
International Conference on Fiftli

Generation Computer S_stems 1988
" Nov. 28- Dec. 2, 1988 Tokyo, Japan

LAZY EVALUATION OF FP PROGRAMS:

A DATA-FLOW APPROACH l

YI-He|u We| Jean-Luc Gaudlot

Computer Science Department Computer Research Institute
IBM Thomas J. Watson Research Center Department of Electrical Engineering - Systems

Yorktown Heights, New York 10598 University of Southern California
Los Angeles, California

ABSTRACT Several important results in the second approach
have beenobtained in previous work(Plngali and Arvtnd

This paper presents a lazy evaluation system for the list- 1985) (Amamiya and llasegawa 1984). The lazy graph
based functional language, Backus' FP in data-driven schemas and the graph properties for a stream language
environment. A superset language of FP, called DFP L have been studied extensively, ltowever, the efforts
(Demand-driven FP), Is introduced. FP eager programs have mainly been on the graph level analysis. Due to the
are transformed into DFP lazy programs which contain lackof a formal description of lazy programs, the precise
the notloml of demands. The data-driven execution of meaning of the lazy program=dealing with more general
DFP programs has the same effects of lazy evaluation, data-structures other than streams such as nested lists
DFP lazy programs have the property of always eval- Is not clear.
uatlng a sufficient and necelsaty result. The infinite
sequence generator hi used to demonstrate the eager- In this paper, we deal with the complex data struc-
laiy program transformation and the execution of the tures in the second approach. The study involves the
lazy programa, defining of the lazy version of languages, the eager-lazy

program transformation, and the lazy graph generation.
1 INTRODUCTION We use the Backus' FP (Backus 1978) as a source lan-

guage since it is a nested-list based language with a
Lazy evaluation and eager evaluation are two method8 simple syntax and semantics. The methodology devel-
for the execution of functional programs (Vegdahl 1984). oped here will be applicable to the development of lazy
The execution in lazy evaluation Is driven by the need evaluation systems in data-driven environment for the
for function values (call by need). This has also been other first order functional languages.
termed demand-driven. On the other hand, the exe- In section 2, a basic FP system la briefly reviewed.
cution in eager evaluation hi driven by the availability In sect!on 31 the lazy counterpart of FP, DFP (Demand-
of the function arguments (ca// by ualuc). It hi often drivenFP)-and the eager-lazy (FP-DFP)program trans-
termed data-driven and has spurred the development of formation are defined. In section 4, an example of pro-
several data-flow architecture models (Veen 1088). Lazy gram transformation and execution is given. In section
evaluation can handle unbound data structures such as 5, the lazy graph schemas and an example of lazy graph
infinite lists and makes interactive input/output pos- generation are described. Conclusions are made in sec-
slble (Johnson 1984)(Friedman and Wise 1976). Be- tion 6.
sides, it may support a better executio!l efficiency since
only the necessary computation hi performed in the ex-
ecution. These characterhitica ire not shared by eager 2 FP PRELIMINARY
evaluation,

An FP system has: i) a set of objects Or_,, 2) a set
LMy evaluation can be implemented by two meth- of primitive functions, and 3) a set of functional forms.

ods: (a) The normal order rt,duction treats a program as Every FP function is monadic (requires one object). An
a syntactic object. The execution is a sequence of "nor- FP function maps an object into an object. The function
real order" rewrite processes to the program that suc- application of a function j"to an object in Ol,i,, denoted
cessively replacel the outermost functions by the rune- by f : x, is the basic operation.tion definitions at each step of execution until the re-
suit value hi obtained (Kennaway and Sleep 1984); (b) A, ObJectsI The set of objects hi defined recurslvely
The data-flow execution with demand.driven semantics with a given set A of atoms: (1) All atoms, the .L (an
treats a program as a data-flow graph with backward undefined object), and the empty sequence <> are oh-

.demand arcs as well as forward data arcs at function jects; (2) < xi,...,x, > Is an object provided that
nodes. The execution relies on both demand and data zi (for all i = 1,..,,n) is an object. If any zi = .L,
propagations through function nodes on thhi < xl,..., x, >= .L.
mixed demand/data-flow graph (the lazy graph). With B. Primitive functions: Either the function input or
demand propagations, the effects of the evaluation "by the function value is a single object. Every primitive
need of the function valuemhi obtained, function is bottom preserving. That is jr : J. = J_.

IThil mntlrhd hi bllld upon work lupportld hi pixt by thl U.8. Object reformat functions:

Depittnlent d F,airllY undex Grilit No: DE-FG05-II7ER25045 {apndl, apndr, trans, reverse, toil, rotr} (_]'_l,,,

t't i L!%< .,

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-

" fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

apmff : z -= x =< zz, <>>-*< xz >; ject set for the total object < 1,2 >. The partial objects
x =< zt, < lh_... ,_. >>_< xt,yz,... ,_. >; .k < I,_ > and < _,2 > contain different partlal informa-

reverse : z _ z =<>--*<); tion of < 1,2 >. A single e denotes the totally uneval-
x =< zz,... ,z, >-4< z,,... ,zz >; ± uated< 1,2 >. The .i. below c is the undelined object

Select functions: {n, nr, tl, tlr} that may represents the erroneous condition, namely the
n : x _ x =< xs,..., zm > &m >_ n > 1 _ x,; .L undefined computation. Note that • is different from the
tl : x ._ x -< xi >--*<>; empty sequence <> (or _b)in FP where e is a notation

z -< zi,... ,x, > &n > 2 4< x_,.., x, >; ± representing tile unevaluated object which could be any
• - ' data object.

Broadcast functions: {distltdistr}

distlz=<:x = x =< zl, < > >--* <>;>> <_> /_/__ < 1,2>zl,< 1/1,.. • ,1/. / \ _/__

"-_<< zt,pi >,...,< x,,l/n >> < ,_,., > <,_/___._,,, >Arithmet|c t Log|c, Pred|cate, and other func-
tions: _ ' '... I J

{+, -, X, +, gt, It., and, or, not, eq, atom, null,
length, id} (,) (b)

+ : x _ x =< zt,xz > & zt,x2 are numbers
-* zt + x:; ± Figure I: (a) Partially ordered set for < 1,2 >; and (b)

id: z =- x The object function for < 1,2 >.

C. Functional forms: Functional form is the mech-
If a function /" with an argument < 1,2 > evai-anism for combining known functions to obtain more

complex functions, uates to a value < 2, 4 > in a data-driven fashion, the
Composition:(] o g) : z _-. f : (g : z) function value could however be partially requested and

Construction:ill,,.., _f.] : z -=< fl : z,..., j'..: z > evaluated in a demand.driven (lazy) fashion. When only
Condltionah(p ---, jr; g]: x -: (p : z) = T _ ?. x; the second element of the function value is of interest,

(p : x) = F ---, g : x; ± a demand on the partial object could initiate a partial
Apply-to-alh object evaluation and cause the production of partial

af :x_ x =<>--*<>; object < ¢,4 > instead of the entire < 2,4 >. The
z =< xl,... ,x. >-_< j" : zl,..., j' : z. >; ± portion(s) of the program which do not contribute to

Insert: the computation of this partial object are deemed not

/[: x _- x =< xt >--* xt; necessary to the program and should not be evaluated.
z =< xl,... ,x, > & n >_2 Furthermore, only the second element of function at-

-* ? :< zt,[[:< x_,... ,x, >>;.L gument must be requested by a demand to the parent
function if the first element Is irrelevant to the compu-Constant:]/: z - x = .L _ .L;y
tatlon,

8 DFP: DEMAND-DRIVEN FP The addition of the '_' atom to the language en-
ables the formalization of the demand-driven execution
of FP programs. This formalism is defined through a

The principle of lazy evaluation is: only the _neces- superset language of FP, Demand-driven FP (DFP). An
sary and sufficient' arguments be requested and used eager-lazy program transformation will create demand-
to compute only the _neceamary and sufficient' values in annotated DFP lazy programs from FP programs. This
response to the request of the consumer. Since every DFP program could be executed directly by a data-
function In an FP system is monadic,'elth_r the func-
tion argument or the function value k a single object, driven interpreter for DFP.
In order to follow the principles of lazy evaluation, func- In addition to partial objects, the DFP object do-
tlons in FP should be allowed to be 'non-strict' and the m.a!n has a set of demand objects with which the 'de-
function argument and value objects should be able to mand to the partial object' can be represented. The Set
carry a partial information. This partial information of DFP primitive functions include data functions (FP
would be "nece_ary and sufficient' for the proper seal- primitives) and demand/unctions. A demand function
uatlon of the program, This leads to semantics for the determines the demand propagation for the correBpond-
partial request and production of function values, lng FP primitive function. A demand function takes a

An extension of the language is required to support demand object and evaluates to a demand object of a
these operational semantics. The domain of objects in proper form. A data function takes a data object and
the original FP systems have to be extended to include evaluates to a data object, An object function is a func-tion that takes a demand object and evaluates to a data
,an extra atom c in the set A of atoms. An ¢ represents object. A DFP lazy program represents an object rune-
an unknpwn object that has not yet been evaluated. The tlon. A object function is constructed by data functlonsD
extended object domain will then contain sequences in demand functions, and object functions. The FP-DFP
which • occurred In one or more places. These sequence transformation rules for eager-lazy program transforms-
objects are partial objects, The sequence objects which tion define the DFP function forms for FP primitive
contain no _ atom are total objects. Each total object, functions, and various FP functional forms.
an original FP object, and its associated partial objects
make up a partially ordered object set. An example is
shown in FIg. 1 which shows the partially ordered ob- 3.1 DFP objects

J

The set Oo of objects In DFP is the union of the set z =< 1,2 >, if demand d is total, 6, tile application
O. of data objects and of the set Od of demand objects, _: : d evaluates to total data object < 1,2 >. Otherwise,
Oz_ _- Os U On, where O, and Oat are recursively de- if demand d is partial, such as < e,6 >, _ : d evaluates

fined: Oe = {atoms, e) U (.L) U {< zt,...,z, > In E to partial data object < _, 2 >. If demand d is empty, ¢,
N,x_ E O, - (±},i = 1,... ,n}; and Oa = (6,¢) U (< _ : d evaluates to a totally unevaiuated object e.

dr,... ,da > In E N, d/E Od, i = 1,..., n} Where N is Definition: An FP data object z is transformed by
the set of natural numbers, operator p into a DFP object function _. This object

Objects in 04 are data objects (for examples: < function is defined by:
1,2 >,< 1,e >) The data objects which contain no p(z):d--_:d-'-d=8-,z;d=c_c;

atom are total data objects (e.g. < 1,2 >), other- d =< dt,...,dn > &z =< zt,...,z, >
wise they are partial data objects (e.g, < 1,_ >). Ob- -*< zt :dt,...,x'n :d, >;
ects In O_ are demand objects (for example: < 6, • >) 3.
' Let 06 = {6} U (< dt,...,d, > in E N,d_ E A demand object matcha with a data object when the

O_,i = i,...,n) and O, = {e} U {< dt,...,d, > in E demand object is: 1) a total demand or an empty de-
N,d_ E O,,i = 1,... ,n} The demand objects in O_ are mend, or 2) of the same hngth as the data object and
called total demand objects(for examples: 6, < 6, 6 >). every component demand object matches with a corre-
The demand objects in O, are empty demand objects sponding component data object. If a object function Is
(for examples: ¢, < ¢,e >). The demand objects in applied to a mismatched demand, it evaluates to a 1.
Od-O_-O, are partlal demand objects (e.g. < 6,e >). For examples, If z =< 1,2 >, i'::6---< 1,2> (matched
d E O6 is replaceable by 6 (for example: < 6,6 >--, 6. demand), _ :< _,6 >=< ¢,2 > (matched demand), and
Therefore, 6 may represent any total demand object. _ :< 6,6,e >= .L (mismatched demand, since the de-
81mllarly, any d in O, Is replaceable by c and thus c mand object has three elements while the data object
may represent any empty demand object. In _ has only two elements 1 and 2).

For notational convenience, d E O_, < d" > denotes B. Mask function:/O, x Od -, O,] This function is

< _ > and < d+ > denotes < d,... >. Where m used together with broadcast functions, such as dlstl
and dinar, to remove extraneous duplicated data (refer_t nt

Is an undetermined natural number. For examples: to FP-DFP transformation for di_tl and di_tr in the
1... 6s >=< 8,/_,8 > following subsection). It is defined by:
2. < e,&s,e + >=< e, 5, 6, e, . . . > ma_k :< z,d >= d =/_ -* z;d = ¢-, ¢;

The demand object in the first example represents a z =< Zh... ,za > &d =< all,... ,d. >
demand vector for a triplet of data where all three data -*< ma_k :< zt,dl >,... ,mask :< z,,d, >>;
elements are requested. In the third example, only the ±

2nd, and ard, elements of a list of indefinite length are Examples:
requested. 1. mask :<< 1,2,¢ >, < _,6,¢ >>=< _,2,_" >

3.2 DFP primitive functions 2. mask :<< 1,2,3 >, < _,6,6 >>=< ¢,2,3 >
C. Demand Functions [O_ _ O_]: A demand fuse-

The set Po of primitive functions in DFP is the union alan corresponding to a data function evaluates the de-
of: mend propagation for tile data function. For example, a

1. The set J_, Pd C[Od -* O_], of demand [unctions; total demand 5 to the scalar value of function + is con-
2. The object/unction _, _ _ [O_ -, O_]; verted into a demand < 6,/_ >. This demand is made
3. A mask/unction, mask E [O, x O_ -, O,]; and to a two-element data object for function _-.
4. The set P,, P, C [O, --* O0], of data/unctions

(primitive functions In FP). 1. Arithmetic, Predicate, and Logic demand
All functions / in DFP verify the bottom.preserving functions: For all/,/ _ {+,-,x,+,gt,le,
property. The extended definitions of some of FP prim- eq, and, or, not, eqO, id, length, atom, null)
Rive functions will aiso be described. /_ : d -= d = 6 _ 6;
A. Object function {0_ _ O,]: An object function d = • -* e;.L
defines a one-to-one mapping from a set of demand ob- Since the function value of / is an atom, a de-
jects Into a set of data objects. For example, an FP mand object to J_ should be either 6 or _. Aa
object z _< 1,2 > Is transformed into the DFP object identity function id may serve as a weak definition
function z which defines a set of mappings (Fig. lb): of/_. The difference between/_ and id Is that id

((6 --,< 1,2 >),(< 6,_ >-_< 1,e >), does not detect the mismatched demand object.
(< ¢,6 >--*< ¢,2 >), (_ -, ¢)) This weak definition is useful since id Is removable

The first 6 in the first mapping Is Interpreted as < when it is either pro-composed or poet-composed
6,6 >. The range set is the partially ordered data ob. with any other function. While the detection for
]ect set for < 1,2 >, while the domain set is the corre- mismatched demands can be postponed.

sponding partially ordered demand object set. When 2. Reformat demand functions:
an object function is applied to a demand object, a
unique data object will be mapped. The object func- The functions apndl, truss, foal, reverse, etc. are
tlon is therefore considered as a producer of data oh- ' used to rearrange tile object elements. The same
jeers driven by demand objects. For example, assuming as that of the nonstrict constructor cons In LISP,reformat functions should not force the evaluation

tin the following,d (with or without subscripts) denotes s de- of their arguments. Reformat demand functions
ratnd variable, while ffidenotu data variable, should rearrange object ehmettts in a reverse man-

I i

ner to reflect the proper locations of the requested 3. tl :d _ d = 6 _ 5; d -- • --, e;
elements, d =< dl,.,. ,d. > &r_> 2 -,< d2,... ,d. >; .L
apndl d :d _ d = 6 --* 6;d "=• --*e;

d =< dtsdz,...sd, >_< dr,< dz,...,dn >>; 4. For any FP function f, f :¢ =- e
2. 5. apnd/:< z,_ >=< x,f + >

trans d =. trans

reverse d E reverse 3.3 FP-DFP Transformations
rotld _ rotr

Example: The transformation of FP objects to DFP object func-
apndl d :< 6, e, 6 >-< 6s< e, 6 >> tions is defined by transformation operator p, p : OFp --*
(Note that apnd/:< a,< e,b >>=< ase, b >,) [On --40, I. Each FP object can be transformed into a

bFP object function. The FP object to which the FP
3. Select demand functions: Select functions, such function application / : z evaluates is also transformedas n• tl, etc., are nonstrlct since they do not make

to its corresponding DFP object function p(/'I pro-use of certain portions of the input object. They object function represents, In fact, the DFPaxe similar to the selectors car and cdr in LISP.
Select demand functions should create partial de- gram that corresponds to / : x in FP. When this DFPprogram has a total/partlal demand object as its input,
sands to request required partial objects. It generates a total/partlal data object. Note that the

total data object Is / : x. p is defined as follows:
nd:d=df_f;d E O_--*<_"-tsd, e+>;±
tl '4: d -- d = 6 --,< e,6 + >; • For x 60_./_, p(z) _ $:. p maps an FP object x

d = ¢ --*e; Into DFP object function _. (Refer to the example
d --< dr,,.. ,d. >-0< e, dl,... ,dn >; of the object function for < 1,2 > in section 3,2.)
±

• • For an FP function /, its argument object z E
O.,,.,., and function application f : z (Fig, 2a),

Examples: p([:z) = ([o p(z))" = (/o _)* (Fig. 2b).(a) ._:6 =< c"-',6,_+ >
(b) nd :< 6,_ >=< _.-t < 6,_ >,c + > The expressions marked with asterisks are recur-
(c) rid: 6 =< c,6 + > slvely defined as follows:
(d) tl_:< 6,_ >=< e,6,c >

In the tint examples a demand function for the se- (/o ._)'
lector n converts a total demand 6 into a demand / =/t o/z _ (/t o (/I o _)')';
object of undetermined length with a 6 at the nth / = (/l _/z;.ts) _ ((/_ o _)' --, (/z o _)*; (Is o _)');
element and es elsewhere. / = i/t,...,/.] -* [(/t o _)' o 1,..., (/'. o _)' o n];

4. Broadcast demand functions: distl and distr / = a/° --, ((almdl o {/' o l,af o tl]) o [)';
e_r__cpnsldereda_ datt broadcast funct|on_ss:_.... / =//' -, ((/'o if,//°o t/J)o £)';
distl d : d =-d = 6 --* 6;d = c ---*_; / = 17 -, _;

dffi<d|,.,.,d.>-,apndlo[joinoal,a2]:d; f E (disti, di_tr)-,masko[(/oY:)*,idJ;
2- f E P, - {distl, distr} .-, f o _ o f'J;

di_tl d performs the reverse operation M the distl

does, However, the demand for the first element, {/, t}' • rout, I/, t,/,, ;_1
which Is the one to be copied, is the join of all
demands for the lndlvldua/coptes.

/.} • (/. t). "' "t_'.

Examples} L_[_] _ ['[_

(a) distl" :< 6,_,6 >=< 6,< 6,_,6 >>

(b) distl _ :<<< 6,_,_ >,6 >,<< _,_,6 >,6 > [__ '._s_ >=<< 6,¢,6 >,< 6,6,_ >>

Where the join function performs the union of _""_
all demands for copies of every subelement of the
demand object. It works like an bitwlse OR .per- /', ,
at[on on two sequences of the same length where (,} (_}
6 is a boolean True and _ is a boolean False. _ :
In the second example, < _,¢,_> Is the join of /_'.- (_;,_,_,-,} _ _J :

. < 6,¢,¢> and < _,_,6> i -
t

D. Extended definitions of FP functions: The de/'- /,{_'-_',_',_,}
lnltion of several data functions Is extended to allow (_) id}

handling demand objects. For examples: Figure 2: (a) FP function application / : x; (b)
I. _rans sad reverse. DFP function for / : z; (c) Transformation for

2. n :d _ d = 6 ---,6;d = ¢ .--*_.; f _ P, - {distl, distr}:i and (d) Transformation for
d=< dr,,.- ,dm > & m >. n > I -0 dn;2- f _ {distl, distr},

y; '

The FP function applicatlonJ : z In Fig. 2a Is trans- input demand. TIle component demands to the
formed into (j' o _)* as shown in Fig. 2b in which the object functions of j.t : z and j.z : z will result in
solid lines are data paths and the dashed lines are de- the production of required function values.
mend paths, The transformation rules involving expres-
alone marked with an asterisk are detcrmlned according 5. Conditional/orm, / = ft "* fs; j's: In Fig, 5a, tile
to tile following observations: boolean value of predicate function j'l determines

either branch function j,z or fs to execute• This
branch function value will tilen become the out-

I. Primitive functions except distl and dlstr: As put of the conditional form• Accordingly, in Fig,
shown in Fig. 2% the DFP program of j' ' z 5b, the Input demand should first requests the
Is a composition of demand function fd object boolean value of the object function of j'z : z. The
function :_, and data function j'. The demand ob- boolean value then determines to which branch
Ject Is first converted by/4 into a proper demand object function tile input demand should be sent.
which requests the appropriate data object at the
object function. According to the demand, the 6. Applll-to.all/orm, j, = af': The apply-to.all form

object function produces e_ data object for data can be recurelvely redefined as. af =. apndl o[j, o
function f to produce the result. When f Is an l,aj; o tl]. The transformation simply make use
arithmetic or logic function, j.d can be replaced by of the transformation rules for primitive functions,
id, and id is removable In the function compoel- composition form, and construction form.
tlon, Therefore, the Input demand object can be
directly forwarded to the object function, l(/,,, t}' • t, (/,. I}, • _Ie.-----q

g
I

2. diatr and diatl: The transformation for the broad- ___ _ I/,, i]'cast functions can be observed in Fig, 2d, An ex-

ample will explain the reason why a mask function L_ I18needed: _]si,,cdi,,.:<,, <2,3>>=<< >__'
,< 1,3 >>,p(dlatl :< 1,< 2,3 >>) :< @@6,c > should produce a << 1,2 >,c >.
ltowever, p(di,lttl :< 1,< 2,3 >>) :< : :..... I..][.. J

= di_tl o i o diatl _ :< 6,¢ >
= distl o _ :< 6, < 6,e >> (,} (b}
= diatl :< 1,< 2,¢ >>
= << 1,2 >, < l,e >> Figure 3: Transformation for the compmltion form•

.Which is Incorlectplr|ce the second 'I'
Is not requested and should not be pro- (/, • (I, °t}'}. :d
duced.

Jl

I
The mask function in Fig. 2d Is used to remove i
the extra elements which are not requested. Tile r---i I(/,. tl'

triangle denotes the combining of the data object _
from j, o _ o j.d and the input demand, which is L____
Implicitly defined by the construction form. The :' TT,
result of the above example is corrected by the [._ I :
mask function: mask :<<< 1,2 >, < l,e_ >>, <
6,c >>=<< 1,2 >,_ > [I,.(l, ot'}'

.It's3. Compodtion lotto, j' = fl o J'l: From the defini-
tion of the transformation operator p, (,} (b)

p(j,loj,,:z)=e(j',:(I,
--=(flo P(fl :X!) Figure 4: Transformation for the construction form.(I,o(i, o • ((I, ?t)' -, (h *I)'_{I,°l]'}

In Fig. 3, object8 z, fs : z, and floj'a : z are | . , I............transformed into corresponding object functions.
Object function _: is activated by a demand from
block fs. Similarly, object function (j'1 el)' is actl- ' ' '
rated by a demand from block j'l. Object function
(fto (j'l o _)')' Is activated by an Input demand

' to this form. ["

4. Co.trusties/orm, j, = [j't,j'z]: in Fig. 4a, In- L ' , '

put data object z Is copied for both functions fl [' ,i [/and j'l and the two computed function values are ---,r-t
combined to form a single output object, In Fig, I(I,-. I,;I,} :. ;
4b, the input demand to the form will request a I,) (bj
two-element data object, Select functions I and _1
are used to obtain the component demands of the Figure 5: Transformation for the conditional form,

7. /_er| Jorm, / = //': Similarly, the Insert form gram is presented. The FP ISG Is not terminated in
can also be recurslvely redefined u: /f _ /' o data-drlven execution, The data-driven execution of the
[1,/j" o t/]. The transformation makes use of the DPF ISG program Is shown.
other transformation rules,

4.1 Square
8. Uonelant/orm, j' ffi p: The demand object re-

places the data object z as a trigger to p. The FP SQuare can be defined by: SQ =. × o lid, id[. The
data object which is not c will cause the produc- DFP SQ will be:
tlon of the constant object I/.

p(SQ :z)_ (SQ o _)* (Tit)
According to the transformation rules,the data-driven _- ((x o lid,id]) o _)* (SQ)

execution of any DFP function application will always = (x o ({,'d,;,_l o _)')' (TR)
evaluates to a data object with a necessary and #u_i. _ x o (lid, id]o _)* o x 4 (TR)
dent Information In respond to the Input demand. In =- x o (lid,id]o _)" (TR)other words, not only all information requested Js pro-
duced but also no information which is not requested = x o [(:d o _:)*o 1, lid o _)'o 2l (TR)
will be produced, This evaluation Is said to be least _ x o l_ o I,_ o 2] (R4,R6)
evaluation and the result produced Is a least solution, e x o lid, #d}o _ (RI0)
This least evaluation property holds at every point of -= SO o _: (SQ)
computation of DFP programs (Wel and Gaudlot 1988).

If the does not hold at every point of computation, extra where (TR), (SQ), and (RI) mean that the relations are
computation may be performed somewhere In the pro- according to transformation rules, the definition of SQ,
gram end the execution may not be terminated when and the rewrite rule R1 respectively. DFP SQ program
the extra computation Is unbound, contains no demand function.

4.2 Infinite Sequence Generator (ISG)

3.4 DEMAND REDUCTION Th,. lnflr.Re sequence generator (ISG) of the SQ ofInte-
gers can be defined in FP by: ISG -- apndlolSQ, ISGo

DFP programs contain demand ftmctiona for runtime addl}. DFP ISG becomes:
demand propagations. The purpose of demand propa-
gations ls to determine tim execution paths and the ap- #(tag : z) a (ISG o i)' (TR)
proprlate execution order that lead to a least solution, m{(a_d_olsQ, IsG oa_atl)ot)' [L_O)

J Since It does not directly contribute to the production • laFnd_ o (lSQ, ISG o add21 o t)')" (TR)
,,.r._ o(lSO,Isa oa,_xlo_)')• .pn,a, (To}

of the results, demand propagation ls considered as an m °pndl • i($O • t)' ° t, ((ISG • addl) ° t}" o 21 o almdl' (TR)

execution overhead. The demand propagations in many ma_d/• [$Q° t o l, ((IS# ° ._|) o t!': zIoalm_' (SQ}cases, for example in a network of axlthmetlc and logic m.pndJo[$Qo t o l, (180o (addlol)) olJoopnd/ (TR)functions, are Irrelevant to the program dynamic behav- ,, ar_dtolscioi ot,ffsa o(_dt° _• ,_l')}'. 31o._' fiR}
iors and therefore will always result in a same request • a_dl olgOoi • 1,(18a o(addtot))' o _1o.lmdJ' (RI,Re)pattern. A demand reduction process is to remove these

demand propagations at compile time to reduce the ex- _._ Execution of DFP ISGecutlon overhead.

The data-driven execution of DFP ISG ls shown. If
A few useful rewrite rules for removing 'obvious' un- = = 3 (therefore, _ : 6 = 3), the sequence ISG : 3 will

necessary demand functions from DPF programs are be < 9,16,25,36, >. Let d =< e,6,¢ + > to requestlisted below. '"

(RI). For/'dE Pd- {rid, Lid}, /doci .-, ¢1 the second element (which Is 16)of the sequence,
()R2, For/d E Pa, clo/': --. cl (!$aos)';<c,i, ct>
(R3}.nod -, c,
()R4 ' j' k an arithmetic, logic, or predicate =apnd_o[SQo t ol, (180 • (,,btl oi))' o ZIo.lmd/' :< s,_,c* >atm_ olSOoi o t,(/SOo(a_ro t))' oZI :<., < a,.+ >>

function, f_ --, id = ._m_ :<8Q ° i _,, lisa o (_z ol}}' :< _,,+ >>
(R_I, dod-, cl -._m,_ _<.,.,,m. o ISOo(a4_t. ,)o t,
(JR6, i o id -* _, id o _ -, _, (lsa o (.4_t o(.ddt • t}})'. Zlo.l_, x<S,¢* >>

(j' o _)* oid --, (j' o _)*,#d o (/o _)' --, (/o _)' (tsa. (.,u_..,u_. _}}.. _i:< s, < .. >>>

{as}, id o I_ _ I'_ = ._m_ :< .,._m,_ :<SO. _t oe; _,
., (R9). (_)' -. _ (_Sao(.Uxo.UXo_)).:,>> (._,x)= almdl:< t, oim_l:< 8Ooa_l : l,t >>

(RI0). /is an arithmetic/logic function. = .im_ ;< ,,,,_d_ :< 8O:i,_ >>
' / ol_ o I,_o _l "-'/ olid,idlo _ .._._ :<.,a_.__<to,,>>

- _;m_t_<¢,< Xe,_*">> (._e2)
- < I',III,I# >4 EXAMPLES OF TRANSFORMATION

Notes: (1) _ ,nay .'°present < _+ >; (2) According to
The treaeformation of an infinite sequence generator the definRloa of function apndl, the second e of the
(ISG) written In FP i_to lt_ corresponding DFP pro- argument object ofapnd/is a sequence object. Since the

, q,

length of thle SeCluenceis not known, the result sequence eter may be bounded to any DFP object functions in
will contain the first element followed by an uncertain addition to object functlon8 for FP objects,
number of unevaluated elements :ds

The In-line expansions of ISG is implemented by a ," ,_""!f' in/,, (1. d/_j, ,vT

higher order function call which will be explained in _
next section. According to f : c = _, without f /"// (/°_!

the

performlng an actual Invocatlon, function application ,_I//..:_/ _ _] ,(ISG o_(add1 o addl o _))' : _ Is directly replaced by _'_'f':."...... fua_ I

infinite sequence is computed and its value is returned,

The computation for the first element and the elements ', ,
following the second element axe not performed.

Data-flow graph schemas for DFP programs are pre- ',,
sented here. The construction of the DFP ISO data-flow ., ,
graph is given. Is) '. _ {b)

5,1 Higher Order Function Application Figures6: DFP graph schema for function applications.
J/T 4

A higher order function application may either take a I
function as Its input argument or produce a function cT d (/._/_),

as its output. From the composition form, every DFP {/o¢ : :
function p(/: z) contains a function call to the pax. "'" i i
ent object function _ to request a data object as its _ :
argument. The parent function would be dynamically : :

determined when FP function f Involvesrecursive deft- _ : [
nitlon as shown In ISG example, In order to handle this _7 i i
condition, the parent object function has to be param- : :
eterized. ._ : :

The most general function application (the Apply ', :
actor in Fig. 6) in DFP consists of applying a DFP :

nctlonal form G'/(for/) to a parent object function : :
and a demand object d. aI, O/_ (/odf?)', is a DFP : :

function with an unspecified parent object function, d/? : :
is the parameter to be bound to parent object function ,
argument j". The data-flow graphs of DFP programs _...........
may contain: {,} Ib)

1, Apply actor with all three input arcs: Functional Figure 7: DFP graph schemas for:(a) Primitive func-
form (]'o _?)* at C/uses f as a parent object tlons which are not distl or distr and (b) distl or distr.
function to create "anobject function (/'o/') '. Thk _n
object function then takes demand object d and
produces a data object as its output, /* {/'"¢_)')....}:Lr- -- "'"
tion application is performed.

3. Apply with only Cf and I' arcs: Functional form /',.._ J
(/o_?)* at CJ' uses j' as a parent object function
to create an object function (/o/°)' as its output.

Whend=c, therewlllbenoactuaifunctionap- _ _pl!catlon actually activated at the Apply. Instead, the
Apply actor simply produces an c as output. With this
definition, the removal of unnecessary computation is
'implemented, Figure 8: DFP graph schema for the composition form.

5.2 Graph Schemas l, / is a primitive FP /urtction: If [_ (distl,distr},
the graph for (/o d/?)' _ / o _? o j.d Is shown

According to the transformation ru!_, FP primitive in Fig. 7a. If f _ {distl, distr), the graph for
functions and functional forms correspond to certain (/o dj'?) _., .task o [/o d/? o/'_,id] Is shown in
DFP program structures, For generality, dr? Instead Fig. 7b. lhe liar actor Is to create an output
of i is used In the graphs to denote that the param- object < a,b > from two objects a and b.

_. I iea composition Form: / uft o/s. The graph The lazy evaluation of complex data structure func-
for (I o _?)' = (fi o (/s o _?)')' is shown in Fig. tlonal programs in data.driven environment is presented,
8. The first AppLy actor creates object function The basic FP system is used as a source language In
(h o d/?)' and sends it to the second Applv ac. the study. A l_zy version of FP, DFP (Demand-drlven
tot. The second ApplIt actor then creates object FP) is first defined by including the concepts of par-
function (/t o (/'s o d/?)')'. Ths object function tial data/demand objects. FP-DFP transformation k
takes demand object d and produces zn output used to convert FP eager progran_ into DFP lazy pro-
data object, grams with demand propagations. With DFP graph

3. / is a con4truction Form: / E i/t, fsl. The graph schemas, DFP lazy data-flow graphs can be generated
for (/o dj'?)* _ [(/t o d/?)' o l, (J'so d/?)' o 2j k from DFP lazy progran_s. The data-driven execution of
shown in Fig. 0a, The first and second elements these DFP data-flow graphs hM the same effects of lazy
of the demand object d are retrieved by selectors 1 evaluation. The methodologies presented are applicableand 2 to request respectively the function values of
/t and J's,Two branch objects are then combined to the development of lazy evaluation systems for other
into a single output object at the actor list. functional languages, t d

,...t.....
4. /is a condition_ Form: / _ /1 -* /z;/_. The ' i: _ [gra_hfor (/o_?)* __(fred/?)' * (f, od/?)';(/so Ctso._//td/?)' iS shown in Fig. 9b, The boolean object , T [

evaluatedby (/,odJ?)' 'ddetermines thebraxtch (_ ! _=L _.object function to which the demand object d should ' (_l,ut ,,v_)'(""_
be sent. Accordingly, the branch function will be {:so.t}. ,_ I r" "Y_" "/Invokedto produce output. : ! t_m9 "r"\

Any demand object token except VEPS to thk ,_l'-I.......... :

actor will trigger the production of a predefined ,"_',' i__["_'!""'--"_/_' ,:iI

c;/sttntproduced.token.If the demand Is an _, an _ will ': ': _ ' :' it t

J
i / s ii ! i -
: (L) (3 1/ : Figure 10: DFP ISG data-flow graph.
i ! REFERENCE

eager tad luy evtluttlona. N,w _,n_n_ion G'ompu//n#,

I ! _' [B_7EJ J. UtckuJt. Cta prosrajz,nln| be liberated from the Yon(Neumtan style? t functions!styletad Its t|Sebrt of pro-

, , 1978,

...... ""t" "- [OPSSI O. Cl_ck tad S.L. Psyton Jones. Strictnms tatlysl, • t
_.................... _ pr_tks/ approach. In Sprs'nger.Verlof:£N_$, pp. 35-49,(q _sl toss.

Figure 9: DFP graphschemas for: (a) The construction [rw?el D,P, Vrt,dm_ tad D.S. Wh*, Con should not*vsius_l_
formi and (b) The conditional form, arguments. Aulomala, 1,an_uef,, end Programmln_, pp.28T-254, 197S.

5.3 DFP ISG Graph Inw-I J.Y. Btlperu, j.H. Wlllltm_,J,L, Wlmmm, tadT,O, Win,
kh,', D_motttlontl stmtat|¢s tad rewrite rules for FP, Pr_,

DFP IS(] data-flow graph Is obtained by applying the or th, t_th ACM Con/. on Principle of Pros, LtaI, pp, 10S.
above graph schema_ to the DFP ISG program: p(ISG : t20, t_ss.
z) m apnd/o[SQo._o l,(ISGo(addl o_,))' o2]oupnd__ IJohSiJT. jotumon.Zmcltat¢omp,atk,not 1_¥,ndu,tloa.1_

AQM $[GP£AN Notiu$, pp. 5&_0, June 1084.
Figure 10a _ the graph for (ISQo (addl o._))' where

functionform (eddl o_?) (detailedin FIg. lOb) takes (KeS41J.a.K,_ntwaxtadM.It.Slesp.The '|taSUsS* lint' tp-
to produce object function (addlo Z), The object proLch. Di, lriSul_d Oompu6ne,pp,Ill-t24, 1984.

function is taken by function form (ISO o _?)' to pro- [pAss] K.Pinltii and Ar_lnd. Elacltat duntnd.drivta *vldust|on.

duce object function ([SC/ o (addlo _))'. This object part1, ,4(_M7_en_ezSon_ on Pwgmmming[,anguae,end$Vtl*m, pp. 311-333, April |98&.
function replaces the (/s o _)* of DFP construction.
form graph construct In Fin, On, The DFP ISG data- Iv.,_sl a,H. Vma.Dat_Qowetch/notrchlt,ct_e,ACM_'omp_.
flOWgraph k obtained by t-hecompositions of apnd_d, insSum_¥,tS(4):pp,3e_396, December 1986.
[SQ o _ o 1, (ISO o (addlo i))' o 2], and apndL M shown IV,sell s,a. VOSd_hl. A surveyof prop_d u¢,hlt.:t_e for the

tx,cutlon of functionid Itniluqes. ll_£_ 2Yon,a_llo_w on
In Fig.]Oc. _'ompu_a,;,,c.33(12):pp. 1050-1071,D,cemb_"lOS4.

6 CONCLUSIONS [WaSsl Y,II, W,d sad J.L, Studios, Domed driven h_terpretattoa
of fp prolrsma on a data, Sowmultipr_emor. 1£_£ Trar_.
_homl on _ompu_rs, Ausust 19@11.

Ii

i

