|) O 1 ““\ 28 “m 2.5
= Nl\% 122
s : 122
= 1
1.25

22 e

l!lll

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Neither the United States Government nor any agency thereof, nor any of their

Government.

ConF-230/53~ -/
LA-UR- 93-3138

Titte: | A DATA DISTRIBUTED, PARALLEL ALGORITH FOR RAY-TRACED
VOLUME RENDERING

(I,_,-'" ’.‘;u‘ “E["I

Author(s): | K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh

Submitted to. | parallel Rendering Symp.,
San Jose, CA
October 25, 1993

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
United States Government or any agency thereof.

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under coniract W-7405-ENG-35. By accepiancs of this article, the publisher recegnizes that the UL.S. Government retains 3 nonexciusive, rovalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory

requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
%/Form No. 836 RS

DISTRIBUTION GF THIS DCCURMENT IS UNLIMITED 5728201091

A DATA DISTRIBUTED, PARALLEL ALGORITHM FOR RAY-TRACED
VOLUME RENDERING

Kwan-Liu Ma and James S. Painter Charles D. Hansen and Michael F. Kl‘Ogll

Departnrent of Computer Science Advanced Computing Laboratory

" University of Utah Los Alamos National Laboratory

Salt Lake Cily, Utah 84112 Los Alamos, New Mexico 87545
kma@ecs.utah.edn hansen@acl.lanl.gov
jamie@cs.utah.edu krogh@acl.lanl.gov

March 30, 1993

Abstract

This paper presents a divide-and-conquer ray-traced volume rendering algorithm and its
implementation on networked workstations and a massively parallel computer, the Clonnection
Machine CM-5. This algorithm distributes the data and the computational load to individual
processing units to achiceve fast, high-quality rendering of high-resolhition data, even when only
a modest amount of memory is available on cach machine. The volume data, once distributed,
is left intact. The processing nodes perform local raytracing of their subvolume concurrently.
No communication between processing units is needed during this locally ray-tracing process.
A subimage is generated by each processing unit and the final image is obtained by compositing
subimages in the proper order, which can be determined a priori. Implementations and tests
on a group of networked workstations and on the Thinking Machines CM-5 demonstrate the
practicality of our algorithm and expose different performance tuning issues for cach platform.
We use data sets from medical imaging and computational fluid dynamics simulations in the
study of this algorithm.

Key Words: Scientific Visualization, Volume Rendering, Distributed Algorithms, Network
Computing, Massively Parallel Processing.

1 Introduction

The advance of computing technology has given scientists new opportunities to attempt very large-
scale problems that were previously impossible to solve. In addition, the advance of data acquisition
instrument technology has provided scientists with very high resolution sensory and monitoring
devices Lo observe the physical world around us at a scale that was previously impossible to attain.

The increase in computer processing power, memory capacity, acquisition instrument resolution,

-

and thus the scawe of problems result in data of a size that cannot be handled efficiently by traditional
data analysis methods. The use of computer graphics techniques has been a very effective way to
convert vast amounts of data to economical visual forms that may convey the most important
information in the data sets.

As a consequence of simulating the physical phenomena in three-dimensional space of our ordi-
nary everyday life, a majority of these data sets consist of samples of scalar or vector fields in three
spatial dimensions. These are known as volume data sets. Existing volume rendering methods,
though capable of making very effective visualizations, are very computationally intensive and thus
fail to achieve interactive rendering rates for large data sets. As the size of the data continues to
increase and the speed of light physically limits the performance of a single processing element in
a computer, multiple computers working in parallel on different data sets or different parts of the
sanie data set offers new promise to unlimited computing power. As a result, in the past two years
the development of parallel architectures and algorithms for volume data visualization has been an
area of great activity in the research community as well as in industry [20, 22].

Our work was motivated by the follewing observations: Iirst, volume data sets can be quite
large, often too large for a single workstation te hold in memory at once. Moreover, high quality
volume renderings normally take minutes to hours on a single processor machine and the rendering
time usually grows lincarly with the data size. To achieve interactive rendering rates, users often
must reduce the original data, which produces poor visualization results. Second, many acceler-
ation techniques and data exploration techniques for volume rendering trade memory for time.
Third, motion is one the most effective visualization techniques. An animation sequence of volume
visualization normally takes hours to days to generate. Finally, we notice the availability of hun-
dreds of high performance workstations in our computing environment, which are frequently sitting
idle for many hours a day, especially after midnight. This lead us to consider ways to distribute
the increasing amount of data as well as the time-consuming rendering process to the tremendous
distributed computing resources available to us.

In this paper, we describe the resulting divide-and-conquer volume rendering algorithm along

with its implementations and performance on a set of networked workstations and the Thinking Ma-

chines CM-5. For a homogeneous computing environment, a computing environment with uniformly
distributed processing and memory units, this parallel ray-traced volumne rendering algorithm evenly
distributes data to the computing resources available. ISach subvolume is then ray-traced locally
and generates a partial image, without the need to communicate with other processing units. These
partial images are merged through a parallel compositing algorithm that composites them in the
proper order to achieve the correct final image. The communications costs during compositing is
small compared to the cost of the volume rendering itsell, so a near lincar speedup is attained.
Data sets from medical imaging and computational fluid dynamics simulations are used for testing

this algorithm in both homogencous and heterogencous computing environments.
2 Related Work

An increasing number of parallel algorithms and architectures for volume rendering have been
developed. The major algorithmic strategy for parallelizing volume rendering is the divide-and-
conquer paradigm. The volume rendering problem can be subdivided cither in data space or in
image space. While data-space subdivision assigns the computation associated with particular
subvolumes to processors, image-space subdivision distributes the computation associated with
particular portions of the image space. Data-space subdivision is usually applied to a distributed-
memory parallel computing environment. On the other hand, image-space subdivision is simple
and efficient for shared-memory multiprocessing. Hybrid methods are also feasible.

Among the parallel architectures developed which are capable of performing interactive volume
rerdering [8, 11], the Pixel-Planes 5 system [R], an example of a hybrid method, is a heterogencous
multiprocessor graphics system using both MIMD and SIMD parallelism. The hardware consists of
multiple i860-based Graphics Processors, multiple SIMD pixel-processors arrays called Renderers,
and a conventional 1280x1024-pixel frame buffer, interconnected by a flive-gieabit ring network.
In [23], variations of parallel volume rendering implemented on the Pixel-Planes 5 system are
presented. In one approach, the volume data set is distributed to the Renderers, where shading
and syntactic classification are done. Lach Graphics Processor is assigned a subimage, performs

corresponding ray sampling and requests needed voxel values from the Renderers. A sequence

of high resolution images can be generated at three frames per second for a 1287 data set using
twenty Graphics Processors and eight Renderers. A much more efficient approach, similar to the
idea. we proposed carlier in [15] and now elaborate in this paper, distributes data as well as ray
casting among separate Graphics Processors and reconstructs the ray segments into coherent rays.
Incorporating dynamic load balancing, lookup tables and progressive refinement, this approach can
render shaded images from 128x128x56 vclume data at twenty frames per second.

In the following sections, we survey most recent research results from other algorithmic ap-

proaches.
2.1 Montani

Montani et al. [17] propose a hybrid ray-traced method for running on distributed-memory parallel
systems like a nCUBL, in which processing nodes are organized into a set of clusters, cach of
them composed of the same number of nodes. The image space is partitioned and a subset of
pixels is assigned to each cluster, which will compute pixel values independently. Data to be
visualized is replicated in each cluster, and is partitioned among the local memory of the cluster’s
nodes. A static load balancing strategy based on estimated work load of each processor is used to
improve efficiency, and on average a twenty percent speedup in rendering time can be obtained.
In addition, a mechanism for preventing deadlock is necessary to handle the dependency between
processing nodes in the same cluster. The best efficiency reported by the authors while using a
single cluster of 128 nodes is 0.74. However, when increasing the number of clusters, the efficiency
drops significantly. For example, using 16 clusters with 8 nodes per cluster, the efficiency reported

is only 0.31.

2.2 Nieh

Nieh and Levoy [18] implement ray-traced volume rendering on Stanford DASH Multiprocessors,
a scalable shared-memory MIMD machine. Their method employs algorithmic optimizations such
as hierarchical opacity enumeration, early ray termination, and adaptive image sampling [13] and
the shared-memory architecture providing a single address space allows straight{forward implemen-

tations. The parallel algorithm distributes volume data in an interleaved fashion among the local

o

memories to avoid hot spotting. The ray tracing computation is distributed among the processors
by partitioning the image plane into contiguous blocks and each processor is statically assigned
an image block. Fach block is further divided into square image tiles for load halancing purposes.
When a processor is done computing its block, instead of waiting, it steals tiles from a neighboring
processor’s block to keep itsell busy. Experiment results shew this load balancing scheme cuts the
variation of execution times across the the 48 processors used by 90%. Currently, cach processor
in DASH is a 33 MHz MIPS R3000. Using all 48 processors available, a 416x416-pixel image for
a 256x256:x226 data set can be generated in subsections; for nonadaptive sampling, the speedup

over uniprocessor rendering is 40.
2.3 Schroder

Schroder and Salem [20] describe a multi-pass shear decomposition algorithm implemented on the
Connection Machine CM-2 to approximate interactive rotation of volume data. The algorithm
distributes data among processors and rotates the volume in place. Forward pointers are used to
keep track of the location of a neighbors’ piece of data. The parallel computation constructs offered
by the CM-2, like the combiner operator Max, can produce maximum intensity projected images
very efficiently. However, for performing semitransparent rendering with sophisticated shading
effects, data transposition must be done which needs to use the general router and thus adds a
significant overhead cost.

More recently, Schroder and Stoll describe in their paper [21] a more interesting data-parallel
ray-traced volume rendering algorithm that is both more memory efficient and less communications
bound than the algorithm presented in [20]. This new technique expioits ray parallelism. They
implement the algorithm on both the CM2 and the Princeton Engine, which consists of 2048 16-hit
DSP processors arranged in a ring. They describe the ray tracing steps as discrete line drawing,
To allow for a SIMD implementation, rays initially enter only the front-most face of the volume
and proceed in lock step. Consequently, cach sample has the same local coordinates in a voxel.
When rays exit the far face, a toroidal shift of the data is performed and new rays are initialized to

enter the visible side face of the volume. As a result, the rotation angle selected influences about

ha

10% of the runtime of the algorithm. Tests using a 1283-voxel data sct on both the CM2 from 8k
to 32K processors in size and the Princeton Engine of 1024 processors show subsecond rendering
time. However, the Princeton Engine performs better because of its simpler communication system

to facilitate nearest neighbor shifts.
2.4 Vézina

Vézina, et al. [22] implement a multi-pass algorithm similar to Schroder’s on MP-1, which is a
massively data-parallel SIMD computer with a two-dimensional array ol processing elements (PEs).
Their algorithm, based on work done by Catruull and Smith [2], and Hanrahan [10], converts
both three-dimensional rotation and perspective transformations into only four one dimensional
shear/scale passes, compared to Schroder’s eight-pass rotation algorithm composed exclusively of
shear operations. Volume transposition is then performed to localize data access. MP-1 provides a
global router which allows efficient moving of data between PEs. G a 16K-PE MP-1, a 128x 128-
pixel volume rendered image of a 128*-voxel data can be generated in subseconds. However, it
seems that if either a smaller number of PEs or larger data sets are used, the data transposition

time can degrade the performance significantly.
3 A Divide-and-Conquer Algorithm

Parallel processing is essentially a divide-and-conquer approach to problem solving. Thus the
idea behind our algorithm is very simple: divide the data up into smaller subvolumes distributed
to multiple computers, render them separately and locally, and combine the resulting images in
an incremental fashion. While multiple computers are available, the memory demands on cach
computer are modest since each computer need only hold a subset of the total data set. This
approach can be used to render high resolution data sets in an environment, for example, with
many midrange workstations (e.g. equipped with 16MB memory) on a local arca network. Many
scientific and engineering computing environments have an abundance of such workstations which
could be harnessed for volume rendering provided that the memory usage on each machine is

reasonable.

6

- [. o o , N R I ISR (AT S [N ([P TR N l\\u»‘leH.‘l

3.1 Ray-traced Volume Rendering

The starting point of our algorithm is the volume ray-traced technique presented by Levoy [12].
An image is constructed in image order by casting rays from the eye through the image plane and
into the volume of data. One ray per pixel is generally sufficient, provided that the image sample
density is higher than the volume data sample density. Using a discrete rendering model, the data
volume is sampled at evenly spaced points along the ray, usually at a rate of one to two samples per
voxel. At each sample point S(z) on the ray, a color C'(¢) and an opacity «(i) are computed using
trilinear interpolation from the data values at each of the eight nearest voxels. Here we assume
that C'(7) is pre-multiplied by its opacity.

The color is assigned by applying a shading function such as the Phong lighting model. A
color map is often used to assign colors to the raw data values. The normalized gradient of the
data volume can be used as the surface normal for shading calculations. The opacity is derived by
using the interpolated voxel values as indices into an opacity map. Sampling continues until the
data volume is exhausted or until the accumulated opacity reaches a threshold cut-off value. The
final image value corresponding to each ray is formed by compositing, front-to-back, the colors and
opacities of the sample points along *hie ray. Considering 5(¢) as a pair [C'(7), a(7)], the color /opacity
compositing based on Porter and Duff’s over operator [19] for two consccutive samples S(i) and

S(7) can be described as:

S(iyover 5(j) = S{O)+(1—a(i)S();

and the composited color is C'(2) + (1 — a(i))C' (7). Thus the contribution of n samples along the

ray for a pixel p on the image plane is

S(p) = S(1) over (5(2) over (5(3) over (S5(4)...5(n))), (n

and the corresponding color and opacity values are

~I

2=

)T = ay) (2)

1
i=1

Clp) = > C(i
=1

1= TT0 - ati)) (3)

=1

2
=
I

It is easy to verify that the over is associative; that is,

a over (b over ¢) = (¢ over b) over c.

The associativity of the over operator allows us to break a ray up into segments, process the sam-
pling and compositing of each segment independently, and combine the results from each segment
via a final compositing step. This is the basis for our parallel volume rendering algorithm. For

example, using the associativity of over we can rewrite equation 1 above as follows:

S(p) = (S(1) over S(2) over ---S(k)) over (S(k + 1) over S(k +2) over ---5(n))

A simple example illustrates the operations involved. Suppose we break a ray into two segments,

segment 1 the front-half ray and segment 2 the back-half ray. Applying Equation 2, the color of

the ray segment 1 is

IQL -1
Cy=3 @I -eai))
=1 j=1
and the color of the ray segment 2 is

1—1

Z C(i) H (1 - a(4))

l-—-—+l /._%-H

According to the over operation, the color of the full ray is

C=Cr+(1=ap)C

where

ol

—

ap=1-11(1-a(y))

J=1

Therefore, we can derive the composite as

1=1
121 -1
= Cr+(JT(1 = a(y Z cy I] (1= a(y
j=1 =241 J=4+1
5 i—1 i—1
= ZC(HH(J—G(J)H Z i) [T =at)
=1 g=1 z——+1 =1
i—1
= }j(‘(r)ﬂ(l—w

i=1

which gives us back Equation 2.
3.2 Data Subdivision/Load Balancing

The divide-and-conquer algorithm requires that we partition the input data into subvolumes. There
are many ways to partition the data; the only requirement is that an unambiguous front-to-back
ordering can be determined for the subvolumes to establish the required order for compositing
subimages. ldeally we would like each subvolume to require about the same amount of computation.
In practice, this is generally not something that we can always control well. For example, if the
viewpoint is known and fixed, we could partition the volume in a manner that minimizes the overlap
between the images resulting from the subvolumes. This will reduce the cost of the merging since
compositing need only be applied where subimages overlap as shown later. VFor an animation
sequence, this technique cau not be applied since the viewpoint changes with cach frame. We can
also partition the volume based on an estimation of the distribution of the amount of computation
within the volume by preprocessing the volume to identify high gradient regions or empty regions.
In addition, we may partition and distribute the volume according to the performance of individual

computers when using a heterogencous computing environment.

Lety \Right
«‘/ ("P a

ol

TOP

/Y N7 /N

FN /NN N

Figure 1: k-Dtree Subdivision of a Data Volume

The simplest method is probably to partition the volume along planes parallel to the coordinate
planes of the data. Again, if the viewpoint is fixed and known when partitioning the data, the
coordinate plane most nearly orthogonal to the view direction can be determined and the data can
subdivided into “slices” orthogonal to this plane. When orthographic projection is used, this will
tend to produce subimages with little overlap. If the view point is not known, or il perspective
projection is used, it is better to partition the volume equally aiong all coordinate planes. This can
be accomplished using a k-D tree structure [1], with alternating binary subdivision of the coordinate
planes at each level in the tree as indicated in Figure 1. As we will discuss shortly, this structure
provides a nice mechanism for image compositing.

As shown in Figure 2, when a volume of grid points (voxels) is evenly subdivided into, for
example, two subvolumes, each subvolume may contain half of the total grid points. Note that

Y

cach voxel is located at a corner’of the grid. Consequently, those ray samples that lie in the cut

boundary region (the dotted region) are lost. If the view vector is parallel to the cut plane, a black

10

[ERRRRRRCIRNNAREA]

LY (AR NERRRNNE}

/

Huusmnng

Subvolume 1 Subvolume 2

Figure 2: Volume Boundary Replication.

strip will appear at cach cut boundary in the composited image. In order to avoid this problem. we
need to replicate one layer of the boundary grid at cach subvolume so the composited ray-casting
image does not drop out features originally in the volume. For the case shown in Figure 2. one
possible arrangement is that Subvolume 1 includes layer 1 to laver & and Subvolume 2 includes

laver k to layer n: that is. in Subvolume 2. layver & is replicated.
3.3 Parallel Rendering

We use ray-casting based volume rendering. Each computer can perform ravtracing independently:
that is. there is no data communication required during the subvolume rendering. All subvolumes
are rendered using an identical view position and only rays within the image region covering the
corresponding subvolume are cast and sampled. Since we sample along cach ray at a predetermined
interval, consistent sampling locations must be ensured for all subvolumes so we can reconstruet
the original volume. As shown in Figure 3. for example. the location of the first sample Sa(1) on
the rav shown in Subvolume 2 should be caleunlated correctly so that the distance between S,(1)
and Sy(n) is equivalent to the predetermined interval. Otherwise, small features in the data might

he lost or enhanced in an erroneons way.

EYE
Subvolume 1 Subvolume 2

Figure 3: Correct Ray Sampling.
3.4 Image Composition

The final step of our algorithm is to merge ray segments and thus all partial images into the
final total image. In order to merge, we need to store not only the color at cach pixel but also the
accumulated opacity there. As described earlier, the rule for merging subimages is based on the over
compositing operator. When all subimages are ready, they are composited in a front-to-back order.
‘or a straightforward one-dimensional data partition, this order is also straightforward. When
using the k-D tree structure, this front-to-back image compositing order can then be determined
hierarchically by a recursive traversal of the k-D tree structure, visiting the “front™ child before
the “back” child. This is similar to well known front-to-back traversals of BSP-trees [7, 6] and
octrees [5, 16]. In addition, the hierarchical structure provides a natural way to accomplish the
compositing in parallel: sibling nodes in the tree may be processed concurrently.

The actual compositing can be done in a totally sequential manner such that the computer
with the front-most subimage sends its image to the computer with the next-front-most subimage,
their composite is sent to the next computer, and so on, until the final total image is obtained. A

slightly more efficient way is to do binary compositing. A naive approach is to pair up computers

12

in order of compositing. Each disjoint pair produces a new subimage. Thus after the first stage,
we are left with the task of compositing only % subimages. Then we use half the number of the
original computers, and pai them up for the next level compositing. Continuing similarly, after
log n stages, the final image is obtained.

One problem for the above methods is that during the process of image compositing, many
computers become idle. At the top of the tree, only one processor is active, doing the final composite
for the entire image. When running on a massively parallel computer like CM-5 with thousands of
processors, this would significantly affect the overall performance; consequently, the compositing
process would become a bottleneck when interactive rendering rates are desired. To avoid this
problem, we have generalized the binary compositing method so that every processor participates
in all the stages of the compositing process. We call the new scheme binary-swap compositing. The
key idea is that, at each compositing stage, the two processors involved in a composite operation
split the image plane into two pieces and each processor takes responsibility for one of the two
pieces.

Figure 5 illustrates the binary-swap compositing algorithm graphically for four processors.
When all four computers finish ray-tracing locally, each computer holds a partial image, as de-
picted in Figure 5 (a). Then each partial image is subdivided into two half-images by splitting
along the X axis. In our example, as shown in Figure 5 (b), Computer 1 keeps only the left
half-image and sends its right half-image to its immediate-right sibling, which is Computer 2. Con-
versely, Computer 2 keeps its right half-image, and sends its left half-image to Computer 1. Both
computers then composite the half image they keep with the half image they receive. A similar
exchange and compositing of partial images is also done between Computer 3 and Computer 4.
After the first stage, each computer only holds a partial image that is half the size of the original
one. In the next stage, Computer 1 alternates the image subdivision direction. This time it keeps
the upper half-image and sends the lower half-image to its second-immediate-right sibling, which
is Computer 3, as shown in Figure 5 (c¢). Conversely, Computer 3 trades its upper half-image for
Computer 1’s lower half-image for compositing. Concurrently, a similar exchange and compositing

between Computer 2 and 4 are done. After this stage, each computers hold only one-fourth of the

13

Initialize image plane to entire image
for(stride=1; stride<nproc; stride * = 2)

{
partner = self XOR stride;
Subdivide image plane;
Exchange image data with partner;
Composite our part of the remaining
image plane with partners image data;

}

Figure 4: Psuedo Code for Binary Split Compositing

original image. For this example, we are done and each computer sends its image to the display
device. Figure 5 (d) shows the final composited image.

Figure 4 illustrates the binary-swap compositing algorithm when the number of processors
(nproc) is a perfect power of two. We assume that processors are numbered {from 0 to nproc-1
and that selfis an integer containing the current processor number. There are logy(nproc) phases,
a phase corresponding to each level in the compositing tree. During cach phase, each processor
exchanges data with its partner which is stride away from it. The stride value steps from | up to
nproc/2 in powers of 2. In the early phases of the algorithm, each processor is responsible for a
large portion of the image area, but the image area is usually sparse since it includes contributions
only from a few processors. In later phases, as we move up the compositing tree, the processors are
responsible for a smaller and smaller portion of the image area, but the sparsity decreases since an
increasing number of processors have contributed image data. At the top of the tree, all processors
have complete information for a small rectangle of the image. The final image can be const ructed
by tiling these subimages onto the display.

In our current implementation, the number of processors (nproc) must be a perfect power of
two. This simplifies the calculations needed to identify the compositing partner at cach stage of
the compositing tree and ensures that all processors are active at every compositing phase. The
algorithm can be generalized to relax this restriction if the compositing tree is kept as a full (but
not necessarily complete) binary tree, with some additional complexity in the compositing partner
computation and with some processors remaining idle during the first compositing phase.

The binary-swap compositing method has merits which make it particularly suitable for mas-

14

sively parallel processing. First, while the parallel compositing proceeds, the decreasing image
size for sending and compositing makes the overall compositing process very efficient. Next, this
method always keeps all processing units busy doing useful work. Finally, it is simple to implement

with the use of the k-D tree structure described earlier.
4 Implementation of the Renderer

We have implemented two versions of our distributed volume rendering algorithm: one on a set
of networked workstations and another for the Thinking Machines CM-5. Our implementation is
composed of three major pieces of code: a data distributor, a renderer, and an image compositor.
Currently, the data distributor is a part of the host program which reads data piece by piece from
disk and distributes to each machine participating. Alternatively, each node program could read
their piece from disk directly.

The renderer implements a conventional ray-traced volume rendering algorithm [12] using a
Phong lighting model. Our renderer is a basic renderer and is not highly tuned for best performance.
Compared to a performance tuned ray-traced volume rendering program we implemented previously
[14], we estimate that the current implementation of the renderer can be further improved in speed
by 10-15%. Data dependent optimization methods might in fact affect load balancing decisions by
accelerating the progress on some processors more than others. For example, a processor tracing
through empty space will probably finish before another processor working on a dense section of
the data. We are currently exploring data distribution heuristics that can take the complexity of
the subvolumes into account when distributing the data to ensure equal load on all processors.

For shading the volume, surface normals are approximated as local gradients using central
differencing. We trade memory for time by precomputing and storing the three components of the
gradient at each voxel. As an example, for a data set of size 256 x256x 256, more than 200 megabyte
are required to store both the data and the precomputed gradients. This memory requirement

prevents us from sequentially rendering this data set on most of our workstations.

il

Upper—Left

L2

N
R

*
<+

R2 L3 R3
(a)

R14+R2 L3+L4

7

+
+

\/
+
+,

*,
¥,
+

*
e

%
ARRNNN

*
DO
+.

(d)

Figure 5: Parallel Compositing Process.

16

Lower—Right

4.1 CM-5 and CMMD

In addition to multiple networked workstations, the Advanced Computing Laboratory (ACL) at
Los Alamos National Laboratory has a 1024-node CM-5. There were several goals which lead
us to implement the parallel volume renderer on the CM-5. First, we wanted the capability to
render very large data sets. Currently, scientific users are generating data sets on the order of
512x512x512 floating point numbers. Their intentions are to increase the resolution of their
models to 1IKx1Kx1K in the near future. Secondly, we wanted to obtain rendering rates as close
to real-time as possible. Currently, images are displayed using X Windows which inhibits real-time
display. However, in the near future we will have HIPPI framebuffers directly connected to the
CM-5 which will support real-time animation rates. Thirdly, we wanted to have a batch animation

capability.

4.1.1 CM-5

The CM-5 is a commercially available massively parallel supercomputer built by Thinking Machines[3].

The CM-5 consists of 1024 RISC-based processors (Sparc microprocessors) each with 16MB of local
RAM. Each processor also has four 64-bit wide vector units which assist in math coprocessing and
contain an additional 4MB RAM each for a total of 32GB of main memory for the entire machine.
With four vector units up to 128 operations can be performed by a single instruction. This yields
a theoretical speed of 128 GFlops for a 1024-node CM-5.

The 1024 node processors can be divided into partitions whose size must be a power of 2. Each
partition is controlled by a partition manager (also Sparc microprocessors). The partition managers
are responsible for system administration tasks and executing non-parallel code. A user’s program
is constrained to operating within a partition.

The CM-5 has three internal high-speed networks: the control network, the data network, and
the diagnostic network. The control network is used for data operations, such as broadcasts, global
operations, and combining operations. It is also used for synchronization and error handling. All
selected processors participate in control network operations. The data network is used for routing

data between nodes. The diagnostic network is not available to user programs. High-speed 1/0

17

- ' . . oy i o ' o o " ' " T o e [[N

[T g

devices, such as parallel disk arrays, HIPPI network interfaces, and frame buffers are also attached
to the CM-5 data network.

The CM-5 supports SIMD and MIMD programming models. The SIMD (Single Instruction,
Multiple Data) model performs the same operation on all the selected data elements'. For example
given an array of numbers, a constant could be added to each number. When using the SIMD
model, this operation would logically occur simultaneously on each element of the array. Actual
hardware may or may not perform this operation simultaneously on all selected data elements. This
would depend on whether or not enough physical processors exist for each element in the array. If
there are fewer processors than data elements, then multiple elements are assigned to processors.

The MIMD (Multiple Instruction/Multiple Data) model, divides a task up into a number of
subtasks that can run concurrently and independently. Some subtasks can occur in parallel while
others might occur serially. For example a set of processors might be used to factor numbers to
search for primes. Each processor could be assigned a number to factor asynchronously from the
others. When a processor has finished with a given number, it could request another.

Currently, SIMD style programs can be developed using data parallel Fortran (CMF) or data
parallel C (C*). MIMD programs are written in C, C4++, and Fortran, and use a message passing

library (CMMD) for communications and synchronization.

4.1.2 CMMD 3.0

When using the MIMD model, the application developer utilizes the message passing facilities
provided by CMMD. The developer must pick either the host/node model or the hostless model.
In the host/node model, the user provides explicit communications between the nodes and the
host (partition manager). The nodes can communicate with each other as well as with the host.
Since the partition manager runs a full UNIX kernel, the host/node model allows access to any
software which normally runs on a Sun computer such as system calls, 1/0 calls, X11 routines, and

calls to other specialized libraries?. Thus, the application has a component that executes on the

'SIMD implies the processors execute in lockstep. Where the processors have their own copy of the program
instructions and the instructions don’t execute in strict lockstep, the model is known as SPMD (Single Program,

Multiple Data)

2The nodes run a striped down CMOS kernel which does not provide such facilities.

13

partition manager (the host) and other components that run on the nodes. The host is responsible
for initiating computation on the nodes.

In the hostless mode, an application uses a standard host program supplied by the CMMD
library. The host merely initiates the execution of the node programs, and thereafter acts as an
1/0 server for the nodes. The node program takes advantage of the CMOS kernel which runs on each
of the CM-5 nodes. The application developer writes programs which compute and communicate
strictly on the nodes and do not explicitly communicate with the host. Fach node runs its own code
asynchronously from its local memory. It synchronizes with other nodes with explicit instructions
(i.c. send/receive messages, participate in a global instruction, etc).

CMMD is the native message passing library supplied by Thinking Machines. CMMD, which
sits on top of the CM-5 network interface, provides high level message passing primitives similar
to those provided by other message passing libraries. CMMD provides for both synchronous and
asynchronous communications, for polled or interrupt driven messages, for global operations among

all nodes, and virtual channels (optimized communication between nodes) [4].

4.1.3 CM-5 Implementation

The CM-5 massively parallel implementation of the parallel volume renderer takes advantage of
the MIMD programming features of the CM-5. We choose the host/node programming model of
CMMD because we wanted the option of using X-windows to display directly from the CM-5. The
host program determines which data-space partitioning to use, based on the number of nodes in
the CM-5 partition, and sends this information to the nodes. The host then optionally reads in the
volume to be rendered and broadcasts it to the nodes. Alternatively, the data can be read directly
from the DataVault or Scalable Disk Array into the nodes local memory. The host then broadcasts
the opacity/colormap and the transformation information to the nodes. Following this step, the
host performs an 1/0O servicing loop which receives the rendered portions of the image from the
nodes.

The node program begins by receiving it’s data-space partitioning information and then its

portion of the data from the host. [t then updates the transfer function and the transform matrices.

Following this, the nodes all execute their own copy of the renderer. They synchronize after the
rendering and before entering the compositing phase. Ounce the compositing is finished, each node

has a portion of the image that they then send back to the host.

4.2 Networked Workstations and PVM

The University of Utah Computer Science computing laboratory consists of groups of workstations
connected with an Ethernet network. Our goal is to set up a volume rendering facility for handling
large data sets and batch animation jobs. We hope that by using many workstations concurrently,
the rendering time will decreases linearly and we will be able to render data sets that are too large
to render on a single machine. We use PVM (Parallel Virtual Machine) [9], a parallel program
development environment, to implement the data communications in our algorithm. PVM allows

us to implement our algorithm portably for use on a variety of workstation platforms.

4.2.1 PVM

PVM, supporting an asynchronous message-passing model, is a network-based concurrent com-
puting environment developed at Oak Ridge National Laboratory. It grants the utilization of a
heterogeneous network of parallel and serial computers as a parallel virtual machine. To run a
program under PVM, the user first executes a daemon process on the local host machine, which
in turn initiates daemon processes on all other remote machines used. Then the user’s application
program (the node program), which should reside on each machine used, can be invoked on each
remote machine by a local host program via the daemon processes. Communication and synchro-
nization between these user processes are controlled by the daemon processes, which guarantee
reliable delivery. There is some overhead associated with the use of PVM. Direct communications
between processing nodes is likely to be faster than communications through the PVM daemon
processes. Nevertheless, the portability and ease of use considerations simplified the porting of the

CM-5 implementation to the workstation environment and allows us to easily utilize a variety of

workstation platforms.

20

5 Tests

We used three different data sets for our performance measurements. The head data set is the now
classic UNC Chapel Hill CT head at a size of 128x128x128. The vessel data set is a 256x256x 128
voxel Magnetic Resonance Aungiography (MRA) data set showing the vascular structure within the
brain of a patient. The vorticity data set is a 256x256x256 voxel CFD data set, computed on
the CM-200, showing the onset of turbulence.

In Figure 6, we illustrate the compositing process described in Figure 5, using the images
generated with the vessel data set. Each column shows the images from one processor, while the

rows are the phases of the compositing algorithm. The final image is displayed at the bottom.

5.1 Tests on the CM-5

We performed multiple experiments on the CM-5 using partition sizes of 32, 64, 128, 256, and 512.
When these tests were run, a 1024 partition was not available. As previously noted, the partition
sizes must conform to powers of two. The run-time system on the CM-5 provides mechanisms for
utilization of all nodes regardless of the partition size. Identical programs were run on the different
partitions using the three data sets previously described.

All times are given in seconds. Table 1 shows the results of the volume rendering of the head
data. Table 2 shows the results of the volume rendering of the MRA (vessel) data. Table 3 shows
the results of the volume rendering of the vorticity data. The times shown are the maximum times
for all the nodes for the two steps of the core algorithm: the rendering step and the compositing
step.

There is no data communication between the rendering step and the compositing step since
the rendering is performed in the k-D data-space decomposed sets and the compositing utilizes
these results directly. That is, the compositing step does not require any data exchange from the
rendering step. Furthermore, the rendering step does not require any internal communication. The
node synchronization step between the rendering and compositing steps is bounded by the node
which takes the longest time to render its data partition. For this case, the minimum wait time

was less than 0.001 seconds since the last node to finish waits for little time. The maximum wait

21

Figure 6: Hlustration of the Iimage Compositing Process Using Actual Images.

size function 32 64 128 256 512
render 0.5839 | 0.3723 | 0.2071 [0.1043 | 0.0593
64 x 64 | composite | 0.0165 { 0.0150 | 0.0133 | 0.0113 | 0.0101
render 2.3033 1.5393 | 0.8459 | 0.4278 | 0.2223
128x128 | composite | 0.0576 | 0.0497 | 0.0322 | 0.0325 | 0.0269
render 9.2600 | 6.1558 | 3.3663 | 1.7344 | 0.9536
256x256 | composite | 0.1679 | 0.1932 | 0.1287 | 0.1090 | 0.0945
render 36.3685 | 24.1807 | 13.1200 | 6.7355 | 3.7107
512x512 | composite | 0.63320 | 0.77810 | 0.47660 | 0.4029 | 0.3782

Table 1: CM-5 Results on Head Data Sect

size function 32 64 128 256 512
render 0.4346 | 0.2627 | 0.1350 | 0.0806 | 0.0454
64 x 64 | composite | 0.0097 | 0.0087 | 0.0085 } 0.0086 | 0.0081
render 1.6138 | 0.9560 | 0.4988 1 0.2643 | 0.1390
128x128 | composite | 0.0303 0.0237 | 0.0233 | 0.0213 | 0.0167
reuder 6.4522 | 3.6532 | L.8G98 { 1.0081 1 0.5193
256x256 | composite | 0.1146 [0.0897 [0.0835 | 0.0741 | 0.055:
render 26.0314 | 14.9057 | 7.5980 | 4.1720 | 2.2034
512x512 | composite | 0.46060 | 0.34600 | 0.3278 | 0.2931 | 0.2167

Table 2: CM-5 Results on Vessel Data Set

size function 32 61 128 256 512
render 0.8038 | 0.3995 | 0.2072 { 0.1116 | 0.0597
64 x 64 | composite | 0.0137 | 0.0125 | 0.0101 } 0.0101 | 0.009
render 31446 1 1.5974 | 0.8247 | 04086 1 0.20441
128x 128 | composite | 0.0473 | 0.0406 | 0.0300 § 0.0279 | 0.0235
render 12.3345 | 6.3133 | 3.2305 | 1.6158 | 0.8063
256x256 | composite | 0.1807 | 0.1466 | 0.1108 | 0.1001 | 0.0836
render 48.2005 | 24.4303 | 12.697 | 6.3131] 3.IRTR
512x512 | composite | 0.71520 | 0.58100 | 0.4272 1 0.387.1 | 0.3310

Table 3: CM-5 Results on Vorticity Data Set

23

size function 32 -1 128 256 512
61 x 61 composite 0.0137] 0.0125 1 0.0101 | 0.0101 | 0.0094
communication { 0.0013 | 0.0008 | 0.0006 { 0.0005 | 0.0003
128x128 composite 0.0473 | 0.0406 | 0.0300 1 0.0279 | 0.0235
communication | 0.0030 [0.0026 | 0.0018 | 0.0012 | 0.0011
256x256 composite 0.1807 | 0.1466 { 0.1108 [0.1001 | 0.0%36
communication | 0.0210 | 0.0075 | 0.0052 | 0.0037 { 0.0027
512x512 composite 0.7152 1 L5810 § 04272 | 0.3871] 0.3310
communication | 0.0843 | 0.0231 | 0.0181 1 0.013% | 0.0097

Table 1: CM-5 Compositing Communication Times

tie for the vorticity data set on a 512 CM-5 partition was 0.588 sceconds. The maximum wait
time varies depending on both the data set and the viewpoiut,

Some processors are assigned data partitions which consist of mainly empty voxels while others
have partitions which are comprised of non-empty voxels. The partitions with empty voxels have
very little compntation to perform whereas the partitions with non-empty voxels perform more
work. Similarly. as the viewpoint is rotated, some processors will have fower rav-samples passing
through the voxels which comprise their subset of the data and some will have more. The processors
with the most rav-samples passing through non-empty voxels will perform the most computation
thereby taking the maximum rendering time. Since there is no communication in the rendering
step. one mipht expect linear speedup when utilizing more processors. s can be seen from the
tables. this is not the case due to the load balance probloms. The vorticity data set is relatively
dense” and therefore exhibits nearly linear speedup. The head data set contains many empty voxels
which unbalances the load and therefore does not exhibit the best speedup. The load balance affects
the wait-time which limits the linearvity of the speedup.

The compositing stage requires communication between pairs of nodes to perform the actual
compositing. In the case of the vorticity data set. Table 1 shows the combined compositing and
communication time and the actual connnunication component for the different sized CNLS parti-
tiots. s can be seen. the communication time varies from abont 10 percent to about 3 percent

of the total compositing time. As the image size increases. hoth the compositing time and the

P he vortianty data s contaims fow empty voxeis.

T

o

size function 32 64 128 256 512

broadcast | 89.87 | 93.516 | 83.185 | 94.326 | 49.157
64 x 64 | send image | 0.0161 | 0.0168 | 0.0187 | 0.0218 | 0.0280
128x128 | send image } 0.0608 | 0.0615 | 0.0657 | 0.0687 | 0.0734
256x256 | send image | 0.2406 | 0.2417 | 0.2615 | 0.2470 | 0.2537
512x512 | send image | 0.9918 | 0.96500 | 0.9645 | 1.0151 | 0.9849

Table 5: CM-5 Host Communication Results on Vorticity Data Set

communication time also increase. For a fixed image size, increasing the partition size lowers the
communication time because each node contains a proportionally smaller piece of the image.

Looking at the tables, it is easy to see that rendering time dominates the process. It should
be noted that this implementation does not take advantage of the CM-5 vector units. All floating
point operations are done on the Sparc node floating point units. These are much slower than the
vector units and we expect much faster computation rates in the renderer when the vectorized code
is completed. The communication times will not be affected.

Table 5 shows the broadcast and image gather times for the vorticity data. The bhroadcast time
includes the time it takes to read the image over NFS at ethernet speeds on a loaded ethernet.
While the timings were being gathered for partitions smaller than 512 nodes, the other partitions
were also running causing both disk and ethernet contention. Thus, the 512 broadcast time is
substantially less than for the smaller partitions. Reading the file from disk dominates this time.
The image gather time (send image) is the time it takes for the nodes to send their composited
image tiles to the host. As can be seen, the image gather time (send image) is only slightly slower
for larger partitions which have more image-tiles. Both of these times will be mitigated by use
of the parallel storage (DataVault or Scalable Disk Array) and the use of the HIPPI framebuffer.
With the parallel storage, the nodes can load their portion of the data directly. The nodes can also
write their sub-images concurrently to the framebuffer via HIPPL.

Figure 7 and Figure 8 show speedup versus number of processors used for the vorticity data
set and the head data set. The diagonal line represents linear speed up whereas the four curves
show the speedup resilts obtained for various image resolutions. The speedup was measured for

the core algorithm: the rendering step and the compositing step. Speedup is a funciion of the

25

32 node run time. The graph demonstrates that for the vorticity data set, our implementation
achieves very good speed up for all image sizes except 64 x64. The rendering of the 64x64 image
exhibits less speedup than larger image sizes due to overhead costs associated with the rendering
and compositing steps. In particular, the compositing step showed a speedup of only 1.46 when
going from 32 nodes to 512 nodes. For all image resolutions above 64 x64, the overall speedup was
nearly the same.

For the head data set, the speed up is not nearly as linear. This is due to the load balance issue
previously discussed. With this dataset and opacity map, many rays are terminated early since
opacity reachkes 1.0 where ever the isosurface is encountered. Rendering a 512x512 image size for
the head data set, the rendering time varied from 0.2931 to 3.7771 seconds. Fo- the same image
size, rendering of the vorticity data set yielded rendering times from 2.5729 to 3.1924 seconds. The

more consistent rendering times are indicative of better load balancing.

5.2 Networked Workstations

For our workstation tests, we used a set of 16 high performance workstations. The first three
machines where IBM RS/6000-550 workstations equipped with 512 MB of memory. These work-
stations are rated at 81.8 SPEC{p92. The fourth machine was an IBM RS/6000-530 with 384 MB.
This is rated at 64.6 SPIEC{p92. The remaining 12 machines were HP9000/730 workstations, some
with 32MB and others with 64 MB. These machines are rated at 86.7 SPECfp92.

The tests on 1, 2 and 4 workstions used only the IBM’s. The tests with 8 and 16 used a
combination of HP and IBM workstations. It was not possible to assure absolute quiescence on
each machine because these machines are in a shared environment with a large shared ethernet
and shared files systems. During the period of testing there was a network traffic from network file
system activity (NFS) and across-the-net tape backups. The first four nodes were all on the same
subnet, while the remaining nodes lie on a different subnet. Thus, we expect the communications
performance for the 1, 2 and 4 processors test to be better than for the 8 and 16 process cases.

Table 6 shows the results of the volume rendering of the head data at several image sizes and

with 1-16 processors. Table 7 shows the results of the volume rendering of the MRA (vessel) data.

26

16 I I 1

14 7

12 & A

10 - -

Speed Up g (- o~

L1 | |
0 32 64 128 256 512

0

Processors

.................... 64x64 - — = 128x128

Image Size:
.......... 256x256 "7 T 512x512

Figure 7: CM-5 Speedup for the Vorticity Data Set

27

16

14
12
10
Speed Up g
6
4
2
0 | 1| 1]
0 3264 128 256 512
Processors
Inage Size: | 64x64 - - 7 128128
256x256 512x512

Figure 8: CM-5 Speedup for the Head Data Set

28

size function 1 2 4 8 16
render 2.2200 1.2700 | 1.1030 | 0.4920 | 0.3250
64 x 64 | composite | 0.0000 0.0120 | 0.0900 | 0.0990 } 0.1570
render 8.4040 4.9540 | 4.1890 | 1.8270 | 1.1160
128x128 | composite 0.0010 0.1240 0.2170 0.2370 4.3490
render 33.2260 | 19.9480 | 17.0840 | 8.2230 4.3660
256x256 | composite | 0.0030 0.4200 | 0.4810 | 0.6160 | 8.1090
render 1344880 [80.5170 | 70.2450 | 44.2310 | 20.9980
512x512 | composite | 0.0110 2.3730 | 1.5470 | 5.5280 | 13.1470

Table 6: PVM Results on Head Data Set,

size function 1 2 4 8 16
render 2.9790 1.4560 | 1.1730 | 0.6840 | 0.3490
64 x 64 | composite | 0.0010 0.0280 | 0.0740 | 0.0880 | 0.1670
render 11,7850 | 5.9760 | 4.7910 | 2.5460 | 1.2610
128x128 | composite | 0.0000 0.0660 | 0.1240 | 0.1210 | 0.2400
render 44,5380 | 23.8390 | 18.2220 | 9.5590 6.5850
256x256 | composite 0.0020 0.2320 0.2940 0.5350 4.3000
render 183.9460 | 94.9210 | 72.7390 | 38.5960 | 20.3100
512x512 | composite | 0.0060 0.7560 1.1350 | 5.1510 | 4.5740

Table 8 shows the results of the volume rendering of the vorticity data. The times shown are for the
two steps of the core algorithm: the rendering step and the compositing step. The times shown are
the maximum times in seconds for all the machines. As can be seen. the rendering time dominates
the compositing time in most cases,

The rendering component of the algorithm is purely computation: there is no communications.
The compositing component does require communications between nodes as illustrated in Table 9,
This tables shows the combined compositing and communication time and the component due to
communications overhead. Note that communications time is the dominant factor in the composit-
ing costs. These communications costs are highly variable due to the use of the local ethernet
shared with hundreds of other machines. Communications costs are expected to drop with higher

speed interconnection networks (e.g. FDDI) and on clusters isolated from the larger local area

network.

Table 7: PVM Results on Vessel Data Set

29

size function 1 2 4 8 16

render 5.7130 2.8110 2.5740 1.1550 | 0.6440

64 x 64 | composite | 0.0000 0.0440 0.0890 0.1290 | 4.3200
render 22.6530 | 11.4960 | 10.6490 | 5.2760 | 2.5670

128 x 128 | composite | 0.0010 0.1150 0.1470 0.2740 | 4.2890
render 93.2510 | 47.7220 | 44.5610 | 23.8740 | 11.5390

256 x 256 | composite | 0.0060 0.4160 0.5860 4.7460 | 3.6730
render 371.7900 | 180.4650 | 174.7770 | 71.6980 | 44.1010

512 x 512 | composite | 0.0160 1.4000 1.9560 9.1320 | 5.2020

Table 8: PVM Results on Vorticity Data Set
size function 2 4 8 16

64 x 64 composite 0.0000 | 0.0440 | 0.0890 | 0.1290 | 4.3200
communications | 0.0000 | 0.0430 | 0.0870 | 0.1280 | 4.3200

128x128 composite 0.0010 | 0.1150 | 0.1470 | (0.2740 | 4.2890
communications | 0.0000 | 0.1080 | 0.1380 | 0.2730 | 4.2870

256 x 256 composite 0.0060 | 0.4160 | 0.5860 | 4.7460 | 3.6730
communications | 0.0000 | 0.4040 | 0.5750 | 4.7390 | 3.6680

512 x 512 composite 0.0160 | 1.4000 | 1.9560 | 9.1320 | 5.2020
communications | 0.0000 | 1.3250 | 1.9240 | 9.1 30 | 5.1740

Table 9: PVM Compositing Communication Times

30

In a shared computing environment, there are many factors that we have no control over that
are influential to our algorithm. For example, an overloaded network and other users’ processes
competing with our rendering process for CPU and memory usage could greatly degrade the per-
formance of our algorithm. Improved performance could be achieved by carefully distributing the
load to each computer according to data content, and the computer’s performance as well as its
average usage by other users.

The tables above exclude the data distribution and image gather times. These times varied
greatly, due to the variable load on the shared ethernet. The data distribution times varied from
17 seconds to 150 seconds while the image gather times varied from an average of .06 seconds for

a 64x64 image to a high of 8 seconds for a 512x512 image.
6 Conclusions

We have presented a parallel algorithm for volume rendering on distributed memory parallel ma-
chines or a set of interconnected workstations. The algorithm divides both the computation and
memory load across all processing nodes and can therefore be used to render data sets that are
too large to fit into the memory system of a single uniprocessor. A parallel compositing method
was developed to combine the independently rendered results from each processor. The algorithms
were implemented on the Thinking Machines CM-5 massively parallel supercomputer and on a
network of scientific workstations using PVM. The CM-5 implementation showed good speedup
characteristics out to the largest available partition size of 512 nodes. Only a small fraction of the
total rendering time was spent in communications, indicated the success of the parallel compositing
algorithm.

Several directions appear ripe for further work. The host data distribution, image gather, and
display times are bottlenecks on the current CM-5 implementation. These bottlenecks can be
aliviated by exploiting the parallel 1/0 capabilities of the CM-5. Render and compositing times
on the CM-5 can also be reduced significantly by taking advantage of the vector units available at
each processing node. We are hopeful that real time rendering rates will be achievable at medium

to high resolution with these improvements.

31

Performance of the distributed workstation implementation could be further improved by bet-
ter load balancing. In a heterogeneous environment with shared workstations, linear speedup is
difficult. A simple approach is to do static load balancing. The data subdivision can he done
unevenly, taking into account the predicted capacity on each machine to try to balance the load.
Alternatively, the data can be subdivided into a larger number of equal sized subvolumes and the
more capable machines can be assigned more than one subvolume. The later approach has the
advantage that it can be generalized to a dynamic load balancing approach: divide the data into
many subvolumes and assign them to processors in a demand driven fashion. Each processors asks
the master host for more data when it has completed rendering of the previous subvolume. The
finer subdivision of the data volumes improves load balancing during rendering at the cost of some

additional compositing time due to additional levels in the compositing tree.

Acknowledgments

This work has been supported in part by NSF/ACERC and an IBM grant for Scientific Visual-
ization. The Medical Imaging Laboratory at the University of Utah provides the MRA data set.
The vorticity data set was provided by Shi-Yi Chen of T-Div at Los Alamos N=tional Laboratory.
David Rich, of the ACL, and Burl Hall, of Thinking Machines, helped tremendously with the CM-5
timings.Professor Bob Kessler, Jay Lepreau and the Center for Software Sciences group at Utah
provide the HP workstations for some of our performance tests. Thanks go to Elena Driskill for

comments on a draft of this paper.

References

(1] BENTLEY, J. Multidimensional Binary Search Trees Used for Associative Searching. Commun.

ACM 18, 8 (September 1975), 509-517.

2] CarMurLt, E., AND SMmrri, A, R. 3-D Transformations of iMages in Scanline Order. Computer
£ 7

Graphics 14, 3 (1980), 279--285.

[3] CorrorATION, T. M. The connection machine CM-5 technical summary, 1991.

32

i

(4]

[8]

[9]

[10]

CorproraTIiON, T. M. Cmmd reference manual; preliminary documentation for version 3.0

beta, February 1993.

DocTor, L., AND ToORBORG, J. Display Techniques for Octree-Encoded Objects. [IEEE

Comput. Graphics and Appl. 1 (July 1981), 29-38.

FucHs, H., ABraM, G., AND GRrANT, E. D. Near Real-Time Shade Display of Rigid Objects.

In Proceedings of SIGGRAPH 1983 (1983), pp. 65-72.

Fucus, H., KepeEM, Z. M., AND NaYLOR, B. I. On Visible Surface Generation by A Priori

Tree Structures. In Proceedings of SIGGRAPH 1980 (1980), pp. 58-67.

Fuens, H., Pourron, J., Evies, J., GrReer, T., GOLDFEATHER, J., KLusworrhd, D.,
MoLNARr, S., Turk, G., TEBBs, B., aAND IsraBL, L. Pixel-Planes 5: A leterogencous
Multiprocessor Graphics System Using Processor-Enhanced Memories. Computer Graphics

25,3 (July 1989), 111-120.

GetsT, G., AND SUNDERAM, V. Network-based Concurrent Computing on the PVM System.

Concurrency: Practice and Experience 4, 4 (June 1992), 293 312.

HANRAHAN, P. Three-Pas Affine Transforms for Volume Rendering. Computer Graphices 24,

5 (1990). Special issue on San Diego workshop on Volume Rendering.

KavrMan, A. Volume Rendering Architectures. Volume Visualization Algorithms and Archi-

tectures (August 1990), 189-198. ACM SIGGRAPH Course Notes.

Levoy, M. Display of Surfaces from Volume Data. IFEE Computer Graphics and Applications

(May 1988), 29-37.

Levoy, M. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics 9, 3 (July

1990), 245-261.

MA, K.-L., CoHEN, M., AND PAINTER, J. Velume Seeds: A Volume Exploration Technique.

The Journal of Visualization and Computer Animation 2 (1991), 135-140.

o)
oo

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

23]

Ma, K.-L., AND PAINTER, J. S. Parallel Volume Visualization on Workstations. Computers

and Graphics 17,1 (1993).

MEAGHER, D. Geometric Modeling Using Octree Encoding. Comput. Graphics and Image

Process. (USA) 19 (June 1982), 129-147.

MonTaN1, C., PEREGO, R., AND ScoriGNO, R. Parallel Volume Visualization on a Hy-
percube Architecture. In 1992 Workshop on Volume Visualization (1992), pp. 9-16. Boston,

October 19-20.

Nieu, J., AND Levoy, M. Volume Rendering on Scalable Shared-Memory MIMD Archi-
tectures. In 1992 Workshop on Volume Visualization (1992), pp. 17--24. Boston, October

19-20.

PorreR, T., AND Durr, T. Compositing Digital Images. Computer Graphics (Proceedings

of SIGGRAPH 1984) 18, 3 (July 1984), 253-259.

ScurRODER, P., AND B., S. J. Fast Rotation of Volume Data on Data Parallel Architectures.

In Proceedings of Visualization’91 (October 1991), pp. 50-5T7.

SCcHRODER, P., AND SToOLL, G. Data Parallel Volume Reudering as Line Drawing. In 1992

Workshop on volume Visualization (1992), pp. 25-31. Boston, October 19-20.

VEzINA, G., FLETCHER, P. A., AND ROBERTSON, P. K. Volume Rendering on the MasPar

MP-1. In 1992 Workshop on volume Visualization (1992), pp. 3-8. Boston, October 19-20.

Yoo, T., Neumann, U., Fuens, H., Pizer, S., CuLnie, T., RHOADES, J., AND WIHITAKER,
R. Direct Visualization of Volume Data. [EEE Computer Graphics and Applications (July

1992), 63-71.

FILMED
1/17/93

