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Abstract

This paper presents a divide-aad-conquer ray-traced volume wndering algorithm and its
implementation on networked workstations and a massively l)arallel COml)Ul.('r, l.lw (?,ollnectiorl
Machine CM-5. This algorithm distributes the data and the ('Olnlmtational load to individual

processing units to achieve fast, high-quality rendering of high-resohition data, even when only
a modest amount of memory is available on each machine. The voluln(_ ,lal, a, once distribllted,
is left intact. The processing nodes perform local raytracing of their subvolulne concurrently.
No communication between processing units is needed during this locally ray-tracing process.
A subimage is generated by each proc(;ssing unit and the final image is ol)tai_t('d by conli)ositing
subimages in the prot)er order, which can I)e determined a priori, lmplenmntations and tests
on a group of networked workstations and on the Thinking Machines CM-5 d_:,lJlonsl,ral,e the
practicality of our algorithm and expose different pcrformanc(_ tuning issues for ('ach i)lal,forln.
We use data sets from lnedical imaging and coml__utational fluid dynamics simulat, ions in the
study of this algorithm.

Key Words: Scientific Visualization, Volume Rendering, l)istributed Algorithllls, Network

Computing, Massively Parallel Processing.

1 Introduction

The advance of comI)uting technology ha.s given scientists new opportunities to atteml)t very ]a,rge-

scale i)roblems that were previously imt)ossible to solve. In a.ddition, ttle advance of data acquisition

instrument technology has provided scient.ists with very high resolution s('nsory and nlonitoring

- devices to observe the physical world a.round us at a. scale that wa.s previously impossible to a.ttain.

The increase in computer t)rocessing pov-er, memory ca.l)a,city, acquisition instrument resolution,
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and thus the s, me of problems result in data ot'a. size that cannot be handled efliciently by tra.ditional

data, analysis methods. Tile use of contputer graphics techniques has been a very effective way lo

convert vast amounts of data to economica.l visual forms that may convey the nlost imt)orta.nt

information in the data sets.

As a, consequence of simulating the physical phenomena in three-dimensional space of our ordi-

na,ry everyday life, a majority of these da.ta sets consist of samples of scalar or w_ctor fields in three

_ • °spatial dimensions. These are known as volume data, sets. I,xlstlng volume rendering methods,

though capable of making very effective visualizations, are very computationally intensive and thus

fail to achieve interactive rendering rates for large da, ta sets. As the size ot' the data continues I,o

increase and the speed of light physically limits the performance of a. single processing element in

a computer, inultiple computers working in parallel on different data sets or different parts of the

same data set; offers new promise to unlimited computing power. As a. result, in the past two years

the development of parallel architectures and Mgorithms for volume data visualization has been _m

area of great activity in the research community ns well as in industry [20, 2:2].

ix.

Our work was motivated by the following observations" 1 lrst, volume data, sets ca,n be quite

large, often too large for a single workstation to hold in memory al, once. Moreover, high quality

volume renderings normally take minutes to hours on a single processor machine and the renderif_g

time usually grows linearly with the data size. 'Fo achieve interactive rende, ring rates, users often

must reduce the original data, which produces poor visualization results. Second, ma.ny acceler-

ation techniques and data exploration te,chniques for volunle rendering trade menlo)'y for time.

Third, motion is one the most, effective visualization techniques. An animation sequence of w)lunm

visuMization normally takes hours to days to generate. Finally, we notice the a.vailal)ility of hun-

dreds of higll performance workstations in our computi,lg environmetlt, which are frequently sitting

idle for ma,ny hours a day, especially after midnight. This lead us to consider ways to distribut.e

the increasing amount of data as well as the tinm-consuming rendering process to the tremendous

distributed computing resources available to us.

In this paper, we describe the resulting divide-and-conquer volulne rendering algorithm along

with its implementations and performance on a set of networked workstations and the Thinking Ma.-
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chines (,,M-,). For a honlogeneous COml>utillg euvironlnenl,, a,conlpul, iug environ luelll,with uniforlllly

distributed processing an<i memory units, l,llis l>ara,llel ra,y-traced volullle rendering a,l_;oril,hiu evenly

?
disl;|'il)ul,es data I,o the co|nl)ul, ing resources a,vailal>le, i,ach sul)volulue is l,llen ra,y-l,raced Ioca,lly

and generates a,parl, ia.l image, withoul, the need to cmnmullical, e with ol,her t)rocessing unil,s. 'l'llese

parl,ia] images are merged l,hrough a l>arallel compositin_; algorit, htn thai, c<>n_l>osil,es them it_ [,he

proper order l,()achieve 1,hecorrecl; linal image. 'rhe(:ommuni('al, ious costs <luring cOlUl)osil,ing is

slnall compared to the cost of the volulne ren(lering it,self, so a,near linear sl)ee(i|l !) is al,l,aine(l.

l)ata sets t'roru medical imagillg and conll>uta, tional fluid <lyllanlics si||l||lal,io|ls are used for 1,esl,ing

this algorithm in both homoge_eous and heterog(,,('ous con_pul, ir_ge,viro_l_<,r_l,s.

2 Related Work

An increasing number o[" parallel algoril, hlns and architecl, ures for volume rendering ha,ve I)eeu

develol)ed. The major algorithmic strategy for l)arallelizing volume ren(h, ri,_; is the <tivi(le-aH(t-

conquer pa,radignl. The volume ren(tering pr<)blem can t)e sub(tivi<le(t either in data. siva,ce or in

image Sl>ace. While data-space subdivision assigns the COml)uta,l,io. asso(:ia,l.e(! wil,h particular

subvolumes to processors, image-spa(:e subdivision distributes t,he ('Oml>ul,al;ion associated with

parti('ular portions of the image space, l)ata-sl)ace subdivision is usually api>lied I,o a disl, ril>uted-

memory parallel computing environ_nent. ()_1 the other ban<t, image-spa(:e subdivision is sinll>le

and efficient: for shared-memory multiprocessing, llybri<t methods a,re also feasible.

Among the parallel architectures developed which are capal)le of l)erforming illtera(:t, ive volunle

revdering [8, 11], the Pixel-1)lanes .5syst,em [8], a,n exa,_nl)le oi"a. hyl)rid _el, l_od, is a, he,l;erogene(>u,_

multiproces_'or graphi(:s system using both MlM I) and SIMI) l)arallelism. The ha,rdware coJlsisl,s of

multiple i860-l)a,se(1 Craphics Processors, mull, ii)le SlM l) l)ixel-l>rocessors arrays called lle_l(lerers,

and a, conventional 1280×102_l-pixel frame bu[rer, inl;er(:o_ne(,ted I)y a [ive-gi!_,at>il,rillg nel,work.

In [23], variations of parallel volume rendering iml)lemenled on the 1)ixel-l'la_es 5 sysl.eln a,re

presented. In one al)l>r(>acl|, the volume (lata, set is (lisl,ril)ul,e(l I,<)1,lie Rel_(lerers, where sha,<li_g

and synl, a.cti(: (:lassifica,tion are (tone. Each (_ra,phics t>rocessor is a,ssigue(l a, sul>i_ag(,, perl'orn_s

('orresponding ray sam pliug and requests _ee(le<l w)xel values t'ro_l 1,1_elle_(lerers. A se<luen('e

=
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of high resolution images can be generated at three t'ranles per second for a 128:_ data. set using

twenty GrN)hics Processors and eight l/,en(lerers. A much Inoreefficient a.I)pro_ch, similar to tile

idea. we proposed earlier in [15] and now elaborat;e in this pa.per, distributes data as well as ray

casting among separate Graphics Processors and reconstructs the ray segments into coherent rays.

Incorporating dynamic load bMancing, lookup tables and progressive refinement, this approach can

render shaded images from 128x128x56 vc'.ume data at twenty frames per second.

In the following sections, we survey most recent research results from other algorithnlic ap-

proaches.

2.1 Montani

Montani el; al. [17] propose a. hybrid ra,y-traced method for running on (listrit)uted-lnemory parallel

systems like a nC,UI;iI:;, in which processing nodes are organized into a. set oi" (:luste'rs, each of

them composed of the same number of nodes. The image space is partitioued and a subset of

pixels is assigned to each cluster, which will compute pixel values iadependently, l)ata to be

visuMized is replicated in each cluster, and is partitioned among the local memory of the c.luster's

nodes. A static load balancing strategy based on estimated work load of each processor is used to

improve efficiency, and on average a twenty percent speedup in rendering time can be obtained.

In addition, a mecha,nism for t)reventing deadlock is necessary to handle the dependency between

processing nodes in the same cluster. The best efficiency reported by the authors while using a

single cluste.r of 128 nodes is 0.74. ltowever, when illcreasing the number of clusters, the efficiency

drops signiticantly. For example, using 16 chlsters with 8 nodes per cluster, tile efficiency reported

is only 0.31.

2.2 Nieh

Nieh and Levoy [18] implement ray-traced volume rendering on Stanford I)ASII Multiprocessors,

a scalable shared-memory MIM1) machine. Their method employs algorithmic optilnizations such

a.s hierarchical opacity enumeration, early ray terminatioll, _md a,da,l)tive ilnage sampling [13] and

the shared-menmry architecture providing a single address space allows str_ightt'orward iml)lemen-

ta tions. The parallel algorithm distributes volume data in an interleaved fashion amollg the local

,:_

_
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menlories to avoid hot spotti_tg. The ra,y 1,racing conlt_ul,ation is dislril)uted a,n_ongthe processors

by pa,rt,i!doning the image plane into contiguous I_locks and each processor is sl.atica.lly ;_ssignt,d

ali imag',_ block, l_a.ch block is further divided into squa, re ill,age tiles for load balancillg purlmst's.

When a processor is done cmnpul, ing ius block, inslea,d of w;_il,illg, it stea.ls tiles I'rOllla, nt'igllboriil_4

proc(,'sors block to keel) itself busy. ]!]Xlmrimenl, res_zll,s shew this load I_ala,ncing scl_enle tilts tile

va,ria,tion of execution tiznes a.cross the the ,lS processors used by 90%. (',urrentlv, (m,ch l)rOcessor

in I)ASll is a, 33 MHz MI°-'_S 1{3000. Using M1:IS processors a,wl,ilable, a, ,I 16x,'116-pixel i_lla,ge tbr

a 256x256×226 da,ta. set ca,n be genera.ted in subsections; for l_olla.dapl.ive s_unpling, 1,1_,speedUl_

over uniprocessor rendering is 40.

2.3 SchrSder

SchrS(ler a,nd SMom [20] (lescril)e a, mull i-l)a,ss shear de(,Onll)ositiol_ M_orill_ i_l_l)l('l_('_t('d o_ l,t_e

C,o_ecl, ion Machine C,M-2 1,o a,pproxill_a,te inl,era,ctive rotation of w)lul_le da,l,a,. The a.lgoril, l_l_

distributes da,ta among processors and rota,tes tlm w)lume in l;la,ce. I'( rwa,rd l_ointers are used 1_,

ke,ep tta, ck of the loca,tion of a,neighbors' piece of da,l,a,, TI_o paralM COml_Ul,a,tiol_ constructs offered

by 1,1_e(,M-,,, like l,he co_nbiner operator Max, can produc_, _a, ximu_ intensity projecl, e.d i_ages

w_ry efficiently, floweret, for performing set_itra,nspa, rent re.ndering with sophistica, ted slla,ding

efDcl, s, da,ta, tra,nsposition must be done which needs Io use the geu_,ra,I router a,_d l,hus adds a,

significa,nt overhea,d cost.

More recently, SchrSder _nd Sl,oil describe i_ tl_eir Ira,per [21] a n_oreinteresl, ing da.ta,-pa.ra.llel

ra,y-tl'a,ced volume, rendering a,lgorithm tha,t is both l_ore _(,_ory ef[i(:ie_t and less con_lnunica.t, ioi_s

bound l,ha,n l;he a,lgorithm 1)res('nt(:d in [20]. This new t(:ch_i(l_l(' exploits ray l)a,ra llelis_l. 'l'lt_,y

iml)lement l,he Mgoril, l_n_o_ both tlm (',M2 a,_(l tl_e i'ri_cel,on l"_i_e, which co_sists of 20,1_ 16-1_it

I)SP processors arra,nged in a, ring. They describe the ra,y tra cil_g steps as discrete line dra wi_lg.

'1_) a,llow for _ SIMI) i_nt)leme,nta,tio_, ra,ys ini!,ia,lly e_l,er only l,he t'r_t_l,-_osl, face _t"1,he volu_e

. a,nd proceed iu lock step. Co/_seque/_l,ly, each sa/_ple I_a,s l,he san_e loca,I ('oo/'dina,tes i_ a, voxel.

X_/h(;n ra,ys exit l,h(, fa,r la,ce, a, i,oroida,I sl_ifl,of l,he da,ta, is 1)erf_r_e<l a,_d _,(,xvra,ys are i_il, ia,lized l,o

- enter the visible side la,ce of the vo/u_ne. As a, l'esull,, the rol.a,l,ioll a,nxle selected illlll_,_ces about



10% of the runtime of the algorithm. Tests using a. 1283-voxel data set on both the CM2 from 8h:

to 32K processors in size and the Princeton Engine of 102,'1 pro('essors show subsecond rendering

time. However, the Princeton Engine performs better because of its simpler (:()mmunication system

to facifitate nearest neighbor shifts.

2.4 V_zina

VSzina, et al. [22] implement a multi-pass algorithm similar to SchrSder's on MP-1, which is a.

massively data-parallel SIMD computer with _Ltwo-dimensiona, l array of processing elements (PEs).

Their algorithm, based on work done by C_tr-.'.:ll and Smith [2], and tI_nrahan [10], converts

both three-dimensional rotation and perspec'_ive tra, nsformations into only four one dimensiona,1

shear/scale passes, compared to SchrSder's eight-pass rot_tion algorithm composed exclusively of

shea,r operations. Volume tra.nsposition is then performed to localize (la,ta access. MI)- 1 provides a,

global router which allows efficient moving of data, between PLs. Gr, a, 16I(-Pl;; M1)- 1, a 128x 128-

pixel volume rendered image of a 128a-voxel (lata. can be genera.ted in subseconds. I[owever, ii:

seems that if either a sma,ller number of PEs or la,rger da_l;a,sets are used, the da.ta, 1,ra,nsposil, ion

time can degrade the performance significantly.

3 A Divide-and-Conquer Algorithm

Parallel processing is essentially a divide-and-conquer approa.ch to problem solving. Thus !,he

idea, behind our algorithm is very simple: divide the data, Ul) into svla,ller subvolunms distril)uted

to multiple computers, render them separately a,nd locally, and combine the resulting images in

an incremental fashion. While multiple computers are availa, ble, th(; memory dema, n(ls on each

computer are modest since each computer need only hold a subset of the tota,l data, set. '['his

approach can be used to render high resolution data sets in a,n environment, for exa,mple, with

many midrange workstations (e.g. equipped with 16MB memory) on a. local _rea network. Ma,ny

scientific and engineering computing enviromnents have an abunda,nce ot"such worksta_tions which=

could be harnessed for volume rendering provided tha.t the memory usage on ea,ch lnachine is

= reasonable.

_
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3.1 Ray-traced Volume Rendering

The starting point of our a,lgorithm is tile w_lume ra,y-tra.ced technique presented by ],evoy [12].

An image is constructed in image order by ca,sting ra,ys frolll the eye through the inca,ge pla,ne a.nd

into the volume of da,ta,. One r_y per pixel is genera,lly su flicient, provided that tile inla,ge sa,nlple

density is higher tha,n the volume da.ta sa,mple density. Usillg a, discrete rendering mode], the data.

volume is s_tmpled at evenly spaced points t_long the ra,y, usua,lly a,t _trt_te of one to two samples per

voxel. At each sa,mple point S(i) on the ra,y, a, color C(i) and a,n opa,city _(i) axe computed using

trilinear interpolation from the data, values a,t each of the eight net_l'est w)xels. Here we ;tssume

tha,t C(i) is pre-multiplied by 5ts opa.city.

Tlle color is assigned by applying a. sha,ding function such as the Phong lighting iuo<lel. A

color map is often used to _ssign colors to the ra,w data va,lues. The norma,lized gradient of the

data volume can be used as the surf_tce norma.1 for shading calcult_tions, The opacity is derived by

using the interpolaAed voxel values _s indices into ;_n opacity ma_p. Sa,mpliug continues until the

data volume is exhausted or until the accumulated opacity rea,ches a threshold cut-off" va,lue. The

final image value corresponding to ea,ch ray is formed by compositing, front-to-back, the colors a,nd

opa,cities of the sample points ,'tlonff _]_er_v. Considering S(i) a,s a,pair [C(i), o,( i)], tlle color/opacity

compositing ba,sed on Porter and Duff's over opera, tor [1.9] for two consecutive samples ,5'(i) a,nd

,5'(j) can be described e_s:

S(i) over ,5'(j) = S(i) +(1 -o,(i)),5'(j);

a,nd the composited color is C(i)+ (1 - c_(i))C(j). Th,ls the contribution of n s;tlnl)les a.lol_g the

ra,y for _ pixel p on the imuge pla.ne is

,5'(p) = ,5'(1) over (,5'(2) over (,5'(3) over (,5'(,_1)....5'(n))), (1)

a.nd the corresponding color a,nd opa,city values a,re

7
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n i- 1

C(p) = _C(i) 1-I(1- a(j)) (2)
i=l j=l

77,

= 1- ri(1- (al
i=1

It is easy to verify that the over is associative; that is,

a over (b over c) = (a over b) over c.

The associativity of the over operator allows us to break a ray up into segments, process the sam-

piing and compositing of each segment independently, and combine the results from each segment

via a finM compositing step. This is the basis Ibr our parallel volume rendering a.lgorithm. I/or

example, using the associativity of over we can rewrite equation 1 above as follows:

S(p) = (S(1) over ,S'(2) over ...S(k)) over (,S(k + 11)over S(k + 2) over • ..S(n) )

A simple example illustrates the operations involved. Suppose we break a ray into two segments,

segment 1 the front-half ray and segment 2 the back-hMf ray. Applying Equation 2, the color of

the ray segment 1 is

Tt

i-1

C: = _C(i) I-I(1-(_(j) ),
i=1 j=l

and the color of the ra,y segment 2 is

n i- 1

Cb= __. C(i) II (1-rr(j)).

According to the over operation, the color of the full ray is

C = Cf + (1 - c_:)Cb

where

8
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2

_"s- l - l-I(l - rv(i))
j= I

Therefore, we (:_mderive the composite a,s

C = (.Tf + (1 - rsy)C'b
7l
2

= Cf + (1-I(1 - ct(j)))C'b
j:l

71

7 n i- 1

= Cs+(II(_-<J))) _ c(i) II (l-_,,(j))

11

7 i-1 n i-I

= _ c(i) II(_ - _(J)) + _ c'(i) II(' - ,_(.J))
i=1 j=l i=_+1 j=l

i-I

=
i=l j=l

which gives us ha.ck Equation 2.

3.2 Data Subdivision/Load Balancing

The divide-a,nd-conquer a.lgorithm requires that we l)a,rtition rh(, inl)Ut data, iilto sllt)volunl(,s. There

a,re ma.ny ways to partition the data,; the only requirement is tha,t a,n unambiguous ['ront-to-l)ack

ordering ca,n be determined for the subvoluJnes to esta.blish the reqlzired or(ler for cozill)()siting

subimages. Ide_dly we would like ea,ch subvolume l,o re(luire a.l)out the sa,me ;:l,lil()Ulll, Of conlputal, ion.

In pra.ctice, this is generally not something tha, t we ca,n a.lways control weil. For exa.ilii)le, ii' the

viewpoint is known and fixe<t, we could partition the volunle in a, tnatlnor that minimizes the overlap

between the ima.ges resulting ft'ore the subvolumes. This will reduce the ('()sl,of the lllerging sitl<:e

colnpositing need only be a,pplied where subinla,ges overlap a,s shown later. For a.tl a nilliation

sequen(;e, this technique ca.ii nel, 1)e a.pplied silice the viewpoint cha.nges with each rra,hie. We can
_

also pa, rt;ition tlm volullle based 011 a.n estinla,l, ion of the distril)ution of 1,he alllOlllll, of' ('Olll[)lll.a.l, iOll

within the volume by preprocessing the voluille I,o identify high gradient regions or elntil, y regiolis.

Iii a.ddition, we may pa,rtition and distrit)ul.e the volunie a.c(,or(ling I,o the [)orforilia.llCe of individlial

compul, ers when USillg a, heterogeneous colnl)lll, illg el/vironnlellt,

9
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I\ I\I\ I\
FigureI:k-Otre,e SubdivisionoI";_,Da,ta,Vol|lille

The simplestmethod isproba,blytopa,rtitionthevolume;flo_gpla,i_e,spa,r;_lleltothecoordii,a.te

p]a,nes of the da.ta,.AgM11,ifthe viewpointisfi×eda,nd known wl_<,lllla,I'tltioi_ingthe d_l,a,,the

coordinatepi_nemost ne;_rlyorthogon_lto theviewdi|'ectionca,n be dete|'mlneda,nd thed_ta,c;_i

subdividedinto"slices"orthogona,lto thispl;_,ne.When orthogra,l_hicprojecl,ioliisused>thiswill

tend tc) produce subimages with little overbH). If the view point is not known, or if 1)erspective

projection is used, it is better to pa.rtition the volume equMly a.iong ali coo|'dina,te planes. This ca.n

be a.ccomplished using a k-D tree structure [1], with a,lterna,ting bina.ry subdivision of the coordina.te

pl,_nes a,t ea,ch level in the tt'ee _s indica, ted in Figure 1. As we wi:! _i_scuss shortly, this sl,ru(:l,Hre

provides a, nice mecha.nism for image COml)ositing.

As shown in Figure 2, when a, volume of grid points (voxels) is evenly subdivided into, for

example, two subvolumes, each subvolume l_la.y conta,in ha,lr of the tota.I grid l)oinl,s. Note tha.t

e_ch w)xel is loca,ted a,t _ co|'ner_)f the grid. C,onseque||tly, those ray sa,ml)les tha,t lie in the cut

bounda,x'y region (the dotted region) a,re lost. If the view vector is l)_,'Mlel to the cut l)la,lle, a, bla,ck

10
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l:igllre 2" \:olunl_' l_oulhdary l{eplicalioll.

sl rip will at)pear al each cul. boundary in l lie coulposiled inlage. In order lo avoid this F,rol)lom, we

uood to replicate one layer of lhe bolllldarv _rid al eacll s_lt_',,:ollllllo so lho conlposited ray-caslin_

image does not dto I) ou! fealures originally iu the ',.olull_o. I:'or l l,e caso shown iii l"i_ure 2. oue

possible ar,:an_c.lnenl is lhai Subvoluulo 1 includes layer I lo lav(u /c aud Sllb,,'olul_e 2 includos

lavel" L: lo layor tl: lhal is, in Sllbvolutlto 2. laver /c is replicale,l.

8.3 Parallel Rendering

\_'o Hso r_tv-c_lslil|_ ])_t_r'd VOltlll¿o i'olldorit|_, l!_;tc]l COlllpUlel" Call ])Ol't'(H'lll l'_/y11'_t('ill_ indepelidotttl.v:
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Figure 3: Correct Ray Sampling.

3.4 Image Composition

Tile fina,1 stel) of our algorithm is to merge ray segments and thus ali l)artia,l inlages inl, o the

final total image. In order to merge, we need to store not only the color at each pixel l)ut also the

accumulated opacity there. As described earlier, the rule for merging subimages is based on the over

compositing operator. When all subimages are ready, they a.re composited in a front-to-back order.

For a straightforward one-dimensional data l)artition, this order is also slraightforward. When

using the k-D tree structure, this fi'ont-to-back image comi)ositing order can then t)e detern_ined

hierarchically l)y a recursive traversal of the k--D tree structure, visiting the "frollt" chil(l b(,fore

the "back" child. This is siinilar to well known front-to-back traversals of l_SP-trees [7, (!i] and

oclrees [5, l(J]. In addition, the hierarchical structure provides a nalural way to accomplish lhc

coml)ositing in l)arallel: sibling nodes in the tree tl_ay t)e processed concurrentlv.

The actual compositing can be done in a lotally sequential nlannor such that the conlputer

with the front-mosl subimage sends its image to the computer with lhc next-fronl-lnost sul)ilnage,

their coml)osite is sent to the next COml)Utt-'r, and so on, until the final total linage is obtained. A

slightly nlore etticient way is to de binary conlposiling. A naive approach is to pair 111)('onlpul, ers
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in order of compositing. Each disjoint pair produces a new subimage. Thus after the first stage,

we are left with the task of compositing only _ subimages. Then we use half the number of the

original computers, and pal them up for the next level compositing. Continuing similarly, after

log n stages, the final image is obtained.

One problem for the above methods is that during the process of image compositing, many

computers become idle. At the top of the tree, only one processor is active, doing the final composite

for the entire image. When running on a massively parallel computer like CM-5 with thousands of

processors, this woald significantly affect the overall performance; consequently, the compositing

process would become a bottleneck when interactive rendering rates are desired. To avoid this

problem, we have generalized the binary compositing method so that every proc,,ssor participates

in all the stages of the compositing process. We call the new scheme binary-swap compositing. The

key idea. is that, at each compositing stage, the two processors involved in a composite opera, tim_

split the image plane into two pieces and each processor takes responsibility for one of the two

pieces.

Figure 5 illustrates the binary-swap compositing algorithm graphically for four processors.

When all four computers finish ray-tracing locally, each computer holds a partial image, a,s de-

picted in Figure 5 (a). Then each partial image is subdivided into two half-inlages by splitting

along the X axis. In our example, as shown in Figure 5 (b), Computer 1 keeps only the left

half-image and sends its right half-image to its immediate-right sibling, which is Computer 2. Con-

versely, Computer 2 keeps its right half-image, and sends its left half-inlage to Computer 1. Both

computers then composite the half image they keep with the half image they receive. A similar

exchange and compositing of partial images is also done between CoInputer 3 and Computer 4.

After the first stage, each computer only holds a partial image that is half the size of the original

one. In the next stage, Computer 1 alternates the ilnage subdivision direction. This tilne it keeps

the upper half-image and sends the lower half-image to its second-immedia, te-right sibling, which

is Computer 3, as shown in Figure 5 (c). Conversely, Computer 3 trades its upper half-image for

Computer l's lower half-image for compositing. Concurrently, a similar exchange and compositing

between Computer 2 and 4 are done. After this stage, each computers hold only one-fourth of the

13
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Initialize image plane to entire image

for(stride=l; stride<nproc; stride , = 2)

{
partner = self XOR stride;
Subdivide image plane;

Exchange image data with partner;
Composite our part of the remaining

image plane with partners image data;

}

Figure 4" Psuedo Code for Binary Split Compositing

original image. For this example, we are done and each computer sends its image to the display

device. Figure 5 (d) shows the final composited image.

Figure 4 illustrates the binary-swap compositing algorithm when the number of processors

(nproc) is a perfect power of two. We assume that processors are numbered from 0 to nproc-1

and that self is an integer containing the current processor number. ! hcr_: are log2(nproc) phases,

a phase corresponding to each level in the compositing trce. l)uring each phase, each processor

exchanges data with its partner which is stride away from it. The stride value steps from l up to

nproc/2 in powers of 2. In the early phases of the algorithm, each processor is responsible for a

large portion of the image area, but the image area is usually sparse since it includes contributions

only from a few processors. In later phases, as we move up the compositing tree, the processors are

responsible for a smaller and smaller portion of the image are_, but the sparsity decreases since _tn

increasing number of processors have contributed image data. At the top of the tree, ali processors

have complete information for a small rectangle of the image. The fin_l ilna.ge can be constructed

by tiling these subimages onto the display.

In our current implementation, the number of processors (nproc) nlust be a perfect power of

two. This simplifies the calculations needed to identify the compositing partner at each sl,ttge of

the compositing tree and ensures that ali processors are active at ew, ry COml)OSiting phase. The

algorithm can be generalized to relax this restriction if the compositing tree is kept as a full (but

not necessarily complete) binary trce, with some additional complexity in the colllpositing partner

computation and with some processors remaining idle during the first conlpositing phase.

I h binalv-swap compositing method has merits which make il, particula,rly suitable for ma,s-

x
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sively pa.rallel processing. First, while the parallel compositing proceeds, lhc decreasing image

size for sending and compositing makes the overall compositing process very efficient. Next, this

method always keeps all processing units busy doing usefld work. Finally, it is simple to implement

with the use of the k-D tree structure described earlier.

4 Implementation of the Renderer

We h_ve implemented two versions of our distributed volume rendering algorithm: one oil a set

of networked workstations and another for the Thinking Machines CM-5. Our implementation is

composed of three major pieces of code: a data. distributor, a renderer, and an image compositor.

Currently, tile data distributor is a part of tile host program which reads da,ta piece by piece froln

disk and distributes to each machine participating. Alternatively, ea.ch node program could read

their piece from disk directly.

The renderer implements a conventionM ray-traced volume rendering algorithm [12] using a,

Phong lighting model. Our renderer is a basic renderer and is not highly tuned for best perlbrlnance.

Compared to a performance tuned ray-traced volume rendering program we implemented previously

[14], we estimate that the current implementation of the renderer can be further improved in speed

by 10-15%. Data dependent optimiza.tion methods might in fact affect load balancing decisions by

accelerating the progress on some processors more than others. For example, a, processor tracing

through empty space will probably finish before another processor working on a dense section of

the data,. We are currently exploring data distribution heuristics that can take the complexity of

_ the subvolumes into account when distributing the data to ensure equal load on ali processors.

For shading the volume, surface normals a,re approximated as local gradients using central

differencing. We trade memory for time by precomputing and storing the three components of the

gradient a.t each voxel. As an example, for a data set of size 256 x 256 x 256, more than 200 megabyte

are required to store both the data and the precomputed gradients. This memory requirement

prevents us from sequentially rendering this data set, on most of our workstations.
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4.1 CM-5 and CMMD

In addition to multiple networked workstations, the Advanced Computing Laboratory (ACL) at

Los Alamos National Laboratory has a 1024-node CM-5. There were several goals which lead

us to implement the parallel volume renderer on the CM-5. First, we wanted the capability to

render very large data sets. Currently, scientific users are generating data sets on the order of

512×512×512 floating point numbers. Their intentions are to increase the resolution oi' their

models to 1K× 1K×IK in the near future. Secondly, we wanted to obtain rendering rates as close

to reM-time as possible. Currently, images are displayed using X Windows which inhibits reM-time

display. However, in the near future we will have ItIPPI framebuffers directly connected to the

CM-5 which will support reM-time animation rates. Thirdly, we wanted to have a batch animation

capability.

4.1.1 CM-5

The CM-5 is a commercially available ma.ssively parallel supercomputer built by Thinking Machines[3].

The CM-5 consists of 1024 RISC-based processors (Spare microprocessors) each with 16MB of local

RAM. Each processor Mso has four 64-bit wide vector units which assist in math coprocessing and

contain a.n additional 4MB RAM each for a total of 32GB of main memory for the entire ma,chine.

With four vector units up to 128 operations can be performed by a single illstruction. This yields

a theoretical speed of 128 GFlops for a 1024-node CM-5.

The 1024 node processors can be divided into partitions whose size must be a power oi' 2. Each

partition is controlled by a partition manager (.also Spa,'c mic,'oprocessors). The partition matlagers

are responsible for system administration ta.sks and executing non-parMlel (:ode. A user's program

is constrained to operating within a partition.
_

The CM-5 has three internal high-speed networks: the control network, the data network, and

the diagnostic network. The control network is used for data. operations, such as broadcasts, global

operations, and combining operations. It is also used ibr synchronization and error handling. Ali

selected processors participate in control network operations. The data network is used for routing

data between nodes. The diagnostic network is not available to user programs. High-speed I/O
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devices, such as parallel disk arrays, HIPPI network interfaces, and frame buffers are also attached

to the CM-5 data network.

The CM-5 supports SIMD and MIMD programming models. The SIMD (Single Instruction,

Multiple Data) model performs the same operation on all the selected data elements 1. li'or exa,mple

given an arra,y of numbers, a constant could be added to ea,ch number. When using the SIMD

model, this operation would logically occur simultaneously oll each element of the array. Actual

hardware may or may not perform this operation simulta,neously on all selected data elements. This

would depend on whether or not enough physical processors exist for each element in the array, if

there are fewer processors than data elements, then multiple elements are assigned to processors.

The MIMD (Multiple Instruction/Multiple Data)model, divides a ta.slc up into a number of

subtasks that can run concurrently and independently. Some subtasks can occur in parallel while

others might occur serially. For example a, set of processors might be used to factor numbers to

search for primes. Each processor could be assigned a number to factor asynchronously from the

others. When a processor has finished with a given number, it could request another.

Currently, SIMD style programs can be developed using data parallel Fortran (CMF) or data,

parallel C (C*). MIMD programs are written in C, Cq--k, and Fortran, and use a message pa,ssing

library (CMMD) for communications and synchronization.

4.1.2 CMMD 3.0

When using the MIMD model, the application developer utilizes the message passing facilities

provided by CMMD. The developer must pick either the host/node model or the hostless model.

In the host/node model, the user provides explicit communications between the nodes and the

host (partition manager). The nodes can communicate with ea.ch other a,s well as with the host.

Since the partition manager runs a full UNIX kernel, the host/node model atlows access to any

software which normally runs on a, Sun computer such as system calls, I/O ca.lls, XI 1 routines, and

calls to other specialized libraries 2. Thus, the application has a component that executes on the

1SIMD implies the processors execute in lockstep. Where the processors have their own copy of the program
instructions and the instructions don't execute in strict lockstep, the model is known as SPMD (Single Program,
Multiple Data)

2The nodes run a striped down CMOS kernel which does not provide such facilities.

=
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partition manager (the host) and other components that run on tlle nodes. The host is responsible

for initiating computation on the nodes.

In the hostless mode, an application uses a standard host program supplied by the CMMI)

library. The host merely initiates the execution of the node programs, and thereafter acts a,s an

I/O server for the nodes. The node program takes advantage of the CMOS kernel which runs on each

of the CM-5 nodes. The application developer writes programs which compute and communicate

strictly on the nodes and do not explicitly communicate with the host. Each node runs its own code

asynchronously from its local memory. It synchronizes with other nodes with explicit instructions

(i.e. send/receive messages, participate in a global instruction, etc).

CMMD is tile native message I)assing library supplied by Thinking Machines. CMMD, which

sits on top of the CM-5 network interface, p,'ovides high level message passing primitives simila, r

to those provided by other" message passing libra,ries. CMMI) provides for both synchronous and

asynchronous communications, for polled or interrut)t driven messages, for global operations among

all nodes, and virtual channels (optimized communica,tion between nodes) [,1].

4.1.3 CM-5 Implementation

The CM-5 massively parallel implementation of the l)arallel volume renderer takes aciva,ntage of

the MIMD programming features of the CM-5. We choose the host/node progratnming nlodel of

CMMD because we wanted the option of using X-windows to display directly from the CM-5. The

host program determines which data-space l)artitioning to use, based oN the number of r_odes i_

the CM-5 partition, and sends this information to the nodes. The host then optionally reads in the

volume to be rendered and broadcasts it to the nodes. Alterna.tively, the data ca.n be read directly

from the Data, Vault or Scalable Disk Array into the tlodes local memory. The host then broa(lcasts

the opacity/colormap and the transformation information to the nodes. Following this step, the

- host performs an I/O servicing loop which receives the rendered portions of the inla,ge ft'ore the

nodes.

The node program begins by receiving it's data-space partitioning information and then its

portion of the data from the host. It then updates the transfer fianctio_/and the tra.nsforln matrices.
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Following this, the nodes all execute their own copy of the renderer. They synchronize after the

rendering and before entering the compositing phase. Once the compositing is finished, each node

has a portion of the image that they then send back to the host.

4.2 Networked Workstations and PVM

The University of Utah Computer Science computing laboratory consists of groups of workstations

connected with an Ethernet network. Our goal is to set up a volume rendering f_cility for handling

large data. sets and batch animation jobs. We hope that by using many workstations concurrently,

the rendering time will decreases linearly and we will be able to render data sets that are too large

to render on a single machine. We use PVM (Parallel Virtuetl Ma.chine) [9], a parallel program

development environment, to implement the data communications in our algorithm. PVM allows

us to implement our algorithm portably for use on a variety of workstation l)latforms.

4.2.1 PVM

PVM, supporting _n _synchronous message-passing model, is a network-based concurrent com-

puting environment developed at Oak Ridge NationM Laboratory. lt grants the utilization of a,

heterogeneous network of parallel and serial computers as a parallel virtuosi machi||e. To run a

program under PVM, the user first executes a daemon process on the local host machine, which

in turn initiates daemon processes on ali other remote machines used. Then the user's _tpplication

program (the node program), which should reside on each machine used, can be invoked on each

remote machine by a local host program via the daemon processes. Communication and synchro-

nization between these user processes are controlled b,_ the ¢laemon processes, which guarantee

reliable delivery. There is sonle overhead associated with the use of PVM. Direct conlmunications

between processing nodes is likely to be faster than communications through the PVM daemon

processes. Nevertheless, the portability and ease of use considerations simplified the porting of tile

CM-5 implementation to the workstation environment and allows us to easily utilize a variety of

workstation platforms.
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5 Tests

We used three different dat_ sets for our performance measurem(.'nts. The head data set is the now

classic UNC Chapel Hill CT head at a size of 128× 128× 128. Tile vessel data set is a 256×256× 128

voxel Magnetic Resonance __ngiography (MRA) data set showing the vascular structure within tlle

brain of a patient. The vorticity data. set is a 256×256×256 voxel CFD data set, coral)uteri on

the CM-200, showing the onset of turbulence.

In Figure 6, we illustrate the comi)ositing process described in Figure 5, using the images

generated with the vessel data set. Each coh|nln shows the images from one l)rocesso|', while the

rows are the phases of the comt)ositing algorithm. The final image is disl)layed at the bottom.

5.1 Tests on the CM-5

We performed multiple experiments on the CM-5 using partition sizes o[' 32, 6,1, 128,256, und 512.

When these tests were run, a 102,-'1partition was not available. As previously note(t, the l)artition

sizes inust conform to l)owers of tw(). The run-time syste,n on the C,M-5 l)rovides mechanisnls for

utilization of all nodes regardless of the partition size. Identica.I l)rograms were run on the different

partitior|s using the three data sets previously described.

All times are given in seconds. Table 1 shows the results of the volume rendering of the head

data,. Table 2 shows the results of the volume rendering of the MRA (vessel) (la.ta. Table 3 shows

the results of the volume reIldering of the vorticity data. The times shown are tile nlaxilllU|ll times

for ali the nodes for the two steps of the core algorithm: the rendering step and the comt)ositing

step.

There is no data communication between tile rendering step and the COml)ositing step sillce

the rendering is peribrmed in the k-D data-space decomposed sets and the colnpositing utilizes

these results directly. That is, the compositing stel) does not require any data exchange fl'onl the

rendering step. Furthermore, tile rendering step does not require any internal co|llm||ni(_'a.tion. The

node synchronization step between the rendering and compositing stel)s is t)ou_lded by the ilo(le

which takes the longest time to render its data pa|'tition. For this ca.se, the minilnuln wait tilne

was less than 0.001 seconds since the last node to tinish waits for little ti|lle. Th(, |lla.xinu|ln wail.
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Figure 6: Illustra,tion of the Image (;Omlmsiting Process Usillg Actual Images.
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size function 32 6d 128 256 512

render 0.58;39 0.3723 0.2071 0.10,13 9.0593

64 x 64 composite 0.0165 0.0150 0.0133 0.()ll;_ 0.0101
render 2.3033 1.5393 0.8d59 0.d278 0.2223

128x128 composite 0.0576 0.0497 0.0322 0.0325 0.0269
render 9.2600 6.1558 3.3663 1.73,1d 0.9536

256x256 composite 0.1679 0.19;t2 0.1287 0.1090 0.0945
render 36.3685 24.1807 13.1200 6.7355 3.7107

512x512 composite 0.63320 0.77810 0.47660 0.4029 0.3782

Table 1' CM-5 Results on tlea,d l)ata Set

size function 32 64 128 256 ] 512
render 0.4346 0.2627 0.135(I 0.0806 0.0dSd

64 x64 conlposite 0.0097 0.0087 0.0085 0.0086 0.0081
render 1.6138 0.9500 0.,,1988 0.26,13 0.1.390

128x128 composite 0.030;3 0.0237 0.0233 0.0213 0.0167
render 6.4522 3.6532 l.S(i98 1.00S,1 0.5193

256x256 composite 0.11-'16 0.0897 0.0E35 0.07,11 0.055-1
render 26.031,1 1d.9057 7.5980 d.1720 2.203d

512x512 composite 0.,,16060 0,34600 0.;1278 0.2931 0.2167

'fable 2" CM-5 Results on Vessel l)ata, Set

i

size function 32 64 12_ 256 512

render 0.8038 0.3995 0.2072 0.1116 0.0597

6zl x 64 composite 0.01.37 0.0125 0.0101 0.0101 ().009.1
render ;13.14'46 1.5974 0.82.17 0.:1()86 0.20:11

128x128 coml)osite 0.0473 I 0.0-'106 0.0;300 0.0279 0.0235
render 12.3345 6.3 l;_i 3.2305 1.(i 15,_ 0.8063

256x256 colnposite 0.1807 0.1466 0.1108 0. 1001 0.0836
render 48.2005 2.1.t303 12.697 6.3,13.1 3.1878

512x512 composite 0.7[520 0.58100 0.-'1272 0.387,1 ().3310

Table ;3:(',M-5 Results on Vorticity l)ataSel

2:3



siz(: funcliol_ :12 64 12S 256 51"2

6.1x 61 conll)osil<' 0.0137 0.()125 0.0101 0.0101 0.009."I

coiniilunicalioli 0.0013 0.000,_ 0.0006 0.()005 0.(}00:1

l'2Xx12< conlposi!_, 0.0,17:1 O.(}.lO(:i 0.03()0 0.0279 0.0235
commullicalioi| 0.00:10 ().0026 0.001,_ 0.0012 0.0011

256x25(i coi|llmsil+:, 0.1,"407 (). l lG6 O. 1IO,'R O.lflO! fi.()_3fi
c()mln'unicali<)ll 0.021(} 0.0(}75 0.0052 0.00:17 ().0027

51"2x5l'2 co|l|l)osile 0.7152 0.SSlO 0.,1272 ().3,_7.1 0.3310
coli lnlunicalioil 0.0_.13 0.0231 O.Ol_l 0.013_ 0.()097

'i'at)l+, ,1" ('M-:") ('(_Inposiliim_ ('Olii|lii|llicalioll *lilil_,s

lilllr' f_.q" l il_:' \'()l't[('i|V dala s+,l oI1 a ")12 ('M-5 partili_,, ,,','as 0.5s* s,,c+,i_ds. "I'll,, lll;.l.Xillllllll W_-til

l itxl,, v;_l'i,,s <l,,l_',ll+ling +_|| I)<_Ili l ll,r' d;tla s<,l alid l li<, vi<,Wll_iHl.

.q(lili_' lil'_)c,'sn+ii's ;ii<' assil_li('d (t_1;t llal'liliol_s wl.icll c()iisisl ii< lliaiillv _'iilllly v_)xols wllil<' {llli+,l'S

liar+' lilll'lilil)llS wllicli {ti'+' c_}llll)risod of 11()I1-{'1111)l } V{IXOIS, "lli_' liarlili(lllS willi OlIli)l 3" V{IXt"IS ill-iV<'

v+,rv Iiill<, c_liiilliilali()li lo l)orf_iriii wliei'<,as Iii<, liarlilioiis wiili 11011-+'111111}"\'+)XO1S 1)('rl'orili Ill(J,"('

work. Sllliilarlv. as l tj!, vi<,WlnJilil is rolal_,d, SOili+, l)l(/c<,sS+il'nwill lia\<' f_,w+,r i'av-s_iiiilii<,s liaSSill7
i

lilt, ill,li flit' \'_)X<*isW]llCll COlll])l'iSo 111oii"SllliS(q _)t'111od;tla ;ili(I Sltlll__will ]liiV_, Ili(ll'_,. "l'li_' l)l'OC+,s.,_l;ll'S

wil ti l ll_, lii_lsl Fav-Saliil)los llaSsi'lfg ltir()ugli llOll-('liipt.v VoXOls will l)<'i'f_ll'iil i ti_' lli_)sl C(}liiltillal i(lli

it_<,r<,t_v lakiltg Iii<, lilaXilliillii i'+,lld_,i'li_g Iiill(,. Silil"{' lli<,i'_' i.s ii_l c{)iliilillllicali_lli iii lli_, l'+'iid_'liii<lz,

:lr'li. OllO II if',lil _'xt)+'cl lili+,ar Slm+,dup wht'll llliliZilig lll+ll't _ l/l'+JcosS_ll'._. .ks ('itll t)i" ,_<'1}1t fl'(}lll Iii+'

1;ttll_,s. liiis is ill_l iii<' oas<' dlio 1o iho load lial;lilC<, liroi,_:,illS. 1 i,,, wlrliciiv _llilg-i S<'I i.'>r!,lilli\'+,lv

Ill'liSt ''_' alld lli<'rr'f_ll'_' +,xllibil.s ll+';triv Iill<,;tr sli<,(,dllll. Til+' ]i_,ad (];illi St'I ('_)lltitillS I11;111}"+'llll)ly \'{t×_'is

wllicli lllil)alaliCf,s 1 hi, ]{);i{] alid l ii+,rof_lr<,_]<)<,sii+li oxillt)il l li_' tl<'st Sll+'<'+]llt>. 'l]i_' ]<Jadl,;i]_ili('_' all'<'+'Is

- 1}1owait-tilllt' wliich liillils Iii<' Iili_'iiiil\' (if iii<' sll+'r.dllt).

: "l'ti<' cOIlil)Osilili _ sl_lT_' i'_'(lllil'<'s ('<)lllllllllliC;ili(lll i)_'lW_'{'ll l_airs ,_1"li_l(t<'S l(I lt<'l'f_ll'lil Iii+' _i('lilii]

c<_llil_o._iliilg. In Iii+, cas_, _lt l til' \'lll'l ivil V +tiii a s+'i. lat)l_' I ,,ti_lWs l li_' c+lliil_ili_,d c_)iiil)+>.,,ililita aiid

COliilliillliCalioli fillip, aild iii+, aClll_ll c(lillililliiicali_lii C_lllill_tll_,lll f_li' iii+, +titf_,i_,iil .,i/+,+t('XI-7_tlai'li -

!i_iis. .\s <'ali li<' S+"I'II. iii<' c_lillllllllllCali+_ll fill!+' vari_,._ fl'lJllJ g,it)lllll 1() [)_'I*('_'111 I() itt)<)lll ;I l)_'l'{'<'lll

lit" 1t1+' ltil;tl ('l)lllli(Isilill _ lill!f', AS 1t1#' illlat_+' Si/.+' ili('l',';i>_'S, tllllti ltl#' {'t)llll){)nilill12 , 1ili1<' ;illd 1ti_'

'] Ii+' v<Jrlicllv _tala '-_ l <()111;t111"-- t,:,v _'llil,l )* v JX+'i.',.
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size functiol{ 32 6:1 128 256 512

broadcast 89.87 93.516 83.185 94.326 :19.157

6,t x 64 send image 0.0161 0.0168 0.0187 0.0218 0.0280

128x128 send image 0.0608 0.0615 0.0657 0.06_7 0.073.'1

256x256 send image 0.2406 0.2417 0.2615 0.2,170 0.2537
•.i)_ .)512x512 send image 0.9918 0.96500 0.9645 1.0151 0C_l ¢

Table 5:CM-5 Host (_ommunication l{.esults on Vorticity Data Set

¢'otnmut_ication time a.lso increase. For a tixed image size, illcrea,sing l,he partition size. lowers the

communication time beca|lse each node contains a l)rOl)O|'tior_ally s|naller piece of the image.

l_ooking at the ta, bles, it is e;:tsy to see that ret|dering time dominates the process, lt sl|ould

be noted that this implementation does not take advantage of tile CM-5 vector units. Ali floating

l)oi||l_ operations are done on the Spare node floating poit|t units. These are much slower than the

veclor units and we expect much faster compt|tation rates iii the renderer wllen the vectorized code

is complet(,d. The coxtlulunical, ion times will riot be a.ffec|;ed.

'i'able 5 straws the broadcast and it||age gatller tinles %r tile vorticity data,. The broadcast time

= includes lhc time it takes to read the image over NFS at ethertl(q, static(Is on a loaded ether(let.

While lhp linlirJgs were beit_g gathered for I>artitio||s sttla.ller than 512 nodes, the other I>_Lrtil,i<)lls

were also run|ling causing both disk and el..herllel, cont(_ntioi|. Tllus, the 512 I)roadcast tinl(, is

s||bsta||tia.lly less than for l.he smaller partilions, l_eading the file fro(l| disk doinillat(,s tllis tiw.e.

The ima_;_, gather lit|_e (senti image) is tile l,iIil_' ii, lakes for tll_, nodes lo send lilt,iv (:otlllmsited
-

i11:aKe ti](,s 1o lhc hosl. As can t)e see(l, lhc itllag_ gatllor tinge (s(;t|d iujago) is olJly slightly slower

for larKer partiliolDs wl_.ich have nlore i_aKe-tiles, l{olh of l l_es_, li_es will b(' _nitigated l)y _se

of t l_e parallel sl orage ( l)ataVaul! or Scalable l)isk Array) at_(l th_' use ()f lhc 1111)1)1 fra_el)utfer.

\Vii I_ lhc parallel storage, l l_e no(l(,s can Ioa(t l l_(,ir l)()rlion of ll_e (tara (lir(,('tly. 'l'l_e t_o(l(,s cal_ also

wril(, ll_(,ir s_lb-iu_aI_es cot_curret|!ly 1.o II_(, fra_,t)ufl'er via Illl'i'l.

Figure 7 and Figure S show speedu i) vers||s n||t|ll_(,r of pr(_('ossors _s(!(l for l ll_, vorticity data

s(,I and l l_,, h¢,ad dala sel. Tt_e (]ia_onal litr(, r(,I)l'os(,Ii|S [iiioar Sl_,,_,(t up wl_pr,,as 11_¢'fl)ur ('urv,,s

show lhc _peedu I) r(,sults ol)lait|(,d for varh)us i_a_, r(,s¢_lulio_s. "l'he Sl)"('(l_l_ was n_(,as_||'(,¢l fl_r
-
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32 node run time. The graph demonstrates that for tile vorticity data set, our implementation

achieves very good speed up for M1 image sizes except 64 ×64. The rendering of the 64×64 image

exhibits less speedup than larger image sizes due to overhead costs associated with the rendering

and compositing steps. In particular, the compositing step showed ,_ speedup of only 1.46 when

going from 32 nodes to 512 nodes. For all image resolutions above 64 ×64, the overall speedup was

nearly the same.

For the head data set, (:he speed up is not nea,rly as linear. This is due to the load 1la,lance issue

previously discussed. With this dataset and opacity ma,t), many rays are ternlinate(l early since

opacity rea,ct;es 1.0 where ever the isosurface is encoulltered. ]l(m(leri)lg _ 512×512 image size for

the head data set, the rendering time varied from (}.2931 to 3.7771 s(:cotl(ts. Fo'" the same image

size, rendering of the vorticity data set yielded ren(leritlg times from 2.5729 to 3.192,<1s(,con(ls. The

more consistent rendering times are indicative of I)(.,tler load I)ala,nci)lg.

5.2 Networked Workstations

For our workstation tests, wt; used a, set of 16 high l)erfornla, nce workstations. '['lte fit"st three

ma,chines where IBM R,S/6000-550 workstations equil)l)ed with 512 MB of tllenlory. These work-

sta, tions are rate(! at 81.8 SPEC, fp92. The fourtll ma(:hille wa,s an IBM I_S/6000-530 wilh 3S,t MI).

This is rated at 6-1.6 SPECfl)92. The remaining 12 ma,(:llines were 1tl)9000/730 workstatio)ls, SOtlle

with 32MB and others with 64 M B. These ma,(,hines are rate(I at 86.7 SI)E(',fl)92.

The tests on 1, 2 and 4 workstions used only tile IBM's. The tests with 8 and 16 used a

combination of III' and IBM workstations, lt was not l)ossible to assure absolute (luiescezl('e on

each ma cl_ine because these macbine, s are in a. shared envirollment witll a large shared ethernet

and share(l files systems, l)_lring the period of testing there was a lletwork traf[i(: fi'oln lietwork Iii(,

system activity (NFS) and across-the-net tape backups. The first ff)ur tlo(les were. ali ()li the. same

rw_! Ssubtler, while the refflailling nodes lie ol/ a differellt subllet, l llU.', we exl)ect the (:onlIllllllicaiiolls

= performance for the 1, 2 and 4 processors test to be better tha,n for the 8 and 16 l)ro(:ess cases.

Table 6 shows the results of the volunle ren(lering of the ]lead data, at several image sizes and

with 1-16 processors. Table 7 shows the results of the volunle ron(lering o["the MRA (w,ssel) (lata..
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size fu notion 1 2 4 _q 16

.... render 2.2200 1.2700 1.1030 0.,1920 (}.3250

64 x 64 composite 0.0000 0.()420 0.0900 0.0990 O. 1570
render 8.4040 4.95,10 4.1 _.90 1.8270 1.1160

128x128 composite 0.0010 0.1240 0.2170 0.2370 4.'M90
render 33.2260 19.9480 17.0840 g.223(i 4.3660

256x256 composite 0.0030 0.4200 0.4 810 0.6160 8.1090

render 134.4880 g().5170 70.2450 44.2310 20.9980512x512 composite 0.0110 2.3730 1.54 70 5.5280 13.1,170

Table 6' I)VM l{.esults on l-lea,d l)a,ta S(.t',

size function 1 2 4 8 16

render 2.9790 1.4560 1. i 7:30 ().(i8,10 0.3490

64 x 64 coml)osite 0.0010 ().()2510 0.0740 ().()gS0 0.1670......

ren der 11.7950 5.9760 4.7910 2.54 60 1.2610

128x128 composite 0.0000 0.0660 0.1240 0.1210 0.2400..........

0 render 44.5380 23.S390'" 1_".2220 9.5590 6.5850

256x256 conlposite 0.0020 0.2320 0.2940 0.5350 ,1.3000

ren(ler 183.9460 !)4.!)210 72.7390 3_.5960 20.3100

512x512 COml)osit('. 0.9060 0.7560 1. 1350 5.1510 4.5740

'Fable 7' PVM l/eslilts o_L Vessel l)al.a. S(,t

Table g shows 1,lie reslllts of t.tle vollllrle ren(lerillg of tile vorti('il.y data.. 'l'llo l,illles shown a.r(, I'()r lhe

two sl..el)s of the (:ore Mgoritilm: the rendering sl.e i) an(I l.l_e (:Otnl)osil.illg Stel). 'l'h(, tirll('.s slJow_l are

tile nla,xinlurn times in seconds for ali the rna(:hines. As ('ali be seeil, lh(, rell(le.ring tinl(, (l()_niila, l.es

l,lle COml)OSiting time in most (:ases.

The rendering colnl)Oll(mt of the a,lgorithlll is puroly ('olllI)lltation: 1,her(, is Ilo (:OllllllUlLi('alions.

The (:oIlll)ositing conlponent does require. ('oIiitnulli(:ations betw(,el_ llo(tes as illustrat(,_l in 'l_able 9.

This tables shows the combined comImsiting aj_d COlllIlllllli(:;|tiOll 1,inl(, alia l,]l(' cor-rlpol_e_l dllo I,o

co_nical, iol_s ow'.rhead. Nol, e that (:on_u_ical,io_s l,i_(, is lho dr_li_anl. ['a.ctor in 1.]_e.co_lposit-

ing ('osts. 'l'heso (:on_ntunical.ior_s cosls are highly va.riat_l(, (l_e lo lhc, us_, of 1,b_, local (,_]_er,ol,

sha, red with hundreds of other lna,chines. (',oI_ll_l_nicalio_s cosls are expocl,ed Io drol_ wii ]_ I_ig;l_or

Sl)CCd int¢,.rc(mnection networks (e.g. l"l)l)l) _md (_ clustors isolaled ['roi_ rho larger local area

nel.work.
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size function 1 2 4 8 16
,._

render 5.7130 2.8110 2.5740 1.1550 0.6440

64 x 64 composite 0.0000 0.0440 0.0890 0..1290 4.3200 ,,

render 22.6530 11.4960 10.6490 5.2760 2.5670

128 x 128 composite 0.0010 0.1150 0.1470 0.2740 4:.2890 ..

render 93.2510 47.7220 44.5610 23.8740 11.5390

256 x 256 composite 0.0060 0.4160 0.5860 4.7460 3.6730 ,,,

render 371.7900 180.4650 174.7770 71.6980 44.1010

512 x 512 composite 0.0160 1.4000 1.9560 9.1320 5.2020

Table 8: PVM Results on Vorticity Data Set

size function 1 2 4 8 16

6-4 x 64 composite 0.0000 0.04z10 0.0890 0.1290 4.3200
communic_tions 0.0000 0.0430 0.0870 0.1280 4.3200

......

128x128 comI)osite 0.0010 0.1150 0.1470 0.2740 4.2890
cornnlunications 0.0000 0.1080 0.1380 0.2730 ,1.2,70'a

256 x 256 composite 0.0060 0.4 160 0.5860 4.7460 3.6730
comnaunications 0.0000 0A040 0.5750 4.7390 3.6680

512× 512 composite 0.0160 1.4000 1.9560 9.1320 5.2020
communications 0.0000 1..3250 1.9240 9.1 30 5.1740

Table 9: PVM Compositing C,omnlunica, l,ion Times

=
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In a shared computing environment, there are many factors that we have no control over that

are influential to our algorithm. For example, an overloaded network and other users' processes

competing with our rendering process for CPU and memory usage could greatly degrade the per-

formance of our algorithm. Improved performance could be achieved by carefully distributing the

load to each computer according to data. content, and the computer's performance as well as its

average usage by other users.

The tables above exclude the data, distribution and image gather times. These times varied

greatly, due to the variable load on the shared ethernet. The data distribution times varied from

17 seconds to 150 seconds while the image gather times varied from an average of .06 seconds for

a 64x64 image to a high of 8 seconds for a 512x512 image.

6 Conclusions

We have presented a parallel algorithm for volume rendering on distributed memory par_llel ma-

chines or a set of interconnected workstations. The algorithm divides both the computation and

memory load across all processing nodes and can therefore be used to render data sets that are

: too large to fit into the memory system of a single uniprocessor. A parallel compositing method

was developed to combine the independently rendered results from each processor. The algorithms

were implemented on the Thinking Machines C,M-5 massively parallel supercomputer _md on _t

network of scientific workstations using PVM. The CM-5 impleme.ntation showed good speedup

characteristics out to the largest available partition size of 512 nodes. Only a. small fra.ction of the

total rendering time was spent in communications, indicated the success of the parallel com positing

algorithm.

Several directions appear ripe tbr further work. The host da.ta, distribution, image ga,ther, and

: display times are bottlenecks on the current C,M-5 implementation. These bottlenecks can be

aliviated by exploiting the parallel I/O capabilities of the CM-5. Render and <:oml>ositing times

on the CM-5 can also be reduced significantly by taking advantage of the vector units ava,ila/>le a.t

each processing node. We are hopeful that real time rendering rates will l>oachievable at file<tiara

to high resolution with these improvements.

_7

_
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Performance of the distributed workstation implementation could be further improved by bet-

ter load balancing. In a heterogeneous environment with shared workstations, linear speedup is

difficult. A simple approach is to do static load balancing. The data, subdivision c_n be done

unevenly, taking into account the predicted capacity on each n-la.chine to try to balance the load.

Alternatively, the data can be subdivided into a larger number of equal sized subvolumes a,nd the

more capable machines can be assigned more than one subvolume. The later approach has the

advantage tha.t it can be generalized to _ dynamic load balancing a,ppI'o_tch: divide the d_ta into

m_ny subvolumes and assign them to processors in a. demand driven fashion. Eacll processors asks

the master host for more data when it has completed rendering of the previous subvolume. The

finer subdivision of the data volumes improves loa,d baletncing during rendering at the cost of some

additional compositing time due to additional levels in the compositing tree.
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