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Abstract

Recently a single-channel prototype of the proposed PEP-
11 longitudinal feedback system was successfully demon-
strated at SPEAR and ALS on single-bunch beams. The
phase oscillations are detected via a wide-band pick up.
The feedback signal is then computed using a digital signal
processor (DSP) and applied to the beam by phase modu-
lating the rf. We analyze results in the frequency- and the
time-domain and show how the closed-loop transfer func-
tions can be obtained rigorously by proper modeling of the
various components of this hybrid continuous/digital sys-
tem.

The technique of downsampling was used in the experi-
ments to reduce the number of computations and allowed
the use of the same digital hardware on both machines.

I. INTRODUCTION

It has been proposed that the longitudinal synchrotron
oscillations in storage rings can be supressed using a DSP-
based bunch-by-bunch feedback system {1]. In the bunch-
by-bunch approach, each bunch is treated as an individual
oscillator driven by an unknown disturbance. The phase
of each bunch is detected, a feedback signal particular to
that bunch is computed using a digital signal processor,
and is applied to that bunch on the following turn. The
idea is that since this approach deals with each bunch on
an individual basis, it can be extended to the multibunch
case. The coupling would then be lumped into the un-
known driving term. This technique would work if the
coupling between the bunches is sufficiently weak. The
programmable nature of the DSP-based feedback system
and the technique of downsampling makes it possible to
use the same digital hardware on different machines.

A single-channel prototype of this system was demon-
strated successfully at SPEAR and, more recently, at ALS
on single-bunch beams. We present some of the results of
these experiments and show how they can be rigorously
analyzed by appropriate modelling of the different compo-
nents in the feedback systemn.

II. EXPERIMENTAL SETUP

The basic experimental setup used on both machines is
shown in Figure 1. Since no wide-band kicker was available,
the feedback was applied to the beam by phase modulating
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Figure 1. Experimental setup used at SPEAR and ALS.

the rf. A compensator (not shown) was included before the
rf cavity to extend its bandwidth to beyond the frequency
range over which the beam dynamics are interesting. The
component k represents an attenuator that was used to
vary the loop gain. The | M represents downsampling *
This process had very little effect on the experiment as a
whole.

Points A, B, and C represent points in the system be-
tween which transfer function measurements were made.

III. MODEL OF SINGLE-BUNCH BEAM
WITH FEEDBACK

In this section we obtain theoretical expressions for the
transfer functions from points A to B,? T4_ g(s), and from
B to C, Tg_.c(s). From these expressions, the closed-loop
transfer functionis obtained. Due to the large number of
components in the loop, the modelling of delays plays an
important role.

A. Model of the Beam

We model the beam phase oscillations, T, with respect to
the rf as obeying the simple harmonic oscillator equation
[4], except that we modify this equation to allow for a delay,
Ta1, in the response:

T+l THwiT = —Au(t - Ty) (1)

where w, is the synchrotron frequency, ¢, is the damping
term, A is a gain constant, and u(t — Ty;) is the driving
input to the system, delayed by Ty,. These parameters can
be easily extracted from the plots of the open-loop transfer
functions of the system. Laplace transforming equation(1)
yields the open-loop beam transfer function:

—A e"’T“
82 + 2wo(,s + w2

B(s) é:g; =

1This was used to reduce the number of computations by allowing
only one out of every M data samples to get to the DSP, see [2]
245" here denotes the Laplace frequency variable.
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We assume that, apart from contributing to the delay
Ta1 and to the gain A, the frequency responses of all the
other components in the branch A — B are “flat” over
the range of frequencies where the beam dynamics are of
interest. Hence we take B(s) to be our model for this
branch, ie., T4 p(s) = B(s).

B. Model of tne Feedback

The objective of the feedback is to measure r and pro-
cess it to produce a feedback signal usy that damps th-
synchrotron oscillations. lIdeally, this could be done us-
ing differential feedback [3], that corresponds to filtering 7
with a differentiator, H(s) = —Kgiss s, where Ky;zy is a
constant. However, ideal differentiators have the unfortu-
nate property of amplifying high-frequency noise. Hence,
the DSP was used to implement a finite impulse response
(FIR) digital filter [5] that approximates a differentiator
over a finite frequency range. The transfer function of the
FIR filter i1s given by

N
H(s)= Koy _ h(n)e™*T" (3)
n=1

where K, is the gain of the filt:r, {h(n)}} are the coeffi-
cients of the FIR filter, and T, is the sampling rate. The
coefficients used at SPEAR and ALS were given by:

h(n) = sin(m - 4A)

N 1<n-N.

(4)
A is an adjustable parameter which gives control over the
phase response of H(s). In this single-channel prototype,
additional delays due to the hardware exist, so we modify
H(s) to allow for these:

N
H(s) = Ko(D_ h(n)e=T:m) e Tes,

n=1

(5)

Once again, assuming that apart from contributing to a
delay Ty2 and to the gain K, the frequency responses of all
the other components in the branch B — (C are flat we can
take Tp_.c(s) = H(s). The only unknown parameters here
are K, and T42. These are obtained from measurements of
the transfer function Te—c(s).

C. Closed-Loop Response

Through the modelling process above, we have reduced
the complicated system of Figure 1 to that shown in Figure
2.

Finding the closed-loop beam transfer function,
TS p(s), is now trivial: it is simply given by

B(s)

cl TR T .Y EY
TA_.B(S) T 14k H(S)B(S)'

(6)

RESULTS AND DISCUSSION

Since much more data was available from the trial at
ALS than at SPEAR, we focus on those results here,

>
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Figure 2: Model of the experimental setup used at

SPEAR and ALS.
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Figure 3: ALS measured versus fitted T4_ p(s).

though the results from both experiments were very simi-
lar. The ALS measured (solid) versus fitted (dashed) open-
loop beam and DSP transfer functions are shown in Figures
3 and 4, respectively. In general, the agreement is good,
except for the faster roll off of the measured responses.
This roll off was probably due to the sample and hold of
the DACs. The roll off at very low frequencies in the beam
transfer function could have been the result of the response
of any of the other components, whose frequency responses
were assumed to be flat.

Figure 5 compares the ALS measured versus theoretical
closed-loop responses, for several different loop gains. No-
tice that the damping (as measured by the width of the
resonances) increases with loop gain for loop gains of -2 to
-19dB. However, at the larger loop gains of 24 and 29dB,
the feedback actually began to drive new resonances at
other frequencies. Thus we conclude that the closed-loop
system using FIR feedback is conditionally stable, i.e., it
is stable only over a finite range of loop gains. This means
that there is actually a limit to the amount of damping
that this type of feedback can provide.

Figure 6 shows the impulse responses corresponding to
the loop gains above, obtained by inverse Fourier trans-
forming the frequency responses above. As expected, the
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Figure 4: ALS measured versus fitted Tg_c(5).
N = 6,A = 260°.

damping time constant is large for both very low and very
high loop gains and is the shortest at 19dB (approximately
two cycles), which is quite sufficient for accelerator physics
purposes.

Despite their unusual appearance, these results were ac-
tually anticipated, as a result of an analysis similar to the
one above.

In summary, we have presented an analysis of results
from the trials of a single-channel feedback system on
single-bunch beams at SPEAR and ALS. The results were
analyzed by modelling each branch of the feedback system
with a transfer function. The theoretical and measured
closed-loop performance were in close agreement. Such a
rigorous approach is necessary in the analysis, and more
importantly, in the design of realistic feedback systems,
such as the proposed PEP-II multi-bunch feedback system.
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Figure 5: ALS measured versus fitted T g(s) for loop
gains of -2,19, 24 and 29dB.
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Figure 6: ALS closed-loop impulse responses for loop
gains of -2,19, 24 and 29dB.



DISCLAIMER

This report was prepared as an account of work sponsored-by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefuiness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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