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Abstract aists of three generations: the well-known electron and
its associated neutrino, the muon and muon-neutrino,

We describe the numerical methods used to solve the and the tau-lepton and tau-neutrino, Similarly, the
time.dependent Dirac equation on a three.dimensional quarks come in three different generations: up/down,
Cartesian lattzce. Efficient algorzthms are required charmed/strange, and top/bottom. In the following,
for computationally intensive studies of nonpertur, we willconsider the dynamicsofleptons only; however,
bative relativistic quantum dynamics. Discretizatwn we believe that our computational methodologies will
is achieved through the lattice basis-spline colloca, also have application to the quark sector.
lion method, in which quantum-state vectors and

coordinate-space operators are expressed m terms of 1.1 Physics background
basis.spline functions on a spatial lattzce. All numer-

ical procedures reduce to a series of matrix-vector op- During the collision of highly charged heavy ions
erations which we perform on the lntel iPSC/860 by- at velocities near the speed of light, extremely large
percube, making full use of parallelism. VVe discuss time-dependent electromagnetic fields are produced

our solutions" to the problems of limited node mere- which lead to a variety of effects. These electromag-
ory and node.to.node communication overhead inher- netic fields are up to 10 billion times stronger than
eat in uszng distrzbuted.memory, multzple-instruction, today's strongest laser fields. One of the most inter-
m_ltiple.data stream parallel computers, eating effects of these fields is the sparking of the vac-

uum, i.e. production of matter-antimatter pairs from
empty space as the heavy ions pass near each other.

1 Introduction In particular, at Oak Ridge National Lab (ORNL), we
have studied the vacuum production of lepton pairs,

In this paper, we focus on the time-dependent i.e. electrons, muons, and tauons, as well as other ex.

Dirac equation in three space dimensions and its lat- otic particles. Collisions such as these are currently
rice representation on a distributed-memory hyper- performed at experimental facilities around the world

cube multicomputer. Over the past several years, such as Brookhaven National Laboratory on Long Is-
we have developed a new approach to strong-field !and, and CERN, the European Center for Nuclear

relativistic quantum dynamics which combines ad- Research, in Geneva, Switzerland. During the last
vanced techniques for solving boundary-value differen- nine years, much study has been devoted to the prob-
tial equations with supercomputer technology.[1] The lem of vacuum production of lepton-pairs in antici-
Dirac equation is one of the most fundamental equa- pation of new experimental opportunities at the Rel-

tions of nature: it is the relativistic analogue of the ativist:c Heavy-Ion Collider (RHIC), currently under
Schrfdinger equation and describes the quantum dy- construction at Brookhaven. This facility will provide
namics of fermions, i.e. spin-l/2 elementary particles colliding beams of ions as heavy as gold with all of

such as leptons and quarks. The lepton family con- the ion's atomic electrons removed, fully exposing the
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large charge of the atomic nucleus. Compton time re = A_./c, respectively. We solve the
Lepton-pair production from nuclear processes has time-dependent Dirac equation in a reference frame in

been widely discussed as a possible signal for the which one nuclei, henceforth referred to as the target,
formation of a quark-gluon plasma phase of matter, is at rest. The target nucleus and the lepton Jilter.

which is thought to have existed in the initial phases act via the static Coulomb field, A._. The only time-
I°II_ arisesfromtheof the Big Bang. The recreation of this phase of dependent interaction, (tt'f,('t),: r,_ /J,

matter in the laboratory is the primary goal of the classical motion of the projectile. Thus, it is natural
RHIC project. Electromagnetic electron-pair produc- to split the Dirac Hamiltonian into static and time-

tion from the vacuum by highly stripped heavy ions dependent parts. Accordingly, we write the Dirac
in relativistic motion is the dominant background pro- equation for a lepton described by a spinor ¢(r", t) cou.
cess for these signatures. Furthermore, an accurate pied to an external, time.dependent electromagnetic
description of electromagnetic electron-pair produc- field as

tion is important for both the design of experimen- # ..
tal detectors for RHIC and the performance of the [IIs + Hp(t)]¢(7, t)= i_o(,',t), (1)
colliding-beam accelerator. In particular, electron and
muon pair production, with subsequent atomic cap- where the static Hamiltonian, I/s, which describes a
ture of the negatively charged lepton, changes the stationary lepton in the presence of the strong, exter.
charge state of a participant heavy ion, leading to a nal Coulomb field of the target nucleus, is given by

decrease in the beam lifetime of the coilider [3]. In tfs =-i_. _ + _- e..t_ , (2)
addition to these practical matters, lepton-pair pro-

and the time-dependent interaction of the lepton withduction is of interest because it allows physicists to

test quantum electrodynamics - the fundamental the- the projectile is

ory of the interaction oflight with the subatomic world He(t) = e_...i'p (t) - e.4_!,(t) (3)
i - in a new energy regime.

Traditionally,processessuch as lepton-pairpro- where c_r,r_v,a,, and ;3are the 4 × 'IDirac spin

ductionhave been studiedusingperturbationtheory, matrices.The stationarystatesofthesyetem,i.e.the

which isextremelysuccessfulin predictingphenom- eigem_tatesof the staticHamiltonian/l!_in Eq. (2),
aredefined

ena associatedwith weak fields.However,thisap-

proach fails to describe the physics of the most in- lls_,i(_ = El_,t(l_ , (4)
tense collisions. In order to understand these non- which are also proper ingoing and outgoing states

perturbative effects for the important electron.capture for asymptotic times Ill --. _c, where the interaction
problem, we explicitly solve the time-dependent Dirac tlp(t) is zero.
equation coupled to the strong, time-dependent exter-
nal fields produced by the heavy ions.

Another application of the lattice Dirac equation is 2 Numerical implementation
a study of the fission dynamics of actinlde nuclei. In
this case, muons are captured by actinides and form We solve the time-dependent Dirac equation using
excited muonic atoms. By nonradiative transitions a lattice approach to obtain a discrete representation
(inverse internal conversion), sufficient atomic excita- of all Dirac spinors and coordinate-space operators
tion energy is transferred to the nucleus to give a high on a three-dimensioval Cartesian mesh. We imple.
probability that the nucleus will fission. Through the ment our lattice solution using the basis-spline collo-
dynamics of a muon in the presence of the fissioning cation method, which is discussed in der,ail in Refs.
nucleus one expects to gain a deeper understanding of [1, 5], and briefly summarized in Sectic.n 2.1. We
the energy-dissipation mechanisrn in large-amplitude limit this discussion to the special case of cubic lattices

nuclear collective motion.J4] with uniform spacing in all three directions and peri-
odic boundary conditions. However, the basis-spline

1.2 Dirac equation collocation method is equally well suited for nonuni-
form lattice spaciDgs and fixed-boundary conditions

In discussing the solution of the Dirac equation, we [1]. Both the applications previously introduced re-
use natural units, i.e. h = c = m = 1. This ira. quire the solution of the lowest-energy static bound
plies that energies are measured in units of the lepton state and subsequent evolution of this state in time.
rest mass, me'-', and that our length and time units We describe the algorithms used for these tasks in Sec-
are the lepton Compton wavelength A¢ = ?,/It,r and tions 2.2 and 2.3, respectively.



2.1 Lattice basis-spline collocation {_,,} contains the collocation points. Using Eqs. (6),
the trivial integrals of the weighted residual are eval-

Splines of order 3[ are functions ?¢M(j,) of a single, uated to obtain
real variable belonging to the class C_M-_i with contin- N

UOUS(M - 2)th derivatives. These functions are piece- R(x_,) = E[C')_¢],_ic i = 0 , (7)
wisecontinuous,astheyareconstructedfromcontinu- ,=l

ous polynomialsof(M - 1)thorderjoinedatpointsin

an ordered set {xl} called knots. Ba_is-splines are the where [Ot3_t(x,)] is the function resulting from the
operation of C"9on th_ basis-aplin_ function B;_t(x)subset of the spline functions with minimal support in

that they are zero outside the range of M + 1 conscc, and [OI1]ol _ [(gO_l (z,, )]. In obtaining Eq. (7), we

utive knots x I ..... _'_i+M,and non-negative otkerwise, approximate the differential equation Eq. (5) for tile
We label these functions with the index of their first fimction f(x) by a set of linear equations for the ex-

knotfrom theleftas B_t(.r), passioncoefficients,Thisisdone ina manner so that
Considera regionofspacewithboundariesat _:,,n thecoefficientsrequiretheresidualR(x)to be zeroat

and rmaxcontainingN + 1 knots,includingtheknots thecollocationpointswiththebasi3-splinesproviding
on the boundaries.For a set of Mth-order basis- an accurateinterpolationtoothe_valuesof.r.

splinesto be complete,M of thefunctionsmust be The solutionofthelinearsystem(Eq.(7))forthe

nonzeroon each knot interval[z_,,xl+1]withinthe expansioncoefficientsc_ provides,upon substitution
physicalregion. For thisto occur,M - 1 basis- intoEq. (6),the solutionat allvalueso_"_"within

splinesmust extendoutsideeach boundary. There- theboundaries.However,the essenceof the lattice

fore, to construct a complete set of basis-splines re- method is to eliminate the expansion coefficients c t
quires N + M + 1 functions naturally numbered as from the calculation in favor of a representation of the

13i_t(x) ...... f3_}/+M_l(x). functions only on the collocation points. To imple.
Forpurposesofillustration,we seektoapproximate ment thistransformation,we createa linearsystem

a continuousfunctionf(x),definedin the interval ofequationsby evaluatingEq (6)at the collocation

[x_,n,.r'max], which is the solution of the differential polats xQ, which we invert to isolate the expansion
equation coefficients, i.e.

N

Of(x) = O, (5) c' .---Z B'"f:a' ' (8)subjecttoperiodicboundary conditions,where O isa

coordinate-spacedifferentialoperator.We introduce

an approximatesolutionf" intermsofthe complete where B'" _ [B-l],_,.Using Eq. (8)toeliminatethe

setofbaais-splinefunctions{B_t(x)}whichisrequired expansioncoefficientsfrom the linearsystem in Eq.
to satisfyperiodicboundary conditionsexactly,i.e. (7),one obtains

f_(xo) = fa(xc + L), We do this in two steps: first iv _v

El Zwe form a closed space by requiring x,,,n = x._ax, and OB],,,c' - ,..,,j_ = 0 , (9)
then we wrap the laslM - 1 splinesinthe basisset, _=l ,J=l

whichextendbeyond theupperphysicalboundary,so
where',redefinethecollocation-spaceor latticetepre-

thattheyenterthespacefromthelowerboundary [5]. sentationoftheoperatorO an
With thisconstruction,M - I banis-splinefunctions

are redundantlylabeled[5],resultinginthefollowing A'

expansion for fa 0',_ _ E[OB]o,B'". (10)
t=l

N

The most important applications of Eq. (10) are to
/" (z) = E B_I (x)c' , (15) local functio,la of the coordinates, and to spatial dif-

ferential operators. Local operators such as potentials
sothatR(.r)=_O/a (.r),where thequantities{c'}de- simplybecome diagor_almatricesoftheirvaluesatthe

notetheexpansioncoefficients,and R(.r)denotesthe collocationpoints,i.e.V(x.)-. t_,,Also,forexample,

residualinthe interioroftheregion, thelatticerepresentation:ffthefirst-derivative,_pera-
To obtainasetofequationsfortheexpai_sioncoeffi, totinthebaais-splinecollocationmethod is

cients {c*}, we apply the collocation method in which /v

inner products of the residual weighted with Dirac. D_ -=Z B_,,B "_ , (11)
deltafunctionsare requiredtobe zero,where theset " ,_
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Figure 1: Errors i. b_is-spline and finite-difference rep- Figure 2: Depicted are the positive branches of the en-
resentations of a single linear-momentum eigenval,e as a ergy spectra for basis..spline and finite-difference represen.
function of the order of the representation in a perit_dic tations of the free Dirac equation in one dimension.
space. Discrete values are shown as lines to guide the

reader'seye. the expansioncoefficientsfrom the theory,Hs has a

d/JYlr) blocked sparse representation which is self-adjoint for
where B', ---"--x'3"_--'It=_,.'In Fig. (1), we demon-
strate the accuracy of the basis-spline collocation periodic boundary conditions and uniform meshes,

method, as compared to traditional finite-difference
schemes,by computingtheerrorinlatticerepresents- 2.2 Lowest-energy bound state

tionsofasingleeigenvalueofthelinear-momentumop-

erator/__ -i(d/dz).Figure2 demonstratesthatthe The completeeigensolutionofHs, providingitsfull
useofhigh-ordersplinerepresentationsofthemomen- spectrum of stationarystates,currentlyapproaches

turnoperatoravoidsthe notoriousenergy-spectrum the state-of-the.artincomputationalcapabilitiesdue

doublingproblem for latticerepresentationsof the to thesimeof Hs, which isequivalentto a rank8N 3

Diracequation[5]. realmatrix. We believeconvergentcalculationswill

We generalizethe above procedure to fuse- be achievedforN _ 100,basedon the lengthand

tions in three-dimensionalspace by expanding in momentum scalesinvolved,and experiencewithone-

terms of products of basis-splinefunctions,i.e. dimensionalcalculations.Forthisreason,we compute

B_t(z)B_t(y)B_t(z).For example,usingEq. (i0), the lowestenergybound state(is)neededas theini.
considerthe collocation.latticerepresentationof the tialstateforourtime-dependentproblemsby a partial

gradientoperatorinCartesiancoordinates eigensolutionofHs.
Standardmethodsforpartialeigensolutionoflarge

fi.u¢ = _l D_6_6_ + 2D,,j6_6_ + eaD._6c,6_ (12) matrices, which are designed to converge to the low-
est energyeigenstateofthespectrum,arenotdirectly

where and _j isa unitvectorin the jibcoordinate applicableforcomputingthe IsstateofHs because

direction.In matrixnotation,we denoteEq. (12)as itsspectrum extendsto negativeenergies.The ana-
lyticoperatorHs has positiveand negativecontinua,

19 = _tD1 +_D_ + t_aDa, (13) E > me _ and E < mc _, as well as bound states

IEI < rnc_; the spectrum of Hs has the same branches
with the obvious definitions of the matrices D_, Du, though all the eigenvalues are discrete. The ls state
and Da. Using Eq. (13), the lattice representation of has been computed using a damped relaxation method
the static Hamiltonian, Eq. (4), may be written [2]. This algorithm is constructed to remove the high-

Hs = -it/.13+/3 - eA_ (14) frequencycomponentsfromtheresidual,and doesnot
' depend on thespectrum ofHs beingbounded from

In summary, the collocationpointsdefinethe lat- below.

ticeon which the calculationsareperformed;neither For largerlatticesizesdiscussedinthispaper,we

thesplinesnor theknotsappearexplicitlyagainonce havedevelopedamore efficientiterativeLanczosalgo-

the latticerepresentationof the operatorshas been rithmtocompute theinitialstate[2].The Lanczosal-

obtainedat thebeginningofthecalculation.We have gorithmprovesattractiveforourpurposesasthemere-

reducedthe partialdifferentialequation(Eq.(4))to oryrequirementsarerelativelysmalland the method

a setofmatrixequationswhich may be solvedusing approximatesextremaleigenvaluesin the spectrum

iterativetechniques.As a consequenceofeliminating verywell.Sinceconvergenceismost rapidforextremal



eigenvalues,we solveforthe lowestenergyeigenstate computerarediscussedindetailinRef.[2]and briefly
of Hs "_,which has a positive-definitespectrum. By discribedhere. As with many parallelimplementa.

solvingfor the ground stateofHs 2,we obtainthe tions,we facethe problemsof limitedmemory per

lowest-energybound stateofHa. node and the optimizationofthe algorithmto mini.
mize the communicationbetweennodes. We discuss

2.3 Time evolution theseissuesforour implementationoftheDiracequa-
tionin Sections3.1and 3.2.Section3.3containsa

The formalsolutionof the tlme-dependentDirac briefanalysisofthefloating-pointperformanceofthe

equation(Eq. (1))is ¢j(t)= U(f,_.0)Cj(t0),where i860processor.

the unitarytime propagator0(t,/0)isgivenin the

Schr_dingerpictureby thetime-orderedexponential 3.1 Decomposition of the lattice

( _i ) AsdiscussedinSection3, Diracspinorsarerepre.
U(t,to)= Texp -i dr'[Hs + Hp(f')] . (15) sentedon a three-dimensionalCartesianlatticeinour

numericalsolutionofthe Diracequation

We discretizetime inthe sensethatthe electromag- / _II_ \

neticinteractionsare taken as constantin succes- I _:/)P'_I

sivesmallintervalsof possiblyvaryingsizeArt, i.e.

evolutionoperatorin successivefactorsU(t,/0)= ._(41

(r(t, ..... to),
A number of different methods have been used to where z_, y_, and _ denote the collocation lattice

approximate the time.evolution operator points in the z, y, and z directions, respectively. In-
dices in parentheses denote the Dirac spinor compo-

l_(tt+1,it)= exp (-i[Hs + Hp(/_+1)]Att+t), (16) nent.Inthefollowing,we denotethenumber oflattice

pointsinthethreeCartesiandirectionsby Nr, N_, and
particularlyinstudiesofthetime-dependentHartree- Nz.

Fockmethod appliedtoatomicand nuclearcollisions. We choosetoparallelizethetime-dependentDirac
The choiceof a method usuallydepends on the di. equationby datadecomposition.In practice,we par-

mensionalityand structureoftheHamiltonianmatrix, titionthe y and :.dimensionsofthe latticeintosub-

Severalmethods which work wellin one-and two- blockswhilemaintainingthefullx dimensionon each
dimensionalproblemsareimpracticalforunrestricted node.Thesesubblocksaredistributedontotheproces-
three-dimensionalproblemsbecausetheyrequirethe

sorsusinga two-dimensionalGray-lattlcebinaryiden-

inversionofpartoralloftheHamiltonianmatrix.In tificationscheme.[2]

ourthree-dimensionalsolutionoftheDiracequation, To maximize the occm"enceof nearest-neighbor
theexponentialoperator,Eq. (16),isimplementedas communication,the number of latticepointsin the
afinite-numberoftermsofitsTaylorseriesexpansion. y and z directionsarechosento be powersoftwo. If

In conclusion,allofthenumericalproceduresdis- thenumber ofallocatednodes,p,isan exactsquare,

cussedforimplementingour latticemethods reduce we allocatepz = v_ and p_ = yz_nodes inV and z
toa seriesof matrix.vectoroperationswhich can be directions,respectively.Thisresultsina squareGray

executedwithhighefficiencyon vectoror parallelsu. lattice.For intermediatepowersoftwo,thepartition

percomputerswithoutexplicitlystoringthematrixin isperformedby p_= v/_,Pv = _P'/"2,thusresulting

memory, ina rectangularGray lattice.We determinethenum-

beroflatticepointskepton eachnodeby rn_= Nv/p_,
and m_ = N,/p_.Thus,alllocalarrayshavea spatial

3 Hypercube implementation dimensionofN_mvrnz on eachnode.
The latticesubblockmaintainedon a particular

The iPSC/860 at ORNL isa distributed-memory, node isestablishedusingtherow and column indices

multiple-instruction,multiple-data-streammulticom- ofthatnode as obtainedfrom the Gray lattice.For

puter containing128 processorswith 8 MBytes of y_ and =_,theindices/3and 7 areoffsetby
memory per processorconnectedvia a hypercube

topology.The detailsof our implementationofthe 1+ m_(ic- I)< fl < my @ my(it -- I)

latticerepresentationof the Dirac equationon this i+ m_(ir- I)< "y < rrh+ m_(ir- I) ,(18)
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where 1 < it < Pv and 1 < i_ < p, denote the column In the execution of the y and z nonlocal sums in
and row location of the node in the Gray lattice. Eq. (19), we use a ring algorithm, in which each sub-

block of the Dirac spinor visits each node once to per-

3.2 Ring algorithm form the nonlocal matrix-vector operations economi-
cally [6]. This is achieved by having loops over the

All of our iterative algorithms for the solution of number of y and z nodes performed on each node as
the Dirac equation make use of the operation of the shown in lines 3 and 4 of Eq. (19). All the derivative
Dirac Hamiltonian matrix multiplying a Dirac spinor, matrices are stored i_ full on each node.
¢' = (Hs + Hp(t))¢. Furthermore, most of the com-
putational effort needed is required in computing this 3.3 Computational kernel
generalized matrix-vector product. In our lattice rep-
resentation, the action of the Hamiltonian on a spinor The inner loops of Eq. (19) may be written as daxpy

is given schematically in Eq. (1O). Using Cartesian operation, i.e. y = ax + y, where x and y are vectors
coordinates, this product naturally decomposes into and a is a scalar. To optimize the utilization of the
four parts, one for each coordinate direction (z, y, z), high-performance features of the i8,_0 processor, such
and a diagonal part. This separability makes it easy as dual-instruction, pipeline, and qua't-load modes, we
to define this product implicitly ir, a storage.efficient have written an implementation of the d_xpy in _-
way. The explicit Hamiltonian matrix is never created semb]er language [2]. Figure 3 shows the performance
in memory, reducing our memory requirements from results for the daxpy on the i860 for our assembler
order N a to order N a, language routine. The vector length is measured in

The Dirac Hamiltonian matrix contains local poten- 64-bit words. The execution rate shown is obtained

tial terms, which are diagonal matrices, and nonlocal using timing tests that make l0 s successive calls of the
derivative terms, which are dense matrices. Perform- basic routine, using a stride of 1, and using the same

ing matrix-vector multiplications with the nonlocal argument list for each call. We see that the real per-
summations in the y and z dimensions requires node- formance of the daxpy saturates at about 25 Mflops.
to-node communication as these dimensions of the lat- Because of memory constraints on the iPSC/860 hy-

rice are distributed across the processors. These terms percube, we currently realize modest vector lengths of
which require communication are shown in brackets in 8 to 64 words in our solution of the Dirac equation.

The performance of the daxpy over this range ve.ries
Eq. (19), significantly due to pipelining.

(¢,s!)' =o,,,_ 3.4 Scaling model
nz 4

- i Z D_' E al_"l'_I_'lr"Q',Z,'_ In discussing the performance of our application,
o,=l ,,=1 we will consider only the matrix-vector product dis-

,._l [ .,_+,n_l,o-,,i D0_'_ c,v _] cribed in Eq. (19), as this operation consumes more
I,,'),(,') than 05% of the CPU time needed in solving the time-

_'o,z' _J dependent Dirac equation. We will develop a simpleic=l ;?l=l+rny(j_- 1) 81=1

, 18_'),4,(s I) _ _-.., ........ -,, .... , .... ,,,_,, ......- /9_ z
"y'=l+m,(ir- I ) 8'=1 25 [] 0

_c3r_r1_ _D

4 20 /

/js,),_{s, _+ eAz(i,j, k) %: 'v_"O"_ b 15
s,=t = o Assembler

:_ 10
+ eAv(i j,k) _.._'"_*{"_

_'=I 5

+ eA,(i,j,k) c_(_')¢ 0 50 100 1,50 200 2,50 300 3,50
,,= l vector length (words)

4

+ _ ([/3] (a'') eA°(i j, le)3,,,)¢_') Figure _: Execution rates as a function of vector length- , ,_,_ . (19) for the daxpy operation on the lntel i860.



scaling model of Eq. (19) for the time needed for use- Table 1: Presented are execution times ill seconds for 2004ful calculation and internode communication in terms
iterations of Eq. (19) for p - 1 and p = N processors using

of the number of lattice points, the number of nodes, various lattice sizes. Extrapolated values are denoted by
and the particular performance characteristics of the an asterisk, Speedup and parallel efficiency are computed

iPSC/860. ,sing these values.
To execute Eq. (19) once, the total predicted time

per node needed to perform floating-poi_ operations __..4 N) T(p = 1} S(p = N) e(p = N)90.5 1.9 0.24
(Tonic) is the number of floating-polnt c,perations re- 257.4 -
quired, multiplied by the time flop(N) required to per- 39.5 718.5 3.0 0.19
form a single 64-bit floating-point operation within a

vector of length N words. Assuming that the lattice [ 32 [ 1269.0 6375.9* 5,0 0.16
has an equal number of points in the three coordinate _ 6421.{) 55816.8" 8.7 0.14
directions, N_ = N_ = Nz = N, the estimated calcu-
lation time for Eq. (19) is

passing. We denote these overheads in useful compu.
N 3 . ration as Toh_d, and include this in our overall esti-

Tonic = (48N + 448)--p--/flop(N) . (20) mate of the communication time needed to perform
Eq. (19) j_

The dependence of/flop(N) on N is caused by the

pipelined floating-point units of the i860 processor. Zcomm--'(Py +p:) 87tcomm +tstart +rohead. (23)From the performance of the assembler-coded daxpy
operation shown in Fig. 3, we determine that l_op(N)
varies with N as the inverse of a logarithmic function We will adjust Tohead to fit the measured communica.

tion time,
1

/flop(N) _. (15.1log(N)- 9,9) × l0 g seconds (21)

over N ranging from 8 to 128. 4 Timing results
Empirically, the communication time for a one-hop

node-to-node message is a linear function of the size Table 1 presents the time in seconds consumed by
2004 iterations of Eq. (lg) on the iPSC/860 for latticeof the message [2]. In performing the nonlocal sum-
sizes of N 3, where N = 8, 16, 32, and 64 using onemations in Eq. (19), we are required to pass Pu + P*

messages of length 8N3/p 64-bit words. Passing and p = N nodes, respectively, and the correspond-
these subblocks of the Dirac spinor around the two- ing values of the speedup and parallel efficiency. The
dimensional Gray lattice ideally consumes the time total execution time for Eq. (19) on one i860 proces-

sor, which is necessary for computing the speedup and

g _ the efficiency, cannot be measured directly for our ap-TpB_s "- (Py + Pz) 87tcomrn -F _start/ , (22) plication for N > 20 because of memory constraints.
However, we obtain estimates for Eq. (19) for lattice

where lcomm is the typical time needed to actually sizes N = 32 and (}4 by extrapolation using a power
transmit a single 64-bit word of data between two law fit to the measured dependence on problem sizes
nodes, and _start i8 the startup time for a single corn- for N = 8, 12, 16, and 20.

munication request, Typical times for the iPSC/860 To distinguish accurately the time spent in corn-
are lcomm = 3.2 x 10-6see, and _start "_" 1.36 × 10-4sec munication from the time spent performing useful cal-
[2]. culations in a realistic parallel algorithm such as Eq.

Other overheads associated with communication (19) is a difficult task. Since we are only interested in
add to the total communication time and are difficult understanding, in general terms, the balance between

to quantify. For example, since the nonlocal opera- communication and computation in Eq. (19), we will
tions of Eq. (19) are dominated by communication, use a simple, indirect approach to obtain communi-
as we shall see in Section 5, a node must occasion- cation and calculation Limes. Our method is based

ally pause from performing useful computation un- on the fact that node-to-node communication occurs
til it receives the next subblock of the Dirac spinor, only in the nonlocal summations in the y and z di-

This waiting leads to additional delays caused by loss mensions, namely, lines 3 and 4 of Eq. (19). Also,
of synchronization between the nodes during message if N_ = N u -- N, - N, each of the three nonlocal
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Table 2: Execution times in seconds for 2004 operations o Measured
with Eq, (19) on a lattice with N3 points using an Intel 3.0 /_y----_

iPSC/860 hypercube with p = N nodes, Z5 _ "_ ---Predicted....25,o........... 1.s

[ 12 I 97,7 422A} 7(}2.4 349.6 929.0 2,66 1.0

[ 64 ] 479:7 301}6 2063 1659 5010 3.02 0'50_3(_"4_ "_''600

operationsperformsthesame amount ofusefulwork. N

We givethesex,y,and zdimensionalsummationsthe Figure4: Plottedisthefractionalcommunicationover.
names xprd,yprd,zprd, respectively,and thefullop- headfcasa functionolthelatticesizeN obtainedfrom

era,ionofEq. (10)isnamed hdp:rd.We attributethe thepredictionsinEqs,(20)and (23)and fromthemea-
surementsgiveninTable2.

differenceintimeneededtoexecutexprdand yprd,or

xprd and zprd tonode-to-nodecommunication,and, The largecommunic',tionoverheadsinTable2 and

thus,estimatethistimeas thesmallefflciencie._inTableIindicateapoor balance

Tcomm =-Typed+ Tzprd-- 2Txprd, (24) betweencomputationand communicationforcurrent
problem sizes.There are two main reasonsforour

where Txprd iS thetimespentinxprd,and soon. To program beingcommunication-bound.The firstre.

obtainour estimateofthetime Thdptd spentperform- sultsfrom theslowspeedofnode-to-nodecommunica-
ingusefulcalculationsinEq. (19),we simplysubtract tionrelativetothespeedforperformingfloating-point
Tcornmfromthetotaltimeneededtocompute gq.(11}), operationson the iPSC/860. The ratioof the time

to communicateone node-to-nodemessageoflength

Tcalc _ Thdprd -- Tcomm . (25) 64 bitsto the time to performone double-precision

floating-pointoperation,Eq. (21),inlarge,i.e.

Executiontimesforxprd,yprd,and zprd arepre- tcom........_m= 48.3logN - 31.7, (2{})
seatedinTable 2for2004iterationsofEq. (Ig).Cal- tftop
culationand communicationtimesaredeterminedus-

ing Eqs.(24)and (25)and arealsopresentedin Ta- Another reasonforthe low efficiencyofour applica-

ble2 alongwith the fractionalcommunicationover- tionisitslargememory requirementresultingislarge
head,fc= Tcomrn/Tcalc.Inordertoperformthelarger messagesbeingpassedfrom node tonode. The num.

sizecalculationspresentedhere,we areconstrainedby berofthesemessagespassedincreasesroughlyas2v/_
memory to increasethenumber ofnodes usedas the withthenumber ofprocessorsused.

latticesizeincreases.We choosetoincreasethe hum- In Fig.5,we compare the performanceofour so-

berofnodes insucha way thatp = N. lutionof the time.dependentDiracequationon the

We observegood agreementbetweenour model for iPSC/860 withitsperformanceon two othercomput.

the calculationtime and the measured result.The eratowhichwe haveaccess:a Cray-2supercomputer

overheadToheadisfitbya power lawso thatEq. (23) and an IBM RS/{}000320H workstation.In comput-
reproducesthe measured communicationtime. The ingthe floating-pointperformanceofthe i860forthe

predictedfractionalcommunicationoverheadobtained purposesofthiscomparison,we use the overalltime

usingEqs.(20)and (23),and the measuredvaluesof Thdprd forEq. (19)withoutfactoringthecommunica-

thisquantitylistedin Table2 are compared in Fig. tion.In thiscase,floating-pointperformancecan be

4. Noticethatthepredictedand measured valuesfor consideredproportionalto CPU time. We optimize

thisquantityagreewellthroughouttherangeofprob- our implementationofEq.(19)on theCray-2machine
lernsizes,8 < N < {}4,and thatthecommunication usingthecf77Fortrancompilerwithdefaultvectoriza-

overheadincreasesrapidlyup toN : 114.Thisinitial ,ion,loopunrolling,and no autotasking.For theIBM
increaseinoverheadwithproblemsizeat firstseems workstation,we usetheIBM AIX XL FortranCorn-

counterintuitive,but isexplainedby pipelining.In. piler/6000version2,2withfulloptimization.We see
creasingfloating-pointperformancewithproblemsize thatforN = p = 64,the iPSC/860 performsbetter

causesthe fractionalcommunicationoverheadtoini- thantheCray-2by a factorof2.2,withthe trendfor

tinilyincrease, largerproblemsizesclearlyinfavorofthehypercube.



1o'----,-_,----.-_-..........._ ..... inmotion.The deeperwellon the rightisgenerated

by the heavy fissionfragment.For a fragmentmass

1o..........._ .o ratioof AH/At. = 1.40,we observethatthe muon
_. . _.-_.:.>_-- _ stickspredominatelytotheheavyfragment;thernuon

attachmentprobabilityto thelightfragmentisrepre--o-p-n
seatedbythesmallbump on theright.Preliminaryre-

i0' -----,_."_. -*-.o,),2 sultsforthemuon attachmentprobabilitytothelight

--,._l¢ooo fissionfragment,PL, as a functionof the di,sipated

nuclearenergyhavebeenpublishedina recentLetter
100 .....__t .... __t .... __J --" .=i ..... , " " - ' . , "

0 10 z0 30 40 5o 6o 7o journal[4].We arecurrentlyintheprocessofperform-

N inga quantitativecomparisonbetweenthetheoryand

Figure5: A comparisonoftheperformanceofimplemen- alltheavailableexperimentaldata.
tations of Eq. (19) on the Intel iPSC/860 with p = N
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