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Abstract

A design for a 90° bend for the TEq; mode in over-
moded circular waveguide is presented. A pair of septa,
symmetrically placed perpendicular to the plane of the
bend, are adiabatically introduced into the waveguide be-
fore the bend and removed after it. Introduction of the
curvature excites five prepagating modes in the curved sec-
tion. The finite element field solver YAP is used to calcu-
late the propagation constants of these modes in the bend,
and the guide diameter, septum depth, septum thickness,
and bend radius are set so that the phase advances of all
five modes through the bend are equal modulo 2x. To a
good approximation these modes are expected to recom-
bine to form a pure mode at the end of the bend.

[. INTRODUCTION

Some designs for the Next Linear Collider{l] (NLC)
transmiit power from the source (a klystron or the output
of a pulse compressor) to the accelerator structure in the
TEp; mode of overmoded circular waveguide in order to
have small transmission loss. The waveguide run from the
source to the accelerator includes some 90° bends. Ideally
these bends would be loss-less.

Two algorithms and some results are presented for
the design of one type of overmoded waveguide bend. A
curved section of waveguide connects two straight sections
as shown in Figure la. The curvature in the beud is con-
stant so the waveguide follows a 90° arc with radius of
curvature p, between the two straight sections. The cross-
section of the waveguide is uniform throughout the curved
section, but the cross-section is not simply a circle. The
cross-section and radius of curvature p. will be chosen so
that the incoming wave propagates through the curved scc-
tion with negligible mode conversion. This is the principal
form of loss considered here. Reflection and wall losses
are only considered heuristically. The straight sections are
adiabatic tapers from and to circular waveguide.

II. TELEGRAPHIST’S EQUATION

Curvature in overmoded waveguide causes coupling
between the straight guide modes. Such coupling is af-
forded by the generalized telegraphist’s equations|2], which
have been applied to curved circular guide[3]. In terms of

the forward and backward wave amplitudes, a*, these are
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Figure 1. Quter geometry (a) and cross-section (b) of the
bend. The cross-section’s dashed line is a symimetry plane.

where (', = B, are the propagation constants and the
other C\,y, involve inner products of the transverse fields.

The power transfer between two modes in a curved
section is limited by the difference in their propagation
constants. The TEy; -TM,, degeneracy presents a prob-
lem, so the degeneracy is split by introducing partial septa
perpendicular to the bend plane as shown in Figure 1b.
The modes can no longer be found analytically, but the /3,,
can be computed using SUPERFISH[4].

If pc > d/2 then the coupling is weak and the TEg,-
like mode amplitude varies little along the bend. A small
amount of power will beat in and out of the nth coupled
mode in an arc length {, &~ 27 /|8, ~ B,|, where o indicates
the TEg;-like mode. The interaction with each mode can-
cels when the relative phase advance is a multiple of 2.
By adjusting the cross-section and p., the 3’s are manipu-
Jated so that the three propagating modes coupled to first
order all beat out at the end of the 90° bend.

This is the approach first taken. However, a compact
bend which cannot rely on the above assumption is de-
sired. As the coupling coefficients become comparable to
the mode spacings, the beat lengths are altered, and modes
coupled to second order may be important. The coupling
coeflicients Chyy are required to verify parasitic mode sup-
pression at the end of the bend. Since the C,,, are not
easily obtained from the field solver, a different approach
was taken.

III. MODES IN CURVED GUIDE

A curved guide can be treated as a portion of a cylin-
drically symmetric structure. For the 90° bend the struc-
ture starts at ¢ = 0 and ends at ¢ = w/2. The fields
in the waveguide can be decomposed into modes with az-
imuthal dependence ¢'™¢. In the axisymmetric waveg-
uide paradigm the waves propagate along ¢ with propa-
gation constant m. Compare this with the phase % for
waves propagating along : with propagation constant /3 in
straight waveguides. The curved gnide does not close on
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itself so there is no requirement that 7 be an integer.

The finite element field solver YAP[5] is capable of
computing the frequencies of the modes of axisymmetrie
structures for any real m. Non-integral m is allowed. YAP
was used to compute dispersion diagrams for curved guide
with various cross-sections. One such dispersion diagram is
shown in Figure 2. A dispersion diagram for curved guide
looks similar to dispersion diagrams for straight guide.
However, the simple dispersion formula w? /¢ = k%4 3% for
a straight waveguide containing no media does not apply
to curved guide. This can be seen best in figure 2, where
the dispersion curves are not parallel lines. A power series
of the form

2

%—:k3+(11(ﬂ)z+az(ﬂ)4+ (2)
C Pe Pec

approximates the dispersion curves well. The cutoff k2 and
the coeflicients a; depend on p. and on the cross-section Q2
of the guide. When p, is large then oy 2 1 and the cut-
offs k2 are approximately the same between straight and
curved guide with the same cross-section. In the large p.
limit the two approaches described in this paper are equiv-
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Figure 2. Dispersion diagram of the curved guide for the
first design listed in Table 1. The dashed line is the drive
frequency 11.424 GHz. The dotted line corresponds to the
speed of light along the center of the guide.

IV. SCATTERING AT THE INTERFACE

There is potentially some reflection at the interface be-
tween the straight waveguide and the curved waveguide. A
generalized scattering matrix S; for the propagating modes
in the straight and curved guides can be constructed.

As an example, the scattering matrix for the straight-
to-curved interface in an overmoded rectangular H-plane
waveguide bend was computed using a mode-matching
method. Only TE, o modes were considered so the fields
are uniform vertically. In the straight guide propagating
along y the modes are E, o sin(27mnz/w) where0 <z < w
is the horizontal domain of the waveguide. In the curved
guide the modes involve Bessel functions. They are E.

Almlkp) 4 BYn(kp) —w/2 < p < p+uwf?

whore »
where 2.

and k = w/c is the drive frequency. Note that m s real for
propagating modes and imaginary for evanescent modes.

The boundary conditions E, = 0 at p = p. = w/2
yield a characteristic equation for the propagation con-
stants m. Solutions were obtained by pumerically inte-
grating Bessel’s equations and using a shooting method to
match the boundary conditions. This yielded numerical
values for m? for both propagating (m? > 0) and evanes-
cent (m? < 0) modes. The field E, for each mode was
obtained similarly.

The normalized generalized scattering matrix S; was
computed for an example with w/A = 1.36 and p./) =
3.87, where A is the frec space wavelength. There are two
propagating modes in the guides. Using 14 modes for the
field expansion on each side of the interface, the computed
scattering matrix for the interface is

4.107%/-8 810" Y=2 0.982 0.190
S = 810~ Y/=2 810-Y%=12¢ —0.190 0.982 (3)
T 0.982 —0.190  3.107Y%=4° 8107 Y-¢
0.190 0.982 8:10"%—=4° 610 %/ =8%

where [as), @42, 01,027 is the incoming wave vector. The
wave amplitudes asn and a., are for the modes in the
straight and curved guides, respectively.

Notice that the reflection amplitude is less than 1073,
If one assumes the reflections are similar for bends with dif-
ferent cross-sections but similar curvature, then reflection
at the straight-to-curved interface can be neglected. The
reflected power will be negligible as long as resonances arc
avoided. The principal concern, then, is mode conversion.

V. AROUND THE BEND

The scattering matrix S; for a bend over angle ¢,
can be easily computed given S; for the straight-to-curved
interface and the propagation constants m; and my for the
two propagating modes in the curved guide. The example
above has m; = 22.85 and mq = 16.18. The next mode is
evanescent with ma = ¢11.38. The transmission coefficient
for the (straight guide) fundamental mode for various bend
angles ¢y was computed. At ¢y = 27 /(my — my) = 0.941
the transmission is nearly perfect. At this bend angle the
two propagating waves in the curved guide arrive at the
output end of the bend with the same relative phases they
had at the input end of the bend. The propagating field
at the output is the same as at the input except for an
overall phase, so waves are faithfully transmitted through
the bend with no mode conversion.

The evanescent waves at the interfaces have decayed
sufficiently in the curved guide so that they can be ne-
glected in the transmission calculations for ¢p = 0.941.

This example leads to the principal design eriterion for
this type of overmoded waveguide bend: the phases ™%
must be identical for all modes propagating in the curved
guide. In addition, evanescent modes should be sufficiently
above cutoff so that they decay well over the length of the
bend, and thns ean he nng]m'twl.



Table 1

90° Overmoded Waveguide Bends

d(cm) | I (cm) | w(cm) | p. (cm) my My msy My mns fes (GHz)
4372 | 0.986 | 0.165 | 31.786 || 72.873 | 60.873 | 56.873 | 52.873 | 28.874 11536
4.275 | 0.971 0.611 36.655 || 83.867 | 67.867 | 63.867 | 59.867 | 23.868 11.819
4.258 | 1.054 0.593 | 38.754 || 89.034 | 73.034 |069.034 | 65.034 | 25.033 11.579
3.940 | 0.765 0.476 | 23.891 53.870 | 41.870 | 37.870 | 33.870 | 9.871 12.726
4.157 | 0.904 0.622 | 33.894 || 77.212161.212 | 57.212 | 53.212 | 17.213 12.163
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Mode 1 (“TE,”)
Figure 3. Electric field patterns for the five propagating modes of the first design in Table 1.

VI. 90° BEND DESIGN

Mode 2 (“TE2;")

Designs for a 90° bend with a cross-section as shown in
Figure 1b were computed. The phases e™ /2 for the five
lowest propagating modes excited by the incoming wave
can be fixed relative to each other by adjusting the four
parameters: d, pe, [ and w. Propagating modes not excited
by the incoming wave (due to symmetry) are neglected.
Dispersion diagrams were computed using YAP and the
bend parameters were adjusted so that the phases were the
same. This corresponds to the propagation constants m;
differing from one another by multiples of 4. The cutoff
(i = 0) frequency of higher order modes were computed in
order to discard designs with more than five propagating
modes at 11.424 GHz. Table 1 lists the parameters for
five solutions. It also lists the propagation constants for
the five lowest modes and the cutoff frequency feq for the
sixth lowest mode.

The cross-section in Figure 1 and the dispersion dia-
grams in Figure 2 correspond to the first design in Table 1.
The field patterns for the propagating modes are shown in
Figure 3. At cutoff the field patterns for the modes in
curved guide are similar to the corresponding modes in
straight guide, but for large m the second and third modes
are mixed. This is evident in the field plots and in the
dispersion diagram, where it appears that the second and
third curves are repelling each other. These modes arise,
with the introduction of the septa, from the TE2; and TEy,
modes of circular guide. The incoming wave is similar to
the fourth mode, which is a TEg;-like mode.

The cutoff frequency for the sixth mode of the first
design appears close to cutoff. The estimated propagation
constant using the straight guide formula is mgs = 110.7

Mode 3 (“TE;;]“)

ode 4 (“TEO]”) Mode 5 (“TI\‘IH”)

and the decay amplitude over the length of the waveguide
is efms™/2 = 5 x 1078,

VIL. FURTHER WORK

Further designs can be found, perhaps with smaller
radii of curvature and shorter septa so that the bend will
have smaller wall losses and be easier to manufacture.

A variation of the YAP field solver will compute the
evanescent modes in curved guide. With these modes a
mode-matching algorithm can be employed to calculate the
scattering matrix S; for the straight-to-curved guide inter-
face, and then verify that reflections are negligible and that
the design criterion is appropriate.

Calculation of the wall losses through the bend and
mode-conversion losses (due to manufacturing errors) also
requires knowledge of S; in order to obtain the mode am-
plitudes in the bend as well as the evanescent fields near
the interface.
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