LA-UR- /O-05%27

Approved for public release;
distribution is unlimited.

Title: | RatBot: Anti-Enumeration Peer-to-Peer Botnets

Author(s): | Guanhua Yan, Z# 208461, CCS-3
Stephan Eidenbenz, Z# 173410, CCS-3
Songqing Chen, George Mason University

Intended for: | 2010 Annual Computer Security Applications Conference

.
- Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25386. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

RatBot: Anti-Enumeration Peer-to-Peer Botnets

Guanhua Yan! Songging Chen! Stephan Eidenbenz!

f Information Sciences (CCS-3) } Department of Computer Science
Los Alamos National Laboratory George Mason University

Abstract

Botnets have emerged as one of the most severe cyber threats in recent years. To obtain high resilience
against a single point of failure, the new generation of botnets have adopted the peer-to-peer (P2P)
structure. One critical question regarding these P2P botnets is: how big are they indeed? To address this
question, researchers have proposed both actively crawling and passively monitoring methods [15, 14, 13]
to enumerate existing P2P botnets. In this work, we go further to explore the potential strategies that
botnets may have to obfuscate their true sizes. Towards this end, this paper introduces RatBot, a P2P
botnet that applies some statistical techniques to defeat existing P2P botnet enumeration methods. The
key ideas of RatBot are two-fold: (1) there exist a fraction of bots that are indistinguishable from their
fake identities, which are spooﬁng [P addresses they use to hide themselves; (2) we use a heavy-tailed
distribution to generate the num,é\b;‘r of fake identities for each of these bots so that the sum of observed fake
tdentities converges only slowly" and thus has high variation. We use large-scale high-fidelity simulation
to quantify the estimation errors under diverse settings, and the results show that a naive enumeration
technique can overestimate the sizes of P2P botnets by one order of magnitude. We believe that our work
reveals new challenges of accurately estimating the sizes of P2P botnets, and hope that it will raise the
awareness of security practitioners with these challenges. We further suggest a few countermeasures that
can potentially defeat RatBot’s anti-enumeration scheme.

1 Introduction

Peer-to-peer botnets have gained a lot of attention in the research community due to the exposure of
the Storm botnet, which was first spotted in 2007. Compared with the first generation of botnets that
commonly relied on IRC channels for C&C (Command and Control) delivery, peer-to-peer botnets do not
suffer a single point of failure and are thus difficult to disrupt. Due to the lack of a central controller, a
challenging yet intriguing question regarding peer-to-peer botnets is: how big are they indeed? The effort
of seeking the answer to this question is not only driven by our curiosity but also justified by the fact
that knowing the size of a botnet sheds light on its attack capacity, that is, how many zombie machines
the botmaster can control at his will.

Since the inception of the Storm botnet, there have been a few endeavors to estimate its exact size,
which sometimes led to inconsistent results. Some researchers estimated that the original Storm botnet
possessed as many as 50 million zombie machines [27]. Kanich et al. developed a crawler called Stor-
mdrain, which identified Storm bots by looking for nodes that searched hashes specific to the Storm
botnet, and concluded that the actual size of the Storm botnet was likely smaller than 40,000 [15]. Re-
cently, Kang et al. made another attempt to estimate the size of the Storm botnet. They adopted a

passive monitoring approach and found more than 500,000 unique IP addresses in the Storm botnet [14].
Atbeit it is true that the Storm botnet has been evolving since its debut, thus leading to different results
if measured at different times, it is difficult to quantify the errors of these estimates due to the lack of
ground truth regarding its real size.

What makes the situation worse is that peer-to-peer botnets may use obfuscation techniques to foil
attempts to estimate their actual sizes. In this work, through the demonstration of a hypothetical peer-
to-peer botnet called RatBot, we shall show that such techniques do exist and can actually lead to highly
variable estimates on botnet sizes. The key ideas of RatBot are two-fold: (1) there exist a fraction
of bots that are indistinguishable from their fake identities, which are spoofing IP addresses they usc
to hide themselves; (2) we use a heavy-tailed distribution to generate the numebr of fake identities for
each of these bots so that the sum of observed fake identities converges only slowly and thus has high
variation. These two techniques render it difficult to infer the exact sizes of this type of P2P botnets by
enumerating participating bots.

To demonstrate the practical feasibility of RatBot, we implement it based on KAD, a popular P2P
protocol. We use the actual development code of aMule, a P2P client software that uses KAD for its P2P
communications [2]. We further develop a distributed simulation testbed to evaluate the effectiveness of
RatBot in misleading the estimation on the botnet sizes. We perform a variety of tests with different
settings and the results show that a naive botnet enumeration approach by counting the IP addresses
observed from the P2P botnets could overestimate their sizes by one order of magnitude.

The goal of our work is to raise the awareness of white-hat cyber-security practitioners on the challenges
of inferring botnet sizes. Measurement works on existing P2P botnets have highlighted some difficulties
on estimating their sizes accurately, such as DHCP and NAT effects [14, 30], but our work shows that
even if we deploy advanced techniques to sift out these factors, the botnets themshelves can still apply
obfuscation techniques to make it a difficult task to estimate their sizes accurately. Moreover, although
there have been previous efforts on exploring hypothetical P2P-based botnets with high resilience [29],
delay tolerance [7], and membership hiding using sophisticated encryption [23], this work fills the gap
of understanding potential strategies that attackers may have on obfuscating the sizes of P2P-based
botnets. In our work, we use large-scale high-fidelity botnet simulation to quantify the errors of botnet
size estimation, which has not been pursued before.

The remainder of this paper is organized as follows. Section 2 presents related work and Section 3
gives the the threat model considered by this work. In Section 4, we discuss the design of RatBot,
which is aimed at obfuscating the estimation of botnet sizes, and provide the rationale of such design in
Section 5. We introduce the implementation of RatBot based on KAD in Section 6 and use large-scale
simulation to evaluate the performance of RatBot in Section 7. In Section 8, we further discuss potential
countermeasures against RatBot and draw concluding remarks in Section 9.

2 Related Work

Behaviors of real-world botnets have been analyzed and this line of work has provided tremendous
insights into how botnets operate in reality {3, 20, 13, 15, 14]. Our work on studying enumeration of P2P
botnets was particularly motivated by the measurement work done by Holz et al. [13] and Kang et al. [14].
Complementary to their efforts, our work sheds light on the potential challenges regarding enumerating
zombie machines in P2P botnets accurately. In spirit, our work is similar to that of Rajab et al. [21]
as both explore the challenges of estimating botnet sizes. Our work, however, focuses on P2P botnets
while theirs is primarily concerned with IRC botnets. Although like RatBot, the cloning technique
mentioned in their work also leads to overestimated botnet sizes, the implementations differ drastically
due to different botuet structures. Somie previous work has sliown that multiple factors contribute to
inaccurate botnet size estimation, including DHCP and NAT effects [26]. Our results show that even if

advanced techniques are deployed to sift out these effects [14, 30], the botnet can still adopt sophisticated
obfuscation techniques to make it a difficult task to estimate its size accurately.

To counter the severe cyber threats posed by botnets, a plethora of detection techniques have been
developed recently. Gu et al. have proposed a series of bot detection methods exploiting spatial-temporal
correlation inherent in bot activities [11, 10, 12]. A technique using virtual machines to detect bot-
like activities on individual hosts have also been developed [17]. Other botnet detection techniques
include DNS-based methods [22], ISP-level analysis [16], signature-based approaches [9, 31], and flow-
level aggregation and mining [32]. Our work is orthogonal to these efforts and focuses on the challenges
of estimating botnet sizes.

A number of efforts have been dedicated to understanding potential threats by hypothetic botnets,
such as Super-Botnet [28], Overbot [23], delay-tolerant botnets [7], and hybrid P2P botnets [29]. Our
work differs significantly from this line of work on two aspects. First, our work focuses specifically on
hypothetic P2P botnets that use obfuscation techniques to render it difficult to estimate their true sizes.
Second, we have used large-scale high-fidelity simulation to quantify the estimation errors under diverse
settings rather than present the design from a conceptual level.

3 Threat Model

In this work, we consider two families of P2P botnets: immersive P2P botnets and exclusive P2P
botnets. For an immersive P2P botnet, the botmaster delivers C&C information through a P2P network
that has normal P2P users besides bots. The original Storm botnet, for instance, was an immersive P2P
botnet because the C&C information was delivered to the Storm bots through the Overnet network. An
exclusive P2P botnet, by contrast, has bots exclusively as its peers and thus does not have any normal
P2P user traffic in it. Since the Overnet network was shut down, the Storm botnet became an exclusive
P2P botnet dubbed Stormnet because only bots can participate in the botnet after some authentication.

The two primitive operations in a P2P network are publish and search. The publish primitive is used
to publish a data item either on the machine used by the caller itself (e.g., in an unstructured P2P
network like Gnutella) or on a machine with an identifier that is close to that of the data object (e.g.,
in a structured P2P network like Kademlia). The search primitive is used by a peer node to search
for data items that satisfy some specific conditions, such as containing certain keywords or producing a
certain hash digest. In this work, we assume that in the P2P network search operations are spoofable,
that is to say, a peer node can request a peer to find a data item using a spoofed source IP address.
This holds for many P2P networks, which use UDP to implement the request/response mechanism in a
search operation. For instance, the widely deployed KAD protocol uses UDP for signaling and TCP for
data transfers [19]; hence, the search operation in KAD is spoofable.

It will be seen later that spoofable search operations play a key role in the design of RatBot for hiding
authentic search operations. It is, however, noted that these constraints limit the design of RatBot
only if it is implemented as an immersive P2P botnet. For an exclusive P2P botnet, as bots do not
require an existing P2P network for their C&C communications, the botmaster has more freedom on the
implementation of spoofable search operations.

In this work, we assume a strong adversarial model from the attacker’s standpoint. First, we do not
assume that the P2P botnet deploys a strong authentication scheme. The recent efforts of successfully
reverse-engineering the Storm bot executable have suggested that it is possible to reveal secret keys
used for bot communications through static or dynamic malware analysis [13, 14]. A white-hat security
analyst can thus create fake bots to infiltrate into the P2P botnet, as demonstrated in some previous
work [13, 14]. Second, we also assume that the white-hat security analyst, through thorough static code
analysis, possesses full knowledge on the functionalities of an authentic bot, including its communication
protocol and anti-enumeration techniques. Third, we assume that the behaviors of a fake bot and an

Normal peer
Explicit bot
Obscure bot

B s A's neighbor ©

Figure 1. RatBot Architecture

authentic bot are indistinguishable to the bots. A fake bot can intercept any message that passes through
it, thus obtaining the source IP address it has used. Fourth, a fake bot may also stay in the P2P botnet
for a long time so that for some P2P protocols (e.g., KAD) a large number of peer nodes would add it
to their contact lists, or actively crawl the P2P network to obtain a list of observed P2P nodes.

In the remainfeg=of this paper, we will use the adversary and the white-hat security analyst inter-
changeably. Even with a strong adversarial model, we, through the demonstration of RatBot, shall show
that an anti-enumeration P2P botnet can be designed in such a way that it is difficult for the adversary
to estimate the exact number of authentic bots in it.

4 RatBot Design

The key idea of RatBot is the existence of an army of obscure bots, each of which creates a list of
fake identities to hide itself. In this work, we assume that the identity of a bot is manifested as the IP
address that it uses to communicate with other peers in the network. Although the P2P identifier (e.g.,
KAD ID) of a bot can also be used for enumeration purpose, these identifiers sometimes can be changed
by bots, thus leading to inaccurate estimate of the botnet size. Moreover, a compromised machine can
run multiple instances of bot executable and counting each instance as a bot overestimates the size of a
botnet and thus its attack capacity.

As opposed to obscure bots, we say the remaining bots are ezplicit bots. In the following discussion,
we assume a strong adversarial model in which all explicit bots can be enumerated. In Figure 1, we
present the architecture of RatBot in the form of an immersive P2P botnet. If RatBot is an exclusive
P2P botnet, no normal peers would exist in the figure.

4.1 Obscure Bot Selection

When a machine is infected and becomes a bot, it decides whether it should be an obscure bot. An
obscure bot uses spoofed IP packets to hide its true identity. It is therefore crucial that an obscure bot
must be able to spoof IP packets. Not every end host in the Internet, however, possesses such a capability
for a few reasons [4]. A packet spoofed by a machine behind NAT (Network Address Translation) may
not reach the destination because its packet header is rewritten or even dropped by the NAT device
because it violates the binding of link-layer and IP addresses. Some networks may block outbound
packets with spoofed IP addresses at their firewalls. Also, it is possible that the operating system does
not allow tossemetspoofed packets?;{'vijhé"t'o":vcﬁese reasons, Beverly et al. found that among 12,000 client
machines volunteered by Internet users, only 31% of them are able to spoof an arbitrary, routable source
address [4].

As a bot may not be able to decide whether it can spoof IP packets by itself, we let each bot contact
a dedicated server during its bootstrapping phase. The server is hardcoded in the bot executable code'.

'In order to improve the resilience of the botnet, multiple servers can be specified in the executable code. Also, fast Alux

When a bot contacts a server, it generates a UDP query packet with an arbitrary spoofed source; the
payload of the packet carries the authentic IP address of the bot. If the packet arrives at the server, it
means that the bot is capable of spoofing. The server decides whether the bot should become an obscure
bot and if so, sends back a response packet to the bot using its authentic IP address carried in the query
packet. If the bot receives the response packet within a certain period of time, it becomes an obscure
bot; otherwise, it is an explicit bot.

How does the server decide whether a bot should be an obscure bot? Suppose that it knows the size
of the current botnet; this can be done by simply letting each newly infected bot report to it using
their authentic IP addresses. The server then makes its decision by aiming to have a fraction £ of the
entire botnet as obscure bots. £ is not hardcoded in the bot executable and it is thus not known to the
adversary. Hence, the adversary cannot estimate the botnet size as m/(1 — &), where m is the number
of explicit bots that he has observed.

4.2 Identity Obfuscation

Once a bot decides that it is an obscure bot, it randomly generates a list of spoofing IP addresses that
it will use to obfuscate its own IP address later in P2P communications. For a given obsecure bot, how
many spoofing IP addresses does it create? The answer provides a key role in the level of difficulty for
the adversary to infer the correct size of the botnet. Consider a simple scheme in which each obscure
bot generates a constant number & of spoofing IP addresses. Suppose that the adversary can obtain a
set of IP addresses S that do not respond to normal P2P requests as completely as possible. Then, the
number of obscure bots can be estimated at |S|/(k+ 1) if it is assumed that spoofing IP addresses do not
overlap. It is noted that as obscure bots generate spoofing IP addresses independently, these spoofing
IP addresses may overlap in practice. Given that the large IP address space to spoof, such overlapping
likelihood should be low. The existence of overlapping spoofing IP addresses leads to a smaller number
of IP addresses observed by the adversary.

Consider a botnet with n obscure bots. Let X; denote the number of spoofing IP addresses each
obscure bot i generates. RatBot uses two levels of obfuscation for X;. For the first level (distribution-
level obfuscation), RatBot uses a distribution with high variation to generate X;. We consider the
Pareto distribution, whose density function is given by:

Flz) = { ;’uif’lh for x > x,,
0 for x < xpm,

where z,, and « are the cutoff and scale parameters, respectively. The mean of the Pareto distribution
is oz, /(a — 1) and its variance is (z,,/(a — 1)) - a/(a — 2). It is noted that when o < 2, the variance
becomes infinite. If we set o < 2, then we cannot apply the central limit theorem on 377, X; due to the
infinite variance. It is noted that X; drawn from the Pareto distribution is a float number. In practice,
we generate | X;| spoofing IP addresses for sure, where |z| denotes the largest integer no greater than
z, and an extra one with probability X; — | Xi].

In Section 5, we shall present the rationale behind using the Pareto distribution for generating X;
and also its limitation. To make size estimation even more difficult, RatBot employs another level of
obfuscation in generating X; (parameter-level obfuscation). Instead of using a fixed mean for X;, the
mean of X; on the i-th obscure actually depends on certain attributes of the bot itself. Measurements
from the Storm botnet suggest that bot infection is not uniformly distributed either over different ASes or
geographically [5]. Provided this observation, we let the mean number of spoofing IP addresses generated
by an obscure bot be a function of the time zone where the bot is located. In previous works, security

techniques can be used to prevent easy disruption by the adversary.

ol
T

analysts use the observed IP addresses to derlve their geographic locations using IP geolocation tools [1]
and thus their corresponding time zones. y/nbw spoofed IP addresses are used, it is difficult to accurately
infer the time zone of each bot, which renders it hard to estimate the mean of each X;.

An obscure bot may use a dynamic IP address to communicate with other peers. Whenever the
obscure bot observes that the IP address of the hosting machine has changed, it uses the above method
to regenerate its spoofing 1P addresses.

4.3 Bot Behavior Description

In a typical P2P protocol, a packet between two peers can be classified into three categories: request,
response, and data transfer. It is noted that TCP makes spoofing difficult because it requires handshaking
between peers. In many normal P2P networks, request and response signaling packets are delivered
through UDP and data transfer uses TCP. We consider the two cases in the following. (1) If the P2P
botnet is an exclusive P2P botnet, UDP can be chosen by design for delivering all request, response and
data transfer packets. (2) If the P2P botnet is aff immersive P2P botnet, the botmaster does not have
the freedom to choose the transport layer protocol. In this study, we assume that request and response
signaling packets use UDP. If bot communications do not involve any data transfer packets, spoofing
becomes much easier; however, if the P2P protocol uses TCP for data transfer and bots need data
transfer for command & control, it leaves a door for more accurate bot size estimation by the adversary,
as will be explained in Section 8.

For an explicit bot, its behavior conforms to the standard P2P protocol. For an obscure bot b, let Z(b)
denote the set of spoofing IP addresses associated with it. The behaviors of an obscure bot are given as
follows.

Response packets. An obscure bot does not respond to any request by another peer. On the arrival
of a request packet, it silently drops the packet. As the packet is delivered through UDP, which is
connectionless, the origin of the request packet does not know whether the recipient receives the packet
or not.

Request packets. We first consider a naive packet-level obfuscation scheme for request packets and
then present its weakness. When an obscure bot b needs to send out a request packet to peer A at time
t, it replicates the packet for |Z(b)| times and each of these packets uses a distinct source IP address
from set Z(b). Including the original request packet, there are in total |Z(b)| + 1 packets to be sent to
peer A. For each obscure bot, we define its obfuscation window as w time units. We randomly reorder
the |Z(b)| + 1 packets as pg, p1, ..., and piz)- Packet pg is sent out at time t. The interval between the
sending times of packet p; and p;y, where i = 0,1,...,|Z(b)| is drawn from an exponential distribution
with mean w/|Z(b)].

As the order of the packets is random, the recipient peer, if it is a monitoring node by the adversary,
cannot determine which packet carries the authentic source IP address. The problem with this scheme is
that every time a request packet with an authentic source IP is sent, packets with all associated spoofing
[P addresses are also sent to the recipient. Hence, if the recipient is a monitoring node deployed by the
adversary, she can cluster IP addresses with the same (or approximately the same) number of appearances
within w time units. It is highly unlikely that source IP addresses in normal requests packet would show
such strong correlation as in the naive obfuscation scheme. As such, even though the adversary does
not know exactly which source IP address is authentic, he can still infer the actual size of the botnet by
assuming that IP addresses frequently appearing in the same interval of w time units would come from
the same obscure bot.

It is noted that request packets are usually used by a bot to search for C&C messages from the bot-
master. Hence, to prevent correlation-based analysis, RatBot uses a session-level obfuscation scheme for
each search operation. Figure 2 illustrates the difference between packet-level and session-level obfusca-

8}

EX|

Saurce

Destination | A [| A Source | 1 [

) Deslination AJ\ C| |G

s pERE|E o

Dextination EH E B Sowrce H 1;3‘.3
E| |c

Destination _l_ I B]
Source 3 I M . .)
st C = Source NEESEREIER) [4

Destination e|[alla] [o| [o][| LI | [

i | | I |
Source B'T [: H - -
Destination [n“ |p o] D . S—— i i
(1) Packet-level obfuscation (2) Session-level obfuscation

Figure 2. Obfuscation comparison

tion. Suppose that an obscure bot needs to find a data item with key K. We call it an authentic session,
which contains the whole sequence of the peer nodes this bot has contacted in order to accomplish this
search operation.

For each of its spoofing IP addresses, the obscure bot will create a spoofing session, which contains
a sequence of peer nodes that are randomly drawn from a local peer node repository. This repository,
denoted R, contains peers that were observed in the past authentic sessions and also the current neighbors
that the obscure bot knows. It is noted that peers in an authentic session may appear with a certain
order. For instance, when a bot searches a data iteyn with key K in a DHT P2P network, peers in
the authentic session are ordered (or partially ordeﬁ' in their distances from key ID K. Hence, when
constructing the sequence of peers in a spoofing session, such orders are also mimicked.

The intervals between the starting times of sessions, including both authentic and spoofing ones, are
randomly drawn from an exponential distribution with mean < time units. The order of the starting
times of spoofing sessions is randomized. The authentic session is inserted among the top ¢ spoofing
sessions, if there are so many, and its place is also randomly chosen. The decision on ¢ should make it
difficult to tell which session is authentic but meanwhile ensure that the start of the authentic session
would not be postponed significantly due to obfuscation. In our implementation, we let ¢ be 5.

Let ¥ denote the empirical distribution of the number of request packets sent in an authentic session.
For each spoofing session, we use ¥ to generate the number of request packets. Each of these request
packet carries the spoofing IP address as its source IP and search key K, and is sent to every peer node
in the corresponding spoofing session. The interval between two request packets is randomly drawn from
the empirical distribution of the intervals between request packets in the past authentic sessions. We use
I" to denote this distribution. To obtain W and I' quickly, the obscure bot can search data objects with
keys that are randomly generated.

When the host machine of the obscure bot powers off, the bot automatically becomes offline and all
the packets scheduled to be transmitted before that are lost and thus not carried over to the next time
when the machine becomes online again. Hence, the bot does not need to keep states on a permanent
storage.

Data transfer packets. If botnet C&C information is stored as a file in a P2P network, each bot
needs to fetch the file from the host machine. If RatBot is designed to be an exclusive P2P botnet, UDP
can be chosen for data transfer. Otherwise, if it is an immersive P2P botnet, RatBot makes its decisions
in the following order: (1) If the C&C information can be spread without involving data transfer, RatBot
will not use data transfer. For instance, C&C information can be stored as metadata tags in a KAD-
based P2P network. (2) If the P2P network allows UDP for data transfer, RatBot will use UDP instead
of TCP for data transfer. (3) Only if the P2P network uses only TCP for data transfer, RatBot would
use TCP. 1t is noted that the third option exposes the identity of obscure bots if the peer hosting the

C&C information is actually a monitoring node deployed the adversary. This is because TCP requires a
three-way handshake between the obscure bot and thus the host machine and the connection cannot be
spoofed.

5 Rationale and Analysis

In this section, we explain why a high variance distribution such as the Pareto distribution is used to
generate X; in Section 4.2. As we assume a strong adversarial model in which the adversary knows the
distribution used to generated X;, we must ensure that the adversary’s knowledge does not lead to a
good estimation of the botnet size. The adversary also knows that that an observed IP address cannot be
from an explicit bot if it is used in response packets. Let M be the number of IP addresses observed by
the adversary that never respond to any requests. The challenge is: can the adversary infer the number
of obscure bots provided that he knows the distribution used to generate X;?7

If only the distribution-level obfuscation is used, all X; are independent and identically-distributed
random variables. According to the law of large numbers,)" | X; always approaches nyu, where p is
the mean of X;, when n is large. As the adversary knows the distribution and thus g, he can estimate
the botnet size as M/(pn + 1). To defeat this type of inference, it is necessary to use a distribution that
converges so slowly that 3 - | X can still be far away from nyu at reasonable scales of botnet sizes.

The Chebyshev’s inequality tells us that P{|Y — Y| > t} < t~2Var(Y), where Y and Var(Y) are
the mean and variance of random variable Y, respectively. Hence, the convergence speed of 3" | X;
is affected by the variation of X;. That explains our choice of the Pareto distribution: for o < 2, its
variation is infinite and thus slows down the convergence of 3 7 | X;. This is further illustrated by the
following empirical example.

Suppose that there are 10,000 obscure bots and the average number of spoofing IP addresses an
obscure bot generates is 20. We consider four different settings for the scale parameter: o« = 1.01, 1.1,
1.5, and 1.8. We set the cutoff parameter accordingly to obtain the same mean for X,. We simulate 1000
cases witl different random number generation sceds. In cacli case, we assume that the adversary sees
all the obscure and spoofed IP addresses. Let the observed total number be M. The adversary estimates
the number of actual obscure IP addresses as M /21 as each obscure IP address has 20 spoofed ones. The
following table shows the mean and the standard deviation of the adversary’s estimation:

o 1.01 1.1 1.5 1.8
mean | 23596.80 | 81758.83 | 99854.08 | 99962.19
std | 83014.82 | 91258.15 | 4553.54 | 1262.98

From the table, it is clear that when « is close to 1, the variability of the estimated bot size becomes
more significant. For instance, when a = 1.01, even after 1000 sample runs, the derived mean is still
far away from the actual one, which is 100000. In reality, the adversary witnesses the result of only one
sample; hence, if « is small and thus the variability is very high, the adversary will get an estimate on
the botnet size with high variation.

It is however important to understand the limitation of using heavy tailed distributions such as the
Pareto distribution in generating X;, even though they can produce highly variable results. The high
variation of these distributions actually results from their high skewness in their probability density
functions. Figure 3 depicts the probability density function of the Pareto distribution when o = 1.01
and the mean is 20. Clearly, it is highly skewed as P(X; < 1) = 0.805, which means that around 80% of
the data points, if drawn from this distribution, would stay below 1.

To see how this would help the adversary estimate the actual size of the botnet, we simulate the
observed number of spoofing IPs when there are 1000, 10000, 100000, and 1000000 obscure bots. Each
obscure bot uses the Pareto distribution with mean 20 and scale parameter 1.01 to generate the number

8

1e+08 1000000 spooling IPs -

X 6
5 s L ey, i oonales
© p 1000 spoaling iPs =
5 4 g lex0s P Tale L e
2 B 100000 |, .
3 3 5 S By
5 é 10000
T 4 2
z 3 oo
R 2 100
Q o
[e]
a O R et —
0 1 2 3 4 5 0 200 400 600 800 1000
Samgple run 1D
X
Figure 3. PDF of Pareto distribution Figure 4. Observed spoofing IPs

of spoofing IP addresses. For each scenario, we simulate 1000 times. The results are shown in Figure 4,
where each data point represents the number of observed spoofing IPs. It is noted that for each scenario,
the number of observed spoofing IPs is highly clustered among the 1000 sample runs. Suppose that the
adversary has observed 3000 spoofing IP addresses. Then, he can infer that the real size of the botnet is
likely to lie between 10000 and 100000. In the design of RatBot, we thus use another level of obfuscation
(i.e., parameter-level obfuscation) to defeat such kind of statistical inferences.

In the following, we establish the relative error of the adversary’s estimate on the botnet size:

Proposition 1 Consider a RatBot botnet which has n bots. In this botnet, the fraction of obscure bots is
& and n’ spoofed IP addresses are generated. Suppose that through monitoring, the adversary knows both
the exact number of explicit bots and the sum of the numbers of obscure bots and spoofed IP addresses.
Then, the relative error of his estimation on the botnet size e 1s bounded as follows: £ < e <n'/n.

Proof. Let 7 denote the adversary’s estimate on the botnet size. Obviously, (1 —&)n <7 <n’ +n. We
can thus derive the relative error of his estimation as in the proposition.]

From the proposition, we know that high values of £ and n’ help increase the low and upper bound of
the relative error, respectively.

6 Kad-Based RatBot Implementation

In this section, we discuss how to implement RatBot based on KAD, which extends from the Kademlia
protocol proposed by Maymounkov and Mazieres [18]. We refer interested readers to the literature [18, 6]
for more details about Kademlia and KAD. Our implementation of RatBot is based on a popular KAD
client, aMule?. UDP is used in aMule for searching and publishing data objects. If it is an explicit
bot, we keep the original implementation intact. Otherwise if it is an obscure bot, we make the fol-
lowing modifications. First, when the bot receives a request message, it drops the message immedi-
ately. A request message in KAD carries some special operation codes, such as KADEMLIA_HELLO_REQ,
KADEMLIA_SEARCH_REQ, KADEMLIA REQ, KADEMLTA_PUBLISH_REQ, etc.

Second, in the KAD protocol peers regularly send KADEMLIA HELLO_REQ messages to each other to
exchange liveness information. It is noted that the adversary can use such messages to determine whether
a peer is an obscure bot or just a spoofed IP address. There are two solutions to this. One option is
that the obscure bot obfuscates these messages as well, using spoofing 1P addresses. The flip side of this
approach is that peers may inject those spoofed IP addresses into their routing tables, thus affecting
normal routing operations. The other solution is that an obscure bot does not send out such messages at
all. Even though obscure bots and their spoofed IP addresses may still be inserted into their neighbors’

2The version we used in our study is aMule 2.1.3.

routing tables when their neighbors receive search requests from them, the lack of liveness messages
makes them less likely to be chosen in a search process because KAD prefers long-lived nodes when
forwarding search requests. Also, when a peer node finds that a neighbor has not been alive for a certain
period of time, it removes that neighbor from its routing table. Given these considerations, we adopt the
second approach in our implementation.

Third, as obscure bots do not send out KADEMLIA_HELLO_REQ messages to their peers, their peers do not
send back response messages with type KADEMLIA_HELLO_RES. According to the standard KAD protocol,
obscure bots’ routing tables would shrink faster because neighbors without liveness messages are removed
from the routing table after a certain period of time. To avoid this, we increase the longevity of each
neighbor without liveness messages in an obscure bot’s routing table from the original two minutes to
two hours.

Fourth, when an obscure bot initiates a search operation with key K at time ¢, it acts as discussed in
Section 4.3. The distributions I' and ¥ are obtained by running some random searches. A possibility
for the contact repository R can be the neighbors that are in the routing table. The problem for this
approach is that not all these neighbors have been contacted in the past authentic search sessions. To
make spoofing search sessions mimic authentic search sessions, we maintain a separate contact list at
each obscure bot. The list records the last 50 contacts (not necessarily unique) used in authentic search
sessions. When an obscure bot tries to obtain a contact in a spoofed session from R, it uses that contact
list to derive the frequency histogram of each contact on it and randomly chooses a contact based on the
empirical frequency distribution. Also, an obscure bot orders request packets in a spoofing session with
search key K according to the XOR metric distance between the recipient of the request packet and K.
This is because in a KAD search operation peers are recursively requested until their IDs get close to
the ID of the requested object.

Fifth, it is noted that a KAD node initiates some random searches when it observes that a bucket
does not have enough contacts in its routing table. For an obscure bot, it has to use its authentic IP
address for such random lookups. It is necessary to obfuscate these searches also, because otherwise the
adversary can infer whether an observed IP address is authentic or not by how many unique keys it uses
for searching. In our implementation, we obfuscate these random searches as well in a similar fashion.

Finally, we let RatBot use the metadata tags in KAD, such as filenames, to hide C&C information.
Hence, no data transfer is needed for normal bot operations. Also, obscure bots never publish any
information into the P2P network; they only passively search commands given from the botmaster.
The botmaster uses only explicit bots to publish his C&C information. It is worth noting that this
implementation has some implications. In some circumstances, the botmaster wants to collect certain
information (i.e., credit card information on compromised machines) harvested by each bot. As the
KAD-based RatBot does not allow obscure bots to publish information, these bots have to use other
communication channels instead of the P2P network itself to send back information requested by the
botmaster. For instance, the botmaster can specify a data collection server or an email address in the
C&C message to which each bot should report.

7 Experimental Evaluation

We now evaluate the effectiveness of RatBot in preventing the adversary from obtaining an accurate
estimate on the botnet size. Due to the destructive nature of RatBot, we do this in a simulated en-
vironment to avoid legal and ethical issues. As mentioned earlier, our KAD-based implementation of
RatBot used the actual implementation code of aMule. We further intercepted all system calls in it,
such as time-related and socket functions and replaced them with simulated function calls specific to our
local distributed simulation platform. According to the literature, behaviors of both normal P2P users
and bots exhibit strong time zone effects [25, 8]. To incorporate these details into our simulation, we

10

00! ey 20000 | - —
. 140000 1 } ‘7
% 120000 . 100000 -
?»S 100000 §§ 80000 |
2y 80000 g2 |
5§ g0 60000 |
g& oo I 53 [
£ 40000 _I_] g2 40000 l {_ 1
c l L i
3 20000 1 20004
2ol] e T]
. [4] 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 S000
Number of obscure bots Number of obscure bots
(1) Eventual results (2) One-day results
Figure 5. Frequency his-
togram of the number of Figure 6. Total number of bots observed by the monitors, including
appearances in five runs explicit, obscure, and spoofing bots

model the geographic distribution of normal KAD peers based on previous measurements on the KAD
network [25] and that of bots according to the Storm botnet IP distribution [5].

QOur model of normal P2P user behaviors is based on the observations on the online patterns of normal
KAD users [24]. The starting time of a normal peer being online is modeled with a Gaussian distribution
with mean at 7:00pm and standard deviation at 2 hours, and the duration of an online session is generated
with a three-parameter Weibull distribution. The online activity model of a bot machiue is simply defined
as follows: the starting time of it being online is drawn from a Gaussian distribution with mean at 8:00am
and the end time is drawn from a Gaussian distribution with mean at 6:00pm; for both distributions,
the standard deviation is one hour. This model reflects people’s normal work hours.

The number of spoofing IP addresses corresponding to an obscure bot is generated from a Pareto
distribution whose parameters are set as follows. Let us number the 24 time zones from 1 to 24. The
mean of the Pareto distribution is drawn from a Gaussian distribution with mean and standard deviation
set as 2z and 4z, respectively, where z is the time zone number of the obscure bot. The scale parameter
of the Pareto distribution is 1.05 and its cutoff parameter can be calculated accordingly from its mean.

7.1 Exclusive RatBot

In the first set of experiments, we study the behavior dynamics of exclusive RatBots. We let the
botmaster send out a command every day. To improve the reachability of the command to individual
bots, the botmaster uses five bots to publish it with 32 keys® periodically every 100 seconds. Each
individual bot, when online, periodically searches the command every 100 seconds with these 32 keys
until it gets the command successfully. In the experiments, we simulate 10,000 bots and vary the number
of obscure bots among {1000 X 7};-0,1.2.34,5. Among the 10,000 bots, 10% of them are P2P servers that
always stay online. We assume a strong adversarial model in which the adversary controls 10 servers
that can be used to monitor bot traffic. We simulate the botnet for two days: the first day is used as a
ramp-up phase for each obscure bot to obtain some empirical distributions, and the second day is used
for testing. For each scenario, we simulate it for 20 times with different random number seeds.

We first verify our implementation to ensure that behaviors of spoofing sessions are close to those
of authentic sessions. In Figure 5, we depict the frequency histogram of the number of appearances of
packets from spoofing and authentic sessions observed by the monitors, respectively, in five runs when
there are 1000 obscure bots. There is no obvious systematic difference between authentic and spoofing
sessions that can be exploited to differentiate them. From the simulation results, we also note that

3We use 32 keys here to mimic the behavior of Storm botnet.

11

regardless of the number of obscure bots in the RatBot, almost every individual bot gets the command
eventually. Hence, the existence of obscure bots does not affect the utility of the P2P botnet.

Figure 6 gives the median, smallest, and largest number of IP addresses observed by the adversary
in 20 sample runs eventually and after one day, respectively, under different number of obscure bots.
In the eventual results, we show the total number of spoofing IP addresses generated by obscure bots
plus the number of actual bots. We notice that after one day, the adversary observes a large fraction of
both actual and spoofing IP addresses. This is because we assume a strong adversarial model where the
adversary is able to deploy monitors among the core servers of the P2P botnet and the bots search the
command frequently.

Unsurprisingly, if we increase the number of obscure bots, the number of observed IP addresses by
the adversary also increases. When there are 4000 or 5000 obscure bots, there are cases where the
total number of IP addresses observed by the adversary exceeds 100,000, suggesting that the obfuscation
technique of RatBot can lead to an overestimation more than 10 times of its actual size. On the other
hand, given the same number of obscure bots, the observed number of IP addresses also varies significantly
among different runs. In some scenarios, the largest number of IP addresses observed is twice as much
as the smallest number of IP address observed in the 20 sample runs. It is also noted that the median
tends to be close to the minimum due to the fact that the Pareto distribution is skewed towards its cutoff
parameter at its lower end.

7.2 Immersive RatBot

In the second set of experiments, we evaluate how immersive RatBot affects the accuracy of botnet
size estimation. We simulate a P2P network with 7,000 normal peers and 3,000 bots. The botmaster
users five bots to publish commands with 32 keys periodically every half hour. Each bot uses these
32 keys to search for the current command every half hour until it obtains the command successfully.
Here, we let bots perform publish and search operations less frequently than those in exclusive RatBot
because normal P2P peers may treat these bots performing frequent operations as abnormal and thus
limit interations with them. Among 7,000 normal peers, 990 of them always stay online as servers. We
assume the adversary deploys 10 monitors in the network and they appear as servers always online. Each
monitor is also a captured bot and can be used to reveal the 32 keys used by the bots to search the
current command. The monitor identifies a peer as a bot if it observes that the peer uses any of these
keys to search or publish a data item in the P2P network.

We vary the number of obscure bots among 0, 1000, 2000, and 3000 in the experiments. For each
scenario, we simulate it for four days, the first of which is used as a ramp-up phase for each obscure bot
to obtain some empirical distributions and the remaining days are used for testing. We simulate each
scenario 20 times with different random number generation seeds.

In the experiments, we observe that all the bots were able to obtain the command correctly, suggesting
that the existence of obscure bots does not affect the normal operation of the P2P botnet. Figure 7 depicts
the number of bots observed by the adversary under different numbers of obscure bots. For visual clarity,
we shift the points horizontally slightly to prevent overlapping. For each scenario, we show the median,
minimum, and maximum among the 20 sample runs. The results corresponding to “Eventually” show
the sum of both the number of authentic bots (including obscure bots) and the total number of spoofing
IP addressed generated by all obscure bots.

According to the results, we make the following observations. First, the existence of obscure bots
produces estimated botnet sizes with high variation. For instance, after three days, if there are no
obscure bots, the ratio of the maximum and the minimum of observed bots is 1.016; when we introduce
1000, 2000, and 3000 obscure bots, the ratio becomes 3.405, 2.637, and 2.006, respectively. Such high
variation renders it difficult for the adversary to infer the true size of the botnet. Second, it is obvious

12

70000 T . .
After one day —+—

60000 | After two days =

%,’ After three days *I ¥
e H
= 50000 - Eventually —B—-: iH
S 40000 | HN
g i ‘ l‘L e
5 30000 f Hf i i Qi
u i s f
[+ H| (i H
o 20000 f i P
£ e 1[,
< 10000 | f. |
o L@ . . |

0 500 1000 1500 2000 2500 3000
Number of obscure bots

Figure 7. Number of bots observed by the monitors under different numbers of obscure bots (0,
1000, 2000, 3000)

that increasing the number of obscure bots helps inflate the number of observed bots by the adversary.
When there are 1000 obscure bots, the ratio of the median number of observed bots after three days to
the true size of the botnet is only 4.5, but when there are 3000 obscure bots, this number becomes 12.8.
Hence, the botmater can use the fraction of obscure bots in the network to control how much error the
adversary’s estimate of the botnet size can have.

8 Countermeasures

In this section, we present a few countermeasures that can potentially defeat the obfuscation techniques
deployed by RatBot. First, RatBot requires each bot to contact a central server to decide whether it
should work as an obscure bot. The server can easily become a single point of failure, unless the botnet
applies advanced fast-flux techniques to improve its resilience. If the adversary manages to monitor
traffic from and/or to this server, the identities of true bots can be revealed.

Second, in order for RatBot to operate, the search operation must be spoofable. Hence, if a P2P
network deploys anti-spoofing techniques, RatBot cannot survive in it. For example, the P2P network
can simply use TCP for all signaling and data transfers. Even if UDP is used for signaling, the P2P
network can add a level of anti-spoofing mechanism in a query: when Peer A receives a query from Peer
B, it sends back a confirmation request to Peer B and only answers Peer B's query after receiving a reply
from Peer B on its request. It is noted that this countermeasure works only against immersive RatBot
because the botnet has to be blended into an existing P2P network.

Third, if the RatBot needs TCP data transfer to fetch the command, the adversary can deploy monitors
in the P2P network and place those command data on them. By monitoring which machines fetch the
command data, the adversary can obtain a list of authentic bots as the three-way handshaking mechanism
in TCP cannot be spoofed with spurious IP addresses.

Fourth, another effective approach to defeat RatBot is deploying anti-spoofing techniques in the whole
Internet. The degree to which the RatBot can obfuscate its size depends on how many obscure bots it
has to perform spoofing operations. If the majority of Internet addresses cannot be spoofed, we can still
obtain a good estimate on the size of RatBot by simply ignoring those obscure bots.

9 Conclusions

The latest generation of botnets has adopted the P2P structure to improve their resilience against a
single point of failure. A number of efforts have been dedicated to estimating existing P2P botnets such as
the Storm botnet. In this work, we explore the strategies that an attacker may have to obfuscate the sizes

13

of P2P botnets. We hope our work will raise the awareness of white-hat practitioners on the challenges
of estimating the sizes of P2P botnets accurately and adopt effective countermeasures in practice.

References

(1]
[2]
3]

[4]

[5]
[6]

[7]
(8]
(9]

(13]

(14]

http://www.ip2location. com/.
http://www.amule.org.

P. Barford and V. Yegneswaran. Malware Detection, volume 27 of Advances in Information Security, chapter
An Inside Look at Botnets. Springer US, 2007.

R. Beverly, A. Berger, Y. Hyun, and k claffy. Understanding the efficacy of deployed Internet source address
validation filtering. In Proceedings of ACM IMC’09, 2009.

http://isisblogs.poly.edu/2008/05/19/storm-worm-ip-list-and-country-distribution-statistics.

R. Brunner. A performance evaluation of the kad-protocol. Master’s thesis, University of Mannheim, Germany,
November 2006.

Z. Chen, C. Chen, and Q. Wang. Delay-tolerant botnets. In Proceedings of IEEE Secure CPN’09, 2009.
D. Dagon, C. C. Zou, and W. Lee. Modeling botnet propagation using time zones. In Proceedings of NDSS’06.

J. Goebel and T. Holz. Rishi: identify bot contaminated hosts by irc nickname evaluation. In Proceedings of
HotBots'07, 2007.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings of USENIX Security’08, 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting malware infection through
ids-driven dialog correlation. In Proceedings of USENIX Security’'07, 2007.

G. Gu, J. Zhang, and W. Lee. BotSniffer: Detécting botnet cominand and control channels in network traffic.
In Proceedings of NDSS’08, 2008.

T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurerents and mitigation of peer-to-peer-based
botnets: a case study on storm worm. In Proceedings of LEET 08, 2008.

B. B. Kang, E. Chan-Tin, C. P. Lee, J. Tyra, H. J. Kang, C. Nunnery, Z. Wadler, G. Sinclair, N. Hopper,
D. Dagon, and Y. Kim. Towards complete node enumeration in a peer-to-peer botnet. In Proceedings of ACM
ASIACCS’09, 2009.

C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, and S. Savage. The heisenbot uncertainty problem:
challenges in separating bots from chaff. In Proceedings of LEET 08, 2008.

A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and characterization. In Proceedings
of HotBots’07, 2007.

L. Liu, S. Chen, G. Yan, and Z. Zhang. Bottracer: Execution-based bot-like malware detection. In Proceedings
of ISC’'08, 2008.

P. Maymounkov and D. Maziéres. Kademlia: A peer-to-peer information system based on the xor metric. In
Proceedings of IPTPS'01.

M. Pietrzyk, G. Urvoy-Keller, and J.-L. Costeux. Digging into kad users’ shared folders. In Posters of ACM
SIGCOMM’08, 2008.

P. Porras, H. Saidi, and V. Yegneswaran. A multi-perspective analysis of the storm (peacomm) worm. Tech-
nical report, Computer Science Laboratory, SRI International, October 2007.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My botnet is bigger than yours (maybe, better than
yours): why size estimates remain challenging. In Proceedings of HotBots’07, 2007.

14

[22]
23]
[24]
[25]

(26]

[27]
[28]
[29]
[30]

[31]

[32]

A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet membership using dnsbl counter-intelligence.
In Proceedings of SRUTI’06, 2006.

G. Starnberger, C. Kruegel, and E. Kirda. Overbot: a botnet protocol based on kademlia. In Proceedings of
SecureComm’08, 2008.

M. Steiner, T. En-Najjary, and E. W. Biersack. Analyzing peer behavior in kad. Technical Report EURE-
COM+2358, Institut Eurecom, France, October 2007.

M. Steiner, T. En-Najjary, and E. W. Biersack. A global view of kad. In Proceedings of IMC’07, 2007.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna.
Your botnet is my botnet: analysis of a botnet takeover. In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications securily, pages 635-647, New York, NY, USA, 2009. ACM.

http://www.neoseeker.com/news/7103-worm-storm-gathers-strength/.
R. Vogt, J. Aycock, and M. J. Jacobson. Army of botnets. In Proceedings of NDSS’07, 2007.
P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid peer-to-peer botnet. In Proceedings of HotBots 07.

Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wobber. How dynamic are ip addresses? In
Proceedings of ACM SIGCOMM’07, 2007.

Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and 1. Osipkov. Spamming botnets: signatures and
characteristics. In Proceedings of SIGCOMM’08, 2008.

T.-F. Yen and M. K. Reiter. Traffic aggregation for malware detection. In Proceedings of DIM VA 08, 2008.

15

