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‘Topological Defects from Doping and Quenched
Disorder in Artificial Ice Systems

C. Reichhardt*

Abstract — We examine the ice-rule obeying and
ice-rule breaking vertices in an artificial spin ice sys-
tem created using magnetic vortices in type-II su-
perconductors with nanostructured pinning arrays.
We show that this system can be doped by changing
the external field to move the number of vortices
away from commensurability and create sites that
contain two or zero vortices. For a square ice, the
doping leads to the formation of a grain boundary
of vertices that do not obey the ice rules. In com-
mensurate systems where the ice rules are obeyed,
we can introduce random disorder at the individual
pinning sites to create regions where vortices may
not be able to flip from one side of the trap to an-
other. For weak disorder, all of the vertices still
obey the ice rules, while at intermediate levels of
disorder we find grain boundaries of vertices which
do not obey the ice rules. For strong disorder it
is possible to create isolated paired vertices that do
not obey the ice rules.

1 INTRODUCTION

Spin ice has been an extensively studied condensed
matter system since it offers one of the simplest
examples of geometrical frustration. Instead of a
unique ground state that satisfies the spin-spin in-
teractions, in spin ice there can be large number
of ground states with the same energy leading to
an excess entropy at T = 0 [1]. These systems can
exhibit interesting types of topological defects such
as monopoles and states that obey the “ice-rules”
which specify the number of spins that must point
toward and away from each vertex [1, 2, 3]. The
spin ice systems have a strong relation to the de-
generate proton ordering in water ice [4] which lead
to the name of spin ice. Although the states which
obey the spin ice rules have many different orien-
tations, it is possible to apply a bias to the system
that causes a unique long range ordered state to
appear. One method of applying this bias is via an
external magnetic field. [2, 5].

Due to the size scale of real spin systems it is
not possible to directly observe the spin ordering
or defects in the spin ice states. Recently there
has been extensive work on creating large scale
systems that have the same properties as spin ice
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[5, 6, 7, 8, 9, 10, 11], such as by fabricating nano-
magnetic arrays that can form an artificial spin ice.
The direction of the magnetic moment of a sin-
gle nanomagnet represents the spin direction, and
the nanomagnets are placed in a square or honey-
comb array to realize artificial square ice or artifi-
cial kagome spin ice. In these systems, it has been
shown that a significant portion of the resulting ver-
tices obey the ice rules [6, 7, 10]. For the square
ice, if the interactions between the nanomagnets
is small, many of the vertices do not obey the ice
rules, and even in the strong interaction limit, there
is still a fraction of vertices that do not obey the
ice rules, suggesting that there must be some form
of quenched disorder in the nanomagnets [6, 7]. In
general the defect structure and defect dynamics in
ice-rule obeying systems is an open problem. In
very recent experiments on an artificial kagome ice
system, an external field was applied to bias the
system in different directions [5, 12]. For a strong
biasing field, all the vertices obey the ice rules for
one particular direction; however, when the field is
reversed, various types of defects appear including
monopoles. Once the strength of the reversed field
is large enough, an oppositely polarized state ap-
pears which obeys the ice rules. This suggests that
non ice-rule obeying states can be created by ap-
plying an external field. Other recent experiments
have also found that an external field applied at
certain angles to the artificial ice lattice symmetry
directions produce a proliferation of non-ice rule
obeying vertices.

Besides nanomagnetic systems, there is also a re-
cent proposal for creating artificial spin ice systems
using vortices in type-II superconductors with pat-
terned pinning arrays [13]. In this system, each
pinning site is fabricated with a double well shape
so that there are two energetically favored places for
the vortex to sit that are separated by a potential
barrier. Another artificial spin ice proposal involves
using charged colloids in optical trap arrays where
again each trap is composed of a double well po-
tential [14]. In these systems, it was demonstrated
that ice rule-obeying states can be created readily
for both square and kagome artificial ices. These
systems have several advantages over the nanomag-
netic systems. The disorder can be much morc care-
fully tuned by altering the height of the potential




Figure 1: A schematic of the artificial square ice
system constructed from pinning sites with a dou-
ble well potential. The constriction in the center
of each pin acts as a center barrier. Each site cap-
tures one vortex (black circles) which can sit on
either end of the site. The pinning sites are placed
in a square lattice. The end of the pinning site
where the vortex sits defines the direction of the
effective magnetic moment. For the configuration
shown, each vertex has two close vortices and two
far vortices. This corresponds to the ice rule of two
spins in and two out.

barrier separating the two halves of each well. It is
also straightforward to effectively dope these sys-
tems. In the vortex system, the density of vortices
is proportional to the applied magnetic field. At
commensurate fields where there is one vortex per
double well trap, the ice rules are obeyed; however,
by changing the magnetic field some of the pin-
ning sites can be made to capture either more than
one vortex or no vortices at all. These doped sites
could than affect the ordering of the surrounding
undoped vertices. If the disorder in the barriers at
the centers of the traps is varied, it would be useful
to understand what types of defect structures could
form.

2 Simulation Method

We consider a two-dimensional square artificial ice
system for vortices in a type-1I superconductor with
an array of elongated pinning traps where each trap
has a double well potential as illustrated in Fig. 1.
When the density of vortices is one to one with
the trap density, each trap captures a single vortex
which can sit in either side of the double well. The
well that the vortex occupies defines the direction
of the effective magnetic moment of the trap. It is
the repulsive vortex-vortex interactions that cause
the ice rules to be obeyed in this system. The vor-
tex dynamics are given by integrating the following

equation of motion:

R; .
77& = F;“’ + Ff +Fort
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Here 7 is the damping constant and the vortex-
vortex interaction force is of the form

N
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where the vortex-vortex interaction potential is the
Bessel function V(R;;) = Ko(R;;) and R;; is the
distance between the vortex i and vortex j. At
long range the Bessel function falls off exponentially
so that a cutoff can be placed on the interaction
for computational efficiency. A short range cutoff
is also placed at R;; = 0.1 to avoid a divergence
in the force. The force from the substrate F; has
the following form: F? = ,C]"(fp/rp)Ri@(rp -
RE5)O(RY, — Lo)R3, 4 (f/rp) RO (1 — Rif)O (s ~
RIORY +(fo/D)(1~RY)O(~ RI)R),. Here RE =
IR; — R} + Upfl, Ryl = (R —RY)-p% ||, RY is
the position of the center point of well k, 7, = 0.4\
is the well radius or half width, f, = 15f¢ is the
well strength, I, is half the length of the central
rectangular region of well k&, and f)ﬁ (ﬁ)’i) is a unit
vector parallel (perpendicular) to the axis of well
k. The force from the external field Fo., represents
an applied current which can bias the vortices in
different directions.

3 Defect Structures for Disordered and
Doped Systems

We first consider the square ice commensurate case
in which there is one vortex per trap. Disorder is
added by varying the height of the barrier at the
center of each well with a dispersion width §. Vor-
tices are initially placed on randomly chosen sides of
the well and an external ac drive is applied in both
the z and y-directions. We start with a high ampli-
tude ac drive and gradually lower the amplitude to
F,.; = 0. This protocol is similar to that used for
the micromagnetic artificial square spin ice system
where a high amplitude ac magnetic field is applied
and the amplitude is slowly decreased to 0 [8]. For
d = 0 when the barriers at the center of the wells are
all of equal strength, each vertex obeys the square
spin ice rules of two in and two out. Ordering of
the system into the ice rule obeying state occurs at
a very well defined threshold of the external drive.
In Fig. 2(a) we show the vertex configurations in
the square ice at § = 0 where all of the vertices
obey the ice rules. For intermediate values of 9,




Figure 2: The vertex configurations for a sys-
ten with a barrier strength of 0.25 and differing
strength dispersions 6. Small circles: ice rule obey-
ing vertices. Crosses and filled diamonds: non-ice
rule obeying vertices. (a) At § = 0.0, all the ver-
tices obey the ice rules. (b) For § = 0.5, vertices
that do not obey the ice rules appear but are all lo-
cated along grain boundaries. (c¢) At § = 1.0, there
are still vertices which obey the ice rules, but the
grain boundaries have proliferated and there are
some non-ice rule vertices that appear away from
the grain boundaries as pairs of sites.

most of the vertices still obey the ice rules; how-
ever, grain boundaries appear in which the vertices
do not obey the ice rules, as illustrated in Fig. 2(b)
for & = 0.5. For stronger disorder, such as § = 1
shown in Fig. 2(c), the length of the grain bound-
aries within the system has increased, and we also
observe isolated pairs of non-ice rule obeying ver-
tices that form away from the grain boundaries. In
the nanomagnet arrays, the vertex configurations
were significantly disordered and no gain bound-
aries were observed; however, there were regions
containing pairs of vertices not obeying the ice rules
[6]. This suggests that the nanomagnetic square ice
systems are in a strongly disordered limit. QOur re-
sults also suggest that there may be different types
of disordered phases and that a distinction can be
drawn between disordered phases that contain only
grain boundaries and those that also contain iso-
lated paired defects. We have tested a similar pro-
tocol for a kagome ice geometry and find that in a
system without disorder, all of the vertices obey the
ice rules of one in and two out or two out and one
in. For disordered systems, monopole defects begin
to appear which have either three in or three out.
In contrast to the square ice geometry, the kagome
ice geometry does not exhibit grain boundaries at
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Figure 3: The vertex configuration for a system
with two doubly occupied doping sites in the center
(large open circles). Small circles: ice rule obeying
vertices. Crosses and filled diamonds: non-ice rule
obeying vertices. A single grain boundary emanates
from the doping sites and crosses the entire sample
while the rest of the systemn obeys the ice rules.

any value of the disorder.

The second type of disorder we consider is to
dope the system by moving away from commensu-
rability and using a magnetic field that produces a
vortex density which is slightly higher than one-to-
one with the pinning density. This creates sites that
contain two vortices which occupy both wells. We
will consider the simplest case with § = 0 so that
the disorder comes only from the occupation of the
wells and not from the barrier strength, and we add
only two doubly-occupied wells. After conducting
a rotating external drive annealing protocol as de-
scribed above for the commensurate case, we find
that a single domain wall forms composed of non-ice
rule obeying vertices. As shown in Fig. 3, this do-
main wall emanates from the doping sites and spans
the cntire system. n the future we will consider
more complicated cases case such as well-separated
doping sites to see if the grain boundaries can mini-
mize their perimeter by passing through both sites.
We can also study a system with zero net dop-
ing that contains one doubly occupied site and one
empty site to see whether grain boundaries form
which incorporate both doping sites. The ability
to control the density of grain boundaries through
doping may also be a promising way to create new
types of pattcrns; for example, large scale periodic
arrays of doped sites could result in the formation




of intricate periodic networks of grain boundaries.
For nanomagnetic systems, it is possible to remove
an individual nanomagnet in order to produce an
unoccupied doping site; however, doping the nano-
magnets with doubly occupied sites would not be
feasible.

4 Summary

In suinmary, we have shown that an artificial square
ice can be created using vortices in a type-II su-
perconductor interacting with a periodic array of
pinning sites where each site has a double well po-
tential. By defining the direction of the effective
spin according to the side of the double well occu-
pied by the vortex, we find that this system obeys
the ice rules for square ice. We add disorder to the
system in the form of randomness of the height of
the potential barrier at the center of the well, and
obtain vertex configurations using a rotating drive
protocol which is similar to the shaking ac magnetic
field used in nanomagnetic systems. For weak dis-
order the entire system still obeys the square ice
rules. For intermediate disorder, ice-rule breaking
vertices appear and form grain boundaries, while
for strong disorder there are both gain boundaries
and isolated paired defects. In a system with uni-
forin potential barrier heights, we introduce disor-
der by moving away from commensurability and
creating some pinning sites that contain two or zero
vortices. In this case we find grain boundaries that
emanate from the defect site and span the sample.
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