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ABSTRACT

Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL
code. In order to be compatible with the underlying hydrodynamics algorithm, a new
sub-zonal magnetics discretization was developed that supports arbitrary polygonal and
polyhedral zones. This flexibility comes at the cost of many more unknowns per zone—
approximately ten times more for a hexahedral mesh. We can eliminate some (or all, de-
pending on the dimensionality) of the extra unknowns from the global matrix during assembly
by using a Schur complement approach. This trades expensive global work for cache-friendly
local work, while still allowing solution for the full system. Significant improvements in the
solution time are observed for several test problems.
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1. INTRODUCTION

A resistive magnetohydrodynamics (MHD) package [3] has recently been added to the KULL
code [10]. KULL supports unstructured, arbitrary polygonal and polyhedral mesh zones. The
MHD algorithm is one of the most tightly coupled physics packages to the underlying hydro-
dynamics discretization in the code. KULL employs a compatible algorithm [2, 5] that uses
sub-zonal corner pressures. The extension of the hydro algorithm to support magnetic fields
also needs sub-zonal magnetic stresses.

We have chosen to discretize our MHD equations on the sub-zonal elements called “sides” in
KULL that consist of the triangles formed in 2D by two consecutive nodes and the zone center
and of the tetrahedrons in 3D formed by two neighboring nodes, the face center, and the zone
center, as show in Figure 1. We will use the term “side” to denote either a triangle or tetrahedron,
depending on the dimensionality of the problem. Discretizing on the side sub-mesh allows us to
support fully arbitrary polygonal and polyhedral zone shapes, as well as to match the sub-zonal
characteristics of the hydrodynamics algorithm.

The evolution of the magnetic field due to diffusion is described by

∇× ∆t

µ0
∇×E+ σ ·E = ∇× Bn

µ0
and (1)

Bn+1 = Bn −∆t∇×E. (2)
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Figure 1: The sub-zonal mesh in 2D (left) and 3D (right). In 3D, 24 tetrahedral sub-elements
are added to each hexahedron.

In order to ensure that ∇ · B = 0 always, we choose to solve for the electric field integrated
along the edges in the mesh, or

Ee =

∫
e
E · dl. (3)

Instead of standard nodal finite elements, which can be good for a gradient of a divergence
diffusion operator, the curl-curl diffusion operator forces us to use the lowest order Nédélec
(edge) finite elements [9]. This vector edge basis function has an integral of one along its edge,
and zero along any other edge in the mesh. Solving for the edge electric field, then updating
the face magnetic fluxes by summing the electric field around the faces ensures that ∇ ·B = 0
to machine precision in our simulation. Using the edge basis functions, we apply a standard
Galerkin method to derive a matrix equation,

Ax = y. (4)

The number of unknowns in the vector x is the number of edges in the sub-zonal side mesh,
which can be considerably larger than the number of edges in the original zonal mesh.

The increased unknown count relative to a standard zonal discretization may seem high, but the
benefits outweigh the costs. Discretizing the magnetic diffusion equation on the sub-zonal mesh
allows us to support an unstructured, arbitrary polygonal or polyhedral mesh. More importantly,
it is necessary for stability when coupling with the underlying hydrodynamics algorithm. The
rest of this paper is focused on how we significantly speed up the solution of Eq. 4 by trading
extra local work during the matrix construction for expensive work during the global matrix
solve.

2. REDUCED GLOBAL MATRIX

Instead of solving Eq. 4 directly for the full number of unknowns in the problem, we perform
a two-step solve. As we assemble the matrix, we preform some local dense linear algebra to
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temporarily eliminate some unknowns to form a smaller global matrix. After solving the global
matrix, we then solve for the unknowns we eliminated, recovering the full solution as if we solved
the full problem.

2.1 Reduced Matrix Assembly and Full Solution

A finite element discretization can be specified by a set of elements {g}, with corresponding
degrees of freedom (dofs) {xg}, and local element matrices {Ag}, which are assembled to form
A. With that definition in mind, we consider the following 6-step process for the solution of the
full global problem, Eq. 4:

1. Gather sides into groups. Each original side is in exactly one group. How to choose these
groups will be discussed in the next section.

2. Compute matrix and right hand side contributions to the full matrix for the sides in this
group.

Ag =
∑
s

As, bg =
∑
s

bs (5)

3. Determine the interior and boundary degrees of freedom of the group.(
Ag,ii Ag,ib

Ag,bi Ag,bb

)(
xg,i

xg,b

)
=

(
yg,i

yg,b

)
, (6)

where i stands for the “interior” unknowns that are eliminated, and b corresponds to the
“boundary” unknowns.

4. The global matrix element contributions for the interior unknowns are completely con-
tained in this group sub-matrix. We can then eliminate them from the group matrix, and
calculate their influence on the boundary unknowns, which are coupled to other groups.
The reduced group matrices and right hand sides are computed using a Schur complement,
and summing them into the global matrix using

Sg = Ag,bb −Ag,biA
−1
g,iiAg,ib, (7)

yg = yg,b −Ag,biA
−1
g,iiyg,i, (8)

S =
∑
g

Sg, and y =
∑
g

yg. (9)

The inversion of Ag,ii is a direct inversion, but is computationally inexpensive since it is
usually less than a 6× 6 matrix, and dense linear algebra of this form is very efficient on
modern compute cores.

5. Solve the reduced global linear system for all the coupled boundary unknowns from the
groups,

Sxb = y. (10)

6. Locally compute the solution for the interior edges, finding the values of the unknowns
eliminated from the global matrix, using

xg,i = A−1
g,ii (bg,i −Ag,ibxg,b) . (11)
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.

(a) Full triangulated mesh

.

(b) Reduced elements (yel-
low) and interior unknowns
(red) identified

.

(c) Remaining (reduced) ele-
ments and degrees of freedom
(blue)

Figure 2: In RZ the full triangular grid has edge degrees of freedom. The reduced elements are
simply the quadrilateral elements. The final reduced mesh has the same number of degrees of
freedom and sparsity pattern as the original quadrilateral grid.

It is important to note that because Aii is a block-diagonal sparse matrix, the final matrix S
is also sparse, and easy to assemble in an zone by zone manner, much like if we assembled A
instead.

The output of the algorithm is an induced finite element discretization on the reduced grid with
elements that are the groups, degrees of freedom xb, and element matrices {Sg}. We emphasize
that this provides a consistent way of introducing a finite element discretization on any set of
reduced elements, including geometries without a natural reference element. This is similar to
the Piecewise Linear finite elements [1, 11], but they assume certain averaging rules for the
eliminated unknowns, while in contrast we retain the unknowns eliminated from the global solve
as independent variables.

We use the hypre library [7] to perform the linear solve in Eq. 10. Both the original matrix and the
reduced matrix can have large null spaces (or near-null spaces) [4]. Specialized preconditioners,
such as BoomerAMG [6] and the Auxiliary-space Maxwell Solver (AMS) [8], are needed to get
good performance from the linear solvers.

2.2 Identifying Eliminated Edges

In 2D-XY coordinates, our edge unknowns are out of the plane of the mesh, and degenerate
into nodes. We form groups of sides that correspond to the original mesh zones. The interior
unknown is the node at the center of the zone. In axisymmetric RZ coordinates, we again
identify the zone-interior sides as the ones to group and the zone-interior edges as the ones
to eliminate, as show in Figure 2. This leads to a reduced matrix S that is the same size as
the standard quad discretization and has the same sparsity pattern, but it has different matrix
elements.

In three dimensions, choosing the sides that form a mesh-zone is not ideal. The number of
nonzeros in the reduced matrix is approximately 2.5 times the number of nonzeros as the full
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. .

Figure 3: Hexahedral (left) and octahedral (right) reduced elements in 3D. The interior degrees
of freedom, which will be eliminated, are highlighted in red. The remaining reduced degrees of
freedom are colored in blue.

matrix. It is better to group the sides that touch the faces of the mesh zones, and to eliminate
the edges that correspond to the interior of the set of sides that touch that face, as shown in
Figure 3.

If we consider an infinite quadrilateral or hexahedral mesh, we can estimate the size of the
original matrix A and the reduced matrix for XY, RZ, and XYZ geometries as a function of the
number of zones in Table I. Again, note that for the 3D case of eliminating the hexahedral zone
interior edges the number of nonzeros in the reduced matrix is, in fact, larger than the original
matrix. This increases the run time instead of reducing it.

Table I: Asymptotic estimates for the number of rows, nrows, and non-zeros, nnz, in the original
and reduced matrices in each geometry, where Nz is the number of zones. In 3D, two different
eliminations are shown for the hexahedral-zone interior, SH , and the face-based octahedron, SO.

matrix nrows (reduction) nnz (reduction)

AXY 2 Nz 14 Nz

SXY Nz (×2) 9 Nz (×1.6)

ARZ 6 Nz 30 Nz

SRZ 2 Nz (×3) 14 Nz (×2.1)

A 29 Nz 461 Nz

SH 15 Nz (×1.9) 1107 Nz (×0.4)

SO 11 Nz (×2.6) 335 Nz (×1.4)

3. RESULTS

We now turn our attention to testing the speed and robustness of the proposed algorithm on
two test problems. In the following experiments we use the Conjugate Gradient (CG) Krylov
solver with the BoomerAMG and AMS preconditioners from the hypre library applied in the XY
and RZ/3D cases, respectively. The tests were run on the multi-core cluster Hera at Lawrence
Livermore National Laboratory (LLNL).
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Figure 4: The Box problem is a simple test problem that we use to test the effects of varying
solver parameters, material properties, and aspect ratios. The mesh, with sub-zones, is shown
with a high conductivity region shown in red (σc = 1) and a varying low conductivity shown in
blue (0 ≤ σnc ≤ 1).

3.1 The Box Problem

We start with a simple diffusion problem posed on a structured box in 3D, see Figure 4, with
the XY and RZ cases corresponding to the front and the top sides, respectively. The box is split
in two parts, with the conductivity σ varying between σc = 1 in the material half of the domain
and 0 ≤ σnc ≤ 1 in the non-conducting (void) half. The mesh is initially uniform, but we stretch
it to test the dependence on the aspect ratio. For this problem, we take ∆t/µ = 10−3 and use
convergence tolerance of 10−10 in CG.

We explore the run-time behavior in XY with respect to increasing aspect ratio 1/ε in Table II.
We set σnc/σc = 0 and report the number of CG iterations (nit) as well as the combined time
spent in the solver setup and solution phases (tsolver). The remaining time, including the matrix
assembly as well as the elimination and the recovery of the internal degrees of freedom, is
denoted by (tassemble). For all of these quantities we present the data for the full and reduced
global matrix solve in the format “original/reduced”. Finally, we compute and report the total
run time speedup of the computational cycle due to the reduction.

From Table II we see that the AMG-CG solver performs better on the reduced problem, both in
terms of number of iterations and time. Even when the number of iterations is the same (ε = 1)
there is still a factor of 1.6 speedup (1.8 in the solver). The speedup factor is nearly constant
for all aspect ratios. Note also the interesting fact that, even with the extra work of inverting
the local Aii and the recovery of xi, the assemble time in Table II is always less for the reduced
problem. This is a trend in all of our results. We suspect this is due to the cost of moving data
from main memory to the processors. Each element in the global matrix is only used once per
solver iteration, while the matrix elements contained in Aii are used many times in the local
inversion process from the processor’s cache.

Next, we consider similar tests in the RZ case, where σnc/σc = 0 and we use the the pure void
solution procedure from [4]. In other words, we apply AMS directly to the Schur complement of
a singular matrix with a large kernel.

2011 International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011

6/10



Two-Step Magnetic Diffusion Solve

Table II: Comparison of overall solution performance for the Box problem in XY while varying
the aspect ratio 1/ε. The results are reported in the original/reduced format.

1/ε nit tassemble tsolver speedup

1 10/ 10 0.29/0.23 0.46/0.25 ×1.6

4 12/ 8 0.28/0.21 0.38/0.14 ×1.8

16 12/ 8 0.28/0.22 0.36/0.15 ×1.8

64 11/ 7 0.28/0.22 0.34/0.14 ×1.7

256 11/ 6 0.27/0.22 0.33/0.12 ×1.8

1024 11/ 7 0.28/0.23 0.33/0.15 ×1.6

4096 11/ 7 0.28/0.23 0.33/0.15 ×1.6

The timing results, presented in Table III, show that the convergence deteriorates due to van-
ishing coefficients close to the axis of rotation, but overall the reduced AMS solver significantly
outperforms the solver applied directly to A. In particular, for the problem with the worse
aspect ratio, we get more than a factor of 45 speedup in the reduced solver leading to more than
39 times total simulation speedup.

Table III: Comparison of overall solution performance for the Box problem in RZ and varying
aspect ratio ε. The results are reported in the original/reduced format.

1/ε nit tassemble tsolver speedup

1 10/10 1.48/0.84 13.5/3.91 ×3.2

4 10/ 8 1.77/0.75 13.7/3.00 ×4.1

16 28/ 7 1.80/0.80 32.4/2.89 ×9.2

64 84/ 7 1.49/0.75 69.5/2.51 ×21.7

256 216/14 1.57/0.76 194./4.43 ×37.6

1024 594/22 1.74/0.74 451./6.25 ×64.7

4096 694/21 0.94/0.75 252./5.61 ×39.8

Finally, we consider the Box problem tests in 3D. In Table IV we investigate both regular AMS
for conductivity jump of four orders of magnitude, as well as the robust AMS version for the
pure void case. We note that there is a little difference between these cases in terms of solver
performance (except that the pure void solver is a bit slower). This trend is typical for all
the experiments we have run. Looking at the iteration counts in Table IV, we see that the
convergence deteriorates significantly on stretched grids. There is a significant improvement due
to the reduction, with speedup factors between 2 and 4.

2011 International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011

7/10



T. A. Brunner and T. V. Kolev

Table IV: Comparison of overall solution times for the Box problem in 3D with varying aspect
ratio ε. The results for two different conductivity ratios are reported in the original/reduced
format.

1/ε nit tassemble tsolver speedup

σnc/σc = 10−4

1 9/ 8 6.58/5.04 40.3/17.3 ×2.1

2 9/ 8 7.34/5.14 47.6/16.1 ×2.6

4 16/ 9 7.10/5.07 67.6/16.5 ×3.5

8 29/ 15 7.71/5.15 111./23.8 ×4.1

16 49/ 26 7.40/5.15 178./37.1 ×4.4

32 79/ 42 8.15/5.11 262./55.1 ×4.5

64 121/ 66 7.83/4.95 372./85.1 ×4.2

128 180/107 6.66/5.23 546./138. ×3.8

σnc/σc = 0

1 9/ 8 6.30/5.39 53.8/25.1 ×2.0

2 9/ 8 5.88/5.32 51.8/23.4 ×2.0

4 16/ 9 6.15/5.26 72.6/24.8 ×2.6

8 29/ 15 5.95/5.23 117./32.5 ×3.3

16 50/ 26 6.41/5.30 190./54.3 ×3.3

32 79/ 42 6.32/5.31 283./79.2 ×3.4

64 122/ 66 6.02/5.29 440./122. ×3.5

128 177/103 6.60/5.30 657./187. ×3.4

3.2 Coaxial Conductors

Next we applied the matrix reduction to a problem that mocks up the conductivity variation
seen in Z-pinch simulations. The domain is a quarter of four concentric cylinders with different
conductivities σ = {10−2, 10−8, 10−2, 0} from the inside out. The mesh and an approximate
solution are shown in Figure 5. The XY and RZ cases correspond to the top and front sides of
the 3D domain. Note that the jumps in σ and the pure void outer region make this problem’s
(near-)null space very challenging, and AMS is required for its robust solution.

In this test, we perform a weak scalability test, increasing the mesh refinement by a factor of
two each step, and increasing the number of processors proportional to the total number of
elements in the problem. Our goal is not to show the full scalability of the methods but rather
to demonstrate their relative performance on large problems.

We report the number of processors used (np), the assembly time tassemble, the AMS setup time
tsetup, and the AMS-CG solve time tsolve as well as the total simulation speedup. The results for
all three geometries (XY, RZ, and 3D) are shown in Table V. Note that not only are the total
solve times reduced, but the matrix assembly time is also reduced. More work can be performed
locally with in-cache data before filling in the global-matrix data. Speedups were between 1.6
and 4.4, which is a considerable savings.
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Figure 5: An idealized test problem mocks up the conductivity jumps seen in Z-pinch simulations
with four regions of varying conductivity.

Table V: The matrix sizes, iteration counts, and timings for the Coaxial problem in all three
geometries (XY, RZ, and 3D) show that the benefits of the matrix reduction extend to more
realistic problems. The results are reported in the original/reduced format.

np tassemble tsetup tsolve speedup

XY results

1 0.13/0.11 0.07/0.03 0.21/0.08 ×1.8

4 0.14/0.13 0.09/0.05 0.23/0.09 ×1.6

16 0.15/0.12 0.12/0.08 0.36/0.16 ×1.7

64 0.21/0.14 0.35/0.19 0.79/0.29 ×2.1

RZ results

1 0.20/0.12 0.21/0.08 0.57/0.27 ×2.1

4 0.20/0.11 0.34/0.15 0.84/0.42 ×2.0

16 0.22/0.13 0.52/0.26 1.42/0.62 ×2.1

64 0.23/0.14 1.05/0.63 2.13/1.17 ×2.0

3D results

1 3.66/2.59 10.0/3.20 23.1/6.83 ×2.9

8 4.08/2.80 32.4/6.95 53.2/10.7 ×4.4

64 4.37/3.00 73.1/16.9 89.7/20.6 ×4.1

512 4.53/3.22 122./41.8 149./66.5 ×2.5
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4. CONCLUSIONS

To reduce the run time of a new magnetic diffusion package in KULL, we have developed a two-
step solution process that effectively trades more local work for less global work. This procedure
always speeds up the solution, usually by a factor of two, but sometimes by as much as a factor
of nearly 40. This speedup comes from both a savings on the global matrix size and reducing
iteration counts because the matrix properties have also improved.
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9. J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., vol. 35, pp. 315–341 (1980).

10. J. Rathkopf, D. Miller, J. Owen, L. Stuart, M. Zika, P. Eltgroth, N. Madsen, K. McCan-
dless, P. Nowak, M. Nemanic, N. Gentile, N. Keen, and T. Palmer. KULL: LLNL’s ASCI
inertial confinement fusion simulation code. In PHYSOR 2000, ANS International Topical
Meeting on the Advances in Reactor Physics and Mathematics and Computation into the
Next Millennium. American Nuclear Society, Pittsburgh, PA, 2000.

11. H. G. Stone and M. L. Adams. A piecewise linear finite element basis with application to
particle transport. In Nuclear Mathematical and Computational Sciences: A Century in
Review, a Century Anew. American Nuclear Society, Gatlinburg, TN, 2003.

2011 International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011

10/10


