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ABSTRACT
A Of-weighting scheme is proposed for investigating the gyrokinetic Fokker
Planck equation describing the dynamics of e.m. perturbations in a multi-species
toroidal magnetoplasma. It is shown that Monte Carlo collision operators can be
consistently defined to describe Coulomb binary collisions in such a way to assure
conservation of collisional invariants as well as to take into account the full
nonlinear particle charactertistics.

Promising current areas of research in the physics of magnetically confined plasmas
are related to the development of gyrokinetic simulation codes as well as the adoption,
in such codes, of Monte Carlo methods to describe both Coulomb binary interactions
as well as collective interactions produced by plasma turbulence. A significant
deficiency of previous numerical simulation techniques [1-3] for plasma dynamics,
which has been recently recognized [4-7], concerns the use of Monte Carlo collision
operators which are inconsistent from the viewpoint of conservation laws, namely do
not allow the fulfillment of the exact conservation laws characterizing the
Fokker-Planck operator [i.e., particle number, total linear momentum and total kinetic
energy conservation in a multi-species plasma]. In particular, Tessarotto et al.[4-6,9]
have recently proposed Monte Carlo collision operators which exhibit the correct
conservation laws (collisional invariants) and simulate accurately the Fokker-Planck
collision operators. These operators can, in principle, be used in gyrokinetic particle
simulation codes to describe consistently the influence of Coulomb binary collisions
on the transport dynamics.

The purpose of this paper is to construct a discretization approach for the
gyrokinetic distribution function based on a Of-weighting scheme [3,7,8,11-13]
adopting a Monte Carlo approach to describe Coulomb binary collisions [as
well as, possibly, particle-wave interactions]. This implies that Coulomb
collisions are described in terms of a stochastic evolution operator, defining suitable
Monte Cario collision operators advancing in time each gyrokinetic variable.
defining the gyrokinetic state of a set of test particles. In particular, such an operator M A En
is constructed in such a way to conserve the collisional invariants (particle number, 487~ ]
total linear momentum and kinetic energy). Furthermore, since the Fokker-Planck
operator fulfills the property of Galileian invariance as well as the condition of
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self-adjointness (i.e., symmetry with respect to the customary definition of scalar
product), one expects that the Monte Carlo operators reflect these symmetry
properties [12,13].

Basic feature of Monte Carlo collision operators here adopted is that they can be
expressed in terms of momentum, energy (and possibly higher moments), restoring
coefficients; hence, they can be determined at each time step in terms of particle
averages over suitable spatial cells [9]. In addition, it is possible to retain the full
non-linear particle characteristics, as appropriate for the investigation of the
nonlinear evolution of collisional eletromagnetic perturbations in a multispecies
plasma [10,11].

We are interested here in describing the dynamics of a magnetoplasma described
by a non-linear gyrokinetic equation of the form:
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where the distribution function is assumed of the form
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with fM and f1 » Tespectively, suitable "explicit”" and "implicit" parts. Here, in
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particular, st will be required to be a local Maxwellian distribution. Furthermore, .#
S

is the gyrokinetic Vlasov operator in the conservation form expressed in terms of an
arbitrary set of v-space gyrokinetic coordinates z, (for example, i=1,2); thus denoting

as J the Jacobian of the transformation (;,z)ﬂ(;,zl,zz,cp) [with @ a suitable gyrophase],
-¢ may be assumed of the form:
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with YD and Ve respectively, the diamagnetic and ExB drift velocities; the source
term S f, . reads
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For definitess, we shall require in the sequel that both M) and <z> ¢ are func-

tionals of the perturbed distribution f1 and hence Eq.(1) is nonlinear in f1 . More
'8 8

precisely, Vg and <z> é will be assumed as functionals of suitable moments of f1 ,
- S

ie., f d3v X f , with appropriate X —X (;,x,t)
S

Slmﬂarly, the lmeanzed Fokker-Planck colhsxon operator reads, assuming that the
gyrokinetic variables z, (i=1,2) are normal, i.e., that the Coulomb diffusion tensor is

diagonal in terms of them:
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where ___~_is the (diagonal) Coulomb diffusiontensorand _____ = ____  +
At At At
1
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+ _____ isthe corresponding (Coulomb) friction vector [5].
TAt

A non-linear particle simulation approach for Eq.(1), based on a Of-weighting
scheme [10,11], can be obtained adopting an extension of the approach recently
pointed out by the present authors [5,6], based, instead, on a full discretization
scheme for the kinetic distribution function. To construct a discretization scheme of
this type for Eq.(1), we represent both fM. (y,t) and f1 (y,t) in the form:
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with N (x t) and ) (ul, )"n (w,t)N (y t) suitable particle weights and where the
"dlscreuzed" dlstnbutmn functxons (y t), are assumed to fulfill at the (initial) time
vs




to the initial (deterministic) condition [in the sequel the index j will be understood,
when necessary]:
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The particle weights nj and the distribution fJ at an arbitrary time t are here
sS *S

required to fulfill an appropriate "stochastic Liouville equation” [which, however,

does not determine uniquely nj nor fJ 1 of the form:
S S
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m with (am) =(aIE1 )>+(al§1 ) » is an appropriate generalized
acceleration. More precisely, denoting with the brackets "¢ »" a suitable stochastic

Here, a m=<am> +a

average to be defined, (am> and arExS) are, respectively, the average and the
0
stochastic [algls)] part of the generalized acceleration. In particular, (aél )) and

(aéll)) denote to first two order [in a Larmor radius expansion] the leading-order
contributions to (am).

The phase-space trajectories of the test particles, ie., y()={r(t),z l(t),zz(t)}, are
then solutions of the stochastic equations of motion:
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with initial conditions y(t0)={ Io’zlo’ZZO}‘ These equations can be cast in the form of
a stochastic evolution operators advancing in time the gyrokinetic varia- bles for z;
(i=1,2). It follows that the stochastic average can be defined so that, in particular, the
average of am(y(t),t) is indeed «am(x(t),t)) . Moreover, it can be shown that the

0 1
accelerations aéls),(aél )> and (alg1 ) » must be defined, for consistency with the

gyrokinetic equation, Eq.(1), in terms of the Coulomb diffusion coefficients, i.e.,
respectively, as follows:
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We stress that a significant aspect of the present Monte Carlo operators is that,
indipendently of the particle weights [Nj (y,t) and nj ()], they can be proven to
(14 S

fulfill the conservation laws (collisional invariants) charac- teristic of the
Fokker-Planck collision operator, i.e., the conservation of particle number, total linear
momentum as well as total kinetic energy [5]. This corrects the deficiency of previous
numerical simulation techniques for plasma dynamics [1-3], based on inconsistent
Monte Carlo operators.

The discretization scheme here proposed, in contrast to previous approaches due to
Dimits and Cohen [7], exhibits the significant feature that the particle weight
[nj s(g,x,t), with j and s the particle and species index] is not used to implement the

conservation of momentum or energy; hence, it can be used to satisfy additional
constraints, to be suitably defined. Notice that the particle weight nj s(,1_‘,3L,t) can

always be represented as: nj S(_[,!,t) = <ns(;,t)> + ﬁj S(;,x,t), with <ns(:_,t)> some

suitable local average [on test particles of species s]. As an example, for transport
calculations in neoclassical theory (as well as to turbulence) the average weight
<ns(:,t)> can be determined in such a way to obtain particle flux ambipolarity,

and Onsager symmetry, independently of the number of test particles used in
the discretization [12,13]. An application, which deserves particular attention by
itself, concerns toroidal magnetoplasmas with finite aspect-ratio and exhibiting
rotation shear as well as, possibly, strong rotation speeds [14].

However, in gyrokinetic particle-simulation codes, more generally, particle weights
could be determined to fit experimental data or higher-order symmetries.

We stress that for the numerical implementation of the previous stochastic
differential equations, Eqs.(10), suitable ODE solvers (particle pushers) should be
used. In particular, expecially implementing a split-time algorithm, only ODE
solvers having only one initial condition (state) should preferably be used. In fact
multiple-states predictor-corrector pushers require that the Monte Carlo operastor
be applied several times at each time step, i.e..for example, twice for a two-state
predictor-corrector, an approach [7] which appears, therefore, inconvenient from
the viewpoint of code speed optimization.
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