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Abstract

Production of singly and doubly charged helium ions by impact of keV photons is

studied. The ratio Rps = a:h'*' /a;h for photoabsorption is calculated in the photon-energy

range 2--18 keV using correlated initial- and final-state wave functions. Extrapolation

towards asymptotic photon energies yields Rpy(w — o) = 1.66% in agreement with

previous predictions. Ionization due to Compton scattering, which becomes comparable

to photoabsorption above w ~ 3 keV, is discussed.
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1 Introduction

Many-electron transitions in atomic systems induced by photon impact are of considerable
interest since the Hamiltonian coupling of the electronic degrees of freedom to the electromag-
netic field is built up of one-body operators. A transition involving more than one electron
must therefore proceed via the intereiectronic interaction (correlation). The simplest systems
for studies of these processes are two-electron atoms and ions. Considerable work was carried
out in the late 50s and early 60s on the dipole matrix elements for two-electron transitions
in helium for the purpose of evaluating the Lamb shift of the ground state [1-3]. In the late
60s, when measurements of the ratio Ry, = o}if /o, of the double- to single-photoionization
cross sections were reported from threshold up to 625 eV [4], it was realized that this quantity
is very sensitive to the usage of highly accurate wave functions [5-10]. Apart from the theo-
retical efforts to obtain R, for photoabsorption in the low-energy regime, predictions of the
non-relativistic asymptotic value Rp;(w — 00) also became available [5-8]. The experimental
verification of this fundamental quantity has become possible only very recently with the ad-
vent of synchrotron-light sources having sufficient intensity. This progress on the experimental
side [11-13] has stimulated renewed theoretical interest [14-19] in double ionization of He at
high photon energies.

A complication in the interpretation of the experiments arises, however, when the photon
energy exceeds approximately 3 keV [20]. The photoionization cross section decays rapidly as
w~7/? while the Compton scattering cross section is essentially independent of w in this energy
regime. The cross sections are equal at about 6 keV [21]. Based on the energy transfer to the
atomic system, the approximate thresholds for single- and double-ionization due to inelastic
Compton scattering are 2.5 and 4.5 keV, respectively. Since the present experi 1ents cannot
distinguish between these two competing processes, the measured ratio R is expected to be
a weighted average of R,, and the corresponding ratio for Compton scattering Rc. Above
~ 8 keV the experimentally measured R is exclusively determined by Compton scattering

(R = Rc).



We here present calculations of ionization-excitation cross sections for photoabsorption in
the 218 keV energy range. Using a sum rule we further predict the energy variation of Rps
at high energies and by extrapolation obtain the asymptotic value. Finally we discuss the
single and double ionization process by Compton scattering and estimate the contribution to

the apparent R as measured by the recent experiments.

2 Theory

The cross section for ionization of one electron into a continuum state labeled by the momentum
k and angular momentum quantum numbers L and M and simultaneous excitation of the other
electron to a Het(nlm) state by photoabsorption is, in the dipole approximation, given by (we

use atomic units throughout unless otherwise stated)

. 2r? f, df(kLM,nlm)
a;'h(kLM,nIm)=-—E— dE iE

§(E + By —w + 1), (1)

where c is the speed of light, df (kLM,nlm)/dE is the oscillator strength for the transition from
ground state helium to a bound He%(nim) state and a continuum state (kLM) with energy
E = k%/2, w is the incident photon energy, I; is the first ionization potential of He, and E, is
the excitation energy of the n-manifold of He* measured from the ground state.

The acceleration form of the oscillator strength is

dfA(kLM,nlm) 2k

(kLM nlm|(V,V + V3V),|4)]?, (2)

dE w?
where V is the atomic potential energy and the polarization direction is taken along the z axis.
For a two-electron atom or ion we have

(ViV + VoV), = Z (;‘"—% + %) : (3)
where Z is the nuclear charge. Alternatively, the oscillator strength can be expressed in the
length and velocity forms. With exact initial- and final-state wave functions the various forms of

the oscillator strengths are equivalent while for approximate wave functions this is, in general,



not true. The sensitivity of the oscillator strength to the various forms provides in the latter
case a measure of the quality of the wave functions. An investigation of the dependence of the
transition amplitudes in many-body perturbation theory (MBPT) on the form of the dipole
operator has been carried out by Hino et al. [19].
For the ground-state of He we use a Hylleraas-type wave function
Wiri,ra) = Nexp(=Bs) )_euu s’ % o, (4)
ok

where 3 and c;ji are variationally determined parameters, NV is the normalization constant, and
§=Ty 41t =1 —ry u=ry=|rp—r;| are the usual Hylleraas coordinates. Specifically,
the 20-parameter wave function of Hart and Herzberg [22] is employed here. For the final state

we use a wave function of the form

- 1 - -
U (ryry) = 7 Duim (r1) @7 (r2) DY) (r12) + 11 oma (5)

where ®,,, and @{(‘) are bound and continuum wave functions defined in the unscreened field

of the He?*t nucleus and
Dl({:'z)(rﬂ) = exp(—wa/?)F(l - Z.Q)lF,] [iCl, 1, -—i(klzrlg + k12 . [‘12)] \6)

is a Coulomb distortion factor which accounts for the electron-electron interaction. The con-
tinuum states @fc_) are normalized to a § function on the momentum scale. In (6) ki, = k/2
is the interelectronic momentum and a = 1/(2k;3). The states |kLM,nlm) in (2) are obtained
by expanding <I>§:) and D{(;) in partial waves and recoupling to (LM) states.

Because of the explicit appearance of the interelectronic vector ry; inside transcendental
functions, the dipole matrix element cannot be reduced into a product of integrals over each
radial coordinate. Three integrals out of six can be carried out analytically, while the remaining
three must be performed numerically.

In order to obtain the total cross section for ionizing one electron and leaving the sec-

ond electron bound to the nucleus, the ionization-excitation cross sections cr;',:(kLM, nim) are



summed over aii bound states and over angular momenta of the continuum electron

ZZU (kLM,nim). (7)

LM nim
Due to the dipole selection rules, L = { + 1, and, since the polarization is taken along the the
quantization (z) axis, M +m = 0.

In principle, when performing the summation in (7), k takes on different values for different
excitations of the residual Het ion. However, as explained further below, if the photon energy
is significantly higher than the double-ionization limit, the approximation & = m for
all terms in the sum is sufliciently accurate.

The cross section for double ionization with ejection of two electrons having energies E =

k%/2 and E' = k"/2 can be defined in analogy to (1) as

(E+E —w+ L), (8)

B dE dE'

dcr;;l*(kLM,k’lm) 272 d? f(kLM, k'lm)
dE’ = c b

where I is the total ionization potential of He. The total double-ionization cross section is
./
— / Y(kLM, k lm) (©)
Tp )
LM im 0 dE

In the acceleration form the oscillator strength in (8) is

2 fARLM, K'lm)  2kk
dE dE' =

— (LM, K'lm |(V1V + VaV).|4) |, (10)

and the length and velocity forms are similarly defined.

The state |kLM, k'lm) in (10) is the analogue to (5) obtained by replacing the bound state
®,m by <I>§(','), by partial wave expanding the two continuum wave functions and the distortion
factor, and by recoupling to angular momenta (LM) and (Im) of each electron.

In the case of two continuum electrons the Sommerfeld parameter o in D(~) depends on the
relative angle betwcen the emission directions of the two electrons. The evaluation of a;'h"' is
therefore more difficult than the evaluation of ionization-excitation cross sections. However, if
the photon energy is significantly larger than the ionization potential the largest contribution

to the oscillator strength comes from the phase-space region where one electron is ejected in a p
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state carrying nearly all the available energy w — /; = w, and the second electron is ‘shaken up’
to an s state with a continuumn energy close to zero [17, 19]. The error introduced by fixing the
energy of the fast electron and extending the upper limit in the integration in (9) to infinity is

therefore small at high photon energies. The sum of single- and double-ionization cross sections

E(RLM, K hn)

- w-l do )
os=oh + a;‘,‘*‘ = ,ZM 7‘: Za:h (kLM,nlm) + /0 dE' 2L T (11)

can be evaluated with these approximations by using the closure property of the He* eigenfunc-
tions. The double ionization cross section can therefore be obtained without reference to the
two-electron continuum states, as ot* = g5 — ot In the limit w — oo this procedure becomes
exact (2, 23].

Compton scattering of bound electrons is usually treated in terms of the coherent and
incoherent cross sections [24]. For the problem at hand, this approach cannot be applied
since we are concerned with final-state specific processes. The evaluation of double ionization
by Compton scattering is significantly more difficult than for photoabsorption because three
liberated particles share the energy in the final state. A highenergy approach as described
above for photoabsorption is not justified because the dominant energy transfers AE from the
photon to the electron(s) ranges from zero to an upper limit AE,,,» approximately given by

the value for Compton scattering off free electrons

2
AEnmx = ,____g_‘i______ (12)

mc? + 2w

and the distribution of energy transfers is essentially independent of A E in this range. One other
important distinction between Compton scattering and photoabsorption is the distribution of
angular momenta in the final state. While for photoabsorption only the final-state P sector is
reached from the ground state of He (in the dipole approximation), a large number of final-state
angular momenta will contribute to the transition amplitude for Compton scattering.

In order to estimate the influence of Compton scattering on the measured R we make here an

impulse (or ‘binary-encounter’) approximation to obtain the Compton cross section differential



in the energy transfer AE

dac 3 /p as p 2 10 , dGKN(w) ,
- A RN
e /1 dp - 6(q P+p/2+ep E) |¢(q)l I (13)

where pmaz is the electronic momentum corresponding to maximum energy transfer (see 15q. 12)
in a binary encounter between the photon and one electron, eg is the orbital binding energy
of one electron, ¢(q) is the momentum-space wave function of the one electron in the ground
state, and dop n(w)/dp is the free-electron Compton cross section differential in the momentum
transfer to the electron for which we use the Klein-Nishina formula. The single-ionization

Compton cross section is then

ok (w) = N i C)

, 14)
h dAE ( )

where the 2 in front of the integral accounts for the two electrons in He. For double ionization

we use

o) =2 | ; dgi(;’)
2

where Rc(AFE) specifies the ratio of double to single ionization at a given energy transfer. Of

Re(AE), (15)

course, the exact knowledge of R¢c(AE) would imply that the problem at hand was solved. We
make here the following approximation: for final states in the P sector R¢(AFE) is assumed to
equal the photoabsorption ratio at the photon energy AE, for higher angular momenta in the
final state the shake-off value 0.73% [15] is used. The justification for this approximation relies
on calculations for ionization-excitation by Compton scattering [25]. These indicate that the
branching ratios for ionization of one electron and excitation of the second to an ns state of
Het are approaching universal functions of the energy transfer but are only weakly dependent
on the primary photon energy. Further, the branching ratios for ejection of a p electron follow
closely the corresponding results for photoabsorption, while ejection of eclectrons with higher

angular momenta result in smaller branching ratios close to the shake-off value.



3 Results and discussion

The cross sections for ionization-excitation to the final states (£p,ns) and (L's, np) are shown
in Fig. 1 for n € 3 in the energy range 2-18 keV. The dominant (Ep,ns) channels exhibit the
well known £-7/? high-energy behavior and the (£s, np) channels decay as £-%? [2] and do not
substantially contribute to the total single-ionization cross section (7). Our results are close to
the results obtained by Salpeter and Zaidi (3] and Brown [9] for the (Ep, ns) channels. Brown
also determined oscillator strengths for the (£s,2p) channel. We find disagreement with the
latter calculation, which employed an uncorrelated final state.

In order to carry out the sum in (7) cross sections for n < 8 were calculated and the
residual summation over bound states was carried out by extrapolation assuming that an n=3
dependence has been reached at n = 8. In Fig. 2 are shown the branching ratios for the (Ep, ns)
channels B(n) = 0}"(n)/os and for double ionization o}t /as.

While it has been established that the ionization-excitation and double ionization cross
sections are independent of correlation in the final state as w— o0, provided an accurate wave
function of the initial state is used [5,6,15], this is not true at finite w. We illustrate this in Fig. 3
where the difference in the branching ratios AB = Beorr — Buncorr calculated with and without
the final-state distortion D(=) are shown for w = 2 keV. The effect of final-state correlation
is to redistribute probability for ionization without excitation to the ionization-excitation and
double-ionization channels. In the language of MBPT this corresponds to the two-step-one
(TS1) process where the fast photoelectron scatters at the second electron on the way out of
the collision.

In Fig. 4 we show our result for i,4 as function of w™! together with the recent calculations
by Teng and Shakeshaft [17], Hino [18], and the MBPT calculation by Hino et al. [19]. In
the calculations of Hino and of Teng and Shakeshaft the double-ionization cross section was
calculated directly using the two-electron continuum analogue to the final state (5). Teng and
Shakeshaft used the velocity form of the dipole operator, while l-Iin.o used the acceleration form

but took only the monopole contribution from the distortion factor D) into account. The
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MBPT calculation used various forms of the dipole operator. The acceleration form, shown in
Fig. 4, the length and velocity forms all give similar results in the high-energy region [19).

Our present result reaches an w™! behavior for w > 5 keV and extrapolation to infinite
photon energy yields R,u(00) = 1.66 % as was obtained early by other authors (5, 6] using only
a correlated initial state. The value of the coefficient of the leading w=! term is 0,90 keV. The
short-dashed line in ['ig. 4 represents an extrapolation of this linear behavior in w=! to both
larger and smaller energies.

The various calculations [17-19] do not converge to the correct high-energy limit, even
though they differ by relatively small amounts. We attribute this discrepancy to inaccurate
initial-state wave functions used in the calculations. For w=! > 0.2 the results start to diverge
significantly. It is important to realize that the final state (5) and its two-electron continuum
analogue constitute high-energy approximations and their use is not justified for lower photon
energies. An indication for this problem can be found in the work by Teng and Shakeshaft who
continued their calculation down to the double-ionization threshold. Their resulting Rpx reaches
a maximum of 10% [17], which is a factor two higher than the experimental value. Qur present
result and the result of Teng and Shakeshaft have very similar slopes from 8 down to about
4 keV. At lower w our result has a much stronger dependence on w™!. We have traced this
strong dependence to the contributions from the / # 0 multipoles of D(=), The fact that Hino
only retained the monopole term is likely the reason why his R has a significantly smaller slope
than the present as well as Teng and Shakeshaft’s results. Apart from the validity of the final
state (5), the accuracy of the present result relies on the accuracy of the closure approximation.
This approximation breaks down if the energy sharing between the two electrons is not highly
asymmetric. We have verified for an uncorrelated final state that the accuracy is sufficient at
least down to w = 2 keV. However, the validity of the closure method for correlated final states
at low energies remains to be verified. Even if the energy distribution is highly asymmetric, the
correlated final state introduces angular correlations in the emission pattern of the electrons
which are not accounted for by the closure method. The [ # 0 multipole contributions from

D) are likely to be most strongly affected by these angular correlations. We are currently
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investigating the possibility of incorporating these effects in the closure approximation.

In Fig. 5 is shown the ratio R, for photoabsorption (dash-dotted curve) together with
the corresponding ratio for Compton scattering Re (dotted curve) and the weighted mean
of both processes (solid curve) which should be compared to the experimental points, The
agreement is, considering the simplicity of the approximation, satisfactory. We also show the
linear extrapolation of the photoabsorption ratio (dashed curve) which appears to improve the
agreement with the experiments below w = 3 keV. Further work on two-electron processes by

photoabsorption and inelastic scattering of photons is in progress.
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