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SIMULATIONS OF THE LONGITUDINAL INSTABILITY IN THE SLC DAMPING RINGS:

K.L.F. Bane and K. Oide®
Stanford Linear Accelerator Center. Stanford University, Stanford, CA 94309 USA

INTRODUCTION

A longitudinal, single bunch instability has been ob-
served in the SLC damping rings.[1] Beyond a threshold
current of 3 x 100 the energy spread of the beam increases
and a “saw-tooth instability” appears. The latter term is
meant to describe a rather complicated phenomenon, de-
pending on both current and rf voltage. In one form it
describes a cvele that includes a quick mcrease i bunch
length, over a time on the order of a synchrotron penod,
and then a much slower return to the original length, over
a time on the order of a radiation damping time. Although
the total relative change in length is only about 10% the
resulting unpredictability of the beam properties in the
rest. of the SLC accelerator makes it difficult, if not im-
possible. to operate the SLC above the threshold current.
With the goal of trying to understand this instability the
simulations that are the subject of this paper were begun.

Bunch lengthening calculations have been performed
before for the SLC damping rings, to obtain the average
bunch shape us function of current.[2] The wakefields of all
the important vacuum charmber components were first ob-
tained numerically.[3] The dominan. elements were found
to be many small discontinuities—bellows, masks, transi-
tions, etc.——elements that are inductive to the heam. Once
the total wakeficld had been obtained., and the thresh-
old current was known (from measurements). the average
bunch shapes were found by means of a potential well cal-
culation. The bunch shapes obtained in this way were
found to agree very well with measurement results.{4]

In this paper we investigate the single bunch behavior
of the SLC damping rings using time domain tracking and
also a Vlasov Equation approach. Since the earlier bunch
length calculations the damping ring vacuum chamber has
been modified, by sleeving the bellows. Our results will,
therefore. include the effects of this modification.

PHASE SPACE TRACKING
The Formalism

We use a now standard tracking method for simulat-
ing the effect of the wakefield on the longitudinal phase
space of the beam [5-9] The beam is represented by N,
macro-particles; each particle 7 has position and energy
coordinates (z;,¢;), with a more negative value of z more
toward the front of the bunch. The properties of particle
7 are advanced on each turn according to the equations:
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with Ty the revolution period, 7, the damping time, .o the
nominal rms energy spread, Vr'j the slope of the rf voltage
{a negative quantity), & the momentum compaction factor,
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and Eq the machine energy; r; 1s a random number ob-
tained from a normally distributed set with mean @ and
rms 1; the induced voltage on any turn is given by

Vind(z) = —eN / Wiz — 2\ (zYdy (33

with N the bunch population, W (z) the Green function
wakefield, and A.(z) the longitudinal charge distribution
We approximate Robinson damping of dipole oseillations
by adding —27T4(¢)/74 on the right of Eq. (1), with Eez the
average energy and 74 the Robinson damping time [6}]
Practical Considerations

Simulations use only a small fraction of the real num-
ber of particles in the beam. and numerical noise can sup-
press real phenomena or generate its own phenomena. This
is particularly true with an inductive impedance, such as
the SLC damping rings’, since then the induced voltage
depends strongly on the slope of the charge distribution.
To calculate A, on each turn we simply bin the macro-
particles in 2, without smoothing, and count on the use of
a very large number of macro-particles to give us a suffi-
ciently smooth distribution.

The wakefield for the ring with bellows sleeves was cal-
culated as before, using the computer program TRCI.[10]
with a short, gaussian driving bunch with ¢, = 1 mm.
To make it causal, the part in front of bunch center (at
2 = 0) was reflected to the back (see Fig. 1). We expect
to be able to find beam instabilities down to wavelengths
of about 1 cm.
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Fig. 1. The Green function wake used to repre-
sent the current SLC damping rings.

For the simulations we take Ty = 118 ns, Ey, =
1.15 GeV, rf frequency v,y = 714 MHz, o0 = 0.07%. We
choose a peak rf voltage Vi.; = 0.8 MV, where the nominal
bunch length 0,9 = 4.95 mm, and synchrotron frequency
veo = 99 kHz. For practical reasons 7, was reduced by a
factor of 10 to 0.17 ms. Therefore there are 1445 turns
per damping time, compared to 85 turns per synchrotron
period. We take Ny = 300,000, and for calculating A. we
take 100 bins to extend over 10a, of the bunch. We start
the program with the potential well bunch distribution and
let it run for 3 damping times.

&z

w



SIMULATION RESULTS
Average Bunch Properties

On each turn we calculate the lower moments of the
distributions.
we obtain the “average” properties of the distributions.
Fig 2a displays the average value of the first (the crosses)
and the second (the diamonds) moments in = as functions
of current. The ring being inductive, the bunch shapes
are rmore bulbous than gaussians, and the bunch length
increases with current.

in Ref. 2 the average bunch shapes are obtained by a
madified potential well solution: Haissinski's formula [11]
is used to find the bunch shape; above threshold the energy
spread, and therefore the natural bunch length used
the formula, are taken to increase as N3 (gince the ring
is very inductive). This method applied to the current
damping ring, taking the threshold to be 2 x 1019, are
shown by the lines in Fig. 2. This approximate method
agrees very well with the tracking results. We should also
point out the bunch length for the ring is very similar to
that of the old ring, only 10% shorter at 3 x 10'¢
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Fig. 2. Average bunch properties vs N.

The Threshoid Clurrent

In Fig. 2b we plot the average rms energy spread as
function of current. Fitting the results to a power law
increase above a threshold we find the power law to be 0.28
and the threshold Ny = 2.0 x 1019 A confirmation that
this is the threshold current is the fact that the unstable
mode {discussed below) first appears at this current, with
an uncertainty of —0.25 x 101%.

P.B. Wilson once hypothesized that one criterion for
the onset of the instability is that the slope of the total volt-
age (V) + V,i,4) goes to zero within the bunch [12] In our
case this criterion holds at 1.9 x 10!”; at higher currents,
as the bunch lengthens, it continues to hold. A related hy-
pothesis by P.B. Wilson is that the Haissinski Equation, a
transcendental equation of the form A, = f(A,), will, when
iterated above threshold, asymptotically give two, alter-
nating solutions.[13] In our case this begins at 2 x 10'°.

Repeating the tracking calculation for the old ring (no
bellow sleeves) we find a threshold of 1.1 x 101%; repeating

By averaging over the last damping tune

it for a wakefield that represents anly the rf cavivies {the
hest tmpedance we can magne) we obtann a capacitive
wakeficld and threshold of 14 = 10"

Maodes of Instability

Taking a Fourier transform (1777 of one of the mo-
ments we find that . beginning at N = 2 x 10" resonanees
appear with frequencies above 240, Taking the #7770s)
at 3.5 x 10 with s, the skew in 2 (see Figo 3a) we find
a very clean signal with only one, very narrow peak {see
Fig. 44). The full width, 1.5% . is given by the hned
length of the run and not by any more fundamensal linn
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I"i%A 3. The turn-by-turn skew when N = 3.5 x
10" (a). and the rms when N = 5.0 x 10' (b).
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Fig. 4. The absolute value of the Fourier trans-
form of the skew signal for two currents.
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At some currents, like 5.0 x 101 we find a fairly reg-
ular overshoot pattern in the moments as function of timne
(see Fig. 3b). In this example the bunch length varies by
5% over a cycle: the lengthening time is about 1.5/v.. the
shortening time is maybe twice as long. In the F'T we see
an extra peak at 22 kHz and sidebands around the insta-
bility. At N = 3.0 x 10'¥ the pattern of the bunch length
is more irregular.

Fig. 5 gives two snapshots of the unstable mode when
N =35 x 10'Y, We see that the maximurm amplitude of
the mode is about 10% and the wavelength about 1.2 em.
We obtain a 3-dimensional mode plot by averaging the dis-
tributions at a fixed phase in the oscillation and subtract-
ing from this the average over all phases (see Fig. 6). We
see that the mode is a mixture of dipole, quadrupole. and
sextupole components. By 5 x 10" an octupole component
can also be seen.
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Fig. 5. A snapshot
180° apart,

of the beam, at two phases
when A = 3.5 x 1017,
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TFig. 6. The shape of the unstable mode from two
views at N = 3.5 x 10'".

The positions of the major peaks in the spectrum of
the skew signal for differeat currents is shown wm Fig. 7.
The diamonds show the cases with one narrow spike in the
spectrum of s, the crosses those with more complicated
spectra. We see that the frequency of the unstable mode
increases with N: the dashed line has a slope of 0.27/10'".
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Fig. 7. The positions of the major peaks in the

Fourier transform of the skew signal vs N

A Viasov Equation (Caleulation

K. Oide and K. Yokoya have written a camputer pro-
gram to solve the time independent, linearized Viasov
Fquation including the effects of potentiai well distor
tion [14] Using the wakefield of Fig. 1 we take G azmmthod
space harmonies and 60 mesh points in amplitude toorep
resent phase space. We find that, due to the potentinl
well distortion, already by T x 10 the Targe gaps i nwde
frequencies have disappeared.
found at 1.9 x 101 witl

The first unstable mede s
a frequency of 200, (see Fig 8y
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Fig. 8 A contour plot of the unstable mode,

obtained by solving the Vlasov Equation.
COMPARISON WITH MLASUREMENTS[] 4]

The agreement with measurernents of the average
bunch shapes is very good. The calculated threshold cur.
rents are about 30% lower than the measurements, which
are 3.0 x 10'% in the current ring, 1.5 x 107 in the old ring
A mode (sometimes call the “sextupole™ mode) has been
measured above threshold. At 3 x 107" it has a frequeney
2.6Bren; at higher currents the frequency increases at about
0.08/10' a much lower slope than calculated here,
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