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A METHODOLOGY FOR QUANTIFYING UNCERTAINTY IN MODELS

Michael D. McKay and Richard J. Beckman
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

This paper, condensed from McKay et al.
(1992) outlines an analysis of uncertainty in
the output of computer models arising from
uncertainty in inputs (parameters). Uncer-
tainty of this type most often arises when
proper input values are imprecisely known.
Uncertainty in the output is quantified in its
probability distribution, which results from
treating the inputs as random variables. The
assessment of which inputs are important
(sensitivity analysis) with respect to uncer-
tainty is done relative to the probability dis-
tribution of the output.

1 INTRODUCTION

The evaluation of models in the form of com-
puter codes (computer programs) becomes
more important when the models are used
in making decisions that have far reaching
effects. For example, the complex models
used to study global warming, nuclear reactor
safety, and environmental safety and restora-
tion provide vital input to regulatory agen-
cies, whose decisions have large impact on
our lives. Although models like those used for
policy decisions in government vary widely
in their mathematical form, they share some
important characteristics. Namely, they often
“predict” or calculate things one hopes never
to observe, for example, serious accidents at
nuclear reactors. Secondly, they are functions
of many inputs for which costly data collec-
tion may be required to determine appropriate
values, ranges and so forth. Finally, the re-
lationship between inputs and output is com-
plex.

There are many aspects to the evaluation
of the quality of output of a model. The sub-
ject addressed in this paper concerns uncer-
tainty in the output attributable to uncertainty
in mode! inputs (or parameters). Within this
area, discussion will focus on the sensitivity
or importance of the inputs.

2 UNCERTAINTY AND SENSITIVITY

The more traditional, historical approach to
sensitivity is founded in the derivative of the
output with respect to each input. Another
approach is to consider the output as a ran-
dom variable and find a meaningful decom-
position of variance based on the inputs. In a
more general approach, this paper views im-
portance of inputs with respect to uncertainty
in the output. We are interested in the type
of uncertainty that can be characterized as
being due to the values used for the inputs.
The quantity of interest for uncertainty is the
probability distribution of the model output,
which is determined by that of the inputs and
the transformation of inputs to output via the
model. The sensitivity and importance of in-
puts is relative to the probability distribution
of the model output.

3 MATHEMATICAL FRAMEWORK

Models often have multiple outputs that may
be functions of time or location. So as not to
needlessly complicate the issue, we consider
the case of a single scalar output. Let }" de-
note the calculated output, which depends on
the input vector, X, of length p through the
computer model, h(*). Because proper val-
ues of the components of \' may be unknown



or imprecisely known, or because, in some
cases, they can only be described stochasti-
cally, it is reasonable to treat .\ as a random
variable and to describe uncertainty about X
with a probability distribution. Uncertainty in
the calculation Y is captured by its own prob-
ability distribution. In summary, then,

Y o= h(X)
X ~ fi(r), wcRY
Yo~ fyly) .

(1)

For now, we treat [; as known, although in
practice, knowledge about it is at best incom-
plete.

We look to the probability distribution, f,,
for answers to the question “What is the un-
certainty in Y'?” That is to say, we can use
the quantiles of the distribution of }" to con-
struct probability intervals. Alternatively, one
might use the variance of )} to quantify un-
certainty. In either case, under the assumption
that f, can be adequately estimated, ques-
tions answerable with quantiles or moments
are covered. However, as has already been
mentioned, the issue of how well [, is known
will surely have to be addressed in practice.

Questions of importance of inputs are rel-
ative to the probability distribution of }'. That
is, they are questions like “Which variables
really contribute to (or affect) the probability
distribution of the output?” The meaning of
importance 1s given in somewhat of a back-
wards way as being the complement of unim-
portant. We say that a subset of inputs is
unimportant if the conditional distribution of
the output given the subset is essentially inde-
pendent of the values of the inputs in the sub-
set. These ideas are now examined in more
detail.

Suppose that the vector X' of inputs is
partitioned into X'y, to be the important com-
ponents, and X', to be the unimportant ones.

Corresponding to the partition, we write

Yo= h(Y)

= BN, N 2)

We address the question of the unimportance
of X, by looking at the conditional distribu-
tions

Tylr, = distribution Y given Xy = o (3)

as compared to f,. We say that X is unim-
portant if f, and [,,, are not substantially
different for all values of X,. Similarly, by
looking at the consitional distributions
Ty, = distribution Y given Xy = (4)
we say that X'} contains important inputs if the
conditional distributions f,|,, show large dif-
ferences for different values of .r;. Of course,
a technical way to compare and assess the
conditional distributions must be determined.

We are currently investigating the use of en-
tropy.

4 APPLICATION

These ideas are applied to the analysis of
a compartmental model used to describe the
flow of material in an ecosystem. The model
calculates concentrations in 15 subsystems, or
compartments, as functions of time. For pre-
sentation, we have chosen to study the con-
centration, Y, in one of the compartments
at time corresponding to system equilibrium.
The flow among compartments, diagrammed
in Figure 1, is modeled by a system of linear
differential equations. The “transfer coeffi-
cients” of the model are functions of the 82
input variables X

After identifying the model output and
inputs, independent beta probability distribu-
tions, f,, were assigned to the inputs. The
beta family of distributions was used because
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Figure 1. Compartment model

of the wide range in shapes it accommodates.
We used only unimodal shapes (none of the U-
shaped forms) which included both symmet-
ric and very skewed forms. Parameters of the
distributions were inferred from range, best
estimate and quantile values obtained from
subject-area scientists.

Figure 2 shows the probability distribu-
tion of Y, fy, created when all 82 inputs are
free to vary was estimated in Monte Carlo
fashion. Latin hypercube sampling (McKay,
Conover and Beckman, 1979) as originally
described and in a replicated form (McKay
et al., 1992) was use throughout the study. In
an iterative manner similar to what one might
do for variable selection in regression, we se-
lected 7 of the 82 inputs as being possibly
important.

To see how the selection procedure per-
formed, we look at 2 sets of density functions.
First of all, we investigate whether any im-
portant inputs have been missed by looking
at f,,,,» which describes }" as a function of
X (the “important” inputs) for fixed values
of X, (the “unimportant” inputs). Figure 3
makes the comparison for 10 values of .X,.
The figure indicates acceptable agreement for
8 of 10 values. For 2 of the values of X9,

T T T T T T

20 40 60 80
mg/Kg Sediment Dead Organic Matter
Figure 2. Density function f,
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all variables free
unimportant fixed

T T + T T T

20 40 60 80
mg/Kg Sediment Dead Organic Matter
Figure 3. Density functions [, for
10 values of unimportant inputs X,

100

the agreement between [, and [,,, is not as
close, and further analysis may be prudent. In
general, however, the figure indicates reason-
able agreement between the different f,,, and
[y, implying that X» identifies only unimpor-
tant inputs.

To examine the importance of the set X,
we look at fylrl for 10 values of X;. These
densities are presented in Figure 4. Fixing
X produces densities quite different than the



marginal density of Y. We do not know at this
point, however, whether the set \'; contains
extraneous, unimportant inputs.

all variables free
important fixed

T T T T . T T

0 20 40 60 80 100
mg/Kg Sediment Dead Organic Matter
Figure 4. Density functions [,,, for

10 values of important inputs .\’
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