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We describe an implementation of the benchmark ab initio electronic structure
full configuration interaction model on the Intel Touchstone Delta. Its performance
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1 Introduction

Full-configuration interaction (full-CI) provides the ezact solution of the electronic
Schrédinger equation within the initial algebraic approximation adopted by all main-
stream ab initio electronic structure methods and is the result that all other models
strive to approximate. The only errors present in a full-CI result derive from either
the underlying finite one-particle basis set or approximations in the non-relativistic,
Born-Oppenheimer Hamiltonian. The ability to compute full-CI wavefunctions thus
confers the ability to adjudicate between all approximate methods and, by compari-
son with experiment, permits assessment of deficiencies in the one-particle basis set
and the Hamiltonian approximations.

The full-CI problem scales approximately exponentially with the number of elec-
trons and is algorithmically expressed as the extraction of the lowest eigenvalue and
corresponding vector from a large sparse matrix. It is only in recent years that
new algorithms [1, 2, 3, 4, 5, 6] and the very largest computers have enabled full-
CI calculations to be performed on systems sufficiently large to provide meaningful
information. Full-CI results obtained since the advent of large-memory vector su-
percomputers [7, 8, 9, 10, 11, 12] have provided insights into the applicability and
convergence of many approximate methods and have led to a complete redesign of
the one-particle basis sets for high-accuracy computation [13, 14]. As a result of
these efforts, present-day high-accuracy calculations must always be documented by

evidence demonstrating convergence to the result obtained by full-CI.
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The need exists for further exact benchmarks on both energetics and properties,
p.a,rticula.rly on systems such as small metallic clusters which are problematic to
study using common approximate methods. There have bee;l abortive attempts at
performing much larger computations, but the computational resources available
(cpu, memory, disk-space and I/O bandwidth) have proven inadequate [15]. The
Touchstone Delta provides capabilities well surpassing at least some of these resource
limitations, and with aggressive algorithmic development can open up a new set of
systems for scrutiny at the full-CI level of theory. |

We describe below an implementation on the Touchstone Delta of the most effi-
cient full-CI algorithm known. This fully spin-adapted code is only just commencing
production, yet has already permitted interactive execution of calculations in only
minutes that would previously have taken days. A design emphasis on encapsulation
and data hiding have given rise to an object-oriented structure. This has lead to
valuable code reuse and. most significantly, a high level of portability. For instance,
an object implemented on the Delta as an asynchronously-accessed distributed data
structure has been implemented on our Alliant FX2800 with shared memory and
locks. This implementation is hidden from the main body of the application, which

remains the same in both environments.

1.1 The Intel Touchstone Delta Field Prototype

The Touchstone Delta [16] is 2 16x32 2-D mesh of Intel i860 [17] processors (40 Mhz).

On the edges of the mesh are 32 nodes (Intel 386 processors [17]) devoted to I/O
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and several service nodes responsible for networking and interactive access. Each
1860 processor has 16 Mbyte of local memory, of which about 13 Mbyte are avail-
able to applications. Processors communicate via explicit message passing with
the standard Intel library [18]. The peak communication speed is 25 Mbytes/s
but work-arounds to routing bﬁgs and flow control reduce this to approximately
7 Mbytes/s. Bypassing flow control increases the available bandwidth to approxi-
mately 14 Mbytes/s [19]. Hardware fixes, planned for May 1992, will eliminate the
routing-bugs and restore full hardware bandwidth. Communication latency is highly

sensitive to context and system load, with representative figures being 50-380us [19].

2 Full-CI theory and algorithm in brief

Previous large full-CI calculations have used a cpu and memory intensive determi-
nantal basis due to its computational simplicity {1, 3, 6, 4, 5]. In distinction, the
algorithm employed here (due to Duch [20]) utilizes a fully spin-adapted? basis and
achieves a reduction in both memory and cpu requirements.

The iterative diagonalization [21] proceeds via multiplication of a trial vector
(c) by the Hamiltonian matrix (H). In the following we consider in detail just the
expensive two-electron contribution to the matrix-vector product [20]. Factorization
of the Hamiltonian operator [2] in second-quantized form and projection onto the

N-2 electron subspace [4, 5] (labeled K below) permits the majority of floating-point

2Spin-adapted implying that full use is made of symmetries arising from the coupling of elec-

tronic spins.
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work for the matrix-vector product to be recast as a large matrix-matrix product.

Specifically, the two-electron contribution to the matrix-vector product () is written

[20] as

oy = ZH}?C,}
J
= Z <I|EiaEkb|I(> z <2k|]l> Z <I{|EaijllJ> CJy
Kik il J

= Z <I|E{aEkb|I(> z <‘ikljl> .Djl,]{
Kk il

= Y <I|EuEw|K> Eyx (1)
Kik

The dense matrix D is constructed through contraction of the CI vector with the
very sparse matrix elements of the unitary group operators Ejy [22]. The sums over
the orbital index pairs (ik and j!) are constrained to the upper triangle by exploiting
a special spin-coupling scheme [20]. The D matrix is then multiplied by the two-
electron integral matrix to form the matrix E. The scattering of E into the product
vector (o) proceeds as the reverse of the process by which D was constructed.

The N and N-2 electron functions are lexically addressed from a common graphi-
cal representation and this gives rise to several valuable properties. Notably, interac-
tions of neighboring intermediate states are likely to require the same CI coefficients,
or at least CI coefficients that are “close-by”. Only when the graphical representa-
tion of an intermediate state changes significantly will completely different segments
of the CI vector be addressed. These properties permit the CI vector to be imple-

mented efficiently as a distributed data structure, extended to paging from disk

(with caching) when required. By gathering only the unique CI coefficients that are
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required for a set of neighboring intermediate states, the number of references to
the CI vector is reduced, thereby increasing efficiency.

Let Ngr be the length of the full-CI expansion (typically 10?—10°), n the number
of electrons (where 16 is a practical upper limit), m the number of orbitals (10-100)
and, as is the case for most applications, assume that m > n. Then, ignoring use of
spatial symmetry, the following statements may be made about the work required

at each stage.

e Each CI coefficient contributes to approximately n2/2 elements of the inter-
"mediate matrix D, which is of dimension Ngrn?/2. The number of operations |
to form D is proportional to its dimension, with a prefactor that is larger in
a spin-adapted basis than with determinants. The same amount of work is

required to scatter E back into the result (o).

e The number of floating-point operations in the matrix multiplication forming
E is approximately Ngrn?m?/2 (for singlet states, also taking into account

the extra symmetry from the spin-coupling scheme mentioned above).

In practice, profiling a modest example on a single 1860 (Alliant FX2800), the
matrix multiplication (using DGEMM, achieving 35 Mflop) takes about the same
amount of time as all the rest of the computation, which is a mixture of integer

and floating-point work. This is not expected to change significantly for larger

calculations. DISCLAIMER
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3 Full-CI in parallel

Our objectives for this program were to:

e enable much larger full-CI benchmarks of chemically significant systems;

o perform efficiently on the Delta and be scalable to larger massively-parallel

machines;

e investigate the applicability of an object-oriented programming style to elec-

tronic structure codes, especially for the case of parallel machines;

e maximize portability of the program between serial or parallel shared-memory

and distributed-memory architectures; and

e incorporate our experiences in the design of the next generation of ab initio

correlated programs.

The next sections describe how we achieved some of these goals — the rest is still

in progress.

3.1 Work decomposition

The two-electron interaction described above dominates the computation and we
shall focus on this aspect. The one-electron interactions proceed in an analogous

fashion, but are much less significant.

(R
p
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The intermediate matrices D and E easily become too large to hold in available
memory and therefore must be constructed and processed in sections. This parti-
tioning serves as the foundation for th_e parallel algoritilm. A parallel task is specified
by a range of intermediate (K) states (and associated information) which specify a
unique block of D. This decomposition is precomputed (in parallel), typically re-
sulting in 2000-60000 blocks or tasks. The selection of the block size controlling the

partitioning of D forces a compromise between several important considerations.
o Task granularity and load balancing.
e Memory available per node (a typical block size is 200,000 doubles).

e Reduction in communication — the larger the block size, the greater the reuse

of data. The reuse is in the range 2-5 with typical block sizes.

3.2 Data decomposition

The largest data structures that must be retained are the CI trial (¢) and result
(o) vectors (including associated addressing information). These vectors are of
sufficient size that the sum of available memory for all processors must be utilized
in order to retain the vectors in memory. This necessitates the creation of a blocked
structure spanning the available processors. When even the aggregate memory is of
insufficient size, the access pattern described in Section 2 is expected to allow these
blocks to be paged efficiently from disk (this has yet to be tested). Both vectors

are similarly distributed between all nodes. The selection of the CI vector block
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size requires a compromise between the average message size, even distribution of
the communication load across all nodes, memory usage and the amount of caching
required for suc-ce'ssful paging from disk.

The object-oriented design and the desire for portability imply that the imple-
mentation details of the vectors be hidden, with the application only accessing the
“object” by its associated methods. The blocking of the CI vector is again per-
formed in parallel, reusing the same code which blocked the N — 2 (and N — 1)

intermediate states.

3.3 Implementation

Our goals here are to express the object-oriented design and use this to maintain
portability while mapping the objects efficiently onto the Delta. To maintain scal-
ability, and to enable very large computations to be performed, all significant data
structures and operations must be distributed. The program is implemented in C
with calls to the BLAS (levels 1 and 3) in numerically intensive sections. C was
chosen rather than C++4 because the latter is not yet as widely available or stan-
dardized, and to avoid the large learning curve associated with C+4. C permits
encapsulation and data hiding but does not support this with the static-type check-
ing, polymorphism, operator overloading and class inheritance available in C+4-+.
We focus now on the key object, the CI vector. This object must support
requests to gather/scatter sets of coefficients with appropriate mutual exclusion

and deadlock avoidance. A node cannot anticipate when another node will need
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access to the data it is holding. To handle such requests, asynchronous handlers
(using the N/X routine hrecv()) are established. In the case of tﬁe scatter operation,
mutual exclusion is enforced (using masktrap()) to render this operation effectively
atomic. Since it is also possible for a cycle of processors to request simultaneously
for a service to be performed (potentially resulting in deadlock), local handlers are
masked if the target remote node is of greater index than the local node [23].

In order to efficiently utilize all available processors dynamic load-balancing is

required for the following reasons.
e The time taken to perform tasks varies by at least a factor of two.

o There may exist temporary communication “hot-spots”. Randomization of the
tasks would effectively minimize this but would preclude an effective caching

algorithm for paging from disk.

e In a multiuser shared-memory environment, processes may be swapped out or
scheduled unfavorably. Dynamic load-balancing minimizes the impact of the

run-time environment.

Presently, dynamic load-balancing is supported by a shared counter (again imple-
mented with an hrecv() handler) that may be incremented by arbitrary amounts to
control granularity.

Communication time is minimized by fully exploiting the reuse of data within a
task and by use of N/X “force-types” which effectively double the available band-

width, bypassing normal flow-control [19, 24].
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3.4 Performance estimation

Assuming a uniform distribution of the CI vector across the P processors, the
amount of data that each node will both send and receive in using the distributed
¢ and o vectors is approximately (in double precision words) Ngrn?/aP, where a
reflects reuse of data.

The effective bandwidth per node for P processors communicating randomly on
a square mesh is S/+/P, where S is the link speed [24]. A model program performing
random communications via hrecv() and no computation demonstrated such séaling
with an aggregate bandwidth of 308 Mbytes/s on 512 nodes. This corresponds to
an effective link speed of $=13.6 Mbytes/s (using force-types and running the slow
“router-bug-fix” kernel).

The total communication time in seconds is then estimated as

8N01n2
aSVP

This assumes that latency is unimportant (i.e. large messages) and a relatively even

tcomm(P) = (2)

distribution of communications across the machine. The latter is established by
wrapping the CI vector several times around the machine.
Assuming an even work distribution, the time taken by useful computation per

node is approximately
IVC 1n2m2

PM (3)

tepu(P) =

where M is the effective computation rate (estimated as 20 Mflop/s). Thus, a crude

OIS A L ™ X /4 LA o P SR S M N M PR i Y= G L R K- T o A T g b e .
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estimate of the expected efficiency is

tcomm(1) + tepu(1)
P (tcomm(P) + tepu(P))
1+ m2aS/(8M)
VP + m2aS/(8M)

(4)

Thus, if m2aS/(8M) > /P good efficiency is expected. Substituting the repre-
sentative values m = 20, « = 3, S = 13 Mbytes/s, M = 20 MFLOP/s, we arrive

at
. 98.5
VP 4915

This crude estimate gives us some confidence that the program will perform well

()

on the available number of processors. A much more detailed performance model
is under development which will take into account exact operation counts, spatial
symmetry, latency, and empirical evidence of sparsity, communication patterns and

load balancing.

3.5 Delta specific modifications

Several hardware and software aspects make the Delta more challenging than other
environments and must be confronted for successful program development and effi-
cient execution.

The very limited bandwidth to disk is the single largest problem. The Davidson
diagonalization algorithm [21] expands the solution in the iterative subspace, and re-

quires storage and reprocessing of the trial vectors and corresponding matrix-vector
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products. This is a complete disaster on the Delta. Several major modifications

were made to significantly reduce, and for small cases completely eliminate, 1/0.

¢ Davidson’s algorithm [21] was modified to use an expansion space of just three
vectors and constant denominators formed from orbital energies. The matrix-
vector products no longer need to be stored on disk and the amount of I/O
is reduced by a factor of approximately three. Eight reads and three writes
of full vectors are now required for two Davidson updates. The price for this
I/0 reduction is doing three matrix-vector products for every two Davidson
updates. On 512 nodes it seems that a matrix-vector product is about as fast

as reading a vector from disk, so an advantage is realized.

¢ The current solution vector must be kept to full-precision, while the two up-
date vectors need only be retained to sufficient precision to avoid degrading
convergence [25]. In practice, the two update vectors are compressed from
arrays of doubles to arrays of bytes. The compression algorithm preserves the
symmetry between £z and thus maps small numbers to zero [25]. The I/O is

now reduced to 3.625 reads and 1.25 writes of a full vector every two updates.

e Small calculations (less than 50 million configurations) buffer all I/0O, the only

I/O operation being to write out the final solution.

o To address files greater than 23! — 1 bytes, an extended addressing mecha-
nism must be used. Preallocation of files also greatly speeds subsequent write

operations.
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The last three improvements required modification of only the implementation of
the CI vector — the application was unchanged.

The system-provided malloc()/free() dynamic memory-allocation routines have
great overhead associated with them, no error checking and no diagnostic or perfor-
mance tools. Much faster, more robust and functional equivalents were implemented
and were found essential in debugging and tuning this program in which efficient
memory usage is critical.

The compilers, while robust, still lack performance, especially when much logic or
indirection is used. The sparse matrix-vector product routines used to multiply the
CI vector by the unitary-group coupling coeflicients were coded in i860 assembler.
These now achieve 8 MFLOP/s on relatively small matrices and make full use of

the sparsity in both the matrices and the vector.

3.6 Performance statistics

We analyze the performance of three small examples to demonstrate the scalability
and general performance of the program, and then examine a larger problem that
is more representative of our target applications. The relevant dimensions are given
in Table 1, and the corresponding energies in Table 2. Figures 1 and 2 demonstrate
scaling for the two smaller examples which could be run on smaller submeshes.
Table 3 contains detailed timing statistics, including sustained computation rates.
The computation rates are evaluated as the number of operations spent in just 2-

electron matrix-multiply operation divided by the total global time taken to perform
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a matrix-vector product. The reported computation rates are thus rigorous lower
bounds to the true rates, which are estimated to be ui) to 50% greater. A more
detailed performance model and additional run-time statistics are required for more
accurate information. Table four summarizes the communication performed by each
calculation, including the total data transferred, the sustained communication rate
and the total number of message sent. Figures 3-6 provide a detailed analysis of the
communications performed in the smaller neon calculation on 144 nodes and are

discussed in that section.

3.6.1 The methyl radical

A full-CI calculation was performed on CHjz with the 1s core frozen as a canonical
MCSCF orbital, in a cc-pVDZ basis set [14] at a C; geometry representing a slight
displacement from equilibrium (rey = 1.07900A, in-plane Z HCH = 13_8.513°, out-
of-plane £ H-CH, = 19.436°). This is part of a sequence of calculations performed
to cietermine the full-CI harmonic vibrational frequencies to benchmark multirefer-
ence single and double excitation CI results [26]. This small problem demonstrated
reasonable scaling (Figure 1), and sustained in excess of 4.1 GFLOP/s on 512 pro-
cessors. The energy converged to six decimal places in'10 iterations of the modified

Davidson procedure.

]
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3.6.2 The neon atom in two basis sets

For comparison with previous results, to demonstrate program correctness and per-
formance, we reproduced the neon atom results of Olsen et al [15] in their 5s3p2d1f
and 6s4p3d basis sets. The previous energies were recovered to all reported fig-
ures, converging to six decimal places in eight iterations of the modified Davidson
procedure. We are presently only able to use D, symmetry, rather than the Do
symmetry used previously [6]. This implies that we are doing twice as much work.
Olsen et al [15] report a time of 6390s per matrix-vector product for the 6s4p3d
basis, on an IBM 3090 with a single vector unit. Since their algorithm [6] differs
from ours it is not meaningful to compare timings directly.

For the 6s4p3d problem our code sustained in excess of 2 GFLOP/s. This is less
than the CHzexample, as the use of additional spatial symmetry reduces the number
of orbitals in a symmetry block, which according to the simple performance model
should degrade performance. The size of integral blocks is also reduced (which
degrades the performance of the matrix operation) and decreases the number of
floating-point operations in the matrix multiplications.

The timings for the 5s3p2d1f basis on 144 processes exhibit an anomaly. The
second iteration took 46s longer than the average of all the other iterations, and
is responsible for the large variance reported in Table 3 and shown in Figure 2.
This is the only such occurrence out of many hundreds of iterations we have now
run and we have not yet had opportunity to repeat the computation to see if this

effect is reproducible. We have just instrumented the program with the Argonne
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performance analysis tools [27] with one objective being to provide a visual display
of events in this iteration.

A detailed analysis of interprocess communication in the Ne 5s3p2d1f example
running on 144 nodes is given .in Figures 3-6 for a single matrix-vector product.
Figure 3 displays the number of interrupts generated on each node in servicing the
distributed CI vector, while Figure 4 displays the actual amount of data sent. In
this example, the 509 blocks generated with a 50,000 word blocking of the CI vector
wrap around the machine approximately 3.5 times. This incomplete wrapping of the
CI vector is seen in Figures 3 and 4 with the shift downward of handler interrupts
apparent at node 76. The wide range of values in Figures 3 and 4 is accounted for by
the unequal wrapping and the existence of several small CI vector blocks resulting
from the parallel blocking scheme.

Figure 5 shows the number of requests each node made for remote CI vector coef-
ficients, and Figure 6 the corresponding volume of data. The well balanced requests
for data (compared with the handler interrupts and handler data traffic, Figures 3
and 4) results from the dynamic load balancing employed in the calculation. The
slight shift upward of both the remote note accesses and the remote data requested
also at node 76 is again explained with reference to the incomplete wrapping of the
CI vector. Those nodes with fewer Cl-vector blocks are able to process more of the
parallel tasks (resulting in a slight increase in data requests) simply due to the fact

that fewer handler interrupts must be serviced.
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3.6.3 Methane

Our largest calculation to date, is also the largest full-CI calculation successfully
completed. Methane (r = 1.085600A) in the same cc-pVDZ basis set [14] used for
CHj. The calculation was run in a Cs, subgroup of Ty, again with a frozen canonical
SCF core orbital. We are in the process of computing the full-CI equilibrium geom-
etry, harmonic vibrational frequencies and polarizabilities for methane in this basis
set: Combined with the CHj results and similar calculations on CH,, CH and the
carbon atom, we shall be able to provide full-CI results for the maiﬁ energetics and
properties of this entire sequence of molecules, which vary greatly in their electronic
structure. Six decimal places of the full-CI energy were recovered in eight iterations
of the Davidson process. This computation sustained in excess of 4.0 GFLOP/s if
I/0 is excluded from the timings. Including I/O time, the performance drops to

just 1.7 GFLOP/s.

4 Conclusions

We have an implementation of the full-CI method that scales well on the Intel
Touchstone Delta and have demonstrated its performance with several benchmark
calculations. The largest of these calculations (95 million CSF, 418 million determi-
nants) is the largest full-CI calculation completed to date. Our current capabilities
are already valuable in a making a new set of full-CI benchmarks with up to 250

million configurations routine. Straightforward improvements, which are underway,
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should enable benchmark calculations with up to 2,000 million configurations to be
performed on the Delta, albeit with significant effort. Ca,lcula.tions~ of such size are
needed to provide FCI benchmarks for highly-correlated systems in which size exten-
sive effects are substantial, such as metallic clusters,' and to benchmark high-order
response properties in appropriately large basis sets.

The emphasis on encapsulation and data hiding has paid off greatly, with demon-
strable improvements in portability, code reuse, productivity, and functionality. We
believe that this has significant implications for the design of many new programs in
computational chemistry, and for the languages and computer science that upcom-
ing computational scientists should be exposed to. The data hiding also emphasized
the fundamental distinction between local and nonlocal data. This has permitted
the use of a distributed-data model, avoiding use of explicit message passing at the
application level.

It must be recalled that the Touchstone Delta is a prototype. While it is po'ten-
tially a supercomputer applicable to a wide range of applications, it is constrained
to a much smaller class of applications by several major flaws. These include the
appallingly low 1/0 rate to disk, poorly designed system software, high message-
passing latency, low communication bandwidth, and low amount of memory per
node. Some of these issues are driven by cost (e.g. memory size) or technology
(e.g. memory, communication bandwidth). For the next generation of massively-
parallel machines to prove widely applicable vendors must address these issues very

aggressively.
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Figure 1: Timings for full-CI calculations on the methyl radical versus the reciprocal
of the number of processors used. Times and error bars are as reported and described
in Table 3. The annotations in parentheses give the number of processors and the

speed-up and efficiency relative to 144 nodes.

Figure 2: Timings for full-CI calculations on the neon atom in the 5s3p2d1f basis
versus the reciprocal of the number of processors used. Times and error bars are as
reported and described in Table 3. The annotations in parentheses give the number

of processors and the speed-up and efficiency relative to 144 nodes.

Figure 3: The number of interrupts generated on each node in servicing the dis-
tributed CI vector during one matrix-vector product of the Ne 5s3p2d1f calculation
on 144 nodes. The values for servicing the product (o) vector would be identical.

The horizontal line indicates the mean value.




Massively-parallel full-CI . . . 24

Figure 4: The amount of data sent (in units of double precision floating point
words) by each node in servicing the distributed CI vector during one matrix-vector
product of the Ne 5s3p2d1f calculation on 144 nodes. The amount of data received
in managing the product (o) vector would be identical. The horizontal line indicates

the mean value.

Figure 5: The number of remote requests for CI coefficients made by each node
during one matrix-vector product of the Ne 5s3p2d1f calculation on 144 nodes. The
values for scattering of the product (o) vector would be identical. The horizontal

line indicates the mean value.

Figure 6: The number of remote CI coefficients (in units of double precision floating
point words) gathered by each node during one matrix-vector product of the Ne
5s3p2d1f calculation on 144 nodes. The values for scattering of the product (o)

vector would be identical. The horizontal line indicates the mean value.
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Table 1: Dimensions (number of orbitals, electrons, configuration state functions

and corresponding determinants) and operation counts associated with the full-CI

calculations discussed in the text. The operation count is the measured number

of floating-point operations performed by the matrix-multiply in the two-electron

interaction.
Active  Active Symmetry No. of No. of Operation
System orbitals electrons CSF dets. count /10
CHj cc-pVDZ 28 7 Cs 14,966,406 33,540,030 1.51
Ne 5s3p2d1f 30 8 Day, 21,580,965 93,896,477 0.88
Ne 6s4p3d 32 8 Do, 36,835,620 161,650,624 1.74
CHy4 cc-pVDZ 33 8 Cav 94,930,032 418,639,400 8.96
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Table 2: Energies (in Hartree) associated with the full-CI calculations discussed

in the text. Note the the methyl radical full-CI was performed with an MCSCF

canonical frozen core orbital, while the SCF and SDCI numbers reported here used

an SCF canonical orbital.

System SCF SDCI Full-CI

CHj; cc-pVDZ | -39.558810 -39.706105  -39.714520
Ne 5s3p2d1f | -128.524013 -128.784244 -128.794567
Ne 6s4p3d -128.524432 -128.717361 -128.725161
CH, cc-pVDZ | -40.198638  -40.375067  -40.387319
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Table 3: Timing and perférmance statistics of the full-CI calculations discussed in
the text. The reported times (seconds) are computed as the arithmetic mean over
all matrix-vector products performed, with error bars given as the square root of
the variance in the times. The 1-electron and 2-electron times are local times from
process (or node) zero. The global time reflects the total (machine wide) time taken
to perform a matrix-vector product. The total time is the global time plus any time
in the Davidson algorithm, including I/O. Only the CHy calculation was unable
to buffer all I/O in memory. The GFLOP column reports a lower bound to the

computation rate in GFLOP/s computed from the operation count in Table 1 and

the global and total times, the latter being in parentheses.

System # nodes  l-elec. 2-elec global total+1/0 GFLOP
CH; cc-pVDZ 144 142408 83.6%0.9 100.44-0.4  102.8+£0.8  1.50 (1.47)
256 8.8+0.5 49.2+1.0 60.3+0.5 61.4+0.6  2.50 (2.46)
612 5.240.4  29.5£1.0 36.7+0.4 37.3+0.4  4.11 (4.05)
Ne 5s3p2d1f 144 25.84+1.0 118.74+10.9 149.0+11.2 151.5+11.3 0.59 (0.58)
256 156.7+0.7 68.2+3.4 91.2+1.1 92.8+1.4  0.96 (0.95)
512 8.5+1.0 35.9+£2.4 49.6+0.5 50.5£0.7 1.77 (1.74)
Ne 6s4p3d 256 24.940.9 112.842.2 142.1+1.4  144.741.8  1.23 (1.20)
512 14.5+1.0 58.8+£2.7 79.44+0.9 81.6+£1.2  2.19 (2.13)
CH,4 cc-pVDZ 512 34.6+1.9 184.543.5 226.5+2.4 520.0£223.4 3.96 (1.72)
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Table 4: Summary of message-passing activity during a single matrix-vector prod-
uct. The total data sent is the sum of all data sent by handlers for the CI and
product vectors. The number of messages sent is computed likewise, but excludes
the requests and acknowledgments in the protocol required to bypass normal flow
control. The communication rate is computed from the total data and the global

times in Table 3, and is thus an average rather than peak communication rate.

Number Total Data Communication Messages
System of Sent Rate Sent

Nodes (Mbyte) (Mbytes/s) (thousands)

Ne 5s3p2dif 144 8037 54 544
256 7842 86 279
512 7934 160 405
Ne 6s4p3d 256 12986 91 784
512 12580 158 527

CH4 cc-pVDZ 512 33659 149 4188
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