

EFFECTS OF NEUTRON IRRADIATION AND HYDROGEN ON DUCTILE-BRITTLE TRANSITION TEMPERATURES OF V-Cr-Ti ALLOYS*

B. A. Loomis, H. M. Chung, L. J. Nowicki, and D. L. Smith
Energy Technology Division
Argonne National Laboratory
Argonne, IL 60439

August 1993

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W-31-109-Eng-38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Submitted for consideration as part of the published proceedings of the Sixth International Conference on Fusion Reactor Materials to be held September 27 to October 1, 1993 in Stresa, Italy and to be included in Fusion Reactor Materials Semiannual Progress Report for the Period ending September 30, 1993, DOE/ER-0313/15.

*Work supported by U.S. Department of Energy, Office of Fusion Energy, under Contract W-31-109-Eng-38.

Effects of Neutron Irradiation and Hydrogen on
Ductile-Brittle Transition Temperatures of V-Cr-Ti Alloys*

B. A. Loomis, H. M. Chung, L. J. Nowicki, and D. L. Smith
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, USA

Abstract

The effects of neutron irradiation and hydrogen on the ductile-brittle transition temperatures (DBTTs) of unalloyed vanadium and V-Cr-Ti alloys were determined from Charpy-impact tests on 1/3 ASIM standard size specimens and from impact tests on 3-mm diameter discs. The tests were conducted on specimens containing <30 appm hydrogen and 600-1200 appm hydrogen and on specimens after neutron irradiation to 28-46 dpa at 420, 520, and 600°C. The DBTTs were minimum (<-220°C) for V-(1-5)Ti alloys and for V-4Cr-4Ti alloy with <30 appm hydrogen. The effect of 600-1200 appm hydrogen in the specimens was to raise the DBTTs by 100-150°C. The DBTTs were minimum (<-220°C) for V-(1-5)Ti alloys and V-4Cr-4Ti alloys after neutron irradiation.

*Work supported by the U.S. Department of Energy, Office of Fusion Energy, under Contract W-31-109-Eng-38.

Effects of Neutron Irradiation and Hydrogen on Ductile-Brittle Transition Temperatures of V-Cr-Ti Alloys*

B. A. Loomis, H. M. Chung, L. J. Nowicki, and D. L. Smith
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, USA

1. Introduction

Vanadium-base alloys have significant advantages over other candidate alloys, e.g., austenitic and ferritic steels, for use as structural material in the International Thermonuclear Experimental Reactor (ITER) and in fusion reactors that may be constructed in the future [1]. These advantages include intrinsically lower levels of long-term neutron activation, neutron irradiation after-heat, neutron-induced helium and hydrogen transmutation rates, biological hazard potential, thermal-stress factor, high temperature strength, and resistance to irradiation damage [1-6]. At the present time, the V-4Cr-4Ti alloy is recommended for the near-optimum combination of these desirable neutronic, physical, and mechanical properties for a vanadium alloy structural material [1]. However, to make use of these favorable neutronic, physical, and mechanical properties in structural material in fusion systems, an alloy should have a low DBTT. For confirmation of the selection of the V-4Cr-4Ti alloy as prime-candidate vanadium alloy, we present in this paper the results of experimental investigations to determine the DBTTs (on impact loading) of vanadium alloys after neutron irradiation at 420-600°C to 21-41 atom displacements per atom (dpa).

2. Materials and procedures

Unalloyed vanadium and V-Cr-Ti alloys with the nominal compositions listed in Table 1 were obtained in sheet form with a 50% thickness-reduction resulting in a nominal

*Work supported by the U.S. Department of Energy, Office of Fusion Energy, under Contract W-31-109-Eng-38.

thickness of 3.8 mm. Miniature Charpy-impact specimens (1/3 ASTM standard size) with overall dimensions of 3.30 x 3.30 x 25.4 mm and a notch depth of 0.61 mm were prepared from these materials. Discs with 3-mm diameter and 0.25-mm thickness, i.e., transmission electron microscopy (TEM) discs, were also prepared for impact tests on these materials.

Dehydrogenated Charpy and TEM impact-test specimens in the fully recrystallized condition were prepared from the 50% cold-worked materials by annealing for 1 h in a vacuum of 2×10^{-5} Pa. The V and V-1Ti alloy specimens were annealed at 1025°C; and the V-3Ti-1Si, V-(3-20)Ti alloy specimens were annealed at 1100°C. The V-Cr-Ti alloys (Table 1) were annealed at 1125°C. These annealing conditions for the cold-worked materials resulted in an average recrystallized-grain diameter of 0.02-0.04 mm and a dislocation density of $\approx 10^{13}/\text{m}^2$ in the specimens. Hydrogen was introduced into Charpy specimens of the alloys by annealing the cold-worked specimens in argon-filled quartz tubes for 1 h and subsequently quenching the tubes and their contents, without rupture, in water. The hydrogen concentration in the specimens was adjusted by surface-finishing of the specimens in contact with water prior to the anneal.

The Charpy and TEM specimens were irradiated in Li⁷-filled TZM molybdenum capsules at 420, 520, and 600°C in the Materials Open Test Assembly (MOTA) in the Fast Flux Test Facility (FFTF) during Cycles 9-11 of the reactor.

The Charpy-impact tests were performed with an instrumented Dynatup Drop-Weight Test machine. The impact velocity and load for these tests were 2.56 m/s and 14.995 kg, respectively. Energy absorption during impact was determined from applied load-time data that were acquired during the impact. The specimen temperature at the instant of impact

was determined from a thermocouple arc-welded near the notch. The DBTT of an alloy was determined from the energy-absorbed versus test-temperature curve. In the case of impact tests on TEM discs, a specimen was mounted for impact by a swinging pendulum on 1/2 of the specimen. The temperature of the disc was determined from a thermocouple arc-welded to the TEM disc. The DBTT of an alloy was determined from optical and scanning-electron-microscope (SEM) observations of the fractured surfaces of disc specimens.

3. Experimental results

The temperature dependence of energy absorption during impact on dehydrogenated (unirradiated), hydrogenated (unirradiated), and irradiated Charpy specimens of V-14Cr-5Ti, V-9Cr-5Ti, V-5Ti, and V-4Cr-4Ti alloys is shown in Figs. 1a, 1b, 1c, and 1d, respectively. The DBTTs for dehydrogenated (<30 appm H), hydrogenated (590 appm H), and irradiated (21-44 dpa at 420-600°C) V-14Cr-5Ti alloy are -10, 130, and >400°C, respectively. The DBTTs for dehydrogenated (<30 appm H), hydrogenated (670 appm H), and irradiated (41-50 dpa at 420-600°C) V-9Cr-5Ti alloy are -55, 45, and 150°C, respectively. The DBTTs for dehydrogenated, hydrogenated (860 appm H), and irradiated (24-34 dpa at 427-599°C) V-5Ti alloy are <-220, -160, and <-220°C, respectively; and the DBTTs for dehydrogenated, hydrogenated (1200 appm H), and irradiated (24-34 dpa at 427-599°C) V-4Cr-4Ti alloy are <-220, -150, and <-220°C, respectively.

The dependence of DBTT for V-(0-18)Ti alloys on Ti concentration in the alloy is shown in Fig. 2. The DBTTs are minimum (<-220°C) for V-(1-5)Ti alloys with <30 appm H; and the DBTTs for hydrogenated alloys (600-1000 appm H) are minimum for the V-5Ti alloy. The DBTTs for V-(0-18)Ti alloys (<30 appm H) after irradiation at 420°C to 34-44

dpa are minimum (<-220°C) for V-(1-5)Ti alloys. DBTT data for alloys irradiated at 520 and 600°C are not shown in Fig. 2, but the DBTTs for V-(1-5)Ti alloys are also <-220°C.

The dependence of DBTT for dehydrogenated, hydrogenated, and irradiated V-Cr-(4-5)Ti alloys on Cr concentration in the alloy is shown in Fig. 3. The DBTT of dehydrogenated, hydrogenated, and irradiated V-Cr-(4-5)Ti alloys increased significantly for >4.1 wt.% Cr in an alloy.

The dependence of DBTTs for vanadium alloys on the combined (Cr + Ti) concentration in an alloy is shown in Fig. 4. These results suggest that the minimum DBTT for either unirradiated, hydrogenated, or neutron-irradiated V-Cr-Ti alloys is obtained for a vanadium alloy containing 0.4 wt.% Cr and 1.4 wt.% Ti and a combined (Cr + Ti) concentration of 4.6 to 8.4 wt.%.

4. Discussion

The experimental results presented in this paper tend to confirm the selection of the V-4Cr-4Ti alloy as the vanadium alloy with the near-optimum combination of physical and mechanical properties for use as structural material in a fusion reactor. The DBTT for the unirradiated and irradiated (24-34 dpa at 427-599°C) V-4Cr-4Ti alloy is <-220°C; the ductility of this alloy at 25°C is >8% after irradiation at 420°C to 34 dpa [7]; and the swelling of this alloy is low (<0.5%) after neutron irradiation at 420-600°C to 40 dpa [8].

The number-density and average diameter of precipitates in V-Cr-Ti alloys has been determined by Loomis, et al [9]. The low DBTT for V-(1-5)Ti alloys may be related to a minimum volume-fraction of non-coherent precipitates ($Ti(N_{1-x}C_xO_y)$, $Ti_{17}P_{10}$, Ti_8S_3) and coherent precipitates (V_4C_3 , TiO) in these V-Ti alloys. The low DBTT for the V-4Cr-4Ti

alloy may be related to a high volume-fraction (relatively large average-diameter) of non-coherent precipitates ($Ti(N_{1-x-y}C_xO_y)$) and absence of coherent precipitates.

5. Conclusions

1. The DBTTs for unirradiated V-(1-5)Ti and V-4Cr-4Ti alloys are $<-220^{\circ}C$.
2. The DBTTs for V-Cr-Ti alloys are increased 100-150°C by the presence of 600-1200 appm hydrogen in the alloys.
3. The DBTTs of V-Cr-Ti alloys are minimum ($<-220^{\circ}C$) for V-(3-5)Ti and V-4Cr-4Ti alloys after neutron irradiation at 420-600°C to 28-46 dpa.
4. The DBTTs for either unirradiated, irradiated, or hydrogenated V-Cr-(4-5)Ti alloys increase significantly for >4 wt.% Cr in an alloy.
5. The DBTTs for either irradiated or dehydrogenated V-Ti alloys are minimum for 1-5 wt.% Ti in an alloy.
6. The minimum DBTTs for V-(3-5)Ti alloys may be related to a low volume-fraction of precipitates (high number-density, small diameter $Ti(N_{1-x-y}C_xO_y)$, $Ti_{17}P_{10}$, Ti_8S_3) and the presence of coherent precipitates (fcc V_4C_3 and hcp TiO) in these alloys.
7. The minimum DBTT for V-4Cr-4Ti alloy may be related to a high volume-fraction of precipitates (low number-density, large diameter, fcc $Ti(N_{1-x-y}C_xO_y)$) and absence of coherent precipitates in this alloy.

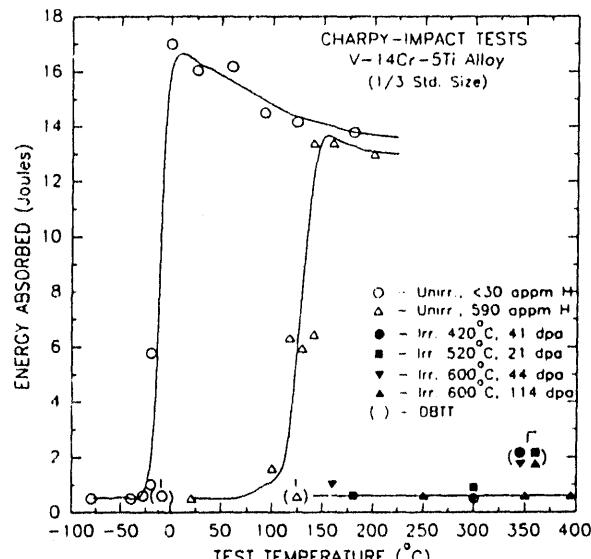
References

- [1] B. A. Loomis and D. L. Smith, J. Nucl. Mater. 191-194 (1992) 84.
- [2] T. Noda, F. Abe, H. Araki and M. Okada, J. Nucl. Mater. 155-157 (1988) 581.
- [3] R. Santos, J. Nucl. Mater. 155-157 (1988) 589.
- [4] S. J. Piet, H. G. Kraus, R. M. Neilson, Jr. and J. L. Jones, J. Nucl. Mater. 141-143 (1986) 24.
- [5] F. L. Yaggee, E. R. Gilbert and J. W. Styles, J. Less-Comm. Met. 19 (1969) 39.
- [6] D. L. Smith, B. A. Loomis and D. R. Diercks, J. Nucl. Mater. 135 (1985) 125.
- [7] B. A. Loomis, L. J. Nowicki and D. L. Smith, presented at the Sixth Int. Conf. on Fusion Reactor Materials (ICFRM-6), Stresa, Lago Maggiore, Italy, 1993.
- [8] H. M. Chung, B. A. Loomis and D. L. Smith, presented at the Sixth Int. Conf. on Fusion Reactor Materials (ICFRM-6), Stresa, Lago Maggiore, Italy, 1993.
- [9] B. A. Loomis, J. Gazda, L. J. Nowicki and D. L. Smith, presented at the Sixth Int. Conf. on Fusion Reactor Materials (ICFRM-6), Stresa, Lago Maggiore, Italy, 1993.

Table 1. Compositions of V and V-Cr-Ti alloys.

Nominal Composition	ANL I.D.	Concentration (wt.%)			Concentration (ppm)			
		Cr	Ti	Fe	O	N	C	Si
V	BL 51	-	-	-	570	49	56	370
V-1Ti	BL 50	-	1.0	-	230	130	235	1050
V-3Ti	BL 62	-	3.1	-	320	86	109	660
V-3Ti-1Si	BL 45	-	2.5	0.01	345	125	90	9900
V-5Ti	BL 46	-	4.6	-	300	53	85	160
V-10Ti	BL 12	-	9.8	0.63	1670	390	450	245
V-18Ti	BL 15	-	17.7	0.04	830	160	380	480
V-14Cr	BL 5	14.1	-	0.06	330	69	200	50
V-14Cr-1Ti	BL 26	14.1	1.0	0.06	560	86	140	50
V-5Cr-3Ti	BL 54	5.1	3.0	-	480	82	133	655
V-4Cr-4Ti	BL 47	4.1	4.3	-	350	220	200	870
V-5Cr-5Ti	BL 63	4.6	5.1	-	440	28	73	310
V-8Cr-6Ti	BL 49	7.9	5.7	-	400	150	127	360
V-9Cr-5Ti	BL 43	9.2	4.9	0.02	230	31	100	340
V-14Cr-5Ti	BL 24	13.5	5.2	0.05	1190	360	500	390
V-15Cr-5Ti	BL 41	14.5	5.0	0.02	330	96	120	400
V-10Cr-9Ti	BL 44	9.9	9.2	0.04	300	87	150	270
V-7Cr-15Ti	BL 10	7.2	14.5	0.09	1110	250	400	400

Figure titles:


Fig. 1. Dependence on test temperature of energy absorbed in Charpy-impact tests on

(a) V-14Cr-5Ti, (b) V-9Cr-5Ti, (c) V-5Ti, and (d) V-4Cr-4Ti alloys.

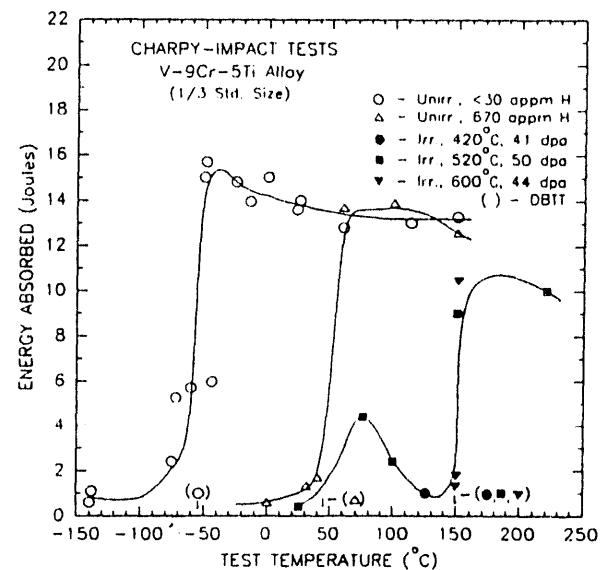
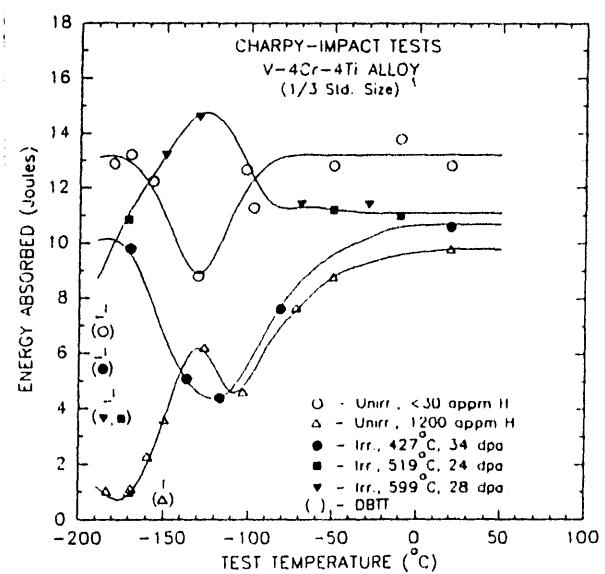

Fig. 2. Dependence of DBTT for V-(0-18)Ti alloys on Ti concentration.

Fig. 3. Dependence of DBTT for V-Cr-(3-5)Ti alloys on Cr concentration.


Fig. 4. Dependence of DBTT for vanadium alloys on (Cr + Ti) concentration.


(a)

(b)

(c)

(d)

Fig. 1

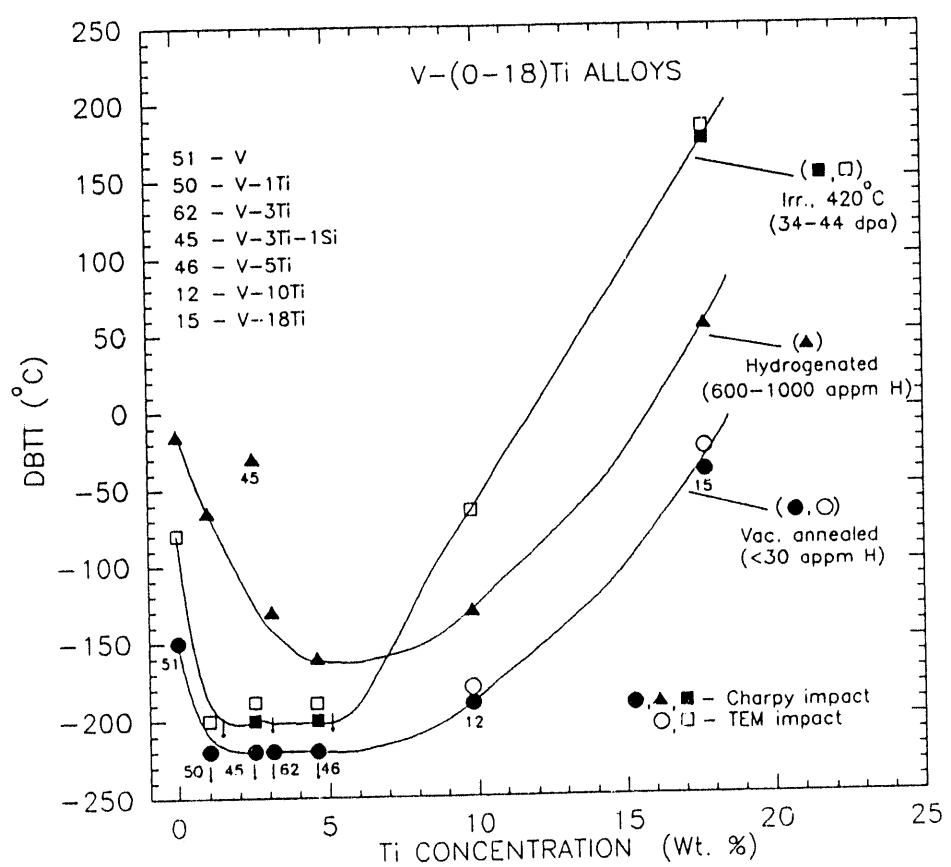


Fig. 2

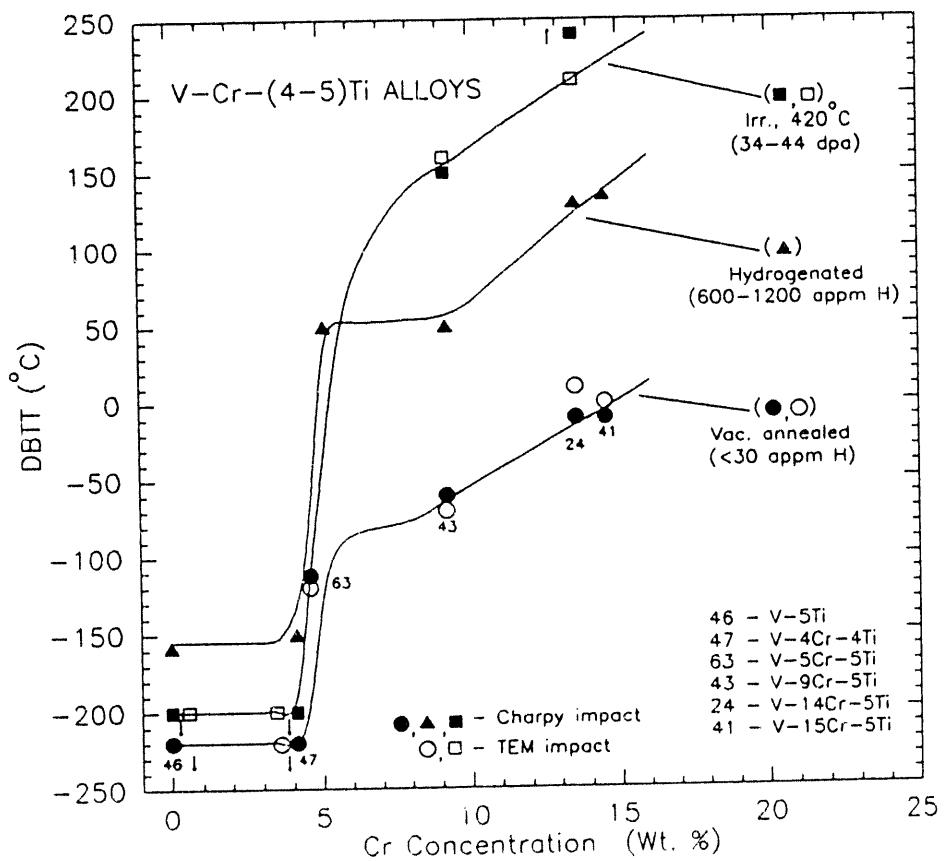


Fig. 3

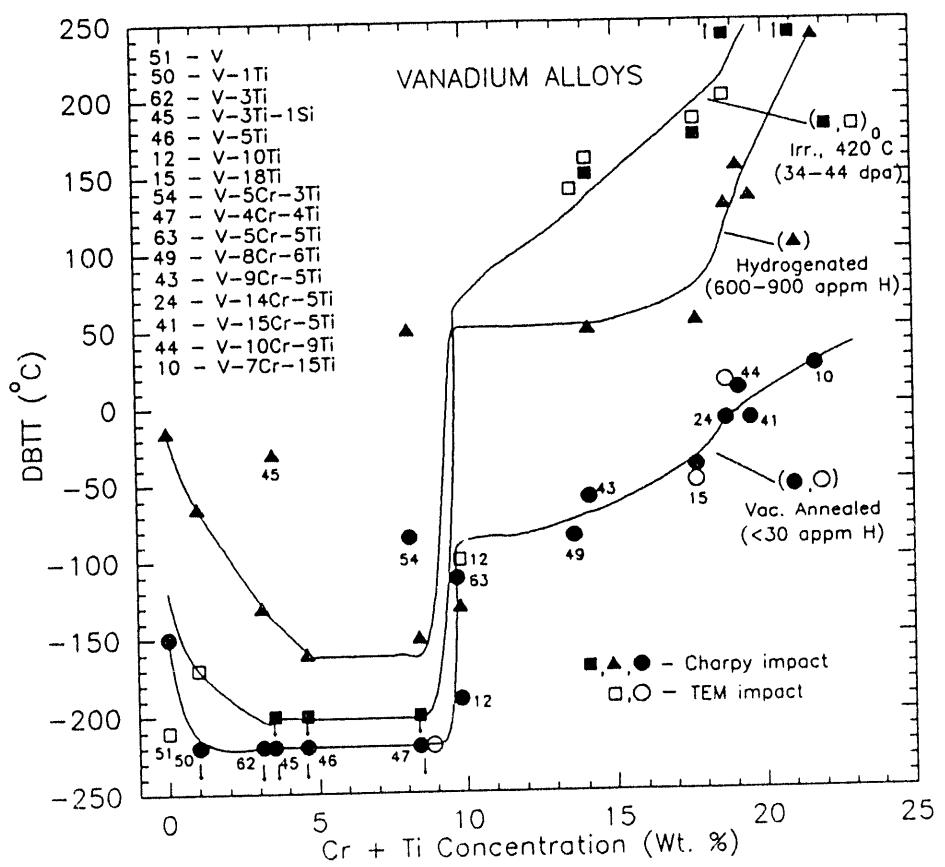


Fig. 4

END

DATE
FILMED

12/2/93

