain databases similar to that of
the OSD threat database.)

The second piece of software is the OSD Threat
Model itself. Its job is to estimate each munition
type's expenditures needed to kill X% of all
assigned targets. It also estimates the munitions
shooters need "on-board" (up to maximum loads) in
order to have munitions where they are needed
when they are needed (it thus compensates for
munitions' losses through attrition). It balances
initial loads and combat reserves for replenishment
so that X% of targets can be killed on average
based on past wars' analyses of the engagement
variability from shooter to shooter. This leads to a
specific war-reserve stockpile recommendation for
each munition type by Service. The stockpile
recommendation less the estimated number of
rounds expended in killing targets represents the
non-expenditures left over after the war which the
Model says you need as safety stocks to assure that
munitions are in the right place at the right time.

The OSD Threat Model is designed to provide
a basic combat load to each shooter and then to
plan to replenish the highest expenders who might
exceed their basic load. The Model cannot recom-
mend war reserve stockpiles greater than total
expenditures plus doctrinal basic loads. The Model
is best used when "loadouts + expenditures" are too
expensive or where post-scenario residuals are not
a concern (for example, you expect to rebuild
stockpiles later on in peacetime). You can mimic
this latter situation in a more general context by
packaging up enough scenarios to span one pro-
curement cycle, say two years; the OSD Threat

<1l>

e ——

UNCLASSIFIED

Model will produce sufficient munitions' residuals
to bridge the gap between scenarios' expenditures
and new buys. You might also package up suffi-
cient war and training scenarios to span the life-
cycle of a munition; the Model will then estimate
the total number of munitions of the type needed
until the IOC of its follow-on.

There are several important things that the OSD
Threat Model is not designed to do. First, because
it is "time independent", it cannot assess whether or
not its recommended munitions can be successfully
delivered over time, neither the shooters ability to
shoot it nor the logistics ability to transport it; it
presumes the ability of your force structure to kill
the enemy given enough time. Second, it cannot
assess the relative desirability of buying or selling
munition "A" versus munition "B" when each has
recommended stockpiles which differ from the cur-
rently projected in-bin, neither for inventory
management nor for inventory procurement stra-
tegy; the Model calculates stockpile requirements
without reference to existing inventories. Third, it
cannot force the consumption of an in-bin munition
nor assess any "second best" tradeoffs, neither for
munitions on the same shooter nor for different
munitions on different shooters; however, after you
review the Model's output, you are free to "factor"
existing munitions against the Model's recommend-
ed stockpiles.

In summary, the OSD Threat Methodology
exists to provide a forward-looking munitions' war
reserves stockpile independent of existing inven-
tory. R:BASE is used to invoke simple methods
which embody aggregate time and space consider-
ations and which produce a controlled overestimate
of the number of targets each munition type should
be prepared to kill. The Threat Model is designed
to estimate both munitions' expenditures and non-
expended safety stocks to produce controlled over-
estimate of munitions needed during combat so that
X% of the targets are killed on average.

2. JMAP

The Joint Munitions Assessment Planning
Model (JMAP) is a model designed by LANL to
provide a methodology to enable the OSD Office of
Munitions to do rapid turn-around, first order,
munition trade-off analyses. It applies a linear goal
programming technique to optimally allocate
shooter effort and munitions to targets within the
conflict duration. Mobile Hard Prototype of refer-

UNCLASSIFIED

ence [c] used two overall goal constraints: a cost
goal and a target-kill goal. The cost goal is there to
minimize total munition cost and the kill goal to
maximize the total number of targets killed.

The Maritime Prototype of reference [d] added
fractional kill goals for selected target types and an
attrition goal in order to minimize the total attrition
to shooters. JMAP Version 1.0 (the production
version) of reference [¢] maintains these goals. The
Version 1.0 also maintains the chance constraints
on the number of rounds to kill a target which the
Maritime version introduced. The remainder of our
description refers to JMAP Version 1.0.

JMAP Version 1.0 has three sets of goal con-
straints and five sets of physical constraints. The
three goal constraints are a cost goal, a targets-
killed goal, and a shooters-killed goal. The cost
goal is there to minimize the cost of total munitions
expenditures plus the cost of lost shooters plus the
cost of munitions lost on those lost shooters. For
each target type in each time period there is a goal
constraint on desired fraction of targets killed. For
each shooter type, there is a goal constraint on the
maximum fraction of shooter attrited.

JMAP Version 1.0 has three sets of physical
constraints on munitions. They are (1) upper
bounds on munitions expenditures due to stockpile
availability as incremented by the maximum
amount of munitions which could be produced
within the time interval, (2) upper bounds on
munitions expenditures limited by the operational
rates of fire from shooters, and (3) lower bounds
on munitions expenditures which must be fired due
to doctrinal considerations in each time period, for
example, artillery fired for suppressive effects. All
these munitions constraints are ‘hard' physical con-
straints and must be met.

There are also two sets of physical constraints
on targets: (1) upper bounds on the number of tar-
gets available to be killed, and (2) upper bounds
on certain types of targets to be engaged by certain
munition types due to limitations on operational
availabilities in each time period; this can account
for lost opportunities because of battlefield geo-
metry and maneuver. All these target constraints
are ‘hard' physical constraints and must be met.

Under the restriction that 'hard' physical
constraints must be satisfied, JMAP tries to select

<2>

PSS 2 ANROcs MR

UNCLASSIFIED

munitions for each shooter type in such a way that
the total targets killed is as close to the high target
goal as possible, the total shooter attrition is as
close to the low attrition goal as possible, and the
total cost is as close to the low cost goal as pos-
sible. In this sense, one may say that JMAP attains
the maximum effectiveness in shooter/munition/
target selections, and, hence, gives the best "bang
for the buck”.

JMAP Version 1.0 requires a number of inputs
which can be categorized into the four sets found in
Exhibit 1. Inputs representing goals are italicized.
Not all these inputs are necessary for the joint
application of IMAP with the OSD Threat Method-
ology. The next section indicates how we chose to
modify JMAP Version 1.0 so that it can best be
used with the OSD Threat Methodology.

3. Operating JMAP and the OSD Threat
Methodology as an Integrated Pair

JMAP optimizes the allocation of munitions
and shooters to targets, trading-off some for others,
while under constraints on munitions stocks, ex-
penditures, target kills, shooter attrition, and costs.
JMAP tells you how you should run a war to con-
sume the fewest dollars you have invested in muni-
tions and shooters. The OSD Threat Methodology
tells you the munitions stockpiles (expenditures +
safety stocks) you need to run a war flexibly given
the various ways you might end up operating your
warfighting capabilities. Our idea for a working
IJMAP/Threat Integrated Pair combines these two
different points of view in the following way:

JMAP does not trade-off munitions stockpiles;
rather it trades-off munitions expenditures. JMAP
could tradeoff stockpiles if the Threat Model would
assess the safety stocks corresponding to JMAP's
expenditures. Munitions expenditures from JMAP's
goal optimization turn out identical to those of the
Threat Model when the Threat Model operates with
the same allocation of shooters/munitions to targets
as does JMAP, and when JMAP dispenses with its
chance-constrained rounds-to-kill. The allocation
of shooters/munitions to targets that the Threat
Model ordinarily gets from the Threat Split Model
can be substituted for by JMAP's optimization
instead. So, the Threat Model could 'tax' JMAP's
expenditures for the cost of safety stocks and
JMAP could be run with ‘inflated' munitions' costs
when generating its allocations.

UNCLASSIFIED

EXHIBIT 1
JMAP Input Summary

Stocks:

(1) the number of shooters of each type avail-
able and the desired fraction of each you will
tolerate being attrited,

2) the number munitions of each type available
to be expended;

3) the number of targets of each type available
to be killed and the desired fraction of each
you wish to kill;

Allocations/Assignments:

(4) for each pairing of one shooter type with one
target type, the number of munitions for
each type employable by the shooter per
engagement, the number of engagements
needed to kill a target, and shooter attrition
per engagement;

(5) the maximum fraction of each target type
available to be killed by each munition type;

Costs:
@ the cost of one munition of each type;
(8) the cost of one shooter;

Time:
&) the length of each time period,
(10) maximum (operational) rates of fire by each
shooter of each munition type,
(11) the minimum doctrinal rate of consumption
of each munition type.

To make this idea work, we streamline JMAP
so that it does what it does best, namely, provide an
optimal allocation. Our first action is to dispense
with the chance-constrained rounds-to-kill. Next,
we remove the time-based constraints so as to make
JMAP as threat-oriented as possible and thus have
it more closely match the ethos of the OSD Threat
Methodology. JMAP Version 1.0 has already dis-
posed of multiple time periods and, since JMAP
treats time as a period aggregate (not as a daily
curb), any daily rates within JMAP now serve to
impose expenditures limits during the overall
conflict period. As a result, the time factors (9),
(10), and (11) in Exhibit 1 disappear after we
multiply the operational rates in (10) and the
doctrinal rates in (11) by the total conflict time.
This has the net effect of translating those time-
based factors directly into expenditure constraints.

<3>

UNCLASSIFIED

Furthermore, using JMAP with the Threat
Model, whose job it is to estimate the right size of
stockpiles, means that as a first cut even stockpile
constraints should be lifted from JMAP. This
would provide a baseline for the 'optimal’ stock-
piles. As a second cut, for example for out-of-pro-
duction munitions such as Walleye, the current
stock levels could be fed to JMAP as a stockpile
constraint so that JMAP can reallocate effort if the
baseline case required more than is available. Sim-
ilarly, minimum expenditures of a munition, for
example for doctrinal purposes or for to using up
older munitions, can be introduced into JMAP as an
expenditure constraint if the baseline case required
fewer than we wish to consume.

In addition, to operate the JMAP/Threat Pair,
we modify JMAP's cost goal. Ever since the Mari-
time Prototype JMAP has included in its cost goal
the cost of lost shooters and the cost of munitions
lost on those shooters. These formulations of JIMAP
mimic the Services munitions selection models
which optimize "bang for the buck" using these
cost factors as well as others. The idea is that when
a shooter incurs different risks in delivering differ-
ent munitions then the cost of delivery is somehow
germane to the munition selection. But the Service
models are not linear goal programs with attrition
goal constraints while JMAP is; JMAP has a separ-
ate attrition goal to alter its shooter/muntion to
target allocation. So why double count the impact
of attrition. For our prototype JMAP/Threat Pair,
we drop the explicit costing of shooter losses with-
in the cost goal. We maintain the shooter attrition
goal to represent attrition's operational reality.

Similarly, we drop the explicit costing of muni-
tions lost on attrited shooters. The reason is that
the Threat Model accounts for the safety stocks
needed to support combat, which includes muni-
tions which might be lost due to attrition. Since
JMAP, working in the JMAP/Threat Pair, already
includes the cost of the safety stocks through a
'safety-stock tax' resulting in an inflated cost-per-
expenditure, it would be double counting to include
the cost of these losses again.

The JMAP/Threat Pair operates through the
cyclic application of JMAP and the OSD Threat
Model until a stable solution emerges. The proce-
dure is: (1) the OSD Threat Split Model initially
allocates shooter/munition combinations to targets
as a baseline feed to the Threat Model; (2) the
Threat Model generates a set of munitions stock-

UNCLASSIFIED

piles comprising expenditures plus safety stocks —
this is the 'TM-initialization'; (3) JMAP applies
goal constraints after JMAP's munition costs are
modified to include the cost of the safety stocks —
this is accomplished by feeding JMAP the Threat
Model's stockpilé-to-expenditures ratios (the OSD
Threat Methodology's quickest-kill munition selec-
tion is suspended so that it can initialize this ratio
for each munition type); (4) IMAP's new allocation
is fed back to the Threat Model which recalculates
the stockpile-to-expenditures ratios; and (5) we
repeat steps (3) and (4) until the iteration results
stabilize. We end up with munitions requirements
which are optimal in the JMAP sense and which are
war reserve stockpile recommendations in the
Threat Methodology sense.

Finally, to make the JMAP/Threat Pair work in
a truly integrated fashion, we choose to place allo-
cation constraints on JMAP — because JMAP
yearns to allocate all targets to the single most effi-
cient shooter-type/munition-type combination
available. In order to use the operational capability
of all the shooters put into the scenario, we include
the influence of the baseline allocation of shooters
to targets provided by the OSD Threat Meth-
odology. This Methodology allocates shooters to
targets in proportion to each shooter's TASCFORM™
figure of merit multiplied by each shooter's length
of time in scenario. This estimate of the amount of
combat action each type of shooter in the scenario
will likely see assumes shooters will be employed
in rough proportion to their capability, not cost.

The OSD Threat Methodology already has
within it a method of augmenting the number of
targets which it will allocate to each shooter/muni-
tion type on the basis of past wars' kill variability
(see reference [a]). It does this by estimating a
standard deviation ¢ in target kills, based on past
warfare experience, and adding some number of os
to the baseline allocation. The idea is that in a real
war any particular combination of shooter-type/
munition-type may end up killing more targets than
originally expected and the Methodology is design-
ed to estimate stockpiles so that no shooter runs out
with high confidence. For our prototype integra-
tion, we apply various multipliers of the standard
deviation to create sets of both upper and lower
bounds on the number of targets of each type which
could be allocated to each shooter type by JMAP.
JMAP remains free to select the ‘optimal' munition
type. Each set of kill-bounds corresponds to some
confidence level that shooters will kill numbers of

<4>

LR S P e o Sy R gt st il e S et AT, 7 gt O e v ek g O LG AU Yl N Tt PR N R L

UNCLASSIFIED

targets between these bounds — assuming the OSD
Threat Methodology baseline allocation was a cor-
rect estimate of the results of the 'average' war.

The larger the confidence level associated with
a set of bounds, the larger the resulting spread in
kill-bounds, and the larger the spread in targets
JMAP can allocate to any shooter. (Consult refer-
ence [i] for details.) For example, we take the
100% confidence set of kill-bounds to corresponds
to a lower bound 3.3 ¢ below the baseline (bottom-
ed by zero targets) and an upper bound 3.3 ¢ above
the baseline (capped by the maximum number of
targets). Similarly, the 85% confidence set of kill-
bounds corresponds to a lower bound 1.04 0 below
the baseline (bottomed by zero targets) and an
upper bound 1.04 0 above the baseline (capped by
maximum targets). As a numerical example, when
the baseline allocates 100 targets of a total of 400
to a shooter type with 10 shooters, then ¢ is about
30 targets and an 85% confidence set would allow
an upper bound of about 130 targets and a lower
bound of about 70. (The '50% confidence' set adds
and subtracts 0.0 ¢ to the baseline allocation; this
makes both the upper and lower bounds equal to
the baseline and JMAP must allocate shooters to
targets as specified by the Threat Methodology.)

A detailed formulation of the JMAP/Threat Pair
is given in Appendix A. Exhibit A-1 defines the
terms used. Exhibit A-2 shows the inputs and
outputs of a Threat Model run for a given munition
type. Exhibit A-3 provides the JMAP formulation
in detail. Exhibit A-4 describes the precise itera-
tive procedure of the JMAP/Threat Pair. Exhibit
A-5 compares the various previous formulations of
JMAP from references [c], [d], and [e] with the Pair
formulation here.

Our prototype application draws input data
from the Maritime Prototype report of reference [d]
— as far as it goes. We retain the four target types
(small major combatants, minor combatants,
landing craft, and false targets), the 12 shooter
(platform) types, the 17 munition types, the forced
expenditure of 450 Skipper, and the stockpile
constraints of which only that on Submarine-
launched Harpoon (UGM) had any effect. We sup-
plement some of reference [d]'s exchange ratios
with the attrition data from the LANL MRC-West
database. For the shooter and target figures-of-
merit, we utilize the relative platform weights and
relative target weights from JMAP Version 1.0.

UNCLASSIFIED

The initial allowance, refill size, and reorder
point for each munition type on each shooter type
is taken from the LANL MRC-West database. The
maximum rate of fire by each shooter of each muni-
tion type is based on the corresponding initial
allowance. Appendix B contains our sample data
with a sample input file given in Exhibit B-1. We
emphasize our 'scenario' could in no way be inter-
preted as a MRC-West scenario. In particular, the
counts of enemy targets and US shooters were
unlike those in the MRC-West scenario. In addi-
tion, the baseline allocation of shooter/munition
combinations to targets (see Exhibit B-2) was
obtained from the US Navy Threat Split Model
rather than on the existing allocation from the
application of the OSD Threat Methodology on the
MRC-West scenario reported in reference [a].

4. Results From the JMAP/Threat Pair

The purpose of this section is to report on the
some of the JMAP/Threat Pair sample runs which
were made to prove the prototype concept. This
section is divided into two parts. The first presents
some general observations concerning our sample
runs. The second examines the results of some
specific sample runs for the purpose of illustrating
the observed convergence and non-convergence
behaviors of the JIMAP/Threat Pair.

4.1 General Observations

For each of our sample runs, we needed to
choose the relative priority of JMAP's three goals
— the kill goal, the attrition goal, and the
munitions cost goal. We chose the target kill goal
to be of the highest priority, that is, JMAP was
asked to make sure that a minimum fraction of
targets of each type were killed before any other
tradeoffs were permitted. We chose the shooter
attrition goal as the second priority, that is, IMAP
was asked to kill a minimum fraction of targets of
each type and, in the process, to also keep the
attrition to shooters down to the maximum levels
desired, yet consistent with killing the desired
minimum fraction of targets. Thus, if attrition to
shooters was sufficiently high across the board for
each engagement, the attrition goal would, of
necessity, be violated, but to the minimum extent
possible, while the target goal was being satisfied.
The total munition cost was the third priority goal.
That is, within the bounds for the killing of mini-
mum fractions of targets of each type and within
the bounds for maximum tolerable attrition, muni-
tions were selected to reduce total munitions costs.

<5>

MR I 7o A ROV A b e S i YA B

UNCLASSIFIED

We also needed to select the stop-
ping rule for pair-iterations. We chose
to stop at one of two criteria: either (1)
the difference of Threat Model average
expenditures in two consecutive pair-
iterations was less than 1% — which is a
tighter criterion than the settling down of
the JMAP allocation of munition to tar-
get, or (2) the number of pair-iterations
had reached 16 — which indicates that
the process would not likely converge to
a single solution. We found that the
number of pair-iterations were mostly
more than 16 when applying kill-bounds
associated with 77% through 99.5% con-
fidence levels. Other cases normally
converged in just a few iterations.

The stockpile solution for the most
constrained (*50% confidence') case had
total munition costs of $0.968B compar-

EXHIBIT 2
Least Kill-Bound Constraint Solution Comparison

[E]Threat Methodology Originat B AP rtireat par

MK-84 (0105) [EEESS
RMaverk [
Walleys 10L

Wallsys 2DL

LGe-82
LGB-83 E
LGB-84 1
Skipper (n22)
Harpoon AGM
HarpoonRGM
HarpoonUGM
TASM RGM

TASM UGM
Mk-48 ADCAP
MK~48 MOD 4

ed to $0.271B for the least constrained
(100% confidence) case. Intermediate
munitions costs corresponded to inter-
mediate confidence levels — as the con-
fidence levels increased, the cost solu-

tions decreased monotonically. This was

because JMAP had no freedom to allocate targets to
shooters in the '50% confidence' case while it had
much greater freedom to allocate shooters to targets
at the 100% confidence case where it then made the
more efficient selection of munition against targets.

4.2 Some Specific Run Results

Let us first consider the Pair's least constrained
case of 100% confidence in kill-bounds. Exhibit 2,
repeating Exhibit 0, shows the original Threat
Methodology solution (the 'TM-initialization’) and
the final (the third) of the JMAP/Threat Pair itera-
tive solutions. The imposed expenditure of 450
Skipper appears in all iteration after the "TM-initi-
alization'. Exhibit 2 includes safety stocks of 421
from the final iteration (Skipper's total stockpile
of 871 =450 + 421 is shown in twos). On the first
pair-iteration (not shown) JMAP selects some
LGB-82 in addition to the Mk-84 and Harpoon
shown in Exhibit 2. On the second pair-iteration,
JMAP drops LGB-82 in favor of more Mk-84. This
allocation is retained in the third pair-iteration and
each munition's expenditures stabilized. (A forced
fourth iteration turned out identical to the third.)

At the 100% confidence kill-bounds, it turns
out that JMAP is constrained to allocate some
minimal number of targets to surface ships and to
submarines. AEGIS CGs and DDGs end up with
the minimal number of minor combatants and other
DDGs and SSNs end up with minimal numbers of
landing craft. JMAP ends up choosing Harpoon as
the most efficient munition in each case. Without
these constraints JMAP would allocate all targets to
Mk-84 after using up the forced 450 Skipper
expenditures, which, as it turns out, are most effici-
ently applied against minor combatants.

The Mk-84 turns out to come from all the
attack and fighter aircraft types (A-6 SWIP, F/A-
18, F-14A/B, F-14D) each used most efficiently up
to its attrition goal limits. The F/A-18 is used 'last'
and takes up the slack just short of its attrition
goal. Unfortunately, all false targets end up allo-
cated to Mk-84, defeating the stockpile purpose of
the false targets which is to allow each selected
munition type a few extra expenditures to com-
pensate for mis-targeting. False targets might be
better handled by the JMAP/Threat Pair by allow-
ing the Threat Model to pass them on to JMAP by

UNCLASSIFIED <6>

e L A TAIC NS A O X it Ly AT SO O P S A TR AN S N PO

UNCLASSIFIED

expanding the safety-stock tax idea
into a combined a false-target/safety-
stocks tax on expenditures. The
JMAP/Threat Pair formulation here,
however, retains the JMAP Maritime

Prototype approach.

Next, let us consider the other ex- ke84 (1108
treme case, that is, kill-bounds at the I
'50% confidence' level. Here JMAP I
has no freedom to allocate targets to wetozot |
shooters but must duplicate the Threat 3
Methodology's shooter/target alloca- ree-ez)
tion — the most constrained case — zz s

although JMAP does get to select the
munition the shooter uses. The JMAP/
Threat Pair stabilizes in three itera-

Comparison of JMAP/Threat Pair Solutions
Under Kill-Bound Constraint Extremes

Sidpper (1 29)
Harpoon AGM

tions. In addition to the 450 forced
Skipper expenditures, JMAP selects
Mk-84, Harpoon AGM, Harpoon
RGM, Harpoon UGM, TASM RGM,
and the Mk-48 MOD4. Exhibit 3 com-
pares this most constrained case with
the least constrained case of Exhibit 2.
Several things need explanation.

EXHIBIT 3

D Least Constraned Most Constraned

Seads sy H

First, in the most constrained case,
certain amounts of targets are allocated to each
type of shooter. Compared to the least constrained
case, this shifts the target allocation towards
surface ships and submarines and breaks the
aircraft monopoly on targets; this then lowers the
Mk-84 usage. Second, Skipper requirements are
different because the 450 expenditures in the most
constrained case are more concentrated on the F/A-
18 and the net safety stocks produced by the Threat
Model fall from 421 to 352; this means the
recommended stockpile falls from 871 to 802.

Third, in the most constrained case the patrol
and ASW aircraft must kill their baseline allocated
targets using Harpoon AGM since their lower kill
bound is no longer 0 targets as it was in the least
constrained case. Fourth, in the most constrained
case all surface ships must kill their baseline allo-
cated targets using much more Harpoon RGM.
Also the non-AEGIS DDGs are forced well over
their attrition goal in order to kill their allocated
targets, so much so that they end up using some
expensive TASM RGM in an attempt to balance
munitions cost with attrition. Fifth, in the most
constrained case both submarine classes must kill
their allocated targets; the most efficient munition

UNCLASSIFIED

is Harpoon UGM but it bumps into its stockpile
constraint and Mk-48 MOD4 is used to complete
the kills.

For the 80% confidence level on kill-bounds,
the iterative application of the JMAP/Threat Pair
fails to converge to a single solution after 16 pair-
iterations. However, it exhibits a bi-stable beha-
vior in that the JMAP/Threat Pair solutions for the
4-th, 6-th, 8-th, 10-th, 12-th, 14-th, and 16-th pair-
iterations (the even ones) strongly resemble one
another while the solutions for the 5-th, 7-th, 9-th,
11-th, 13-th, and 15-th pair-iterations (the odd
ones) also strongly resemble one another but are
different from the even ones. Compared to the
even ones, the odd one show a lot more Mk-84s, no
LGB-82s, and a little less Mk-48 MOD4s. Compar-
ing the pair-iterations 15 and 16, the 15-th has a
higher total munition cost ($0.914B vs $0.861B)
but a lower total shooter attrition cost ($0.394B vs
$0.653B). In gross dollars for just these two cost
items you might prefer iteration 15, but what about
the other costs incident to the selection, such as
storage, maintenance, etc. Exhibit 4 provides a
graphical description of four consecutive pair-itera-
tions: the 8-th, 9-th, 10-th, and 11-th.

<7>

P A T TS T ME i i o MR Lo~ G ik P M

UNCLASSIFIED

Looking behind the pair-iterations
displayed in Exhibit 4, you find that the
same number of Minor Combatants (347)
and FALSE targets (40) are killed in
both the odd ones and the even ones.
These numbers represent about the 0.8
goal of the total targets of each type
available to be killed. The pair-itera-
tions displayed some jitter on the kills of
the 3 Small Major Combatants — 2.40
odd vs. 2.44 even — but the major dis-
tinction is in the kills of the 82 LCPAs
— 81.56 odd vs. 66.68 even. LGB-82s
are used by F-14A/B to kill Minor Com-
batants in the odd ones, while LGB-82 is
not used at all in the even ones. On the
other hand, more Mk-84s are used by
A-6 SWIP, F/A-18, and F-14A/B to kill
Minor Combatants in the even ones and
that is why the even ones sustain a high-
er attrition. Basically, all the additional
14.88 LCPAs killed in the odd ones are
killed by SSN 688 using Mk-48 MOD4s.

This bi-stable pattern seems to be an
artifact of the changes in stockpile-to-
expenditure ratio from one run to
another. But in addition, there is jitter in
the Mk-48 MOD4/Harpoon UGM strug-
gle for targets in both the odd cases tak-
en among themselves and in the even
cases taken among themselves. Such an
effect within the same families would
seem to point to the impact of numerical
rounding from one run to another.

Let us now consider the case of 90%
confidence kill-bounds. The JMAP/
Threat Pair process again goes on for 16
iterations with the process flip-flopping
for pair-iterations 5 through 12, similar
to that in the 80% confidence case.
Exhibit 5 provides a graphical descrip-
tion of the Threat Model stockpiles for
four consecutive Pair-iterations, the 8-th,
9-th, 10-th, and 11-th. More Mk-84s and
less LGB-82s are expended in the even
ones than in the odd ones. However,
unlike in the 80% confidence case, the
flip-flop behavior does not persist.
From the 13-th pair-iteration to the 14-
th, the Mk-84 requirements only increase
slightly while the LGB-82 requirements

UNCLASSIFIED

EXHIBIT 4

Four JMAP/Threat Pair-Iferations Under Kill-Bound
Constraints for the 80% Confidence Level

TASM(awt) |
TASM(EE) |
Mc-48 ADCAP |
MK-4BMOD4 E

EXHIBIT §

Four JMAP/Threat Pair-Iterations Under Kill-Bound
Constraints for the 90% Confidence Level

10th 1ith

MK-84 (n105) [rmmmrn e
IRMaverick |
Walleye1DL

Walleys 2 DL

LeB-82
LGB-85
1GB-84 |

HapoonAGM =3
HarpoonUGM]
TASMRGM

TASMUGM
Mk-48 ADCAP

MK-4pMOD4 e

o 100 200 300 400 500

P i A L

UNCLASSIFIED

increase instead of decrease. On the
15-th iteration, the Mk-84 requirements
increase to about that of the previous
even ones while LGB-82s are dropped
completely. This stabilizes on the 16-th
iteration in that the difference in Threat
Model's expenditures with that of the
next iteration would have been less than
1% for every munition type if the pro-
cess had continued. Exhibit 6 illustrates
the tail-end behavior for 90% confidence
— showing the Threat Model stockpiles
for pair-iterations 12 through 16.

Results for the 95% confidence kill-
bounds (not shown) exhibit no sign of
bi-stable convergence. Consecutive iter-
ations appear to look fairly close to one
another but fail to meet our convergence
criteria of 1% differences in consecutive
iterations' expenditures per munition.

5. Summary and Epilogue

EXHIBIT 6

Five Final JMAP/Threat Pair-Iterations Under
Kill-Bound Constraints for the 90% Confidence Level

izt [El14th

MK-84 (1102)

RMaverick |
Walleyo1DL |
Welleys2DL |

165-82

LGB-83 1

LGB-84 1
Skpper(n2e) |
Harpoon AGM

TASMRGM

TASMUGM)

Mk-48 ADCAP

g T O R Y e Y e R P

The joint application of JMAP and
the OSD Threat Methodology discussed
in this memorandum was conceived to

MK-48 MOD 4 §
4 i 4 i t } : }

produce a tool both to analyze and to

optimize munitions stockpiles. From JMAP's point
of view, the Threat Methodology helped it do its
job by letting it work more realistically with stock-
piles because in warfare not all of a stockpile can
be expended at the enemy and the optimal shooter/
munition combination may not acquire each target.
From the Threat Methodology point of view JMAP
gave it a way to trade-off one munition for another
given various constraints.

The concept of joint application relied on the
cyclic use of JMAP and the Threat Methodology
hoping a stable solution would emerge. The pro-
cedure was: (1) allow the OSD Threat Methodology
to initially allocate shooter/munition combinations
to targets, then to generate a set of munitions
expenditures, and then to calculate the necessary
safety stocks needed to support those expenditures;
(2) invoke JMAP to apply constraints after factor-
ing JMAP's munition costs to include the cost of
the safety stocks — JMAP then produces a more
cost-efficient allocation; (3) feed this new alloca-
tion back to the Threat Model and let it recalculate
the corresponding safety stocks, and (4) repeat
steps (2) and (3) until a stable solution obtains.

The results of our sample runs showed that the
JMAP/Threat Pair iteration process 'converges'
rapidly when JMAP either has a relatively small
amount of freedom or virtually complete freedom
to allocate shooters over targets, corresponding to
the target overlap confidence level from 50% to
76% and also from 99.6% to 100%. For most of the
confidence levels in between, Pair iterations did not
often converge to less than 1% differences between
successive iterations. Some oscillated between two
states but eventually converged, some exhibited bi-
stable behavior without convergence, and some
(such as the case of 93% confidence) oscillated
among many states without convergence. Increas-
ing the convergence criterion to 2% differences
turned out not to capture many more solutions.

At this time, we do not have a complete explan-
ation for the erratic behavior exhibited by our sam-
ple runs. But it appears that JIMAP's sensitivity to
small changes, the Threat Model's iterative cost
factor recomputations, and the cumulative effect of
numerical rounding of the thousands upon thou-
sands of calculations in both models sometimes
combine to have a destabilizing effect on the solu-
tions from the JMAP/Threat Model Pair.

UNCLASSIFIED <9>

AR o ¢ Y A Ay R S ST AR e O Ty G R (L A PO F O

APPENDIX A

JMAP/Threat Pair

Formulation

PR S QPR S AN IR DF A O S Co AL L MR AN OO L RN

)

Cte

Cde Cate Camte Comto Rmto Cae

EXHIBIT A-1

Glossary of Terms Used in the JMAP/Threat Pair

User Parameters :
KC?

FTBK,
FATTR,

Cost_Goal

P,

Py

P,
T_O_Confidence
Tolerance

initial kill criterion for type m munition (average fraction of targets
to be killed by type m munition - input to Threat Model)
minimum fraction of type t targets to be killed (kill goal)
maximum fraction of type p platforms allowed to be attrited
(attrition goal)

overall cost goal

priority level for overall cost goal

priority level for kill goals

priority level for attrition goals

confidence level for target overlap

stopping tolerance

Scenario Parameters :

CP,
CM,,
PQ,
MQ,,
TQ,
Tou

RPE,,,

STK e

RTK,,,

ATT

pmt

cost of one type p platform

cost of one round of type m munition
number of type p platforms

number of type m munitions

number of type t targets

number of type t targets to be killed by type p platforms using
type m munition (initial target split - input to Threat Model)

number of type t targets to be killed by type p platforms
T‘gt = Zm Topmt
TQ, = Ep Tgt = Epm Topmt

rounds-per-engagement of type m munitions, fired by type p
platforms, against type t targets (i.e., salvo size)

average number of salvos of type m munitions needed to kill a type
t target, fired by a type p platform

average number of rounds of type m munitions needed to kill a type
t target, fired by a type p platform

RTK,x = RPE,, * STK,,

fraction of a type p platform attrited per engagment while attacking
type t targets using type m munitions

ey AT TN M IR AT S AL VAR R A IROHE A e S At 1 O O A M v re)T MR i A R Op . - g DR
b Ty -

j DOCT,, - doctrinal minimum expenditures of type m munitions per day

j ROF,, maximum rate-of-fire of type m munitions fired by a type P
platform each day

j TIME number of days in the scenario

j FOM_P, figure-of-merit (relative value) for type p platforms

j FOM_T, figure-of-merit (relative value) for type t targets ‘

t 1A, initial allowance of type m munitions on a type p platform

t RS, Refill Size of type m munitions on a type p platform

t RP,, Reorder Point of type m munitions on type p platforms

Variables :

t R, requirements for type m munitions (Threat Model output)

t | S average expenditures of type m munitions by type p platforms

against type t targets
B = KC, * RPE * STK o * Tom

t E, average expenditures of type m munitions

Ey = ZpBum = KCi * [Tp (RPEpm * STKpu * Tom)]

j R E, requirements-to-expenditures ratio for type m munitions
RE, = R,/E,
j Tome number of type t targets killed by type p platforms using type m
munitions JMAP outputs)
j Opt maximum allowable type t target overlap for type p platform
Xome average number of type m munitions, fired by type p platforms,

against type t targets

Xomt = RTKj * Tpme = RPEpn ™ STKy * Tome

j CG~, CG* deviation variables from the cost goal
j KG7, KG? deviation variables from the kill goal for type t targets
j AG; , AG}, deviation variables from the attrition goal for type p platforms

Note: A ’°t’ in the left most column indicates the term is used in the Threat Methodology and a ’j’
indicates the term is used in JMAP.

EXHIBIT A-2
Inputs and Outputs of the Threat Model

For given munition type m :

Input : T

KC,
RTK

Output : R,

Rt ot ol I A AR R ATPLIS N AU

AN APy Vg WO RIIT TV AL P SV LTI LA IR IR AR P XA YOI M M A IO S M O G O I

EXHIBIT A-3
JMAP Formulation

Inputs : FTBK, Cp, RPE,,,
FATTR, PQ, STK oy
Cost_Goal CM,, ATTRIT,
MQ, FOM_P,
R E, TQ, FOM_T,
Outputs : T... CG™,CG*, KG7, KG}, AG;, AG,

Objective :
Minimize @Z = P,[CG*] + P, [£, FOM T, *KG7] + P,[¥, FOM P, * AG}]

Goal Constraints :

Overall Cost Goal :
Y [CM, *R E, * ¥, RPE,, * STK,, * T,y)] + CG~ — CG*

Kill Goal per Target Type :
Yom Tpe + KGT — KG}7 = FTBK, * TQ,,

Attrition Goal per Platform Type :
Yot ATT g * STK, * Tpd + AG, — AG = FATIR, *PQ,,

Physical Constraints :

Upper Bounds of Targets Killed by Platform Type :
Em pmt = TO + 6

Lower Bounds of Targets Killed by Platform Type :
Em pmt = Tgt - 6pt,

Target Count per Target Type :
Epm Tpmt = TQt ’

Platform Attritions per Platform Type :
Yo (ATT ey * STK o * Tpud = PQy

Munitions Available per Munition Type :
Yo R _Egy * RPE, * STK * Tpd = MQu s

Doctrinal Expenditures per Munition Type :
¥ ®RPE,, * STK ;, * T,) = DOCT, * TIME ,

Maximum Rate-of-Fire of Type of Munitions by Platform Type :
Y. RPE,, * STK, * Ty < PQ, * ROF, * TIME ,

DOCT,,
ROF,,,

COMP,,
AVAIL,,

= Cost_Goal

vt

vVp,t

vVp,t

vt

vp

Vp, m

RS ICY) Pl OB+ L S N D A R T WISl S R T RS ARt

EXHIBIT A-4
Tterative Procedure of the JMAP/Threat Pair

set (Pca Pk, Pa) c.g. (3, 1’ 2)
Tt Vp,mt e.g. output from the Threat Split Program
Tolerance e.g. 0.01
[Computed Input] [Output]
T;mt « 'I‘opmt ’ v ps m, t

calculate average expenditures for the upcoming Threat Model run

do
Ef <« E,, v m

run Threat Model : [T] [Ra]
calculate new requirement/expenditure ratios for the next JMAP run

run JMAP : [RE.] [Tom]
calculate new target splits for the next Threat Model run

calculate average expenditures for the upcoming Threat Model run

while (|1 — E,/E%| > Tolerance, forany m)

Calculate average expenditures for the upcoming Threat Model run :

E, = Kng * [Ept(RPEme*STKpmt*T;mt)]s vV m
Calculate new requirement/expenditure ratios :

RE, = Ry/E,, v m

Calculate new target splits :

T;mt = TQ* Tpmt/ (X Tpml) s Vp,mt

e 7 P A et T o) o E AL A oy 3o X SeAC) I ¥ OB S AL A oo Pr o e N 55 ¢ A LA U A A Y A T o T N K IO O T S SR AR A

EXHIBIT A-5

Comparison of Different Versions of JMAPs

Nov_89 May 92 Oct_93 Jun 94
(Mobil Hard) (Maritime) (Ver. 1.0) (Paired)
Constraints :
Overall platform attrition (&, PQ) - G - -
Overall cost (munitions expended) G - - G
" « (munitions expended + munitions lost + platforms lost) - G G -
Overall targets killed (&, TQ) G G - -
Fraction of targets killed by target type and interval (FTBKy) - - G G
w s w = for high priority targets (FTBKy ph Gt - -
Fraction of platform attrition by platform type (FA) - ph G G
Platform attrition by platform type (FA) - - - ph
Munition — availability by munition type (STOCK/MQ.) ph ph ph ph
— minimum production by munition type (PRODMIN,,) ph - - -
— rate-of-fire (ROF) ph ph" ph ph
— doctrinal (DOCT,) ph ph* ph ph
Target — count by target type (TQ) ph ph ph ph
— availability by platform (AVAIL,) ph - ph -
— upper bounds of targets killed by platform type (T} + &) - - - ph
— lower bounds of targets killed by platform type (sz -9 - - - ph
Note : G indicates goal constraint, ph indicates physical constraint, and superscript L indicates time-period dependency.
RTK — random variable (Chance Constrained LGP/LP) - b3 x -
Compound targets - - X -
Figure of merit (relative value) for platforms and targets - - X X
Number of intervals (L) 1 3 1 1
Number of days per interval 3 15, 15, 15 120 45
Number of platform types 10 12 81 12
Number of munition types 9 17 97 17
Number of target types 10 4 124 4
Goals :
Priority Level :
Attrition - 2 1 2
Cost 1 3 1 3
Kill 1 1 1 1
Priority Weight :
Attrition - 1 40 1
Cost 1 1 400 1
Kill 1 1 1 1
LGP LGP LP LGP
Schniedefjans Schniederjans Lindo Schniederjans

T fan

APPENDIX B

JMAP/Threat Pair

Input File

file.in

M SrScat

DRI S NI A

CRECE TS PO P RS LIV AN

- 2N

JMAP/Threat PAIR

Cost, Kill and Attrition Goal Prioritites

3

1 2

Cost Goal (Billions $)

0.0

Target Overltap Confidence Level (0.5 - 1.0)

Stopping Tolerance and Maximum Number of Pair-Iterations

6/23/94

0.01 16
Length of Senario (days)
45
Number of Types of Platforms, Munitions, and Targets
12 17 4
Figure of Max Fraction
Platforms Cost(Millions) Quantity Merit of Attrition
(p) (CP) (PQ) (FOM_P) (FATTR)
1 A-6 SWIP 34.0 84 22.9 0.05
2 F/A-18 41.0 109 19.8 0.05
3 F-14A/8B 37.0 45 36.5 0.05
4 F-14D 37.0 46 36.5 0.05
5 EA-68 80.0 25 50.0 0.05
6 s-3 25.0 30 8.7 0.05
7 p-3 20.0 16 13.3 0.05
8 SSN 637 186.0 1 130.0 0.01
9 SSN 688 800.0 15 229.0 0.01
10 CGN 9/36/38 1225.0 3 116.6 0.01
11 AEGIS CG/DDG 886.0 16 394.6 0.01
12 DD/DDG 512.0 9 175.9 0.01
. Kill_Criterion
Munitions Cost($) Stocked Doctrine by Munition Type
(m) (M) (MQ) (bocT) (KC_0)
1 Mk 84 8000 20750 0 0.80
2 ABF(L) 6240 0 0 0.80
3 1IR Maverick 10000 987 0 0.80
4 Walleye 1DL 170000 2878 0 0.80
5 Walleye 20L 170000 2878 0 0.80
6 LGB-82 12300 1947 0 0.80
7 LGB-83 16400 507 0 0.80
8 LGB-84 21000 504 0 0.80
9 Skipper 30700 2964 10 0.80
10 AIWS P-31 67000 0 0 0.80
11 Harpoon (AGM) 1240000 548 0 0.80
12 Harpoon (RGM) 1240000 692 0 0.80
13 Harpoon (UGM) 1240000 118 0 0.80
14 TASM Conv(surf) 3100000 133 0 0.80
15 TASM Conv (Sub) 3100000 149 0 0.80
16 MK 48 ADCAP 2044000 597 0 0.80
17 Mk 48 MOD4 800000 1616 0 0.80
Figure of Min Fraction
Target Type Quantity Merit to be Killed
(t) (TQ) (FOM_T) (FTBK)
1 sMC 3 7.00 0.80
2 MC 431 1.07 0.80
3 LCPA 82 0.50 0.80
4 FALSE FALSE 50 5.00 0.80
< B-1 >

e

AL T

Fv

T e . e Y

Platform Munition Target Attritition per Rounds per Salvos to

Engagement Engagement Kill
p) (m) (t) (ATT) (RPE) (STK)
1 1 1 -0.050 4. 3.330
1 1 2 0.020 4. 2.380
1 1 3 0.000 4. 3.850
1 1 4 0.000 4. 1.000
1 2 1 0.040 5. 5.260
1 2 2 0.020 5. 2.500
1 2 3 0.000 5. 5.880
1 2 4 0.000 5. 1.000
1 3 1 0.001000 4. 2.380
1 3 2 0.001000 4. 1.110
1 3 3 0.001000 4, 2.700
1 3 4 0.000 4. 1.000
1 4 1 0.001000 2. 3.450
1 4 2 0.001000 2. 1.610
1 4 4 0.000 2. 1.000
1 5 1 0.001000 2. 3.570
1 5 3 0.001000 2. 3.030
1 5 4 0.000 2. 1.000
1 6 2 0.010 4. 1.960
1 6 4 0.000 4. 1.000
1 7 1 0.040 4. 2.560
1 7 2 0.010 4. 1.330
1 7 3 0.000 4. 3.700
1 7 4 0.000 4. 1.000
1 8 1 0.040 4. 2.040
1 8 2 0.010 4. 1.150
1 8 3 0.000 4. 2.000
1 8 4 0.000 4. 1.000
1 9 1 0.000 4. 2.500
1 9 2 0.000 4. 1.190
1 9 3 0.000 4. 3.330
1 9 4 0.000 4. 1.000
1 11 1 0.001000 4. 1.390
1 1 2 0.001000 2. 1.250
1 11 3 0.001000 2. 1.250
1 1 4 0.000 2. 1.000
2 1 1 0.050 2. 5.560
2 1 2 0.020 2. 4,000
2 1 3 0.000 2. 5.880
2 1 4 0.000 2. 1.000
2 2 1 0.040 5. 5.260
2 2 2 0.020 5. 2.500
2 2 3 0.000 5. 5.880
2 2 4 0.000 5. 1.000
2 3 1 0.000750 2. 4.760
2 3 2 0.000750 2. 1.850
2 3 3 0.000750 2. 5.560
2 3 4 0.000 2. 1.000
2 4 1 0.000900 2. 3.450
2 4 2 0.000900 2. 1.610
2 4 4 0.000 2. 1.000
2 5 1 0.000900 1. 7.140
2 5 3 0.000900 1. 5.880
2 5 4 0.000 1. 1.000
2 6 2 0.000 2. 3.850
2 6 4 0.000 2. 1.000
2 7 1 0.040 2. 5.000
2 7 2 0.010 2. 2.630
2 7 3 0.000 2. 7.140
2 7 4 0.000 2. 1.000
2 8 1 0.040 2. 4.170
2 8 2 0.010 2. 1.560
2 8 3 0.000 2. 4.000
2 8 4 0.000 2. 1.000
2 9 1 0.000 2. 5.000
2 9 2 0.000 2. 1.670

< B-2 >

~o~o-o~ooooooomoooooooooaoocooooowlxlsls:mmmmbbbbb:\b;\b»uwuwuwwwuuuwwummmmwmmmmm

OVVOVOVVOVOOVVO

-

PP QT T QY
Y - X=X~ X=R X]

-
-

NNSNNOON RO NNNNOON

—lJ-\WN—I#\NN—‘—‘$\WN—=#\UIN—\#\WN-A—I&\NN—lbWN—I«l\NN-ﬂ#\NN—\&N-L\NN-AbNN—‘bWN—‘bN&NN-‘bNNH&WN—‘#\W

0.000
0.000
0.000
0.000
0.000
0.000
0.000750
0.000750
0.000750
0.000
0.050
0.020
0.000
0.000
0.000
0.000
0.040
0.010
0.000
0.000
0.040
0.010
0.000
0.000
0.050
0.020
0.000
0.000
0.000
0.000
0.040
0.010
0.000
0.000
0.000
0.000
0.000
0.000
0.000900
0.000900
0.000900
0.000
0.025000
0.002500
0.000050
0.000
0.000
0.050000
0.005000
0.000250
0.000
0.050000
0.005000
0.000250
0.000
0.010000
0.001500
0.000050
0.000
0.000
0.025000
0.002500
0.000100
0.000
0.025000
0.002500
0.000100
0.000
0.000

2. 6.670
2. 1.000
2. 4.350
2. 2.220
2. 4.760
2. 1.000
4. 1.390
2. 1.250
2. 1.250
2. 1.000
2. 5.560
2. 4.000
2. 5.880
2. 1.000
2. 3.850
2. 1.000
2. 5.000
2. 2.630
2. 7.140
2. 1.000
2. 4.170
2. 1.560
2. 4.000
2. 1.000
2. 5.560
2. 4.000
2. 5.880
2. 1.000
2. 3.850
2. 1.000
2. 5.000
2. 2.630
2. 7.140
2. 1.000
2. 1.390
2. 1.250
2. 1.250
2. 1.000
4. 1.390
2. 1.250
2. 1.250
2. 1.000
3. 1.610
2. 1.250
1. 1.390
1. 1.000
3. 2.630
2. 1.720
2. 1.720
1. 1.470
1. 1.000
2. 2.630
2. 2.630
1. 2.440
1. 1.000
3. 1.610
2. 1.210
1. 1.390
1. 1.000
7. 1.230
2. 1.720
2. 1.720
1. 1.470
1. 1.000
2. 2.630
2. 2.630
1. 2.440
1. 1.000
4. 1.390

< B-3 >

10 12 2 0.000 2. 1.250
10 12 3 0.000 1. 1.390
10 12 4 0.000 1. 1.000
10 14 1 0.000 6. 1.330
11 12 -1 0.000 4. 1.390
1 12 2 0.000 2. 1.250
1" 12 3 0.000 1. 1.390
1" 12 4 0.000 1. 1.000
1" 14 1 0.000 7. 1.230
12 12 1 0.012500 4. 1.390
12 12 2 0.007500 2. 1.250
12 12 3 0.007500 1. 1.390
12 12 4 0.000 1. 1.000
12 14 1 0.000500 6. 1.330
0 0 0 0.000 0. 0.000
Initial Refill Reorder
Platform Munition Rate-of-Fire/Day Allowance Size Point
P (m) (ROF) (IA) (RS) (RP)
1 1 8 4 4 0
1 2 16 8 8 0 Not used
1 3 4 2 2 0
1 4 4 2 2 0
1 5 4 2 2 0
1 6 8 4 4 0
1 7 8 4 4 0
1 8 4 2 2 0
1 9 8 4 4 0
1 1 8 4 4 0
2 1 8 4 4 0
2 2 16 8 8 0 Not used
2 3 4 2 2 0
2 4 4 2 2 0
2 5 4 2 2 0
2 6 8 4 4 0
2 7 8 4 4 0
2 8 4 2 2 0
2 9 8 4 4 0
2 10 6 3 3 0 Not used
2 11 8 4 4 0 Added
3 1 8 4 4 0
3 6 8 4 4 0
3 7 8 4 4 0
3 8 4 2 2 0
3 9 8 4 4 0 Not used
4 1 8 4 4 0
4 6 8 4 4 0
4 7 8 4 4 0
4 9 8 4 4 0 Not used
] 2 8 4 4 0 Not used
é 6 8 4 4 0 Not used
6 " 8 4 4 0
7 1 8 4 4 0
8 13 8 4 2 2
8 15 8 4 2 2 15 <- 14
8 16 20 10 5 5 16 <- 15
8 17 30 15 7.5 7.5
9 13 16 8 4 4
9 15 8 4 2 2
9 16 40 20 10 10
9 17 60 30 15 15
10 12 16 8 4 4
10 14 16 8 4 4
1" 12 16 8 4 4
1 14 16 8 4 4 Added
12 12 16 8 4 4
12 14 122 61 30.5 30.5
0 0 0 1] 0 0
< B-4 >

T 7
R SRS e

3
P
%
5
3

o 7 TS T
ROV HIR R YRy IO O R AT YR e X AN

JMAP/Threat Pair

Input File : t_splits.in

AR A A R I RIS 2T NN

Initial Targets Splits by Platform and Munition

A-6 SW F/A-18 F-14A/ F-14D EA-6B S-3

Mk 84
SMC .20
MC 35.76
LCPA 2.27
FALSE 4.59
ABF(L)
SHMC .00
MC .00
LCPA .00
FALSE .00
IIR Maverick
SMC .01
MC 3.58
LCPA .13
FALSE .20
Walleye 1DL
SMC .05
MC 13.02
LCPA .00
FALSE .82
Walleye 20L
SMC .04
MC .00
LCPA .68
FALSE 1.14
LGB-82
SMC .00
MC 3.67
LCPA .00
FALSE .43
LGB-83
SMC .01
MC 1.40
LCPA .05
FALSE -1
LGB-84
SMC .01
MC 2.01
LCPA .09
FALSE .11
skipper
SMC .03
MC 10.89
LCPA .31
FALSE .59
AIWS p-31
SMC .00
MC .00
LCPA .00
FALSE .00

14.13

.25

46.40

2.95
5.95

.00
.00
.00
.00

.02
4.65
.16
.26

16.89

.00
1.07

.06
.00

1.49

.00
4.76
.00
.56

.01
1.81

.15

.01
2.61
.11
14

04

.40
77

.00
.00
.00
.00

-1

19.16

1.22
2.46

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00

.00
.00
.00
.00
1.97

.00
.23

.00

.1

19.58

1.24
2.51

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

2.01
.00
24

.00
77
.03
.06

.00
.00
.00
.00

.00
.00
-.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00

.00
.00

.00

.00
.00
.00
.00

.00
.00

.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00

.00

pP-3
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
< B-5 >

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00
.00

.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00

.00
.00

.00
.00
.00
.00

.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

SSN 63 SSN 68 CGN 9/ AEGIS DD/DDG

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

.00
.00
.00
.00

Total

120.90
7.68
15.51

.00
.00
.00
.00

.03
8.23
.29
46

.1
29.91
.00
1.89

.10
.00
1.56
2.63

12.41
.00
1.46

07
25.02
.71
1.36

.00
.00
.00
.00

EQU ZRED7 27 SN Mt MRS 17y L S A Rl

Harpoon (AGM)

SMC .09 .12 .00 .00 .00 .03 .02 .00 .00 .ao0 .00 .00
MC 12.12 15.72 .00 .00 .00 4.33 2.31 .00 .00 .00 .00 .00
LCPA 4.03 5.24 .00 .00 .00 1.44 77 .00 .00 .00 .00 .00
FALSE 1.41 1.82 .00 .00 .00 .50 27 .00 .00 .00 .00 .00
Harpoon (RGM)
SMC .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .14 .08
MC .00 .00 .00 .00 .00 .00 .00 .00 .00 18.01 96.03 54.03
LCPA .00 .00 .00. .00 .00 .00 .00 .00 .00 1.58 8.43 4.74
FALSE .00 .00 .00 .00 .00 .00 .00 .00 00 2.09 11.14 6.27
Harpoon (UGH)
SMC .00 .00 .00 .00 .00 .00 .00 .01 7 .00 .00 .00
MC .00 .00 .00 .00 .00 .00 .00 1.35 20.20 .00 .00 .00
LCPA .00 .00 .00 .00 .00 .00 .00 62 9.23 .00 .00 .00
FALSE .00 .00 .00 .00 .00 .00 .00 .16 2.34 .00 .00 .00
TASM Conv(Surf)
SMC .00 .00 .00 .00 .00 .00 .00 .00 .00 .04 .19 1
MC .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
LCPA .00 .00 .00 - .00 .00 .00 .00 .00 .00 .00 .00 .00
FALSE .00 .00 .00 .00 .00 .00 .00 .00 ;00 .00 .00 .00
TASM Conv (Sub)
SHMC .00 .00 .00 .00 .00 .00 .00 .02 .25 .00 .00 .00
MC .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
LCPA .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
FALSE .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
MK 48 ADCAP
SMC .00 .00 .00 .00 .00 .00 .00 .02 .32 .00 .00 .00
MC .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
LCPA .00 .00. .00 .00 .00 .00 .00 1.10 16.53 .00 .00 .00
FALSE .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Mk 48 MOD4
SMC .00 .00 .00 .00 .00 .00 .00 .02 .32 .00 .00 .00
MC .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
LCPA .00 .00 .00 .00 .00 .00 .00 1.10 16.53 .00 .00 .00
FALSE .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
e e e e v e s i e e e sk e e e v e e e e s e e e e de e T e e e v e e e e e e e d e ek e e e de e e de e e dede o de de ek ke ke ke Kk e dedede e dedede ke dede dede ek ke de ke
* The following are obtained by suming the above over munition types. *
* They are not read in as inputs. They are for information purpose only. *

Initial Targets Splits by Platform
A-6 SH F/A-18 F-14A/ F-14D EA-6B S-3 P-3 SSN 63 SSN 68 CGN 9/ AEGIS DD/DDG
sMc 4 57 .1 41 .0 .03 .02 .07 1.06 .07 .33 .19
MC 82.45 106.97 22.96 22.36 .00 4.33 2.31 1.35 20.20 18.01 96.03 54.03
LCPA 7.56 9.80 1.30 1.27 .00 1.44 7 2.82 42.29 1.58 8.43 4.74
FALSE 9.40 12.21 2.81 2.81 .00 .50 27 16 2.36 2.09 11.14 6.27

< B-6 >

.26
34.48
11.48

4.00

.25
168.07
14.75
19.50

.18
21.55
9.85
2.50

.34
.00

.00

.27
.00
.00
34
17.63
.00
34

17.63
.00

Total

3.00
431.00
82.00
50.00

APPENDIX C

JMAP/Threat Pair

Code File

pair.for

EAAr'Y

7Y LN S PR ACOD RIS A LA S

O AR O A S RN T Y R SRR X

dedekkdkkdkdkdodkkdokdedoddd ko dokdedodod g dodedodk s ded doddedoded dedededode dodedkdeded ke dkododedkdokdokdokdodokkdokkkkkk

File Name : pair.for
Program Name : JMAP_Threat_Pair

This program experiments with the integration of the 0SD Threat Model
and JMAP (a modification of LANL JMAP October 1993 Version 1.0).

Reference : "Prototype Integration of the Joint Munitions Asseement and
Planning model with the 0SD Threat Methodology", by Roger
Y. S. Lynn and J. J. Bolmarcich, QUANTICS incorporated
QM 29:94), 30 June 1994.

* % % % % ¥ % % * ¥ X ¥ % %
* % % % ¥ F % F * ¥ * * F *

Programmed By : Roger Lynn, Quantics Inc., 6/23/94

dededede ke ek ket dede ke ddod ke dodk ok kdok dodokdde ek d ke kded ek kkkkkkkkkkkkkkkdhdkkkdkkddkkkikkikkhhdkdkk

FORTRAN Source Files :

PAIR - top levels
pair.for

JMAP - This portion of the source code is a modification of the
LANL JMAP (May 1992 Maritime Module) which utilizes the
Schniederjans Linear Goal Programming Solver.

jmap. for

Threat Methodology - 0SD Threat Model
tm_input.for
tm_monte. for
tm_inter.for
tm_rand.for

Include Files
pair_1.inc
pair_2.inc

OO0 0OO0O0O0000O00O000O000C0

FORTRAN Executable File :
c pair.exe

(1]

c Input Files :

c file.in inputs to JMAP_Threat_Pair run

c t_splits.in initial target splits (from Target Split Program)

c Output Files :

c overtap.bnd upper and lower bounds of target splits

c tm t_in.# Threat Model target splits input for pair-iteration #

c tm_echo.# Threat Model input echo for pair-iteration #

c tm_req.# Threat Model average requirements output for pair-iteration #

c j_t_out.# JMAP output of target allocatition over platforms and munitions for pair-iteration #
c j_sum.# JMAP solution sumary for pair-iteration #

c pair_sum.# high level sumary of Threat Model and JMAP outputs for pair-iteration #

c overview JMAP cost solution and fractions of targets killed for ALL pair-iterations
c j_lgp.in input for LGP solver

c j_con constraint type

c j_obj objective terms

c j_coeff coefficients for the last pair-iteration

c j_rhs right-hand-sides

c j_lgp.out LGP report for the last pair-iteration

< C-1 >

o000

program JMAP_Threat_Pair

et dodededededododkdedededoddede e dedddokkkddedok ke dedok ke dodkohdodkdokkdkdk dokde kok ko kdok kdkdkdd ek dedekdok o kkdkdkddekk

* This program experiments with the integration of the 0SD Threat Model *

* and JMAP (a modification of LANL JMAP October 1993 Version 1.0). *
ek s e e e 3 e e e ok e o 3k sk e s s e e sk ke e e e ke e e e e e e e e e e e e o e de de e do e e e e e dede dede e v e e de dedodedo e ke sk e dede s ke e dedke ek de de

include ‘pair_1.inc/

integer pass
real max_aberration

call initialization

pass = 1

max_aberration = 1.0

do while ((pass .le. max_pass) .and.

. (max_aberration .gt. stopping_tolerance))
call store_average_expenditures
call threat_model(pass)
call cal_new_req_expenditure_ratios(pass)
call jmap(pass)
call cal_new_target_splits
call cal_ave_exp for_coming_tm_run
call cal_max_aberration(pass, max_aberration)
pass = pass + 1

enddo

end
(* JMAP_Threat_Pair *)

< C-2 >

OOO0O0OO0OO00OO0 [+

(1]

(1]

0000000000000 DOO0O0OO0O0O0O0O0O00OODO00OO000

o000 00

Skeleton of JMAP_Threat_pair

initialization

read_inputs

read_init_t_splits_cal_bounds
factor

read_first_target_splits

set_percents_for_confidence

initialize_req exp_ratios

cal_ave_exp_for_coming_tm_run

do for each pair-iteration
store_average_expenditures

threat_model
get_target_splits
do for each munition type j
get_inputs
echo_threat_model_inputs
assign
amean
main_up
chk_scaling
inventory
get_iter
initialize
Zero
monte
box
randm(1)
ref_setup
refills
randm(1)
analyze
zerod
dist
calctarget
cumsum
randm(2)
summary
print_dist
cdf
getbd
calc_mean

fval
killperc
interpsetup
interp
chechrng
display
call cal_tm_req_for_munition_type(j)
enddo

cal_new_req_expenditure_ratios

Jjmap
open_files
tgpinp
g_con_overall_cost
g_con_targets_kill
g_con_platform attrition

< C-3 >

Code File

pair.for
pair.for
pair.for
pair.for
pair.for
pair.for
pair.for
pair.for

pair.for

pair.for
pair.for

tm_input.for
tm_input.for
tm_input.for
tm_input.for
tm_monte.for
tm_monte.for
tm_monte. for
tm_monte.for
tm_monte. for
tm_monte.for
tm_monte.for
tm_monte.for
tm_rand.for

tm_monte.for
tm_monte.for
tm_rand.for

tm_monte.for
tm_monte. for
tm_monte.for
tm_monte. for
tm_monte. for
tm_rand. for

tm_monte.for
tm_monte.for
tm_monte.for
tm_monte.for
tm_monte. for
tm_monte.for
tm_monte. for
tm_monte.for
tm_inter.for
tm_inter.for
tm_inter.for
tm_input.for
pair.for

pair.for

jmap.for
Jmap.for
jmap.for
jmap.for
jmap.for
jmap. for

OO0OO0OO0O0DOO0O00O000O0O0

ph_con_upper_bound_targets_kill jmap.for

ph_con_Llower_bound_targets_kill jmap. for

ph_con_target_counts jmap. for

ph_con_max_platform attrition jmap.for

ph_con_munition_available jmap.for

ph_con_doctrinal jmap.for

ph_con_max_rate_of_fire jmap.for

tgpsolve jmap. for

start . jmap. for

simplx . jmap.for

lgprint . jmap.for

prtsolu jmap.for

Xet jmap.for

close_files jmap.for

cal_new_target_splits pair.for

cal_ave_exp_for_coming_tm_run pair.for

cal_max_aberration pair.for

enddo

< C-4 >

Spon T

o000

subroutine initialization

dedodode g ok dededodedode e e dedo e de e de e dededhede e et dededede dodede dedode ke ke ddek ko k ks ke dedok Kk kg dkededkkddokdkdkkddkdkkddkkhdkdkhkkk

* This subroutine is the main initialization process for the JMAP_Threat_PAIR. *

* Referenced by: main program *
hkhkkhhkhkhkkhhkhkhkhkhkkhkhkihhkiikdkhkkkikkkhhhkhkhkhkkhkhkhkikikhhhkhkikkikkkkhkikkkkkkkkkhkhkhikkhhkkkkkhkkikhkikk

call read_inputs

call read init_t_splits_cal_bounds
call read first_target_splits

call set_percents_for_confidence

call initialize_req_exp ratios

call cal_ave_exp_for_coming_tm_run

(* initialization *)

< C-5 >

g (S N RSN N 2)
NN RS TIRE S NGRS LS 2

AT X el

OO0 000

OO0 0000OO0O00O00O0000O00O0000O0O00

o060

[x NNl

subroutine read_inputs

Khkkkhkkkkkhkkhkhkhkkhkkhkhkkkkkkhkhkkkkkhkkhkkkhkhhkhkkkkkkkkkkkkkkikkkkkkikkkkkkik
* This subroutine reads all inputs to the JMAP_Threat_PAIR, *
* excepts the initial target splits which is read in *
* by read_initial_target_splits. *
* Referenced by: initialization *

dededed Tk dede ke dodkde dode ke de ke de ke dede oo o ke ke de o de o e do e dedode de ke de ek dekdededk gk do ek ok ek dedededeodedede ok ko dekdekk

**

* DEFINITIONS: *
* CM(J) = THE UNIT COST(BILLION $) OF TYPE J MUNITIONS *
* COSTGOAL = THE MUNITION COST GOAL *
* DOCTRINCJ) = REQUIRED NUMBER OF TYPE J MUNITIONS TO BE EXPENDED *
* ATT(I,4,K) = THE FRACTION OF TYPE I PLATFORMS LOST WHEN ENGAGING A *
* TYPE K TARGET WITH TYPE J MUNITIONS. *
* FTBK(K,L) = THE FRACTION OF TYPE K TARGETS TO BE KILLED IN *
* TIME INTERVAL L. *
* FATTR(I) = THE MAXIMUM FRACTION OF TYPE 1 PLATFORMS WHICH MAY BE LOST *
* NBNZX = THE NUMBER OF NON-ZERO DECISION VARIABLES X(I,J,K) *
* Pa(i) = NB OF TYPE I PLATFORMS *
* RPE(I,J,K) = THE NB OF TYPE J MUNITIONS FIRED BY A TYPE 1 PLATFORM *
* AGAINST A TYPE K TARGET IN ONE ENGAGEMENT. *
* STK(I,J,K,L) = THE NUMBER OF SALVOS OF TYPE J MUNITIONS FIRED FROM *
* TYPE 1 PLATFORMS REQUIRED TO KILL TYPE K TARGETS *
* WITH STANDARD DEVIATION, STDEV(I,d,K,L) IN INTERVAL L *
* STOCK(J) = THE INVENTORY OF TYPE J MUNITIONS AT TIME ZERO *
* STDEV(I,Jd,K,L) = THE STANDARD DEVIATION OF SALVOS REQUIRED TO KILL *
* TYPE K TARGET WITH TYPE J MUNITIONS FIRED FROM *
* TYPE 1 PLATFORMS DURING TIME INTERVAL L. *
* *

TQ(K) = NB OF TYPE K TARGETS
B T e

INCLUDE ‘pair_2.inc’

DIMENSION STOKIJK(MAXL),STDEVIJK(MAXL)
REAL LAMBDAIK(MAXL), LAMBDA(MAXI,MAXK,MAXL)

CHARACTER*132 HEADING,ALLTIMES
character*14 file_in

print*,’ Enter input file name’
read(5,1000) file_in
open(1,file=file_in)

REWIND 1

IF (PTEST .EQ. 0) THEN
PTEST=1
ENDIF

TEST=0
NLINE=0

dodohede e dedokokodedkdededekokkdkdokkkkdk

* READ THE STUDY TITLE *
Fedkkdddededekkdokddeiohdkkdkkkik

READ(1,1000) TITLE
1000 FORMAT(A)
NLINE=NLINE + 1

TR R K Kkdd dedddkode s dodeddedodk dedododododededod dodedod dedededededodedek ek ke de ke ek

* READ THE COST,KILL AND ATTRIT GOAL PRIORITIES *

dedede kR Kk ok ke dcde R hkk hdkkkkdkdkkddkddkdokkdokdokkdkdkdkddkdkdkdkik

< C-6 >

e LG v
BRTAPNL G

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING

READ(C1,%*)

PREPRI(1),PREPRI(2),PREPRI(3)

NLINE=NLINE + 4

IF (PREPR
1 PREPR
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,

PRINT*,
PRINT*,
PRINT*,
PRINT*,
TEST=1
ENDIF

IF (PREPR

1(2).EQ.PREPRI(1) .OR.
1(3).EQ.PREPRI(1)) THEN

1
ta

1 dededededededededekod gk kedode ke ket ko dededcdededk ek

1

! CAUTION CAUTION CAUTION CAUTION/

I

! KILL AND/OR ATTRIT GOAL PRIORITY IS THE SAME AS/,
! THE COST GOAL PRIORITY’

A
T dededekdodedededkdodedkdodkedkkdokddkdeokkkhkdkkhkkkhkkhkk s
[
11

1¢1).6T.4 .OR. PREPRI(2).GT.4 .OR.

1 PREPRI(3).GT.4) THEN

PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
ENDIF

|
‘1
! THE COST,KILL, OR ATTRIT priority IS GREATER THAN 4/
1
[§

c NBPRIORS=4 ! Hardwired
NBPRIORS=3 1"

aO0Oo0n

e e e s v e e v e e e e e e e de e de s e e dede e e e e e dede ek e e ke e dede e de ek

* READ THE COST GOAL VALUE (BILLION $), *
dkkkdedkkkhkikkiokdkdddckikkdddkiohiikkkiiokikkk

READ(1,1000) HEADING
READ(1,1000) HEADING

c READ(1,%*)
READ(1,*)

COSTGOAL, costgoal_reduction_factor ! commented out - see

COSTGOAL

NLINE=NLINE + 3

ooo0

B T T T T
* READ ALPHA - THE TARGET overlap CONFIDENCE MEASURE *

Sede sk dedededokedodedodedkokdkokdodehokokodokokkdekhkkkkkkkkhkkkhkkhkkkkkkkikkhkkkkkkkikkk

READ(1,1000) HEADING

READ(1,1000) HEADING

read (1,*) target_overlap_confidence
NLINE=NLINE + 3

if ((target_overlap_confidence .lt. 0.5) .or.

(target_overtap_confidence .gt. 1.0)) then

write(6,100)

stop
endif

c ZK=ALFTOZK(ALPHA) ! not used in JMAP

READ(1,1000) HEADING
READ(1,1000) HEADING
read (1,*) stopping_tolerance, max_pass

NLINE=NLI

NE + 3

< C-7 >

1#1

S AT N A Y

Sl

ooO0n

ano

OO0

c
c1005

1005

oo

s NNy

- e p—— e
I o, 0

sk dededode sk de ke de ek dede de e dede dededede dede ke ke ko keke ok

* READ THE MODEL TIME INTERVALS *

Kkkkkkhkhdohkhdkhkkhkkdhkkhhkkkhkkkks

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,*) TIMECT)
NLINE=NLINE + 3

KRARKKRIREkRhhhkhkkkkhhkhkkhkkhhkkkkhkhkkkikhkkidkkkhdihkkkkkhhkikhkkkkhkkk

* READ THE NB OF TYPES OF PLATFORMS,MUNITIONS, AND TARGETS *
Fekedededk dededdkhddkkdokdokdokdeokkk ko kkkkkk kkkdk kkk Rk ddokkiokkdokkoiokkkkkkkk

READ(1,1000) HEADING

READ(1,1000) HEADING

READ(1,*) NBI,NBJ,NBK,NBL

READ(1,*) NBI,NBJ,NBK 1
NBL = 1 '
NLINE=NLINE + 3

IF (NBI.GT.MAXI .OR. NBJ.GT.MAXJ .OR. NBK.GT.MAXK

1 -OR. NBL.GT.MAXL) THEN

PRINT*,? ¢

PRINT*, ! ¢

PRINT*,? CHECK FILE 1/

PRINT*,’ THE NUMBER OF PLATFORM,MUNITION OR TARGET TYPES',

1 ’ 1S TOO LARGE - INCREASE PARAMETER VALUES IN THE CODE’

PRINT*, 7 ¢

PRINT*,# *

sTOP
ENDIF

Fedkekdedede kg kg dokd ok dokde ks kdekdededkdkdokkkk ke kdek ok kdedoddod ok kdododddkkdeodokkokd ok ddokkokkdokokokk

* READ THE PLATFORM NAMES, QUANTITIES, figure-of-merit, and MAX ATTRITIONS *
Fedededededededodedede dedede e e e dod e S dededede e de e ek dedededededede ek e e e e ek e e e e sk ke sk e e ek e e e

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING
DO 1 I=1,NBI

READ(1,1005) N,PLATCI),PLATCOST(I),PQ(I),FATTRCI)
FORMAT(I3,2X,A,F9.0,F12.0,4F15.0)

READ(1,1005) N,PLATCI),PLATCOST(I),PQCI),FOM_PCI),FATTRCI) 1"
FORMAT(13,2X,A, F9.0,F12.0,4F15.0) 1"

dedededede s K v kododededo ke dededok gtk de ek ke de ke dededodok K de ok dedek ek

* CHANGE COSTS TO BILLIONS OF DOLLARS *
Sedededededdok ok ko ke ook ded e ek e e
PLATCOST(I)=PLATCOST(I) * 1.E-3

CONTINUE

dedededededededededededodedod g dodedodode de s de ke dede dedek ko ke ke dde ko ke dede ke dede dedkodedededekkokkkkokdodkkkkkkhhhhkkkikk

* READ THE MUNITION NAMES, COSTS, STOCKPILED, and Doctrinal Expenditures *
o e de e e de e de eI e e ke e e e s e e e e e de sk do e o e ok do e e e e e e dode e de e dede e do e e de ke ke o de de dedededededkodododekkodkdok ok dodekkokdk

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING

STKCOST=0

D0 2 J=1,NBJ
READ(1,1005) N,MUNCJ),CM(J),STOCKCJ),DOCTRINGJ),KC_0CJ)
*#xkkk DOCTRINCS) ADDED ON 7 FEB 92 *kkkkkikx

< C-8 >

IR M 0 S RNV L ATY SIS DS A AT

o000

aoaoo

aon

aooon

o000

dededokkkdkkkkkkkkkkkkkdikikdodkkdkkdkddddodkikkkk

* CHANGE COSTS TO BILLIONS OF DOLLARS *
B T 3
CH(J)=CM(J)*1.E-9

STKCOST=STKCOST + CM(J)*STOCK(J)

2 CONTINUE

1007

3

4

10
15
20

* READ THE TARGET NAMES, QUANTITES, figure-of-merit, and FRACTIONS-TO-BE-KILLED *

KRR Kt kokodededokode s dodekodededodkode kokok de ke dodedodedodedode gk kokokeokodekokode ke ke ke dede ke dodede ok dedokdodekododkeokoddededokokode gk kokkkdododekkk

TOTARGS=0

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING

DO 4 K=1,NBK
READ(1,1007) M, TARG(K), TARGTYPE(K),TQ(K),FOM_T(K),
(FTBK(K,L),L=1,NBL) 1
FORMAT(13,2X,2A,F17.0,5(F15.0)) 1
DO 3 L=1,NBL

IF (FTBK(K,L) .GT. 1.0) THEN
Fokdededek doddedededededdodeded e dedededed g dedod dedede kekkedokode

* FRACTION-TO-KILL IS GREATER THAN 1 *
dodedo s dedededede dedededededo ko dodedode dedo ke dede ke dok dok kdodek kkkkkk
PRINT*, 7 ¢
PRINT*,? CHECK FILE 1/
PRINT*,” SOME FRACTIONS-TO-KILL ARE GREATER THAN 17
PRINT*, 7 ¢
TEST=1
ENDIF
CONTINUE

TOTARGS=TOTARGS + TQ(K)
CONTINUE

Ve o o e e de o e e e do o e e do de ke kg ke s oo ke o e e e e e e ke e de e ook K de de ke ke e de do sk de ek dededkeok ok dededodeokokk ke dokdokkekkkodk

* PRE-SET THE SALVOS-TO-KILL ARRAY STK(I,J,K,L) TO LARGE VALUES *

* AND THE ARRAY ATT(I,J,K) TO ZERO. *
Rk kkkkdokdkdkdkkkkkkdedcdedekdedddokkdedddkkdokkdkkkkiokkkkkkdiriokdikkdkhdkkikkkiikdikk

DO 20 I=1,MBI
DO 15 J=1,NBJ
DO 10 K=1,NBK
DO 5 L=1,NBL
STK(1,d,K,L)=1.E25
CONTINUE
ATT(I,4,K)=0.0
CONTIHUE
CONTINUE
CONTINUE

e e d e vk e de e e e de s e e e e e e e she s e e e e e e e ke e e ok e e e e e e ke s e e e e e e e e e e e e e e de e e e e e e e de-de s e e e de e e e e e de e e e dede de ke e e de de dede Ko ke

* READ THE attrition-per-engagement, rounds-per-engagemengt, salvos-to-kill, and standard deviations *
e e o e o e o e e e e de e e e e e e e S sk Sk e e e e e o e ke e e sk e e Je e Je ke e e e Jo e o do e do e Jo e e de e gt e e e e e e-de e Je e e dede e e Fe ke e de e de e e Je e dede e de e do ke de e dede de v do ke de de vk dede e ke ke

READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING
READ(1,1000) HEADING
NLINE=NLINE + 4
N1JK=0

¢ 30 READ(1,*) 1,d,K,EXIJK,SALVOIJK, (STOKIJK(L),STDEVIJK(L),L=1,NBL)

30

READ(1,*) 1,d,K,EXIJK,SALVOIJK, (STOKIJK(L),L=1,NBL)

< C-9 >

- e s
PRI 2N S N IRl S S

aoOon

oaon

31

50

70

NLINE=NLINE + 1
IF (1.GT.NBI .OR. J.GT.NBJ .OR. K.GT.NBK) THEN
PRINT*, 7 ¢

PRINT*,/ CHECK FILE 1, LINE /,NLINE,’ - 1,d,0R K TOD LARGE’

TEST=1

ENDIF

IF (1.GT.0) THEN
IF (SALVOIJK .EQ. 0) GO TO 30
ATT(1,d,K) = EXIJK
RPE(I,d,K) = SALVOIJK

D0 31 L=1,NBL
STK(I,Jd,K,L) =
STDEV(I, J,K,L)
CONT INUE
NIJK=NIJK + 1
MCOL(I, d,K)=NIJK
GO TO 30

ENDIF

STOKTJK(L)
= STDEVIJK(L)

Fedededodedede e dode de o dode o fe e do e de KA dede de e de de de e de e e Ao e e de de e de e ke o do e e de e de e e dededo g dede e e de o de do ke de e de dede g dedede e dededede ke de ke ke

* READ maximum Rate-of-Fire OF TYPE J MUNITIONS by a TYPE I PLATFORM each day *
ootk de e ek de ok ek de e e sk sk e ek ok ok e ek ok o ek sk ok ok e e ko ek ek sk e ke

READ(1,1000) HEADING

READ(1,1000) HEADING

READ(1,1000) HEADING

READ(1,1000) HEADING

NLINE=NLINE + 4

READ(1,*) I, J, LOAD, IA1, RS1, RP1

NLINE=NLINE + 1

IF (1.GT.NBI .OR. J.GT.NBJ) THEN
PRINT*,’ *
PRINT*,’ CHECK FILE 1, LINE /,NLINE,’ - I OR J TOO LARGE'
TEST=1

ENDIF

IF (1.GT.0) THEN
ROF(I,J) = LOAD
“IACL,d) = IA1
RSCI,d) = RS1
RP(I,d) = RP1
GO TO 50

ENDIF

IF (TEST .GT. 0) THEN

hekkkdkkdhhhhkkkkkkkhhhkhkkkhkkkkdkhkikhkkkhkhkikkkhhkikikk

* THERE HAVE BEEN ERRORS IN INPUT FILE 1 *

hkkkkkkhikhkkkkkkkkkikhhkhkkhkhhkhhhdikkhkkdhkkkkkkkkkikd

sToP
ENDIF

DO 70 L=4,MAXROWS

PREPRI(L) =4.

IF (PREPRI(L) .GT. NBPRIORS) THEN
SET THE NB OF DEVIATION PRIORITY LEVELS
NBPRIORS=PREPRI(L)

ENDIF

CONTINUE

open(8,file=’overview’)
write(8,200) target_overlap_confidence

write(8,701) prepri(1)
write(8,702) prepri(2)
Wwrite(8,704) prepri(3), (targ(k), k=1,NBK)

< C-10 >

return
100 format(’Target overlap confidence is NOT between 0.5 and 1.0 1)
200 format(/,1x,’Target Overlap Confidence Level : ’,{5.3)
701 format(/,38x,’/Priority’,
. /.,1x,’0verall Cost 1,15x%,i1)
702 format(1x,’Fractions of Targets Killed’,b13x,11)
704 format(1ix,’Fractions of Platforms Attrited’,%x,i1,

. //7,4%,'Pair’ ,8x,/Cost’ ,18x, Fraction of Targets Killed’
. ./, 1%, 1teration Solution’,15x,4a8)
END
! read_inputs

< C-11 >

onoo0o60o0o0O0

subroutine read_init_t_splits_cal_bounds

Fekdkkhdhkhhhhkkkhidhhhkkhikikikhhkhhihihiikhkhhkikhihhikikhkkhkhkkikrkirkkhhkkhhkkkikhkhhkkhkhiisr

This subroutine reads initial targets splits and

calculates the Overlapping Bounds for target splits.

It Writes to file ‘targets_t_in’ these target splits input for this
Threat Model run and target overlap bounds for the next JMAP run.
Referenced by: ’ initialization

include ’pair_1.inc/

* % % % ¥
* % % ¥ ¥

common /BOUNDS/ upper_bound(MAXI,MAXK), lower_bound(MAXI,MAXK)

real upper_bound, lower_bound
common /TJ_0/ TJ_O(MAXJ)
real TJ_0
character*1 blank
character*14 filename
character*15 name
character*132 heading
integer i, j. k
real TIK(MAXI ,MAXK)
real tot_targets(MAXK)
real templ, temp2, beta, f, g, factor
data blank/’ 7/

--- read initial target splits

print*,’ Enter file name for the initial target splits/
read (5,100) filename
open(50, file=filename)

read(50,1000) heading

read(50,1000) heading

read(50,1000) heading

read(50,1000) heading

read(50,1000) heading

do J=1,NBJ
read(50,1000) heading
read(50,807) name
do K=1,NBK

read(50,808) name, (TIJK(I,d,K),I=1,NBI)

enddo

enddo

close(50)

--- Calculate Target Splits by Platform
do K=1,NBK
templ = 0.0
do 1I=1,NBI
temp2 = 0.0
do J=1,NBJ
temp2 = temp2 + TIJK(I,J K)
enddo
TIK(I K) = temp2
templ = templ + temp2

enddo
tot_targets(K) = templ
enddo
--- Calculate the overlap bounds for targets to be killed
beta = 1.0 ! Polya Parameter
do K=1,NBK
do I=1,NBI

f = TIK(I,K) / tot_targets(K)
g = sqre(f*(1.0-f) * (f/(pa(l)*beta) + 1.0/tot_targets(K)))
delta(I,K) = factor(target_overlap_confidence) * g

< C-12 >

. * tot_targets(K)
TIK_0(CI,K) = TIK(I,K)

upper_bound(1,K)
Lower_bound(I,K)

TIK_0CI,K) + delta(I,K)
max((TIK_OCI,K) - delta(l,K)), 0.0)

enddo
enddo

=== Calculate initial target splits by munition type
do J=1,NBJ g
templ = 0.0
do 1=1,NBI
do K=1,NBK
templ = templ + TIJK(I,d,K)
enddo
enddo
T4_0(¢J) = templ
enddo

filename = ‘overlap.bnd’
open(23, file=filename)

--- Write Target Splits by Platform
Write(23,820) filename
Write(23,809)
Write(23,810) (plat(l), I=1,NBI)
do K=1,NBK
write(23,808) targ(K), (TIK(I,K),I=1,NBl), tot_targets(K)
enddo

-=- Write the overlap bounds for targets to be killed
write(23,815) target_overlap_confidence
write(23,811)
do K=1,NBK
write(23,808) targ(K), (delta(Il,K),I=1,NBI)
enddo

--- Write the lower bounds for targets to be killed
write(23,812)
do K=1,NBK

wWrite(23,808) targ(K), (lower_bound(I,K),I1=1,NBI)
enddo

--- Urite the upper bounds for targets to be killed
write(23,813)
do K=1,NBK

Write(23,808) targ(K), (upper_bound(I,K),I=1,NBI)
enddo

--= Write Initial Target Splits by Platform and Munition
write(23,805)
write(23,1000) blank
write(23,806) (plat(1), I1=1,NBI)
do J=1,NBd
Write(23,1000) blank
write(23,807) mun(Jd)
do K=1,NBK
temp! = 0.0
do 1I=1,NBI
templ = templ + TIJK(I,Jd,K)
enddo
Write(23,808) targ(K), (TIJK(I,J,K),1=1,NBI), templ
enddo
enddo

close(23)

< C-13 >

eI
LR ATy

R Wi

s A T T T T

1

c

[

return
100 format(al4)
805 format(///,32x,’Initial Targets Splits by Platform and Munition’)
806 format(10x,12(1x,a6),6x,’Total’)
807 format(ails)
808 format(3x,a5,12(1x,f6.2),2x,2(5x,6.2),5x,16.4)
809 format(///,40x,’Initial Targets Splits by Platform’)
810 format(/,10x,12(1x,ab),6x,’Total’,/)
815 format(///,1x,’Target Overlapping Confidence = /,f5.3)
811 format(/,30x,‘Overlapping Bounds for Targets to be killed’)
812 format(///,30x,’Lower Bounds for Targets to be killed’)
813 format(///,30x, Upper Bounds for Targets to be killed’)
820 format(//,’File Name : 7,al4)
1000 format(a)
end
(* read_init_t_splits cal_bounds *)

real function factor(xx)

integer i
real xx, vy, x(11), y(11)
data x/.5, .6, .7, .8, .85, .90, .95, .98, .99, .999, 1.0/ 1t
data y/0.0, .2533, .5244, .8416, 1.0364, 1.2816, 1.6449,
. 2.0537, 2.3263, 3.09, 3.3/ 1"t
if ¢ (xx .ge. 0.5) .and. (xx .le. 1.0)) then

i=1

do while (xx .gt. x(i))

i=1+1

enddo

i=1-1

yy = yCi) + (Xx=x(1)) * (y(i+1)-y(i)) /7 (x(i+1)-x(i))
else

print *, ’Confidence level is not between 0.5 and 1.’

stop
endif
factor = yy
return
end

(* factor ¥%)

< C-14 >

CORMA I AP B S L B e R L7

UV AN I A S 3T s s CANIP TN S L AR it SN

Gy ST S St

o000 O00O0O000O0

c

subroutine read_first_target_splits

Fededkdededodededededededod dedededdede dedededede e de do g e dede sk de e dedode dede o de dededededededededede e de e dede dekdede e ke dede ke ded e dede e ek ek ke ke ke ke ke

Currently, this subourtine call from ’initialization’ is de-activated.

1f the call of this subroutine was activated in finitialization’, then
the user would have to supply a file name for the ’first target splits’.
Usually, it is the same as the ’initial target split’, unless the user
wants to begin a new run which picks up from where it was left off from a
previous run. In this case,. the user should use for ’first target splits’
a ‘tm_t_in.*’ file from a previous run (with the first 16 lines deleted).
However, one should be aware of the loss of accuracy since the target
allocations stored in ‘tm_t_in.*’ are given only up to two places after
the decimal.

Referenced by: initialization
Yoo e s de e e e dede sk e e ke e e e e e s e e e e e s e e e e ko e s e e o e e e e e de e ke e e de ke ke e e e e g e e e e e e de de dedede e ek dedede ke e dede dede ke

* % % % % ¥ % % ¥ ¥ %
* Ok % % A %X Ok * % * ¥

include ’pair_1.inc’

character*14 filename
character*15 name
character*132 heading
integer i, i, k

--- read initial target splits

print*,/ Enter file name for the first target splits’
read (5,100) filename
open(51, file=filename)

read(51,1000) heading

read(51,1000) heading

read(51,1000) heading

read(51,1000) heading

read(51,1000) heading

do J=1,N8J
read(51,1000) heading
read(51,807) name
do K=1,NBK

read(51,808) name, (TI1JK(I1,Jd,K),I=1,NBI)

enddo

enddo

close(51)

return
100 format(al4)
807 format(al5)
808 format(3x,a5,12(1x,f6.2),2x,2(5x,16.2),5%,16.4)
1000 format(a)
end
(* read first_target_splits *)

< C~15 >

o000

o000

subroutine set_percents_for_confidence

Tk dehedede e dodedede didededodedede ek de dedede dode e de o de e de o de e e de ke e o de o de o de e de ke de e de e de e d sk de e g de e de e de e de de dede

Choose confidence levels.

*

* In evaluating the fraction of targets killed at different levels
* of confidence, perckill are the chosen confidences (actually in
*
*

fractional form, not %).
Referenced by:

initialization

* * % F %

Feded dode e dde oo de dod oo de o de dodedede e de e g dede e S e e e e ek e de e de o e o de e dedode e dedode dede e dededede dedede dede ded dek

common/percents/perckill(6),nperc
integer nperc
real perckill

integer i

nperc = 6
do i=1,nperc
perckill(i) = 0.75 + (i-1) * 0.05
enddo
perckill(6) = 0.99

return

end
(* set_percents_for_confidence *)

subroutine initialize_req exp_ratios

<

>

Fededededededoddededededededk deded dodk dededdedodedodedodedededededededded ke dedodedde s dededede dedode dede dede dedededededodedede dede ek
* This subroutine initializes the requirment-to-expenditure ratios. *
initialization *
dedededede e e de oo de e e o de e dedode e o de o de o e e dede e de s e e e de e e e de e de s de e de e e s dedo dedode dedededededode do e ek ke

* Referenced by:

include ’pair_1.inc’

do j=1,NBJ
R_E(j) = 1.0

enddo

return

end

(* initialize_req exp_ratios *)

< C-16 >

DA A SR sty ety bty

ooo0oo0oo000

o000 o0

subroutine cal_ave_exp for_coming_tm_run

Feddek dodedededodddededo dede e dodede o dede dede o g vk e ok v e de de e e e e e e e sk ok ke e e e ok e e e de ke ek e e e e ke e e de e e ek e

* This subruotine calculates the average expenditures of each munition *
* type for the next Threat Model run. Note that this is possible since *
* the average expenditures only depend on the target splits and kill *
* criteria. . *
* Referenced by: initialization and the main program *

dedkdedekdodkddokdokdokdkddkdkdekkdkhdkkkkdkdddkdkdkkddkkddhkkdkdodhkikhdodkkkdkhkkikkkkikdikkikikk

inctude ‘pair_1.inc’

integer i, j. k, L
real epsilon, E
data epsilon/0.00001/
L=1 ! Single time interval
do j=1,NBJ
E = 0.0
do i=1,NBI
do k=1,NBK
E = E+ RPE(,]j,k) * STK(i,],k,L) * KC_0(j) * TIJK(i,j, k)
enddo
enddo
if (E .lt. epsilon) then
EJCj) = 0.0
else
EJ(j) =E
endif
enddo
return
end

(* cal_ave exp for_coming_tm_run *)

subroutine store_average_expenditures

W e e e e e v de e e e do e e de e oo de ke de e sk e dede sk e de ek e de e ke e e de e e de ek e e de e e de e e de e e e e e A de e e e e de e de e A de e e e de dede ke o de de g v de e ok v de ke
* This subroutine stores the munition expenditures by munition type of the current pass *
* so they may be compared with that of the next pass. *

* Referenced by: main program *
Fedededededede v e e o e e e s e e e ek e she e s e o o S o e e e e 3 de e e s e e e e e e v T e ke e e e e e T e e e de e e sk s sk o T e Fe e e e % v Fe e e e e e e e T e vk e e e A de v

include ’pair_1.inc’

do j=1,NBJ
Ed_old(J) = EJ(])

enddo

return

end
(* store_average_expenditures *)

< C-17 >

REEE A RN N ARR

a0 o0

subroutine threat_model(pass)

Fekeddkdkdehdh itk ok dedoddododedekd ok dededede dododed dede dededede dedod ot ded o deok dedo v de e e s g e ok ek o g e ek e vk e de de e e

* This subroutine is the main loop for processing the Threat Model run. *

* Referenced by:

main program *

Pt e sk o e oo e ke e e ke e ke e o e oo ek e e e e e e e e e de e de oo Jeoke dede dede de e de e e e ke de de e de e vk ke ok de ok ek e ok ek ek

include 'pair_1.inc’

integer pass

character*! ch_pass1

character*2 ch_pass2
character*14 filenamel, filename2

common/misc/ncase,ncases, lun,beta,a,exwt, title
integer ncase, ncases, tun
real beta, a, exut
character*45 title

common/tar/ ntt,rnt(200,10),ext(200),rt,r(200), targnames(200)

integer ntt, rt

real rnt, r

real*8 ext

character*20 targnames
common/THRT_REQ/ thrt_model_req(MAXJ)

real thrt_model_req
integer iflag
integer file_unit, k

call get_target_splits(pass)

if (pass .lt. 10) then
write(ch_pass1,321) pass
filenamel = /tm_echo.’//ch_pass1
filename2 = ‘tm_req.’//ch_pass1

else
write(ch_pass2,322) pass
filename1 = ’tm_echo.’//ch_pass2
filename2 = ’tm_req.’//ch_pass2

endif

file_unit = 10
open(file_unit,file=filenamel)
write(file_unit,1000) filenamel

lun=16
open(lun, file=filename2)
write(lun,100) filename2

Write(6,10) pass
do j=1,NBJ
thrt_model_req(j) = 0.0
call get_inputs(iflag,file_unit,j)
write(lun,200) mun(j)
Write(6,200) mun(j)
do k =1, ncases
ncase=k
call assign
call echo
if (rt.ge.1) call main_up(rt,iflag)
if (lun.eq.6) call display
enddo
if (rt.ge.1) then
call cal_tm_req for_munition_type(j)

1 find it in tm_inputs.f

11 find it in tm_inputs.f

1t find it in tm_montesc.f
1t find it in tm_inputs.f

< C-18 >

c

endif

enddo
close
close

retur!

(lun)
(file_unit)

n

10 format(//,1x,’Pair_Iteration 1,i2,f :!,//,1x,'Threat Model :’)
100 format(//,’File Name : ’,al4,

200 format(2x,a)

30x, ‘Threat Model Output’,//,15x,’Average Munition’,
! Requirements for X% Targets Kill by Munition Type’)

321 format(i1)
322 format(i2)
1000 format(//,’File Name : ’,al4,/)

end
(*

threat_model *)

< C-19 >

OO0 0000

R

subroutine get_target_splits(pass)

* This subroutine gets target splits input from common block /TIJK/ and

*

* writes to file “targets_t_in’ these target splits input for this Threat *

* Model run.
* Referenced by: threat_model

*
*

dodeodededededo ke de ke dedodedodededodededo g ek de e de dedede dede ke dede de ded e dedede s dede dedede ke ddkdedkedod e kkdokdok ke kkkdk ko kdkkdkokd

include ‘pair_1.inc’

integer pass

character*1 ch_pass1
character*2 ch_pass2
character*14 filename

character*1 blank

integer i, i, k

real TIK(MAXI ,MAXK)
real tot_targets(MAXK)
real temp1, temp2
data blank/? ¢/

if (pass .lt. 10) then
write(ch_pass1,321) pass
filename = /tm_t_in.’//ch_pass1
else
Write(ch_pass2,322) pass
filename = *tm_t_in.’//ch_pass2
endif

open(24,file=filename)

--- Calculate Target Splits by Platform
do K=1,MBK
templ = 0.0
do 1=1,NB]
temp2 = 0.0
do J=1,NBJ
temp2 = temp2 + TIJK(I,d,K)
enddo
TIK(I,K) = temp2
templ = templ + temp2
enddo
tot_targets(K) = temp1
enddo

--- Write Target Splits by Platform
write(24,820) filename
Write(24,809)
write(24,810) (plat(l), I1=1,NBI)
do K=1,NBK
write(24,808) targ(K), (TIK(I,K),I=1,NBI), tot_targets(K)
enddo

--- Urite Threat Model Input : Target Splits by Platform and Munition
write(24,805)
write(24,1000) blank
write(24,806) (plat(l), I=1,NBI)
do J=1,N84J
write(24,1000) blank
write(24,807) mun¢Jd)
do K=1,NBK
templ = 0.0
do 1I=1,NBI
templ = templ + TIJK(I,Jd,K)
enddo

< C-20 >

ER L Y X S N O Sl IR S S R R A I 3 TR P . W A S L

P 2 0% 472 I iy

write(24,808) targ(K), (TIJK(I,d,K),I=1,NBI), templ
enddo
enddo

close(24)

return
321 format(i1)
322 format(i2)
805 format(///,32x,'Targets Splits by Platform and Munition’)
806 format(10x,12(1x,a6),6x,’Total’)
807 format(alS)
808 format(3x,a5,12¢1x,f6.2),2x,2(5x,£6.2),5x%,16.4)
809 format(///,40x,’Targets Splits by Platform’)
810 format(/,10x,12(1x,a6),6x, Total’,/)
820 format(//,'File Name : 7,a14)
1000 format(a)
end
c (* get_target_splits *)

< C-21 >

e o T e R o T T o T T

(2 B 2 B 2 I]

subroutine cal_tm req_for_munition_type(j)

Fedke de ok do oo de ook de o de e dede o de vk oo d e dede dede e de e e de ek e de e e e de o e e e e de e e e de S de ke e dede o de e de e de de e dede

* This subroutine calculates the average requirements of type
* munition - output of Threat Model
* Referenced by: threat_model

J

*

*

hkdkkkkhkhkhkhkkhkhkhkhdhhkihkhkkkkkkkikikkkkikkikdkkhkkkkkkkkkhkkikkkikikhkkkkkkdk

inctude ’pair_1.inc’
integer j

common/EXPECTED_REQ/ expected_req_array(6)

real expected_req_array
common/THRT_REQ/ thrt_model_req(MAXJ)
real thrt_model_req
integer i
real XX, YY, X(8), y(8)

data x/0.00, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1.00/

y(1) = 0.0
do i=2,7
y(i) = expected_req_array(i-1)
enddo
y(8) = 2.0 * expected_req_array(6) - expected_req_array(5)
xx = KC_0(j)
if ¢ (xx .gt. 0.0) .and. (xx .le. 1.0)) then
i=1
do while (xx .gt. x(i))
i=i+1
enddo
i=i-1

yy = y(i) + (xx=x(i)) * (yCi+1)-y(i)) / (x(i+1)-x(i))
else
print *, ’Fraction-To-Be-Killed is not between 0 and 1 1/
stop
endif
thrt_model_req(j) = yy
return

end
(* cal_tm_req_for_munition_type *)

< C-22 >

shared with moe in tm_montesc.f

Extrapolating

Extrapolating

Threat Model Kitl Criterion by munition type

o000 0

o000 on

subroutine cal_new_req _expenditure_ratios '

Yoo de ok e de s e ok oo s e e Ko e de e e o de e e de de e o de e e Fe o de e e e de de ek de ke e de ke ek de de e Jededededodedok ke ke ke dedededkdodk ok dekok ke k ke kkkk

* This subroutine calculates the new requirment-to-expenditure ratio for each *
* munition type. *
* Referenced by: main program *
if**

include ’pair_1.inc’

common/THRT_REQ/ thrt_modet_req(MAXJ)

real thrt_model_req
common/TM_COST/cost_m, cost_plat_att, cost
real cost_m, cost_plat_att, cost
integer i, J,. k, L
real temp
L=1 ! Single time interval

cost_m = 0.0

do j=1,NBJ
if (E4(j) .gt. 0) then ! do not change R_E if Threat Model expenditure is zero
temp = thrt_model_req(j) / EJ())
R_E(j) = anint(temp * 10000.0) / 10000.0 ! this is to take four places precision after decimal
endif
cost_m = cost_m + CM(J) * thrt_model_req(})
enddo
cost_plat_att = 0.0
do 1i=1,NBI
temp = 0.0
do j=1,NBJ
do k=1,NBK
temp = temp + ATT(i,j, k) * STK(i,j,k,L) * TIJK(i,],k)
enddo
enddo
cost_plat_att = cost_plat_att + PLATCOST(i) * temp
enddo
cost = cost_m + cost_plat_att t including platform attrition in cost goal
cost = cost_m t not including platform attrition in cost goal
costgoal = costgoal_reduction_factor * cost 1#1 - commented out, so the cost goal for the
next pair-iteration is not a reduciotn of
the actual cost from the current pair-
iteration; instead, uses user supplied
cost goal for every pair-iteration
return
end

(* cal_neuw_req_expenditure_ratios *)

< C-23 >

eyt TTELTY A
PR R T N2 Sk

o000

subroutine jmap(pass)

foekkdkhkkhhhkhkhkkkhkhkihkkikkkkkkikhkhkkkhkhkhkkkkkikkkkhhhkkhkkkihkhkhkkik

* This subroutine is the main process for the JMAP run. *
* Referenced by: main program *
oo v v de e sk e s o o e e e e e o e e dede e e de ek ok e e d e sk sk e e e e e ke e e e et dede ke e e e dede dededede ke dede

integer pass
call open_files(pass) 11 find it in jmap.f :
call lgpinp 11 find it in jmap.f - form input file for LGP solver
call lgpsolve(pass) 11 find it in jmap.f - solve LGP problem
call close files 11 find it in jmap.f
return
end
* jmap *)
< C-24 >

AN AENLCTI A SRS WL B IPR AD Sl by

Q000

subroutine cal_neW_target_splits

ofede e de e o de e Fe de o o de ok e Je e de e e de I e de de dode de de ot ok dode otk dededededdodek ok ek k ke kkkkkkdkdkkdkkkkdkkkkkhkkkkkkkhkhkkk

* This subroutine calculates the new target splits for the next Threat Model run. *

* Referenced by: main program *

include ’pair_1.inc’

common/THRT_REQ/ thrt_model_req(MAXJ)
real thrt_model_req

common /TJ_0/ TJ_O(MAXJ)
real T4 0
common/TH_COST/cost_m, cost_plat_att, cost
real cost_m, cost_plat_att, cost

integer i
real temp, epsilon

data epsilon/0.00001/

--- Calculate jmap Targets Killed, jmap Kill Criterions,
and DIFF by munition type
do J=1,H84
temp = 0.0
do 1=1,NBI
do K=1,NBK
temp = temp + TIJK(I,J,K)
enddo
enddo
print*,/Td(’,4,') = f,temp,’ TJ_0C’,4,7) = /,TI_0(J) 111
if (Ctemp .lt. epsilon) .and. (TJ_0¢J) .lt. epsilon)) then
KC(J) = KC_0¢d)

else
KC(Jd) = temp/TJ_0(J)
endif
print*,/KC(’,d,7) = ! KC(J) 111
DIFF(J) = abs(1.0 ~ KC(J)/KC_0(J))
enddo

--- Calculate new Target Splits for Threat Model to use in the next pass

do K=1,NBK
temp = 0.0
do 1=1,MBI
do J=1,NBJ
temp = temp + TIJK(1,d,K)
enddo
enddo
do 1=1,NBI
do J=1,NBJ
TLIKCI,d,K) = tq(K) * TLJK(I,Jd,K) / temp
enddo
enddo
enddo

return

end
(* cal_new_target_splits *)

< C-25 >

NI AT Siidad 7 5 5 AP R WAV R Aa it N et iy s A e S AL & MR A

0O0000

(1]

subroutine cal_max_aberration(pass, max_aberration)

Sede st de ke eI T Fede v de K K o e de K do K dede g dededede dedod g dedodo ke dede g deddo e dedod dedodode sk dede ke dedk ek ek e ke ek dedodededok dededede ek ke k ok ok kdkok

* This subroutine calculates the maximum difference of the ratio of expenditures *
* of two consecutive passes from 1 (of all munition types). *

* Referenced by: main program *
oo e e oo de de e e ke Fe de e e o de e e e e e e e e sk e e e e dede e e e e e e e sk e de e ok de e dede e e dede dede ke de ok ek dedo e dedek ke de ke dede ke dedek ek kdede ke

include ’pair_2.inc’

integer pass
real max_aberration

common/THRT_REQ/ thrt_model_req(MAXJ)

real thrt_model_req
common/TH_COST/cost_m, cost_plat_att, cost

real cost_m, cost_plat_att, cost
integer i

character*! ch_passi
character*2 ch_pass2
character*14 filename
real ratio(MAXJ), aberration, epsilon

data epsilon/0.00001/

if (pass .lt. 10) then
write(ch_pass1,321) pass
filename = ’pair_sum.’//ch_pass1
else
write(ch_pass2,322) pass
filename = ’pair_sum.’//ch_pass2
endif

max_aberration = 0.0
do j=1,NBJ
if (EJ_old(j) .lt. epsilon) then
if (EJ(j) .lt. epsilon) then
ratio(j) = 1.0

else
ratio(j) = 99999.0
endif
else
ratio(j) = EJ(j)/EJ_old(j)
endif
aberration = abs (1.0 - ratio(j))

if (aberration .gt. max_aberration) then
max_aberration = aberration

endif
enddo
--- Write Given Kill Criteria,
Threat Model : Requirements, Expenditures, and Req-to-Expenditure Ratios
JMAP : Expenditures, Requirements, and Kill Criteria

open(17,file=filename)

wWrite(17,100) target_overlap_confidence, pass

Write(17,105)
do j=1,NBJ
write(17,200) mun¢j), thrt_model_req(j), EJ_old(j), R_E(j),
. rndsum(j), regsum(j), ratio(j)
enddo

< C-26 >

N Tt Evae A o) e i A ™ Bt e B U MR) 2 * Sif Kon M W ¥ Lo a2 Yot N S DO S L L A MY AN NI an > b Dbt) s

write(17,210)
write(17,220) costgoal, tot_mun_req cost, prepri(1)

wWrite(17,230) prepri(2)
L=1
do k=1,NBK
write(17,240) targ(k), ftbk(k,L), ftbk(K,L), totkill(k)/tq(k)
enddo .

write(17,250) prepri(3)
do 1i=1,NBI

write(17,260) ptat(i), fattr(i), totatt(i)/pq(i)
enddo

close(17)

100 format(’Overlap Confidence = /,f5.3,22x,/Pair_Iteration 7,i2,
. //,18%,7<---------- Threat Model ----------- >!
. LR St JMAP ------- > Threat Model’,/

’
. ,92x,’ExpRatio’)
105 format(/MUNITION’,10x,’Requirements Expenditures /,

. ! Req/ExpRatio Expenditures Requirements NEW/0LD’, /)
200 format(3x,a15,3x,f9.3,5x,9.3,f14.4,5(5x%,19.3))
210 format(/,68x,’Goat Solution Priority’)
220 format(/,’MUNITION - Cost’,49x,f6.4,8x,f6.4,13x,i1)
230 format(/,’ TARGET - Fraction Killed’,71x,i1)

240 format(3x,al15,6x,f6.4,36x,16.4,8x,f6.4)
250 format(/,’PLATFORM - Fraction Attrited’,69x,i1)
260 format(3x,al15,48x,¥6.4,8x,16.4)
321 format(i1)
322 format(i2)
return
end
(* cal_max_aberration *)

< C=27 >

L
FOREL Dt

A AT RIS

(S
-, 4

Y

e
e PRI

Y He

¢ N

e .n;
BT A
i K

I

N ’«,‘Q;"‘-‘ Ko

)
Fgant
Al XA P

‘ L
AT one

NN .
hreat: P
2 AR VST

=%

N

(A
>

AgSrCos
4:: 3
o

~;-
RENN
ISR
» o
VLT b
Py
R

AT
ARG IR S
Ravtisis T

Har
P
g
ARSI

e

RSl
O

&
¥

"
O
=
».',éj: .

5
Fant e
N Ar N

ok

Ry
S x0T

e
%
i

N . by
BT

S

%4

=4
Zearths Ty
N el

.
i

2o
e ANy

- a

L4 e
vy BN e

v

FORREA
PP
A
el o !
d ST T “E
ED NN LSS S : BRI
ey et o’ K fry . r* TIR wygt e
. ¢ T ST A N et T WS N . Eiaaty 3 .3 PRI
RGN T ORI AL ARV,

h
. EROI
e o s S R AL G

NCOSIVEN -

o0

(2]

o000 00

aoo0o000

(1]

O0000 ooOoOco0O0On (1]

OO0

File Name : jmap.for

Based on JMAP 5/92 Martime Module
Modified for adoption on HP-9000 HP-UX FORTRAN and MS PowerStation FORTRAN.
4/5/94 Roger Lynn

Arrangement of .Program Units :

open_files
Lgpinp

g_con_overall_cost
g_con_targets_kill
g_con_platform_attrition
ph_con_max_platform_attrition
ph_con_munition_available
ph_con_doctrinal
ph_con_max_rate_of_fire
ph_con_target_counts
ph_con_upper_bound_targets_kill
ph_con_Llower_bound_targets_kill

LGPSOLVE
START
SIMPLX
LGPRINT
PRTSOLU
TEX

XET

close_files

-~ based on ---
dedede ok do e do o g e de vk oo e de e ok do o ke e e e e dk e e e e e she e e ke B e e e o e e e de ke e e B e e e ke e e e de de e e e do dedede de ek dedoke ke
* INPUT FILES: *
* 1 MUNITION MODEL DESCRIPTORS - DETAILED INFO *
* *
* OQUTPUT FILES: *
* 3 SOLUTION FILE - SUMMARY OF MUNITIONS USED AND COSTS *
* 15 LGP REPORT FILE *

9 input file for LGP SOLVER

10 constraint type

20 objective terms

30 coefficients

40 Right-Hand Sides
* PROGRAMMED BY: M.L.STEIN -~ LOS ALAMOS NATIONAL LABORATORY *
* DATE: NOVEMBER 1991 *

kkkkkdokkdkkdkdkdkkkkdkkdkhkhkdkdkkkkkkkkddkdddhkkddkdkdddohdkddddkdkdkkkkkkkkkkkkkiki

< C-28 >

OO0 0

100
321
322
1000

BT A it ek b o ad ARt e & SO k50 BT AR 5 27 AR el 5 I o M o M AC AR IS O e g e Congt R Al 1€ o v | e g e - e s aat e st

subroutine open_files(pass)

Fededededede gt dede oo oo o s e s de sk s de e e e e e e do o dede Jede e de e de e ko o e e e e e sk e de de e e e e dode e de e de de de e e de ke ke

* This subroutine opens all the files used by the jmap module. *

* Referenced by: jmap *
e o e e I e e o do B e de e de I e de ke de e e e o de ke e s ke e e de de e e e e e e ke de e e e s e e e e e s ke vk e e de g de ke de ek de ek ke

include ’pair_1.inc’

integer pass

character*1 ch_passi
character*2 ch_pass2
character*14 filename

if (pass .lt. 10) then
write(ch_pass1,321) pass
filename = /j_sum.’//ch_pass1
else
write(ch_pass2,322) pass
filename = fj_sum.’//ch_pass2
endif

open(9,file=’j_Llgp.in’)
open(10,file=’j_con’)
open(20,file=’j_obj’)
open(30,file=’/j_coeff’)
open(40,file='j_rhs’)

open(15,file=’j_lgp.out’)
open(3, file=filename)

write(3,100) target_overlap_confidence, filename

return

format(//,’Overlap Confidence = ¢,f5.3,22x,'File Name : /,a14)
format(i1)

format(i2)

format(a)

end ! open_files

< C-29 >

aoon

aooo0

s N NeNy]

180
185
190
200

anoon

cccc
ccce
ccce
ccce

SUBROUTINE LGPINP

dededekkkkkdededededoh ko g de ke de ke dedede ek ke dode e o dode g g de e e ek ke oo ke de i e ke dedede ke ke ke ke

* THIS ROUTINE FORMS THE INPUT FILE FOR THE LGP SOLVER *
Fekkddededdkdeded ok kodedededekok kg deded Rk ke dededdedek kdekekdekdohk

INCLUDE ‘pair_2.inc’

REWIND 9
REWIND 10
REWIND 20
REWIND 30
REWIND 40

et ek de ke e e ko K sk e e e e e e e e e e ke e e sk she ke s e e e s e de de e e e e dede de e e de e dode dedodedede e dede dededede de ke dede ek

* FIND THE NON-ZERO X(I,J,K) AND RECORD THEIR INDICIES *

s o e e de e e dede e gt do e dededede de e de ke K dedo ke ke de gk ke dekedok ke ek ko dok ek kdedok ke ke kkkkkkdkkkdkkkdk

NBNZX=0
DO 200 1=1,NBI
DO 190 J=1,NBJ
DO 185 K=1,NBK

DO 180 L=1,NBL

Jododke e de Ko e de ek de de e e de e de de e e dode e ke dede e ek kk k ke k ke dekkkkkdokdedek ke kkdkdkdeokkdkdkddkk

* CHECK IF TYPE J MUNITIONS FIRED FROM TYPE I PLATFORMS CAN *
* HARM TYPE K TARGETS *

sk khkhkdkkdekddkdkkhkikkkikkkhkkikkkkkkkhkkkkkkkkkkhhkkkkkkkhkkkhkkikkikkk

IF (STK(1,J,K,L) .EQ. 1.E25) GO TO 180

NBNZX=NBNZX + 1

IF (NBNZX .GT. MAXX) THEN
PRINT*,¢ ¢
PRINT*,’ /
PRINT*,’ THE NB OF NON-ZERO X's HAS EXCEEDED THE LIMIT’,
f MAXX = 7 ,MAXX
PRINT*, ¢ ¢
PRINT*,’ INCREASE THE VALUE OF THE PARAMETER MAXX IN THE CODE.’
PRINT*, ¢ 7
PRINT*, /
STOP
ENDIF

TARGCHK(K)=TARGCHK(K) + 1

CONTINUE
CONTINUE
CONTINUE
CONTINUE

e e e dodo v de e de o o do sk e o e e e e d dedo e e e e de de o g e de e de e e e de e dededede ke ek dededededkedod ke ke ke dedokkododekde ke ke ke

* CHECK THAT ALL TARGETS ARE ACCOUNTED FOR IN THE SET OF NON-ZERO E‘S *
Ttk de ok gk dedededededede dededed ok dedededkdkok ki dekdedek ki idododokkeokokokodok koo ok ok koo

PRINT*,? *
PRINT*,! ¢
PRINT*,’ NB OF NON-ZERO X(I,J,K) = f,NBNZX
PRINT*, 7 ¢

< C-30 >

ccce

230

1000

1010

1020

10

1030

20

PRINT*,? ¢
TEST=0

DO 230 K=1,NBK
IF (TARGCHK(K) .EQ. 0) THEN
TEST=1
PRINT 1000, ‘ TARGET NOT SHOT AT
WRITE(3,1000) / TARGET NOT SHOT AT
ENDIF
CONTINUE

!, TARG(K)
!, TARG(K)

IF (TEST .EQ. 1) THEN
PRINT*, 7
PRINT*,# ¢
PRINT*,’ CHECK FILE 1 - SOME TARGETS CANNOT BE SHOT AT’
PRINT*, ¢ ¢
PRINT*, ¢ ¢
ENDIF

call g_con_overall_cost

call g con_targets_kill

call g_con_pltatform attrition

call ph_con_max_platform attrition
call ph_con munition_available

call ph_con_doctrinal

call ph_con_max_rate_of_fire

call ph_con_target_counts

catl ph_con_upper_bound targets_kill
call ph_con_lower_bound_targets kill

NBROWS=ROW
NBCOLS=NBNZX

REWIND 10
REWIND 20
REWIND 30
REWIND 40

WRITE(9,1000) TITLE

FORMAT(A)

WRITE(9,*) ¢ /

WRITE(9,1010)

FORMAT(’NB OF ROWS, COLUMNS, AND PRIORITIES’)

WRITE(9,*) NBROWS,NBCOLS,NBPRIORS

WRITE(9,*) # /
WRITE(9,1020)
FORMAT(/THE TYPE OF EACH CONSTRAINT - B,L,G,OR E’)

DO 10 LL=1,NBROWS
READ(10,1000) TYPEC
WRITE(9,1000) TYPEC
CONTINUE

WRITE(9,*) ¢
WRITE(9,1030)
FORMAT(/OBJECTIVE TERMS - DEVIATION TYPES,ROW,PRIORITY,WEIGHT’)

DO 20 LL=1,NBF20
READ(20,1000) CLINE
WRITE(9,1000) CLINE
CONTINUE

WRITE(9,1060) 0,0,0.0

1060 FORMAT(’END’,217,F10.2)

< C-31 >

PN Vo SN AT i1 M MR WY NI A K IV IS S ML MNP TANE 2 LRI A e

WRITE(9,*) ¢ ¢
WRITE(9, 1070)
1070 FORMAT(‘CONSTRAINT COEFFS. - ROW,COLUMN, VALUE’)

DO 30 L=1,NBF30
READ(30,1000) CLINE
WRITE(9,1000) CLINE
1080 FORMAT(217,E15.6)
30 CONTINUE
WRITE(9,1080) 0,0,0.0

" WRITE(9,*) *
. WRITE(9,1090)
1090 FORMAT(’RIGHT HAND SIDE VALUES OF CONSTRAINTS’)

DO 40 IR=1,NBROWS

READ(40,1000) CLINE

WRITE(9,1000) CLINE
40 CONTINUE

REWIND 9

RETURN
END

! LGPINP

< C-32 >

ITNNRASE 223 PR

o000

o000

o0

[

o000 s NeNy]

aonoon

3000

40
30
20
10

1000

2010

4000

SUBROUTINE g_con_overall_cost

Sevkedededede dedo i do e dode K e ke dedo ke dedok dedeqe ke dede dedededek ke do ke de ke ke ke dok ke dk kv ke dek kR de ke kk dedode ke k
* THIS ROUTINE FORMS the goal constraint on overall cost *

* CON1

ek o dodedededodededek ke dedededededodedode ke dedeode dede ke deokokedede dedk ko dededododo ke kok Kk dedokododedek kedkkokdkok

INCLUDE ‘pair_2.inc’
integer tex

ROW=0
TEST=0
NBF20=0
NBF30=0

DO 10 L=1,NBL
DO 20 1=1,NBI
DO 30 J=1,NBJ
DO 40 K=1,NBK

M=TEX(I,d,K,L)

IF(M.EQ.0) GO TO 40

IFCTEST.EQ.0) THEN
ROW=ROW + 1
TEST=1

ENDIF

dedekkkkdkdkkddkddkdkkkdkdkkdkkkhkkkkhkkkhkkkkkdkkkik

* WRITE CONSTRAINT COEFFS FOR THE SOLVER *
T T T T e

FL=FRACLOST

coef = CM(J) * R_ECJ) * RPE(I,J,K) * STK(I,Jd,K,L)
+ PLATCOST(I) * ATT(I,J,K) * STK(I,d,K,L)
coef = CM(J) * R_E(J) * RPECI,J,K) * STK(I,J,K,L)

WRITE(30,3000) ROW,M,coef
FORMAT(217,E15.6)
NBF30=NBF30 + 1
CONTINUE
CONTINUE
CONTINUE
CONTINUE

IF (TEST .NE. 0) THEN

hhhkhhkkkhhdkkkkikhhhkkhkkkkhkkhkhhkrdkkikkkk

* WRITE CONSTRAINT TYPE FOR THE SOLVER *
eokdededede ke dede ek ke ke dede ke sk ke dede ek ok ke
WRITE(10,1000) ‘B’

FORMAT(A)

Yevkededededededododke dodo ke ok ko do e e dede e ede dek ek dedo g dededede ke e de ke ke

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
e do v J v o de ke o dodo e b de e de e e de S dede dodedode ke dedodeke ke ek dedede ke ke ek
WRITE(20,2010) ROW,PREPRI(1),1.0
FORMAT(/POS’ ,217,F10.2)

NBF20=NBF20 + 1

dededededodedode e e de e e de de e ke do ke de dededede dedededodode dodekedede ek ke ke ek ke

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
Fededededededdeddedededededededeh e dededoddodkokdodedoddedoddok dododkdoddeodok

WRITE(40,4000) COSTGOAL
FORMAT(F15.5)
ENDIF

RETURN
END
! g_con_overall_cost

< C-33 >

-

if platform attrition cost is included in
overall cost

! platform attrition cost not included in
overall cost

VS S B R AR LV I D a5

o000

o000

3000

aOonon

o000

ooo

47

45

40
30

1000

2000

SUBROUTINE

g_con_targets_kill

INCLUDE ‘pair_2.inc’
integer tex

NBC7ROWS=0

D0 10 K=1,HBK

DO 20 L=1,NBL
TEST=0

po 30 I1=1,NBI
DO 40 J=1,NBJ

M=TEX(I,d,K,L)

1F(M.EQ.0) GO TO 47

IF(TEST.EQ.0) THEN
ROW=ROW + 1
NBC7ROWS=NBC7ROWS + 1
TEST=1

ENDIF

KEKKRKERRRRRKIIRKEEIRKAXKkKkERRIhkkhkhkkhkkkhkkikkhkkhkkkkkikikkkkikkkkkkkkkkhkhhkkhkhkdhkhhkkikkddkikkddkkiik

* THIS ROUTINE FORMS the goal constraints on fractions of targets killed by target type *
* CON7 *

e dedededededdedede g dede g de dedede de e dede e de e e sk e de sk e de g de g de g e e e e e e do e dodedede e dedkededede ke ke dededededekdkokkkkkkkkkkkkkkkkkhkkkkkdk

kkkkkdok ek kb ki dkdiokkdckkkkickddoiiokikkdkkkidr
* WRITE CONSTRAINT COEFFS FOR THE SOLVER *

*hkkkkkkkkhkkkkdhhhkkddkdhkkhkkkhkkdhkkkkkhkdkkdkk

WRITE(30,3000) ROW, M, 1.0
FORMAT(217,E15.6)
NBF30=NBF30 + 1

DO 45 LP=1,L-1
M=TEX(I, d,K,LP)
IF (M .EQ. 0) GO TO 45
IF (TEST .EQ. 0) THEN
ROW=ROW + 1
TEST=1
ENDIF

dededededeodeddedkekkdekkkkdkdkkkkkdkkkkkkkkkhkkkkkkkhkikkkkkkdkkikkkikikk

* WRITE CONSTRAINT COEFFS FOR THE SOLVER *

* (from the surviving targets of the right-hand-side) *
e de e e e de e Je e d e o e de e e e Fe de e d e e Je e dede Fe do e do e do K e de e de e de e e de e de e de ke de ke de Kk de ke ke

WRITE(30,3000) ROW, M, FTBK(K,L)
NBF30=NBF30 + 1
CONTINUE

CONTINUE
CONTINUE

IF (TEST .NE. 0) THEN

dedededdkddedododedkkkdkdkdededo ko ko btk dddododokdok ek kdekkdek

* WRITE CONSTRAINT TYPE FOR THE SOLVER *
dedkekedekk Rk d Rk kkkhkkkkdkkkdodkkkkikkkkikkikkkkkk
WRITE(10,1000) ‘B’

FORMAT(A)

oo e de o de e do e e e de e e e dode de et o otk K de de de e e e e e e de e de e dede ke ke

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
**********************?*******************
WRITE(20,2000) ROW, PREPRI(2), FOM_T(k)
FORMAT(’NEG’,217,F10.2)

NBF20=NBF20 + 1

< C-34 >

TRE L

C
c
c

dededodedodeddodedod ke dedododedokdedede dededdedk g dodode dedodde ok de dedek ok k

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
ek dedkdedodehdodedededodedekokok g dekokokokodeok e kekkd kodkokok ok kkk ki
WRITE(40,4000) FTBK(K,L)*TQ(K)
4000 FORMAT(F15.5)
ENDIF

20 CONTINUE
10 CONTINUE

RETURN
END

c ! g _con_targets_kitt

< C-35 >

o 1 R s g ey T i T T T TAr b ws, i T Y el

SUBROUTINE g _con_platform attrition

Feddekdedododkodohekddodededededodokddedodedkdododo Rtk dedede s dode sk dodode dedede ok dedede dod dedede dede dededoddodode dodede de de kg de ek dode e dod ko de ek de g e dedede ke kokk

* THIS ROUTINE FORMS the goal constraints on fractions of platforms attrited by platform type *

* CON8 *
dededededededodod deokdededdedodo ot de ek dede sk et de ko e sk ok de ke e dede e e de de e do de e e de e e Fe e e de e sk de e ke de s e de e e s de e ke e dede dedede ek e de ke dokk ke dekkkk ok ke kkk

anooon

INCLUDE ’pair_2.inc’
integer tex

NBCBROWS=0
DO 10 I=1,NBI
TEST=0

DO 20 L=1,NBL
DO 30 J=1,NBJ
DO 40 K=1,NBK

M=TEX(1,d,K,L)

IF(M.EQ.0) GO TO 40

1F(TEST.EQ.0) THEN
ROW=ROW + 1
NBCBROWS=NBCBROWS + 1
TEST=1

ENDIF

sdedededodede e dedede ke s e e e s e e ke e ok o e ok ek ok e o ok o o sk e ok

* WRITE CONSTRAINT COEFFS FOR THE SOLVER *

Ao Jodede e e de e e e de e e s o e e e de e e e de ke Ko e e ek o e e dedo e e de K de ek Ko

IF (ATT(I,d,K) .GT. 0) THEN
coef = ATT(I,J,K) * STK(I,J,K,L) 1"
WRITE(30,3000) ROW, M, coef

3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1

ENDIF

[y N Nx]

40 CONTINUE
30 CONTINUE
20 CONTINUE

IF (TEST .NE. 0) THEN

Fehhkhhkhkhhhhkkkkkkkhkhkkhkhkkhkkhkkkhkkkkkkkkkkikk

* WRITE CONSTRAINT TYPE FOR THE SOLVER *

Sededededededededede dededededede dededede dededededede et e dedede e e dede dede e ke

WRITE(10,1000) ‘B 1
1000 FORMAT(A)

anoo

e e dode e de oo e dede ke de de ek dede ke Ko et dede e dede ke ke de e ke ke ke ke ke ke

* WRITE OBJECTIVE TERMS FOR THE SOLVER *

Fedede v sk dede e de ke de de e v e do e ok o e de o e de e e e de e e de do e ke dede e de de ke e

WRITE(20,2000) ROW, PREPRI(3), FOM_P(I) 1
2000 FORMAT(/POS’ ,217,F10.2)

NBF20=NBF20 + 1

anon

oo e e de e dedo e o e dedo e e do de e de o ke de e e dok e de o de de e dede e dededede e de ek

c
c * WRITE RIGHT HAND SIDES FOR THE SOLVER *
c Fededdodedededkdedekeoddedododed deddedededdededede ok ded ke e dede ke ek dededede

WRITE(40,4000) FATTR(I)*PQ(I)
4000 FORMAT(F15.5)
ENDIF

10 CONTINUE
RETURN

END
c i g_con platform_ attrition

< C-36 >

SUBROUTINE ph_con_max_platform attrition

FhkRhEhkkhkkhkkhhkikkkhkkhkihhikhkhkkkkkhihkkkhkkikkhhkkkikihkkhkkkkkhkkhhkhkhkkkkkhkhkhhkhhkkkhkhkkhkkkkkhkkkikkikhkkkhkkkkk

* THIS ROUTINE FORMS the physical constraints on maximum platform attritions by platform type *
*

* CON3
KRk kkhhkhhhkkkkhkkhhkkhkkikikkkhhkhkkkhhkkhkkkikkkkkikikkkkkkkkkkhkhkhkkkikkkkkkkkkkkhkkkkkkkkhkkkkhkkkkkkkkkkkd

o000

INCLUDE ‘pair_2.inc/
integer tex

Do 10 I=1,NBI
TEST=0

DO 20 L=1,NBL
DO 30 J=1,NBJ
DO 40 K=1,NBK

IF (TARGTYPE(K).EQ./FALSE’ .OR. TARGTYPE(K).EQ.’false’)
. GO TO 40

M=TEXCI,d,K,L)

IF(M.EQ.0) GO TO 40

IF(TEST.EQ.0) THEN
ROW=ROW + 1
TEST=1

ENDIF

Fkdddehkkhkkkkkkkkkkkkikiokikokokdkkkkkdddk ik dokkk
* WRITE CONSTRAINT COEFFS FOR THE SOLVER *

Kkkkkdckhhkkhkhkhkkkkkkkhkhkhkihkkkkhkkhkkhkhiikkkkkkkihk

IF (ATT(I,Jd,K) .GT. 0) THEN
coef = ATT(I,d,K) * STK(I,J,K,L) 1
WRITE(30,3000) ROW, M, coef

3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1

ENDIF

oo

40 CONTINUE
30 CONTINUE
20 CONTINUE

IF (TEST .NE. 0) THEN

Wk ket do ke d ke dededekddede ok ek ke ok dodk ok ok kkkhdkdokkkkkkhkd

* WRITE CONSTRAINT TYPE FOR THE SOLVER *
e e e e oo s e e b ke i e e e e ke e e e e e e ke e ke e d o de o e e de ke de e e do ke dede
WRITE(10,1000) /L

1000 FORMAT(A)

OO0

Yok dededokdedodk ke dedededod kokodede kb dededoded dedkodk kododeded ok kokokk ke

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
Fekekkkdkkdkiokiokkkkkkkdkkkkhkkkkkkkkkkkkkkkd

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

oooon

KRR KKkKkKkkhhkkhkhhhhhhkkkhkhkhkhhdkhkkkkhkhdkkkk

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
ek dede R dede etk dedededededededededed ek e de ek ok ke dede
WRITE(40,4000) pq(i)
4000 FORMAT(F15.5)
ENDIF

s NNy

10 CONTINUE

RETURN
END
c t ph_con_max_platform_attrition

< C-37 >

SUBROUTINE ph_con_munition_available

c ek dededkdedododedede dode do e dede dede de e dedode dede de g de g de de de de dededo dodode de e dodede de dede ko dedede dedede dodede dedede ke dedodododedede e dededdede ke dedekkkde de ek dekkk
c * THIS ROUTINE FORMS the physical constraints on munition stockpile by munition type *
c * CON5 *
[Ve do oo de o s dode e e e e de e e e e e e do e e I dode K e d g o e e e de v de g e dede o de de e e de ke de de ke de dededo o de ok dede dodo ko ek ke ok ke ko ke ke ke kdok ke dkdo ke k de ek kekk
INCLUDE ‘pair_2.inc’
integer tex
NBCSROWS=0
Do 10 J=1,NBJ
TEST=0
b0 20 L=1,NBL
DO 30 I1=1,NBI
DO 40 K=1,NBK
M=TEX(I,J,K,L)
1F(M.EQ.0) GO TO 40
IF(TEST.EQ.0) THEN
ROW=ROW + 1
NBC5ROWS=NBCSROWS + 1
TEST=1
ENDIF
Cc dodededede bk dedodo ke dode K dedodededododok dede ke ek dedode ek k ok ke ok e dek ke kkk
c * WRITE CONSTRAINT COEFFS FOR THE SOLVER *
c e de s e e de v de o e de e e e de de e e de e e de do e dede i dode de de e e de de ke dode ke dede ke dede

FL=FRACLOST
COEF = R_E(J) * RPECI,J,K) * STK(I,J,K,L)
WRITE(30,3000) ROW, M, COEF

3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1

40 CONTINUE
30 CONTINUE
20 CONTINUE

If (TEST .NE. 0) THEN -
dedkekdeddedkddedede sk Rkt kkdkkhkiokkkkkidkkkkkkkk

* WRITE CONSTRAINT TYPE FOR THE SOLVER *
dodede de de oo do ok de o do e do e do e ks e Yo Ko de e de do e de ke Je e de e de o e de ke ke de ke ke
WRITE(10,1000) ‘L’

1000 FORMAT(A)

aoan

hkdekkkhkkihkkkhdedkkddokddddhdddkkkdkkkkkkkkr

* WRITE OBJECTIVE TERMS FOR THE SOLVER ¥
Fekdekddkdekdokdokkdkdokkkkdoikkkkikkdkdkidokkkdkkkk

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

o000

W dede sk de e e dedo sk e de e ok dode etk de dodedede do e e de e e do ek e e dededededededke

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
Fekdeddhddk kK dkk ek ke ko ko ke k ke
WRITE(40,4000) STOCK(J)
4000 FORMAT(F15.5)
ENDIF

anoon

10 CONTINUE
RETURN

END
c ! ph_con munition_available

< C-38 >

Qe oemniode 22~

o000

o0no0

3000

40
30

o000

1000

aononon

aoon

4000

20

SUBROUTINE ph_con_doctrinal

INCLUDE ’pair_2.inc’
integer tex

NBCYROWS=0

DO 10 L=1,NBL
DO 20 J=1,NBJ

IF (DOCTRIN(J) .EQ. 0) GO TO 20
TEST=0

DO 30 1=1,NBI

DO 40 K=1,NBK

M=TEX(I,d,K,L)
IF(M.EQ.0) GO TO 40
IF(TEST.EQ.0) THEN

ROW=ROW + 1
NBCYROWS=NBCIROWS + 1
TEST=1

ENDIF

e o e e e e e e e I o e de v e e e de de e e e de e e e e e ke dede dede de e e e e dede e dede

* WRITE CONSTRAINT COEFFS FOR THE SOLVER *
ke diokddhkikkikkodkkkdkdkoddihdkkkidkkdokdokiokkiok

coef = RPE(i,j,k) * STK(i,j,k,1)
WRITE(30,3000) ROW, M, coef
FORMAT(217,E15.6)

NBF30=NBF30 + 1

CONTINUE

CONTINUE

IF (TEST .NE. 0) THEN

dedededededededodededk ded dede e e dedke ke oo o dodo g de dode ke ek de e de ke deke ke ke dek

* WRITE CONSTRAINT TYPE FOR THE SOLVER *
e s e de do e e e do ok ok ke e ke de de e e dede ek dede ke ok ke ke ke ek ok ke dedek kkkk
WRITE(C10,1000) G’

FORMAT(A)

dekkkkkkkkkkhkkkkhkkkkkkkkhkkkkkkkkhhdhhkidkkk

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
it L e T T e 2

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

ek s dede e K e de e e e ook dedke o gk dede ek ke dededede de ek ke dededekededede ke

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
oo de e de s de Fede sk de s de e e e ke sk e v de e Je e do e o ke Fedo e de e do e ek de e de e ek
WRITEC40,*) DOCTRINCJ) * TIME(L)
FORMAT(F15.5)

ENDIF

CONTINUE

10 CONTINUE

RETURN

! ph_con_doctrinal

< C-39 >

. A

ST e e ke e o o v e e I o e e o e do e e s de e e e de e e s de dede e e dedo de ek dedede o de ke ke dede de ke ek ke dede e ek Kk ke dedekek ok ki ke ke ke dede ek kkk ko ko hkkkkkdkkkhkk

* THIS ROUTINE FORMS the physical constraints on doctrinal expenditures by munition type

* CON9
e de de s e s o e sk ok dod o e e e e e e ek e e e e e e e S de e e e de e o de e e de e e e ke e e e de e e g de e de e K v de e ded dodode ke de ke dededekededodede dedededededededkodeodede ke

*
*

SUBROUTINE ph_con_max_rate_of fire

c Fedededede e e oo o de de de e do de de oo e e dede e de ke e e de e e e de e de e e de s e e o e e e sk e de e de dede dedode e de de ke de ke do ke e dedede e ke dededek ke ke ke ke ok ke ke ke ok ke ke kkk ke k ke kkkkk
c * THIS ROUTINE FORMS the physical constraints on Rate-of-Fire by platform type and munition type *
c * CON4 *
c e e e e e ke e de e e e o de e e e e e e e e o o e e e dede s o e e e e e e g dodode s e e vk e e dedede e ok e de e de ke ok ok dede e vk ke de e de ke ke ke k ke k ke kkkkkkdkkkkkkkkkkkikkhkhkkikhkikk
INCLUDE ‘pair_2.inc’
integer tex
NBC4ROWS=0
DO 10 L=1,NBL
DO 20 I=1,NBI
DO 30 J=1,NBJ
TEST=0
RTHS=0
DO 40 K=1,NBK
M=TEX(I,J,K,L)
IF(M.EQ.0) GO TO 40
IF(TEST.EQ.0) THEN
ROW=ROW + 1
NBC4ROWS=NBC4ROWS + 1
TEST=1
ENDIF
C oo o e e oo e ke e e e e ke de g ke de ke de e e ek e de o de do ke K de ke K de e dedede e dededek
c * WRITE CONSTRAINT COEFFS FOR THE SOLVER *
c Rededede g dededo e dodedo i dodedode et do ke de ke dede ke de de ke do dode de de e dede dede ke dede ke g
coef = RPE(I,J,K) * STK(I,J K,L) 1
WRITE(30,3000) ROW, M, coef
3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1
40 CONTINUE
IF (TEST .NE. 0) THEN
c Yoo dededo ke dode dodedodedo ke dode dede ke de ke Kok ok ke kk ke dek ko k ke k ke kkkkd
c * WRITE CONSTRAINT TYPE FOR THE SOLVER *
c dedededodk de ke de e de et e de o de de dodode ok dodo g dedede do kg do ke ke dededede ke dodede ke
WRITE(10,1000) ‘L’
1000 FORMAT(A)
c e e e e v o e o e o e o o I o e oK o e e g e v s e e d e de e e dede ke ke de ke ke
c * WRITE OBJECTIVE TERMS FOR THE SOLVER *
c Fede o de e de Ko dohede ke K o he e dode do e do ke Se ko ke de e de dede de g dede do de ke ke ke deke ok k
c (Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)
4 e e o e de ke dode do e do B e e de ek do e e e he e e e de e de e K de ke e e de e e e e de ke e de
c * WRITE RIGHT HAND SIDES FOR THE SOLVER *
c So oo do e de e de e e de de oo e de e o e e e o hede e e e o e e e e e de ke e he e dedke ek ke
RTHS = PQ(I) * ROF(I,Jd) * TIME(L) 3]
WRITE(40,4000) RTHS
4000 FORMAT(F15.5)
ENDIF
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END
c t ph_con_max_rate_of_fire

< C-40 >

SUBROUTINE ph_con_target_counts

e e e de e e de e Fe e oo e e e e e e e de de e e s e e e v do do e o e e e e e de e de e de e de e de e ke de e ke e e do e e g dode dede do e ke ke de ke ki ok e deke ok dede ke de e kek dede ke ke ke ok

* THIS ROUTINE FORMS the physical constraints on maximum target kills by target type *
*

* CON6
Fedededdodekdededededede ook ke dodo o ok e dedek de e de dode e dedededed ks ke dedede ke ko dokekdede ke kkdeok ke ke ko kok kede ke ke kdkkkkkkkkkkdkkkkkkkkkkkkk

o000

INCLUDE ‘pair_2.inc’
integer tex

NBC6ROWS=0
DO 10 K=1,NBK
TEST=0
DO 20 L=1,NBL
DO 30 1=1,NBI
DO 40 J=1,NBJ
M=TEX(I,d,K,L)

IF(M.EQ.0) GO TO 40
IF(TEST.EQ.0) THEN

ROW=ROW + 1
NBCAROWS=NBC6ROWS + 1
TEST=1

ENDIF

c Fkkkkkkkkkikkkkkikkkkkkikikkiiokkkkkkkiikkkkk
c * WRITE CONSTRAINT COEFFS FOR THE SOLVER *
[

Koo dedo e de do ke de e do e e Ko K e ek e e e e e de e de e e ek ke de de de de vk e dede ke ok
WRITE(30,3000) ROW, M, 1.0

3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1

40 CONTINUE
30 CONTINUE
20 CONTINUE

IF (TEST .NE. 0) THEN

Fededdededekdededededede dededek ke dededek dededeh ddededek dedede ke dededek ol
* WRITE CONSTRAINT TYPE FOR THE SOLVER *

Sekdedededkdedededededddek dekdededkk ok kk il kkdkdkdkdkdokk
WRITE(10,1000) ‘L’
1000 FORMAT(A)

o000

Yo e ok e s dode o ok e de e de sk de de e dodo e de ke dede ke dede e dodedke ke de ek ke deke

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
edeskdededde ek deded dededededede dededededededek e ek dedede doddede ke dedok

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

o000

dekdkkdedkkkdkdokkkkdokhdkhhhkdkkkkkkkikhkkkkkkkikkkk

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
Fedek ke s ke de e ko de ek ddededede ek ke ded ke e dede ko e
WRITE(40,4000) TQ(K)
4000 FORMAT(F15.5)
ENDIF

aon

10 CONTINUE
RETURN

END
c ! ph_con_target_counts

< C-41 >

1SR 2 DT AR ME A A Rty PRGN R Yy e AR ENE IO T I AN RS M SR M SN

SUBROUTINE ph_con_upper_bound_targets_kill

KRR KIKhRKkRhkhkkkkhhkkikhkhhkhhkkkikkkikkkkkkhkkkkkkkkkhkkkkkkkkkkhkkkkhkkkkkkkkhhkkkkhhkkkhkkkkkk

* THIS ROUTINE FORMS the physical constraints on maximum target kills by target type *
* CON6 *

o000

INCLUDE ‘pair_2.inc’

common /BOUNDS/ upper_bound(MAXI ,MAXK), lower_bound(MAXI,MAXK)
real upper_bound, lower_bound

integer tex

Do 10 1=1,NBI
DO 20 K=1,NBK

TEST=0

DO 30 L=1,NBL
DO 40 J=1,NBJ

M=TEX(1,d,K,L)

1F(M.EQ.0) GO TO 40

IF(TEST.EQ.0) THEN
ROW=ROW + 1
TEST=1

ENDIF

e dodededededededededede s de dede e de st dede ek dede e ke dok dedk de de ke ke dedeke ok ok k

* WRITE CONSTRAINT COEFFS FOR THE SOLVER *
dedededo ke Jo vk dodo s ke dedode et do ok e b dede ek e dede g dedede de ek dedededekeke ok ke k
WRITE(30,3000) ROW, M, 1.0

3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1

o000

40 CONTINUE
30 CONTINUE

IF (TEST .NE. 0) THEN

B T)
* WRITE CONSTRAINT TYPE FOR THE SOLVER *

KRAAKRRKRARIAAERT AR kkkdkhkhkhkkkhkhkkikkkikikikiki
WRITE(C10,1000) ‘L’
1000 FORMAT(A)

anon

e dke e e e o v o e e e e de e e e de s do e e e e dede e de e dedede de ke ke e de ke ke dedede

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
Kkkkdkkkohdkdkdkdokkdoikkiddiiidkkkikkkdikkkiik

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

oaooOn

hRkkhhkkhkkkkhhkkkkkkkkkkhkkhihkkkkkkkikhhkkkk

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
Fekddkkk ke kdck gk dkdde g dededddokkok ko dk ke kk ok ek
WRITE(40,4000) upper_bound(I,K)

4000 FORMAT(F15.5)

o0on

ENDIF

20 CONTINUE
10 CONTINUE

RETURN

END
c ! ph_con_upper_bound_targets_kill

< C-42 >

e o de o e e Fo o do de o de B de g i ot v de e oo e do ke dehe I Fode I e oo e e e e de e ko e e I e e e e de e e do e o e de de ke de ke do ke dodedok ok g kede ke dededekeodedokodode ek k ok

RN Ao

SUBROUTINE ph_con_lower_bound_targets_kill

c *kkkkkkkkkkhhkkiokkkkickkkhdhkhdkkhkkikkkkikkkkhkkkkkkkkhkkkkkkkkhkkkkkhkkhkkkhkkkrkhhkhkhkhkkhhkihkkkkik
c * THIS ROUTINE FORMS the physical constraints on maximum target kills by target type *
c * CON6 ’ *
c e dededo i o de ke de s dode o do ke do e do sk do e e de e e e e do e de e de g e e e de g de e de de e de e dedede dede ke dekekdo ok kkdek ek ok kok kkkkdokkkkkkkkkkkkkkki
INCLUDE ‘pair_2.inc’
common /BOUNDS/ upper_bound(MAXI,MAXK), lower_bound(MAXI,MAXK)
real upper_bound, lower_bound
integer tex
po 10 1=1,NBI
DO 20 K=1,NBK
TEST=0
DO 30 L=1,NBL
DO 40 J=1,NBJ
M=TEX(1,d,K,L)
IF(M.EQ.0) GO TO 40
IF(TEST.EQ.0) THEN
ROW=ROW + 1
TEST=1
ENDIF
c kkkkkkhkikkkkkkkkkkkkkkkikkkkkkkkkhkkhkkhkkkik
c * WRITE CONSTRAINT COEFFS FOR THE SOLVER *
C dekkdkkkhkkkkkkkkkhkhkkikhkhkhkkhkhkkhkkkhkkkkkkkkkhkk
WRITE(30,3000) ROW, M, 1.0
3000 FORMAT(217,E15.6)
NBF30=NBF30 + 1
40 CONTINUE
30 CONTINUE
IF (TEST .NE. 0) THEN
Cc e dede do ke do v e de e de ke dedededede dode g e dode sk ke e do e dededo e ook dek de de ke ke
c * WRITE CONSTRAINT TYPE FOR THE SOLVER *
c oo ded o o e de e e do e e e de Ko e d K e e de de B do e do sk dedode de ke de e ke de ek de ke ke

oo00o0n

[x Ny N y]

WRITE(10,1000) ‘G’
1000 FORMAT(A)

dekkkkkkkkkkkkiohkkkkkdkdhkkkkkhdkdkthkikkhkk

* WRITE OBJECTIVE TERMS FOR THE SOLVER *
L T T L e

(Physical CONSTRAINT DOES NOT ENTER THE OBJECTIVE FUNCTION)

dekk ki ek ke kR kkdodkdekkdkkhkddkkdkhkkdddkdkktdddokikk

* WRITE RIGHT HAND SIDES FOR THE SOLVER *
Fdckkdk ek dhkkdokkkkkdkkkokikkkik ik ki ikikk

WRITE(40,4000) lower_bound(I,K)
4000 FORMAT(F15.5)

ENDIF

20 CONTINUE
10 CONTINUE

RETURN
END

c t ph_con_lower_bound targets kill

< C-43 >

F XTI
ESPCTSRAS

c**

c*

R Rk dkdddedodeddkddkddedodedokdodedodedokdodeddodokdododkdoddeddkkkdoddeddedkdodddkdkdkdokdekkddkdokkddkkdkkkdkkk

o000

oo

Schniederjans Linear Goal Programming Solver

SUBROUTINE LGPSOLVE(pass)

Wededededededededododedodode ke dodedededede e dede o dedo e e dde de de de e e s do o de e de e o v de de de de de dedede ke

* THE ROUTINE CALLS THE LPG SOLVER OF SCHNIEDERJANS *

* AND PRINTS THE RESULTS
Fkddddkkichkdoddioddoiohddckokdoiokdokokkdokd ko kb ik kk ik dkk ok

INCLUDE ‘pair_2.inc’
integer pass

DIMENSION AVTIME(2)
time0 = secnds (0.0)

CALL START
CALL SIMPLX
CALL LGPRINT

Fedkkdkdkhkhkkkhkkkhkkkkhkdkk

* PRINT THE SOLUTION *

dededededede de e dedede e de ke e dedede ke ok de dede e

CALL PRTSOLU(pass)
timel = secnds (time0)

PRINT*,? ¢
PRINT*,’ NB ROWS =,NBROWS,’ NB COLUMNS =’,NBCOLS
PRINT*, ¢
*l
PRINT*,? ¢

WRITE(3,*) ¢
WRITE(3,*) ¢ NB ROWS = /,NBROWS,’ NB COLUMNS = /,NBCOLS
WRITE(3,*) *

write(3,*) / SOLUTION TIME = !, TIME1,’ SECS.’

WRITE(3,*) ¢ ¢

-

RETURN
END

LGPSOLVE

< C-44 >

Y KOOGS S s VL A

TR s L v gt o~ a T

aooOoOo0n

1000

SUBROUTINE START

dkkkkkhkkkdkhkhkkikdkkkdkkkkikkkkkikkhkkikkikkkikikkkhhkhhkikikkhkki

* THIS ROUTINE READS INPUT AND INITIATES WORKING MATRICES *
* : YLINEAR GOAL PROGRAMMING*
8Y M.J. SCHNIEDERJANS

REF
*

*
*

KRk kRkhhhkkhkhkkhkikhkikhkhkhdhkhkikkkkhkihhhkhkikhhhkhkddkdkdddkdkkdkikikk

INCLUDE ‘pair_2.inc’

CHARACTER*3 KSIGN

CHARACTER*100 HEADING

READ(9,1000) HEADING
READ(9,1000) HEADING
READ(9,1000) HEADING

FORMAT(A)

READ(9,*) NBROWS,NVAR,NBPRIORS

IF (NBROWS.LE.O .OR. NVAR.LE.O .OR. NBPRIORS.LE.O) THEN

PRINT*, !
PRINT*,?

PRINT*,! NB OF CONSTRS., VARIS., OR PRIORS. INCORRECT‘

PRINT*,’ CHECK INPUT FILE 9’

PRINT*,? ¢

PRINT*,’ ¢

sTOP
ENDIF

NBCOLS=NBROWS +

IF (NBROWS .GT. MAXROWS) THEN

PRINT*, ¢ 7
PRINT*,# 7

PRINT*,’ NB OF ROWS IS TOO LARGE’
PRINT*, ¢ PRESENT MAX = ’/ MAXROWS
PRINT*,/ INCREASE VALUE OF THE PARAMETER MAXROWS IN THE CODE’

PRINT*,# 7

PRINT*, 7

STOP
ENDIF

IF (NBCOLS .GT. MAXCOLS) THEN

PRINT*,? ¢
PRINT*, ¢ ¢

PRINT*,/ NB OF COLUMNS IS TOO LARGE'
PRINT*,/ PRESENT MAX = /,MAXCOLS
PRINT*,’ INCREASE VALUE OF THE PARAMETER MAXCOLS IN THE CODE’

PRINT*,?

PRINT*,?

sTOP
ENDIF

DO 2 1=1,NBROWS
DO 1 J=1,NBCOLS
BASIS(I,d)=0
INDEX=J - NVAR

IF (INDEX .EQ. I) BASIS(I,Jd)=1.0

CONTINUE

IND=1 + NBCOLS
IBASIC(I)=IND
CONTINUE

DO 3 J=1,NBCOLS

NVAR

< C-45 >

JCOL(Jd)=d
3 CONTINUE

KEND=NBPRIORS + 1
DO 6 K=1,KEND

DO 4 J=1,NBCOLS
VALC(K, J)=0
4 CONTINUE

DO 5 I=1,NBROWS
VALB(K,1)=0
5 CONTINUE

6 CONTINUE
KTEST=0

READ(9,1000) HEADING
READ(9,1000) HEADING

DO 7 I=1,NBROWS

READ(9,1000) ISIGN(I)
7 CONTINUE

DO 10 I=1,NBROWS
IF CISIGNCI) .EQ. ‘B’) GO TO 10
IF (ISIGN(I) .EQ. ’E’) THEN
KTEST=1
INDEX=I + NVAR
VALB(1,1)=1.0
VALC(1, INDEX)=1.0
JCOLCINDEX)=0
ELSE IF (ISIGN(I) .EQ. ’G’) THEN
INDEX=1 + NVAR
KTEST=1
VALC(1, INDEX)=1.0
JCOLCINDEX)=0
ELSE IF (ISIGN(CI) .EQ. ‘L‘) THEN
KTEST=1
VALB(1,1)=1.0
ELSE
PRINT*,? ¢
PRINT*,? ¢
PRINT*,’ CONSTRAINT TYPE .NE. E,G,L, OR B’
PRINT*,’ CHECK INPUT FILE 97
PRINT*,/ ¢
PRINT*,¢ ¢
sToP
ENDIF

10 CONTINUE
IF (KTEST .EQ. 1) NBPRIORS=NBPRIORS + 1

READ(9,1000) HEADING
READ(9,1000) HEADING

11 READ(9,2000) KSIGN,1,K,WGT
2000 FORMAT(A,217,F10.2)

IF (KSIGN .NE. ’END’) THEN
IF (KTEST .EQ. 1) K=K+1
IF (KSIGN .EQ. 'P0OS’) THEN
VALB(K, 1)=WGT
ELSE IF (KSIGN .EQ. ’/NEG’) THEN
INDEX=I + NVAR

< C-46 >

NNy SN -

VALC(K, INDEX)=WGT
ELSE IF (KSIGN .EQ. ’END’) THEN
GO TO 15
ELSE
PRINT*, ¢ ¢
PRINT*, ¢
PRINT*,’ DEVIATION TYPE .NE. “POS" OR “NEGY
PRINT*,’ CHECK INPUT FILE 9’
PRINT*, ¢ ¢
PRINT*, ¢ ¢
STOP
ENDIF
GO TO 11
ENDIF

15 READ(9,1000) HEADING
READ(9,1000) HEADING

17 READ(9,*) 1,d,ALd

IF (1 .NE. 0) THEN
BASIS(I,J)=Ald
GO YO 17

ENDIF

READ(9,1000) HEADING
READ(9,1000) HEADING
DO 23 I=1,NBROWS
READ(9,*) PRHS(I)
IF (PRHS(I) .LT. 0) THEN
PRINT*, ¢ ¢
PRINT*, ¢ #
PRINT*,’ ALL RHS MUST BE POSITIVE’
PRINT*,’ CHECK INPUT FILE 9 - MULTIPLY CONSTRAINT BY -1/
PRINT*,/ ¢
PRINT*, 1 ¢
sTOP
ELSE IF (PRHSCI) .EQ. 0) THEN
PRHS(I)=1.D-12
ENDIF

RHS(I)=-PRHS(I)
23 CONTINUE
DO 31 J=1,NBCOLS
IF (JCOL(J) .EQ. O) THEN
DO 30 I=1,NBROWS
BASIS(I,d)=0.0
30 CONTINUE
ENDIF
31 CONTINUE
RETURN

END
! START

R A AP Ar Y £ o e S R e A 4245 K e S A

oo 0O0O0

16

17
18

-

11

12

SUBROUTINE SIMPLX

dodekdededkodeodedeokoddhokdodkkdedekdekkdokkkhkkkkkikkhkkkkkkkikkkkk

THIS ROUTINE PERFORMS THE SIMPLEX OPERATION

*
*

* REF: "LINEAR GOAL PROGRAMMING"
* BY M.J. SCHNIEDERJANS

*

*
*
*
*

kkkkhkkkikkkkhkhkikdkhkkhkikkdkiikkkikikikkkkkkikkkkkkkkk

INCLUDE ’pair_2.inc’

DIMENSION JFAIL(MAXROWS), JPICK(MAXCOLS)

DOUBLE PRECISION ZVAL(MAXPRI,MAXCOLS),PIV,rRMIN,AIJ,ZVALUE,ZETA

DOUBLE PRECISION THETA,DUMMY
ITERS00=0
KEND=NBPRIORS + 1

DO 16 J=1,NBCOLS
JPICK(J)=KEND
CONTINUE

DO 18 J=1,NBCOLS

DO 17 K=1,NBPRIORS

IF (VALC(K,J) .GT. 1.D-10) THEN
JPICK(J4)=K

ENDIF

CONTINUE

CONTINUE

ITER=0

KEYROW=0
KEYCOL=0
KUNACH=0

DO 2 1=1,NBROWS
JFAIL(I)=1
CONTINUE

IDENTIFY THE HIGHEST UNACHIEVED PRIORITY

DO 4 K=1,NBPRIORS

DO 3 I=1,NBROWS

IF (VALB(K,I) .GT. 1.D-10) THEN
KUNACH=K
Go TO 11

ENDIF

CONTINUE

CONTINUE

IDENTIFY THE MOST NEGATIVE RHS
rRMIN = -1.D-10

DO 12 1=1,NBROWS
IF (RHS(I) .GT. rRMIN) GO TO 12
IF (JFAIL(I) .EQ. 0) GO TO 12
KEYROW=1
rRMIN=RHS(1)

CONTINUE

< C-48 >

RN 08 S/ O Rt S T e bl Yy

c

24
25

cccc
31

32
33

34
39
35

36

IF KEYROW .EQ. O, THEN ALL RHS ARE .GE. O

IF (KEYROW .NE. 0) THEN
PATH FOR NEG RHS
AlJ=1.D-8
DO 25 M=1,KEND
L=KEND ~ M + 1
DO 24 J=1,NBCOLS
IF (JCOL(J) .EQ. 0) GO TO 24
IF (JPICK(J) .LT. L) GO TO 24
IF (BASISCKEYROW,J) .LE. AIJ) GO TO 24
AIJ=BASIS(KEYROMW, d)
KEYCOL=J
CONTINUE
IF (KEYCOL .GT. 0) GO TO 40
CONTINUE
JFAIL(KEYROW)=0
GO TO 11

k3

ENDIF

IF (KUNACH .EQ. 0) THEN
PRINT*,? ¢
PRINT*,’ ALL GOALS ACHIEVED’
PRINT*,?

ENDIF
KFIN=KUNACH
THE ZJ MATRIX IS DEVELOPED

DO 33 K=KUNACH,NBPRIORS

DO 32 J=1,NBCOLS

ZVAL(K,J)=0.0

IF (JcoL(d) .EQ. 0) GO TO 32

IF (JPICK(J) .LT. KFIN) GO TO 32

DO 31 I=1,NBROWS

IF (VALB(K,I) .LE. 1.D-10) GO TO 31

IF (DABS(BASIS(I,d)) .LE. 1.D-10) GO TO 31
IF (ABS(BASIS(I,Jd)) .LE. 1.D-10) GO TO 31
ZVAL(K, J)=ZVAL(K,d) + VALB(K,I) * BASIS(I,J)
CONTINUE

ZVAL(K,d)=ZVAL(K,d) + VALC(K,d)

CONTINUE

CONTINUE

ZVALUE=-1.D-8

DO 36 K=KUNACH,NBPRIORS

DO 35 J=1,NBCOLS

IF (JCOL(J) .EQ. 0) GO TO 35

IF (JPICK(J) .LT. KFIN) GO TO 35

IF (ZVAL(K,d) .GE. ZVALUE) GO TO 35
IF (K .LE. KUNACH) GO TO 39

M=K-1

DO 34 L=1,M

IF (2VAL(L,J) .GE. 1.D-8) GO TO 35
CONTINUE

ZVALUE=ZVAL(K, J)

KEYCOL=J

CONTINUE

IF (KEYCOL .GT. 0) GO 7O 37
KFINSKFIN + 1

CONTINUE

IF (KEYCOL .EQ. 0)

goto 999 !

goto 999 !

< C-49 >

VRS 3 D ARSI B2 Al Ml U AL (]

(AT i B e A WA LR OIS0 A Rl et P M ACHE 20 M A A L T

. —

37 THETA=1.D100

38

40

ccce
ccce

41

ccee
42
43

ccce

44

ccce

45

46

50
51

DO 38 I=1,NBROWS

IF (BASIS(I,KEYCOL) .GE. -1.D-10) GO 7O 38
IF (RHS(I) .LE. -1.D-10) GO TO 38

IF (RHS(I) .LE. 1.b-10) RHS(1)=1.D-10
ZETA=-RHS(I)/BASIS(I,KEYCOL)

IF (ZETA .GE. THETA) GO TO 38

THETA=ZETA

KEYROW=1

CONTINUE

IF (KEYROW .LE. 0) goto 999 11
PIV=BASIS(KEYROW,KEYCOL)

DO 43 1=1,NBROWS

IF (1 .EQ. KEYROW) GO TO 43

IF (DABS(BASIS(I,KEYCOL)) .LE. 1.D-10) GO TO 43

IF (DABS(RHS(KEYROW)) .LE. 1.D-10) GO TO 41

IF (ABS(BASIS(I,KEYCOL)) .LE. 1.D-10) GO TO 43

IF (ABS(RHSCKEYROW)) .LE. 1.D-10) GO TO 41
RHSCI)=RHS(I) - (RHSCKEYROW)/PIV) * BASIS(I,KEYCOL)

PO 42 J=1,HBCOLS

IF (J .EQ. KEYCOL) GO TO 42

IF (DABS(BASISCKEYROW,J)) .LE. 1.D-10) GO TQ 42

IF (ABS(BASIS(KEYROW,J)) .LE. 1.D-10) GO TO 42
BASIS(I,Jd)=BASIS(I,d) - (BASISCI,KEYCOL)/PIV)*BASIS(KEYROW,J)
CONTINUE

BASIS(I,KEYCOL)=BASIS(I,KEYCOL)/PIV

CONTINUE

IF (DABS(RHS(KEYROW)) .GT. 1.D-10) THEN

IF (ABS(RHS(KEYROW)) .GT. 1.D-10) THEN
RHS(KEYROW)=-RHS(KEYROW)/PIV

ENDIF

DO 45 J=1,NBCOLS

IF (J .EQ. KEYCOL) GO TO 45

IF (DABS(BASIS(KEYROW,J)) .LE. 1.D-10) GO TO 45
IF (ABS(BASIS(KEYROW,J)) .LE. 1.D-10) GO TO 45
BASIS(KEYROMW, J)=-BASISCKEYROW, J)/PIV

CONTINUE

BASIS(KEYROW,KEYCOL)=1./PIV
INDEX=JCOL(KEYCOL)

JCOL (KEYCOL)=IBASIC(KEYROW)
IBASIC(KEYROW)=INDEX

DO 46 K=1,NBPRIORS
DUMMY=VALB(K,KEYROW)

IF (DUMMY .GE. 1.D-8) JPICK(KEYCOL)=K
VALB(K,KEYROW)=VALC(K ,KEYCOL)
VALC(K,KEYCOL)=DUMMY

CONTINUE

IF (KTEST .NE. 1) GO TO 51
IF (VALC(1,KEYCOL) .EQ. 0.0) GO TO 51
JCOL(KEYCOL)=0

DO 50 I=1,NBROWS
BASIS(I,KEYCOL)=0.0
CONTINUE

ITER=ITER + 1
PRINT*,’ SOLUTION ITERATION /,ITER 1
IF (MODCITER,2500) .EQ. O0) THEN

PRINT*, ¢ ¢

< C~-50 > -

A SON A ORI M S REACIE 5y SRR 3 W 0\ L3 IO T Ml @ ML 0,208 DY D~ M MY & i Dottt NS G 2 373 ™St S 03 1€ OIS L By iy A PO

P AT "

e

PRINT*,7 ¢

PRINT*,’ ¢

PRINT*, ¢

PR I NT* . 1 kdekdekkdedkdek keddedek ko ko ke dokkdekkkkdkhkdhdkkkkkkkikkkhd s

PRINT* ¢ ¢

PRINT*,’ MESSAGE FROM SUBROUTINE SIMPLEX :’

PRINT*,’ ¢

PRINT*,’ THERE HAVE BEEN 2500 ITERATIONS’

PRINT*, THE LGP SOLUTION IS QUESTIONABLE'’

PRINT*, 7 ¢

PR I NT*' 4 hedekkdkdekdoddekokkk ok kkdkdedokddkk ek kdokddokdokkdokkdokkkk ¢

PRINT*, ¢ ¢

PRINT*,’ DO YOU WANT TO TRY 2500 MORE ? Y/N'

PRINT*,’ /

READ*, YESNO

IF (YESNO.EQ.’Y’ .OR. YESNO.EQ.’y’) GO TO 1

ITER500=1

goto 999 ¢!

ENDIF

GO T0 1

999 print*, ¢ ¢
print*, ‘Number of JMAP iterations =/, iter
return
END
! SIMPLX

< C-51 >

R LN oAt A ey

SNEPREE TP I SR Sl

SUBROUTINE LGPRINT

dekhkkhhkhkkhkkkhkdhhkikhkdhkhdhkkhkkdkikkihkihkkikk

* THIS ROUTINE REPORTS THE FINAL SOLUTION *
Fdekdkdedkdokeddedodkdodd dokdokdehdokkodkodkdok e dokok ok ok ok

[z Ny Ny

INCLUDE ’pair_2.inc’

DIMENSION X(MAXCOLS),POSD(MAXCOLS),RNEGD(MAXCOLS)

c THIS SECTION REPORTS VALUES OF ALL MODEL VARIABLES
REWIND 15
DO 1 J=1,NVAR

X(J4)=0.0
CONTINUE

-

DO 2 I=1,NBROWS
POSD(1)=0.0
RNEGD(1)=0.0
CONTINUE

N

DO 12 I=1,NBROWS

IVAR=IBASIC(I)

IF (IVAR .GT. NBCOLS) THEN
IND=IVAR - NBCOLS
POSD(IND)=RHS(1)

ELSE IF (IVAR .GT. NVAR) THEN
IND=IVAR - NVAR
RNEGD(IND)=RHS(I)

ELSE
X(IVAR)=RHS(I)

ENDIF

12 CONTINUE

WRITE(15,1000) ITER

c WRITE(3,1000) ITER 1"
1000 FORMAT(I6,’ ITERATIONS’)
WRITE(15,1001)
1001 FORMAT(’ DECISION VARIABLES')
WRITE(15,1002)
1002 FORMAT(/,’ VARIABLE VALUE')

DO 15 J=1,NVAR
WRITE(15,1003) 4 ,X(J)
1003 FORMAT(1X,15,1PE15.5)
15 CONTINUE

WRITE(15,1004)

1004 FORMATC///,' ANALYSIS OF DEVIATIONS FROM GOALS')
WRITE(15,1005)

1005 FORMATC/,’ ROW’,10X,’RHS-VALUES’,5X,POSITIVE DEVIATION’,
1 2X,’NEGATIVE DEVIATION’)

DO 16 I=1,NBROWS
WRITE(15,1006) I,PRHSCI),POSDCI),RNEGDCI)
1006 FORMAT(IS,3¢1PE20.5))
16 CONTINUE

c THIS SECTION REPORTS ON PRIORITY LEVELS
WRITE(15,1013)
1013 FORMAT(///,’ ANALYSIS OF THE OBJECTIVE FUNCTION')

WRITE(15,1014)
1014 FORMATC//,’ PRIORITY’,9X,’UNDERACHIEVEMENT’)

< C-52 >

T Y I < o X N I RN A N e R N F e TN ity i i v T S T Al

KTOTAL=NBPRIORS + 1
DO 52 K=1,HBPRIORS
KVAL=KTOTAL - K

M=KVAL

IF (KTEST .

ZVALUE=0.0

EQ. 1) M=KVAL - 1

DO 50 I=1,HBROWS
If (VALB(KVAL,I) .LE. 1.E-14) GO TO 50
ZVALUE=ZVALUE + VALB(KVAL,I)*RHS(I)

50 CONTINUE

IF (KTEST .EQ. 0) GO TO 51

IF (M .GT.

0) GO TO 51

WRITE(15,1015) ZVALUE
1015 FORMAT(’ ARTIFICIAL’,1PE20.5)

IF (ZVALUE
PRINT*, ?
PRINT*, !
PRINT*,
PRINT*,
PRINT*, ¢
PRINT*,
PRINT*, /
PRINT*, ¢
PRINT*, /
PRINT*, !
PRINT*, ¢
PRINT*, ¢
PRINT*, ¢
PRINT*,
PRINT*, ?

.GT. 1.E-5) THEN

- -

khhkkhkkkkhkkhhkkkkkkkkkkhkkkkhkkkk !

WARNING ! WARNING ! dd

THE SOLUTION IS INFEASIBLE *1

CHECK THE SCENARIO INPUT DATA */

* % % % % % % ¥ %

sk ke dodokdoddkkdododededodededededede ke dodokok ek k kb ek §
1
!

WRITE(3,*)’ *
WRITE(3,*)’ ¢

uRITE(S'*)I dekkkdkdkkkdkhdhkkdokkdokdkkdkdkkkkkkkt

WRITE(3,*)’
WRITE(3,*)’
WRITE(3,*)!
WRITE(3,*)’
WRITE(3,*)"
WRITE(3,*)’
WRITE(3,*)/
WRITE(3, %)’
WRITE(3,*)"

WARNING ! WARNING ! *4

THE SOLUTION IS INFEASIBLE fald

CHECK THE SCENARIO INPUT DATA */

* % ok ok F % * ¥ #

HRITE(3'*)I hkkkkkfdkkkdkkhkhkdkdkkkhkkkhkkikhkkkkikkt

WRITE(3,*)’ ¢
WRITE(3,*)’ ¢

ENDIF

GO TO 52

51 WRITE(15,1016) M,ZVALUE
1016 FORMAT(14,7X,1PE20.5)

52 CONTINUE

RETURN
END
!

LGPRINT

< C-=53 >

LA L UL SN T N A7

A B NI 2 Wi

s Bz Ny Nyl

anon

OO0

25

26
27

28

29
30

SUBROUTINE PRTSOLU(pass)

ek de ok dedkededodededodk o dededode s dede dede e e de e de e e e de dede dode e de dode do dedo e dede dede de e dede dede dode de e do e

* THIS ROUTINE WRITES OUT SUMMARIZED INFORMATION OBTAINED *
* FROM THE LGP REPORT FILE 15

INCLUDE ‘pair_2.inc’

integer pass

character*1 ch_pass1
character*2 ch_pass2
character*14 filename

DIMENSION DP(MAXROWS), DN(MAXROWS)

real expend(MAXI,MAXJ)

real KG(MAXK), AG(MAXI), TIK(MAXI,MAXK)

real munition_req cost(MAXJ), platform att_cost(MAXI)
real tot_plat_att_cost

real NBRNDS

CHARACTER*17 sP17
CHARACTER*21 SP21

DATA SP17/* '/
DATA spP21/’ '/

REWIND 15

ITEST=0
N=0

Yoo e do e e e e e e e e S o e e e ke e e e de e s e e e e e e e dedede e e e

* jnitialize THE MUNITION SUM ARRAY *
Sedededededededdededcde etk de e de dedededede e e dedede e e

Do 27 J=1,NBJ
RNDSUM(J)=0.0
reqsum(J)=0
DO 26 I1=1,MBI

expend(I,J)=0
require(i, j)=0
CONTINUE
CONTINUE

Ve dededo de e he o e ke e e o o o e e K de e de e de e dede dede e e ke dede dedede g ke ok de ko ek dede ke dede dek ke

* initialize THE TARGET KILL AND COST/KILL ARRAYS *
e kR Rtk ke dededededd e e e e e de e e

DO 30 K=1,NBK
TOTKILL(K)>=0.0
TOTCOST(K)=0.0
do 1=1,KBI
TIKCI,K) =
do J=1,NBJ
TIJK(I,Jd,K) = 0.0

enddo

enddo

DO 28 J=1,MBJ
SUMKILL(J,K)=0.0

CONTINUE

DO 29 L=1,MAXL

. TOTLKILL(K,L)=0.0

CONTINUE

CONTINUE

< C-54 >

aoon anon

oo

anon

Do 33 I1=1,NBI
TOTATT(1)=0
33 CONTINUE

READ(15,1100) LINE
READ(15,1100) LINE
READ(15,1100) LINE
READ(15,1100) LINE

35 READ(15,1100) LINE .
IF (LINEC1:10) .EQ. ’ ’) GO TO 100

READ(LINE,1900) MM,X1
1900 FORMAT(16,E15.5)

IF (X1 .LT. 1.E-4) GO TO 35
CALL XET(MM,I,J,K,L)

xkilled = X1 Il here, decision variables are targets killed
TIJKCT, §,k) = xKkilled

MBRNDS = RPECi,j,k) * STK(i,J,k,l) * xkilled

expend(

i,]) = expend(i,j) + NBRNDS 1t sum up expenditures of munition J by platform I
require(i

)]
J) = R_E(]J) * expend(i,j) 11 sum up requirements of munition J by platform I

* SUM munition requirement COST TO KILL TARGETS OF TYPE K *
oo e dedo et e e de e e e o e de e s o e e Ko e I o e e d o ke e de e de ke e dedede sk de de de de dedede s e de de dedede ke ke ek ke ok ke ko ke

TOTCOST(K) = TOTCOST(K) + R_E(j) * NBRNDS * CM(J)

dekdkkkkkkkkkkddkhkkhkkhkkkkikkk

* SUM MUNITIONS OF TYPE 4 *
Fekdedokkdk etk Rtk ek dek sk dede ke

RNDSUM(J) = RNDSUM(J) + NBRNDS
reqsum(j) = R_ECJ) * RNDSUM(j)

s e e o v e o e e e ke e e de de sk dedke ok e e dede de de dede ok de ke ke ke koke

* SUM TARGETS OF TYPE K KILLED *
Fekkdkkdokdkdokkokkkdokdokdkkdkikickkokkkkd

IF (RPE(I,J,K) .EQ. 0) GO TO 35

XKILLED=NBRNDS/(RPE(1,d,K)*(STK(I,J, K, L) + 11 here, xkilled = X1, see above
1 ZK*STDEV(I,J,K,L)))

TOTKILL(K) TOTKILL(K) + XKILLED

TOTLKILL(K,L) = TOTLKILL(K,L) + XKILLED
SUMKILL(J,K) = SUMKILL(J,K) + XKILLED ! sum up type K targets killed by munition J
TIK(I,K) = TIK(I,K) + XKILLED 3]

kkkhkhkkkkikhkhhkkhkkkkkhhkihkhkhkkkhkkkkkkkkk

* SUM OF PLATFORMS OF TYPE I ATTRITED *
L L e o 2

XATTRIT=NBRNDS * ATT(I,J,K)/RPECI,d,K) .
xattrit = ATT(P, k) * STK(i,j,k, 1) * xkilled 1
TOTATT(I) = TOTATT(I) + XATTRIT

GO T0 35

100 READ(15,1100,END=105) LINE
1100 FORMAT(A)

< C-55 >

c

103
105

IF (LINEC1:5) .NE. ' ROW') GO TO 100

DO 103 I=1,NBROWS
READ(15,*) R,VAL,DPCI),DN(CI)

write(3,*) R,VAL,DP(I),DN(I) 't row, RHS, pos_dev, neg_dev

CONTINUE

continue

IF (ITERS00 .EQ. 1) THEM
WRITE(3,*)
WRITE(3,%*) ¢ *********************************?*********:
WRITE(3,*) * ¢
WRITE(3,*) ’ MESSAGE FROM SUBROUTINE SIMPLEX :’
WRITE(3,*) + /

WRITE(3,*) / THERE HAVE BEEN MORE THAN 2500 ITERATIONS’
WRITE(3,*) ¢/ THE LGP SOLUTION IS QUESTIONABLE’
WRITE(3,*) ¢
HR I TE (3 R *) 1 Fedokedodede dedededo ke dedodedo dede e do s do s d e de de g e dede dede dedo ke do ke do ke ke ko £
ENDIF
L=1 1
CG = COSTGOAL + ¢ DP(1) - DN(1))
do K=1,NBK
Ki=1+K
KG(K) = FTBK(K,L) * TQ(K) + ¢ DP(K1) - DN(K1))
enddo
do 1=1,HBI

11=14+NBK + 1
AG(I) = FATTR(I) * PQCI) + ¢ DPCIT) - DN(IT))
enddo

tot_mun_req_cost = 0.0

do J4=1,NBJ
munition_req cost(d) = 1.E3 * cm(d) * regsum(J) " in millions
munition_req cost(J) = cm(d) * reqsum(J) 1t in biltlions
tot_mun_req_cost = tot_mun_req_cost + munition_req_cost(dJ)

enddo

tot_plat_att_cost = 0.0
do I=1,NBI
platform_att_cost(I)
platform_att_cost(I)
tot_plat_att_cost
enddo

1.E3 * platcost(l) * totatt(l) it itlions
platcost(I) * totatt(l) 3]

tot_plat_att_cost + platform_att_cost(l)

PR
a3

--- Hrite JMAP Output Summary Information

write(3,700)
write(3,701) prepri(1), costgoal, tot_mun_req_cost
,tot_mun_req_cost+tot_plat_att_cost

! platform attrition cost

not in cost-goal

write(8,730) pass, tot_mun_req_cost, (totklll(K)/tq(K) k=1,MBK) #! write cost solution for each pass

wWrite(3,702) prepri(2)
L=1 1"
do K=1,MBK
write(3,703) targ(K), ftbk(K,L), totkill(K)/tq(K),
1.E6 * totcost(K)/totkill(K)
enddo

< C-56 >

ERNNT nxbingnct vt 2)

Write(3,704) prepri(3)
do I=1,NBI

write(3,703) plat(l), fattr(l), totatt(l)/pq(l)
. .1.E3 * platform_att_cost(I)
enddo
c write(3,705) 1.E3 * tot_plat_att_cost

700 format(/,50x,’JMAP SUMMARY’,///
. ,36%,'Priority Goal Solution’,//)
701 format(/,’Overall Cost (Bitlions)’,15x,11,3x,3(5x,17.4))
702 format(/!Fraction of Targets Killed’,14x,11,42x,
. 'Munition Cost per Kitl’,/,88x,/(Thousands $)’)
¢ 703 format(10x,a15,19x,2(5x,f7.4),21x,110.4)
703 format(10x,a15,19x,2(5%,f7.4),18x,113.4)
¢ 704 format(/,’Fraction of Platforms Attrited’,10x,11,47x,
c . ‘Attrition Cost’,/,89x,’(Millions $)’)
704 format(/,’Fraction of Platforms Attrited’,10x,i1,/)
705 format(/,58x,/Total Platform Attrition Cost /,f10.4)
730 format(/,4x,12,6x,110.6,12x,4f8.4)

c --- Write Munition Expenditures, Requirements, and Cost

write(3,710)
do J=1,NBJ

write(3,711) mun{J), rndsum(d), regsum(Jd), stock(J)-regsum(d),
. munition_req cost(J)
enddo
write(3,712) tot_mun_req_cost
write(3,705) tot_plat_att_cost

710 format(/////,20x,’Munition Expenditures, Requirements,’,
. ! Left-in-Stock and Cost’,//,
. 40x,’Expenditures Requirements Left-in-Stock’,11x,/Cost’,/,
. 89x,7(Billions $)/)

711 format(al5, 20x, 3(8x,f7.1), 12x, f7.4)

712 format(/,68x,’Total Munition Cost’,5x,f7.4)

c --- Write Munition Expenditures and Requirements by Platform

tolerance = 0.00001
Write(3,720)
do J=1,NBJ
do 1=1,NBd
if (require(l,d) .gt. tolerance) then
Write(3,721) mun(J), plat(l), expend(l,d), require(l,d)
endif
enddo
enddo

720 format(///,15%,’Munition Expenditures and Requirements by’

. .! Platform’,//,40x,’Expenditures Requirements’,/)
721 format(al5,5x,a15,2(8x,f7.1))

c --= Write JMAP+ target kills by Platform

if (pass .lt. 10) then
write(ch_pass1,321) pass
filename = ’j_t_out.’//ch_passi
else
write(ch_pass2,322) pass
filename = ’/j_t_out.’//ch_pass2
endif

< C-57 >

c

aon

open(4, file=filename)

write(3,804)
write(4,805) filename
write(3,806) (plat(l),
write(4,806) (plat(l),
do K=1,NBK

write(3,807) targ(K), (TIK(I,K),I=1,NBI), totkill(K), tq(K),
. totki LU(K)/tq(K)

write(4,807) targ(K), (TIK(I,K),I=1,NBI), totkill(K), tq(K),
totki LL(K)/tq(K)

1=1,NBI)

1=1,NBI)

.enddo

WRITE(3,1000) ITER 1

1000 FORMAT(//,16,’ ITERATIONS')

--- Write JMAP+ Target Kills by Platform and Munition
Write(4,808)
write(4,809) (plat(1), I=1,NBI)
do J=1,NBd
Write(4,810) mun(dJ)
do K=1,NBK
write(4,807) targ(kK), (TIJK(I,d,K),I=1,HB1), sumkill(J,K)
enddo
enddo

321 format(i1)
322 format(i2)
804 format(///,40x,’JMAP+ Targets Killed by Platform’)
805 format(//,’File Name : ’,al4,
. /,40x,’ JMAP+ Targets Killed by Platform’)
806 format(/,100x,’Total’,éx, Total’, 4x, /Fraction’,/,
. 10x,12(1x,a6),5x, ’Kitled’ 4x, 'Available’ ,3x, ‘Killed’, /)
807 format(3x,a5,12(1x,f6.2),2x,2(5%,16.2),5%,6.4)
808 format(///,32x,’JMAP+ Targets Killed by Platform and Munition’)
809 format(/,10x,12(1x,a6),6x, Total’)
810 format(/,al5)

close(4)

RETURN
END
! PRTSOLU

INTEGER FUNCTION TEX(I,d,K,L)

dededededededededodededodedodo dodododed ke dede do de s de dodode dode de de g K e e s ded do g dede e e dedede et de A e e e e

* THIS FUNCTION RETURNS THE COLUMN INDEX OF X(I,J,K,L) *
Sedekdeddekd ke dodokkddedodedededokdodeiokododekodoekododekokk dededok koo ok ke dod ki ded ok

INCLUDE ’pair_2.inc’

IF (MCOL(I,d,K) .EQ. 0) THEN
TEX=0
ELSE
TEX=(L-1)*NI1JK + McoL(I,d,K)
ENDIF

RETURN
END
! TEX(I,d,K,L)

< C-58 >

B RS SO A CAP L% MRS COWrs Y7 JNRAs Wit 2y e

ooOoO0n

10

40
30
20

SUBROUTINE XET(M,I,d,K,L)

Fede e e e e e e e de e v dede e de de ek e do e sk de e dedo ke o e e dedodo ek de e e dedede de de e sk de g de ke dede e

* GIVEN THE COLUMN INDEX OF X(I,J,K,L), THIS ROUTINE *
* RETURNS I,4,K,L *

e deke e deke e ek e et de s e e de e de e de e ek e e e e e e e de e e e e de e e de e e
INCLUDE ‘pair_2.inc’

MM=M
L=1

IF (MM .GT. NIJK) THEN
L=L+1
IF (L .GT. 3) THEN
PRINT*, ¢ 7
PRINT*'I kkkkkkhkkhkhkkkkkkkhkkkhkkkhkkdkkkk s
PRINT*, ¢ ¢)
PRINT*,’ MESSAGE FROM SUBROUTINE XET :/
PRINT*, 7 7
PRINT*,# NON-EXISTENT COLUMN' INDEX'
PRINT*,/ ¢
PRINT*'I *kkkkkkkkkkkkkkkkkkkkkkkkkkkikt
PRINT*, 7 ¢
PRINT*,1 ¢
STOP
ELSE
MM=MM - NIJK
GO TO 10
ENDIF
ENDIF

DO 20 I=1,NBI
DO 30 J=1,NBJ
DO 40 K=1,NBK
IF (MM .EQ. MCOL(I,J, K)) THEN
RETURN
ENDIF
CONTINUE
CONTINUE
CONTINUE

PRINT*,# 7

PRINT*'I Rekkdkkkkhkkkkhkhkkkkhikkkkkkkhkkkikkt
PRINT*,? ¢

PRINT*,’ MESSAGE FROM SUBROUTINE XET :’
PRINT*,# 7

PRINT*,# NON-EXISTENT COLUMN INDEX’
PRINT*,? ¢

PRINT*'I Khkhkkkhkhkhkkhkhkkhkkkkkkkkkkhkhkhkkkkkk s
PRINT*, 7

PRINT*, ¢

STOP

return
END

I XET(M,1,4,K,L)

< C-59 >

AT e

subroutine close_files

close(9)

close(10)
close(20)
close(30)
close(40)

close(15)
close(3)

return
end | close_files

< C-60 >

1) M A L G M TR 3 S M CioTE SO itrid

MR SRR AR

AR A Ay LTI

N

T .

Ty

g e

e

X

iy

P

R A

v

« .
v ‘e

. A
PRI :

s
AR

b 3

[t
Ve

R T et
A

2 37
Sy
; "

AT

n e
DR

oo SF e a3 £

4

A
e

R GRIN
SOk
- .;’7‘,/? S

A

T i M

E24

O

&

ESi B
W aebaica /b

<

o
T
LI
vy

B
ok
L

La¥

20
T,

de

by

s 7
2 T AT
RS EY o
i AT {‘ H

RS A
EEE RN L AN

s

opatn ol
AR

LRy

X

s

-
L s

e,
el

’};‘I;—f.
Ak
Y
o
S
\ R S A
PASR SR
V5 58, 4o Ay B
Sy

o

oYy
o Ser
A iy

A
A I
ST 02 8 e
TR

)

e 35 B>

NI A

C{r;.%,'. G TS

. RZ L3

ey
G

FEFTL
SR
sl R SR

A S, &
ey

A Y ’-_-r\ s
T LA L iy
CIrnIR,

PRRVe: L2

FIL Y
e o

n
3

i

3,
DR AREIA Y
NS Es

S5

X

S

w,,
"\;\;" ,:.yv A5y
RN
- +* y
[F s
Lty

Rl

M A N el
Pt rTaL ',f:{z‘”_‘».}%*:-{ oyl
18

R
RTINS
T
e Ao s

Sr

e

£

-y
T
&y 5

>
N

g
5
L

ol

2 %
F IO

‘4

Ui
w3

o

ot

Lo 8

e

NI

DPTHATZPRI

2%

W

v

Mt

2 L Y

R T L

SCa e, b & s

c

File Name

: tm_input.f

e e ke o o e oo de e s s ke e e she e e e e e e ek sk e e e e e e do e e e e e g o e o e e e dode e i e e de e e e e e e e e e ke dede e de

% o % % b ok % % % ¥ % % % % % %% % % % % % % % % % 3 % % % % % % % % % % % % % ¥ % % ¥ ¥ % ¥ % % F % % ¥ % ¥ % ¥ ¥ ¥ ¥ ¥ ¥ X * *

Kedkkkdokdokdokdodododododedodk dededede s dededode ke dok dodededode g dededededododode ok ke

glossary of variables
Rk kddekdkkdkkkkdokkkkkikkkikkkkkkikkkhkkikkkkkkkkkkk

common/theat/theatnames(6)
character*45 theatnames

common/misc/ncase, ncases, lun,beta,a,exwt, title
integer ncase, ncases, lun
real beta, a, exut
character*45 title

ncase
ncases
lun
beta

a

exwt
title

common/plat/nptat,iaptot,replen,ia,rp
integer

real

nplat
iaptot
replen
ia

rp

common/plt/ npt,np(40,10),mag(40),iap(40),nrp(40),rop(40),

integer npt, np

reat

character*20 platnames

npt
np

iap
arp
rop

platnames:name of shooter by type

common/tar/ ntt,rnt(200,10),ext(200),rt,r(200), targnames(200)
integer ntt, rt

real
real*8

character*20 targnames

ntt
rnt
ext

rt
r

targnames:name of targets by type

common/percents/perckill(6),nperc
integer nperc

The Monte Carlo THREAT MODEL
(Input Module)

scurrent case number indicating scenario, data,
etc.

snumber of cases to be processed for this run
(maximum of 10)

:logical unit number designating output device
zpolya parameter

sratio of expenditures to shooters for current
case

:mean (expected value) of distr. being processed
:Weapon/shooter name for entire run

nplat
iaptot, replen, rp, ia

snumber of shooters for current case
stotal initial loadout of shooters
saverage shooters refill size
saverage shooter initial loadout
zaverage shooter reorder point

platnames(40)

mag, iap, nrp, rop

snumber of shooter types for this run (max of 40)
snumber of shooters keyed by shooter type, case
sinitial loadouts for each shooter type

crefitl size for each shooter type

sreorder point for each shooter type

ent, r
ext

snumber of target types for this run (max of 200)
:number of targets keyed by target type, case
saverage expenditures needed to kill one target by
target type

:number of targets for current case

snumber of targets for each type for current case

*
*
*
*
*
*
*
*
*
*
. %
*
*
%*
*
*
*
*
*
L%
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
%*
*
*
%*
*
%*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

< C-61 >

real perckill

perckill :In evaluating the fraction of targets killed
at different levels of confidence, perckill are
the chosen confidences (actually in fractional
form, not %)

nperc :The number of confidences chosen
oo dede sk e e de ke e s e e e o de e oo e e e e K o de e g e e e e e e e e e o e e e e e e ke de e e de e e e e dededededede dedodedede e

* % X ¥ % %
* % % F % %

< C-62 >

S LALLM SR Sl # Suicay dant i iay L2 2N AL AN V2 L MY XA e

CTDACS P T ST T Y el e RIS L i Tt e A Sl i A i A A i

o000

subroutine get_inputs(iflag,file_unit,m_type)

Sedede e e dede Jede de e Ko e dede Je de e dede g dededed de de ke dede dede ke dodedededededkdokkdededkedede gk dededkdokkdkkkkkk

* Get_inputs gets inputs for m_type munition Threat Model run. *

* Referenced by: subroutine threat_model *
e de ikt e e e de e o e e dede e e e e de e e de e dedo g de e e de dede d de e e dede sk e de e e de ko dededededededededo ke dekkededkodekkok ke

include ’pair_1.inc’
integer iflag, file_unit, m_type

common/theat/theatnames(6)

character*45 theatnames
common/misc/ncase, ncases, lun,beta, a,exwt, title

integer ncase, ncases, lun

real beta, a, exwt

character*45 title
common/plt/ npt,np(40,10),mag(40),iap(40),nrp(40),rop(40),

&

platnames(40)
integer npt, np
real mag, iap, nrp, rop

character*20 platnames
common/tar/ ntt,rnt(200,10),ext(200),rt,r(200),targnames(200)
integer ntt, rt
reatl rnt, r
real*8 ext
character*20 targnames

logical having_target
integer i, j. k, L
real tolerance
data tolerance /0.00001/
J = m_type
beta = 1.0
L =1 1t single time interval
ncases = 1 i single case
npt =0
ntt =20
do i=1,NBI
k=0
having_target = .FALSE.
do k=1,MBK

if (TIKC,], k) .gt. tolerance) then

having_target = .TRUE.
ntt =ntt + 1
ext({ntt) = RPE(i,j,k) * STK(i,j,k,L) ! rounds-to-kill
rnt{ntt,ncases) = TIJK(i,],K) 1 targets
endif
enddo

if (having_target) then
npt = npt + 1

iap(npt) = IA(i,)
nrp(npt) = RS(i,)
rop(npt) = RP(i,])
mag{npt) = iap(npt)
np(npt,ncases) = pq(i)
endif
enddo

call echo_threat_model_inputs(file_unit,m_type)
iflag = -1
return

end
(* get_inputs %)

< C-63 >

o000 o0n

subroutine echo_threat_model_inputs(file_unit,m_type)

Sedede o dede o e e deded de e de dede e dodededok dedede dedededededode e dededededk ek ked ek dedekdokkdkkokdkkkk hkkkkkk

* This subroutine echos the inputs which will be used in the *
* current case. *
* Referenced by: subroutine threat_model *

ek dededodededededodede dodd deddedk dedededdedededoddedededk dododededodedededkd de dededededededededede ek dedodeddedek dek kkedk ke ke

include ’pair_1.inc’/
integer file_unit, m_type

common/theat/theatnames(6)

character*45 theatnames
common/misc/ncase,ncases, lun,beta, a, exwt, title

integer ncase, ncases, lun

real beta, a, exwt

character*45 title
common/plt/ npt,np(40,10),mag(40),iap(40),nrp(40),rop(40),

& platnames(40)
integer npt, np
real mag, iap, nrp, rop

character*20 platnames
common/tar/ ntt,rnt(200,10),ext(200),rt,r(200), targnames(200)
integer ntt, rt
real rnt, r
real*8 ext
character*20 targnames

integer n

ncases = 1

write(file_unit,100) mun{m_type)
write(file_unit,101) npt
write(file_unit,102) ntt
write(file_unit,103)
do n=1,ntt

write(file_unit,104) n, ext(n), rnt(n,ncases)
enddo
write(file_unit,105)
do n=1,npt

write(file_unit,106) n, np{n,ncases)
enddo
write(file_unit,107)
do n=1,npt

write(file_unit,104) n, iap(n), nrp(n), rop(n)
enddo

return

100 format(/,a)

101 format(3x, ‘Number of platform types : /,i2)

102 format(3x,’Number of platform/target type combinations : /,i2)

103 format(3x,’Rounds-to-Kill and number of targets :)

104 format(5x,i2,3x,3(3x,17.3))

105 format(3x,’Number of platforms :’)

106 format(5x,i2,16x,i7)

107 format(3x,’Initial-loadout, refill-size, and reorder-point :’)
end

(* echo_threat_model_inputs *)

< C-64 >

T T o T L

0000

subroutine assign

dededdodedededk kkkdodkk ook doddokdokdededededodedodo ok ke dokkdedddokkkdckdekkkkkkkkkhkkkkkkkdk

* Initializes those quantities which depend on case. *

* Referenced by: subroutine threat_model *
oo e e de o e o v e e e e o e e e e o de e e de e de de g e de e e dedededededededededededededk ke de dede ke dekkdekk dok kdkkkkkkk

10

20

30

common/misc/ncase,ncases, lun,beta,a,exwt, title
integer ncase, ncases, lun
real beta, a, exwt
character*45 title
common/plat/nplat, iaptot,replen,ia,rp
integer nplat

real iaptot, replen, rp, ia
common/plt/ npt,np(40,10),mag(40),iap(40),nrp(40),rop(40),
& platnames(40)
integer npt, np
real mag, iap, nrp, top

character*20 platnames
common/tar/ ntt,rnt(200,10),ext(200),rt,r(200), targnames(200)
integer ntt, rt
real rnt, r
real*8 ext
character*20 targnames
integer j

real temp

temp=0.0
do 10 j=1,ntt
temp=temp+rnt(j,ncase)
continue
if (temp.gt.0.0) then
rt=max0(nint(temp), 1)
else
rt=0
endif

replen
japtot
nplat

nnwnu
0000
.

rp .
do 20 j=1,npt
iaptot = iaptot + iap(j)*np(j,ncase)
replen = replen + nrp(j)*np(j,ncase)
rp =rp + rop(j)*np(j,ncase)
nplat = nplat + np(j,ncase)
continue

if(nplat.gt.0) then
replen = replen/float(nplat)
rp = rp/float(nplat)
ia = japtot/nplat
do 30 j=1,ntt

r{j)=rnt(j,ncase)

continue
call amean(exwt)
a = exwt/float(nplat)

end if

return

end

(* assign *)

< C-65 >

M RO R

o000

o000

[

10

10
20

subroutine amean(ex)

dede sk de s dedede e dedokkk ok ke kdkkdk ke kkd e kk kkdedekdokdodedodk ek dekkkk gk dkkddkkkkkdkkkk

* pmean calculates the expected expenditure necessary to kill all *
* targets. *
* Referenced by: subroutine assign *

real ex

common/tar/ ntt,rnt(200,10),ext(200),rt,r(200),targnames(200)
integer ntt, rt
real rnt, r
real*8 ext
character*20 targnames

integer j

ex =0
do 10 j=1,ntt
ex = ex + r(j)*ext(j)
continue
if (ex.gt.0.0) ex=amax1(ex,1.0)
return
end
(* amean *)

subroutine display

* Display pauses to allow output to be viewed at the console. *
* Referenced by: subroutine threat_model *

character*1 idummy

write(*,10)

read(*,20) idummy

return

format{/,’ < press return to continue >/)
format(al)

end

(* display *)

< C-66 >

P g N S e Y

PR 1 e i LA LML S DDA IVCE SO M VL EP L AT (o AT 4 RN

nNoOoOoOOo

20

30
40

50

60
70

subroutine echo

Rk ke kk ek R sk dokhkkkkdkdokkkkdkkikhkidkhdhkikkkkhkkkkkikhkkkikkkkkkhkhkhkkkkik

* This subroutine echos the inputs which will be used in the *
* current case. *
* Referenced by: subroutine threat_model *

dk ek kd ik ik ddkddkddddkdkkkkdokkkhkkihhdohdkhkkkikhkdkkdkdkkikkihkdodkkidkkl

common/theat/theatnames(6)
character*45 theatnames
common/misc/ncase, ncases, lun,beta,a,exwt, title
integer ncase, ncases, lun
real beta, a, exwt
character*45 title
common/plat/nplat, iaptot,replen,ia,rp
integer nplat

real iaptot, replen, rp, ia
common/plt/ npt,np(40,10),mag(40),1ap(40),nrp(40),rop(40),
& platnames(40)
integer npt, np
real mag, iap, nrp, rop

character*20 platnames
common/tar/ ntt,rnt(200,10),ext(200),rt,r(200), targnames(200)
integer ntt, rt
real rnt, r
real*8 ext
character*20 targnames
real ex
integer]

write(lun,5)
write(lun,10) ncase, title, theatnames(ncase), rt,
& nplat, beta
if (nplat.ge.1) then
write(lun,20)
write(lun,30) (targnames(j),r(Jj),ext(j),j=1,ntt)
if (rt.ge.1) then
ex = exwt/rt
write(lun,40) ex,exwt
wWrite(lun,50)
write(lun,60) (platnames(j),np(j,ncase),mag(j),iap(i),
& np(j,ncase)*iap(j),nrp(j),rop(jl,j = 1,npt)
write(lun,70) replen,rp,ia,iaptot
end if
end if

return
format(//////,' Monte Carlo Threat Model’,/)
format(’ Case Number ’,i2,//,

& ! Weapon : ‘/,a45,/
& ! Theater : f,a45,//
& ! Number of Targets =/,i4,/,
& ¢ Number of Shooters =!,i4,/,
& ¢ polya Parameter = 1,6.2)
format(//’ Target Data:?/
& ! Name Number Expenditure/Kill’)

format(1x,a20,f8.2,113.3)

format(/’ Average Expenditure Per Kill = /,18.2,/
& r Average Total Expenditures = /,f8.2)
format(//,! Shooter Data: ’,
& ! Initial Initial’,/,
& ! Name Number /,

& ' MagSz Loadout TotlLoad RefSz RordPt’)
format(1x,820,i7,11.2,£10.2,39.2)

format(/' Average Shooter Replenishment Size = /,f10.3,/,
& ! Average Shooter Reorder Point =1,f10.3,/,
& + Average Shooter Initial Loadout = /,10.3,/,
& * Total Shooter Initial Loadouts = 7,£10.3)
end

(* echo *)

< C-67 >

Y RIS

1]

logical FUNCTION ans_yes(i)

Sedededede oo e o gk dedode dode de g dedo ke dede e dede dedededededodo e dedededek ek ke dededeok dekddekdedkdokdokkdkkkkdkdkkdkkk

* Referenced by: subroutines chk_scaling and get_iter *
e dodedededede e dodo ke dedo e de i e K e deddede ke dede e dedo ok dedede ek de ke dedek ke dok ke kdek ok kkok kekedokkdkddede ek kk

10
20
30

integer i
character*1 answer

ans_yes = .true.

if (i.eq.1) then
write(*,10)
read(*,20) answer
if (answer.eq.’N’/

else
write(*,30)
read(*,20) answer
if (answer.ne.’Y’

endif

.or. answer.eq.’n’) ans_yes = .false.

.and. answWer.ne.’y’) ans_yes = .false.

format(’& (<CR>=yes,n=no) --> ')

format(al)

format(’& (y=yes,<CR>=no) --> ‘)

return
end
(* ans_yes ¥*)

< C-68 >

P
:'—:-«'

e
RU2TH g e b
. ‘f’u"»h 7

i

o4 .
S IR R ST Ry SRS
NRRRE S Ay X

R N

AN

&
-+ N
s

G

K

129 :"‘\‘: >
G 28 Gl

WP
R

R

¥

Py

L
e

RV
g
e

I8

%
E L e
i,
e by
g
e

g
et ety

i

Rt LI

AN Ve, &
/'u:,;: e

PRy
RaAy

\‘ﬂ.".r%"m,';

P

S e
IR e
(5 R BN
R

T, Yo
STy
;

et

RS

AN

903
g

R
G
P A

A

R

5, el e
PSR
SR

RS

> »,! Ho
s R Tarl
e AR R LA Ay

e
%

%

3

B

. e
"

_),
31%
DU

2 e

R

o

ey
Kooy

IS TNy
PR
CIRN L

Y ee
o S

oty

xR

N Ay

vt

c

File Name : tm_monte. for

Yedededededededed e e e dede g dedodododede dedededede de ddeded de o e o dede g gk de e dededed de e o e dedo de e de ke dede dedede ke ke ke ke ok

¥ % ok % % % % B ok ok ® % K % % % ¥ % ok %k ok % % % % % % % % % % % % % % O % % % % % % % % % % % ok % % % % % % % % % % % ¥ * % %

Monte Carlo THREAT MODEL
(Calculational Module)

Kk kkkhkkkkkkkkkdodhkhkhhkikhdhkkkkidkkikdkiikikkkikkkkik

glossary of variables
etk gk de e ke dede do o e de e e de ok e e e de e e de e e o de dededo e de ek ededodede sk ke de

common/ddown/prdd(0:2301), L ldd, tudd, ddmean
integer lldd, ludd
real prdd, ddmean

prdd(i) :probability that i-lld refill demands are made on
the depot for the current case

Lidd :lower bound on the prdd distribution

ludd supper bound on the prdd distribution

ddmean :mean of the prdd distribution

common/supply/prsup(0:2301,30), L Lsu(30), lusu(30), smean(30)
integer llsu, lusu
real prsup, smean

ook % Sk ok % b ok % ok % % o % F o % ¥ F ¥ % F

prsup(i, j):probability that i-llsup(j) expenditures are

supplied at the j-th inventory for the current case*

Llsup(j) :lower bound on the prsup(*,j) distribution

lusup(j) :upper bound on the prsup(*,j) distribution
smean(j) :mean of the prsup(*,j) distribution

common/runout/rmean(30)
real rmean

rmean(j) :average fraction of shooters that run out at the
j-th inventory

common/target/targ(0:601,30), L1t(30), lut(30), tmean(30)
integer llit, lut
real targ, tmean

targ(i, j):probability that i-Llt(j) targets are killed at
the j-th inventory for the current case

Llt(j) :lower bound on the targ(*,j) distribution

lut(j) :upper bound on the targ(*,j) distribution

tmean(j) :mean of the targ(*,j) distribution

common/ inventy/ia_inv(30),rdep(30), inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

ia_inv(i):initial allowance at the i-th inventory for the
current case

rdep(i) :refills (of size replen) in the depot at the i-th
inventory for the current case

inv(i) :i-th inventory for current case

common/dimens/maxex,maxtar,maxplat
integer maxex, maxtar, maxplat

maxex :dimension of the first index of the prsup array.

Should be greater or equal to the demand, iwt.

maxtar :dimension of the first index of the targ array.
Should be greater or equal to the no. of targets. *
maxplat :dimension of the nu array. *
Should be greater or equal to the no. of platforms*
*

%ok ok ok ok %k ok ok % Ok % ok b 3k % ok o o % % % o ok % ok F Kk F % % * ¥ F* ¥

common/percents/perckill(6),nperc *
integer nperc *

< C-69 >

T PRt e = A e ——g—— - . - -~ v

real perckill

perckill :In evaluating the fraction of targets killed
at different levels of confidence, perckitl are
the chosen confidences (actually in fractional
form, not %)

nperc :The number of confidences chosen
RRRIRIRIK Rk ST dodod dededededed dedede ke Jododedodedede ke dekdododod ke dkdekkkdkddddkkkdhkkdhkkkkkkkik

* %k * ¥ % %
* % ok % ¥ %

BLOCK DATA initial

Fededodedededededododedodododedededod dodedededdo g dededed e g de ddededod dede dedo dede dodede o de de st de ek e dedodede dodededededede ek

* Store dimensions of arrays for expenditures, targets, and
* platforms.

*
The following arrays must have dismension maxex as shown:
common/supply/ : prsup(0:maxex,30)
common/ddown/ : prdd(0:maxex)
subroutine calc_mean : x(0:maxex)
subroutine cdf : pr(0:maxex)
subroutine cumsum : a(0:maxex), b(0:maxex)
subroutine dist : a(0:maxex)
subroutine getbd : a(0:maxex)
subroutine print_dist: a(0:maxex)
subroutine zero s pr(0:maxex)
subroutine zerod : dpr(0:maxex)

The following arrays must have dismension maxtar as shown:

common/target/ : targ(0:maxtar,30)

function fval : t(O:maxtar)

subroutine monte : tartemp2(O:maxtar), tartempl(O:maxtar)
n_dd(maxex)

subroutine targ80 targ(0:maxtar)

subroutine target : pr(0:maxtar)

The following arrays must have dismension maxplat as shown:
subroutine analyze : nu(maxplat),nz(2,maxplat)
subroutine box nu(maxplat)
subroutine monte nu{maxplat),nz(2,maxplat)
subroutine refills nu(maxplat),nz(2,maxplat),n_dd(maxex)
subroutine ref_setup : nu(maxplat),nz(2,maxplat),n_dd(maxex)
Fededede e dodededededdedededododo ke kdede b de I g e dedede ke ded g dek Ko dedede e de e e dededodede dedok kedekk ek ke ke kkkkkkkkk
common/dimens/maxex,maxtar,maxplat

integer maxex, maxtar, maxplat

% % % % ¥ F % % % o % ¥ %k X % ¥ * % % % % F X % ¥ ¥
% % ok ok o ok X ¥k B % % o F ¥ % % ¥ % % ok % F % % % * ¥ ¥

data maxex/2301/
data maxtar/601/
data maxplat/2001/
end
% (* block data initial *)

< C-=70 >

T AT YN YT T T A RN A AT R NE Ve Goallh . RS MIE AP TR St Syl il S e i M e g M, o et DI e B O B e e

SUBROUTINE main_up(ntar,iflag)

oo de e s dode e e e e e e e e e e e e de e e ke e o sk e e e ke e e e de e e e ke e s e e e de e e e e de e ke e de e dedededede e de

* % % % *

Referenced by: subroutine model (file: input.f) *
For the current case (ncase), determine the inventories for *
which evaluations will take place and then for each of these *
inventories compute the distributions of supply, targets killed, *
and shooters running out. *

e e e s o de e i o e S e e o e e e e e e e e e e e e e e e e ke ke dede e de e de de e de e e e e dede gk dede e de de e e de ke dede e ek k

integer ntar, iflag

common/misc/ncase,ncases, lun,beta,a,exwt, title
integer ncase, ncases, tun
real beta, a, exwt
character*45 title
common/plat/nplat, iaptot, replen, ia,rp
integer nplat
real iaptot, replen, rp, ia

integer iwt, ntar_hold, nplat_hold, iter
real ran, randm, scale

write(*,*) ’Working on case ’,ncase
ran = randm(0) tinitialize random number generator
ntar_hold = ntar
nplat_hold = nplat
call chk_scaling(exwt,ntar,nplat, lun,ncase,scale)
iwt = int(exwt+0.5) fround expenditures to integer
call inventory(iwt) Idetermine inventories
call get_iter(iter,iut,iflag) tget number if iterations
if (iter.gt.0) then
call initialize(iwt,ntar,nplat,replen) tinitialize arrays
call monte(iwt,ntar,iter) iperform monte carlo analysis

ran = randm(2)
call summary(title,nplat_hold,ntar_hold, lun, iter,ncase) !print distributions
call moe(nplat,ntar,lun,scale,title) fevaluate requirements for

endif 1 different MOEs.

return

end

* (* subroutine main_up *)

< C-=71 >

SUBROUTINE analyze(i,nballs,ref,nurns,nu,nz)

dededededededede e e dede de de e de e de e e s e e e e e e e e de e e e e e e e e e e Jede e e e e o e de de dede de de de e e e de de dede ke de ke dede e

* Referenced by: subroutine monte *
* Extract from the current iteration the amount supplied to the *
* targets (sup) and the number of shooters that runout (cout) at *
* the i-th inventory. Accumulate the results in the appropriate *
* distributions. *

e Fedede s o dedeohedo e dedededefede Fo e o ko do e e e ke e e e e e e e dede ke de e de e de e e e sk de de de e dode g dede g g de g ek dedede ke de dede ke

integer i,nu(2001),nz(2,2001),nurns,nballs
real ref

common/supply/prsup(0:2301,30), {Lsu(30), Lusu(30), smean(30)
integer llsu, lusu
real prsup, smean
common/runout/rmean(30)
real rmean
common/inventy/ia_inv(30),rdep(30), inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

real sup, frac, avail, cout
integer iu, nsup

sup = 0.0
cout = 0.0
do 50 iu = 1,nurns
avail = ja_inv(i)+nz(1,iu)*ref tavailable supply
if (avail .gt. nu(iu)) then
sup = sup + nu(iu) t Shooter does not run out
if (nz(2,iu).gt.0)
& cout = cout + amax1(0.,1.-Cavail-nu(iu)))
else
sup = sup + avail t shooter runs out
cout = cout + 1.
endif

50 continue

if (sup .ge. nballs) then
prsup(nballs,i) = prsup(nballs,i) + 1
tusu(i) = nballs

else
nsup = int(sup)
frac = sup - nsup
prsup(nsup,i) = prsup(nsup,i) + (1 - frac)
prsup(nsup+1,i) = prsup(nsup+1,i) + frac
if (sup.gt.tusu(i)) lusu(i) = nsup + 1

endif

rmean(i) = rmean(i) + amini(float(nurns),cout)

return

end

* (* subroutine analyze *)

< C-72 >

SUBROUTINE box{nballs,nurns, nu)

Yedsdedo ok e v e o e o e e e de e e e ke sk e e e e e v e e o de e ek e de e e e e e e de ke ke de e e e de e dede ke ek ke ek e dede ke

* Referenced by: subroutine monte *
* Distribute demands(nballs) over platforms (nurns) in a polya *
* fashion. *
* nu(i) = number of demands made on the i-th platform. *

e o dede ke e o e e e de e dede e de de de dedede de do ke do do e dede de dode do e do e dedede Jede e d e K dedede de ke e dede ke dok de ek de ke k ke kk ke
integer nballs, nurns, nu(2001)

common/misc/ncase,ncases, lun,beta, a,exwt, title
integer ncase, ncases, lun
real beta, a, exut
character*45 title
* Note: n_d has dimension = exp+plat
integer n_d(4500), index, j, k
real nbeta, ran, randm

do 10 j = 1,nurns

nd(j) =]
nu(j) =0
10 continue
nbeta = nurns*beta

do 20 k = 1,nballs
ran = randm(1)*(nbeta + k - 1)
if (ran.le.nbeta) then
index = int(ran/beta + 1)

else

index = int(ran-nbeta+nurns+1)
endif
n_d(nurns+k) = n_d(index)

nu(n_d(index)) = nu(n_d(index)) + 1
20 continue
return
end
* (* subroutine box *)

< C-73 >

SUBROUTINE calc_mean(x,ex,var,lLx, lux,case)

e s e de e e oo e v do s s e e e e e e e de e e e de e o v e e do e e de e e do e e de e Fo e e e e s de s de e dede e de sk de e e e de de e dede do e de

* Referenced by: subroutine print_dist *
* Compute mean and variance of the cumulative distribution stored *

* in array X.

*

dokedode T dodedode o de B Jedo b dodo K dede ok ko de ke dedededededededekedededekokdededokokdkokkdkkkkkkkkkkhkdhkdhkkd

10

integer llx, lux, case
real x(0:2301,30), ex, var

real ex2
integer i
ex = 0.0
ex2 = 0.0
do 10 =0, Lux-llx
ex = ex + 1- x(i,case)
ex2 = ex2 + (1-x(i,case))*(i+l1x)
continue
ex2 = ex2 + LIx*(llx-1)*.5
ex =ex + llx
var = 2%ex2 + ex - ex*ex
if (sign(1.,var).lt.0 .and. abs(var).gt.0.1) write(*,*) 1#2
& ’xxmean: variance negative - var = /,var !
std = sign(1.,var)*sqrt(abs(var))
return
end

* (* subroutine calc_mean *)

SUBROUTINE cdf(pr,lipr, lupr,case)

e e e e s e e e e e ok e e e e e s e de g o de e e ke g de e de dede de e dede dede de de ke dede o dode de dede ke dedede dede ke dedekdekokok ke kk

* Referenced by: subroutine print_dist *
* Cdfr converts a pdf to a cdf. *
Yoo e e e e de e o e s et de dededede de de dede s e e e dedededededode e d b de de ke ke ke ke ke ke ek ke ek ke dedodedode gk e ke ke kekode ke ko de

integer tlpr, lupr, case

real pr¢0:2301,30)

integer j

10

do 10 j=1,lupr-Llpr
pr{j,case)=pr(j,case)+pr(j-1,case)

continue

return

end

* (* subroutine cdf *)

PR) B 7 e aptis O iy g

< C-74 >

SUBROUTINE cumsum(b, Lib,lub,a,lla,lua,prob,case)

edededdededede s e e sk de e e de ke e e dededede e e e e de e dedododedk g dede de oo e dede e de ek dedede sk g e e dodedededed e ek

* Referenced by: subroutine monte *
* Accumulate the distribution a into distribution b weighted by *
* the probability prob. *

KRAKKRKKKkRhhhhkkkkhkkkkhhhhkkkhkhkkkkkkkkkkhkkkkhkkkkhkkhkikhkkkkkhkhkkikkkhkkkkkkk
integer lla, lua, Ulb, lub, case
real prob
real*8 a(0:2301,30), b(0:2301,30)
integer j

if (Llb.gt.lla .or. tub.lt.lua) then
write(*,20) lla,lua,llb,lub

20 format(’ Error in cumsum!’,/,
& 4 tla = 7,35,’ lua = #,15,/
& ! tlb = 7,35,/ lub = 7,15)
stop
else

do 10 j = (la,lua
b¢j-llb,case) = b(j-llb,case) + a(j-lla,case)*prob
10 continue
endif
return
end
* (* subroutine cumsum ¥*)

< C-75 >

PERYE R AL T B M

SUBROUTINE chk_scaling(exp,ntar,nplat, lun,ncase,scale)

oo oo o e o ke e e e e de e e e e e do e e e e o do o o o oo sk de e de ke e K e de de dede de de e ded dededede ke dededede dedede ke ke de ke de ko ke ke ok

* Referenced by: subroutine main_up *
* Make sure that the number of expenditures, targets, and platforms *
* do not exceed the dimensions of the appropriate arrays. If they *
* do exceed the arrays, compute how much the problem must be scaled *

* down so that it fits the existing arrays. *
Ve Ao v vk o e e e ok e sk e v e v e e e o e e de e e o e e e de e e de o do de e do v e de s e de e de ok e dede sk de de e ke de dede ke ke e ke b dedededede ke

* % %

* % ¥ ¥

50

5

integer ntar, nplat, lun, ncase
real exp, scale

common/dimens/maxex,maxtar,maxplat
integer maxex, maxtar, maxplat

integer flag, iwt
real scalemax
logical ans_yes

save flag

if (ncase.eq.1) then
write(*,5)
write(*,6)
write(*,7)
read(*,*,err=4) flag
if (flag.lt.1 .or. flag.gt.3) goto 4
flag=3
endif

scale = amin1(1.,maxex/exp, float(maxtar)/ntar,
& float(maxplat)/nplat)

if (scale.lt.1.) then
iwt = int(exp + .5)
write(*,10) ncase, iwt,maxex,nplat,maxplat,ntar,maxtar,scale
write(lun,10) ncase,iwt,maxex,nplat,maxplat,ntar,maxtar,scale
write(*,25) int(exp*scale+.5),int(nplat*scale+.5),
& int(ntar*scale+.5), scale
else
if (flag.eq.1) write(*,30) ncase
endif
if (flag.eq.1 .or. (flag.eq.2 .and. scale.lt.1)) then
scalemax = scale
write(*,20)
if (.not.ans_yes(1)) then
write(*,40)
read(5,*,err=50) scale
if (scale.gt.scalemax) then
write(*,55) scalemax
goto 50
endif
wWrite(*,25) int(exp*scale+.5),int(nplat*scale+.5),
& int(ntar*scale+.5),scale
write(*,20)
if (.not.ans_yes(1)) goto 50
endif
endif

if (scale.lt. 1.0) then

exp = exp*scale

nplat = int(nplat*scale+.5)

ntar = int(ntar*scale +.5)

write(lun,25) int(exp+.5), nplat, ntar, scale
endif
return

format(///’ 15x' 1 Kkedekdoddedkd scaling *kkkkkdkkkikks ’//
& b5x,’Array sizes in the code may be too small for the given 7,/

< C-76 >

DY Y ol T AR ARt ¢ QR 4l A WPMAS] 4. pab =t

e I TN TR R Sl T AR PICY R PP i T { Ty B £ o e g

Ty ey pr———

5x,’inputs. If this is the case, the model will scale down #,/
5x,’the inputs to fit in the existing arrays and then scale *,/
5x,7the output back up to correspond to the original inputs.’,/
5x,’The user is also given the option to scale down inputs’,/
5x,’even when array sizes are adequate. Note, however, this’,/
5x,process only gives reliable results when the inputs are’,/
Sx,’"large".'//
5x,/Choose one of the following options:?,//)
format(
5x,’ 1. Prompt user for a scaling factor at the beginning of ‘,/
5x,’ every case.’,/
5x,’ 2. Prompt user for a scaling factor at the beginning of’,/
5x,! only those cases for which the array sizes are not’,/
5x,’ adequate.’,/
5x,’ 3. Let the model automatically decide whether scaling’,/
5%,/ is needed.’)
7 format(/’' Enter choice. (1, 2, or 3) --> /)
10 format(/’ Dimension of array is too small in case ’,i2,’ :’,/,
! Expenditures = /,i8,’ Max allowed=’,i8,/,
¢ platforms = 1,8,/ Max allowed=/,i8,/,
! Targets =1,i8,! Max allowed=’,i8,//,
! A scaling factor of at least /,f6.3,
! is required to run the case.’,/)
The Model will be run with the following inputs:’,/,
Expenditures = 4,18,/
Platforms 1,18,/
Targets 1,18,/
Scale Factor = /,16.3,/)
20 format(’ 1Is this oK ? /)
30 format(/! Array sizes in case /,i3,
& ! are adequate, scaling will not be done. /)
55 format(//’ Factor must be less than ’,f6.3,/ ! Try again.’//)
40 format(’ Enter the amount by which inputs will be scaled down. ’)
end
* (* chk_scaling *)

R0 RO R0 RO RO R0 Q0 RO RO R RO R0 RO RO Ro

25 format(

- . mw -

RO RO RO RO R0 Qo RO RO R0

< C-77 >

PRI DO P MM ARG PRl D) TR IMTLA MGt Pt S T ARSI e Ay

SUBROUTINE dist(a,lla,lua,npoint,case)

Yok dedededocke e dede ok dodede ok dedodede dockede de dede e e de e dode e de dode de e de e e de e sk e dedede e e dede e ke de e e e e e dede e dede

* Referenced by: subroutine monte *
* Convert from number of events to distribution of events, that *
* is, divide all points in array from a(0) to a(lua-lla) by npoint.*
P e o g s e e e e e e I e v e e e v s e e e e v e de vk v vk e v o e e o e e ek e ok ke e e de ok e ek e e ke e ok e de e dede ke e e de ek ok

integer tla, lua, npoint, case

real a(0:2301,30)

integer j

do 10 j=lla,lua
a(j-lla,case) = a(j-tla,case)/npoint
10 continue
return
end
* (* subroutine dist ¥*)

real FUNCTION fval(t,llt,lut, k,case)

Fekhhdkkkkkkkkkkkkkihkikkkkkkkkhkkikikkkkkkkkihkihhhkikkkhkkkkkkihhkikikkkkkkkkkk

Referenced by: subroutine moe *
subroutine targ80 *

Obtain the cumulative probability at k stored in array t. The *

cum is zero if k is below the lower bound and it is one if it is *

above the upper bound. *

dode de de g do e Yo e e e de e e e e e e I e e e de e de sk e de sk do e e do e d dedo e do e e e de de e dede e dode de e dede dedo ke ke de ke ke ke

integer Lit,lut,k, case

real t¢0:2301,30)

if (k.lt.llt) then

* ¥ ¥ % ®

fval = 0.
else if (k.gt.lut) then
fval = 1.
else
fval = t(k-llt,case)
endif
return
end

* (* function fval *)

< C-78 >

[P

L ARSI ik e’ Ay el el SRy M T LM T S A O Pyl 4L SN ot 2 AT o ST S

ey &

T

~he

SUBROUTINE getbd(a, Lla, lua,case)

Aededededededededeod de sk dedede sk dede dededededodo de de s ok de o sk e ke o e e e e e e de dde de e e e dededededod de gk dedodok ke ke dededede

* Referenced by: subroutine print_dist *
* Find upper and lower limits of cumulative distribution stored *
* in array a. Shift distribution so that lower limit is in a(0). *
A e e v e e e e e o o de e e do o e e e do e de ke e do ke de e e e e de e e de de ke dede ke de gk dodedo dedededode de s dede ke de de ke dedke ek dkede

integer lla,lua,llanew, case

real a(0:2301,30)

integer k

do 10 k=lla,lua
{tanew = k
if (atk-lla,case).ge. 0.0001) goto 20
10 continue
write(*,*) ‘Error in getbd’
stop
20 do 30 k = llanew,lua
if (llanew.ne.lla) ack-llanew,case) = a(k-lla,case)
if (aCk-llanew,case).gt. .9999) then
tua = k
a(lua-tlanew,case) = 1.0
goto 40
endif
30 continue
40 Lla = llanew
return
end
* (* subroutine getbd *)

< C-79 >

SUBROUTINE get_iter(iter, iwt,iflag)

e e oK U o e e e e o e e e e e e o e de e e o e e e e e e e s e e e e s e de e Sk e e e S de e e dede e e e e de e o de e dede e

Referenced by: subroutine main_up *
Determine the number of iterations to perform. Currently, this *
subroutine calculates the number of iterations needed to make
approximately 400,000 random draws. The recommended number of
iterations is then taken to be the minimum of 100 and this
calculated number.

e v o e e sk ke e ke e v e e e e e ko e e v o e e e e e e e sk e s e e e e sk e o e e e e e de ek K ke e e ek Ko de ek e de e e de e e e de ke ke ke

integer iter, iwt, iflag

* % F X % *

* % o ¥

common/ inventy/ia_inv(30),rdep(30), inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

real maxref
logical ans_yes

if (iflag.ge.0) then
iter = iflag
else
maxref = rdep(n_inv-1) tmaximum # of refills
iter = max0(int(5.0e5/(iwt+maxref)),500)
iter = minO(iter, 2000)
c write(*,10) iter
if (iflag.eq.-2) then
write(*,15)
if (.not.ans_yes(1)) then
wWrite(*,30)
read(*,*) iter
endif
endif
endif
return

10 format(’ The default number of iterations is /,i10)
15 format(’ 1s this ok?/)
30 format(
& ¢ Enter the number of iterations for this case. --> /)
end
* (* subroutine get_iter *)

< C-80 >

-

RSO0 SN 27T AR SRR - o il s ar o) = il 3

T A T

SUBROUTINE initialize(iwt,ntar,nplat,replen)

*kkkkkkkkkhkikkdhkddhkhhhhihkhhdhkkkkidkikdkkkkkkkikkkkikhkkkhkhhkkhkhkkhhhkkkki

* Referenced by: subroutine main_up *
* Initialize variables and arrays in calculations. *
ek dkdekdkkdokdkk ks dokkkkkokkdkkhkkhkdkkdkkkkkkdkkkkkkkkihkkkkkkkkhikhkkikkk
integer iwt, ntar, nplat
real replen

common/ddown/prdd(0:2301,30), L Ldd, Ludd, ddmean
integer lidd, ludd
real prdd, ddmean
common/supply/prsup(0:2301,30), LLsu(30), lusu(30), smean(30)
integer llsu, tusu
real prsup, smean
common/runout/rmean(30)
real rmean
common/target/targ(0:2301,30), L1t(30), lut(30), tmean(30)
integer Llt, lut
real targ, tmean
common/ inventy/ia_inv(30),rdep(30),inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

integer i
Lldd 0

Ludd =0
call zero(prdd,int(iwt/replen),1)

Llsu(1) = 0
lusu(1) = 0
prsup¢0,1) = 1.0

Usu(n_inv) = i
lusu(n_inv) = i
prsup(0,n_inv)

Wt
Wt
= 1.0

rmean(1) = float{nplat)
rmean(n_inv) = 0.

lit¢1) =0

lut¢1) =0
targ(0,1) = 1.0
LLt(n_inv) ntar

lut({n_inv) = ntar
targ(0,n_inv) = 1.0

lut(j) =0
call zero(prsup,iwt,j)
call zero(targ,ntar,j)
10 continue
return
end
* (* subroutine initialize *)

< C-81 >

R A SR at® . o

Aottt FARE R ot D At B0 e A ¥ o el va L S 1 M v 6 e e T AT e e g g

SUBROUTINE inventory(exp_total)
e dedede do ke de de e e s ke e e e e e e e do de e e e e e ke e s e e s e sk e e e e e sk de e e o e e e e e e e e e de e e e e de e de de e e de ke de e

* Referenced by: subroutine mainsub *
* *
* Determine the inventories at which to evaluate distributions. At *
* most 50 inventories are allowed and must be split between combatant *
* only (depot empty) and combatant+depot. Note that at least 6 *
* inventories are required for later parts of the program to work. *
* *
* Referenced: function smint *
e oo dodhe e de o e e e do o de e de e e de s e e o do e de e e de dede e de ke dede de ke dede ek ek dededede ke ke ke dedkode ke dkkokok ke kk ke kdekkkdkk

integer max_inv,min_inv

parameter (max_inv=30,min_inv=6)

integer exp_total

common/ inventy/ia_inv(30),rdep(30), inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

common/plat/nplat, iaptot,replen,ia,rp
integer nplat

real iaptot, replen, rp, ia
integer max_steps,step_size_dep,num_steps_dep
integer step_size_plat,num_steps_plat,smint, i
real dep_rounds,plat_rounds

dep_rounds=amax1((exp_total+1)-ia,0.0)
step_size_plat=max0(exp_total/nplat,1)
max_steps=max_inv-(smint(ia/step_size_plat)+1)

if ((dep_rounds.gt.0.0).and.(max_steps.lt.1)) max_steps=1
step_size_dep=max0(smint(dep_rounds/(max_steps*replen))-1,0)

10 continue 1from 20
step_size_dep=step_size_dep+1
num_steps_dep=smint(dep_rounds/(step_size dep*replen))

20 if ((float(num_steps_dep)/max_inv.gt.

& dep_rounds/(exp_total+1)).and.(num_steps_dep.gt.1)) goto 10

* This test ensures that a disproportionate number of steps are not *

* set aside for the depot. *

plat_rounds=amin1(ia, float(max0(exp_total+1,min_inv-1)))
max_steps=max_inv-num_steps_dep-1
step_size_plat=min0(smint(plat_rounds/max_steps),step size plat)
num_steps_plat=smint(amini(ia,plat_rounds)/step size plat)
n_inv=min0¢num_steps_plat,max_steps)+1
do S50 i=1,n_inv
ia_inv(i)=amin1(float((i-1)*step_size plat),ia)
rdep(i)=0
50 continue
ia_inv(n_inv)=plat_rounds
num_steps_dep=max0(num_steps_dep,min_inv-n_inv)
do 70 i=n_inv+1,n_inv+num_steps_dep
ia_inv(i)=ia
rdep(i)=amin1(float((i~-n_inv)*step_size_dep),dep_rounds/replen)
70 continue
n_inv=n_inv+num_steps_dep
do 80 i=1,n_inv
inv(i)=(nplat*ia_inv(i))+(rdep(i)*replen)

80 continue

return

end
* (* subroutine inventory *)

< C-82 >

ey

SUBROUTINE moe(nplat,ntar, lun,scale,title)

hkkdkhdkkkkkkkdddhkidhhhkikkkhikikkkkkkkhkhkkkhkdkhkkkikkikkkkkhkkkkkkkkkkk

* % % % % ¥ ¥ % X ¥

Referenced by:
Determine and print for each inventory evaluated, the average
shooters that do not run out, the probability that at least

80% of the targets are killed, and the probability that all the

targets are killed.
Interpolate to obtain the inventories needed so that:
1.) X% of the shooters not to run out on average,

2.) at least 80% of the targets are killed with X% confidence,

3.) all of the targets are killed with X% confidence,
for X% = 75%, 80%, 85%, 90%, 95%, and 99%.

subroutine main_up *

*

* % F % % F % *

khhkkhkkkkkkkhhkikhkkhkhkkhkkhhhkihkkkihkhkikikikkhkhdkihhihkhkhkdkhhkikdkhkkkikik

* integer nplat, ntar, lun
real scale
character*45 title

common/EXPECTED_REQ/ expected_req_array(6)

cal_thrt_mode!l_reqirements_for_munition_type

real expected_req_array
common/runout/rmean(30)

real rmean
common/target/targ(0:2301,30), LLt(30), tut(30), tmean(30)

integer ttt, lut

real targ, tmean
common/ inventy/ia_inv(30),rdep(30),inv(30),n_inv

integer n_inv

real ia_inv, rdep, inv
common/percents/perckill(6),nperc

integer nperc

real perckilt

integer j, k, L

real ave_sh(30), ave_ta(30), conf_ta(30,6)
real inv_sh(6), inv_ata(6)

real inv_conf(6,6)

real perc(6), killperc, fval

data perc/.75,.8,.85,.9,.95,.99/

write(lun,40) ’Evaluated: ‘¢, (100*perckill(j),j=1,nperc)

write(lun,41)
do 5 k=1, n_inv
ave_sh(k) = 1. - rmean(k)/nplat
ave_ta(k) = tmean(k)/ntar
do 90 j = 1, nperc
if (perckill(j).ge.0.99999) then
conf_ta(k,j) =
& 1. - fval(targ, LLt(k), lut(k), ntar-1,k)
else
conf_ta(k,j) =

& killperc(perckill(j),targ, LLt(k), lut(k), ntar, k)

endif

90 continue

write(tun,50) int(inv(k)/scale +.5), ave_sh(k), ave_ta(k),

& (conf_ta(k,j),j=1,nperc)
5 continue

call interpsetup(n_inv,inv,ave_sh)
do10j=1,6
call interp(n_inv,inv,ave_sh,inv_sh(j),perc(j))

print*,’do 10 : j ="', j

¢10 continue

call interpsetup(n_inv,inv,ave_ta)
do35j=1,6

< C-83 >

t shared with

RL

\4

uncommented

call interp(n_inv,inv,ave_ta,inv_ata(j),perc(j))

35 continue n ”

c do 30 L = 1, nperc

c call interpsetup(n_inv,inv,conf_ta(1,1))

c do20 j=1,6 11 RL 6 <-2
c call interp(n_inv,inv,conf_ta(1,l),inv_conf(j,l),perc(j))

c20 continue

c30 continue

c write(lun,60) ’ Interpolated:’, (100*perckill(j),j=1,nperc) 11 RL v uncommented
c write(lun,61)

do8 k=1, 6
c write(lun,70) int(100*perc(k)+.5),int(inv_sh(k)/scale+.5),

c & int(inv_ata(k)/scale+.5),
c & (int(inv_conf(k,i)/scale+.5),i=1,nperc)
expected req_array(k) = inv_ata(k)/scale f! Average requirements needed for
tt k fractions of the targets killed
80 continue

write(lun,75)
write(lun,76) (expected_req_array(k), k=1,6) 1t Average requirements needed for
tt k fractions of the targets killed

if (inv_conf(2,1)/scale.gt.ia_inv(n_inv)*nplat) then
write(lun,69) title(1:11),nint(inv_conf(2,1)/scale),’*’
else
write(lun,69) title(1:11),nint(inv_conf(2,1)/scale),’ ’
endif 1 RL

ooo0oo0o0

return

69 format(al1,i7,3x,a1)

40 format(/,al13,//,
’

& Average Fraction of: ’,

& ’probability that at Least Y /,/,

& # eemccceccecccecceee=- ’,

& ‘of the Targets are Killed /,/,

& ¢! Shooters ’,

& ' for Y =7,/,

& ! not Running Targets --------- ‘,

& R R et DL DR L '/,

& ‘Inventory Out Killed 7,6(f6.1,7%"))
41 format(

& lececnmeanr emccccccccccecccncn= ‘,

& [T L T e N e e L T T R l)

50 format(i8,f9.2,4x,f6.2,6%,16.2,7f7.2)
60 format(/,al3,//,
1

& Inventory Needed '/,
& !/ so that on Average t .
& ! X of the: ’,
& ! Inventory Needed to Kill at Least /,/,
& 2 ’,
& f Y of the Targets with X Confidence’,/,
& ! Shooters Targets ’,
& 4 for Y =*,/,
& ! Do Not are ’,
& T e e DL S L L LD DDt 0/,
& 7 X Run out Kilted 7,6¢(f7.1,7%7))
61 format(
& I meece ecccccccnemcecmesasaas ’,
& R N L L T T T R, l)

70 format(i4,’%’,i11,110,i11,5i8)
75 format(’Average Requirements Needed for X % Targets Killed :/,/,
« 10X,'X 27 ,4X,775%' ,7Tx,'80%" ,7X,?85% ,7x,190%! ,7x,195%! ,7X,"99%")
c 76 format(10x,6i10)
76 format(10x,6f10.3)
end
* (* subroutine moe *)

< C-84 >

AP L S WS I £ 2 A M S AN PE S L L e By o § R Cy i SO L -0 < A RN /g A St AT ir th " Yoot du iy T T

SUBROUTINE monte(iwt,ntar,iter)

S e W e o o g o e e Fe K o ho e e S e e o oo e e e e dede e de eIk de dededddedede ok k dededededededededede ke de ke dededokok ke dededeok

* Referenced by: subroutine main up *

* This is the subroutine that controls the Monte Carlo calculations.*
Fede e e o de s et ok v s ke ok e e e vk e ok dhe s o e e e ok s e e e T e e de e de e do e e e e d e de o e g s de s e de e do v de de e de de e de ke ko

20
10

40

integer iwt, ntar, iter

common/ddown/prdd(0:2301,30), Lldd, Ludd,ddmean
integer tldd, ludd
real prdd, ddmean
common/supply/prsup(0:2301,30), LLsu(30), tusu(30), smean(30)
integer llsu, lusu
real prsup, smean
common/runout/rmean(30)
real rmean
common/target/targ(0:2301,30), LLt(30), lut(30), tmean(30)
integer Llt, lut
real targ, tmean
common/inventy/ia_inv(30),rdep(30), inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv
common/plat/nplat,iaptot, replen,ia,rp
integer nplat
real iaptot, replen, rp, ia

integer nu(2001),nz(2,2001),lltp, lutp, n_dd(2301), ns, nzt
integer 1, k, js, it
real*8 tartemp2(0:2301,30), tartemp1(0:2301,30)

do 10 ns = 1,iter
if (mod(ns,max0(1,iter/50)).eq.0)

& Write(*,*)’ Working on iteration #’,ns,
& t (’,ns*100./iter,'%)!

call box(iwt,nplat,nu)

call ref_setup(nu,nz,nzt,n_dd)
prdd(nzt,1) = prdd(nzt,1) + 1.
if (nzt.gt.ludd) ludd = nzt

do 20 i =2, n_inv-1
if (rdep(i).gt.0) call refills(i,rdep,nz,nzt,n dd)
call analyze(i,iwt,repten,nplat,nu,nz)
continue
continue
write(*,*) ¢ Finished /,iter, ’ iterations.’ t

wWrite(*,*) ‘ Calculating target distributions.’
call dist(prdd,lldd,ludd,iter, 1)

write(*,70) 1,100./(n_inv-1.) 1"
do 30 k = 2, n_inv-1

if (mod(k,max0(1,(n_inv-1)/5)).eq.0) 11

& write(*,70) k,k*100./(n_inv-1.) §!

call zerod(tartemp?2,0,ntar, k)
call dist(prsup,llsu(k), lusu(k),iter, k)
rmean(k) = rmean(k)/iter
do 40 js = lisu(k), lusu(k)
if (prsup(js,k).gt.1.0e-15) then
call calctarget(iut, js,ntar,tartempi, lltp,lutp,k)
if (lutp.gt.tut(k)) tut(k) = lutp
call cumsum(tartemp2,0, lut(k),tartempl, Lltp, lutp,

& prsup(js, k), k)

endif
continue
do 60 it=0,tut(k)
if (tartemp2(it,k).gt.1.0e-37) then
targ(it,k) = tartemp2(it,k)
else
targ(it,k) = 0.0

< C-85 >

e 2 BE RS TP RIS 40 M2

u ord & v = 2
ISR X A CINECARRT TN SN 855t APkl SN

60
30

70

endif

continue
continue

return

format(’

end
(*

subroutine monte

*)

Inventory #/,1i3,7 (/,16.2,'%)')

real FUNCTION killperc(perc,targ,llit, lut,ntar, case)

dedededededeRede ke ded etk s kedkdek ke kkkkkkkkdokdkdkkkkkkkdkdddododokkddkkkkhkkdhdhdkdhhkkkkkik

* Referenced by:
* Linear interpolate to get the probability of killing at least *

* perc of the targets.

subroutine moe *

(perc is expressed as a fraction) *

s e oK e T o s e d e e oo Ko e e o e e e e e e de e e de ke de ke g do ke de e de d e de ke ded dededokodededok dedededodedodedededededokeok

integer Llt, lut, ntar,case
perc, targ(0:2301,30)

real

real

tperc, f, fval

integer itperc

tperc = perc*ntar
itperc = int(tperc)
f = tperc - itperc
killperc = f*(1.-fval(targ,llt,lut,itperc,case)) +
€1.-fy*(1.-fval(targ, LLt, lut,itperc-1,case))

&

return
end
* (* function killperc *)

SUBROUTINE print_dist(name,a,lla,lua,mean, tun,case)

o de e do ke dodedo K do ke ek dededode ok ke ok do ke ok ke ke ke ke d ek dede ko ke ke ke ke ke de ke ke ke dodke ok dedededodedode ko ke ddedededo ke de ke
subroutine summary *

* Referenced by:

* print distribution arry to output device. Calculate mean and *
* variance.
ool g e ke e e e T e o e e S e e e v e e K e e e e e g de e de e de o e de e de ke e o de e g de e e e ek dedode dedede ke kok ke dok ke k ke k
integer lla, lua, lun, case
real a(0:2301,30), mean, var
character*4 name

call cdf(a,lla,lua,case)
catl getbd(a,lla,lua,case)
call calc_mean(a,mean,var,lla,lua,case)

* Print out Distributions:

* * % *

20
*20
21

*

write(lun,10) name, lta, lua, mean, var, sqrt(var)
write(lun,20) (a(i,case),i=0, lua-lia)

write(lun,20) lua-tta+1,float(lla),a(0,case)
write(lun,21) (float(i),a(i-lla,case)-a(i-lla-1,case),i=lla+1,lua)
format(/, ' ***** 1 a4 ! Distribution ****7 s

R0 Ro RO Ro

StDev:/,F10.5/)

: name’,/,2f23.6)

! Lower Bound: ’/,i5,/,
¢ Upper Bound: ‘,i5,/,
! Mean : /,f10.5,/,
! Variance : /,f10.5,’
format(10f8.4)
format(i5,’ points in data set
format(2f23.6)
return
end

* (* subroutine print_dist *)

< C-86 >

y

PRI ARG A LTI B § Y™ Ly)

P A4 PSS Ao sgr M e

N 2

oy T M onakgBlinri S5 [y

PN I S A P R

5 I W TS S LA e XA ™= i iy O oty

SUBROUTINE refills(i,rdep,nz,nzt,n_dd)

e de o I I de e e o i e e e e e e e e e e e e de ke e e e e e e Ko e e g e e e e e de e e de e e e e e v e dode e ke e e e de e de dedede e ke de

* Referenced by: subroutine monte *
* For the i-th inventory, distribute the refills available in *
* depot, rdep(i), over the shooters who ask for refills. Note *

* that the refills available in the depot at the (i-1)th inventory,*
* prdep(i-1), have already been distributed so that we only need to *
* distribute the remaining refills. *
Fededk Rk ke kR hk kkdeded ke dededokdode kK dedodode e dedede dode ek dode g do g ek dede ke dedede gk ke ke dedodededededkedeodeodedeok
integer nz(2,2001), i, nzt, n_dd(2301)
real rdep(30)

common/plat/nplat, iaptot,replen,ia,rp
integer nplat

real iaptot, replen, rp, ia
integer {, index, iurn
real randm

do 30 | = int(rdep(i-1)+.001)+1, min0C(nzt, int(rdep(i)+.001))
index = int(randm(1)*(nzt - L + 1) + 1)
iurn = n_dd(index)
nz(2,iurn) = nz(2,iurn) - 1
nz(1,iurn) = nz(1,iurn) + 1
n dd(index) = n_dd(nzt - L + 1)
30 continue

return
end
* (* subroutine refills *)

SUBROUTINE ref_setup(nu,nz,nzt,n_dd)

e sk s e e e e e o e e e e e e e e e de o de e e e g de e de de dededede de de ek ko e de ke gk de dedkedede s dedede e dedededede ke kk ok ke

* Referenced by: subroutine monte *
* nzt = total number of refills demanded by the shooters *
* for the current iteration. x
* nz(1,i) = of the total refills demanded by the i-th platform, *
* this is number of refills that were satisfied. *
* nz(2,i) = of the total refills demanded by the i-th platform, *
* this is number of refills that were unsatisfied. *
* Initially set all the refills as unsatisfied. As refills are *
* made available in the depot, refills in nz(2,*) will be trans- *
* ferred over to nz(1,*). This transfer occurs in subroutine *
* refills. *

e de e K de e v o dde ok e e o de e e e e ke de e e de i otk e e e dede s dede de e dode ek dededededededededodededededededededededede ke k

integer nu(2001), nz(2,2001), nzt, n_dd(2301)

common/plat/nplat, iaptot, replen,ia,rp
integer nplat

reat iaptot, replen, rp, ia
integer i, ic, m
nzt =0
ic=0
do 20 m = 1, nplat
nz¢1,m) = 0
nz¢2,m) = max0(0, int((nu(m)-iatrp+replen)/replent+.01))
nzt = nzt + nz(2,m)
do 10 i = 1,nz(2,m)
ic = ic + 1
n_dd(ic) = m
10 continue

20 continue

< C-87 >

RS N N T Vot BN B 1 Y R OWHCOWNINIME S L v = Sy 05 o A I M0 A i st~ e SR s i P AL A

return
end
* (* subroutine ref_setup *)

integer FUNCTION smint(x)

et dodede e de K do s e dode v de ke do s do v de e o de e de g K de dede do de e e de s de s ek d do e e do g do e de ok de ek dekededok kodok k ko kkkkk
* Referenced by: subroutine inventory *
* *

* petermine the smallest integer that is greater than or equal to x. *
dedede o de e e o e de de de e e e ke e de e e Fode e de dke e de ok s de e e e e de e e e e de e dede e e dede ek e de de e e dededo ke ok e de e de de dedede ke ek

real X

if (x.1t.0.0) then
if (ifix(x)-x.9t.0.99999) then
smint=nint(x)
else
smint=ifix(x)
endif
else
if (x-ifix(x).1t.0.00001) then
smint=nint(x)
else
smint=1 fix(x)+1
endif
endif
return

end
* (* function smint *)

SUBROUTINE starttar(ndup,nsup,ntar,nr,prl)

e oo de e s de e e e de e e de s s e e e e e de e e g e e e de e e e e e e et e e e de sk e e de e de e de e e e dedododo e de dededede ke e dede

*

Referenced by: subroutine target *

Calculate the probability given ndup and nsup that nr targets *

*
* are killed out of ntar targets.
*
*

pr1 = (nsup take nr)*(ndup-nsup take ntar-nr)/(ndup take ntar)
*

* * * ¥

e e e st e de e e e e e e e vhe e e e e o e de e e e I de o e e e e dede s e ke Ko do o e e e sk o de e de e e de de e dede dede dedededo ke ke de

integer ndup, nsup, ntar, nr
real*8 pri

integer 1, j

pr1 = 0.0
if (nsup.ne.ndup) then
do 10 j=0,nr-1

pri=pri+dlog(dble(nsup-j)*(ntar-j)/(nr-j)/(ndup-j))

10 continue
do 20 i=0,ntar-nr-1
pr1 = pri+dlog(dble(ndup-nsup-i)/(ndup-nr-i))
20 continue
endif
pr1 = dexp(pri)
return
end
* (* subroutine starttar *)

< C-88 >

N IS S IR AN PSS NN T et O ety

PR P S S D P X 2 P

b T Ay

S Yo e Ta T

SUBROUTINE summary(title,nplat,ntar,lun,iter,ncase)

dededededededededode e e oo oo b e e e de e de et e et de-de e e ke o e e e de e de e de ke e o e e de e e dedededede ke dedede ke dodedede ek

* Referenced by: subroutine main_up *
* Print the distribution of refill demands on the depot, DDWN. *
* print out for each inventory the distribution of supply, the *
* distribution targets killed, and the distribtion of platforms *
* running out. *

dededoded sk dodededod dedode deddedod deded dededkdodek ko kkkkkkdkkkkkkkkkkdkkkkkkhkhkdkkdkkhkkkk

integer nplat, ntar, lun, iter, ncase
character*45 title
c real temp(0:2301,30)

common/theat/theatnames(6)
character*45 theatnames
common/ddown/prdd(0:2301,30), Ltdd, Ludd, ddmean
integer {ldd, ludd
real prdd, ddmean
common/supply/prsup(0:2301,30), LLsu(30), tusu(30), smean(30)
integer llsu, lusu
real prsup, smean
common/runout/rmean(30)
real rmean
common/target/targ(0:2301,30),L1t(30), tut(30), tmean(30)
integer Llt, lut
real targ, tmean
common/inventy/ia_inv(30),rdep(30),inv(30),n_inv
integer n_inv
real ia_inv, rdep, inv

integer k
* write(lun,5) ncase, iter
5 format(//’Monte Carlo Threat Analysis for case ’,i2,
& * using ’/,i6,’ iterations’/)
* write(lun,30) title, theatnames(ncase), ntar, nplat
30 format(’Weapon : f,a45,/
& 'Theater : ’,a45,//
& 'Number of Targets =!,i4,/,
& ‘Number of Shooters =!,i4)

call print_dist(’DDWN’,prdd, Lldd, ludd,ddmean, lun,1)
do 10 k = 1, n_inv

* write(lun,20) inv(k),ia_inv(k),rdep(k)
20 format(//! Inventory = 1,10.2,/,
& ¢ Shooter initial allowance = /,10.2,/
& t Refills in the depot = 7,f10.2,/)

call print_dist(’supP /, prsup,llsu(k), lusu(k),smean(k), lun, k)
call print_dist(’TARG’,targ, Lit(k), lut(k),tmeanck), lun, k)

10 continue
return
end
* (* subroutine summary *)

< C-89 >

SRI /A e/ T AP et M s YT LU 7 o M I b Jaie S Bcran o S AR N) N 0T R £

A B o i 2l S A

SUBROUTINE calctarget(ndup,nsup,ntar,pr,tipr,lupr, case)

oo o e dededede e s e e ke e s e e e e e e e o e e e e e e e e ok e e de o e e e e e e e sk e e e e e e e e ek g de e de e dededeke e ke de e

* Referenced by: subroutine monte *
* This subroutine computes the distribution of targets killed *
* conditioned on the total demand, ndup, and the total supply, *
* nsup. *

hkkkkkhkkkhkhkkkhkkkkkkkiihkkhkkkkkkkikkkkkikkkkhhhkkkkkhhkhkhkhkhkkhkhkhhdkkkk

integer ndup,nsup,ntar, llpr, lupr, case
real*8 pr(0:2301,30)

integer j, mlpr, ix
real*8 cum

if (ndup.eq.nsup) then tall targets killed
Llpr = ntar
tupr = ntar
pr(0,case) = 1.
else
call zerod(pr,0,ntar,case)
j = ndup - nsup

Llpr = max0(0,ntar - j)
lupr = minO{ntar, nsup)
mlpr = nsup*ntar/ndup

call starttar(ndup,nsup,ntar,mipr, primlpr-Lipr,case))
cum = pri{mipr-lipr,case)
do 40 ix= mlpr+1, lupr
pr(ix-Llpr,case) = pr(ix-1-lipr,case)*(nsup-ix+1)*(ntar-ix+1)/
& ix/(j-ntar+ix)
cum = cum + pr({ix-tipr, case)
if (pr(ix-llpr,case).lt. 1.0d-15) goto 45
40 continue
45 do 50 ix = mlpr-1,tipr,-1
pr(ix-tlpr,case) = pr(ix+1-llpr, case)*(ix+1)*(j-ntar+ix+1)/
& (nsup-ix)/(ntar-ix)
cum = cum + pr(ix-llpr,case)
if (pr(ix-llpr,case).lt. 1.0d-15) goto 55
50 continue
55 if (cum.lt. 0.99 .or. cum.gt. 1.001) then
write(*,*) ‘Error in subroutine target: cum =/, cum
stop
endif
endif
return
end
* (* subroutine target *)

SUBROUTINE zero(pr,max,case)

e dedede Tk e do I Fodede e de e de dede i v de e K dodededede Je ke dededokoded ok ddede ok dododedekodedeokdedodedekedk ke dek ke kkk
* Referenced by: subroutine initialize *
* Zero single precision array. *
Whkkkhkkhkkhhkkkkikhhkhkkhkkkikkkkkkkikkhkkkkkikkhdhkkdkkhkkkhikhkkhkkkhkkkkkk
integer max, case
real pr¢0:2301,30)

integer j

do 10 j=0,max
pr(j,case) = 0.0
10 continue
return
end
* (* subroutine zero *)

< C-90 >

L T e . -

SUBROUTINE zerod(dpr,ll,lu,case)

e e e ok o e e e do 3k I ¢ do o e e I e e e e e K e e e de Ko de e e de e Je ke o de & oo de o dedo K I do e ke e ke de de e de ke Yok dedok ke ko ke ke
* Referenced by: subroutine monte *
* subroutine target *
* Zero double precision array. *
e e e T v e e e e o e e T e e e e s e e e e e e e e e e e ok ke e e o ok e e e e e e e e ke e e e de e e e e e e e ke e dododo g e e e de ke de
integer Ll, tu, case
real*8 dpr(0:2301,30)

integer j

do 10 j=0,lu-L1
dpr(j,case) = 0.0
10 continue
return
end
* (* subroutine zerod *)

< C-91 >

R TR T T R T A e e

£ RS
R

NN
ki
S

#
¥4

B

RN

B

o

L, &

2

CouN

et T
i

BN
: :,:h.unr

i
ARG
; TSN

AN
. A W

Lt

IR IS T

LN
4

Trea ve

.—;‘;..
»

)
%

e

-1
2
Ly

RS

B A
N

rm\,w,w.;i;.ﬁ, {oie
N

RIS
P RYL
At

1 [

AT

R ERMAT AN Y3
e L T
PR Al

N

P

[

e

Qi

e

Car)

¥

4
i

e

..&..A, bl N

by ke

Y

CANS
Sy

o

23

Tt hy,
B r

SRR S

RN
B AP

: b
A

S A

.»\. (v‘«\

wet

Tt g
PR L
PR T Ty

st oB
TN

AR

R PIR t
LN a..\u

RV
LRreok
PN

. s

oy i e W AT

JARGTNY
TR E

i)
3
e

vy
'y

2

R
H
g

sadely

o
PR

VR
e W3
Ay

e
P

ey e,
b e

Iy

et da
227
TN

LR

- anain ¢
v

Sy
R

PR TRy
PELOR

28

PR v
VB AN
A TR

G

§
o

e
REAUEIEN
R
Lo

LA T

i

\\.«z..ﬁww

S o 5
KA

%

¥

IR A

s

peps

AP

IRl R e r T aarns SO
TG,

N

A Ot
AL

an

PRIW)

%)

3]

2

Sgerae
Sha

AL

iy,
e

o)

A

e
"
o

ey
oot
Far

2
2

"

%

£
NS
P34

ra

J(-:

LY
B

ol

¥

5

<
2,

st

et
A @RI

o

)

5.

A

[

¥

2 elet

Y,

2 e

hielen

Lt

-

s

ol

s

2Of
AN

A0

P

c File Name : tm_inter.for

e e s ek ke e e e e oo oo e e e e e o e e e e de de e e e e ke o e ek dede e de de de e de e e dodededede ke dodedodo e de dedededededede kek ke ke

Monte Carlo THREAT MODEL
(Interpolation Module)

This module computes a monotone piecewWise interpolation of data.
The three main subroutines are interpsetup, and interp.
Interpsetup computes the coefficients of the interpolated
piecewise polynomial. Once this subroutine has been called then
subroutines interp may be called any number of times.

Poly interpolates to get a y value for a given x value and

* interp interpolates to get an x value for a given y value.
oo e e de do e o ok B 9 e e e de ke e o e oo de e e e e dede dedededede ke de ek e dekdokoke dokokodk ke ke ko dokokkok kdkkdekdokkkkk

% % * % % % * *

*
% % o ok % ¥ * *

SUBROUTINE interpsetup(n,X,y)

dededode g g dodedk e I A e K de ded e de e de e e de e dodo e e e ke o e o e e e ek Koo de o dedode dedede de e ok dede e ke ke dededkedekk ke ke ke ke

This subroutine determines the coefficients of a piecewise cubic
monotone interpolation to a set of n points (x(i),f(i)), i=1,n
This method was taken from a method described in the article:

"A Method for Constructing Local Monotone Piecewise Cubic
Interpolants®, F. N. Fritsch and J. Butland, Siam J., Stat.
Comput., Vol 5, No. 2, June 1984

The cubic polynomial is given by:

pex) = FCIYMHI(X) + FCI+1)*H2(x) + d(II*H3(X) + dCi+1)*HA(X)

where H1(x) = phi((x(i+1)-x)/h(i))

H2(x) = phi((x-x(1))/h(i))

H3(x) = -h(i)*psi((x(i+1)-x)/h(i))
H4(x) = h(I)*psi((x-x(1))/h(i))
h(i) = xCi+1) - x(i)

phi(t) = 3*t"2 - 2*%t"3
psi(t) = t°3 - t*2
d¢iy = prx(i)
The purpose of this algorithm is to determine the derivatives
d(i). This is done as follows:
At the endpoints:
d(1) and d(n) are determined using a three point
approximation. In this case we assume the function is
montonically increasing, therefore, if the three point
approx give a negative derivative then this derivative is
set to zero.
At the internal points:
Define S(i) = (FCI+1)-FC)/(xCi+1)-x(i))
Then
d¢iy = g¢ S¢i-1),s¢i),h(i-1),h())

SCi-1)*S(i)/(a*S(i)+(1-a)*s(i-1), if s(i-1)*s(i)>0

% % % o o% ok % % % % % 3 % % % F % % % ok ¥ % % F F ¥ X % ¥ * * X ¥ * %
% o % ok ok o b % % F % % o ok % o % % B % % ok % B % % bk F F % ¥ X *

1] , otherwise
and
a = (h(i-1)+2h¢1))/73Ch(i-1)+h(i)))
Referenced by: subroutine moe *
e e e e Fo T S o e T e e e e v T e e ¢ o 3k e o e e Ko de dede dedede e dodededodededede e e ek e kk ke kk ke dededkodkkk ke kkkkkk
integer n

real x(50), y(50)

common/coef/a(50),b(50),c(50),e(50)
real*8 a, b, c, e

common/deriv/h(50),m(50),d(50)
real*8 h, m, d

integer i, ip
real*8 g, threept

do 10 i = 1,n-1
h¢i) = x(i+1) - x(1)

< C-92 >

mCi) = (y(i+1) - y(i))/h(i)
10 continue

d(1) = dmax1(dble(0.), threept(x,y,1,1))
d(n) = dmax1(dble(0.), threept(x,y,n,n-2))
do 30 i = 2, n-1
d(i) = glm(i-1),m¢i),h(i-1),h(i))
30 continue

* To solve for a given p(x) we must rewrite
* p(x) = FO*HI(x) + FOi+1)Y*H2(x) + d(i)*H3(X) + d(i+1Y*H4(X)
* as p(x) = a(i) + b(I)*(x-x(1)) + c(DI*(x-X(i))"2 + e(i)*(x-x(1))"3
do 50 ip = 1, n-1
e(ip) = (2%(y(ip)-y(ip+1))+h(ip)*(d(ip)+d(ip+1)))/h(ip)**3
c(ip) =
& (-3*y(ip)+3*y(ip+1)-2*h(Iip)*d(ip)-h(ip)*d(ip+1))/h(ip)**2
b(ip) = d(ip)
a(ip) = y(ip)
50 continue
return
end
* (* interpsetup *)

real*8 FUNCTION threept(x,y,i,])

Fedesko vtk gk Ko s e de ek do e de e dode e Fo dodedededede ke dede do ekt ke de e dododededod dedeok dededededededededdededede ke ke ke

* Use three point formula to estimate derivative at point x(i) *
* using the three points x(j), x(j+1), and x(j+2) *
* Referenced by: subroutine interpsetup *

o ok T F e e do e e e e K e e de Ko e Ko e de o vo Fe de e e e e e e e ek e e e de g et do e ke de e dodede e o dede e de ke deke ke ke dedek ke ke kede ke
integer 1, j

real x(50),y(50),x0,x1,x2,xk

X0 = x(j)

x1 = x(j+1)

X2 = x(j+2)

xk = x(i)

threept = y(j)*(2*xk - x1 - x2)/(x0 - x1)/(x0 - x2) +
& y(i+1)*(2*xk - x0 - x2)/(x1 - x0)/(x1 - x2) +
& y(j+2)*(2*xk - x0 - x1)/(x2 - x0)/(x2 - x1)

return

end

* (* threept *)

real*8 FUNCTION g(s1,s2,h1,h2)

oo o de v e e e e s e e e e e s e e e S g e e e e sk o g e e e e e e e e e e de e e e de e dode dedede e e dede dedede dedede dekdede ke

* Function used to compute derivatives at data points (except *
* endpoints). *
* Referenced by: subroutine interpsetup *

Rk k kR Tkkkkkhkkdkdkkdkkkkikdkkkkkikkkikikikkdoktddkkikkdkikddhdkikhkdkikkkkkd

real*8 s1, s2, h1, h2
real*8 alpha

if (s1*s2 .le. 0) then
g =0.
else
alpha = (h1 + 2*h2)/(h1+h2)/3.
g = s1*s2/(alpha*s2 + (1.-alpha)*s1)
endif
return
end
* * g *

< C-93 >

ISEIA 1o BRIV E o8, St nl AT 1m0 YT CNS s n Bl ity (LA MY ¢ O\ = i AR G SRR L P il ST L i P

SUBROUTINE interp(nil,x,f,xval,fval)

e dododode s o ke e do ke e de ke e e e e e de e e de e e g e e ke e e de e dodo o de e e e de ke de ke de ke ke dede dededede ek dededededeodede ek ke ek

* For fval find the interpolated value of x: *
* Solve the cubic equation for ss(j)=fval where *
* f(j)=< fval < f(j+1) *
* *
* ss(j) = £(J) + bU*(X-X(])) + c(jI*(x-x(1))"2 + d(*(X-x(jN"3 *
* *
* Find the discriminant using reduced for, calculated from *
* the normal form of the cubic equation. *
* normal form: *
* x*3 4+ rx*2 +sx +t=0, where r = ¢/d, s= b/d, and t=(f-ss)/d *
* *

reduced form:
* y*3 4+ py + q = 0, where p=(3s - r"2)/3, q=2r"3/27 - rs/3 + t. *
* Referenced by: subroutine moe *
dededede e ok dedo s dedo e dede ok dede ok de ke ke ke dekkdo ek kokkhkkkkdkkkkkkkkkddkkkkkdddkkkdhkkkkkdkkddk
integer n1

real x(50) ,f(50), fval, xval

common/coef/a(50),b(50),c(50),d(50)
real*8 a, b, ¢, d

real*8 r, s, t, p, q, dc, rho, phi, u, v, sol(3), pi
real const, delx, error
integer i, k

c if (fval.le.f(1)) then
if (fval.lt.f(1)) then
wWrite(*,*) ’/fval too small’
print¥, /fval = 7, fval,’ f(1) ="', f(D
stop
endif
do 20 k=1, ni
if (fval .eq. f(k)) then
xval = x(k)
return .
else if (fval .lt. f(k)) then
goto 30
endif
20 continue
30j=k-1
if (d(j).eq.0.) then
if (c(j).eq.0) then
if (b(j).eq.0.) then
write (6,%) ’problem in interp -- x can be anything’

else Ilinear equation
xval = (fval-f(j))/b(j) + x(j)
endif

else tquadratic equation
dc = b(J)*b(j)-4.*(f(j)-fvald*c()) .
if (dc.lt.0) then
write (6,%) ‘problem in interp -- no solution’
else if (dc.eq.0) then
sol(1) = -b(j)/2./¢(]) + x(])
call checkrng(sol,1,x(j),x(j+1),xval)

else
sol(1) = (- b(j) + dsqrt(dc))/2./c(j) + x(j)
sol(2) = (- b(j) - dsqrt(dc))/2./e(]) + x(])
call checkrng(sol,2,x(j),x(j+1),xval)
endif
endif
else tcubic equation
r = c(j)/d(j)
s = b(j)/d(j)
t = (f(j)-fval)sd(j)
p = (3.*s - r*r)/3.
q = (2.*%(r*r*r))/27. - (r*s)/3. + ¢
dc = (p/3.)*(p/3.)*(p/3.) + (q/2.)*(a/2.)

< C-94 >

if (dc .gt. 0) then ! one real solution
-q/2. + dsqrt(dc)
dsign(dabs(u)**(1./3.),u)
-q/2. - dsqgrt(dc)
v = dsign(dabs(v)**(1./3.),V)
sol(1) = (u + v - (r /3.0)) + x(j)
call checkrng(sol,1,x(j),x(j+1),xval)
else if (dc .eq. 0) then ! two real solutions
u = -q/2. + dsqrt(dc)
u = dsign(dabs(u)**(1./3.),u)
sol(1) = (2.*u - (r /3.0)) + x()
sol(2) = (-u - (r /3.0)) + x(j)
call checkrng(sol,b2,x(j),x(j+1),xval)

<cc
nu

else ! three real solutions
rho = dsqrt(-p*p*p/27.)
phi = dacos(-q/2./rho)

pi = 4.*datan(dble(1.))
const = 2.*dsign(dabs(rho)**(1./3.),rho)
sol(1) = (const * dcos(phi/3.) - r/3.) + x())
sol(2) = (const * dcos(phi/3. + 2.%pis3.) - r/3.) + x(j)
sol(3) = (const * dcos(phi/3. + 4.*%pi/3.) - r/3.) + x(j)
call checkrng(sol,3,x(j), x(j+1),xval)
endif
endif

* Check sotution
delx = xval-x(j)
error = dabs(f(j)-fval + b(j)*delx + c(j)*delx*delx +
& d(j)*delx*delx*delx)
if (error.gt.0.001) then
write(*,*) ’ Problem in interp: Error = /,error
endif

return
end
* (* interp *)

SUBROUTINE checkrng(sol,n,xt,xu,sotution)

e e e e e do o v e de e e de e ke e ek de ek ke ek ke dedek ke kk ke dek ok ke dek ke ok kdkkkdedekkkkkkkhkkkkkkhkdkdhkdk
* Find atl sotutions in correct range. If the number of solutions *

* js greater of tess than one, signal error. *

* Referenced by: subroutine interp *

ke e e o do s e e e e s de e e d e e do ek e de s e e de e Kok de ke de gk dede ke de e ek ek dede ok ke ke ke kdkokkkkkkkkkdkkkkk
integer n

real xl, xu, solution
real*8 sol(3)
integer nsol, j

nsol = 0
do10 j=1,n
if (sol¢j) .ge. x1*.999995 .and. sol(j).le. xu*1.000005) then
solution = sol(j)
nsol = nsol + 1
endif
10 continue

if (nsol.eq.0 .or. nsol.gt.1) then
write(*,*) ! Problem in interp: Calculated solutions are: ’
write(*,*) (sol(j),j=1,n)
wWrite(*,*) * Allowed range = /, xL,’ to /,xu
if (nsol.eq.0) write(*,*) ’/ No solutions /
if (nsol.gt.1) write(*,*) ’ Too many solutions /
stop

endif

return

end

* (* checkrng *)

< C-95 >

PR R Y S AT A Ve I Pk Ty

PO /40, TR

R uiecoun

T

SUBROUTINE poly(n,x,y,xd,yd)

dkkhkkkhkkhdhkkikhkkkkkikkkkkhkkkkhdhikkkkhkdhkkkikkhkhkkhhkikkkkkdhkkikikkk

* For a given xd value return the function value yd . *
* Referenced by: subroutine moe *
Fekdokdedkdkodkdodedodokkkdokdkdokhkkhkhkhkhkhdhkkhkhhhkihikhhkkkkkikhkikdhkkdkkkikkkkkikkk
integer n
real x(50), y(50), xd, yd

common/deriv/h(50),m(50),d(50)
real*8 h, m, d

real*8 phi, psi, xu, xL, t
integer ip, |

phi(t) = t*t*(3. - 2*t)
psi(t) = t¥e*(t-1.)
ip=0

do 20 j=1,n-1
if (xd.ge.x(j) .and. xd.le.x(j+1)) then

ip=]
goto 10
endif

20 continue

10 if (ip.eq.0) then
print *,’/x out of range in subroutine poly’

stop
else if (xd.eq.x(j)) then
yd = y(j)
else if (xd.eq.x(j+1)) then
yd = y(j+1)
else
xu = (xCip+1) - xd)/h(ip)
xt = (xd - x(ip))/h(ip)
yd = y(ip)*phi(xu) + y(ip+1)*phi(xl) -
& d(ip)*h(ip)*psi(xu) + d(ip+1)*h(ip)*psi(xl)
endif
return
end

* ¢ poly *

< C-96 >

Pl < —
YL i T
L R A TA LA

“l

Y

e
LA

53

9t

VALY
b e

PR TAM
;.

<y ..JC.\,.

<

R

£,

TR WA
3y

Yy

AN
g P

PO

)
WL Sy Y
PEVCNA A

R

‘s

~p Rl
N N

N

A

= 8
“aety

e
LIPSt gy
PRI

O
SARY
CATRYAY

L BT

AT

PSRN
s
CRILS

4
5
L
PR
,ﬂ;ﬂ.ﬂ»‘

23

I

a0 %

PSRN ~

VB R S
b N

i

WA N
g BRI o
[RTRANCR AR, DA
Y Aﬁyn‘,ww,.aé.
T
B
W

d -
LEF,
Hey

reln VL

RS ES
A TR D]

s 3T W an
SRR

S0

;.‘.4
T ey ALy
PGPS

e
RPrC N

IR T

~

1
s

b St P SRz
kg TSI ST

Srady
= A

)

N $ NG

RN
Nyl g
it *é

Lt
RIS

OB

Z

GRS

s,
il

>
LA
e

RS

e
ooy
I

Vi
AN

PRI

RN

s

B4

T TS T

n

OO0 000

File Name : tm_rand.for

real FUNCTION randm(icheck)

Sededede e dede e de Tk ho o sk hedede dedededeheded e dededkdedededo e dedok ded ke kdede ke k dodededodkdededodokdodededokdedok ok k

* pick a random number between zero and one. *
* Referenced by: . subroutine box *
* subroutine refills *
* subroutine main_up *

Aok dek Kbk kR hkkkdkdoddokdokdokdkkdekdedoddodkedkdoddedd gk hkdkddodeodddkkdddkddokdkkdkkkk

integer icheck

common/misc/ncase,ncases, lun,beta,a,exwt, title
integer ncase, ncases, lun
real beta, a, exut
character*45 title

real rmean
integer y, ndr
save y, ndr, rmean

if (icheck.eq.0) then
write(lun,*) ’ Random Number Generator: 216 cycle’
y = 1103 Iseed
ndr = 0
rmean = 0.
else if (icheck.eq.2) then
write(lun,*)’# of random draws = /,ndr,’ mean = /,rmean/ndr
else
ndr = ndr + 1
y = y*25173 + 13849
y = mod(y,65536)

randm = float(y)/65535
rmean = rmean + randm
endif
return
end

(* randm *)

< C-97 >

R

N

gy

o

el

ong

34

AR

ORI
&g 3

o d k'

2%

PR
VSt Y e al

P e

e,

g Wi 3
s ol fiipfe, TR £ Y
L T - L t 57 AN
P Ay Ao, R -4 it % s A
. ; B e, s S ,sj YLy

e

N
L

%

0
e
24

¢,
Y
o
o

o

et
I N Rt o & P
AR SERATE

et %

2
v

2
<!
v

s

W

PRV

SNt e
iy
£

4

SN RO

KR

AT, S
Sapy
Punigt]

LIRSS
et
o 'S i S EIRN
. a W .,
. 2 RS : M
v % % . SNCRRES ey)

Ly S N
A ki 7 K i I
> K - o . - — e

edy
It

et

e

et AL

R

e

i
ey
Vo g,

e

T

AN

TRt

PR o
M -~ Vo,

- T

73 o

Ty e e 5 el
{5 pis

2R

H R T

. i a3 , 0 a Pae A PRARAES 3 A w
MOV BRI NI A w e st

N A ST 1y % AR S s, L R R AT

[P RNIPAP N 0T/ T/L S TP P N S A WPIOUE AR TR WP NS A = S XAV S

)
Y

T e g e . LY A S gy

File Name : pair_1.inc

integer maxi, maxj, maxk, maxl, maxrows
PARAMETER (MAXI=25,MAXJ=25,MAXK=25,MAXL=3,MAXROWS=1000)

COMMON /ATT/ ATT(MAXI ,MAXJ, MAXK) I ATT <- EXCHANGE
real ATT

COMMON /CM/ CM(MAXJ) t Munition cost
real cH

COMMON /COSTGOAL/ COSTGOAL I Cost goal computed by the Threat Model
real COSTGOAL

common /CG_REDUCTION/ costgoal_reduction_factor ! Cost goal reduction factor
real costgoal_reduction_factor

common /DELTA/ delta(MAXI,MAXK), TIK_O(MAXI, MAXK) I overlapping bounds for targets to be killed
real delta -t and initial target splits by platform

common /EJ/ EJ(MAXJ), EJ_old(MAXJ) | Threat Model expenditures of two consecutive passes
real EJ, Ed_old

COMMON /FATTR/ FATTR(MAXI) t pPlatform attrition fractions
real fattr

COMMON /FTBK/ FTBK(MAXK,MAXL) ! Minimum fractions of targets to be killed
real FTBK

common /1A_RS_RP/ IA(MAXI,MAXJd), RS(MAXI,MAXJ), RP(MAXI,MAXJ) t Initial Allowance, Refill-Size, Reorder-Point
real ia, rs, rp .

common /JMAP_SUM/ totatt(MAXI), tot_mun_req_cost, totkill(MAXK) ! JMAP output - platform attrition, munition cost
real totatt, tot_mun_req_cost, totkill ! targets killed

common /KC_0/ KC_O(MAXJ), KC(MAXJ),DIFF(MAXJ) 1 Kill Criterion by Munition Type
real KC_0, KC, DIFF

common /MAX_PASS/ max_pass 1 Maximum number of pair-iterations
real max_pass

COMMON /NAMES/ PLAT(MAXI),MUN(MAXJ), TARG(MAXK) t Names of platform, munition, and target types
CHARACTER*15 PLAT,MUN,TARG

COMMON /NBIJKL/ NBI,NBJ,NBK,NBL,NIJK ' # of types of platform, munition, and target
integer nbi, nbj, nbk, nbl, nijk

COMMON /PLATCOST/ PLATCOST(MAXI) 1 Platform cost
real PLATCOST

COMMON /PQ_TQ/ PQ(MAXI),TQ(MAXK) 1 # of platforms and targets of each type
real Pq, tq

common /PREPRE/ prepri(MAXROWS) t priority level of cost goal, kill goals,
integer prepri ! and attrition goals

common /R_E/ R_E(MAXJ) ! Reguirement-to-Expenditure ratio
real R_E

common /REQ/ reqsum(maxj) I JMAP+ requirements by munition type
real regsum

COMMON /RND/ RNDSUM(MAXJ) .1 JMAP+ expenditures by munition type
real RNDSUM

COMMON /RPE/ RPE(MAXI ,MAXJ,MAXK) ! Rounds-per-Engagement, RPE <- SALVO
real rpe

COMMON /STK/ STK(MAXI ,MAXJ,MAXK,MAXL) 1t salvo-to-Kill, STK <- SALVOTOK
real stk

common /STOPPING/ stopping_tolerance I Stopping tolerance
real stopping_tolerance

common /TIJK/ TIJK(maxi,maxj,maxk) !t Targets killed
real tijk

common /T_OVLP_CONF/ target_overlap_confidence ! Target overlap confidence
real target_overlap_confidence

< C-98 >

R g B & o

214

BRI A
PPl

s NI
SR WY

e gy vents
e 137

¥
¥

A

NN
TR
:",‘,'.r-’;'.‘
DA TA ¢
AL
% 1""‘ L e
. L N ARy
EYLENRY {" ST
Fhar i A S T
W

Baiad
AT
R RNt

R %
7 £

o

~

23 fge XA g £
Ny L AN VIR O
SRR, A
R
P

&
Y
A

)

PRt

AL
BT R

EES

33

‘7575;;1.«1

ld
RS

¥

i
=,
&

N

Pt S e
e

b}
N,

e AL Ry
At v :;!‘;‘T“f" AR

% P
s

A
LARA

Y

-

X

T
XY

ot
Gy
NS
i
v ¥y
PaRAS
o
3 AR

3 ot
BT
PN

T
¥,

o
¥
TS

o
(NS

7Y
§

e
/{‘

IS P L S PE T Ay & o 2

1S RSO fE N L PN B NS AR Iy Y ? &

.'-‘l’}c'f'.’: Cpdhie T 5 : SIANE S p s ¥ % ¥ v : R

RN ! b 5

IR

AN e
B

SR

NV

g &
R R

YA

S8Rl
(NN

AL
bl

FES RS

v

s
e e

L) ',‘:".'}'51g
vt as il
o

EIE z 3 * RPN N

A re e ; D i T 4 : oo e L5

L , . b M < A A o 2Ee A0

- [% foxs ; 4 o2 Y
el

B3
S ke T A e s - < ¢ z
LAY AR A o P A 3T 3 AT AR RPN S TN Fhet SV

IO

4

e o S e by b s o s LA g S0 2t Xy 0 > ety g

— - P A VT e P e, T N Ve e bt e g meyres " e

File Name : pair_2.inc

integer maxi, maxj, maxk, maxl

PARAMETER (MAXI=25,MAXJ=25,MAXK=25,MAXL=3)

PARAMETER (MAXX=25000,MAXROWS=1000,MAXDEVS=2*HAXROWS)
PARAMETER (MAXPLATS=10000,MAXTARGS=10000)

PARAMETER (MAXCFS=25000,MAXCFS2=2*MAXCFS)

PARAMETER (MAXCOLS=2500,MAXPRI=20)

COMMON /ATT/ ATT(MAXI ,MAXJ, MAXK) I ATT <- EXCHANGE
real ATT
COMMON /CM/ CM(MAXJ) ! Munition cost
real cH
COMMON /COSTGOAL/ COSTGOAL ! Cost goal computed by the Threat Model
real COSTGOAL
common /CG_REDUCTION/ costgoal_reduction_factor ! Cost goal reduction factor
real costgoal_reduction_factor .
common /DELTA/ delta(MAXI MAXK), TIK_O(MAXI,MAXK) 1 Overlapping bounds for targets to be killed
real delta ! and initial target splits by platform
common /EJ/ EJ(MAXJ), EJ_old(MAXJ) ! Threat Model expenditures of two consecutive passes
real EJ, EJ_old
COMMON /FATTR/ FATTR(MAXI) t PpPlatform attrition fractions
real fattr
COMMON /FTBK/ FTBK(MAXK,MAXL) ! Minimum fractions of targets to be killed
real FTBK
common /IA_RS_RP/ IA(MAXI,MAXJ), RS(MAXI,MAXJ), RP(MAXI,MAXJ) t Initial Allowance, Refill-Size, Reorder-Point
real ia, rs, rp
common /JMAP_SUM/ totatt(MAXI), tot_mun_req_cost, totkill(MAXK) ! JMAP output - platform attrition, munition cost
real totatt, tot_mun req_cost totkill ! targets killed
common /KC_0/ KC O(MAXJ) TKC(MAXJ), DIFF(MAXJ) ! Kill Criterion by Munition Type
real KQ_O KC, DIFF
common /MAX_PASS/ max_pass ! Maximum number of pair-iterations
real max_pass
COMMON /NAMES/ PLAT(MAXI),MUN(MAXJ), TARG(MAXK) ! Names of platform, munition, and target types
CHARACTER*15 PLAT,MUN,TARG
COMMON /NBIJKL/ NBI,NBJ,NBK,NBL,NIJK : t # of types of platform, munition, and target
integer nbi, nbj, nbk, nbt, nijk
COMMON /PLATCOST/ PLATCOST(MAXI) t Platform cost
real PLATCOST
COMMON /PQ_TQ/ PQ(MAXI),TQ(MAXK) I # of platforms and targets of each type
real pq, tq
common /PREPRI/ preprI(MAXROHS) { priority level of cost goal, kill goals,
integer prepri ! and attrition goals
common /R_E/ R_E(MAXJ) ! Reguirement-to-Expenditure ratio
real R_E
common /REQ/ regsum(maxj) 1 JMAP+ requirements by munition type
real reqsum
COMMON /RND/ RNDSUM(MAXJ) 1 JMAP+ expenditures by munition type
real RNDSUM
COMMON /RPE/ RPE(MAXI ,MAXJ,MAXK) ! Rounds-per-Engagement, RPE <- SALVO
real rpe
COMMON /STK/ STK(MAXI ,MAXJ,HAXK,MAXL) L Salvo-to-Kilt, STK <- SALVOTOK
real stk
common /STOPPING/ stopping_tolerance ! Stopping tolerance
real stopping_tolerance
common /T1JK/ TIJK(maxi,maxj,maxk) 1 Targets killed
real tijk
common /T_OVLP_CONF/ target_overlap_confidence ! Target overlap confidence
real target_overlap_confidence

COMMON /CES/ C(5),E(5)
COMMON /COLROWS/ COLS(MAXCFS),ROWS(MAXCFS)
COMMON /CRR/ RMIN(MAXI,MAXJ),RMAX(CMAXIT,MAXJ)
COMMON /CT/ COEFFS(MAXCFS),T(MAXCFS2)
COMMON /CTYPE/ CTYPE(MAXROWS)

CHARACTER*1 CTYPE

< C-299 >

IWVEEAYE 5 Ty T TR T

R T Rt B s o "o/ P o AR+ e s auei Ll s b Lo i s o\l w4 5 Pt T AU gt e ¢ T

COMMON /DOCTRINE/ DOCTRIN(MAXJ)
common /FOM/ FOM_P(MAXI), FOM_T(MAXK) ! Figure-of-Merits for platforms & targets
COMMON /FRACLOST/ FRACLOST
COMMON /11/ IBASIC(MAXROWS),JCOL(MAXCOLS)
COMMON /ISIGN/ ISIGN(MAXROWS)
CHARACTER*1 ISIGN
COMMON /ITER500/ ITER500
COMMON /LOADOUT/ LOADOUT(MAXI,MAXJ)
COMMON /MCOL/ MCOL(MAXI ,MAXJ, MAXK)
COMMON /MPSS/ MPSCOLS,MPSRHS,MPSTOT
COMMON /NB2030/ NBF20,NBF30
COMMON /NBCNROWS/ NBC4ROWS,NBCSROWS,NBCAROWS, NBC7ROWS, NBC8ROWS,
1 NBCIROWS,NBCAROWS
COMMON /MCONS/ NC1,NC2,NC3,NC4,NCS,NC6,NC7,NC8,NC9,NC10
COMMON /MEGDEVS/ DNEGROW(MAXDEVS) ,DNEGPRI(MAXDEVS),DNEGWT (MAXDEVS)
COMMON /NEGDEVSO/ DNEGROWO(MAXDEVS),DNEGPRIO(MAXDEVS),
1 DNEGWTO(MAXDEVS)
COMMON /NRC/ NBROWS,NBCOLS,NVAR,NBPRIORS ,KTEST,ITER
COMMON /POSDEVS/ DPOSROW(MAXDEVS),DPOSPRI(MAXDEVS),DPOSWT(MAXDEVS)
COMMON /POSDEVSQ/. DPOSROWO(MAXDEVS),DPOSPRIO(MAXDEVS),
1 DPOSWTO(MAXDEVS)
COMMON /TARGCHK/ TARGCHK(MAXTARGS)
common /REQUIRE/ require(maxi,maxj) ! munition requirements
COMMON /S/ S
INTEGER S
COMMON /STDEV/ STDEV(MAXI ,MAXJ,MAXK, MAXL)
COMMON /STOCK/ STOCK(MAXJ)
COMMON /R1/ BASIS(MAXROWS,MAXCOLS)
COMMON /R2/ VALC(MAXPRI ,MAXCOLS),VALB(MAXPRI ,MAXROWS)
COMMON /R3/ PRHS(MAXROWS),RHS(MAXROWS)
COMMON /RNN/ ROW,NBNZX,NCOEFFS,NPLATS
INTEGER ROW
COMMON /RSTEP/ RNGMIN,RNGMAX,STEP
COMMON /ROF/ ROF(MAXI,MAXJ)
COMMON /STKCOST/ STKCOST
COMMON /TARGTYPE/ TARGTYPE(MAXK)
CHARACTER*5 TARGTYPE
COMMON /TOTIME/ TOTIME
COMMON /TITLE/ TITLE
COMMON /TOTARGS/ TOTARGS
COMMON /ZK/ ZK
COMMON /ALPHA/ ALPHA
COMMON /TIME/ TIME(MAXL)

DOUBLE PRECISION BASIS,VALC,VALB,PRHS,RHS

DIMENSION TOTCOST(MAXK)

DIMENSION TOTLKILL(MAXK,MAXL),TOTLK(MAXL)
DIMENSION BCRNDS(MAXJ),BCFK(MAXK),BCCPK(MAXK)
DIMENSION SUMKILL(MAXJ,MAXK)

CHARACTER*1 YESNO

CHARACTER*80 TITLE
CHARACTER*132 LINE, CLINE

< C - 100 >

o T R T PN Rt TP I VI St 4 WY E R et ooy Bimanems ey T i S b B

