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Abstract 

Botnets have emerged as one of the most severe cyber threats in recent years. To obtain high resilience 
against a single point of failure, the new generation of botnets have adopted the peer-to-peer (P2P) 
structure. One critical question regarding these P2P botnets is: how big are they indeed? To address this 
question, researchers have proposed both actively crawling and passively monitoring methods (15, 14, 13/ 
to enumerate existing P2P botnets. In this work, we go further to explore the potential strategies that 
botnets may have to obfuscate their true sizes. Towards this end, this paper introduces RatBot, a P2P 
botnet that applies some statistical techniques to defeat existing P2P botnet enumeration methods. The 
key ideas of RatBot are two-fold: (1) there exist a fraction of bots that are indistinguishable from their 
fake identities, which are spoofing IP addresses they use to hide themselves; (2) we use a heavy-tailed 
distribution to generate the num{bi~ of fake identities for each of these bots so that the sum of observed fake 
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identities converges only slowly and thus has high variation. We use large-scale high-fidelity simulation 
to quantify the estimation errors under diverse settings, and the results show that a naive enumeration 
technique can overestimate the sizes of P2P botnets by one order of magnitude. We believe that our work 
reveals new challenges of accurately estimating the sizes of P2P botnets, and hope that it will raise the 
awareness of security practitioners with these challenges. We further suggest a few countermeasures that 
can potentially defeat RatBot's anti-enumeration scheme. 

1 Introduction 

Peer-to-peer bot nets have gained a lot of attention in the research community due to the exposure of 
the Storm botnet, which was first spotted in 2007. Compared with the first generation of botnets that 
commonly relied on IRC channels for C&C (Command and Control) delivery, peer-to-peer botnets do not 
suffer a single point of failure and are thus difficult to disrupt. Due to the lack of a central controller, a 
challenging yet intriguing question regarding peer-to-peer botnets is: how big are they indeed? The effort 
of seeking the answer to this question is not only driven by our curiosity but also justified by the fact 
that knowing the size of a botnet sheds light on its attack capacity, that is, how many zombie machines 
the bot master can control at his will. 

Since the inception of the Storm botnet, there have been a few endeavors to estimate its exact size, 
which sometimes led to inconsistent results. Some researchers estimated that the original Storm botnet 
possessed as many as 50 million zombie machines [27]. Kanich et al. developed a crawler called Stor­
mdrain, which identified Storm bots by looking for nodes that searched hashes specific to the Storm 
botnet, and concluded that the actual size of the Storm botnet was likely smaller than 40,000 [15]. Re­
cently, Kang et al. made another attempt to estimate the size of the Storm botnet . They adopted a 
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'J \J\" passive monitoring approach and found more than 500,000 unique IP addresses in the Storm bot net [14]. 
\ . \> Y Atbejt it is true that the Storm bot net has been evolving since its debut, thus leading to different results 

\ . if measured at different times, it is difficult to quantify the errors of these estimates due to the lack of 
ground truth regarding its real size. 

What makes the situation worse is that peer-to-peer botnets may use obfuscation techniques to foil 
attempts to estimate their actual sizes. In this work, through the demonstration of a hypothetical peer­
to-peer bot net called RatBot, we shall show that such techniques do exist and can actually lead to highly 
variable estimates on botnet sizes. The key ideas of RatBot are two-fold: (1) there exist a fraction 
of bots that are indistinguishable from their fake identities, which are spoofing IP addresses they lise 
to hide themselves; (2) we use a heavy-tailed distribution to generate the numebr of fake identities for 
each of these bots so that the sum of observed fake identities converges only slowly and thus has high 
variation. These two techniques render it difficult to infer the exact sizes of this type of P2P botnets by 
enumerating participating bots. 

To demonstrate the practical feasibility of RatBot, we implement it based on KAD, a popular P2P 
protocol. We use the actual development code of aMule, a P2P client software that uses KAD for its P2P 
communications [2]. We further develop a distributed simulation testbed to evaluate the effectiveness of 
RatBot in misleading the estimation on the botnet sizes. We perform a variety of tests with different 
settings and the results show that a naive botnet enumeration approach by counting the IP addresses 
observed from the P2P botnets could overestimate their sizes by one order of magnitude. 

The goal of our work is to raise the awareness of white-hat cyber-security practitioners on the challenges 
of inferring botnet sizes. Measurement works on existing P2P botnets have highlighted some difficulties 
on estimating their sizes accurately, such as DHCP and NAT effects [14, 30], but our work shows that 
even if we deploy advanced techniques to sift out these factors, the bot nets themshelves can still apply 
obfuscation techniques to make it a difficult task to estimate their sizes accurately. Moreover, although 
there have been previous efforts on exploring hypothetical P2P-based botnets with high resilience [29], 
delay tolerance [7], and membership hiding using sophisticated encryption [23], this work fills the gap 
of understanding potential strategies that attackers may have on obfuscating the sizes of P2P-based 
botnets. In our work , we use large-scale high-fidelity bot net simulation to quantify the errors of bot net 
size estimation, which has not been pursued before. 

The remainder of this paper is organized as follows. Section 2 presents related work and Section 3 
gives the the threat model considered by this work. In Section 4, we discuss the design of RatBot, 
which is aimed at obfuscating the estimation of botnet sizes, and provide the rationale of such design in 
Section 5. We introduce the implementation of Rat Bot based on KAD in Section 6 and use large-scale 
simulation to evaluate the performance of RatBot in Section 7. In Section 8, we further discuss potential 
countermeasures against RatBot and draw concluding remarks in Section 9. 

2 Related Work 

Behaviors of real-world botnets have been analyzed and this line of work has provided tremendous 
insights into how bot nets operate in reality [3, 20, 13, 15, 14]. Our work on studying enumeration of P2P 
botnets was particularly motivated by the measurement work done by Holz et al. [13] and Kang et al. [14]. 
Complementary to their efforts, our work sheds light on the potential challenges regarding enumerating 
zombie machines in P2P botnets accurately. In spirit , our work is similar to that of Rajab et al. [21] 
as both explore the challenges of estimating botnet sizes . Our work, however, focuses on P2P botnets 
while theirs is primarily concerned with IRC botnets. Although like RatBot, the cloning technique 
mentioned in their work also leads to overestimated botnet sizes, the implementations differ drastically 
due to differcllt botllet structurcs . SOlllC previous work has shown that multiple factors contribute to 
inaccurate botnet size estimation, including DHCP and NAT effects [26]. Our results show that even if 
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advanced techniques are deployed to sift out these effects [14, 30], the botnet can still adopt sophisticated 
obfuscation techniques to make it a difficult task to estimate its size accurately. 

To counter the severe cyber threats posed by botnets, a plethora of detection techniques have been 
developed recently. Gu et al. have proposed a series of bot detection methods exploiting spatial-temporal 
correlation inherent in bot activities [11, 10, 12]. A technique using virtual machines to detect bot­
like activities on individual hosts have also been developed [17] . Other bot net detection techniques 
include DNS-based methods [22], ISP-Ievel analysis [16], sigllat.ure-based <l,pproaches [g, :31j, <l,lld ftow­
level aggregation and mining [32]. Our work is orthogonal to these efforts and focuses on the challenges 
of estimating botnet sizes. 

A number of efforts have been dedicated to understanding potential threats by hypothetic bot nets , 
such as Super-Botnet [28], Overbot [23]' delay-tolerant botnets [7], and hybrid P2P botnets [29]. Our 
work differs significantly from this line of work on two aspects. First, our work focuses specifically on 
hypothetic P2P botnets that use obfuscation techniques to render it difficult to estimate their true sizes. 
Second, we have used large-scale high-fidelity simulation to quantify the estimation errors under diverse 
settings rather than present the design from a conceptual level. 

3 Threat Model 

In this work, we consider two families of P2P botnets: immersive P2P botnets and exclusive P2P 
botnets. For an immersive P2P botnet, the botmaster delivers C&C information through a P2P network 
that has normal P2P users besides bots. The original Storm botnet, for instance, was an immersive P2P 
botnet because the C&C information was delivered to the Storm bots through the Overnet network. An 
exclusive P2P botnet, by contrast, has bots exclusively as its peers and thus does not have any normal 
P2P llser traffic in it. Since the Overnet network was shut down , the Storm botnet became an exclusive 
P2P botnet dubbed Stormnet because only bots can participate in the botnet after some authentication. 

The two primitive operations in a P2P network are publish and search. The publish primitive is used 
to publish a data item either on the machine used by the caller itself (e.g., in an unstructured P2P 
network like Gnutell<l,) or on a machine with an ioentifier that is close to that of the data object (e.g., 
in a structured P2P network like Kademlia). The search primitive is used by a peer node to search 
for data items that satisfy some specific conditions, such as containing certain keywords or producing a 
certain hash digest. In this work, we assume that in the P2P network search operations are spoofable, 
that is to say, a peer node can request a peer to find a data item using a spoofed source IP address. 
This holds for many P2P networks, which use UDP to implement the request/response mechanism in a 
search operation. For instance, the widely deployed KAD protocol uses UDP for signaling and TCP for 
data transfers [19]; hence, the search operation in KAD is spoofable. 

It will be seen later that spoofable search operations playa key role in the design of RatBot for hiding 
authentic search operations. It is, however, noted that these constraints limit the design of RatBot 
only if it is implemented as an immersive P2P botnet. For an exclusive P2P botnet, as bots do not 
require an existing P2P network for their C&C communications, the botmaster has more freedom on the 
implementation of spoofable search operations. 

In this work, we assume a strong adversarial model from the attacker's standpoint. First , we do not 
assume that the P2P botnet deploys a strong authentication scheme. The recent efforts of successfully 
reverse-engineering the Storm bot executable have suggested that it is possible to reveal secret keys 
used for bot communications through static or dynamic mal ware analysis [13, 14]. A white-hat security 
analyst can thus create fake hots to infiltrate into the P2P botnet, as demonstrated in some previous 
work [13, 14]. Second, we also assume that the white-hat security analyst, through thorough static code 
analysis, possesses full knowledge on the functionalities of an authentic bot , including its communication 
protocol and anti-enumeration techniques. Third, we assume that the behaviors of a fake bot and an 
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Figure 1. RatBot Architecture 

authentic bot are indistinguishable to the bots. A fake bot can intercept any message that passes through 
it, thus obtaining the source IP address it has used. Fourth, a fake bot may also stay in the P2P botnet 
for a long time so that for some P2P protocols (e.g., KAD) a large number of peer nodes would add it 
to their contact lists, or actively crawl the P2P network to obtain a list of observed P2P nodes. 

In the remain~of this paper, we will use the adversary and the white-hat security analyst inter­
changeably. Even with a strong adversarial model, we, through the demonstration of RatBot, shall show 
that an anti-enumeration P2P bot net can be designed in such a way that it is difficult for the adversary 
to estimate the exact number of authentic bots in it. 

4 RatBot Design 

The key idea of RatBot is the existence of an army of obscure bats, each of which creates a list of 
fake identities to hide itself. In this work, we assume that the identity of a bot is manifested as the IP 
address that it uses to communicate with other peers in the network . Although the P2P idelltifier (e.g., 
KAD ID) of a bot can also be used for enumeration purpose, these identifiers sometimes can be changed 
by bots, thus leading to inaccurate estimate of the bot net size. Moreover, a compromised machine can 
run multiple instances of bot executable and counting each instance as a bot overestimates the size of a 
bot net and thus its attack capacity. 

As opposed to obscure bots, we say the remaining bots are explicit bats. In the following discussion, 
we assume a strong adversarial model in which all explicit bots can be enumerated. In Figure 1, we 
present the architecture of Rat Bot in the form of an immersive P2P botnet. If RatBot is an exclusive 
P2P botnet, no normal peers would exist. in t.he figure. 

4.1 Obscure Bot Selection 

When a machine is infected and becomes a bot, it decides whether it should be an obscure bot. An 
obscure bot uses spoofed IP packets to hide its true identity. It is therefore crucial that an obscure bot 
must be able to spoof IP packets. Not every end host in the Internet, however, possesses such a capability 
for a few reasons [4]. A packet spoofed by a machine behind NAT (Network Address Translation) may 
not reach the destination because its packet header is rewritten or even dropped by the NAT device 
because it violates the binding of link-layer and IP addresses. Some networks may block outbound 
packets with spoofed IP addresse~ aJ their fi!ewalls. Also, it is possible that the operating system does 
not allow to~poofed packetf "DLe~ totlfese reasons, Beverly et al. found that among 12,000 client 
machines volunteered by Internet {I-sers, only 31% of them are able to spoof an arbitrary, routable source 
address [4]. 

As a bot may not be able to decide whether it can spoof IP packets by itself, we let each bot contact 
a dedicated server during its bootstrapping phase. The server is hardcoded in the bot executable code!. 

I In order to improve the resilience of the botnet, multiple servers can be specified in the executable code. A Iso, fast flux 
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When a bot contacts a server, it generates a UDP query packet with an arbitrary spoofed source; the 
payload of the packet carries the authentic IP address of the bot. If the packet arrives at the server, it 
means that the bot is capable of spoofing. The server decides whether the bot should become an obscure 
bot and if so, sends back a response packet to the bot using its authentic IP address carried in the query 
packet. If the bot receives the response packet within a certain period of time, it becomes an obscure 
bot; otherwise, it is an explicit bot. 

How does the server decide whether a bot should be an obscure bot? Suppose that it knows the size 
of the current botnet; this can be done by simply letting each newly infected bot report to it using 
their authentic IP addresses. The server then makes its decision by aiming to have a fraction ~ of the 
entire botnet as obscure bots . ~ is not hardcoded in the bot executable and it is thus not known to the 
adversary. Hence, the adversary cannot estimate the botnet size as m/(l - ~), where m is the number 
of explicit bots that he has observed. 

4.2 Identity Obfuscation 

Once a bot decides that it is an obscure bot, it randomly generates a list of spoofing IP addresses that 
it will use to obfuscate its own IP address later in P2P communications. For a given obsecure bot, how 
many spoofing IP addresses does it create? The answer provides a key role in the level of difficulty for 
the adversary to infer the correct size of the botnet. Consider a simple scheme in which each obscure 
bot generates a constant number k of spoofing IP addresses . Suppose that the adversary can obtain a 
set of IP addresses S that do not respond to normal P2P requests as completely as possible. Then, the 
number of obscure bots can be estimated at ISI/(k+ 1) if it is assumed that spoofing IP addresses do not 
overlap. It is noted that as obscure bots generate spoofing IP addresses independently, these spoofing 
IP addresses may overlap in practice. Given that the large IP address space to spoof, such overlapping 
likelihood should be low. The existence of overlapping spoofing IP addresses leads to a smaller number 
of IP addresses observed by the adversary. 

Consider a botnet with n obscure bots. Let X i denote the number of spoofing IP addre ses each 
obscure bot i generates. RatBot uses two levels of obfuscation for Xi· For the first level (distribution­
level obfuscation), RatBot uses a distribution with high variation to generate Xi. "Ve consider the 
Pareto distribution, whose density function is given by: 

f(x) = { i:ih for x 2: x m , 

for x < X m , 

where Xm and ex are the c'utojJ and scale parameters, respectively. The mean of the Pareto distribution 
is exxm/(ex - 1) and its variance is (Xm/(ex - 1))2 . ex/(ex - 2). It is noted that when ex ::; 2, the variance 
becomes infinite. If we set ex ::; 2, then we cannot apply the central limit theorem on 2:~=1 Xi due to the 
infinite variance. It is noted that Xi drawn from the Pareto distribution is a float number. In practice, 
we generate l Xi J spoofing IP addresses for sure, where l x J denotes the largest integer no greater than 
x, and an extra one with probability Xi - l Xd . 

In Section 5, we shall present the rationale behind using the Pareto distribution for generating Xi 
and also its limitation. To make size estimation even more difficult, RatBot employs another level of 
obfuscation in generating Xi (parameter-level obfuscation). Instead of using a fixed mean for Xi, the 
mean of Xi on the i-th obscure actually depends on certain attributes of the bot itself. Measurements 
from the Storm botnet suggest that bot infection is not uniformly distributed either over different ASes or 
geographically [5] . Provided this observation, we let the mean number of spoofing IP addresses generated 
by an obscure bot be a function of the time zone where the bot is located. In previous works, security 

techniques can be used to prevent easy disruption by the adversary. 
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analysts use the observed IP addresses to derive' their geographic locations using IP geolocation tools [1] 
and thus their corresponding time zones. ~hbJ;sPoofed IP addresses are used, it is difficult to accurately 
infer the time zone of each bot, which renders it hard to estimate the mean of each Xi. 

An obscure bot may use a dynamic IP address to communicate with other peers. Whenever the 
obscure bot observes that the IP address of the hosting machine has changed, it uses the above method 
to regenerate its spoofing IP addresses. 

4.3 Bot Behavior Description 

In a typical P2P protocol, a packet between two peers can be classified into three categories: request , 
response, and data transfer. It is noted that TCP makes spoofing difficult because it requires handshaking 
between peers. In many normal P2P networks, request and response signaling packets are delivered 
through UDP and data transfer uses TCP. We consider the two cases in the following. (1) If the P2P 
botnet is an exclusive P2P botnet, UDP can be chosen by design for delivering all request, response and 
data transfer packets. (2) If the P2P bot net is.atl immersiveJ~~---=omnet, the bot master does not have 
the freedom to choose the transport layer protocol. In this study, we assume that request and response 
signaling packets use UDP. If bot communications do not involve any data transfer packets, spoofing 
becomes much easier; however, if the P2P protocol uses TCP for data transfer and bots need data 
transfer for command & control, it leaves a door for more accurate bot size estimation by the adversary, 
as will be explained in Section 8. 

For an explicit bot, its behavior conforms to the standard P2P protocol. For an obscure bot b, let I(b) 
oenote the set of spoofing IP aooresses a.ssociateo with it. The behaviors of an obscure bot are given as 
follows. 

Response packets. An obscure bot does not respond to any request by another peer. On the arrival 
of a request packet, it silently drops the packet. As the packet is delivered through UDP, which is 
connectionless, the origin of the request packet does not know whether the recipient receives the packet 
or not. 

Request packets. We first consider a naive packet-level obfuscation scheme for request packets and 
then present its weakness. When an obscure bot b needs to send out a request packet to peer A at time 
t, it replicates the packet for II(b)1 times and each of these packets uses a distinct source IP address 
from set I(b). Including the original request packet, there are in total II(b)1 + 1 packets to be sent to 
peer A. For each obscure bot, we define its obfuscation window as w time units . We randomly reorder 
the II(b)1 + 1 packets as Po, PI, ... , and PII(b)I' Packet Po is sent out at time t. The interval between the 
sending times of packet Pi and PHI where i = 0,1, .. . , II(b)1 is drawn from an exponential distribution 
with mean w/II(b)l· 

As the order of the packets is random, the recipient peer, if it is a monitoring node by the adversary, 
cannot determine which packet carries the authentic source IP address. The problem with this scheme is 
that every time a request packet with an authentic source IP is sent, packets with all associated spoofing 
IP addresses are also sent to the recipient . Hence, if the recipient is a monitoring node deployed by the 
ad versary, she can cluster IP addresses with the same (or approximately the same) number of appearances 
within w time units. It is highly unlikely that source IP addresses in normal requests packet would show 
such strong correlation as in the naive obfuscation scheme. As such, even though the adversary does 
not know exactly which source IP adqress is authentic, he can still infer the actual size of the botnet by 
assuming that IP addresses frequently appearing in the same interval of w time units would come from 
the same obscure bot. 

It is noted that request packets are usually used by a bot to search for C&C messages from the bot­
master. Hence, to prevent correlation-based analysis, RatBot uses a session-level obfuscation scheme for 
each search operation. Figure 2 illustrates the difference between packet-level and session-level obfusca-
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tion. Suppose that an obscure bot needs to find a data item with key /C. We call it an authentic session, 
which contains the whole sequence of the peer nodes this bot has contacted in order to accomplish this 
search operation. 

For each of its spoofing IP addresses, the obscure bot will create a spoofing session, which contains 
a sequence of peer nodes that are randomly drawn from a local peer node repository. This repository, 
denoted R, contains peers that were observed in the past authentic sessions and also the current neighbors 
that the obscure bot knows. It is noted that peers in an authentic session may appear with a certain 
order. For instance, when a bot searches a data ite,r- with key /C in a DHT P2P network , peers in 
the authentic session are ordered (or partially ordefl in their distances from key ID /C. Hence, when 
constructing the sequence of peers in a spoofing session, such orders are also mimicked. 

The intervals between the starting times of sessions, includiIlg both authelltic alld spoofillg OIlCS, arc 
randomly drawn from an exponential distribution with mean., time units. The order of the starting 
times of Spoofillg sessions is ralldolllizcd. TIl<' <llltlwlItic session is inserted among the top cj; Spoofillg 
sessions, if there are so many, and its place is also randomly chosen. The decision on cj; should make it 
difficult to tell which session is allthentic bllt meanwhile ensure that the start of the authentic session 
would not be postponed significantly due to obfuscation. In our implementation , we let cj; be 5. 

Let III oenote the empirical oistriblltion of the nllmber of reqllest packets sent in an authentic session. 
For each spoofing session, we use III to generate the number of request packets. Each of these request 
packet carries the spoofing IP aooress &<; its source IP ano search key /C, and is sent to every peer node 
in the corresponding spoofing session. The interval between two request packets is randomly drawn from 
the empirical distribution of the intervals between request packets in the past authentic sessions. We use 
r to denote this distribution. To obtain III and r quickly, the obscure bot can search data objects with 
keys that are randomly generated. 

When the host machine of the obscure bot powers off, the bot automatically becomes offline and all 
the packets scheduled to be transmitted before that are lost and thus not carried over to the next time 
when the machine becomes online again. Hence, the bot does not need to keep states on a permanent 
storage. 

Data transfer packets. If botnet C&C information is stored as a file in a P2P network, each bot 
needs to fetch the file from the host machine. If RatBot is designed ~o be an exclusive P2P botnet, UDP 
can be chosen for data transfer. Otherwise, if it is an immersive P2P botnet, RatBot makes its decisions 
in the following order: (1) If the C&C information can be spread without involving data transfer, RatBot 
will not use data transfer. For instance, C&C information can be stored as metadata tags in a KAD­
based P2P network , (2) If the P2P network allows UDP for data transfer, RatBot will use UDP instead 
of TCP for data transfer. (3) Only if the P2P network uses only TCP for data transfer, RatBot would 
use TCP. It is noted that the third option exposes the identity of obscure bots if the peer hosting the 
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C&C information is actually a monitoring node deployed the adversary. This is because TCP requires a 
three-way handshake between the obscure bot and thus the host machine and the connection cannot be 
spoofed. 

5 Rationale and Analysis 

In this section, we explain why a high variance distribution such as the Pareto distribution is used to 
generate Xi in Section 4.2. As we assume a strong adversarial model in which the adversary knows the 
distribution used to generated Xi, we must ensure that the adversary's knowledge does not lead to a 
good estimation of the bot net size. The adversary also knows that that an observed IP address cannot be 
from an explicit bot if it is used in response packets. Let M be the number of IP addresses observed by 
the adversary that never respond to any requests. The challenge is: can the adversary infer the number 
of obscure bots provided that he knows the distribution used to generate Xi? 

If only the distribution-level obfuscation is used , all Xi are independent and identically-distributed 
random variables. According to the law of large numbers, L~=l Xi always approaches n/1, where /1 is 
the mean of Xi, when n is large. As the adversary knows the distribution and thus /1, he can estimate 
the bot net size as Mj(/1 + 1). To defeat this type of inference, it is necessary to use a distribution that 
converges so slowly that L~=l Xi can still be far away from n/1 at reasonable scales of botnet sizes. 

The Chebyshev 'S inequality tells us that IP'{IY - YI 2: t} ~ C 2Var(Y), where Y and Var(Y) are 
the mean and variance of random variable Y, respectively. Hence, the convergence speed of L~= l Xi 
is affected by the variation of Xi. That explains our choice of the Pareto distribution: for (X < 2, its 
variation is infinite and thus slows down the convergence of L~=l Xi. This is further illustrated by the 
following empirical example. 

Suppose that there are 10,000 obscure bots and the average number of spoofing IP addresses an 
obscure bot gellerates is 20. We cOllsider four differellt settings for the scale parameter: (Y. = 1.01, 1.1, 
1.5, and 1.8. We set the cutoff parameter accordingly to obtain the same mean for Xi. We simulate 1000 
cases with diffcrcllt random HUlllber gelleration seeds. In each case, we assume that the ad versary sees 
all the obscure and spoofed IP addresses. Let the observed total number be M. The ad versary estimates 
the number of actual obscure IP addresses as Mj21 as each obscure IP address has 20 spoofed ones. The 
following table shows the mean and the standard deviation of the adversary 's estimation: 

a 1.01 1.1 1.5 1.8 
mean 23596.80 81758.83 99854.08 99962.19 
std 83014.82 91258.15 4553.54 1262.98 

From the table, it is clear that when a is close to 1, the variability of the estimated bot size becomes 
more significant. For instance, when a = 1.01 , even after 1000 sample runs, the derived mean is still 
far away from the actual one, which is 100000. In reality, the adversary witnesses the result of only one 
sample; hence, if a is small and thus the variability is very high, the adversary will get an estimate on 
the botnet size with high variation . 

It is however important to understand the limitation of using heavy tailed distributions such as the 
Pareto distribution in generating Xi, even though they can produce highly variable results . The high 
variation of these distributions actually results from their high skewness in their probability density 
functions. Figure 3 depicts the probability density function of the Pareto distribution when a = 1.01 
and the mean is 20. Clearly, it is highly skewed as IP'(Xi ~ 1) = 0.805, which means that around 80% of 
the data points, if drawn from this distribution, would stay below 1. 

To see how this would help the adversary estimate the actual size of the botnet, we simulate the 
observed number of spoofing IPs when there are 1000, 10000, 100000, and 1000000 obscure bots. Each 
obscure bot uses the Pareto distribution with mean 20 and scale parameter 1.01 to generate the n~mber 

8 



~ 6 ~-~--~-~-~----, 
c 

.Q 5 
<> c 
.2 4 
C 
.~ 3 
Q) 

"C 2 

~ ~ I 0 L-__ ~~ ______________ ~ 
o 234 5 

x 

Figure 3. PDF of Pareto distribution 

10+08 r----~-~-----__._-_, 
1000000 slX)ofing IPs . 

100000 spoofing IPs 
10000 spoofing IPs ." 
1000 spooling IPs :) 

10+07 

1.-Hl6 

15 100000 

.8 
E 
i! 
u ., 
~ 
'" o 

10000 :« .,:,:" "0.' '. 0 ::~!>.;f : ..... 
1000 ~i. _.' o o~~ ... "';:. ~:" 1'L"'~ 0 ~~~{.,: 
100 

10 L-------~--~------~ 

o 200 400 600 800 1000 

Sample run 10 

Figure 4. Observed spoofing IPs 

of spoofing IP addresses. For each scenario, we simulate 1000 times. The results are shown in Figure 4, 
where each data point represents the number of observed spoofing IPs. It is noted that for each scenario, 
the number of observed spoofing IPs is highly clustered among the 1000 sample runs . Suppose that the 
adversary has observed 3000 spoofing IP addresses. Then, he can infer that the real size of the botnet is 
likely to lie between 10000 and 100000. In the design of RatBot, we thus use another level of obfuscation 
(i.e., parameter-level obfuscation) to defeat such kind of statistical inferences. 

In the following, we establish the relative error of the adversary's estimate on the botnet size: 

Proposition 1 Consider a RatBot botnet which has n bots. In this botnet, the fraction of obscure bots is 
~ and n' spoofed IP addresses are generated. Suppose that through monitoring, the adversary knows both 
the exact number of explicit bots and the sum of the numbers of obscure bots and spoofed IP addresses. 
Then, the relative error of his estimation on the botnet size e is bounded as follows : ~ S e S n'ln. 

Proof. Let n denote the adversary's estimate on the botnet size. Obviously, (1 - ~)n S n S n' + n. We 
can thus derive the relative error of his estimation as in the proposition. 0 

From the proposition, we know that high values of ~ and n' help increase the low and upper bound of 
the relative error, respectively. 

6 Kad-Based RatBot Implementation 

In this section, we discuss how to implement RatBot based on KAD, which extends from the Kademlia 
protocol proposed by Maymounkov and Mazieres [18]. We refer interested readers to the literature [18 , 6J 
for more details about Kademlia and KAD. Our implementation of RatBot is based on a popular KAD 
client, aMule2 . UDP is used in aMule for searching and publishing data objects. If it is an explicit 
bot, we keep the original implementation intact . Otherwise if it is an obscure bot, we make the fol­
lowing modifications. First, when the bot receives a request message, it drops the message immedi­
ately. A request message in KAD carries some special operation codes, such as KADEMLIAJfELLO...R.EQ, 
KADEMLIA_SEARCH...R.EQ, KADEMLIA...R.EQ, KADEMLIA.J>UBLISH...R.EQ, etc. 

Second, in the KAD protocol peers regularly send KADEMLIAJfELLO...R.EQ messages to each other to 
exchange liveness information. It is noted that the adversary can use such messages to determine whether 
a peer is an obscure bot or just a spoofed IP address. There are two solutions to this. One option is 
that the obscure bot obfuscates these messages as well, using spoofing IP addresses. The flip side of this 
approach is that peers may inject those spoofed IP addresses into their routing tables, thus affecting 
normal routing operations. The other solution is that an obscure bot does not send out such messages at 
all. Even though obscure bots and their spoofed IP addresses may still be inserted into their neighbors' 

2The version we used in our study is alvlule 2.1.3. 
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routing tables when their neighbors receive search requests from them, the lack of liveness messages 
makes them less likely to be chosen in a search process because KAD prefers long-lived nodes when 
forwarding search requests. Also, when a peer node finds that a neighbor has not been alive for a certain 
period of time, it removes that neighbor from its routing table. Given these considerations, we adopt the 
second approach in our implementation. 

Third, as obscure bots do not send out KADEMLIAJIELLD-REQ messages to their peers, their peers do not 
send back response messages with type KADEMLIA JIELLD-RES. According to the standard KAD protocol, 
obscure bots' routing tables would shrink faster because neighbors without liveness messages are removed 
from the routing table after a certain period of time. To avoid this, we increase the longevity of each 
neighbor without liveness messages in an obscure bot 's routing table from the original two minutes to 
two hours. 

Fourth, when an obscure bot initiates a search operation with key K at time t , it acts as discussed in 
Section 4.3. The distributions r and II' are obtained by running some random searches . A possibility 
for the contact repository R can be the neighbors that are in the routing table. The problem for this 
approach is that not all these neighbors have been contacted in the past authentic search sessions. To 
make spoofing search sessions mimic authentic search sessions, we maintain a separate contact list at 
each obscure bot. The list records the last 50 contacts (not necessarily unique) used in authentic search 
sessions. When an obscure bot tries to obtain a contact in a spoofed session from R, it uses that contact 
list to derive the frequency histogram of each contact on it and randomly chooses a contact based on the 
empirical frequency distribution. Also, an obscure bot orders request packets in a spoofing session with 
search key K according to the XOR metric distance between the recipient of the request packet and K. 
This is because in a KAD search operation peers are recursively requested until their IDs get close to 
the ID of the requested object. 

Fifth, it is noted that a KAD node initiates some random searches when it observes that a bucket 
does not have enough contacts in its routing table. For an obscure bot, it has to use its authentic IP 
address for such random lookups. It is necessary to obfuscate these searches also, because otherwise the 
adversary can infer whether an observed IP address is authentic or not by how many unique keys it uses 
for searching. In our implementation, we obfuscate these random searches as well in a similar fashion . 

Finally, we let RatBot use the metadata tags in KAD, such as filenames, to hide C&C information. 
Hence, no data transfer is needed for normal bot operations. Also, obscure bots never publish any 
information into the P2P network; they only passively search commands given from the botmaster. 
The bot master uses only explicit bots to publish his C&C information. It is worth noting that this 
implementation has some implications. In some circumstances, the bot master wants to collect certain 
information (i.e., credit card information on compromised machines) harvested by each bot. As the 
KAD-based RatBot does not allow obscure bots to publish information, these bots have to use other 
communication channels instead of the P2P network itself to send back information requested by the 
botmaster. For instance, the botmaster can specify a data collection server or an email address in the 
C&C message to which each bot should report. 

7 Experimental Evaluation 

We now evaluate the effectiveness of Rat Bot in preventing the adversary from obtaining an accurate 
estimate on the botnet size. Due to the destructive nature of RatBot, we do this in a simulated en­
vironment to avoid legal and ethical issues . As mentioned earlier, our KAD-based implementation of 
RatBot used the actual implementation code of aMule. We further intercepted all system calls in it, 
such as time-related and socket functions and replaced them with simulated function calls specific to our 
local distributed simulation platform. According to the literature , behaviors of both normal P2P users 
and bots exhibit strong time zone effects [25, 8]. To incorporate these details into our simulation, we 
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model the geographic distribution of normal KAD peers based on previous measurements on the KAD 
network [25] and that of bots according to the Storm botnet IP distribution [5]. 

Our model of normal P2P user behaviors is based on the observations on the online patterns of normal 
KAD users [24]. The starting time of a normal peer being online is modeled with a Gaussian distribution 
with mean at 7:00iSm and standard deviation at 2 hours, and the duration of an online session is generated 
with a three-parameter Weibull distribution. The online activity Illode! of a bot lllachillc is silllply defillcd 
as follows: the starting time of it being online is drawn from a Gaussian distribution with mean at 8:00am 
and the end time is drawn from a Gaussian distribution with mean at 6:00pm; for both distributions, 
the standard deviation is one hour. This model reflects people's normal work hours. 

The nllmber of spoofing IP addresses corresponding to an obscure bot is generated from a Pareto 
distribution whose parameters are set as follows. Let us number the 24 time zones from 1 to 24. The 
mean of the Pareto distribution is drawn from a Gaussian distribution with mean and standard deviation 
set as 2z and 4z, respectively, where z is the time zone number of the obscure bot. The scale parameter 
of the Pareto distribution is 1.05 and it.s cut.off par<ll11eter can be calculated accordingly from its mean. 

7.1 Exclusive RatBot 

In the first set of experiments, we study the behavior dynamics of exclusive RatBots. We let the 
botmaster send out a command every day. To improve the reachability of the command to individual 
bots, the botmaster uses five bots to publish it with 32 keys3 periodically every 100 seconds. Each 
individual bot, when online, periodically searches the command every 100 seconds with these 32 keys 
until it gets the command successfully. In the experiments, we simulate 10,000 bots and vary the number 
of obscure bots among {1000 x i};=O,1 .2,3,4.5. Among the 10,000 bots, 10% of them are P2P servers that 
always stay online. We assume a strong adversarial model in which the adversary controls 10 servers 
that can be used to monitor bot traffic . We simulate the bot net for two days: the first day is used as a 
ramp-up phase for each obscure bot to obtain some empirical distributions, and the second day is used 
for testing. For each scenario, we simulate it for 20 times with different random number seeds. 

We first verify our implementation to ensure that behaviors of spoofing sessions are close to those 
of authentic sessions. In Figure 5, we depict the frequency histogram of the number of appearances of 
packets from spoofing and authentic sessions observed by the monitors, respectively, in five runs when 
there are 1000 obscure bots. There is no obvious systematic difference between authentic and spoofing 
sessions that can be exploited to differentiate them. From the simulation results, we also note that 

3We use 32 keys here to mimic the behavior of Storm botnet. 
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regardless of the number of obscure bots in the RatBot, almost every individual bot gets the command 
eventually. Hence, the existence of obscure bots does not affect the utility of the P2P botnet. 

Figure 6 gives the median, smallest, and largest number of IP addresses observed by the adversary 
in 20 sample runs eventually and after one day, respectively, under different number of obscure bots. 
In the eventual results, we show the total Humber of spoofing IP addresses generated by obscure bots 
plus the number of actual bots. We notice that after one day, the adversary observes a large fraction of 
both actual and spoofing IP addresses. This is becallse we assllme a strong adversarial model where the 
adversary is able to deploy monitors among the core servers of the P2P botnet and the bots search the 
command frequently. 

Unsurprisingly, if we increase the number of obscure bots, the number of observed IP addresses by 
the adversary also increases. When there are 4000 or 5000 obscure bots, there are cases where the 
total number of IP addresses observed by the adversary exceeds 100,000, suggesting that the obfuscation 
technique of RatBot can lead to an overestimation more than 10 times of its actual size. On the other 
hand, given the same number of obscure bots, the observed number of IP addresses also varies significantly 
among different runs . In some scenarios, the largest number of IP addresses observed is twice as much 
as the smallest number of IP address observed in the 20 sample runs. It is also noted that the median 
tends to be close to the minimum due to the fact that the Pareto distribution is skewed towards its cutoff 
parameter at its lower end . 

7.2 Immersive RatBot 

In the second set of experiments, we evaluate how immersive RatBot. affects t.he accuracy of botnet 
size estimation. We simulate a P2P network with 7,000 normal peers and 3,000 bots. The botmaster 
users five bots to publish commands with 32 keys periodically every half hour. Each bot uses these 
32 keys to search for the current command every half hour until it obtains the command successfully. 
Here, we let bots perform publish and search operations less frequently than those in exclusive RatBot 
because normal P2P peers may treat these bots performing frequent operations as abnormal and thus 
limit interations with them. Among 7,000 normal peers, 990 of them always stay online as servers. We 
assume the adversary deploys 10 monitors in the network and they appear as servers always online. Each 
monitor is also a captured bot and can be used to reveal the 32 keys used by the bots to search the 
current command. The monitor identifies a peer as a bot if it observes that the peer uses any of these 
keys to search or publish a data item in the P2P network . 

We vary the number of obscure bots among 0, 1000, 2000, and 3000 in the experiments. For each 
scenario, we simulate it for four days, the first of which is used as a ramp-up phase for each obscure bot 
to obtain some empirical distributions and the remaining days are used for testing. We simulate each 
scenario 20 times with different random number generation seeds. 

In the experiments, we observe that all the bots were able to obtain the command correctly, suggesting 
that the existence of obscure bots does not affect the normal operation of the P2P botnet. Figure 7 depicts 
the number of bots observed hy the adversary under different numbers of obscure bots. For visual clarity, 
we shift the points horizontally slightly to prevent overlapping. For each scenario, we show the median, 
minimum, and maximum among the 20 sample runs . The results corresponding to "Eventually" show 
the sum of both the number of authentic bots (including obscure bots) and the total number of spoofing 
IP addressed generated by all obscure bots. 

According to the results, we make the following observations. First, the existence of obscure bots 
produces estimated botnet sizes with high variation. For instance, after three days, if there are no 
obscure bots, the ratio of the maximum and the minimum of observed bots is 1.016; when we introduce 
1000, 2000, and 3000 obscure bots, the ratio becomes 3.405, 2.637, and 2.006, respectively. Such high 
variation renders it difficult for the adversary to infer the true size of the botnet. Second, it is obvious 
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that increasing the number of obscure bots helps inflate the number of observed bots by the adversary. 
When there are 1000 obscure bots, the ratio of the median number of observed bots after three days to 
the true size of the botnet is only 4.5, but when there are 3000 obscure bots, this number becomes 12.8. 
Hence, the botmater can use the fraction of obscure bots in the network to control how much error the 
adversary's estimate of the bot net size can have. 

8 Countermeasures 

In this section, we present a few countermeasures tha t can potentially defeat the obfuscation techniques 
deployed by RatBot. First, RatBot requires each bot to contact a central server to decide whether it 
should work as an obscure bot. The server can easi ly become a single point of failure , unless the botnet 
applies advanced fast-flux techniques to improve its resilience. If the adversary manages to monitor 
traffic from and/or to this server, the identities of true bots can be revealed. 

Second , in order for RatBot to operate, the search operation must be spoofable. Hence, if a P2P 
network deploys anti-spoofing techniques, RatBot cannot survive in it. For example, the P2P network 
can simply use TCP for all signaling and data transfers. Even if UDP is used for signaling, the P2P 
network can add a level of anti-spoofing mechanism in a query: when Peer A receives a query from Peer 
B, it sends back a confirmation request to Peer B and only answers Peer B's query after receiving a reply 
from Peer B on its request. It is noted that this countermeasure works only against immersive RatBot 
because the botnet has to be blended into an existing P2P network. 

Third, if the RatBot needs TCP data transfer to fetch the command, the adversary can deploy monitors 
in the P2P network and place those command data on them. By monitoring which machines fetch the 
command data, the adversary can obtain a list of authentic bots as the three-way handshaking mechanism 
in TCP cannot be spoofed with spurious IP addresses. 

Fourth, allotlier effective approach to ddeat RatI30t is deploying anti-spoofing teclllliqlws in tlw whole 
Internet. The degree to which the RatBot can obfuscate its size depends on how many obscure bots it 
has to perform spoofing operations. If the majority of Int.ernet addresses cannot be spoofed, we can still 
obtain a good estimate on the size of RatBot by simply ignoring those obscure bots. 

9 Conclusions 

The latest generation of botnets has adopted the P2P structure to improve their resilience against a 
single point of failure . A number of efforts have been dedicated to estimating existing P2P botnets such as 
the Storm botnet. In this work, we explore the strategies that an attacker may have to obfuscate the sizes 
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of P2P botnets. We hope our work will raise the awareness of white-hat practitioners on the challenges 
of estimating the sizes of P2P botnets accurately and adopt effective countermeasures in practice. 
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