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Abstract

We propose a method here which allows the measure-
ment of the cavity resonance frequency in a frequency
range up to £5 kHz from the operating frequency. This is
achieved by phase modulation of the incident signal with
noise to drive the cavity with a broad band spectrum. The’
cavity resonance frequency can then be determined from
the response signal of the field probe, which has a narrow
frequency spectrum due to the high loaded Q of the cavity
of 6.6 x 10%, corresponding to a cavity bandwidth of 125
Hz.

Introduction

The cavity tuning algorithms as presently implemented
in the CEBAF RF control system rely on the accuracy
of the detuning angle measurements. It is measured as
the phase difference between the incident and transmitted
RF power and due to hardware limitations not accurate
at low-power levels, i.e., if the cavity is detuned by several
bandwidths or at very low gradients. Phase offsets are
changing as functions of temperature and power level or
replacement of control modules. In many instances cavi-
ties need to be tuned manually after accelerator shutdown.
In this study, we propose a method to measure the cav-
ity resonance freqency by driving the cavity with a noise
spectrum. This is achieved by modulating the phase of the
incident signal with a band-limited pseudo-random signal.
The cavity resonance frequency can then be determined
from the response signal of the field probe, which has a
narrow frequency spectrum due to the high loaded @ of
the cavity of 6.6 x 108, corresponding to a cavity band-
width of 125 Hz. The presently used hardware allows the
measurement of the cavity frequency in a range up to %5
kHz from the operating frequency.

Layout of the Scheme

The principle of the scheme is shown in Fig. 1. A signal
Vi(t) = |Vile™**°! from the master oscillator (A) is sent

to a vector modulator (B), where V;(t) is modulated by a .

pseudo random signal z(t) = €***). The power spectrum
of z(t) is required to be a positive constant for | f| < 5 kHz
and to be zero outside this frequency region. The output
signal from (B) Vi, (t) = Vi(t)z(t) is then sent to the cavity
(C), which excites the cavity at its resonance frequency f.
(assuming | f.— fo| < 5 kHz with fo = wo/27). A sample of
the accelerating field V,(t), as the response to the incident
signal Vi (t), is detected by the probe coupler. Then at the
vector demodulator (D) the signal V,(t) is multiplied by a
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Figure 1: Layout of the cavity resonance frequency mea-
surement scheme.

reference signal V,(t) = |V2|e*“°! from the master oscillator
to generate a baseband signal y(t) = Va(t)Ve(t). Our task
is to generate a bandwidth-limited signal z(t) at the vector
modulator (B), and then set a scheme to detect the cavity
resonance frequency f. from the signal y(t) ouput from the
vector demodulator (D).

Generation of a Bandwidth-Limited Random Signal

First, a real ideal bandwidth-limited signal u(t) for 0 <
t < T, whose power spectrum Sy, (w) satisfies

s ={ 30 IS 1)
is generated using the sampling theorem [1]:
Na sinwy(t ~ nTy)
u(t) = HENI u(nTb)m (0<t<T)
(2)

with Ty = 2n/wy. Here u, = u(nTy) are uniformly dis-
tributed in the range (—1,1), and n runs from —N; to
N, with (T}, T2) = (- N1 Ty, NoTy) fully covering the time
range t = (0,T).

Let u and v be both ideal bandwidth-limited real pseudo-
random processes independently generated using Eq. (2),
and define a complex signal w(t)

w(t) = u(t) + tv(t). (3)
It can be shown that w(t) is an ideal bandwidth-limited
signal. We can write w(t) in terms of the amplitude and
the phase

w(t) = [ur(.t)‘e"d’(t). (4)



Numerically it turns out that the signal formed from the
phase variation of w(t) only, namely,

z(t) = ¢'®) = w(t)/w(t)| (5)

is also a good approximation of a bandwidth-limited signal.
This is shown in Fig. 2.

Response Signal from the Cavity

The analysis for the output signal y(f) of the overall
system is given iu this section.

The pseudo random signal z(t) is mvltiplied by the sig-
nal Vi(t) from the master oscillator at the vector modula-
tor (B), producing an incident signal Vi, (t) to the cavity,

Vin(t) = Vi(1)z(t). (6)

The cavity (C) acts like a forced oscillator with character-
istic resonance angular frequency w. and damping constant
. For an input signal Vi, (2), the cavity probe will detect
a gradient V,(t) which satisfies

Ve 4+ 2aV, 4+ w2V, = AVin(t) (7)
with A containing the proper units. Assuming V,(0) =

V.(0) = 0 and applying Laplace transform to Eq. (7), we
get

AT .
Vet) = = [ e U= sinwi(t — t') Vin(t') dt’
We Jo
A :
~ — [ e U Dsinw.(t —t') Vin(t') dt' (8)

we Jo

with w! = \/w? — a?. Here the relation a/w. = 1/2Q. <
1is used in Eq. (8) (Q. is the effective quality value of the
cavity). The response signal V() from the cavity is then
multiplied by V,(t) from the master oscillator at the vector
demodulator (D), which gives

n = Va(t)Ve(1). (9)
Combining Egs. (6), (8) and (9), we get
t
n(t) = ﬁ\-‘-/i(’_)/ ==t sinuwe(t — ')V (¢)2(t') dt'.
0

We
(10)
Together with Vi (t) = [Vi|e~*wo! and Va(t) = |Va|e*o!, one
obtains

t
nit) = a1/ emat=tDgtwolt=) gin , (t—1")z(') dt’. (11)
0

Here a; = AV} V4|/w, is a constant. Denote &, as the cav-
ity resonance frequency relative to wp, W, = w, — wp, and
assume the overall output signal y(t) from the vector de-
modulator (D) extracts from y,(t) only the part containing
the difference of the frequencies. It then yields

t
y(t) =a/ emalt=temtedt=t (") 4’ (12)
0

with constant a = a,/2i. By taking the first derivative of
y{(t) in Eq. (12) with respect to t, one can readily show
that
WE) + (o + ie)y(t) = az(t). (13)

Given w¢, and thus knowing w., we can numerically inte-
grate Eq. (13) to obtain y(¢) in terms of z(t) as the simu-
lation of the response signal of the whole system.

Let the Fourier transform of the processes z(t) and y(t)
be X(w) and Y (w) respectively,

X(w) = /w z(t)e™*!dt and Y (w) = /°° y(t)e= ! dy.
- - (14)
From Eq. (13) one gets
Y(w) = —2Xw) (1)

—t(w - W)+

The power spectra for the two processes are related by

28, (w
Syy(w) = @‘l'?:"‘d‘):)_zg‘_*‘_zgz"

(16)

Power Spectrums

It shows below that an estimate of the cavity resonance
frequency can be yielded from the proper averaging over
the power spectrum of the output signal y(t).

In real measurements, the signal lasts only for a finite
time period. The Fourier transform of the process y(t) for
0<t<Tis

T »
Y(w) = /0 y(t)e= it (17)
It can be shown that
T .
Y (w)]? = LT e~ "TT(1 - l,;—i)(Rw(r))T dr, (18)

where (Ryy (7)) is the finite time correlation function
T-—|r|
L[ v e
. ’ T-1
T=Irl / Y ()y(t + ) dt (r>0).
0

(19)
Applying a convolution to the integral in Eq. (18), one has

1 sin(w — w')T/2 2 N
e~ g [T (TSR S
(20)

Here it is assumed (Ryy, (7)) = Ryy(7), and Syy(w) is the
power spectrum

(r<9)
(Ryy(T))r =

Syy(w) = / Ryy("r)e"""” dr (21)

with the correlation function Ryy(7) obtained by averaging
over infinite random ensembles

Ryy(7) = (Ryy(7))t~o0o- (22)



The expression of |Y (w)|? in Eq. (20) corresponds to view-
ing the actual spectrum Sy, (w) through a spectral window

Wr(w)
T [sinwT/2\?
Wr(w) = 5= (W) : (23)
which provides a resolution of éw = 2n/T [2]. Note

Tl_i_.ncl’o Wr(w) = §(w).

The above results can be further generalized to view
Syy(w) at any resolution éw > 27/T by setting a cut-
off to the correlation time range. Given Tn (Tm < T),
the spectrum with resolution éw = 27 /T is obtained by
changing the integration range in Eq. (18) from (—T, T) to
(—'TM ) TM))

[IY(u)lz] Sw=2x/Thr

o (™ i 7]
= [ e - Eyrg o ar

(24)
~Ty M

=~ /;w Wry (w — w')Syy{w') dw'. (25)

Combining Eq. (25) with Eq. (16), one gets

® Wry (w —w')Szz (W)
2 ~ 2 TM !
“Y(“’” ]6w=21r/TM ~ |al /_w (W — @c)? + a2 dw'’.
(26)

Note [iY(w)|2]6w=2”/TM samples Sz-(w) at the frequency
w = w. with width Aw = o and resolution éw = 27 /Tyy.
When the resolution éw of [|Y(w)|?] is comparable with
the bandwidth Aw, the fine structures of Sz (w) in Eq. (26)
are smooihed out, giving rise to a well-behaved peak for
[IY (w)[?] centered at w = &,. This can be achieved by
choosing Ty = 1/a. The cavity resonance frequency can
then determined by the the frequency corresponding to the
center of the peak in [|Y (w)|?]

bw=2xa’

Numerical Results

In the current problem we intend to have low-pass fil-
tered signal z(t) = e'®(") for 0 < ¢t < 10 ms. The re-
quired bandwidth limit is f, = 5 kHz (fy = ws/27) and
thus T3 = 100 us. Two uniform random series u, and v,
were generated for n = (~200, 300), or t = (-20, 30) ms,
and z(t) with the time interval At = 10 us is evaluated
for 0 <t < 10 ms using Egs. (2), (3) and (5). Figure 2
shows that z(t) is a very good approximation of an ideal
bandwidth-limited process. The simulation of the cavity
response signal was obtained by numerical integration us-
ing Eq. (13), with given relative cavity resonance frequency
fe = fe — fo. By setting the cut-off time Tpyy = 1/a = 1.4
ms in Eq. (24) (for Q. = 6.6 x 10°), the power spectrum of
y(t) is obtained as shown in Fig. 3. It shows that the
central_peak is well behaved and centered right at the
given f.. The residual spectrum away from the central
peak is caused by the remaining oscillations of the factor
Wry, (w —w') in Eq. (26).

The above simulation shows that the cavity resonance
frequency can be revealed from the location of the central
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Figure 2: Power spectrum for the input signal z(t).

peak of the properly averaged power spectrum |Y (w)|? for
the output signal y(t). For the particular problem we are
interested in, the cavity quality number Q. is high enough
that the output signal y(t) is a sinusoidal signal with vary-
ing amplitude. The frequency of Re[y(t)] or Im[y(t)] deter-
mines the frequency offset from the cnerating frequency,
and the direction of rotation of the vecter y(t) indicates
whether it is a positive or negative frequency offset. The
validity of the scheme presented in this paper is currently
under test by experiments.
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Figure 3: Power spectrum for the output signal y(t) for (a)
fe =2 kHz and (b) f. = —1.6 kHz.
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