Cond-SV/§5 - -2

International Couference on Fifth
Generation Computer Systems 1988
: Nov. 28 - Dec. 2, 1988 Tokyo, Japan

LAZY EVALUATION OF FP PROGRAMS:
A DATA-FLOW APPROACH!

Yi-Hslu Wel

Computer Sclence Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT

This paper presents a lazy evaluation system for the list-
based functional language, Backus’ FP in data-driven
environment. A superset language of FP, called DFP
(Demand-driven FP), is introduced. FP eager programs
are transformed into DFP lazy programs which contain
the notions of demands. The data-driven execution of
DFP programs has the same effects of lazy evaluation.
DFP lazy programs have the property of always eval-
uating a sufficient and necessary result. The infinite
sequence generator is used to demonstrate the eager-
lazy program transformation and the execution of the
lazy programs,

1 INTRODUCTION

Lazy evaluation and eager evaluation are two methods
for the execution of functional programs (Vegdahl 1984).
The execution in lazy evaluation is driven by the need
for function values (call by need). This has also been
termed demand-driven. On the other hand, the exe-
cution in cager evaluation s driven by the availability
of the function arguments (call by value). It is often
termed data-driven and has spurred the development of
several data-flow architecture models (Veen 1986). Lazy
evaluation can handle unbound data structures such as
infinite lists and makes interactive input/output pos-
sible (Johnson 1984)(Friedman and Wise 1976). Be-
sides, it may support a better execution efficiency since
only the necessary computation is performed in the ex-
ecution. These characteristics are not shared by eager
evaluation.

Lagy evaluation can be implemented by two meth-
ods: (a) The normal order reduction treats a progran as
a syntactic object. The execution is a sequence of “nor-
mal order” rewrite processes to the program that suc-
cessively replaces the outermost functions by the func-
tion definitions at each step of execution until the re-
sult value is obtained (Kennaway and Sleep 1984); (b)
The data-flow ezecution with demand-driven semantics
treats a program as a data-flow graph with backward
demand arcs as well as forward data arcs at function
nodes. The execution relies on both demand and data
propagations through function nodes on this
mixed demand/data-flow graph (the lazy graph). With
demand propagations, the effects of the evaluation “by
need of the function value” is obtained.

! This material is based upon work supported in part by the U.S,
Department of Energy under Grant No; DE-FG03-87ER25043

WASTER

A Wi 4o v Wrn s e Aiki e

Jean-Luc Gaudiot

Computer Research Institute
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California

Several important results in the second approach
have been obtained in previous work (Pingali and Arvind
1985) (Amamiya and Hasegawa 1984). The lazy graph
schemas and the graph properties for a stream language
L have been studied extensively, However, the efforts
have mainly been on the graph level analysis. Due to the
lack of a formal description of lazy programs, the precise
meaning of the lazy programs dealing with more general
data-structures other than streams such as nested lists
is not clear.

In this paper, we deal with the complex data struc-
tures in the second approach. The study involves the
defining of the lazy version of languages, the eager-lazy
program transformation, and the lazy graph generation.
We use the Backus’ FP (Backus 1978) as a source lan-
guage since it is a nested-list based language with a
simple syntax and semantics. The methodology devel-
oped here will be applicable to the development of lazy
evaluation systems in data-driven environment for the
other first order functional languages.

In section 2, a basic FP system is briefly reviewed.
In section 3, the lazy counterpart of FP, DFP (Demand-
driven FP) and the eager-lazy (FP-DFP) program trans-
formation are defined. In section 4, an example of pro-
gram transformation and execution is given. In section
5, the lazy graph schemas and an example of lazy graph
generation are described. Conclusions are made in sec-
tion 6.

2 FP PRELIMINARY

An FP system has: 1) a set of objects Opp, 2) a set
of primitive functions, and 3) a set of functional forms.
Every FP function is monadic (requires one object). An
FP function maps an object into an object, The function
application of a function f to an object in Opp, denoted
by f : z, is the basic operation.

A. Objects: The set of objects Is defined recursively
with a given set A of atoms: (1) All atoms, the L (an
undefined object), and the empty sequence <> are ob-
jects; (2) < z,...,z, > is an object provided that
z; (for all ¥ = 1,...,n) is an object. If any z; = 1,
K TlyereyTy >= 1.

B. Primitive functions: Either the function input or

the function value is a single object. Every primitive
function is bottom preserving. Thatis f: L = 1,

Object reformat functions:
{apndl, apndr,trans,reverse,rotl,rotr)

MISTIBUTION OF THIS NOGUMENT IS UNLIMITEN

'
e Cr o ase s e g

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

apndl : 2 =1 =< 1, <>>—< z; >}

=<2, < Y1y g ¥n 25T Y D5
reverse:z =z =<>—<>;

LKLYy 0y Ty D< Ty) Ty >3 L

Select functiona: {n,nr,tl,tir}
NIZET=<ZT..,Zn>&m2n2 1l oz, d
Hiz=z=<12 ><>;

Z=< T Ty > &N 22 9<23,...,T, > L

Broadcast functions: {distl,distr}
distl : 3= 2 =< 21, <>><>;
2= <Yy Yn 2>
<< LY >y, < THYn D>

Arithmetic, Logic, Predicate, and other func-
tions:

{+, =%, +,gt,le,and, or,not, eq, atom, null,
length, id}
+:2 =2 =< x,2; > & 1,,z; are numbers
=z +2x3; L
fd:z=z
C. Functional forms: Functional form is the mech-
anism for combining known functions to obtain more
complex functions.
Composition:(fog) iz = f:(g:z)
Coastruction:|f1,..., fo]:2=< fiiz,0.., faiz>
Conditional:(p — fig):z=(p:z) =T — [: 3;
(p:z)=F—g:z;1
Apply-to-all;
af 1z=z=<><>;
T=<T Ty > [z, iz, >
Insert:
[fiz=z=<z;> 2,
=< T T > &n2>2
= fi<n,/[fi<zy.. 2 >>; L
Constant: J:z=z=1 — 1,y .

3 DFP: DEMAND-DRIVEN FP

The principle of lazy evaluation ls: only the ‘neces-
sary and sufficient’ arguments be requested and used
to compute only the ‘necessary and sufficient’ values in
responge to the request of the consumer. Since every
function in an FP system is monadic, either the func-
tion argument or the function value is a single object.
In order to follow the principles of lazy evaluation, func-
tions in FP should be allowed to be ‘non-strict’ and the
function argument and value objects should be able to
carry a partial information. This partial information
would be “necessary and sufficient’ for the proper eval-
uation of the program. This leads to semantics for the
partial request and production of function values,

An extension of the language is required to support
these operational semantics. The domain of objects in
the original FP systems have to be extended to include
-an extra atom ¢ in the set A of atoms. An € represents
an unknown object that has not yet been evaluated, The
extended object domain will then contain sequences in
which € occurred in one or more places. These sequence
objects are partial objects. The sequence objects which
contain no ¢ atom are total objects. Each total object,
an original FP object, and its associated partial objects
make up a partially ordered object set. An example is
shown in Fig. 1 which shows the partially ordered ob-

Ject set for the total object < 1,2 >. The partial objects
< 1,6 > and < €,2 > contain different partial informa-
tion of < 1,2 >. A single € denotes the totally uneval-
uated < 1,2 >. The .L below ¢ is the undefined object
that may represents the erroneous condition, namely the
undefined computation. Note that ¢ is different from the
empty sequence <> (or ¢) in FP where ¢ is a notation
representing the unevaluated object which could be any
data object.

<1,2> § <1,2>
-
< lvm > <l</<c,6 > <> <Cq1>
[NS
« ¢ '
| | |
L L 1

() (b

Figure 1: (a) Partially ordered set for < 1,2 >; and (b)
The object function for < 1,2 >,

If a function f with an argument < 1,2 > eval-
uates to a value < 2,4 > in a data-driven fashion, the
function value could however be partially requested and
evaluated in a demand-driven (lazy) fashion. When only
the second element of the function value is of interest,
a demand on the partial object could initiate a partial
object evaluation and cause the production of partial
object < ¢€,4 > instead of the entire < 2,4 >. The
portion(s) of the program which do not contribute to
the computation of this partial object are deemed not
necessary to the program and should not be evaluated.
Furthermore, only the second element of function ar-
gument must be requested by a demand to the parent
function if the first element Is irrelevant to the compu-
tation,

The addition of the ‘e’ atom to the language en-
ables the formalization of the demand-driven execution
of FP programs. This formalism s defined through a
superset language of FP, Demand-driven FP (DFP), An
eager-lazy program transformation will create demand-
annotated DFP lazy programs from FP programs. This
DFP program could be executed directly by a data-
driven interpreter for DFP,

In addition to partial objects, the DFP object do-
main has a set of demand objects with which the ‘de-
mand to the partial object’ can be represented. The set
of DFP primitive functions include data functions (FP
primitives) and demand functions, A demand function
determines the demand propagation for the correspond-
ing FP primitive function. A demand function takes a
demand object and evaluates to a demand object of a
proper form. A data function takes a data object and
evaluates to a data object, An object function is a func-
tion that takes a demand object and evaluates to a data
object, A DFP lazy program represents an object func-
tion. A object function 18 constructed by data functions,
demand functions, and object functions. The FP-DFP
transformation rules {or eager-lazy program transforma-
tion define the DFP function forms for FP primitive
functions, and various FP functional forms.

8.1 DFP objects

The set Op of objects in DFP is the union of the set
0, of data objects and of the set Oy of demand objects,
Op = 0, U Oy, where O, and Oy are recursively de-
fined: O, = {atoms,e} U{L}U{< z},...,2, > |n €
N,z € O, - {L},i =1,...,n}; and O4 = (6,6} U {<
diyooiydn > In€ N,d; € 04,6 = 1,...,n} Where N is
the set of natural numbers.

Objects in O, are data objects (for examples: <
1,2 >,< 1,e >) The data objects which contaln no
€ atom are total data objects (e.g. < 1,2 >), other-
wise they are partial data objects (e.g. < 1,6 >). Ob-
{e;ts in Oy are demand objects (for example: < 6,¢ >)

. Let 0; = {§}Uu{< dy,...,dn > |n € N,d; €
Os0 =1,...,n} and O, = {e} U (< dy,...,dn > |n €
N.,d;€0,,i =1,...,n} The demand objects in O; are
called total demand objects(for examples: 6, < 6,6 >).
The demand objects in O, are empty demand objects
(for examples: €,< ¢,¢ >). The demand objects in
Oy — Oy — O, are partial demand objects (e.g. < 6,¢ >).
d € Oy Is replaceable by 6 (for example: < §,6 >— §.
Therefore, 6 may represent any total demand object.
Similarly, any d in O, ls replaceable by ¢ and thus ¢
may represent any empty demand object.

For notational convenlence, d € 04, < d" > denotes
<d,...,d > and < d* > denotes < d,... >. Where m
(SR, S e

n m

ls an undetermined natural number, For examples:

1 J{8>=<466> .

2. <¢,8%et >=<¢,6,6,6,...>
The demand object in the first example represents a
demand vector for a triplet of data where all three data
elements are requested. In the third example, only the
2nd, and 3rd, elements of a list of indefinite length are
requested.

3.2 DFP primitive functions
The set Pp of primitive functions in DFP is the union
of:

1. The set Py, Py C [O4 — Oy4), of demand functions;
2. The object function 2, 2 € (04 — O,;
3. A mask function, mask € [0, x O4 — O,}; and
4. The set Py, P, C [0, — O,), of data functions
(primitive functions in FP)., .
All functions f in DFP verify the bottom-preserving
property. The extended definitions of some of FP prim-
itive functions will also be described.

A. Object function |04 — O, An object function
defines a one-to-one mapping from a set of demand ob-
Jects into a set of data objects. For example, an FP
object 2 =< 1,2 > is transformed into the DFP obj)ect
function £ which defines a set of mappings (Fig. 1b):
{(6 =< 1,2>),(<6,e>—< 1€ >),
<€,6>~<€,2>),(c - €))
The first 6 in the first mapping is interpreted as <
6,6 >. The range set s the partlally ordered data ob-
ject set for < 1,2 >, while the domain set is the corre-
sponding partially ordered demand object set. When
an object function is applied to a demand object, a
unique data object will be mapped. The object func-

tion is therefore considered as a producer of data ob- '

Jects driven by demand objects, For example, assuming

'In the following, d (with or without subscripts) denotes a de-
mand variable, while z denates data variable.

z =< 1,2 >, if demand d I8 tolal, §, the application
% : d evaluates to total data object < 1,2 >. Otherwise,
if demand d is partial, such as < €,6 >, Z: d evaluates
to partial data object < €,2 >. If demand d is empty, ¢,
% : d evaluates to a totally unevaluated object ¢,

Definition: An FP data object z is transformed by
operator p into a DFP object function Z. This object
function is defined by;

p(z):d=z2:d=d=6—z;d=¢€— ¢
d=<dj,...,dy > & =<2y,...,20 >
=< £y idyy. .., Byt dy >

NE

A demand object matchs with a data object when the
demand object is: 1) a total demand or an empty de-
mand, or 2) of the same length as the data object and
every component demand object matches with a corre-
sponding component data object. If a object function is
applied to a mismatched demand, it evaluates to a 1.
For examples, il £ =< 1,2 >, % : § =< 1,2 > (matched
demandz, £:<¢,6 >=<¢,2 > (matched demand), and
%:< 6,6,6 >= 1 (mismatched demand, since the de-
mand object has three elements while the data object
in £ has only two elements 1 and 2).

B. Mask function:[O, x Oy — O,] This function la
used together with broadcast functions, such as dist!
and distr, to remove extraneous duplicated data (refer
to FP-DFP transformation for distl and disty in the
following subsection). It is defined by:
mask < z,d>=d=6 - z;d=¢ — ¢
=< Ty, 80 > &d =< iy dy >
—< mask :< z,,dy >,...,mask :< z,,d, >>;
1

Examples:
1. mask :<< 1,2, >,< 6,6, >>=<¢,2,6>
2. mask :<<1,2,3>,<¢,6,6 >>=< €2,3>

C. Demand Functlons [0y — Oy4): A demand func-
tion corresponding to a data function evaluates the de-
mand propagation for the data function. For example, a
total demand § to the scalar value of function + ls con-
verted into a demand < 6,6 >. This demand is made
to a two-element data object for function +.

1. Arithmetic, Predicate, and Logic demaud
functions: Forall f,f € {+,-,x,+,gt,le,
eg,and, or,not,eq0,1d,length, atom, null}

flid=d=6§-§;
d=¢— 6L

Since the function value of f is an atom, a de-
mand object to f should be either 6§ or €. An
identity function id may serve as a weak definition
of /4. The difference between f4 and id s that id
does not detect the mismatched demand object.
This weak definition is useful since id Is removable
when it is either pre-composed or post-composed
with any other function. While the detection for
mismatched demands can be postponed.

2. Reformat demand functions:
The functions apndl, trans, rotl, reverae, etc. are
used to rearrange the object elements. The same
as that of the nonstrict constructor cons in LISP,
reformat functions should not force the evaluation
of their arguments. Reformat demand functions
should rearrange object elements in a reverse man-

ner to reflect the proper locations of the requested

elements,

apndld :dsd=6—6id=€c—¢;
d=< dhdll' “tdn >=< dh< dh'“ldn >>;
L

trans? = trans

reverse? = reverse

rotld = rotr

Example:
apndl® :< §,¢,6 >=< §,<€,6 >>
(Note that apndl :< a,< €,b >>=<a,e,b >.)

3. Select demand functions: Select functions, such
as n, ¢, etc., are nonstrict since they do not make
use of certain portions of the input object. They
are similar to the selectors car and cdr in LISP.
Select demand functlons should create partial de-
mands to request required partlal objects.

nlidsd=c—e;d € 04 +<e™) det >0
thidsd=§ ~+<ec,ét>;
d=¢€— €
d=< dl,....d.\ S>—< g,dyy. .., dp >
L

Examples;

(a) n4:6 =< e 5,6t >

b) nd:< §,e >=< eV, < 6,6 5,6t >

)b =<e,b6t>

d) i< be>=<e,6,6>
In the first example, a demand function for the se-
lector n converts a total demand § into a demand
object of undetermined length with a § at the nth
element and s elsewhere,

4. Broadcast demand functions: distl and distr
are considered as data broadcast functions,
distld:d=d=6— 6;d=¢c— ¢

d=<dy,...,ds >~ apndl o |join o al,a?]: d;
L

distl® performs the reverse operation as the dist!
does, However, the demand for the first element
which Is the one to be copled, ls.the join of all
demands for the indivldua?copiea.

Examples;
(a) distl? :< 6,6,6 >=< §,< 6,6,6 >>
(b) dsstl? :<<< b,6,6 >,6 >,<<¢€,6,6>,6 >
yE>=<< 6,6,6>,<6,6,e>>
Where the join function performs the union of
all demands for copies of every subelement of the
demand object. It works like an bitwise OR oper-
ation on two sequences of the same length where
6 is a boolean True and € is a boolean False.
In the second example, < 6,¢,6 > ls the join of
. < é,6,6> and < e,¢,6 >,
D. Extended definitions of FP functions: The def-
Inition of several data functions is extended to allow
handling demand objects. For examples:

1. trans and reverse.

2.nid=d=6—6d=¢€—¢g
d=<dj,...,dn>&m2n21-dyl

. tlids=d=6bjd=¢c ¢
d=<dy ... dy > &n 22 -+< dgyuoiydy >3 b

4, For any FP function f, fie=¢
5. apndl :< z,€ >=< z,et >

8.3 FP-DFP Transformations

The transformation of FP objects to DFP object func-
tions is defined by transformation operator p, p : Opp —
04 — O,). Each FP object can be transformed into a

FP object function. The FP object to which the FP
function application f : z evaluates is also transformed
to its correaponding DFP object function p(f : z). This
object function represents, in fact, the DFP lazy pro-
gram that corresponds to [: z in FP. When this DFP
program has a total/partial demand object as its input,
it generates a total/partial data object. Note that the
total data object Is [: z. p is deflned as follows:

o For z € Opp, p}z) £ %. p maps an FP object =
Into DFP object function . (Refer to the example
of the object function for < 1,2 > in section 3.2.)

¢ For an FP function f, its argument object z €
Opp, and function epplication f : = &Fig. 2a),
o(f i) = (fop(z)" = (f 0)° {Fig. 2b).

The expressions marked with asterisks are recur-
sively defined as follows:

(foz)' =

f=hoh = (fio(frod))Y
T=h=tufs) = ((fiod) = (frok);(fs0E));
,=l,l:--'ofnl "’((floi)'ol'w--»(fn°i).°"13
f:a{ = ((apndlo|f' o 1,af o tl]) 0 2)%;
I=/I = ((f o [1,/f otl)) 0 &)

/=9 =¥

[€ {distl,distr} — mask o |(f o &)*,id];

[€ Py~ (distl,distr} -+ foZo f4;

A

(fod) umeskol/ode /i id

Mliz)mifod) (fed)" M fakof!

"

[is l

(s) (v)

.———

JePs = (distl, distr}

Jo{diatl, distr)
(<) (d)
Figure 2: (a) FP function applicatlon f : z; (b)
DFP function for f : z; (c) Transformation for
[€ P, — {distl,distr}; and (d) Transformation for
[€ {distl, distr}.

The FP function application'f : z in Fig. 2a is trans-
formed into (f o £)* as shown in Fig. 2b in which the
solid lines are data paths and the dashed lines are de-
mand paths, The transformation rules involving expres-
slons marked with an asterisk are determined according
to the following observations:

1.

-

Primitive functions except dist! and distr: As
shown in Fig. 2c, the DFP program of f : z
Is a composition of demand function f9, object
function %, and data function f. The demand ob-
Ject Is first converted by f4 into a proper demand
which requests the appropriate data object at the
object function, According tc the demand, the
object function produces a data object for data
function f to produce the result. When f Is an
arithmetic or logic function, f¢ can be replaced by
td, and ¢d is removable in the function composi-
tion, Therefore, the input demand object can be
directly forwarded to the object function.

. distr and distl: The transformation for the broad-

cast functions can be observed in Fig. 2d. An ex-
ample will explain the reason why a mask function
is needed:

Since distl :< 1,< 2,3 >>=<< 1,2 >
< L3>, p(distl :< 1,< 2,3 >5) i<
§,¢ > should produce a << 1,2 >,¢ >.
?owever. p(distl i< 1,< 2,3 >>) i<
JED
=distlozodistld < b, >
=distloZ:< 8,<b,e>>
=distl 1< 1,<2,e >>
=<<1,2>,<1,e>>
Which is incorgect S‘ ce me secgnd ‘1
is no‘ti requesteé and should not be pro-
uced, .

The mask function in Fig. 2d is used to remove
the extra elements which are not requested. The
triangle denotes the combining of the data object
from foZo f¢ and the input demand, which is
implicitly defined by the construction form. The
result of the above example is corrected by the
mask function: mask :<<< 1,2 >,< 1,6 >>,<
0,e>>=<<1,2>,e> '

. Composition form, { = [, o f: From the defini-

tion of the transformation operator p,
plfiohh:z)=p(fi:(fi:2))
= {/1 o plfy: z))°
2 (fio(fr02)*)
In Fig. 3, objects z,f3 : z, and fyo fy : = are
transformed into corresponding object functions.
Object function % is activated by a demand from
block f3. Simllarly, object function (f;0%)* is acti-
vated by a demand from block f,. Object function
(fio (f0%)°)* Is activated by an input demand
to this form.

Construction form, [= [f;, f2): In Fig. 4a, in-
put data object z is copled for both functions f,
and f and the two computed function values are
combined to form a single output object. In Fig.
4b, the Input demand to the form will request a
two-element data object. Select functions 1 and 3
are used to obtain the component demands of the

input demand. The component demands to the
object functions of f, : z and f; : z will result in
the production of required function values.

. Conditional form, [= fi — f1; fs: In Fig. ba, the

boolean value of predicate function f; determines
either branch function f; or fs to execute. This
branch function value will then become the out-
put of the conditional form. Accordingly, in Fig.
Eb, the input demand should first requests the
boolean value of the object function of f; : z. The
boolean value then determines to which branch
object function the input demand should be sent.

. Apply-to-all form, f = af': The apply-to-all form

can be recursively redefined as: af' = apndlo[f'o
Laf o tl]. The transformation simply make use
of the transformation rules for primitive functions,
composition form, and construction form.

fiod) oty (fod) ed)

h h

/AR
(s (v

Figure 3: Transformation for the composltion form.

Nio(fiod)') : d
£
(fyo8)
I
fiis '
h ‘
ho(hot))
hoh:s ?
P
(s) (b)

Figure 4: Transformation for the construction form.,

N (fod) = (hod)i(fiod))
h fiodl' Nhodl Lo d]
i
h h ! n ¥
:
.... .

(h—~hih)is

ol

(0] {v)

Figure 5: Transformation for the conditional form,

1. Insert form, { = [f': Similarly, the insert form
can also be recursively redefined as: /f' = f'o
[1,/f o tl]). The transformation makes use of the
other transformation rules.

8. Constant form, f = §: The demand object re-
places the data object z as a trigger to §. The
data object which is not ¢ will cause the produc-
tion of the constant object .

According to the transformation rules, the data-driven
execution of any DFP function application will always
evaluates to a data object with a necessary and suffi-
¢ient information in respond to the input demand. In
other words, not only all information requested is pro-
duced but also no information which is not requested
will be produced. This evaluation is sald to be least
evaluation and the result produced is a least solution,
This least evaluation property holds at every point of
computation of DFP programs (Wel and Gaudiot 1988).
If the does not hold at every point of computation, extra
computation may be performed somewhere in the pro-
gram and the execution may nol be terminated when
the extra computation is unbound.

3.4 DEMAND REDUCTION

DFP programs contain demand functions for runtime
demand propagations. The purpose of demand propa-
gations is to determine the execution paths and the ap-
propriate execution order that lead to a least solution.
Since it does not directly contribute to the production
of the results, demand propagation is considered as an
executlon overhead. The demand propagations in many
cases, for example in a network of arithmetic and logic
functions, are irrelevant to the program dynamic behav-
lors and therefore will always result in a same request
pattern. A demand reductlon process is to remove these
demand propagations at compile time to reduce the ex-
ecution overhead.

A few useful rewrite rules for removing ‘obvious’ un-
necessary demand functions from DPF programs are
listed below.

R1). For f¢ € Py~ {n%,ti1%), flocl— ¢l

R2), For f4 € Py, clo fé — ¢l

R3). noecl — ¢l

R4). f ls an arithmetic, logic, or predicate
function. f4 — 4d

RS). clocl — ¢l

R6). £0id — %, ido % — &,
(£oE)*0id~ (fo5)*,ido (f o &) — (f 0 F)°

RI). fdoid — fd

R8). tdo f¢ — f4

~ {(R9). (%) — %

R10). / is an arithmetic/logic function,

fol|#01,202) — fo|id,id)o

Sm——

4 EXAMPLES OF TRANSFORMATION

The transformation of an infinite sequence generator
(ISG) written in FP into its corresponding DFP pro-

gram is presented. The FP ISG is not terminated in
data-driven execution, The data-driven execution of the
DPF ISG program is shown.

4.1 Square

FP SQuare can be defined by: SQ = x o [id,id|. The
DFP SQ will be:

P(SQ:z)= (SQoE) (TR)
= ((x o |id,id) o 3) (5Q)
= (x o (|vd,1d}o £)*)" (TR)
= x o (|id, id| o)* 0 x4 (TR)
= x o (|id,id] o Z)°* (TR)
=xo|({fdoi) ol,(idoE)' 02| (TR)
=xo|tol,Zo? (R4,R6)
= xoid,id]o % (R10)
=5Qoz (sQ)

where (TR), (SQ), and (R1) mean that the relations are
according to transformation rules, the definition of SQ,
and the rewrite rule R1 respectively. DFP SQ program
contains no demand function.

4.2 Infinite Sequence Generator (ISG)
The infir.ite sequence generator (ISG) of the SQ of Inte-

gers can be defined in FP by: ISG = apndlo[SQ,ISGo
add1). DFP ISG becomes:

MISG:z) = (ISGo 3) (TR)
® ((apndl 0 [SQ, I5G o a 1) 0 §)* (15G)
& {apndl o ([SQ, 15G o adal) 0 £)°)° (TR)
® apndl o (|SQ, I5G 0 addl] 0 5)*) o apndi* (TR)
mapndl o [(SQ o £)* 0 1,({/SG 0 add1) 0 £)* 0 3 0 apndl? (TR)
mapndlo|SQo £01,((/5G o addl) 0 £)* 0 2] 0 apndl* (sQ)
®apndl 0 [SQo k0 1,(ISG o (addl 0 £)*)* 02| 0 apndl (TR)

Wapndlo(SQo 201, (158G a (addl o £ 0 add1%))* 0 3] 0 apnal* (TR)
Bapndl 2 [SQo201,(ISG o (addl 0))* 03) 0 apndl¢ (R4,Re)

4.3 Execution of DFP ISG

The data-driven execution of DFP ISG is shown. If
z = 3 (therefore, : § = 3), the sequence 1SG : 3 will
be < 9,16,25,36,... >. Let d =< ¢,6,6* > to request
the second element (which is 16) of the sequence.

(ISGo) i<cq, b6t >
mapndlo[SQoiol,(ISG o (add) 0 £))* 0 2| 0 apndié 1< ¢,6,¢t >
wapndlo[§Qo301,(ISGo (addlo £))* 02} i< ¢, < 6,6t >>
mopndl 1< §Qok:#,(ISGo (addl 0 2))* i< b,¢* >>
= apndl 1< 6,apndl 0 |SQ o (addl 0 3) 0 1,
(15G o (add1 o (add1 0 £)))* 0 2} a apndl? 1< §,¢* > >
= epndl 1< ¢,apndl 0 [$Qoaddlo §o),
(I8G o (oddl aaddl 0 §))* 0 2):< §,<¢* >>>
= apndl :< ¢, apndl i< §Qoaddl o % : 5,

(185G o (addl 0 addl 0 £))* 1 5 >> (notel)
= apndl i< ¢,apndl i< $Qoaddl : 3,6 >>
= apndl i< 6,apndl 1< SQ i 4,6 >>
w apndl :< §,apndl 1< 16,6 >>
w apndl 1< ¢, < 18,5% >> {noted)

=<6 10,6t >

Notes: (1) € may represent < s >; (3) According to
the definitloa of function apndl, the second € of the
argument object of apnd! is a sequence object. Since the

lenfth of this se«iuence Is not known, the result sequence
will contain the first element followed by an uncertain
number of unevaluated elements.

The in-line expansions of ISG is implemented by a
higher order function call which will be explained in
the next section. According to f : € = &, without
?erformlng an actual Invocation, function application
ISG o (addl o addl o Z))* : € is directly replaced by
an ¢, In this example, only the second element of the
Infinite sequence is computed and its value is returned.
The computation for the first element and the elements
following the second element are not performed.

5 DFP DATA-FLOW GRAPH

Data-flow graph schemas for DFP programs are pre-
sented here, The construction of the DFP ISG data-flow
graph ls given.

5.1 Higher Order Function Application

A higher order function application may either take a
function as its input argument or produce a function
as its output. From the composition form, every DFP
function p(f : z) contains a function call to the par-
ent object function % to request a data object as its
argument. The parent function would be dynamically
determined when FP function f involves recursive defi-
nition as shown in ISG example. In order to handle this
con({iitl;n, the parent object function has to be param-
eterized,

The most general function application (the Apply
actor in Fig. 6) in DFP consists of applying & DFP
functional form Cf (for f) to a parent object function
f' and a demand object d. Cf, Cf = (fodf?)*, is a DFP
function with an unapecified parent object function, df?
la the parameter to be bound to parent object function

argument f'. The data-flow graphs of DFP programs
may contaln:

1, Apply actor with all three input arca: Functional
form (f o df?)* at Cf uses /' as a parent object
function to create an object function (fo')*. This
object function then takes demand object d and
produces a data object as its output.

2. Apply with only Cf and d arcs: An ordinary func-
tion application is performed.

3. Apply with only Cf a‘nd /' arcs: Functional form
(fodf?)* at C [uses { as a parent object function
to create an object function (fo /')* as its output.

When d = ¢, there will be no actual function ap-
plication actually activated at the Apply. Instead, the
Apply actor simply produces an ¢ as ocutput. With this
definition, the removal of unnecessary computation Is
‘implemented.

8.2 Graph Schemas

According to the transformation rules, FP primitive
functions and functional forms correspond to certain
DFP program structures, For generality, df? instead
of Z Is used in the graphs to denole that the param-

eter may be bounded to any DFP object functions in
addition to object functions for FP objects.

(ugpj._ l _____

() L RPPPEPR 4 (b)

&1 d

prrec et m e me—m—c————
.
Leemcctmcec e cmccaana

(v (b)

Figure 7: DFP graph schemas for:(a) Primitive func-
tions which are not dist! or distr; and (b) distl or distr,
41 d

=™
©
=
°
&/
-
=
-~

h

R T S

Iigure 8: DFP graph schema for the composition form.

1. [ia a primitive FP function: I [¢ {distl, distr},
the graph for (f o df?)* = fodf?o f? Is shown
In Fig. Ta. If f € {distl,distr}, the graph for

[odf?)* = masko(fodf?o f°id]ls shown in
ig. 7b. The list aclor Is to create an output
object < a,b > from lwo objects a and b,

2. [is a composition Form: [= {; o f3. The graph
for Io:g)* = (fio(fr04df7)*)* is shown in Fig.
8. The first Apply actor creates object function
(f2 0 df7)* and sends it to the second Appl{ ac-
tor, The second Apply actor then creates object
function (f; o (fy 0 df?)*)*. Ths object function
takes demand object d and produces an output
data object.

3. [is a construction Form: f = |f,, f3). The graph
for (f o df??‘ = [(fuodf?) ol,(fs0df?) 02| is
shown In Fig. 0a. The first and second elements
of the demand object d are retrieved b{ selectors 1
and 2 to request respectively the function values of
{. and f3, Two branch ob{ecu are then combined

nto a single output object at the actor Iist.

4. [is a conditional Form: [= f, — fi;[s. The
graph for (fodf?)* = (fiodf?)* — (hodf?";(fao
#?F‘ is shown in Fig. 9b. The boolean object
evaluated by (fy 0 df?)* : d determines the branch
object function to which the demand object d should
be sent, Accordingly, the branch function wiil be
Invoked to produce output.

6

/ is a constant Form: A constant actor Is used,
Any demand object token except VEPS to thls
actor will trigger the production of a predefined
constant token. If the demand is an ¢, an & will
be produced.

P q1

'
—————

© ™
Figure 9: DFP graph schemas for: (a) The construction
form; and (b) The conditional form.

5.8 DFP ISG Graph

DFP ISQ data-flow graph s obtained by applying the
above graph schemas to the DFP ISG program: p(ISG :
z) = apndlo[SQoZo1,(ISGo (addl 0 £))* 0 2o apndi?

Figure 10a is the graph for (1SGo(add10Z))* where
function form (addl o df?) (detalled in Fig. 10b) takes
% to produce object function (addl o £). The object
functlon is taken by function form (ISG o df?)* to pro-
duce object function (/SG o (addl o:;n) ‘. This object
function replaces the (fy o #)* of DFP construction-
form graph construct in Fig. 9a. The DFP ISQ data-
flow graph is obtained by the compositiona of apndi¥,
iS?No £01,(ISG o (addl 0 #))* 0 2], and apndl as shown
n Fig. 10c.

6 CONCLUSIONS

The lazy evaluation of complex data structure func-
tional programs in data-driven environtnent is presented.
The basic FP system is used as a soutce language in
the study. A lazy version of FP, DFP (Demand-driven
FP) is firat defined by including the concepts of par-
tial data/demand objects. FP-DFP transformation ls
used to convert FP eager programs into DFP lazy pro-
grams with demand propagations. With DFP graph
schemas, DFP lazy data-flow graphs can be generated
from DFP lazy programs. The data-driven execution of
these DFP data-flow graphs has the same effects of lazy
evaluation. The methodologics presented are applicable
to the development of lazy evaluation systems for other
functional languages. i ‘

{9ge 40,

« eeefeeens
(185G e Y1)]

@)

(1SGa#) 1¢

(lSO o (add} o §))*

........... RY

—
PRREENIR S
o
o
&
—
I~

.......................................

—-
=

Figure 10: DFP ISG data-flow graph.

REFERENCE

.[AHM] M. Amamiya and R. Hasegawa. Datallow computing sad
eager and lasy evaluations. New Generation Computing,
Pp. 105-129, 1084,

[Bac78] J. Backus. Can programming be liberated from the von
Neumann style? a functional style and ita algebra of pro-
{;;:u Communicalions of the ACM, pp. 613-641, August

C. Clack and S.L. Peyton Jones. Strictness analysis - a

{cPas)
l:;;:tkll approach, In Springer- Verlag:LNCS, pp. 1549,

(¥W76] D.P. Friedman and D.8. Wise, Qons should not evaluste ita
srguments. Automata, Languages and Programming, pp.
87.284, 1076,

{BW85) J.Y. Halpern, J.H, Williams, E.L. Winmers, and T.0. Win.
kles, Denotational semantics and rewrite rules for FP, Proc,
:;(‘)h.li::;h ACM Coul. on Principles of Prog, Lang, pp. 108-

X .

{Joh84| T. Johnsson. Efficient compilation of lasy evaluation. In
ACM SIGPLAN Notices, pp. 58-89, June 1084,

(K884 J.R. Kennaway and M.R. Sloep. The 'lsnguage firet’ ap-
proach. Distriduted Computing, pp. 111-124, 1984,
[PA8S| K. Pingali aad Asvind. Ecient demand-driven evaluation.

part 1. ACM Tvansactions on Programming Language end
Systems, pp. 311-333, Apcll 1088,

(Veel6] A.H, Veen. Dataflow machine acchitectura, ACM Comput.
ing Survey, 18(4):pp, 365-306, December 1986,

(VegB4] S.R, Vegdahl. A umu{ of proposed architecture for the
sxecution of functional langusges. [EEE Transactions on
Computers, c-33(12):pp. 1050-1071, December 1084,

|WGSs] Y,H, Wei and J.L. Gaudiot. Demand driven interpretation
of fp programa on & data-flow multiprocessor, [EEE Trane.
actiond on Computers, August 1988,

