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Abstract

By studying model polymeric networks which only differ in their connectivity,

the connectivity is shown to strongly control the stress-strain response and

failure modes. The sequence of molecular structural deformations that lead to

failure are strongly dependent upon the network connectivity. A set of ideal,

ordered networks are constructed to manipulate the deformation sequence

to achieve a variety of adhesive qualities. Compared to random, dynamically

formed networks, these ideal networks can be made to have either much larger

or smaller failure stresses and strains. Unlike the random networks, the failure

stress of an ideal network can be made close to the ideal stress equal to

breaking all bonds to the substrate. By varying the number of bonds to the

surface, the failure mode can be controlled to be either adhesive or cohesive.

We know quite a bit of practical information about glues, but our understanding has

large gaps [1-3]. The lack of understanding primarily comes from the difficulty of treating

interfaces both experimentally and theoretically. In this report, the focus is on theoretically

treating the interface between a polymer network and a solid. L[olecular dynamics (MD)

simulations are performed to examine the role of connectivity in adhesive polymer networks

such as epoxies. It is well known that the connectivity of a polymer system controls much

of polymer dynamics [4]. Here, the focus is on how the connectivity of a highly crosslinked

polymer network controls a variety of features in the fracture of the system. Two networks

with the same strand lengths, but different connecti}’ity are sho~vn to have widely different
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failure strains and stresses. In addition, the bond density at the interface determines whether

failure is adhesive or cohesive.

Following a large body of work on polymeric systems [5], MD simulations are performed

on a coarse-grained (i.e. bead-spring) polymer model. For focusing on the relationship

between the network connectivity and the failure modes of the adhesive, the bead-spring

model is ideal. A modification of the successful Kremer-Grest bead-spring model is used [6].

Polymer chains are composed of beads which interact via a Lennard-Jones (LJ) interaction

with a cutoff at 2.5. All quantities will be in LJ units so that cr and e represent the

stress and the strain. In the Kremer-Grest work beads are bonded together by a finite-

extensible nonlinear elastic (FENE) bond potential. In order to break bonds and presewe

the continuity of the bond force, a breakable bond potential was created that approximates

the FEXE potential at the potential minimum. A quartic potential is used to create a

potential with two minima.

{

k4(?- – TJ(r’ –

U4(r) =
rJT* + Uo, ‘r < ?-2

(1)

u), T>T2

The value of rl is set to match the FENE bond minimum. The second minimum at r2 is the

cutoff point. The potential parameters are: k4 = 1200, rl = 0.75, r2 = 1.55 and U. = 34.69.

As in the FENE bond, the total bond potential includes the purely repulsive LJ interaction

with a cutoff at 21/6.

The maximum bond force is ’70, and the maximum LJ force is 2.4. The stission force is ~

then about 30 times the maximum LJ force. For atomic force-fields, the force ratio between

the bond and the. van der Wads forces is about 1000. However, a single bead represents

several atoms and the LJ pair interaction represents multiple van der \\Taals pair interactions.

lVith even just 3 atoms per bead, there are 9 pair interactions. A force ratio of order 100 in

the coarse-grained model is representative of the atomic system. The ratio 30 in the present

simulations is small, but by a factor of less than 10. The eflect of varying bond strength

requires more space than available here.
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The complete system consists of a poiymer network between two walls. The (111) clirec.

tion (z-direction) is perpendicular to thewalls. Each wall is composed of particles in two

layers of an fcc lattice with nearest neighbor distance 1.204. The wall particles are bound

to the fcc lattice sites by a harmonic spring with spring constant 100. The wall dimensions

give the simulation cell lateral lengths, L= and Lv. The separation distance between the

innermost wail layers is L:. The wall particles interact with the beads via the LJ potential

[i’], and some wall particles are bonded to the polymer network by Eq. 1. The dynamics of

the system is performed at constant temperature using the Langevin thermostat [8]. The

integration time step is 0.005, and the damping constants are 1 for the monomers and 5 for

the walls.

The general goal is to study networks as a function of the strand length. Here, the

focus is on adhesives such as

cured networks formed from a

They form highly crosslinked

epoxies which have short strands. Epoxies are chemically

liquid mixture of a resin (Bisphenol A) and a crosslinker [9].

molecular networks with each strand consists of only a few

monomers. Each bead corresponds typically to 2 or 3 monomers ~6]. A bead-spring model

with two beads per strand was found to be the best match to epoxy data.

Two types of networks are studied in these simulations. To create a random network sim-

ilar to epoxy networks, crosslinking a liquid mixture is performed dynamically. To provide a

simple model for easier theoretical treatment, an ordered network is constructed. Rmdorn

network formation starts with an equilibrated two component liquid mixture. The mixture

consists of two bead strands and strand already bonded to a sixfold functional crosslinker

bead. Bonds are formed when the separation between a crosslinker and a strand end or wall

particle is less than 1.3 [6]. First, crosslinkers are bonded to the walls. Next, during a MD

run, the crosslinkers are bonded to strands until at least 95’% of all possible bonds are made.

Zero load is maintained on the walls during the crosslinking. Afterward, the temperature is

reduced below the glass transition temperature to 0.3.

The ordered network is designed to create a uniform distribution of strains. It is sixfold

coordinated with two monomers between each crosslinker just as the random networks. The
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network is constructed using the body centered cubic (bee) lattice as a template (see Fig.

1(a)). Crosslinkers are the central particles in the bcc cells yielding a sixfold lattice. The

z-direction is the (111) lattice direction. There are two (111) planes each with 3 sites in

the bcc cell. These sites represent strands which form a zig-zag path between crosslinkers.

This path is adjusted to achieve the correct density. The positions at the origin and at

(1,1,1) in the bcc cell are vacant. Figure 1 shows the basic building block of the network

and gives more details of the network geometry. The system is created at p = 0.8 and then

equilibrated to T’ = 0.3 and zero load just as the random networks.

When a tensile pull is applied to the ordered network, the strands should straighten out

uniformly like an accordian. Because the system is globally homogeneous, each strand is

expected to straighten out and become taut before any bond breaking occurs. Thus, this

system should expand considerably more before failure than the random structures.

The tensile pull is performed by moving the top and bottom walls apart at constant

velocity. As in experiments, simulations show that the yield stress and strain incre~e

slightly with increasing strain rate. The wall velocities are in the range 0.001–0.1 which is

slow enough not to perturb molecular scale relaxations. The failure strain does not depend

on the strain rate in this velocity range.

Four different random networks have been simulated. The random network RI has about

9800 monomers and the initial dimensions are L= = 19.3, Lv = 33.1 and L= = 15.1. The

system R2

is a ‘large’

In Fig.

has twice the plate area as Rl, and R3 has twice the plate separation as R2. R4

system with about four times the area and height of RI.

~ the stress-strain cur}~e of R1 is sho~vn. R~ and R3 have almost identical

curves. The yield stress is about 4 and the yield strain is 0.1. The stress drops suddenly and

complete failure occurs at .Ef = 1.0 and of = 3.4. For RI the first bond breaks at s = 0.62.

Between & = 0.82 and 1.0 all the bonds between the network and the bottom wall break

resulting in failure.

.411the R systems fail interracially with a preceding sequence of molecular deformations.

Initially, the near neighbors are plastically deformed producing the yield behavior. The
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yield stress is determined by the LJ interactions and is identical for all systems. Once the

monomers have moved beyond their initial local position, further applied strains tighten the

strands of the network. In the plateau region, calculations of the bond length distribution

show that the bonds are not stretched. Before bonds can stretch

taut which requires large local strains. After the strands are taut,

stretch. Subsequently, bonds break and the adhesive fails.

strands must be pulled

the bonds must and do

Even for dimer strands, the local strain required to bring the strands taut is large. An

upper limit to the failure strain is the minimal path length P from a top wall particle bonded

to the network to a bottom wall particle bonded to the network. Using Dijkstra’s method

[10], the average value Pa,w for the random networks is typically about 2L:. Not surprising,

this value indicates that the minimal paths follow a zig-zag path. For the different random

systems, F’~%Wand and the shortest value in terms of strain are in the range 0.85-0.90 and

1.0-1.1, respectively. For RI the shortest path’s bonds will be near breaking by a strain of

at most 0.84, and by a strain of 1.1 all the paths’ bonds will be near breaking. These values

are consistent with the failure strain for RI. However, for the large system R4 which has

similar maximum strain values, failure occurs at a much lower strain, 0.25. This size effect

may indicate stress concentrations dependent on system size. The important issue of size

dependence will be dealt with in forthcoming work.

As discussed above, the ordered networks are designed such that the whole system should

homogeneously straighten out like an accordian become taut before any bond breaking

occurs. Failure should consequently occur at much higher stains than in the random system.

The stress-strain curve is shown in Fig. 2 for the ordered system 01 with one bond per

crosslinker to the wall as in the random structure. The yield stress is identical to the

random network’s. As expected, failure occurs at a much larger strain, ~f = 2.5. The fully

taut configuration is a zig-zag path (see Fig. 3(b)). The strain for this taut configuration

at which the bonds must begin to stretch is 2.3 as calculated directly from the geometry.

This value is consistent with the simulation result that the stress begins to the large rise at

this strain because the bonds are being stretched. Figure 3 shows that the strands open up
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as expected, yet deformation is not completely homogeneous since the system starts below

the glass transition temperature. Initially, in a small region the strand expansion nucleates.

This region grows with increasing strain spanning the system in the z-direction. Then, layer

by layer the rest of the strands straighten out. The noticeable rises in the stress-strain curve

before the final rise to failure are due to the extra stress it takes to pull the two layers at

the walls. Just as in any liquid, the layers near the wall are more strongly packed, and,

consequently, more force is need to pull the layers apart. Once the system is completely

opened up, the bonds begin to stretch and then break at the interface. Finally, interracial

failure occurs.

Because the system has uniformly deformed, more of the bonds break simultaneously

and the failure stress is larger in this c~e than in the random case. The ideal fracture stress

is

where Fh is the force to break a bond, Nb is the number of bonds to the wall, and A is the

wall area. 01 and R1 ha~’e Nb = 60 and ~d = 6.5. The fracture stress of 01, uf = 4.9 is

much closer to the ideal value than RI’S value (3.4). The main reason is that bonds break

over a wider range of strains in RI than 01. For Rl, interracial bond breaking occurs over

a strain range of 0.18, but for 01 the range is just 0.005! Thus, “at any given strain fewer

bonds are broken in RI, and

walls due to bond breaking.

The reason for interracial

there is a significantly smaller contribution to the force on the

failure is especially clear in the 01 case. The number of bonds

at the interface is fewer than the number of bonds elsewhere in the network. This occurs

simply because only one bond per

system which has some geometric

failure that cross the z-plane at x.

is 380 for RI and is uniformly 180

crosslinker is allowed to the wall when constructing the

merit. Figure 4 shows the number of bonds b(z) near

Away from the interface, the average noninterfacial b(z)

for 01. Since R1 is near failure at a much lower strain,

more bonds cross a given plane due to the iarger density than for 01. Yet, for these two
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cases at the interface b(z) remains at 60, because of the bonding constraints. Thus, for RI

and 01, fewer bonds at the interface must stretch more to apply a larger force; consequently,

failure occurs at the interface.

A system, 03, was constructed identical to 01, but with three bonds per crosslinker to

the wall by positioning crosslinkers above the wall particles in the middle of the triangles of

the fcc layer and bonding to each particle in the triangle. In this case, the same number of

bonds occurs for all crosslinkers. There should be no preference to failure at the interface.

Given that the interface is a small fraction of the system, failure is likely to occur within

the network-cohesively.

The bond distribution b(z) for 03 given in Fig. 4 is identical to 01 near failure except

at the interface where b(z) matches the noninterfacial value. As a consequence, 03 fails

cohesively as is clearly shown in Fig. 3(c). The stress-strain curve for 03 (Fig. 2) is similar

to the 01 case. The difference is mainly that the failure stress is larger (OJ = 8.7), but only

by a factor of about two, not three like the ideal value, ~d = 19.5. All the bonds break

at the interface in 01 in about 1000 time steps. For 03, 6000 time steps of bond breaking

occur. .% noted above, this spreads the contribution of bond forces to the stress over a

wider range of strains yielding a small UJ.

Given that the accordian behavior in the ordered systems occurs with strands connecting

crosslinkers in neighboring planes, creating a network with some strands connecting next

nearest neighbor planes of crosslinkers should have fundamentally different behavior. An

ordered system 02, was constructed that connects crosslinkers such as the two marked by X

in Fig. 1. This structure results in some dangling ends at the interface, since crosslinkers at

the surface do not have sites to bond to. The number of dangling ends is 60 which is similar

to that for RI. The number of bonds to the walls remains 60 as in 01. The stress-strain

curve (Fig. 1) exhibits failure at a lower strain and stress than R1. This lower strain agrees

with the calculated strain & = 0.6 for the taut path of connected next nearest neighbor

crosslinkers. Thus, by manipulating only the network connectivity, the failure stress and

strain can either be less than or greater than the random network values.
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The fundamental point of this work is that the network connectivity is a critical factor

controlling the nature of fracture. By creating model systems, the failure strain has been

designed to bemuchlarger ormuch smaller than a random, dynamically formed network.

Whether failure is cohesive or adhesive depends on the number of bonds to the surface in

these simulations. These model systems have been constructed based on the understanding

of the sequence of molecular scale deformations that occur under tensile deformation. The

key molecular deformation leading to failure is the tightening of the network strands, for

the strands must be taut before bonds are stretched and break.

This work was supported by the DOE under contract DE-AC04-94AL8500. Sandia is a

multiprogram laboratory operated by Sandia Corp., a Lockheed Nfartin Company, for the

DOE.
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FIG. 1. The crosslinkers are- positioned on layers of triangular lattices that stack in a ABC

sequence. (a) ln between the crosslinker planes are the strand planes (shaded region). Crosslinker

A is below this strand plane and crosslinker B is above it. These two crosslinkers are bonded

together through a strand at C. Parts (b) and (c) show projections of the ordered network. Part

(b) shows the zig-zag path from one crosslinker (shaded) to another, and that successive layers of

crosslinkers are bonded together. The Xs mark crosslinkers that are connected in system
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FIG. 2. The stress-strain curves for the random network RI (solid squares) and the

02.

ordered

networks 01 (squares), 02 (triangles), and 03 (circles).
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FIG. 3. Images of systems under tensile strain show (a) the random, dynamically formed

network RI during failure, (b) the ordered network 01 at the same strain as (a) and (c) the

ordered network 03 during failure.
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FIG. 4. The number of bonds as a function of z position show the low bond density for systems

R1 (solid line) and 01 (dotted line) at the interface, and the uniform density for 03 (dashed line).

The points mark the interracial values: R1 (solid square), 01 (open square), 03 (circle).
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