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The disruption eflfects from the colliston of round
beams and flat beams in linear colliders have been stud-
ied in the past, and has by now been well understood. In
practice, however, in the current SLC running condition
and in several designs of the next generation linear collid-
ers, the quasi-flat beam geometries are expected. Namely,
the beam aspect ratio R = 0. /0, > 1, but not infinitely
large. In this regime the disruption effects in hoth x and y
dimensions should be carefully included in order to prop-
erly describe the beam-beam interaction phenomena. In
this paper we investigate two major disruption effects for
the the quasi-flat beam regime: The luminosity enhance-
ment factor and the effective beamstrahlung. Computer
simulations are employed and simple scaling laws are de-
duced.

L. INTRODUCTION

One of the most important issues in the design and
operation of ete™ linear colliders is the effect of the
beam-beam interaction. The single-pass nature of lin-
ear colliders demands that a high luminosity can only be
achieved by colliding tiny, intense bunches of electrons
and positrons. In this circumstance, these bunches inter-
act strongly with one another, inducing large disruption,
or pinch, effect between the colliding beams, and produc-
ing intense radiation called beamstrahlung.

In the case of the disruption effects, there have been
detailed studies for the round beam,ie., R = 0:/cy = 1,
and for the flat beam collisions[1][2]. Typically, in the flat
beam limit where R > 1, the horizontal motion of beam
particles is nigligible, and the problem has been studied
in the one-dimensional approximation. However the cur-
rent SLC running condition lies in the regime where R is
larger, but not so much larger than one. As a result the
horizontal motion of particles cannot be ignored. It hap-
pens that several of the next generation linear colliders,

e., CLIC, DLC and TESLA, call for beam dimensions
which also fall into this catagory. There is thus a need for
a scaling law which can help estimate the disruption effect
in the quasi-flat beam regime. In addition, in this regime
it is also important that the calculation on beamstrahlung
has the disruption effect properly included.

II. LUMINOSITY ENHANCEMNET FACTOR

The collective fields in one beam deform the other
beam during collision, by an amount controlled by global
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disruption parameters, which may be different in the two
transverse directions[1]{2]:

2Nr.o,

Doy = —— 120
v 7Ur,y(0'r + Uy)

(1)

The deformation of the colliding bams results in effec-
tive beam sizes, 7, and @y, which are different from their
nominal values. This 1n turn gives an effective luminosity
different from the nominal one. The luminosity enhance-
ment factor is defined as the ratio of the effective luminos-
ity to the nominal luminosity due to the change of beam
size:

Hy=L< %% (2)

L 6.0,

The luminosity enhancement factor is calculable an-

alytically only in the Dy, < 1 limit. Beyond this limit

the dynamics of beam-beam interaction becomes nonlin-

ear, and one must use simulations. For the case of round
beams, simulations produce the behavior[2]:

HD=1+D‘“( ){ln VD+1 +21x108/4)}

DS

where for round beam D = D; = D, and A = A, =
Ay = 0,/8", and B* is the B-function at the interaction
point. This scaling law is valid to about 10% accuracy.
The largeness of H, in the D; , > 1 limit was recognized
to be associated with the near equilibrium pinch-confined
transverse beam profiles[2]. In this regime the beam par-
ticles undergo multiple betatron oscillations during the
collision, and tend to be traped in a much narrower fo-
cusing potential of the opposing beam.

In the flat beam limit where one-dimensional approx-
imation is employed, simulation gives the following scaling
law(2]:

1,(R> 1)~ H, (R =1)'/3, (4)

when Dy and A, are fixed and D,, A, — 0.

It was later shown that there is actually a theoretical
basis for such a cubic relationship(3). The near equilib-
rium pinch-confined states are approached through colli-
sionless damping due to mixing and filamentation in phase
space. It was already pointed out[1] that the disruption
parameter D is related to the square of the wave-number
(of the betatron oscillation), k5. The emittance growth
due to the disruption effect occurs in a length scale of
nﬁ , but the beam rethermalizes in a length #* due to
the nonlaminar effects of the finite emittance. Thus the
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fundamental quantity which governs the luminosity en-
hancement is evdently \/7)—,,/_.4,, ~ B, in the 1-D cal-
culation. Indeed, this is precisely the leading logarithimic
behavior in (3) for H,. When the same prescriyuon 1s
applied to round beams, it was shown that the cubic re-
lationship between the two limits can be deducad.

The less than quadratic dependence, which one might
naively assume, can also be appreciated intuitively. In the
round beam case the change of beam size in either z or y
direction will enhance the pinching of the other dimension,
i.e., the focusing 1 the two dimensions are fully coupled.
On the other hand, it 1s well-known that the field strength
in a non-round, 1.e., R > 1, charge distribution is mainly
determined by its major dimension, o-. This means that
the lack of horizontal disruption renders a milder pinch
effect for the flat beams.

From (2) we see that for round beams the eflective
beam size is given by

G=oH M| R=1 . (5)
On the other hand, since in the flat beam limit the hor-
1zontal beam size is assumed to be fixed, the cubic rela-
tionship (4) suggests that

-1/3

Ty = ay IJD,

R>»1 . (6)
It was therefore proposed recently that the luminosity en-
hancement factor for quasi-flat beams scales as[4]:

Hp=H/PHI? (7

Noteice, however, that although this scaling law ap-
proaches the right flat beam limit of (4), it does not con-
verge to the correct round beam scaling of (3). It is evi-
dent that the power law of the H, dependence should be
more complex than the simple cubic scaling when R — 1.
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Fig.1 Evolution of /{,, as a function of R
Computer simulation using ABEL[5] was performed
to study the evolution of H,, as a function of R. This
1s done by fixing Dy, A:, and Ay in the calculations,

while varying D,. Figure 1 shows the simulation results
of H, as a function of R, with A, = 4, = 0.1 and
three choices of D,. We find that these results (shown
1n squares) agrees very well with the following scaling be-
havior (shown in solid curves).

H, = H})/jH{va“ ,

gy LE2RY f1/2 0 R—1 (8)
SR = =@~ =13 . R—w

This new scaling law now applies to all values of R.

I1I. FFFECTIVE BEAMSTRAHLUNG

High energy ete~ beams generally follow Gaussian
distributions in the three spatial dimensions, and their
local field strength varies inside the beam volume. In the
weak disruption limit, where particle motions have small
deviations from the : direction, it is possible to integrate
the radiation process sver this volume and derive relations
which depend only on averaged, global beam parameters.
It 1s found in such para-axial, or fixed impact parame-
ter, approximation, tliat the beamstrahlung intensity is
controlled by a global beamstrahlung parameter[6}[7],
2 ar
T0=7<_§l:_g__r_ezﬁ___ , (9)
¢ ac,(0r + 0y)

where (B) is the mean eiectromagnatic field strength of
the beam, B, = m?/e ~ 4.4 x10'® Gauss is the Schwinger
critical field, N is the total number of particles in a bunch,
v 1s the Lorentz factor of the beam, r. is the classical

electron radius, and a 3 the fine structure constant.

In the most general designs for linear colliders, the
photon spectrum due to beamstrahlung is not a factorized
function of the electron and positron sources and depends
on the detailed evolution of the bunches in the collision
process. In general, then, the spectrum of radiation de-
pends on the disruption process and must be computed
by detailed simulation.[5] However, typical beams in lin-
ear colliders are very long and narrow. Since all particles
oscillate within the focusing potential that is defined by
the geometry of the oncoming beam, the oscillation am-
plitudes are small compared with their periodicity in :z.
Then the assumption of small deviations from the z di-
rection rernains approximately valid. The main effect of
disruption on beamstrahlung is therefore the change of
effective EM fields in the bunch due to the deformation
of the transverse beam sizes. Thus, beamstrahlung is in
practice still factorizable even under a non-negligible dis-
ruption effect, if one computes its magnitude using an
effective beam size which takes the global disruption into
account. This means one shall only replace the nominal
beam size 0., 0y in (9) by the corresponding effective size
o- and &, following the prescription in (8):

Oy = U,H;:/l‘) ,

oy = oy H I (10)



Then the effective beamstrahlung parameter is given by

6 ao (0 + Gy)

(1)

As loug as the effect of disruption on beamstrahlung
can be group: 1 under the globle beamstrahlung param-
eter, the recently derived beamstrahlung photon spec-
trum[8], which invokes the mean-field approximation, is
readily applcable. The number of soft photons radiated
per unit time, calculated by the classical theory of radia-
tion, 1s

OJ

5
2\/§ TeY

Note that for a given field strength v is independent of
the particle energy. This expression applies to the in-
frared limit of the spectrum where photon energies ap-
proach zero. For a hard photon, up to the initial energy
of the electron, the quantum mechanical calculation gives
a more general formula:

Vel =

(12)

vy = vafl + T2/3)71/2 (13)
In a multi-photon radiation process, it was found useful to
introduce a linear interpolation between these two values.
Let = be the energy fraction of the initial electron carried
by the photon. Then define

N Y /
p(z) = 1‘*1,/: dr'[z've + (1 = ')y (14)
= —;—[(1+x)ucl+(l—z)u,]

With these basic parameters introduced, f,(z) is given
by[8]

1 2\1/3 -2/3 -1/3
r = —— — 1 —
fr(z) r(1/3)(3r) 27— =) (15)
B B
3T(1 — ) ’
where T 1s given by (11),
1—w 1
B — _ — omglz)n,
Glz) g(z) {l glz)n, [1 ¢ ]}
1 —n.
tu{i=Zl-eml} o g
g(z)=1-=(-2p |
Vy
and
1 /37 -
w=eV 5 n,:\/gozu.r (17)

n, is the mean number of photons radiated per electron
throughout the collision. The approximations are valid
for T < 5.

IV. EXAMPLE

To varify the validity of our handling of the dis-
ruption effect in beamstrahlung, we calculate the beam
strahlung spectrum in TESLA with center-of-mass en-
ergy at 1 TeV{9]. In this design, N = 5.8 x 10!V, 0, =
404nm, o, = 50.5nm, o, = 1100pm,3; = Smm. and
By = 2.5mm. Therefore D, = 1.95 Dy = 156 (It = &),
and A; = 0.14, 4, = 0.44. This gives 6, = 172nm and
Fy = 27.0nm form (10). In turn, we find H, = 4.4 from
(8). According to our prescription the disruption effect
changes the beamstrahlung parameter from Ty = 0.10
to T = 0.24. With this effective beamstrahlung parame-
ter, we calculate the beamstrahlung spectrum using (15).
This is then compared with the simulation result, shown
in Fig. 2. We see that our prescription indeed agrees very
well with the sirnulation.
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Fig.2 Beamstrahlung spectrum in a 1 TeV TESLA.
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