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Transverse Tails and Higher Order Moments®

W.

Stanford Lincar Accelerator Cealer, Stanford

The tails that may be engendered in a beam’s transverse
phase space distribution by, e.g., intrabunch wakefields
and noulinear magnetic ficlds, are an important diagnos-
tic and object of tuning in linear colliders. \Wire scanners
or phosphorescent screen monitors yield one dimensional
projected spatial profiles of such beams that are generically
asymmetric around their centroids, and therefore require
characterization by the third moment <1'3> in addition to
the conventional mean-square or sccond moment. A set
of measurements spread over sufficient phase advance then
allows the complete set (%), (x2?), (2'*), and (2%2')
to be deduced--the natural extension of the well-kuown
‘emittance measurement” treatinent of second moments
The four third moments may be usefully decomposed into
parts rotating in phase space at the J-tron frequency and
at its third harmonic, each specified by a phase-advance-
mvariant amplitude and a phase. They provide a frame-
work for the analysis and tuning of transverse wakefield
tails.

Third Moments

The totally symmectric tensor of third moments (z0,04)
(i = 1.....d, the nmmber of phase space dimensions)
evolves in a linear beamline [1] with transfer matrix ¢
according to

(J'iJ'J.l'k> hand ]\’1,‘/ H”' If“.r <J',‘/J‘J:J‘k/> ( 1 )
In normal coordinates for 2-dimensional phase space » =
Lo f1oY
:;i; < i ) J, dll(i
<J‘,1‘j1'k> -— (.'),,‘/('.)“"C)“.' (J'pJ'jf.l‘p}
where () i1s a 2 x 2 rotation matrix.

In two phase space dimensions (22, 2;) has 4-compounents,
vz,

3 L2 g3 U ‘
<.l>,<.l.l >,<.z. >,<‘11> (3)
Four skew (23) = (2%) /3% measurcinents are necessary
and sufficient to determine the four independent compo-
nents (2;2;24), at some reference point defined as heing
at phase advance Ay = 0

<J‘3> = cos?(Ay) <.1'3>“ + 3 cos(AY)sin® (Av) (J‘.l'l2>()

+ st (A9 () 4 3sin(Av) cos () (2Mr), (1)

| , .
=3 cost3AL) ((J"‘>“ -4 <-"J’J>(.)
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1 . “ i . ]
-3 sin(3Ay) ((='7), = 3 (+72"),))
3 -3 2
+ q cos(Ay) ((& >0 + (ra’ )())
3 3 »
+ ZS[I](A!/’) ((a' )0 + (o .'r'>“)
The second, Fourier series expression, shows that first and
third fg-tron harmonics enter.
The linear combinations
(2*) + (22'?) = rsin ¥ (6)
(1:'3> + <.i,‘2ir’> =TcosW¥ (7)
transform analogously to (r;), e, W — ¥ 4+ Ay along

the beamline and 7 > 0 is invariant, The complementary
linear combinations

() =3 (za’?) =

(') ~ 3 <J,'~’J.’> = rncosd

—~Ksind

(8)
(9)
rotate at three times the norimal phase advance, 1.6, & —
P + 3AY along the beamline, with & > 0 invariant.

There are no symplectic invariants (like emittance) for
odd-order moments, but there are useful phase-advance-
imvariants (cc., invariants with respect to the rotational
sub-group of the full symplectic group), analogous to
Ve _ : : :

51 <.u'T> = ¢, the matched-equivalent emittance. ‘They
are in correspondence with the irreducible representations

of the rotation group SO(2) contained in the moments ten-
SOr.

The components can then be parameterized

. 3 1
(\.r") = 37 v — Ercsinfb (10)
. Bt l . ] .
{2’y = -1—r51n\11+—1f.'sm‘1> (11)
'3 : !
<J,‘ > = Jr(‘()s\ll + 1" cos P (12)
. 1 !
<.r“.1' > = KT('()S\I’ o cos (13)
(J"”) and <J73> are related by o 90° phase shift, and
. I d .
( A o a3 A0
(Jard > “(/L.(\J > (1
s 1d
(s*r )= - — (o™ (15)
} 4/(,'
analogous to the 2 inoment relation (o) = 14 (o¥) o
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Sampling the obscrvable Asymmetrie Gaussian-like Funetion
<1,‘1> . A simple and useful beam profile fitting funetion can be

= Srsin(Av 4 W) — %Hsin(fhll," 4 @) (16)  constructed hy allowing the width of a4 Gaussian Tunetion

By o . . .

FE to be different on the right from on the left
at at least 4 appropriate phases then makes possible the oL =yl = F), e = ol + 1) (18}
determination of the two invariants and two phases that ] ) o ,
are cquivalent to knowing the 1 independent moments at (-:71‘ + op)/2 = on ax for a Gyinmetric) QJI_HSSHHL and
A point. the mevmmetry (op — n',,)/(rr” + o) = s bounded:

—1 < <1 Fitting (Fig. ) to the five parameter function

A simple” asymnetric phase space tail is characterized as 0 lwlm;, a background offset )

having 4 third moments with the property that there is

some (rigid) pliase rotation that reduces 3 of them simul- P r— 0 !
taneously to zero. 'I'H s rotation can be chosen such that the fla)=A+ Besp 2 [ (1 +sgn(e — D) F) (1
non-vanishing momeni is <Jr’3>, and the associated beam- )

line phase rog_j;:n'(l('-(l as an <'I1<:(:t.|v0 pl‘mso at \\'hl(‘l} the skfzw vields <(I _ (J_>)3> —9. /2 [1 + (L 5) B2 RO,

or asymmetric tail originated in an impulse or kick. In in- Ll ™

variant terms a Csinple’ tail has £ = 7 and some phase

\ - C TV evorcrn Wl oo fd o
where & = W = 0. e d = 30 (modulo 27). Phenomenology of Transverse Wakefield Tails

In the case of wakefields the asyvmietry arises from the
fact that kicks are longitudinally differential, ce., Arl =

More  geaerally it is useful to identify a ‘principal
axis’ phase 17 at which <1""> is maximized, and hence

., ’ o , (¢*/F) [ AN, Wi(r — 1) (2r, — &), where the impulsive
<J'1'l'>,, = 0; the magnitude of the <J“5>1, and <J"1',>1: < poiut dipole wakefield W, (A7) depends on the longitudi-
/

\J"3>I, moments then measures how “simple’ the tail s, nal coordinate difference A7, N is the buneh population,
For a simple’ tail <J-’3>P =K=T. L the beam energy, and & the structure offset. A ‘simiple’
tail corresponds to a single impulsive exeitation or series
of imultiple excitations that are sufliciently weak that, be-
ing dominantly first order ar “two-particle” like, they obey
veetor addition in phiase space (Fig. 2a).

In 4-dimensional phase space there are 12 additional third
moments ((.1"“'y>, (wr'y), ctel), that are in principle acees-
sible through the ohservable

i

\/-‘ The exact relationship hetween third moments or tails and
15 { |7 . . ‘ .
<” > - + > (I7) rns emittance deponds on thie details of the meckanism
second and third moments are a priord independent. Tn
containing Fourier components for N, Ay, 2Ad0, £ []Il(' T”“l])ll th‘( ll"hllliq : ‘I‘l[',‘l,“\' l"‘} 8 I)“!“ ll‘[ \“\1( m("lli(l ,
Awy.and Ay £ 28, and corresponding to reducible w lll( : ]' I]‘. ‘m“ 1{1,‘ “”H,l; 1(()111 L ”l} o ﬂl”gl
g : Lo by, Abd COTresy ) al distance - — — 7). the matched-
representations of SO(2)x SO(2). Thus observations must  (Whnabdistance b, =11 (7 =) (T, 7). the matched
equivalent emittance ¢ [2] of a simple’ wakefield tail

<.r")_u> -+ <.x'y"’

be made at at least 12 phase-advance-incommensurate

Leamline locations for a complete 4-dimensional analysis 0200609\ 3 /e \ E
to be made. There are 5 4" moments in 2 phase space = ( o ) - (“%“Hié') (r*) (20)
dimensions, and 35 in 4 dimensions, DRIV k
N N EXP( (X D) a2/ (20 (C ().;I n(X-D) =E)) mea2 o~ ( ( {‘)( 1() > 1<1,/3> {3/1% (.)1)
<A es2/(2e(Cs V) -e = , )
T U A s A o (T0/67)1% - 1/5 3
é"’;” -1924}215&4:5: ; 4§§ 3ra oW E §.8544E-28-/-2.2808E+2%  The upper geometric factor corresponds to a Gaussian and
5?‘1‘%}"5}(7» 48”UicRon wiRe sIZE sﬁe?ﬁasﬁ - 18i%s the lower to a uniform (step) longitudinal distribution, and
) _ b - (r*) is the mean square bunch length.
2z 1.0
< For a prior emittance ¢, the net prompt emittance ¢ =
% .8 — — Vi + 206, growing still further to ¢ = ¢+ ¢ if filamenta-
it tion subsequently occurs. The significanee of relating the
MRS — emittance due to wakefields to the third moments is that
= it connects observalile quantitios - the third moment, un-
; 7 . B like the second, can be expected to be due entirely to the
3 ol e, transverse wakefield.
a hahd - “Mh”{ The Lorentz invariants ~ 372 (eix i) “3)2 .3)2.
» Lorentz invariants 97/~ (@0 0 and 57727043 %k are
.. v T . T - T " T usually most convenient to deal with, Tt is useful to note
~13.2 -22.8 -12.4 -12.8 -1.64

that for +3/* <J':3>P = 10Tt = ll)”(;1“1»/1r:111):‘/""

| :x>”m / <J,2>3/'-"

PYA) : ~\/ . . . . -
4312 <1r"5>1,/(7()"/') = 1 for an invariant emittance 5¢ =
FI1G.1 Anasymmetric Gaussian™ fit to SLC wire scanner data, 2,15 . 107% . and that ~¢ = 0.81 - 107" m for ¢
indicating a wakefield tail.
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I'1G. 2 Phase space distributions in beam centroid subtracted
normal coordinates in which the transverse centroids for definite
longitudinal ‘slices’ are indicated by dashed lines, and longitu-
dinal segments, cach containing 1/9 of the total beam charge,

are shown as circles corresponding to a trausverse emittance

vep = 3 - 109 .

(a) 53k = 4% = 231077
~o = 03]

(b) ‘,3/");; ~ ‘,3/'7’ = 18.
~ve=0.02-10""m.

(¢) ‘,3/"’71 = 4.8 107" w3/ “,3/_"’/\' =09
24107 m, and 3¢ = 2.3 107" m.

!113/:’. e 1.4 ]()"r’ m, and

107 %, and

1

tail. Fractional skew and emittance are in general related

by
Ala ) Ay 1208 )
0.39010 LRG0T <L Q@
(TO/67)2/3 . 4/5 (~¢)312 A\ C
(f —eu)/ea. € -y < ey
_ (22)

.)3"'/(0, >y

If the transverse oflsets relative to the hunch centroid of

significant. fractions of the charge hecome comparable to

the offset of the centroid relative to the center of cylindri-
cal svinmetry of the structure, the tail will deviate from
the “simple” form (Fig. 2b). Nevertheless for a (linearly)
inereasing point wakefield funetion, the tensor of third mo-
ments will appear *simple” in as much as the third moments
will be dominated by particles that get deflecved to large
phase space distances - far frony the bulk of the charge
and are thus insensitive to its precise distribution relative
to the center of the strueture, However, the cumulative
transverse phase advance differential that will arise in the
presence of magnetic lattice chromaticity if the bunch has
an energy spread correlated with jongitudinal position (as
in BNS damping [1]), creates significant departures from
the “simple” form (Fig.2¢). The third moments will be
Landan damped, although when taken about the beam
centroid they may manifest transient increases as the first
moment vector (r.e., the centroid) damps. The Fourier
component 7 > ~ (becoming 7 > &) is characteristic of
this process, since the x component oscillates and hence
damps at three times the rate for 7 (i.c.. three times the
A-tron frequency).

At the SLO we have recently implemented on-line anal-
ysis of third moments using the {it (19) to wire scanner
profiles, and equ. (16). The use of linac orbit bumps to
cancel waheficld excitation [5], [6] can he enharced hoth
i speced and efficacy by knowing the *tail” phase and am-
plitude ehranges resulting from test variations in the orbit,
Knowledge of the tail nature Csimple’ or not?) as impor-

tant in that bumps that fail to drive the tail closer toward

stimplicity ™ are too distant (downstream) from the source
to ramove 1t fully. Fiest efforts at automatiug the tuning
procedmre using digital feedback are in progress.

We thank Chiris Adolphsen, Tom Himel, and John Seeman
for useful discussions throughout the course of this work.

1. There are no wakeficld or chromaticity effects in the
beamline considered here, as is usually true to a good
approximation in a high encergy linac if it is sufficiently
short.

€ = % [<<J)i>r -+ <<J’)i>7} here. ()J. represents a

transverse phase space average, .o, (), and («")
are the longitudinal ‘slice” centroids, and ()

(8

, the longi-

tudinal beam average,
3. The emittance due to wakeficlds, or emittance if the
cmittance 1 the absence of wakelields is zero, ¢ =
) . 10
e gy ) ¥ @
(1) (1), = (@ @] < cmgen
cral the net prompt emittance ¢ = /e + 2¢¢ + 2,
and ¢ — ¢ under the influence of filamentation.
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