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Abstract

We describe the numerical methods used to solve the
time-dependent Dirac equalion on a three-dimensional
Cartesian lattice. Efficient algorithms are required
for computationally intensive studies of nonpertur-
bative relativistic quantum dynamics. Discrelization
is achieved through the lattice basis-spline colloca-
tion method, in which quantum-stale vectors and
coordinale-space operalors are erpressed in terms of
basis-spline functions on a spatial latirce. All numer-
ical procedures reduce to a series of matriz-vector op-
erations which we perform on the Intel iPSC/860 hy-
percube, making full use of parallelism. We discuss
our solutions to the problems of limiled node mem-
ory and node-to-node communication overhead tnher-
ent in using distribuled-memory, multiple-instruction,
mulliple-data stream parallel computers.

1 Introduction

In this paper, we focus on the time-dependent
Dirac equation in three space dirensions and its lat-
tice representation on a distributed-memory hyper-
cube multicomputer. Over the past several years,
we have developed a new approach to strong-field
relativistic quantum dynamics which combines ad-
vanced techniques for solving boundary-value differen-
tial equations with supercomputer technology.[1] The
Dirac equation is one of the most fundamental equa-
tions of nature: it is the relativistic analogue of the
Schrédinger equation and describes the quantum dy-
namics of fermions, i.e. spin-1/2 elementary particles
such as leptons and quarks. The lepton family con-
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sists of three generations: the well-known electron and
its associated neutrino, the muon and muon-neutrino,
and the tau-lepton and tau-neutrino. Similarly, the
quarks come in three different generations: up/down,
charmed/strange, and top/bottom. In the following,
we will consider the dynamics of leptons only; however,
we believe that our computational methodologies will
also have application to the quark sector.

1.1 Physics backgronund

During the collision of highly charged heavy ions
at velocities near the speed of light, extremely large
time-dependent electromagnetic fields are produced
which lead to a variety of effects. These electromag-
netic fields are up to 10 billion times stronger than
today’s strongest laser fields. One of the most inter-
esting effects of these fields is the sparking of the vac-
uum, i.e. production of matter-antimatter pairs from
empty space as the heavy ions pass near each other,
In particular, at Oak Ridge National Lab (ORNL), we
have studied the vacuum production of lepton pairs,
i.e. electrons, muons, and tauons, as well as other ex-
otic particles. Collisions such as these are currently
performed at experimental facilities around the world
such as Brookhaven National Laboratory on Long Is-
land, and CERN, the European Center for Nuclear
Research, in Geneva, Switzerland. During the last
nine years, much study has been devoted to the prob-
lem of vacuum production of lepton-pairs in antici-
pation of new experimental opportunities at the Rel-
ativist.c Heavy-lon Collider (RHIC), currently under
construction at Brookhaven. This facility will provide
colliding beams of ions as heavy as gold with all of
the ion's atomic electrons removed, fully exposing the




large charge of the atomic nucleus.

Lepton-pair production from nuclear processes has
been widely discussed as a possible signal for the
formation of a quark-gluon plasma phase of matter,
which is thought to have existed in the initial phases
of the Big Bang. The recreation of this phase of
matter in the laboratory is the primary goal of the
RHIC project. Electromagnetic electron-pair produc-
tion from the vacuum by highly stripped heavy ions
in relativistic motion is the dominant background pro-
cess for these signatures. Furthermore, an accurate
description of electromagnetic electron-pair produc-
tion is important for both the design of experimen-
tal detectors for RHIC and the performance of the
colliding-beam accelerator. In particular, electron and
muon pair production, with subsequent atomic cap-
ture of the negatively charged lepton, changes the
charge state of a participant heavy ion, leading to a
decrease in the beam lifetime of the coilider (3]. In
addition to these practical matters, lepton-pair pro-
duction is of interest because it allows physicists to
test quantum electrodynamics - the fundamental the-
ory of the interaction of light with the subatomic world
- in a new energy regime.

Traditionally, processes such as lepton-pair pro-
duction have been studied using perturbation theory,
which is extremely successful in predicting phenom-
ena associated with weak fields. However, this ap-
proach fails to describe the physics of the most in-
tense collisions. In order to understand these non-
perturbative effects for the important electron-capture
problem, we explicitly solve the time-dependent Dirac
equation coupled to the strong, time-dependent exter-
nal fields produced by the heavy ions.

Another application of the lattice Dirac equation is
a study of the fission dynamics of actinide nuclei. In
this case, muons are captured by actinides and form
excited muonic atoms. By nonradiative transitions
(inverse internal conversion), sufficient atomic excita-
tion energy is transferred to the nucleus to give a high
probability that the nucleus will fission. Through the
dynamics of a muon in the presence of the fissioning
nucleus one expects to gain a deeper understanding of
the energy-dissipation mechanism in large-amplitude
nuclear collective motion. (4]

1.2 Dirac equation

In discussing the solution of the Dirac equation, we
use patural units, i.e. A = ¢ = m = 1, This im-
plies that energies are measured in units of the lepton
rest mass, mc”, and that our length and time units
are the lepton Compton wavelength A. = fi/mn, and

Compton time 1. = A./c, respectively. We solve the
time-dependent Dirac equation in a reference frame in
which one nuclei, henceforth referred to as the target,
is at rest. The target nucleus and the lepton inter-
act via the static Coulomb field, A%, The only time-
dependent interaction, (Ap(t), A{ (1)), arises from the
classical motion of the projectile. Thus, it is natural
to split the Dirac Hamiltonian into static and time-
dependent parts. Accordingly, we write the Dirac
equation for a lepton described by a spinor ¢(F, ¢) cou-
pled to an external, time-dependent electrornagnetic
field as

N
(Hs + He(O]o(7.) = iz o(F.1), (1)

where the static Hamiltonian, Fs, which describes a
stationary lepton in the presence of the strong, exter-
nal Coulomb field of the target nucleus, is given by

Hs = ~ic - § + 3 = e}, (2)

and the time-dependent interaction of the lepton with
the projectile is

Hp(t) = e@ - Ap(t) — eAp(t) (3)

where o, ay, a,, and /4 are the 4 x 4 Dirac spin
matrices. The stationary states of the system, i.e. the
eigenstates of the static Hamiltonian /s in Eq. (2},
are defined

[IS\n(""): Eni(f) (4)
which are also proper ingoing and outgoing states
for asymptotic times |{| — ~, where the interaction
Hp(t) is zero.

2 Numerical implementation

We solve the time-dependent Dirac equation using
a lattice approach to obtain a discrete representation
of all Dirac spinors and coordinate-space operators
on a three-dimensioral Cartesian mesh. We imple-
ment our lattice solution using the basis-spline collo-
cation method, which is discussed in detail in Refs,
[1, 5], and briefly summarized in Secticn 2.1. We
limit this discussion to the special case of cubic lattices
with uniform spacing in all three directions and peri-
odic boundary conditions, However, the basis-spline
collocation method is equally well suited for nonuni-
form lattice spacings and fixed-boundary conditions
[1]. Both the applications previously introduced re-
quire the solution of the lowest-energy static bound
state and subsequent evolution of this state in time.
We describe the algorithms used for these tasks in Sec-
tions 2.2 and 2.3, respectively,




2.1 Lattice basis-spline collocation

Splines of order A are functions S (r) of a single,
real variable belonging to the class C'* =*' with contin-
uous (M — 2)th derivatives, These functions are piece-
wise continuous, as they are constructed from continu-
ous polynomials of (M — 1)th order joined at points in
an ordered set {r;} called knots. Basis-splines are the
subset of the spline functions with minimal support in
that they are zero outside the range of VM + 1 consec-
utive knots ry, ..., r{, s, and non-negative ot erwise.
We label these functions with the index of their first
knot from the left as 3} (r).

Consider a region of space with boundaries at r,,,
and rpay containing N + 1 knots, including the knots
on tlie boundaries. For a set of M th-order basis-
splines to be complete, A of the functions must be
nonzero on each knot interval [z}, r],,] within the
physical region. For this to occur, M — 1 basis-
splines must extend outside each bouncary. There-
fore, to construct a complete set of basis-splines re-
quires N + M + 1 functions naturally numbered as
BM(e), . BY 6o (2)

For purposes of illustration, we seek to approximate
a continuous function f(r), defined in the interval

(2] Lmax)s Which is the solution of the differential

equation
Of(s) =0, (5)

subject to periodic boundary conditions, where (7 is a
coordinate-space differential operator. We introduce
an approximate solution f* in terms of the complete
set of basis-spline functions { BY ()} which is required
to satisfy periodic boundary conditions exactly, i.e.
[ (r0) = [z + L). We do this in two steps: first
we form a closed space by requiring rpn = Iyax, and
then we wrap the last A - 1 splines in the basis set,
which extend beyond the upper physical boundary, so
that they enter the space from the lower boundary [].
With this construction, A/ — 1 basig-spline functions
are redundantly labeled [5], resulting in the following
expansion for f¢

N

1(e) = 3 BV (®)

[FED

so that R(r) = Of*%(r), where the quantities {c'} de-
note the expansion coefficients, and K(r) denotes the
residual in the interior of the region.

To obtain a set of equations for the expanrsion coeffi-
cients {c'}, we apply the collocation methud in which
inner products of the residual weighted with Dirac-
delta functions are required to be zero, where the set

{r.} contains the collocation points. Using Egs. (8),
the trivial integrals of the weighted residual are eval-

uated to obtain

N
R(za) = Y [08laic' =0, (7

=1

where [(VBM(z)] is the function resulting from the
operation of @ on the basis-spline function BM(r),
and [(8]a, = [@BM(£,)]. In obtaining Eq. (7), we
approximate the differential equation Eq. (5) for the
function f(r) by a set of linear equations for the ex-
pansion coefficients. This is done in a manuner so that
the coefficients require the residual R(r) to be zero at
the collocation points with the basia-splines providing
an accurate interpolation to othey values of r.

The solution of the linear system (Eq. (7)) for the
expansion coefficients ' provides, upon substitution
into Eq. (6), the solution at all values of r within
the boundaries. However, the essence of the lattice
method is to eliminate the expansion coefficients ¢
from the calculation in favor of a representation of the
functiona only on the collocation points. To imple-
ment this transformation, we create a linear system
of equations by evaluating Eq (8) at the collocation
po.ats r,, which we invert to isolate the expansion

coefficients, i.e.
(,I - Blu ,r: . (8)

where ' = [B~');,. Using Eq. (8) to eliminate the
expansion coefficients from the linear system in Eq.
(7), one obtains

N

N
Y lOBlwe = Y 04f5 =0, (9)
d=1

=1

where we define the collocation-space or lattice repre-
sentation of the operator () as

N
04 =3 [08a,B". (10)
=1

The most important applications of Eq. (10) are to
local functions of the coordinates, and to spatial dif-
ferential operators. Local operators such as potentials
simply becorne diagonal matrices of their values at the
collocation points, i.e. V(r) — V4, Also, for example,
the lattice representation of the first-derivative pera-
tor in the basis-spline collocation method is

N
D=y BB (11)
1=
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Figure 1: Errors in basis-spline and finite-difference rep-
resentations of a single linear-momentum eigenvalue as a
function of the order of the representation in a periodic
space. Discrete values are shown as lines to guide the
reader’s eye.

where B, = ﬂ’%ﬂ’wh, In Fig. (1), we demon-
strate the accuracy of the basis-spline collocation
method, as compared to traditional finite-difference
schemes, by computing the error in lattice representa-
tions of a single eigenvalue of the linear-momentumop-
erator p = —i(d/dz). Figure 2 demonstrates that the
use of high-order spline representations of the momen-
tum operator avoids the notorious energy-spectrum
doubling problem for lattice representations of the
Dirac equation [5).

We generalize the above procedure to func-
tions in three-dimensional space by expanding in
terms of products of basis-spline functions, i.e.
BM(z)BM (y)B{ (z). For example, using Eq. (10),
consider the collocation-lattice representation of the
gradient operator in Cartesian coordinates

DAYt = &, DE6Y 6 + é,DY 6408 + eaDEbtsY  (12)
where and ¢, is a unit vector in the j'" coordinate
direction. In matrix notation, we denote Eq. (12) as

D = & D, +éD;y +éDs, (13)

with the obvious definitions of the matrices Dy, Da,
and Dj,. Using Eq. (13), the lattice representation of
the static Hamiltonian, Eq. (4}, may be written

Hg = —id D+ g~ eA} . (14)

In summary, the rollocation points define the lat-
tice on which the calculations are performed; neither
the splines nor the knots appear explicitly again once
the lattice representation of the operators has been
obtained at the beginning of the calculation. We have
reduced the partial differential equation (Eq. (4)) to
a set of matrix equations which may be solved using
iterative techniques. As a consequence of eliminating
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Figure 2: Depicted are the positive branches of the en-
ergy spectra for basis-spline and finite-difference represen-
tations of the free Dirac equation in one dimension.

the expansion coefficients from the theory, Hs has a
blocked spatse representation which is self-adjoint for
periodic boundary conditions and uniform meshes.

2.2 Lowest-energy bound state

The complete eigensolution of Hg, providing its full
spectrum of stationary states, currently approaches
the state-of-the-art in computational capabilities due
to the size of Hs, which is equivalent to a rank 8?9
real matrix. We believe convergent calculations will
be achieved for N a 100, based on the length and
momentum scales involved, and experience with one-
dimensional calculations. For this reason, we compute
the lowest energy bound state (1s) needed as the ini-
tial state for our time-dependent problems by a partial
eigensolution of Hs.

Standard methods for partial eigensolution of large
matrices, which are designed to converge to the low-
est energy eigenstate of the spectrum, are not directly
applicable for computing the 1s state of Hg because
its spectrum extends to negative energies. The ana-
lytic operator Hs has positive and negative continua,
E > mc? and E < mc®, as well as bound states
|E| < mc?*; the spectrum of Hg haa the same branches
though all the eigenvalues are discrete. The ls state
has been computed using a damped relaxation method
(2]. This algorithm is constructed to remove the high-
frequency components from the residual, and does not
depend on the spectrum of Hg being bounded from
below.

For larger lattice sizes discussed in this paper, we
have developed a more efficient iterative Lanczos algo-
rithm to compute the initial state [2]. The Lanczos al-
gorithm proves attractive for our purposes as the mem-
ory requirements are relatively small and the method
approximates extremal eigenvalues in the spectrum
very well, Since convergence is most rapid for extremal



eigenvalues, we solve for the lowest energy eigenstate
of Hg?, which has a positive-definite spectrum. By
solving for the ground state of Hg”, we obtain the
lowest-energy bound state of Hg.

2.3 Time evolution

The formal solution of the time-dependent Dirac
equation (Eq. (1)) is ¢;(t) = U(t to)oj(to), where
the unitary time propagator U(t,to) is given in the
Schrodinger picture by the time-ordered exponential

Lt [H5+Hp(t’)]) . (15)

to

U(t,to) = Texp (-—i

We discretize time in the sense that the electromag-
netic interactions are taken as constant in succes-
sive small intervals of possibly varying size Af,, i.e.
tegr =ty + Dteyy, € =0,1,...,L, and express the
evolution operator in successive factors U(t, o) =
U(t,tL_l),.,.,U(ll,to)-

A number of different methods have been used to
approximate the time-evolution operator

Utesr,te) = exp (~i[Hs + Hp(tes1)) Atesr) . (16)

particularly in studies of the time-dependent Hartree-
Fock method applied to atomic and nuclear collisions.
The choice of a method usually depends on the di-
mensionality and structure of the Hamiltonian matrix.
Several methods which work well in one- and two-
dimensional problems are impractical for unrestricted
three-dimensional problems because they require the
inversion of part or all of the Hamiltonian matrix. In
our three-dimensional solution of the Dirac equation,
the exponential operator, Eq. (16), is implemented as
a finite-number of terms of its Taylor series expansion.

In conclusion, all of the numerical procedures dis-
cussed for irnplementing our lattice methods reduce
to a series of matrix-vector operations which can be
executed with high efficiency on vector or parallel su-
percomputers without explicitly storing the matrix in
memory.

3 Hypercube implementation

The iPSC/860 at ORNL is a distributed-memory,
multiple-instruction, multiple-data-stream multicom-
puter containing 128 processors with 8 MBytes of
mermory per processor connected via a hypercube
topology. The details of our implementation of the
lattice representation of the Dirac equation on this

computer are discussed in detail in Ref. (2] and briefly
discribed here, As with many parallel implementa-
tions, we face the problems of limited memory per
node and the optimization of the algorithm to mini-
mize the communication between nodes. We discuss
these issues for our implementation of the Dirac equa-
tion in Sections 3.1 and 3.2. Section 3.3 contains a
brief analysis of the floating-point performance of the
i860 processor.

3.1 Decomposition of the lattice

As discussed in Section 3, Dirac spinots are repre-
sented on a three-dimensional Cartesian lattice in our
numerical solution of the Dirac equation

(1)
¢avpv7
¢(2)

i (17)
¢a4.ﬁxr

(4)
d’a.ﬂ.‘v

¢(Is Y, ‘7) -

where z,, ys, and z, denote the collocation lattice
points in the z, y, and : directions, respectively. In-
dices in parentheses denote the Dirac spinor compo-
nent. In the following, we denote the number of lattice
points in the three Cartesian directions by N, N, and
N,.

We choose to parallelize the time-dependent Dirac
equation by data decomposition. In practice, we par-
tition the y and z dimensions of the lattice into sub-
blocks while maintaining the full * dimension on each
node, These subblocks are distributed onto the proces-
sors using a two-dimensional Gray-lattice binary iden-
tification scheme.[2]

To maximize the occul-ence of nearest-neighbor
communication, the number of lattice points in the
y and z directions are chosen to be powers of twa, If
the number of allocated nodes, p, is an exact square,
we allocate p, = \/p and p, = \/p nodes in y and :
directions, respectively. This results in a square Gray
lattice. For intermediate powers of two, the partition
is performed by p, = \/2p, py = \/p/2, thus resulting
in a rectangular Gray lattice. We determine the num-
ber of lattice points kept on each node by my = Ny /p,,
and m, = N,/p.. Thus, all local arrays have a spatial
dimension of N;m,m, on each node.

The lattice subblock maintained on a particular
node is established using the row and column indices
of that node as obtained from the Gray lattice. For
ys and ., the indices J and v are offset by

l+my(ic—1)< B <my +my(ic ~ 1)
1+m'(lr"‘1)s Y sz"*'mz(l'r‘*l) ‘(18)




where 1 < i. < p, and 1 < i, < p, denote the column
and row location of the node in the Gray lattice.

3.2 Ring algorithm

All of our iterative algorithms for the solution of
the Dirac equation make use of the operation of the
Dirac Hamiltonian matrix multiplying a Dirac spinor,
¢’ = (Hs + Hp(t))¢. Furthermore, most of the comn-
putational effort needed is required in computing this
generalized matrix-vector product. In our lattice rep-
resentation, the action of the Hamiltonian on a spinor
is given schematically in Eq. (19). Using Cartesian
coordinates, this product naturally decomposes into
four parts, one for each coordinate direction (z,y, ),
and a diagonal part. This separability makes it easy
to define this product implicitly ir. a storage-efficient
way. The explicit Hamiltonian matrix is never created
in memory, reducing our memory requirements from
order N® to order N3,

The Dirac Hamiltonian matrix contains local poten-
tial terms, which ate diagonal matrices, and nonlocal
derivative terms, which are dense matrices. Perform-
ing matrix-vector multiplications with the nonlocal
summations in the y and : dimensions requires node-
to-node communication as these dimensions of the lat-
tice are distributed across the processors. These terms
which require communication are shown in brackets in
Eq. (19),

'
(05(.!))05-) =
_ Z Dn Z a(aa l¢£:,23,7

a'=1
po=1 [ my+my(xc-—1) |
. Ji] (s")
ST S e,
fexl L Al=t4+mylic~1) si=1 3
po=1 [ mitmeti-1) 4
. 5 (s8') 4(s))
ST by S,

fe=l | 'r’=1+m.lir—l) s'=1 ]

+ eAq(i,jk Za (a";,

.9’::1

)
+ ‘ J! Z 0;“ )¢£:‘3.-7

si=1

+ 140 k) Za"”d)(”

SI.—

4
+ 3 (191 = e ka ) B, (19)

‘=1

3

In the execution of the y and : nonlocal sums in
Eq. (19), we use a ring algorithm, in which each sub-
block of the Dirac spinor visits each node once to per-
form the nonlocal matrix-vector operations economi-
cally [6]. This is achieved by having loops over the
number of y and : nodes performed on each node as
shown in lines 3 and 4 of Eq. (19). All the derivative
matrices are stored in full on each node.

3.3 Computational kernel

The inner loops of Eq. (19) may be written as daxpy
operation, i.e. y = ax -+ y, where x and y are vectors
and q is a scalar. To optimize the utilization of the
high-performance features of the i830 processor, such
as dual-instruction, pipeline, and quad-load modes, we
have writtcn an implementation of the daxpy in as-
sembler language [2). Figure 3 shows the performance
results for the daxpy on the 1860 for our assembler
language routine. The vector length is measured in
64-bit words. The execution rate shown is obtained
using timing tests that make 10° successive calls of the
basic routine, using a stride of 1, and using the same
argument list for each call. We see that the real per-
formance of the daxpy saturates at about 25 Mflops.
Because of memory constraints on the iPSC/860 hy-
percube, we currently realize modest vector lengths of
8 to 64 words in our solution of the Dirac equation.
The performance of the daxpy over this range varies
significantly due to pipelining.

3.4 Scaling model

In discussing the performance of our application,
we will consider only the matrix-vector product dis-
cribed in Eq. (19), as this operation consumes more
than 95% of the CPU time needed in solving the time-
dependent Dirac equation. We will develop a simple

30 T \a LEMMSMS et inds ud T

DDDDDDDU o 0

o Assembler

—fit

0L St bbb by b,

050 100 150 200 250 300 350
vector length (words)

Figure 3: Execution rates as a function of vector length
for the daxpy operation on the Intel i860.



scaling model of Eq. (19) for the time needed for use-
ful calculation and internode communication in terms
of the number of lattice points, the number of nodes,
and the particular performance characteristics of the
iPSC/860.

To execute Eq. (19) once, the total predicted time
per node needed to perform floating-point operations
(Teaic) is the number of floating-point cperations re-
quired, multiplied by the time tqop (V) required to per-
form a single 64-bit floating-point operation within a
vector of length N words. Assuming that the lattice
has an equal number of points in the three coordinate
directions, N, = Ny, = N, = N, the estimated calcu-
lation time for Eq. (19) is

N®
Teaic = (48N + 448) -[-)-zﬁop(N) , (20)

The dependence of tqop(N) on N is caused by the
pipelined floating-point units of the i860 processor.
From the performance of the assembler-coded daxpy
operation shown in Fig. 3, we determine that 14,5 (V)
varies with N as the inverse of a logarithmic function

7 ~ 1
thap(N) (15.11og(N) — 9.9) x

T6° seconds (21)

over N ranging from 8 to 128.

Empirically, the communication time for a one-hop
node-to-node message is a linear function of the size
of the message [2]). In performing the nonlocal sum-
mations in Eq. (19), we are required to pass p, + p.
messages of length 8 N3/p 64-bit words. Passing
these subblocks of the Dirac spinor around the two-
dimensional Gray lattice ideally consumes the time

N3
Tpus = (Py + Pa) (Sthomm + tstart) ' (22)

where fcomm is the typical time needed to actually
transmit a single 64-bit word of data between two
nodes, and {5y is the startup time for a single com-
munication request. Typical times for the iPSC/860
are teomm = 3.2 x 10~ %sec, and tg o = 1.36 x 10~ 4gec
(2].

Other overheads associated with communication
add to the total communication time and are difficult
to quantify, For example, since the nonlocal opera-
tions of Eq. (19) are dominated by communication,
as we shall see in Section 5, a node must occasion-
ally pause from performing useful computation un-
til it receives the next subblock of the Dirac spinor.
This waiting leads to additional delays caused by loss
of synchronization between the nodes during message

Table 1: Presented are execution times in seconds for 2004
iterations of Eq. (19) for p = 1 and p = N processors using
various lattice sizes. Fxtrapolated values are denoted by
an asterisk. Speedup and paralle! efficiency are computed
using these values.

N Tp=N) Tp=1 Sp=N) ep=N)
8 18.4 90.5 1.9 0.24
12 - 257.4 - -

16 239.5 718.5 3.0 0.19
20 - 1580.2 - -

32 | 1269.0 6375.9° 5.0 0.16
64 | 6421.0  55816.8° 8.7 0.14

passing. We denote these overheads in useful compu-
tation as Toheaq, and include this in our overall esti-
mate of the communication time needed to perform
Eq. (19)

Na
Tcomm"—(ﬂg + Pz) 8"‘1‘)_!comm + tntart] +Tohead' (23)

We will adjust Toheaq to fit the measured communica-
tion time.

4 Timing results

Table 1 presents the time in seconds consumed by
2004 iterations of Eq. (19) on the iPSC/860 for lattice
sizes of N3, where N = 8, 16, 32, and 64 using one
and p = N nodes, respectively, and the correspond-
ing values of the speedup and parallel efficiency. The
total execution time for Eq. (19) on one i860 proces-
sor, which is necessary for computing the speedup and
the efficiency, cannot be measured directly for our ap-
plication for N > 20 because of memory constraints.
However, we obtain estimates for Eq. (19) for lattice
sizes N = 32 and 64 by extrapolation using a power
law fit to the measured dependence on problem sizes
for N =8, 12, 16, and 20.

To distinguish accurately the time spent in com-
munication from the time spent performing useful cal-
culations in g realistic parallel algorithm such as Eq.
(19) is a difficult task. Since we are only interested in
understanding, in general terms, the balance between
communication and comnputation in Eq. (19), we will
use a simple, indirect approach to obtain communi-
cation and calculation iimes. Our method is based
on the fact that node-to-node communication occurs
only in the nonlocal summations in the y and - di-
mensions, namely, lines 3 and 4 of Eq. (19). Also,
if N: = Ny = N, = N, each of the three nonlocal




Table 2: Execution times in seconds for 2004 operations
with Eq. (19) on a lattice with N points using an Intel
iPSC/860 hypercube with p = N nodes.

N Txﬂd ngrd T;er Tease Teomm .fr
8 6.1 10.9 23.9 25.6 226  0.88
16 | 223 1029  96.1 84.2 154.5 1.84
32 1 97.7 4220 7024 349.6  929.0 2,66
64 | 479.7 3006 2963 1659 5010  3.02

operations performs the same amount of usefu) work,
We give these z, y, and : dimensional summations the
names xprd, yprd, zprd, respectively, and the full op-
eration of Eq. (19) is named hdprd. We attribute the
difference in time needed to execute xprd and yprd, or
xprd and zprd to node-to-node communication, and,
thus, estimate this time as

Teomm = Typrd + szrd - 2Txprd s (24)

where Typrq is the time spent in xprd, and so on. To
obtain our estimate of the time Tj,4p 4 spent perform-
ing useful calculations in Eq. (19), we simply subtract
Teomm from the total time needed to compute Eq. (18),

Teaic = Thdprd = Teomm - (25)

Execution times for xprd, yprd, and zprd are pre-
sented in Table 2 for 2004 iterations of Eq. (19). Cal-
culation and communication times are determined us-
ing Egs. (24) and (25) and are also presented in Ta-
ble 2 along with the fractional communication over-
head, f. = Tcomm/Tcaic. In order to perform the larger
size calculations presented here, we are constrained by
memory to increase the number of nodes used as the
lattice size increases. We choose to increase the num-
ber of nodes in such a way that p = N,

We observe good agreement between our model for
the calculation time and the measured result. The
overhead T,peaq is fit by a power law so that Eq. (23)
reproduces the measured communication time. The
predicted fractional communication overhead obtained
using Eqs. (20) and (23), and the measured values of
this quantity listed in Table 2 are compared in Fig.
4, Notice that the predicted and measured values for
this quantity agree well throughout the range of prob-
lem sizes, 8 < N < 64, and that the communication
overhead increases rapidly up to N = 64. This initial
increase in overhead with problem size at first seems
counterintuitive, but is explained by pipelining. In-
creasing floating-point performance with problem size
causes the fractional communication overhead to ini-
tially increase,
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Figure 4: Plotted is the fractional communication over-
head f. as a function of the lattice size N obtained from
the predictions in Eqgs. (20) and (23) and from the mea-
surements given in Table 2,

The large communic~tion overheads in Table 2 and
the small efficiencies in Table 1 indicate a poor balance
between computation and communication for current
problem sizes. There are two main reasons for our
program being communication-bound. The first re-
sults from the slow speed of node-to-node communica-
tion relative to the speed for performing floating-point
operations on the iPSC/860. The ratio of the time
to communicate one node-to-node message of length
64 bits to the time to perform one double-precision
floating-point operation, Eq. (21), in large, i.e.

feomm _ 48 310g N — 31.7 . (26)
tﬁop

Another reason for the low efficiency of our applica-
tion is its large memory requirement resulting is large
messages being passed from node to node, The num-
ber of these messages passed increases roughly as 2,/p
with the number of processors used.

In Fig. 5, we compare the performance of our so-
lution of the time-dependent Dirac equation on the
iPSC/860 with its performance on two other comput-
ers to which we have access: a Cray-2 supercomputer
and an IBM RS/6000 320H workstation. In comput-
ing the floating-point performance of the i860 for the
purposes of this comparison, we use the overall time
Thdprd for Eq. (19) without factoring the communica-
tion. In this case, floating-point performance can be
considered proportional to CPU time. We optimize
our implementation of Eq. (19) on the Cray-2 machine
using the cf77 Fortran compiler with default vectoriza-
tion, loop unrolling, and no autotasking. For the IBM
workstation, we use the IBM AIX XL Fortran Com-
piler/6000 version 2.2 with full optimization. We see
that for N = p = 64, the iPSC/860 performs better
than the Cray-2 by a factor of 2.2, with the trend for
larger problem siges clearly in favor of the hypercube.
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Figure 5: A comparison of the performance of implemen-
tations of Eq. (19) on the Intel {PSC/860 with p = N
processors, on a Cray-2, and on an IBM RS/6000 320H.

5 Numerical results

We present preliminary results for muon-pair pro-
duction with capture into the ground state in colli-
sions of 9" Au + '°74u at energies of 2 GeV per nu-
cleon in a collider frame of reference. In Fig. 6, we
show the time-evolution of the muon-position prob-
ability density plotted as a negative logarithm for a
grazing impact parameter, In the lower part of Fig.
6, we show the scalar-component (A%(F, t)) of the in-
teraction of the muon with the time-dependent elec-
tromagnetic field. The contribution to this interaction
from the target is the relatively small bump in the cen-
ter of the lattice, The contribution from the projectile
is the large, negative spike moving across the lattice.

When the projectile is very far away from the tar-
get, the initial density of the ground state is spherical.
As the projectile passes the target, this spherical den-
sity deforms, expands, and develops both positive and
negative energy continuum (free) components. This
time-evolved spinor is required to compute the prob-
ability for muon-pair production with capture. We
have reported preliminary results for these calcula-
tions in Ref. 3. Larger aumerical boxes with more
lattice points are needed for convergent calculations,

In Fig. 7, we present results for prompt fission of
381 induced by the £2 : (3d — 15,9.6MeV) non-
radiative muonic atom transition. In the upper part
of Fig. 7 we show the time-development of the muon
position probability density during fission. The lower
part of the figure displays the Coulomb interaction en-
ergy between the muon and the fission fragments. Ini-
tially, the muon is bound to a deformed 2380/ nucleus,
We can see that the muonic wave function tends to
follow the two Coulomb wells of the fission fragments

in motion. The deeper well on the right is generated
by the heavy fission fragment. For a fragment mass
ratio of Ay /AL = 1.40, we observe that the muon
sticks predominately to the heavy fragment; the muon
attachment probability to the light fragment is repre-
sented by the small bump on the right. Preliminary re-
sults for the muon attachment probability to the light
fission fragment, Pr, as a function of the dissipated
nuclear energy have been published in a recent Letter
journal [4]. We are currently in the process of perform-
ing a quantitative comparison between the theory and
all the available experimental data.
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