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Nomenclature

Area

Tube diameter

Force vector

Axial component of force

Hedstrom number

Non-dimensional ratio that is used to calculate the transition Reynolds number

Kilograms

Length

Meters

Yield/power fluid exponent
Flow rate

Radial coordinate

Radius of slug flow region in pipe flow of a non-Newtonian fluid, or yield radius

Tube radius

Reynolds number

Bingham Reynolds number

Critical Reynolds number for laminar/turbulent transition
Seconds

Time

Average velocity

Velocity vector

Velocity

Average velocity

Radial velocity component

TR N AT TP 0. IS Ry <2) A1 o s N M Ly o s S0y Y00 L TSR (gl Sl W T Wi i) S VIR VS0 i i O S Wi SN S 4t MRS
S AR RN A s R DS e DN

TR TS -



Axial velocity component

Azimuthal velocity component

Non-dimensional yield radius

Critical value of the non-dimensional yield radius

Axial pressure drop

Strain rate

Non-dimensional radial coordinate

Consistancy for a Bingham plastic or a yield/power law fluid
Density

Shear stress

Yield stress for a Bingham plastic or a yield/power law fluid
Wall shear stress

Wall shear stress



Introduction and Summary

The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed
system and the sampling system, this slurry is pumped at a wide range of flow rates
through pipes of various diameters. Both jaminar and turbulent flows are encountered.
Good theology models of the melter feed slurries are necessary for useful hydraulic
models of the melter feed and sampling systems.

A concentric cylinder viscometer is presently used to characterize the stress/strain rate
behavior of the melter feed slurries, and provide the data for developing rheology models
of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as
Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short
of the entire laminar flow range, and therefore hydraulic modelling applications of the
present rheology models frequently require considerable extrapolation beyond the range
of the data base. Since the rheology models are empirical, this cannot be done with
confidence in the validity of the results. Axial pressure drop versus flow rate
measurements in a straight pipe can easily fill in the rest of the laminar flow range with
stress/strain rate data. The two types of viscometer tests would be complementary, with
the concentric cylinder viscometer providing accurate data at low strain rates, near the
yield point if one exists, and pipe flow tests providing data at high strain rates up to and

" including the transition to turbulence.

With data that covers the laminar flow range, useful theological models can be
developed. In the Bingham plastic model, linear behavior of the shear stress as a
function of the strain rate is assumed once the yield stress is exceeded. Both shear
thinning and shear thickening behavior have been observed in viscometer tests. Bingham
plastic models cannot handle this non-linear behavior, but a slightly more complicated
yield/power law model can. The flow rate versus pressure drop relation for a yield/power
law fluid, analogous to the Buckingham-Reiner equation for 2 Bingham plastic (Bird,
Stewart, & Lightfoot, 1960), has been derived, as have been relations for predicting the
point of transition to turbulence. The predicted flow rate vs pressure drop behaviors of
the two models, based on existing viscometer data, show significant differences between
the predicted behaviors of the two models. Also the danger of extrapolating a rheological
model beyond the range of the data base is illustrated. Only laminar pipe flow is
considered, but that is because the impact of non-Newtonian effects is much greater for
laminar pipe flow than it is for turbulent pipe flow. The primary objective of this
document is to establish the need for viscometry data that covers the entire laminar flow
range. '

Rheology Models

The melter feed slurries are presently modelled as Bingham plastics, and the data to
support these models is obtained with concentric cylinder viscometers. Figure 1 is
typical plot of viscometer data for five different slurries (Marek, 1994). The slurries
differ in the percent weight of total solids. The vertical ordinate of the plot is the shear
stress, and the horizontal ordinate is the strain rate. For pipe flow, the strain rate is the
absolute value of the radial velocity gradient.

The viscometer data show that the fluids exhibit yield stress type behavior, and they also
clearly show non-linear behavior for non-zero strain rates. While the existance of a yield
stress in fluids is controversial (Bird, Armstrong, & Hassager, 1987) it is a useful concept
for modelling the behavior of some non-Newtonian fluids. The bottom three rheograms




in figure 1 exhibit shear thinning or pseudoplastic behavior, and the top two rheograms

exhibit shear thickening or dilatant behavior.
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Figure 1: Concentric cylinder viscometer data, shear stress vs strain rate, for

simulated melter feed slurries (Marek, 1994).

The non-linear behavior in the rheograms cannot be modelied by a Bingham plastic
model in which the stress is assumed to be a linear function of the strain rate once the
yield stress is exceeded. Equation 1 is the functional form of a Bingham plastic. This is
a two parameter model. In order to model the non-linear behavior, a more complicated
model with more degrees of freedom 1is required. A yield/power law model is a simple
three parameter model with which the non-linear behavior can be modelled. Equation 2
is the functional form of a yield/power law model.

T =T, + 1,7 1)

7. =7,+0,(7) 2)



Figure 2 is a plot of the stress versus the strain rate for a yield/power law fluid. Also

shown for comparison is

viscoplastic in that it exhibits a yield stress,
rate determines whether the fluid is pseudop

the behavior of a Newtonian fluid. The non-Newtonian fluid is
1. The value of the exponent of the strain
lastic or dilatant. If n>1, the fluid is dilatant,

and if n<1, the fluid is pseudoplastic. If n=1, the fluid is a Bingham plastic.
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Figure 2:
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Lightfoot, 1960) for flow rate as a
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Shear stress versus strain rate for a yield/power law fluid.

essary for predicting flow versus pressure drop behavior of
flow rate versus pressure drop relationships for fully-

law fluid and a Bingham plastic are

3 is the Buckingham-Reiner equation (Bird, Stewart, &
function of pressure drop for a Bingham plastic, and

equation 4 is the analogous equation for a yield/power law fluid.
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Equations 3 and 4 apply only to laminar flow. Fortunately the m;cljor differences between

Newtonian and non-Newtonian flow occur in the laminar flow regime.
of the Fanning friction factor for pipe flow of a
number for several values of the Hedstrom number (Shadday,
laminar relation for a Newtonian fluid, 16/Re.

Figure 3 is a plot
Bingham plastic versus the Reynolds
1994). Also shown is the
The laminar friction factors for Bingham

plastics are significantly larger than those for Newtonian fluids. The start of transition to
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turbulent flow for a Bingham plastic occurs at a Reynolds number larger than 2100, the
transition Reynolds number for a Newtonian fluid. The actual transition Reynolds
number is a function of the fluid properties and the pipe diameter. The turbulent friction
factors for fluids with various Hedstrom numbers fall on essentially the same line. These
friction factors are very close to the values for turbulent flow of a Newtonian fluid
through a smooth pipe. Only laminar flow is considered in this document.

2
Re, = p;D He=——pi‘;? (5)
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Figure 3: Fanning friction factors for a Bingham plastic.

The transition from laminar to turbulent flow of a Bingham plastic is defined in terms of
the Reynolds and Hedstrom numbers. These non-dimensional parameters are defined in
equation 5. The transition for a yield/power law fluid is similarly defined. Dimensional
analysis of pipe flow of a yield/power law fluid shows that the non-dimensional pressure
drop is a function of the length to diameter ratio, the Reynolds number, and the Hedstrom
number, equation 6. This equation is derived in Appendix B by application of
Buckingham's pi theorem (Gerhart & Gross, 1985). The appropriate definitions for the
Reynolds and Hedstrom numbers for a yield/power law fluid are shown in equation 7.

2-nyn 2ny 72(1=n)
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pv? \D m,



pv2—n D" 3 pT, DZAVZ(I-R)
He="=———"
1, 1,

Re= €))

In Appendix C, the appropriate relations for predicting the onset of transition to
turbulence of a yield/power law fluid are derived. First equation 8 is used to solve for a,.
This parameter is then substituted into equation 9, which is solved for the critical or
transition Reynolds number.

n
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The analogous relations for a Bingham plastic are equations 10 and 11, (Govier and Aziz,
1972).

(14 He
e = 10
(1-,) 16800 (10
Re, =g—(l—%ac+%a:) (11)

Bingham plastic and yield/power law models are completely empirical, so you cannot
safely extrapolate outside of the range of the data base. The system modelling
requirements should therefore determine need for rheological data. The data shown in
figure 1 is sufficient for modelling pipe flows in which the absolute value of the wall
velocity gradient (strain rate) is less than 350 1/s. In the next section, this will be shown
to be quite limiting.

Analysis and Results

Predicted pipe flows for Bingham plastic and yield/power law models of the fluids with
the top three rheograms in figure 1 are compared. The three theograms are for slurries
with 54.17%, 49.36%, and 47.34% total weight solids respectively from the top. Ten
points were picked off each of the rheograms and a yield/power law model, equation 2,
was fit to the data. Figures 4 through 6 show the ten data points, the yield/power law
model, and the Bingham plastic model that Jim Marek determined, for the three
rheograms. The Bingham plastic model was determined from the data up to a strain rate
of 200 1/s. The legends in figures 4 through 6 show the model parameters.




Shear
Stress

(Pa)

Figure 4:

Shear
Stress

(Pa)

Figure 5:

30

25

20

15

10

15

10

_I LI AR I L LML) I LR I I | l LR L I L L l LI L L] 1 LR L l LELER -
. 54.17 % total solids E
;_ o data —;
- 1=12.8+.00978y1-23 | 3
S t=12.08+.03726y | 1
:1 1.1 1.1 ' 11 1 1 l 12 1 1 l 11 1 1 | 11 1 1 ' ) 3 IJ 1.t 1. 1 I 1.2 1 l_-
0 50 100 150 200 250 300 350
Strain Rate (1/s)
Bingham plastic and yield/power law models of the 54.17% total weight

solids slurry.

__l LI LA I L L l TTrd I LI l L SR l LR l L S L [ LENR SRR AL
[ 49.36% total solids ]
" o data N
i 7=8.01+.0014 y1-509 | 1
Y Attt 1=7.26+.02329 vy i
—l L1 1.1 l 1111 ' 1 1L 1 I i1 1 1 l 1.1 11 [ 1 1 1 I 12 1 1 l 11 1 l—
0 50 100 150 200 250 300 350

Strain Rate (1/s)

Bingham plastic and yield/power law models of the 49.36% total weight
solids slurry.



lllllllllIllllllIlllllllllillllllllllll

-
o

O = N Wh O ON OO
LN B A L W LAY LI BN BRLEN NN L

Shear
Stress
(Pa) 47.34% total solids
a] data

1=1.582+.785y3427
.......... 1=3.668+.01623y

Illllllllllllllllllll

lllII'IIII‘IIII'I[I!'IIIlllIllllllll'll

0 50 100 150 200 250 300 350
Strain Rate (1/s)

Figure 6: Bingham plastic and yield/power law models of the 47.34% total weight
solids slurry.

Figures 7 through 9 show the predicted flow rates of the three slurries through the 3/8"
melter feed line, as a function of the frictional pressure drop. These flow rates are
calculated with equation 3 for the Bingham plastic fluids and equation 4 for the
yield/power law fluids. The assumed length of the pipe is 16.217 m. This is the
equivalent length of the 3/8" line in melter feed system #2, (Shadday, 1994). The
diameter of the line is .01074 m. The plots span the range of strain rates from 50 to 350
1/s. The wall strain rates are calculated from the Bingham plastic and yield/power law
fluid governing equations, equations 1 and 2 respectively. The wall stress values that are
used in these equations are calculated from the axial pressure drops, equation 12.

o, =g - (12)
2L

There is good agreement between the Bingham plastic and the yield/power law fluid flow
rates for the 54.17% total weight solids slurry. The two rheological models for this slurry
are also in good agreement over the entire range of strain rates. The other two slurries
show significant differences between the predicted flow rates of the two rheological
models at higher strain rates. The Bingham plastic model predicts higher flow rates than
the yield/power law model, at the upper end of the range of pressure drops, for the
49.36% total weight solids slurry, and the opposite behavior is predicted for the 47.34 %
total weight solids slurry. In both cases the yield/power law models should be better
since they are in better agreement with the rheological data. For the dilatant fluid, the
Bingham plastic model over predicts the flow rate, and for the pseudo plastic fluid, the
Bingham plastic model under predicts the flow rate. The danger of extrapolating beyond
a strain rate of 350 1/s is evident in figures 8 and 9. The differences between the
predicted flow rates for the two rheological models increase rapidly with increasing flow
rate.
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pressure drop.

The Reynolds numbers of the predicted flows, as functions of the wall strain rate, are
shown in figure 10. The Bingham plastic Reynolds number is defined by equation 5, and
the yield/power law fluid Reynolds number is defined by equation 7. Figure 11 shows
the Reynolds numbers as functions of the flow rate. The yield/power law Reynolds
number can differ significantly from the Bingham plastic Reynolds number. The
yield/power law Reynolds number for the 47.34% total weight solids slurry, a
pseudoplastic fluid, is much lower than the Bingham plastic Reynolds number, and the
yield/power law Reynolds number for the 49.36% total weight solids slurry, a dilatant
fluid, is much higher than the Bingham plastic Reynolds number. This suggests that the
Reynolds numbers of the various rheology models cannot be compared, but the Reynolds
number has significance only in the context of a specific rheological model.

12
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Figure 10:  Reynolds number versus strain rate for flow through a 3/8" pipe.

14 L3 L] L] I ¥ ] L] L) I L] L] 1] ] l L] L] L] L} I L3 L L§ 1

- | —&—— Bingham 47.34%

2500 o  YPL47.34%

———— Bingham 49.36% x X
x  YPL49.36% X%

2000 || —s—— Bingham 54.17% K X

- a YPL 54.17% 4

Reynolds 1500

Number .
1000 -
500 -
0 -
| 1 1 1 1 ' 1 1 L L | 1 1 1 1 I ] 1 1 1 l 1 1 L 1
0 1 2 3 4
Flow Rate (gpm)

Figure 11:  Reynolds number versus flow rate for flow through a 3/8" pipe.

Whether a flow is laminar or turbulent is a function of the Reynolds number. The
transition Reynolds number for flow of a yield/power law fluid is calculated with
equations 8 and 9, and for a Bingham plastic with equations 10 and 11. The predicted
transition Reynolds numbers for the three slurries are shown in table 1. The transition

13




Reynolds numbers for the three Bingham plastic models are grouped closely together,
while those of the yield/power law models are spread over a wide range. In all cases the
predicted transition Reynolds numbers are considerably larger than the Reynolds
numbers with a wall strain rate of 350 1/s. The rheological data in figure 1 falls well
short of covering the laminar flow range. For the melter feed line, this data is adequate
because the expected flow rates are between 0.4 and 1.0 gpm, and the data covers the
wall strain rate range that corresponds to flow rates of approximately 4.0 gpm.

% Total Rheological Transition Re at Wall Strain

Wt. Solids  Model Re Rate = 350 1/s

54.17% yield/power law 3138.6 1028.2
Bingham plastic 2366.1 569.8

49.36% yield/power law 4692.5 2719.4
Bingham plastic 24754 890.1

- 47.34% yield/power law 795.7 171.9
Bingham plastic 2483.2 1368.4
Table 1: Calculated laminar to turbulent flow transition Reynolds numbers for the

rheological models of the three slurries shown in figures 4 through 6.

The sample line of the Slurry Mix Evaporator (SME) sampling system is a 1/2" schedule
40 pipe that is approximately 42 m in length. The range of expected flow rates is
between 4 and 10 gpm, and therefore the expected wall strain rates will exceed 350 1/s.
The rheological data shown in figure 1 is inadequate to form a basis for modelling this
flow. In order to show the potential errors introduced by using a Bingham plastic model
based on low strain rate data to describe the flow behavior of a fluid that is more
appropriately modelled as a yield/power law fluid, two examples are considered, one with
a dilatant fluid and the other with a pseudoplastic fluid. Figure 12 shows the assumed
rheological behavior of the two example fluids over the entire laminar flow range. The
rheograms cover the strain rate range from 50 to 2400 1/s.

14
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Figure 12:  Rheograms of two assumed yield/power law fluids.

Figure 13 shows the shear stress versus strain rate behavior of the assumed dilatant
yield/power law fluid in figure 12. Also shown are two Bingham plastic models of the
same fluid, one is based on the entire range of strain rates, and the other is based on the
strain rates up to 300 1/s. The second Bingham plastic model is the one that would be
derived from concentric cylinder viscometer data.

Flow rates in the SME sample line of fluids with the three constituitive relations shown in
figure 13 are calculated as functions of the frictional pressure drop. The diameter of the
pipe is .007874 m, and the length is 52.4 m. The length includes equivalent lengths for
elbows. The predicted flow rates as functions of the pressure drop are shown in figure
14. The plots of flow rates go up to the point that transition from laminar to turbulent
flow is predicted to occur. The predicted transition Reynolds numbers for the three fluid
rheological models are shown in table 2. For all three fluid models, transition occurs at a
flow rate of approximately 8.0 gpm, for flow in the SME sample line.

15
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Rheological Transition
Model Reynolds Number
7=10+.00217"* Re=5923.4
7=5+.023125y Re=2627.3
7=9.2+.0136y Re=3863.7
Table 2: Laminar to turbulent flow transition Reynolds numbers for the slurries in

figure 13.
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Figure 14:  Flow rate through the SME sample line of the assumed dilatant
yield/power law fluid as a function of the frictional pressure drop. Also
shown are the predicted flow rates of the two Bingham plastic models of
the same fluid.

As you would expect, flow rates of the Bingham plastic model based on strain rates
below 300 1/s agree well with the lower flow rates of the yield/power law fluid, and the
Bingham plastic model based on the entire strain rate range agrees better with the
yield/power law model at higher flow rates. For this assumed fluid, a single Bingham
plastic model is inadequate to model flows in both the melter feed lines and the sample
lines. The Bingham plastic model based on strain rates below 300 1/s is clearly better for
the melter feed line, where flow rates are less than one gpm, and the other Bingham
plastic model is better for the sample line, in which the flow rates are between 4 and 8
gpm. A constituitive relation that is in good agreement with the rheological data over the
entire laminar range is the best alternative, and a yield/power law model, with the extra
parameter, can fit real data better than a Bingham plastic model.

Figure 15 shows the Reynolds numbers as functions of the wall strain rate for the three
fluid models. While the laminar/turbulent transition Reynolds numbers differ
significantly for the three fluid models, transition is predicted to occur at a wall strain rate
between 1400 and 1500 1/s. To reasonably model flows in the sample line, rheological
data must be collected with strain rates up to transition. '
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Figure 15:  Reynolds numbers in the SME sample line as functions of the wall strain
rates.

Figure 16 shows the percent error in the predicted flow rates of the two Bingham plastic
models of the assumed fluid, relative to the predicted flow rate of the yield/power law
model. At very low flow rates, the relative errors of both Bingham plastic models are
large, but the absolute flow rates are small so the absolute errors are small. The relative
error of the model based on strain rate data below 300 1/s increases linearly for flow rates
above 2.0 gpm, and the relative error is 25% at the predicted transition to turbulence.
This plot clearly shows the danger of extrapolating the constituitive relations beyond the -
range of the data on which it is based.
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Figure 16:  Percent error in the predicted flow rates in the SME sample line for the
two Bingham plastic models, relative to the yield/power law model.

The results of similar calculations with the pseudoplastic fluid shown in figure 12 are
presented in figures 17 through 20. The results are similar to those for the dilatant fluid,
and the same conclusions apply. Transition to turbulence occurs at a slightly higher flow
rate, between 8.0 and 9.0 gpm, than with the dilitant fluid, and the wall strain rate at
transition is also higher, between 1500 and 1800 1/s. Figures 17 through 20 correspond
respectively with figures 13 through 16, and they are presented without further
discussion.
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Figure 17:  The assumed pseudoplastic yield/power fluid and two Bingham plastic
models of the fluid, one based on the entire strain rate range, and the other
based on the strain rate up to 300 1/s.

Rheological Transition
Model Reynolds Number
T=6+.457" Re~1308.4
7=11+.01107y Re=4622.6
7=9+.01964y Re=3160.0
Table 3: Iﬁ.ammzil_'] to turbulent flow transition Reynolds numbers for the slurries in
gure 17.
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Figure 18:  Flow rate through the SME sample line of the assumed pseudoplastic fluid
as a function of the frictional pressure drop. Also shown are the predicted
flow rates of the two Bingham plastic models of the same fluid.
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Figure 20:  Percent errors in the predicted flow rates in the SME sample line for the
two Bingham plastic models, relative to the yield/power law model.

It is difficult to obtain high strain rate data with a concentric cylinder viscometer, because
of centrifugal effects and wall slip. Good low strain rate data, that allow determination of
the yield stress, can be obtained with this type of viscometer. The interpretation of data
collected with a concentric cylinder visometer is also straightforward. A capillary
viscometer is a device in which the axial pressure drop of fully-developed flow through a
straight tube is measured. The laminar flow range up to transition can easily be covered
with this type of viscometer, though it is not ideal for measuring the behavior of fluids at
very low flow rates, or wall strain rates. The two types of viscometer are therefore
complementary, and they can be used to cover the theometry of slurries from the yield
stress up to the transition to turbulence.

A capillary viscometry is simple and inexpensive. All one needs to do is measure the
axial pressure drop in a straight pipe in which the flow is fully-developed. The data to be
collected is the pressure drop and the flow rate. This data can be converted to shear stress
versus strain rate data with the Rabinowitsch equation, equation 13, (Bird, Stewart, &
Lightfoot, 1960).

av, __ 1 d
_(717),=R e (z0) (13)

The left side of equation 13 is the absolute value of the wall strain rate. By substituting
equation 12 for the wall shear stress and expanding the differential term on the right side
of equation 13, the wall strain rate can be expressed as a function of the flow rate and the
pressure drop, in a form convenient for calculatng the wall strain rate, equation 14.
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The strain rate can be obtained directly from a plot of the natural log of the flow rate
versus the natural log of the pressure drop. If pressure drop versus flow rate data is
obtained up to the point of transition to turbulent flow, and low strain rate data is obtained
with a concentric cylinder viscometer, a plot of shear stress versus strain rate for the
entire laminar range can be easily made.

Conclusions

Flow rates over the entire laminar flow range are encountered in the SME sample system,
and the data bases for rheological models of the slurries of interest must also cover the
entire laminar range, if reasonable hydraulic models of the sample system are expected.
The results of the analysis of flow through the 1/2" schedule 40 sample line of the two
hypothetical slurries, with rheograms shown in figure 12, clearly show the danger of
extrapolating rheological models based on data that cover a small part of the laminar flow
range. The analysis shows the danger of extrapolating Bingham plastic models, based on
strain rate data up to 350 1/s, up to the point of transition to turbulent flow, which is
expected to occur at a wall strain rate of approximately 1500 1/s. The danger of
extrapolation is equally applicable to more complicated models such as yield/power law
fluids. The data base must cover the range of laminar wall strain rates expected to be
encountered, because the rheological models developed from the data are completely
empirical.

With rheological data that spans the entire laminar range, good rheological models can be
developed. The yield/power law model, with one more degree of freedom than the
Bingham plastic model, is better able to fit data over a wide range of strain rates.
Equations for predicting the flow rate versus pressure drop relationship and the point of
transition to turbulent flow have been derived for a yield/power law fluid, so all of the
calculative tools for analyzing flows in hydraulic networks are available. Whether a
single model can adequately fit the data over the entire laminar range or several models
have to be tacked together in a piecemeal fashion, can be determined only after the '
rheology data is obtained and plotted.
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Appendix A Pressure Drop/Flow Rate Equations

The relationship between the laminar flow rate and the frictional pressure drop for fully-
developed flow of a yield/power law non-Newtonian fluid is developed in this appendix.
The Buckingham-Reiner equation for a Bingham plastic (Bird, Stewart, & Lightfoot,
1960) will be shown to be a special case of the yield/power law fluid relation, with an
exponent equal to one. As a first step, the relation for the shear distribution in fully-
developed pipe flow will be derived. '

Consider fully-developed and steady flow of an incompressible fluid through a straight
pipe with a circular cross-section. The continuity equation for this flow is equation al.

l_al(rv).;.liv_"_.pﬂ:
rort " ro@ oz

The flow is assumed to possess azimuthal symmetry, and since it is also fully-developed,
the azimuthal and radial velocity components are zero. The continuity equation therefore
simplifies to an expression stating that the axial gradient of the axial velocity component

is equal to zero:

0 (al)

v, _
=5=0 (a2)

The shear distribution is determined by applying the integral form of the momentum
equation, equation a3, to the annular control volume shown in figure al.

Control Volume

/

—_ - - z
I I
| Az 1
Figure Al: An annular control volume for axisymmetric flow in a pipe.
yF=2 [ pVd(Vol)+§ pV(V « dA) (a3)
Jdtevel A
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For steady flow, the first integral on the right side of equation a3 is zero. The second
integral term is an expression for the net rate at which momentum is convected into the
control volume, and this is equated with the sum of the forces acting on the control
volume. Figure A2 shows the surface forces acting on, and the momentum rates entering
and leaving the control volume. Expressions for the areas of the surfaces of the control
volume are shown in equation a4.

L ('rrzA)r+Ar
(PA), (PA)z+ 4z
————— e S ————— ]
- el
(pAv?2), (PAVZ)2+ 20
(%A)
Figure A2: Forces and convective momentum rate applicable to the annular control
volume.
A =2arlz
A, =27(r+Ar)Az (ad)

A=A, = 2rAr+(Ar)’]

Equation a5 is the expression for the sum of the forces acting on the control volume, and
equation a6 is the expression for the net momentum rate convected into the control
volume. The convective term is equal to zero since the axial velocity gradient is zero.

3. F, = P,a(2rAr +(Ar)’) = P, m(2rAr +(Ar)) +
T,|,2mrAz—7,| , 27(r+ Ar)Az

(a5)

§ pV(7 « d&) = pr(2rar+ Ar®)(v,),, o~ ()] = 0 (26)

2+Az z

Equation a7 is the integral form of the momentum equation for the control volume shown
in figures A1 and A2. In the limit as the control volume approaches a differential control
volume, the two difference terms in equation a7 become differentials, equation a8.

P,—-P, 2 —
- o ST a) [(r'r,, ), —(r7.).. Ar] =0 (a7)
lim Pon—P, — ar Km (7. )rm ~(r. )' = g—-(rtn) (a8)
A0 Az dz Ar—0 Ar dar

The resultant differential equation for the radial dependence of the shear force, equation
a9, is integrated with the boundary condition that the shear force is finite at the centerline.
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The resultant differential equation for the radial dependence of the shear force, equation
a9, is integrated with the boundary condition that the shear force is finite at the centerline.
The solution, equation al0, is the radial shear distribution for fully-developed steady
laminar flow of an incompressible fluid through a pipe. This equation is applicable to
both flows of Newtonian fluids and fluids that exhibit non-Newtonian viscosity effects,
such as a Bingham fluid or a yield/power law fluid.

1d dP
—(rt )=—— 9
rdr(r =) dz (a9)
dP r
== 1
T, 723 (al0)

Equation al1 is the constitutive equation for a yield/power law fluid.

T,=7T,+ 11,(—- a;’) =7,+1,7" (all)
r

Figure A3 is a plot of the radial distributions of shear stress and the axial velocity for
fully-developed laminar flow through a pipe. The shear stress is zero at the centerline
and it increases linearly to a maximum at the wall. The velocity distribution is
characterized by two distinct regions: there is a central region of uniform flow, where the
shear stress is less than the yield stress, and an annular region with a radially varying
velocity profile, where the shear stress is greater than the yield stress. The threshold
radius where the shear stress is equal to the yield stress is 7.

If equation al0 is integrated over a length L, the shear stress is a function of the pressure
drop and the radial position, as shown in equation al2. Also shown is an expression for
the wall stress.

AP AP
=2, & =—R 12
==L’ =3 @l2)

Vo(1)

YYVVYYY

- - - -~ - s

Figure A3: Radial shear stress and velocity distributions for fully-developed laminar
flow of a yield/power law fluid.
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Putting the shear stress in terms of the wall stress in the constitutive equation for a
yield/power law fluid and rearranging, results in a first order ordinary differential
equation for the axial velocity.

A
_a _L(Tmi_ 70) (al3)
dr 1’% R

This equation is integrated directly, and the no-slip boundary condition is applied at the
wall. Equation al5 is the velocity distribution for 7,<7<R. The uniform velocity for the .
inner region, where the shear stress is less than the yield stress, results from substituting
r, into equation al5. The result is equation al6.

y, = j(rmi—ro) "dr=—-—nR-—('rmL—z'a)" +C (ald)
U7 R (n+1)7,n\ "R
nR [ Lol r = 15
= (7,—7,) " | To=—7
e e K (%) )
nR | Lazh r 'nni '
=T, -7 )" —|T,—2>—T7 16
" T D, (7o) (“’R ) (@10

Substituting equation al2 for the wall stress into equations al5 and al6 results in the
velocity distribution in terms of the pipe length and pressure drop, generally, known
quantities. Equations a17 and a8 are the expressions for the velocity distributions in the
inner and outer regions of the flow.

n+l
2Ln (APR )T
v, = -7,
' (n+)APTA\ 2L

ntl a4l
2Ln [(APR_TO)A_(API'_TO)":l r,<r<R  (al®)

0<r<r

o

(al7)

Ya = e DaPn# |\ 2L 2L

The volume flow rate is determined by integrating the velocity distribution over the the
pipe cross-section area.

R Yo R
Q= fov, (r)2mrdr= 271:!0 v, rdr + 211:L v, rdr (a19)

Carrying out the integration in equation a19 and substituting equation a20 for the
threshold radius, 7, results in an expression for the flow rate as a function of the pressure
drop, pipe geometry, and the fluid rheological properties. With some manipulation, the
resultant expression for the flow rate/pressure drop relationship for a yield/power law
fluid is equation a21. This equation is analogous to the Buckingham-Reiner equation for
a Bingham plastic, (Bird, Stewart, & Lightfoot, 1960).

30



Rt 2Lz
r,=—=%t= - a20
° g, AP (a20)
'Rz APR %l' ‘
— —.—.f —
2(2L °)
3n+l 2n+1
g=—2En | (ﬂ_,,)~ T(_A_P;R_,,y » (@21)
(n+DAPT™ | 4nl?|\ 2 . °\af, °
AP? 3n+1 2n+1

Setting the exponent n equal to one in equation a21 results in an expression for the flow
rate/pressure drop relationship for a Bingham plastic, equation a22. This equation can be
simplified, and the Buckingham-Reiner equation is recovered, equation a23. This
exercise verifies that equation a21 is correct.

[ [(APR Y o(APR_.Y
4nL |RP(APR Y _ar*|\ oL )  \aL
Q 2AP17,12(2L 7") Ale 4 3 (a22)
mAPR*|. 8 Lz 16(L1 )“
= 1- 2 — 2 a23
Q 8L710|: 3APR = 3 \APR (a23)
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Appendix B Dimensional Analysis of Pipe Flow of a
Yield/Power Law Fluid

Dimensional analysis reduces the complexity of a problem by reducing the number of
independent parameters to the minimum number of dimensionless parameters that are
required to adequately describe the phenomena under investigation. For pipe flow of a
yield/power law non-Newtonian fluid, dimensional analysis will give the correct forms of
the Reynolds and Hedstrom numbers. These non-dimensional parameters will allow the
laminar/turbulent flow transition for a yield/power law fluid to be treated in a similar
manner to that of a Bingham fluid, (Hanks, 1963).

Buckingham's pi theorem is a dimensional analysis method that is comxfxonly presented in
elementary fluid mechanics texts. There are four sequential steps to the method, (Gerhart
& Gross, 1985).

Step #1 Write a functional expression for the dimensional relation under
investigation.

A functional relation for the frictional pressure drop of fully-developed laminar flow of a
yield/power law fluid includes the fluid rheology, the pipe geometry, and the flow
velocity. Equation b1 is the constituitive relation for a yield/power law fluid, and
equation b2 is the functional expression for the pressure drop.

T.=7 + no(_ﬂ) =1, + no'}',n (b]-)
or
AP=f(D,L,V,p,1,,7,) (b2)

The exponent n is not included in the functional relationship because it is a non-
dimensional parameter.

Step #2 Determine the number of dimensionless parameters you need to construct.

The units of the dimensional parameters are as follows:

AP=Pa="E
ms

D=m

L=m

Ve
P“—’k%s

_ kg
na - 'nsz—n
kg
=
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There are three fundamental dimensions in this problem: length, mass, and time. The
number of dimensionless parameters is equal to the number of dimensional parameters,
z=7, minus the number of fundamental parameters, k=3. Four dimensionless parameters
will be constructed.

z—k=7-3=4 (b3)

Step #3 Select k of the dimensional parameters that contain among them all of the
fundamental dimensions. Combine these parameters with the remaining
(z-k) dimensional parameters to form the required number, (z-k), of
dimensionless parameters. This is done by selecting the remaining (z-k)
parameters one at a time and multiplying by appropriate powers of the k
repeating variables so that the result is dimensionless.

The three dimensional parameters that contain all of the fundamental units and that will
be used to form the four dimensionless parameters are the diameter, the velocity, and the
density. These three repeating variables, taken to arbitrary powers, are sequentially
multiplied by the remaining four variables. Equation b4 is the product of AP and the
repeating variables.

I1, = APD*V*p° (b4)

The appropriate dimensions are substituted equation b4, and the exponents are combined.
The pi term is non-dimensional when the exponents of the three fundamental dimensions
are zero. Setting each of the three exponents, on the right side of equation b5, equal to
zero results in three equations that are solved for the three exponents: a,b, and c.

b c

]:[1 _— (k_gz.)md(ﬁ) ('k_g3) - kg1+cm—l+a+b-3cs—2—b (bS)
ms s/ \m

Substituting the values of the three exponents into the original pi term results in the

dimensionless variable. Equation b6 is the expression for the dimensionless pressure
drop.

2. AP
I1, = APD°V?p I=W (b6)

The remaining three dimensionless variables are determined in the same manner.

II, = LD*V*p* (b7)
b c N
Hz - mlma(%) (%) - kgcml+a+b—-3cs—b-3c (b8)
II,=LD7'V%° = L (b9)
2 D
I, = n,D°V®p* (b10)
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b ¢
H3 = ( ’nl:f—” )ma( ﬁ ) ( _lig? ) = kg1+cm-1+a+b—3c s—(2—-u)—b (bl 1)

s/ \m
H = D—uVu-z -1 - Tlo 12
3 no p sz—n Du (b )
I, = 7, D°V’p° (b13)
b ¢
I, = ( _k_g7 )ma(_'_n_ ) ( k_% ) = kghemTrerb-leg b (b14)
ms s/ \m
2a_ T,
H4 = TODOV zp 1 =;F (b15)
Step #4 Rearrange the I1 groups to please yourself or to correspond with
. customary usage.

I1; inverted is the Reynolds number for a yield/power law fluid. Multiplying I14 by the
square of the Reynolds number results in the Hedstrom number. These are the two
important non-dimensional parameters that govern pipe flow of a non-Newtonian fluid.

2-npyn
Re=u (b16)
n,
2-npyn \2 2ny72(1=n)
(]

These two parameters differ from the analogous non-dimensional parameters for a
Bingham fluid by the presence of the exponents involving n. If » is set to a value of one,
the Reynolds and Hedstrom numbers for a Bingham plastic result. Equation b18 is the
non-dimensional functional form that is equivalent to the dimensional expression,
equation b2.

(b18)

pv: \D ’

AP -F L pv2-nDu pT, DZnVZ(l-n)
D’ 1, m
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Appendix C Laminar-Turbulent Transition for Flow
of a Yield/Power Law Fluid in a Pipe

The transition Reynolds number for laminar to turbulent flow of a non-Newtonian fluid is
not a constant but a function of the fluid properties and the pipe diameter. (Hanks, 1963)
developed a general criterion for the stability threshold of a laminar velocity profile,
based on the local ratio of the acceleration force to the viscous force. Equation c1 is the
appropriate form of the stability threshold criterion for pipe flow. Based on an analysis of
laminar flow of Newtonian fluids, the maximum value of X at transition was determined
to be 404, and this value should apply to all non-thixotropic fluids.

K =l__p__¢_i_(v2) (cD

(Hanks, 1963) used this criterion to derive expressions for the transition Reynolds
numbers for Bingham plastics and Powell-Eyring fluids, and he demonstrated good
agreement between theory and data. In this appendix, (Hanks, 1963) procedure is applied
to a yield/power law fluid, equation c2, and a relation for the transition Reynolds number
is derived.

Tn=T+ ﬂo(—%‘) =7, +17,7" (c2)

The parameter K is zero at the centerline and the wall, and positive elsewhere. When the
maximum value of K reaches 404, the flow will start to transition from laminar to
turbulent flow, and the Reynolds number of the flow is the transition Reynolds number.
In principle this procedure can be applied to any flow for which an analytical expression
for the velocity profile exists.

Equations ¢3 and c4 are the expressions for the velocity profile of steady laminar fully-
developed pipe flow of a yield power law fluid. For the pipe geometry, refer to figure
A4, and the two following equations are equations al4 and al5 respectively.

3 a+l
n+l —
v,=-—ﬁkj— ('t'm—'to)T—('rm-"——to) " r,Sr<R  (c3)
(n+1)7,m5" R
nR [ 1 =
rtl r n
v=— l(t,-7,) " —| 7,21, 0<r<r,  (c4)
(n+1)7, Z{‘ ( ) ( R ) ]

The radial coordinate and the radius of the plastic plug are rendered dimensionless by the
following expressions, and equations c5 and c6 are the resultant expressions for the
velocity profile.

r T T
= e— a=—°=._°
: R R =,
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= l-q)» 0<é< ‘ 5

1 (n+ ) a) (<a (c5)
% n+l
nR7T} e R

v2 = W[(l_ a) n (6 a) ] a S g S 1 (06)

The mean velocity is calculated by integrating the velocity profile as shown in equation
c7. Equation c8 is the expression for the mean velocity.

7= L [ =2 ()88 -
{)':Mn_’n_ l(l_a)"—:l_na(l—a) n _n(l—a) n (©8)
(n+D)n"| 2 2n+1 3n+1

Equation c9 is the appropriate form for the Reynolds number for a yield/power law fluid,
see Appendix B. Substituting equation c8, the expression for the mean velocity, into the
definition for the Reynolds number and expressing the wall shear stress in terms of the
yield stress results in equation c10, the expression for the Reynolds number as a function
of e If the critical value of &, where transition from laminar to turbulent flow occurs, can
be calculated, the transition Reynolds number can be determined with equation c10.

—=2—-R Ty A =2-RpDn
Re=P7 D _ 2"pv "R ©9)
n, U
4“1&22_? 1 +1 l—a)» e T
Re=— PRG" |1 gys noel-o)» nll-of » (c10)

(n+ 1)2-n 7’2{' o 2n+1 3n+1

The expression for the parameter K, equation cl, for a yield/power law fluid is
determined by expressing the axial pressure gradient in terms of the wall shear stress,
equation c11, and substituting in the velocity profile expression. . Equation c13 is the
expression for this parameter.

dP R
r,=- 2% (c11)
_lpdin__p dv

— > ‘ﬂ%‘ = (v ) 21,'m v d§ (312)

'2:_2 2
- nt n+2

g = TP% R [(1—0:)71(5—05)%-(5—“)7] (c13)

2(n+1)n7"
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Equation ¢13 is differentiated and set equal to zero in order to determine the radial
position where K is a maximum. The radial position where K is a maximum is
determined by the appropriate root of equation c16.

2-n
& _ _pts R

o) —a)n - oV
dé 2(n-!-1)n?"|:(1 )~ (§-a) (n+2)(§-) ] (c14)

& _o l5)

dg

- a)"—?(?g'- a)l-T" ~(n+2)(& - a)% =0 (c16)

Equation c17 is the expression for the radial position where K is a maximum. The

transition to turbulence starts at the point where the maximum value of K is equal to 404.

Equation c17 is substituted into equation ¢13, and the parameter K is set equal to 404.
This is equation c¢19. This expression relates the critical value of «, the radial position
where the velocity profile becomes unstable, to fluid properties. Equation c20 is the
expression for a., the critical value of «, as'a function of the fluid properties and the pipe
radius. The value of « is substituted into equation c10 to determine the transition
Reynolds number.

Eogqe—12%_ €17)
(n+2)mt
K(E) =404 (c18)

nt2

2-_1!
npt,” R’[(l-ac) "

404 = = . (c19)
2o | (142
a 2-ng R*™ n "
r=F—g =) (c20)
(1 - ac)z—n T’oz-ﬂ 808(n + 2) n+l

Equation c19 can be used to simplify equation c10, the expression for the transition
Reynolds number. Equation c19 is manipulated into the form shown in equation c21.
The left side of this equation is the grouping of the fluid properties in equation c10.
Substituting equation ¢21 into equation c10, results in an expression for the transition
Reynolds number as a function of ¢, and n.

Z-_" n+2
R:z »  2(408)(n+2)nn1
PRz, 2404 (n+2)m (c21)

n

npes  n(l-a)
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2n+1 I+l P20

at+2
3232n' ™" (n+2)mn |1 oo (l-a)* nll-a)
R = — 1 -— A - c - c
G mz| 51— ) 2n+1 3+ 1 (c21)

(n+1)""(1-a, )"



