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Abstract. Stochastic simulation has been suggested as a viable method for char-
acterizing the uncertainty associated with the prediction of a nonlinear function
of a spatially-varying parameter. Geostatistical simulation algorithms generate re-
alizations of a random field with specified statistical and geostatistical properties.
A nonlinear function (called a transfer flmction) is evaluated over each realization
to obtain an uncertainty distribution of a system response that reflects the spatial
variability and uncertainty in the parameter. Crucial management decisions, such
as potential regulatory compliance of proposed nuclear waste facilities and optimal
allocation of resources in envi,'onmental remediation, are based on the resulting

system response uncertainty distribution.
Many geostatistical simulation algorithms have been developed to generate the

random fields, and each algorithm will produce fields with different statistical prop-
erties. These different properties will result in different distributions for system
response, and potentially, different managerial decisions. The statistical proper-
ties of the resulting system response distributions are not completely understood,
nor is the ability of the various algorithms to generate response distributions that
adequately reflect the associated uncertainty.

This paper reviews several of the algorithms available for generating random
fields. Algorithms are compared in a designed experiment using seven exhaustive
data sets with different statistical and geostatistical properties. For each exhaustive
data set, a number of realizations (both unconditional and data-conditioned) are
generated using each simulation algorithm. The realization_ are used with each of
several deterministic transfer functions to produce a cumulative uncertainty dis-
tribution function of a system response. The uncertainty distributions are then
compared to the single value obtained from the corresponding exhaustive data. set.
The results of the study facilitate comparisons between the individual methods,
allow an assessment of the consistency of the simulation algorithms, and indicate

potential for bias or imprecision.

INTRODUCTION

Stochastic simulation provides a way to incorporate various types of uncertainty
into prediction of a complex system response. Usually, some information is availat)lc
on a parameter of interest (for example, the permeability of a sandstone formation),
but the transfer function (a groundwater flow model, for example) may require a
detailed spatial map of this parameter. The exhaustive sampling necessary to obtain
such a map is usually not feasible. One alternative is to generate realizations of a
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] random field that share tile available information on tile parameter of interest.

These realizations serve as input to the transfer function that computes a system
response for each. If tile realizations characterize the spatial uncertainty of the
parameter of interest, the resulting distribution of predicted system response values
will reflect the uncertainty (see Figure 1). This approach, proposed in Journel
(1988), is widely used in hydrology, petroleum engineering, and the environmental
sciences. Crucial management decisions such, as potential regulatory compliance of
proposed nuclear waste sites and optimal allocation of resources in environmental"
remediation, are based on the resulting system response uncertainty distribution.

Multiple Transfer Distribution of
Realizations Function System Reponse

F(x)

1

X

Figure 1. Schematic Illustration Of Stochastic Simulation.
Modified from Journel (1988).

Many different stochastic simulation algorithms could be used to construct tl:e
realizations and each may assign different statistical and spatial features to the
generated fields. These differences may be due to the order in which the simulated
values are obtained (the method of generation), the statistical and geostatistical
inputs to the algorithms (i.e., the summary fui_ctions such as the variogram), and
the degree to which the summary functions of the realizations match the specified
input summary functions. Consequently, tlm distribution of predicted response
values, and the resulting inferences drawn from this distribution, depend on the
particular simulation algorithm implemented. For the scientist using stochastic
simulation, th_" differelices among the algorithms and the resulting effects on the
system response uncertainty distributions need to be understood so that appropriate
algorithms are used in each applicatioIl.

To date, very little has been done to evaluate and compare these algorithlns
as they arc currently being used. Journel mid Alabert (19S9) use the Befell Salltt-
stone exhaustive data set to coilli)are sequential indicator simulation t,() Ga_ssian
simulation. They recommend the use of indicator _netlmds when it is nec(,ssary
to charact, erize strong connectivity of extreine (high or low) values. Dcutsctl mid



Journel (1992b) use the same data set to compare sequential indicator simulation,
sequential Gaussian six: :ulation, and simulated annealing using petroleum industry-
based transfer functiovs. Based on results from one set of simulated system response
distributions, they find all methods to be feasible, accurate, and precise. Hansen
(1992) uses several indicator-based synthetic exhaustive data sets to evaluate the
sequential indicator simulation algorithm. The results of this study indicate that
the sequential indicator simulation algorithm, when applied to problems where coil-
ditioning data are available, may "over-condition" the data, causing the response
uncertainty distribution to be very precise but biased for the true response as ob-
tained from the exhaustive data sets. Clearly, much more work is needed to evaluate
the many geostatistical simulation algorithms over the range of applications consid-
ered in practice.

The purpose of this paper is to present the results of a comprehensive study
designed to evaluate and compare geostatistieal simulation algorithms using a num-
ber of different exhaustive data sets that represent a variety of spatial phenon_eIm.
The objective of the study, discussed in subsequent sections, is to obtain more
information on how the different sim_llation algorithms work in basic simulation
applications. Using them in a designed experiment with many exhaustive data sets
will facilitate comparison of realizations and response uncertainty distributions pro-
duced by the various simulation algorithms, allow an assessment of the robustness of
the methods to differences in underlying data distributions, and indicate potential
biases or imprecision due to a particular algorithm or mettlod. Section II gives the
specifics of the design of this experiment, and Section III summarizes the results.
A discussion of the findings and recommendations for imI_leInentation and future
research are then given in Section IV.

DESIGN OF THE COMPARATIVE EXPERIMENT

The basic experiment is as follows. For each of seven exhaustive data sets, 200
realizations of a random field model are generated using the siinulatiml algorithms
appropriate for that data set. Input to each simulation method is based on "truth"
as derived from the exhaustive data set. Truth will be quantified using at_propriate
"summary functions," i.e., functions that incorporate the statistical and geostatis-
tical features of the field, such as the semivariogram or indicator senlivariogrmll.
One-hundred of the fields are conditioned on "data" randonlly selected from the
original exhaustive data set. The remaining 100 fields are left unchanged ,-usuncon-
ditional realizations. For each realization, several transfer f_lilctions arc coxnp_lted,
each giving one. value of the system response. The results of the experiment pro-
vide several uncertainty distributions for every simulation algorithm, each of whicll
corresponds to one of th(-" exhaustive-data-set/transfer-functioil scenarios. Half of
these distril_ations will 1_(' based on unconditional realizations, and the other half
will be data-conditioned.

A. Simulation AIgorithrn,q and So f2warc

A brief description of all algorithms and software used in this st dy is provi(le(t
below. Because of time and space constraints, we have omitted several prolnising
simulation algorithms such as fractal simulation algorithins, spectral algoritlm_s,
Boolean and randonl set. algorithms, and nearest-neighbor api)roaches. Tll¢,se metll-
ods will be explored in sut_sequent studies.

1. LU Decomposition. Tile LU deeompositioIl method is based on ali LU (_r
Cholesky-type of decomposition of the covariance nlatrix betweeIl data locations



and grid locations. Specifically, this covariance matrix can be decomposed as

C= (Ca, C,2)=LU= (La, 0 ) (U,, U,_)C21 C_2 L21 L2_ 0 U22 '

where Cii is tile covariance between data at data locations, C22 is the covariance
between data at grid locations, and Cl2 is the covariance between data at data
locations and those at grid locations. A conditional Gaussian simulation is obtained
by simulating a vector e of independent normal random variables with mean zero
m_u .,-,,_ ,..,..,ce, and using the data vector z in the transformation

( )( ) ( )Ll l 0 L 111z z
°

L'21 L22 e = L21Llllz + L22e

Further details of this algorithm can be fomld in Davis (1987a), Cressie (1991),
and Dowd (1992). LU decompositioIl is relatively easy to implement, can handle
any type of covariance function and anisotropy, and can incorporate data condi-
tioning efficiently, tIowever, the amount of storage required can limit the size of the
simulation grid that can be efficiently considered. Moreover, when the simulation
grid size is large and tile covariance matrix is sparse, numerical inaccuracies may
result. To circumvent these difficulties, approxixnations that provide more efficient
and stable calculations have been introduced by Quimby (1986) and Davis (1987b).

For the continuous-variable simulatio1_s required in this manuscript, the ba-
sic LU decomposition algorithm in Dcutsch and Journel (1992a) was used for the
continuous-variable simulations. The random number generator provided in the
software was replaced with one found in Press, et al. (1986). In implementing the
simulations required for this study, we found storage space and run times to be

--: more of a nuisance than a limitation. Each conditional simulation took about 16

minutes on an IBM RS6000 workstation, which given the computational nature of
many environmental applications, is hardly a limitation.

2. Turning Bands. The turning bands xnethod was developed to case tile computa-
tional burden in generating three dimensional fields. Tlm method works by simulat-

_ ing one-dimensional processes on lines regularly spaced in two- or three-dimensions.
The one-dimensional simulations are then projected onto the spatial coordinates

_ and averaged to give the required two- or three-dimensional simulated value. The
turning bands algorithm is a fast and etficicllt method of random field generatio11,
but the use of a separate data-conditioifiIlg step based on kriging can reduce its
effick .cy for generating conditional random fields. Perhaps the biggest drawback
of the method is the limitation ol_ tile choice of covariance fmlctiox,_ that cml t_,

specified. One list of possible choices is provided in Zimmerman mid Wilson (1990),
and additional descriptions and properties of this algorithm can be found irl Journel
(1974), and Mantoglou and Wilson (1982).

The turning bands computer code TUBA (Zimmerman and Wilson, 1990) was
used to generate the continuous-variable sinmlati(ms since this code provides a tligl_
degree of flexibility in the choice of turlfiIlg braids parameters. To reduce banding
artifacts due to the one-dimensional iiqe processes, !34 turning bands were used ix_
every simulation at the reconlmcndatioll of tll_, mlthor of tilt TUBA co(lc. TI_'
software allows the user several choices for tlic covariall(:(' functi()ll, but it d(_cs xl,,t

generate fields with a specified nugget effect. It does not (nor does aI_y other turl_ivg
bands code known to the authors) easily incort_oratc zonal anisotropy or anisotropy
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that departs from the coordinate directions. To use ttlc t_lrIliIlg baIltts cocle in suctl
situations requires tEL' additioil of two or more realizations with siiIlpl_' covarimlcc
structures. These additional computations were done for simulations iii which a
nugget effect was required, but, in the cases where complex semivarioglam models
were necessary, approximate models, cOnTli_atibh , with the turning bands software,
were used.

3. Sequential Gaussian and 4. Sequential Indicator Simulation Algorithms. Both
of these methods are based on a sequentiM approach to simulation based on at_-
proximations to Bayes' theorem, and are described in JourIlel and Alabert (1989),
Gomez-Iternandez and Srivastava (1990), and Deutsch and JounM (1992a). Ttle
basic conditional sequential simulation algorithm is a.s follows' 1) Define a rmldonl
path through ali grid nodes; 2) Draw a value from the conditional distribution of
the random variable at the first grid node given the (n) conditioning data; 3) Add
this new value to the conditioning data set; 4) Draw a value from the conditional
distribution of the variable at. node two given tt_-. (n+l) eoIlditioning data, ail_!
5) Repeat until all nodes are simulated. In sequential Gaussian simulation, tl_:
conditioning data are first transformed to sl_andard Gaussian values and the semi-
variogram of the transformed data is specified. Simple kriging is used to obtail_
estimates of the necessary conditional distributions. At each node, the kriged valm,
obtained from simulmed and conditioning data, and the associate_l kriging varimlcc
are used to specity the conditional Gaussian distributioll. Realizations are tllexl
drawn randomly fi'om this distribution. Finally, the results of the Gaussian simu-
lation are transformed back to the originM data space. In the sequential indicator
simulation approach, no assurnptions are made about the parametric fornl of the
conditional distributions. The conditioning data are transformed to indicators rl_.-
fined by thresllold values based on available data and ottler relevant infornlati(_ll.
Estimates of the conditional distributions at each grid 1lode' are given by simt_l_'
indicator krigiIlg using correspoIldiIlg indicator semivariogranls.

As discussed in Dowd (1992) these nmthods have several advmltages iilcl_ld-
ing autonlatic haildling of m_isotropies and data conditioz.ing, aIld fast COml_u_cr
implenwntation since an efficient krigillg algoritliI_ with a movilig neigliboI'l_oo,l
search capability is all tl_at is required. However, silica' sequential _,tl_(_ds are rela-
tively new, their properti(,s axed limitations, if ally, are Ullkll()WIl. Artifacts of tt_(,._(.
algoittm_s coul(t be present in the generated ticlds or in the systen_ resl)ons(' m_('er-
tainty distribution. In particular, the conditional distributio_s obtained from tl_e
sequential indicator simulation algoritlm_ do not respect the prol)erties of cul_mla-
tive distributio_x functions. It is possible to obtain t)rot)ability estimat('s larger tt_a_
1, less than zero, and ofteil the resulting co_lditi(,_lal distrilngioI_S are l_ot nio_)
tonic. Altl_ougt_ an artiIicial correction is used t<_force tt_c desir('(l t)r(_l)crties, it is
not clear what effect this correction mav t_itve on the rcalizatio_s mid tt_e svstc_
rest_onse distributions.

Both sequen(ial algorithms w(,rc _s(,(i f()i ali ('_)_ti_m()_s-variat)l(' si_imlati()_s
usi_g tltt, s_)f_war(, givc_ i_t Deutsch a_(l Journel (1992a). As witt_ LU (l(,cotlll)()-
sition, the raw,dora number generator was replaced t)y that give_l i_ Press, et al.,
(1986). Both algorithms were very flexible, etficic_t,, a_(t easy to use. H(,wev,'r.
several user-specified parameters- such as tt_e use of si_nt)l(' krigi_g v(,rs_s (_r¢li_arv.
kriging, the _naxinmm nu_nber of sinmlated nodes retai_wd for krigi_g, octa_t-scarcl_
l,armneters, and, in particular, upper a_d lower tail cxtrat_ latio_ cl_oic_.s ¢'a_ af-

: feet the efli('icncy of tt_e alg¢_Iitl_n_s, tla' x_at_xrc ¢_ft.l_(, rcaliz,:tiox_s, axed tI_c r(.s_lli_g
uncertainty distributions.



Sequential indicator siInulatiozl is especially straightforward wh(,ll at)plied tc)
generating realizations of a categorical variable. Thus, this algoI'itlnn was also use(l
to produce realizations of the GCD and Booh,an exhaustive data sets (discusse(1
below).

5. Truncated Gaussian Randozn Fui|ctioIl Apl)roach This inethod, discussc,d ill
Mathcron et al., (1987), Galli ct al., (1990), a_ld Dowd (1992) describes K lithofacies
or lithologic units by using one indicator function per facies. Indicator simulatiozl
is accomplished by generating a Gaussian random field and then truncating tilt
Gaussian values to achieve the categorical simulation. Specifically, suppose Y(s) is
a sta_!'tard Gaussian random variable. Tile associated indicator transforln is

1 if Y(s)E (y,-_,y,]l(s;yi) = 0 otherwise

so that a point s belongs to category i if Y(s) E (Y,-I,Y,I. The thresholds, y,, arc'
determined according to the prol)ortion of values that fall into each category. Let
q) be th(, standard Gaussian dist.rit)_ltioll functio||, mid lc, p, be rh(" i)roi)ortion of
values in category i. Then

pl = PI-ce, < l'(s) <_ VI] -' VI = (I)-l(pl)"

In gelicral, Yk-I = 'l'-l(Pl + 1_2+... + PJ,-I ). After tlle Gaussiml thresl|olds have,
beelz determined, it is then necessary to deterIllim' ttle covaria||cc, structure of tll_,
Gaussian random variables. This structure dci)cii(ts on the structure of the indicator
covariances which may be computed and modeled from the data. The rc,lationship
between the two covariaIl(,e functions can be' specified usixlg HerxIfitc i)()lyIlomial
expansions, in wlfic!l case, (Dowd, 1992)

1, _, _ tt,,-l(_J,)H,,-l(Vs)c,(h)= Z; F__. • (c',
|=i j=l n=l

wt_ere H,,__(.r) are th,rn_it( • l)()ly_|()||_ials, g(y) is ttw standarcl Gm_ssim_ (le_sity,
c, is a uI_i(tuc' i_teger wtl_e assign(,d to eacl_ category, a_cl C'_(t_), a_(l C_.(h) arc
the covariance functions of the, i_|(lic'ator variables m_d tl_e (2;a_ssia_ va riabh,s, re-

spectively. Conditioning data at locatioz_s {,s,, }, are r('plac('d t_y stm|timbrel Gaussim_
random variables with covariance function C,_-(h) su(:l_ that y___ _< !lC.s,,) < y_,
where j i_dex(,s the category to whicl_ s,, belongs. Fix_ally, a usual c-(,_|(liti()z|al
Gaussim_ simulation is performed az_(l t l_('_ t)ack-tra_|sforx_wd tc) obtai|| tlw associ
ated indicator values.

There arc,. many ways to (h'tc'rmi|w CyCle) fro||_ tl_(_ at,(,v(, VClUati()zi. Tc) tl_(.
auth()rs' knowledge, the're is no publisl_c,(t ttwory on a_ ()pti_|al solvation| f()z"(').(h) _)r
evez_ an accc.t,t(,¢l m¢.thod¢)lgy for ol_taini|_g m_y satisfact()ry solution|. Tt_e al)l)r¢,a('l|
used in this st,_(ty was t() obtaiz_ values of C)'(h) tt_at satisfy ttw al)orc, e(t_ati(,z_
using a Golden Section Search algorithm (Press, ct al., 19S6) for all r(,h,vant lags l_,
rather tha_ tc) use a Sl)('cific paran_c, tric z_od(,1. ()_(,(' (-',, (/_)tzas l)(,e_| estat)lislw(1,
Gaussian random fields were ge_erate(l via si|nulate(l antic'ailing (I(izkt)atzi('k, et al.,
1983; D('utsch a_d ,]ournel 1992a, 1992b) tc)force each realiza_io_ tc)_atctl ('_.(h).
The determi_atioz_ of C_'(h) is th(, n_ost coi_|i)utati()z_ally i_t_._siv(, aSl)(.('t ()f tt_i_
algorithm, and tlw lack of a straigt_tf(,rward z_t,tl_(,(l f,,r c(,z_(liti(,_i_g tc, it_(lic_t(,z
data is also a limitatiox|. F(')r l)z'()l)i('|_|s witl_ nmr(" thax_ tw¢) cat(,gori(,s, co_|si(h'r;_t i()z_
of indicator cross covaria||c(,s is r('(l_ir(,(l, ax_(l a(l(lit, i(,_al co_l)_tati()_s arc' r_'(l_iz,',l.

|I



Clearly, in this type of study, it i,_ iInl)¢)ssii,h, to divorce the silxmlati(,xl Ilwtl.)(l
or algorittml from the, rgmputer software used to imph,ment the algorithln. In COll-
structing the softw,,_(.,_"" th(.l(..... art often various clloices for thr comt)utatioilal details
of algorithm imt)lementatiozl (e.g., the number of turniilg ban(l:-: lilws, cdf interl)o-
lation and cxtrat)olation methods, s(:arcll strat(,gies) tl_at are sl)e(:ifie(l 1)y tlw us('r.
Every a_tcmpt wins made to l)rovide the most coIlli)h'lc jill)at t() (:actl sillmlati()xi
code. The goal of this study is not to discredit any of the approaches or to (h:terlnine
the best algorithm, since no algorithm can be best fi)r ali applications. IIlstea(t, w(.
hope to obtain more information on how the algorithms work in sinmlalioll ai)pli-
c,-:(,i.-,,_, l;l.,, *hose illustrated in Figure 1 and to indicate new research dir(:clioIls for
investigating the properties of the algorithms and (levelol)ing new alg()rithxns.

B. Data conditioning

For the conditional realizations, N=100 sets of r=100 data values wen, raI_-
domly selected from each exhaustive data set. Ea('ti realizatioll wa._ ttl('xl ('oil(li-

tioncd on one of the N sets of 100 values. Altll()ugtl iI_ t)ra('ti¢'e all realizati()11s
are conditiom, d to the same set of data values, in a study su('ll as tills, car(, I_st
be taken not to introduce bias i_lto the exi)erime_lt (ttr(, t(, t,}_(,i)arti('t_l;tr (lata s(,t
chosen. Since it is impossible to (tetermine a "goo(l" (lata ..,(,t aprior:, xt_t_ltil)l(' s(,ts
of conditioning data were use(l.

C. Exhav,_t:vc Data S_:t,_

Seven exhaustive data sets wen, used in tt_is c(m_l)arativ(, st t_(ly. "I'ltr(,(, at(, r(,al
exhaustive data sets taken fro_l_ tlm authors' t)roje('t work a_d fr¢)_ tlm litr, rate,r(,.
'lhc advantage of these data sets is that they r(:flcct real spatial i)]_(_()_t_(,_;_ a_l
the statistical a_(t gcostatistical i)rot)erties of tlws(, (lat_ _(.ts rcfle('t wl_) is :_('t_-
ally encountered in practice, tlowever, r(:sults bas(.(1 ()_ r('al ext_austiv(, (tara ._(,)s
are limited to the particular prot)erties exl_it)it(,(l l)v tl_(' (l:_ta. I_ or(h,r t() 1,r();_(l(,_
the scope of infl:rence of a study sucl_ as the o_(' d'escril)(,(l lwr(', it is _w('(.s._ry _,)
consider exhaustive data sets witl_ a variety of statistical axe(1g('()statistical l)r(,l.,r -
ties. Thus, tt_(' rrmaini_g four exl_austive data sets w(:r(: gt,_(,rate(l ss'_tlx(,li('_lly s_)
that their statistical m_(l geostatisti('al features ('o_l(l t,(, c(,_tr()ll(,(l axe(1 vari(,(1. A
brief (lescrii)tio_ of each exlmustix(. (lala s(,t is l)r(>vi(l(,,l 1,,,h)w a_(l c()__(,st,,_(li_
gray-scale maps are shown in Figm(' 2.

1. Mult_ "anate Gauss_m_ Exha_stive Data Set. Tills data :,(.t w',,_ ,)t,)ai_(,(l t,x' ,_,(,_
erafi_,_g i60-6 _'__t stan,la,,l Gaussian rm,,h),,, variat)l(,s (,,, ;, 4()x -ii)t_,i(l
of u_it spacing. The covarianc(, _atrix was deriv(,(l fr()_ a i)r(,st,(.('ifi,,(l (,Xl)_)_(._
tied semivarioglrmn mo(lr] ',vit|_ a zero m_gget, _it sill, a_(l ra_,. 7. A Cl_,)l,,_kv
(lec(m_l)(,siti(,_l alg()rittH_l ft'on, tlw IXIL t)r(,cedur( . ii_ SAS ($)ati,_ti,'al AI_;dvsi_ Sv]
tem Version G.01, 1992) was us('d t()i_id_i,'e tlw (l('sir(:,t ('_,',",_ri,_('(. str_,-t_r,,. "I'll,'
ensenible averag(: was then stm_(li_r(tiz(.(l t(, i_(._ z('r()a_t _it v_ri;_('(, t() l,_(,,lt_,'(.
the exhaustive data set,.

2. Uniform Exhaustive. The unif()r_ ('xt_a_stiv(, (lata ._(.) ('(,_._i,_ts (,f 1(5(1()v;_l_l,,_

()_ a 40 x 40 regular grid wit,]_ unit Sl)aci_g a_(l was ()l)t;_i_('(l l,y _('z_('r;,ti_,_,' _ ,,<('t
of uniform ra_(lo_n variat)l(,s over tl_(, gri(t a)_(l t,l,(,_) _tl)l,lyi_ _ ._i_l_)(.(1 a_,.;_lil),¢
to more closely match tl_(: desired si)atial ('ovari;_('(,. Tt_(. si_l;_t_.,! a_,';_li_e:

to match (to the extent t)ermitt(,(l l)v tl_i_ _l_z()ritl_,) tw()s_,_;_')" fl_('ti(,_._: 1)
tl_e histogran_ of a _niforn_ pr(li)at)lilt)" (tistril)uti()_ ()_ [- v<_i._4l, a_:(l 2) ;_ i._())_(,1)i,'
cxt)on('ntial semivari()gnt_n witt_ z('r()_ge;('t,, _i) ._ill, a_(l r;_(' 1().



3. IIldi('at(w-C, ovariaIlce Stwciti(,_ Extmustive. This extlaustivr data s_,t was c,1,
rained by modifyiltg the simulated annealillg algorithm given in Deutsch m_(l,lourlml
(1992a) to amwal an initial image to specitied indicator semivariogranls. Ttw rrsult-
ing exhaustiw' data set was forced to have mean zero, unit variance, m_(l is_(ticator
scmivariogral_ls specified as

Cut-off-2: isotropic sl)h Iii_ = 0.00, c, = 0.16, a = 7.00),Cl_l-off 1' isotropic sl)h = 0.00, c, = 0.25'a = 5.00),
Cut-off 0: artist)tropic spll (co = 0.00, c, = 1.00, ax = 7.00, ay = 3.5()),
Cut-off 1' isotropic sph (Co = 0.00, c, = 1.25, a = 10.0),
C_lt-c, ff 2: v.nisotrol)ic sph (co = 0.00, c, = 1.50, ax = 30.00, ay = 15.00).
'11.' xio_at.,li "' sph" refers to a spherical semivariogr_ml model with mlgget co,
sill c,, alld range a. The notation "anisotrotfic sph" specifics a model of geometric
anisotropy, v,'h(,re the l)arametric form is tllat of a spherical semivariograxll nm(h'l,
t)ut witll a rallgc of ax in the N 90 ° E direction and a range of ay ill tlm N 0° E
directioxl.

4. Re(t_lced Walk('r Lake E,,:hmlstive. To cmlstruct the cxhaustiv(' data s(,tcall_.(l
't, ..... } "1the "Reduced Walker Lake exhaustive data s,_t, aIl II ltlal exhau tire ','aria h', _ ,

was sch'cted from a portion of tlm U variabh' of _" '_ "tlu ox'igi_al _,'.'alklw Lak( Data
S,'t !Isa;_ks a_d Srivastava, 1989). The r('(l_ctio_ was (to_w in order to facilitat,'
c<)_i,arisi(n_,,, with r(,sults obtained for otlwr c_)_ti_mous-variat,l(' _,xha_stiv(, data
s(,ts that coxisist ()f 1600 data t)oiIlts on a ti'g_dar ,10 x 40 grid witli u_it SlmCilig.
F()llmvi:_ the al,l)roact_ ()f Desl)arats axed Srivat,;t av;t (1991), tlt_' varial,l(' t" was tlw_
tra_sf_)rxn('d to cre'at(, a variable T whict_ is silk,liar to tlw l()g-_,or_ally (listril_ut(.(!
tra_smissivity parameter co,ninon in t_ydr()g(.(,logic apl,licati(,_s.

5. Ih.r..z, S_l,lst(,_(' Exl_a_sliv,:,. The B(,r(,a saz_(tstozw data s(.t (-(,_sists t)f 1600 air

t,_,r_wa_xwler _was_r(,nw_ts (in millidarcii's) tak(,_ froz_ a 2 x 2 5.(,1 v_.xtical slal,
(_f Bl,I_qt sa_ilst(_(. (Gior(la_l), (,t al., 19S5). Ttw l()(:atio_s ()f tlx(,sv xx_(.ats_ri,x,w,xt,
art, (.itually Sl)a('('(l over a 40 x 40 grid. Ttu' lh'rea ,,;a_(lsto_w t_as t,l,,,_ _s_.(1 i_ ma_y
clm_t)ar;tt.ive g(,()statistical stu(tics such as ,l(ntr_trl r,'_d Alat)crt (19S9), D,,utscl_ an(l
.lourt_(.l (19921)), a_(l R()ssi al_(l Posa (1992). Figun" '2v sl_()ws tlw ttmp.l,at_(li_tg i_
tit(, N 123"E (!irei'ti(,_t tl_at is ('hara('°.eristic t,f tttis exl_a_stiv(' ill,tat set.

6. (;i'D Exlxax_.',tivv. TI_v GCD {,xtxaustivi' {tartars,,t t,x'esv_(,'{I i_ tltis _,_a_xt.'.,'ril,l i..,
a ('_,:xr_,,'xvl,rsi_,x_ ()f llw (),_t, _lis(,x_sse(l in (;_,l' :ay, (,t al. (1993) (_btai_,'(t |_y (tigilizi,:g
a l,l_,t,,-_i,saic _aI_ i_f a trez_ct_ wall at tlw (_;ri'al.tt'l Q'()llfill('lll('llt Disl)()sad Facility
i_ S(n_tlwx_t .Xvvail_t. Eac]_ n()lh' ()_x tl_e r_,s_lti_g grid is ass()('ial_'(l witt_ ()xw ()f t',v¢)

v,'t_itt' _il ). F()r tl_t' imrl)()s(,s ()f tl_is l)a|)('l . ltw (,xa('t _xal_xr_' (_f (,:tclt llI_il is Ix¢_t

illll_()rtttl_t.

'l']_is [,xt_a_stivl. _lattat ,_.t w;t., ol,_aix_t.,t t,y I_,,,,,1,';,_ si_n_la
ti(_ (,f t_;tlf-,'llil,sl's. Ellil_Ses v,'_,r_,}_)rizo,_tatlly i,xi,,_tl,ll witl_ a_i,,,_,tr(q,y _atil,s ¢)f '2
(n'3 all(t 111i11¢"["at.Xi'> h'_se.tlss varyi_se fl'_ltt 1"_) /lllit.s. Tlw thlg(.l (._,V(.lit/_(. l)_'lCt'llt;tg,, '

war:. -,t,.c,!i,'(i at 2(1 t,i'r,'('_t, lCact_ _l()(l(' ()_ ttw S0 x 23 grid was g:iv(,_ a ,.';,1_,' (,f 1 if
i¢ 'Jeh,', C()lltltill('(l iii at least ()_(' (,f tl_' ellil_s,':, al_([ tl_,' val_l_' 0 if it was _(,t ,'l,l_tai_,'_[
i_ a_ty ,'fill,'.,'.

,,vi,r(, /,l,t;ti_t,,(l (lirt.ctly fr(_ t}_(. (.xt_a_stiv,' (lat;t s,,,s. |:,)_ tl_,' (;a_zssia_t_lm--,',l .'.i_
_tlatti_,_l ;I.lg()litlllll, S, t}l_' ('()lltiiltl()ll,_, li(;ll(.;;tll",iitll., ¢'XllatllStiv(' d;tt. at h('t._ Wt'li' [l';tll:,

fi,r_li,'_l t()ll(,r_alality l)rilw t(_si_il_latti(,_. S,'_i,.'ari(_Krai_> (N ()"E, N .to L, N ()():'E,
al_lt N I"""



l,ivtiz¢' '> txl_;_,tix¢ , l)_ll;l S_'t,,.
,t_

ali



I()

|
I "Jt!



Discrete Avcral2L(.'os3. l)artich.s are r(,h+.a.,,c.(ifr(ml _,+.'I_ +i<)_lq,t_xl tl., it,ft t)_,llX1<taty
anti travel ht)x+izot_tally tllx'ough the region witll ttllit l.'xlalty fi_r <'acll il.w_, x,.'itl+ilj a
white regioll. F'artich, s +'ali lilt)V(' rigtlt or diagotlally ri_l+l t.(, av_,i<l tilt. t,l,_.k r,_i,,It+
where ll1OV('Itl(,llt costs Irl'( ' |i%'t' tilll('s +tS great, ()t_tln_t is tlw avelagt, cc,_t,

Ik++|illitntl!jL:('ost Pat ll. In tills al_;oritiltsl, xnov<,xm+tit c_)st s ar_. lm.se(l oI_ t lJ_' t<'Cil.+<wa}s
of the data values. The tnininmm cost path from tlw Ul,lwr t_outltlax'y t<, l Ji_' l_,w+.t
bouIldltl'y is COIll|)ll[(,d t.lsill_j lt dyli[l.llliC |)l_()grll.llllllillg alg<Mtluu all_winlg <h,wxlwar<l
and dingoxmlly-downward movexswnt. The oU'.l)Ut is tlw tt_il;ixxu+xllct.ct,

(++eotut'ttic Nit'all. T|w g,(,i+tX+l¢'tricIIWII.ll iS coxnl,Ul('<l fl,r <.+,ell illt_'ri(_r gricl nlt,(h, as
the product of the 2,5 closest nt_fles. For data st.ts +.+'itllxle_ativt' xlwas;ltcxiwxit+.
a constant wm+ added to assure ali values werv l_(,sitiv_.. A st,cox.l tix('_l c(_x|stat|t
wa.,+ used to control the x_agnitude of the res_It.,,, Tw<) ltall_f_'r fllx|('ti<,ll+ x,.'vr<.
considered: the difference bt,tweel_ the Xxmxinlulll al|tj llliliillitlll| of all rf.. u,t,,_xlwtric
sm.arts; +u.l tlw average of ali _+P()tlll'l+FiC tlt(,ttllS.

Threshold Prol,ortion. +l,,is transfer flssscti¢,ss is til,' l,t+(,l,_)rti(_xs(_f valti_'_ tJsat art.
_Ft+ater tilt+l| tlw 9Oth perc,,lltih, (d" ttt_' exhat_stivt, (I_+I+_st,tc

T"t' transf¢.r fuxlctiotls art' alqdi<'d fix'st t(_ ll_, vxlla;|sliv|. _l_,t+t +_,t-, t_ _d,tait_
tilt, "trtw" x';du(, to l_(, u+'+vdas a |,asis fl,r COllil+;t|'is_)l|, atl,l tl+_'t_t<, t'a<'l_ x+<'+,li/+;,ti<.+
CCm_l>arim)x_+l_<.tweex_ tlwse x'+_lt.'s itr(, tlwx_ ;is(,<l it+ S,,<'ti(,x_ Ill i,, ,lr+_wi_f,'t_,t_,'_,,,
cox_ccr, itig Ill+' shliulation teclix|iqi¢'s.

RESULTS

The res;fits of this st_(l,,, r(.;'(.al a x_uxul)er t,f ,lith't,'_,',.>, I,<,tw_.t,t_ tl.' sit_iati<)t_
algoritl._l_. Thf, (lifl'erexwes cax_ lw seen ixl I) th_, i.',';_r_,'.v (_f ii.' _|t|ct,rt_|ix_ty <Ii+..+
trit,uti(_tls, 2) til<, cii+ratter+st+cs +_ftlw r<.alizati()r£.,, i||l)l|t l<_tl.' trax_+.,f,.r f_+_cli,)i_-.,
atm 3) tli(+' sllal)eS of the systcxn t('Sl.,tist' tlistx'il,;lti_,l_..+ Iii.stilts +xi _._,,'t_t,f tl_..,,(,
artm.s are sut_marized an(l discuss(.tl t),.l()w.

To hell) ass('ss tlw xnctho(ls, eac]_ systcxn r('._l)()x_s<'_lx_,'_'rtait_ty tlist xil);|ti()|| wa_.
c()ml)art'(l t¢)tlw trut. value ct,x_il)Utt'(l fr()u_ t lw t'xl,a;istiv¢. (lata s(.t. T+_I,I_' I ,_iv<,..
a st|tnxtli+y <)f tlw ()vr,tall r(,stllt._, (.'t_ltunxls c,t.. atl+L tw<) l)rt,vi,h ` tl_(. l)tt,l.,Xtit,x+
()f s)'stet_+ x'CSl+OX_s<'¢tistrilmti(ms that 1) cot_tail_,(t li+<. tr;_<, vat;.' witt+it_ tl.' x++,x,_<.
of resl)()t_s(' ,.'alt_c's, mid 2) cot,taixicd tilt, tru(' '.'al;u' witt+it+ tt.' 9()tl, +txl([ l(}tl_ l),,r
centiles. Thf last tllrcc ('olultins ,+.fTabh, 1 pr()vi¢l|, a¢l,liti(,xtal x||_'astlt'(,s l,<'rtait|it|_,
to the l)ias, l)recisit)xi, atl(l accuracy of tlw t'('Sl_(,x+st'ttt|c,,rtaix_ty (listril)t,ti<)x+s Isx<+
tluced by c_u,h algorithxt_. Thf Ifias t|wastlrt' (t'()l;_xl_x_3) i,, tl_(' id,_cd_,t,' <liff,'r,'++(':'
betwc',et_ tlw t_w(liax+ of the uncertait_tv t+i.,,tt'it,utit_i+ ax_<l tt_<' tr_l_' xal_.,. ¢livi_h,¢l t,y
tlw trm' valtte, then averaged t)vcr al'l exl_austi,.'t,+d;tt;t .,,,,t/tt;|t|sfl,x'+fttt|,'tit,xl ('¢_xs_+
bix_atiox_s. Prt'cisitm (col+tsh 4) is xzwasurt'tl as t}.' <tilt','|,'_|c_' l)_'tw('_'|| t]_(' 9{)t}_
atm 10th I)('r('(,t_tih,s of ea(,tl uxlccrtait|ty (listrit)utit>x| _livi,t,'_l l,y ttmp.('t,rt(,>l)<)|_<lit|g
l)ercentih " dil[t, rex+ct, fi_r tlw ux|certaix|ty (tistril)uti()_+s _,t_t;tit|<'(l usit_ tit<, '+tltc_)x+(li+
tionM LU (h'co||q)osition sixmtlatiot_ +Igor+thtr+ t)r tlw ut|c(,tl_liti()|+al c+tt._(,x'i('+d .,...,
qtwntial ixMicator algoritlut+ (as arl)itrary rr.ferc+ices), av(,xag_'(t o,,'<'r ali <,xt+at_...tiv,.
data-st'+t/trax_sft'r-flittcti(_x, cot_d)inati()_s. Sitx|t|latit)x| al_<,titl+x_ls tl_+tt c(,|lsist,,t|tl.v
l)roduct, tu_certMxity distriimtiox_s tl_at ax'e xll(>xt,l_X,,cist. t t,ax+ tl.,st, t)l,tai|it,<l t_i_+_
ut+c()ntliti()xial I.,IY(lt,ct,xl+l+ositioxi (or categorical m.(lt|ct|t ial it_(ti('at ()r) sittl,tlat it)xi will
have l)rt.cisiox_ v;dtws less than 1.00. Ct)lt|rx|t| ;+5c(,xl_i,it_<,s ttw x_.._s_lt',._ <,f },i+_ at_,l
l)r(.cisi(,x| ix+tr, a xtwastlt't. (_['ac('t|racy. Accuracy is ll|t';tStllt'([ i_.s til(' Wt'it_l|tt'_l ;i\'<'l ;+_t'

of the al)sol+lte dil[(.r(.xxc(,s t)tPtweex_ systtPt_l rcsl)t_x|st' valtu, at.l t ttmp'v+tlt.,, wi.,rc t ll_,
weights are tlw rt'cil,rtwals of the act't)ss-sitnttl+tti_,x++ xt_t,tl_¢,(tavt.t+t_,' st at_,i_r(l (l<,vi_,
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ti(,ts of tli_' usi¢('rt_inty di_trit)lst;'m._ for en<'ls ex]ials_,tivt, (lltti_ _,'t/tlas1_,fi'i.fuli,'t.ic,l,
sr'(-m_ri(). TIL,, weights are u.'-'<! to ,_ccourit f()r diff<.r,.tlr,'_ if_ i}l," risa_lsilti(h. (if i}_,.
values iii tlw ditt'(,rent sr('nari()s. Lower tm111}.'rs fi,i i11<. hrclllH!'y lliea.',lll<' tire. iii

dilative ()f Ittirertn, inly dislriblttiolis whos<, valll_,s Iii<, r(_Ii.,,i_t!'xllly cii)s(, t() l},,,_.
computed ft(llli tilt. exhtuistive data si, ts

I

PROPO|I11ON OF PROPORTI{)N Or /
DIB l |4111li TION S iii $1 Rill U I Itllq f_

SIMLiLATION CONTAINING 1lte CONTAINING Iii[ BIAS PIII.EISION ACCURACY

;, ;;:_)' 1flt,','! II1UE VALUE 0t- 1ftUE VALUE OI

IX_,, X,..,_t IX ,,. X ,_l j

I
Tt)ttl'JIl'l(i [IAt'dDg 111120 19/20 17120 1tl/;'O U 21,, 0 !11 t 0 11 ; .1% [ 1 14 _ g_'2

I /

........................................................................... ' ................................ .i i ..... i .................

'° li17/2(} (! 10 l) 1 ? • t {i() 0 4IJ 1 2._, 1 4?
l)l C flPSPO_;ITION 2(W20 I ._1_21) 19120

GAUSSIt_,'I 2(1/20 lft¢20 lf1/20 17,"20 _ .tl 0 11 1371 0 247 1 ft4 I _2

I%_JLAIOII, 17/20 17/20 13t2H 14/20 (l r, 1 I) "i2 ! O_tt '. (_ 37 I 1 ,7 1.lh

I,Nt)ICA1()_I i ,',,tr, 5,(; _i,'G i !" (' }'' O:_l i _,,, ; 91 i 1_13 1;12(-S _l¢'_lOtic al) t t ! i t

........................ i " f ............

, m,_c,,,r t, ! t L I, (;AUSSI_tJ ! 41(_ 4 f, J "{/G L4st, (),ii ! U 42 qI_ I Ct

T able I. Summary of Uncedainly [)*_t_ll)ulr_)n5 Combined Acrosr,/'_II I_ mh_ _,t ve E),_ldl Sel,Trar_sfl _ | uncl_iH fit.e..z_a,lr,I The h,a_,,

|)rccition, and accuri_cV men,lure5 ate 111o5, thl_us,_ed III lh*._It',_!

Th(' first columt| t)f "rat)h. 1 shows ttiat lil<_st (,f ti._, liti,_,rtaislty (listrilluti()=l,

pro(tuct.d by the ¢(mtisiuo|ls-variabh" silil|llati()|l alK()l'ittlliis <li(l r(tlitaili Lh(' true'

lis('(l witli t}l(' R<.(ltic<.(I W;|lk('r Liik,' (,xli;lustiv,' (l;tl;t .',t'l. "['tl,' '-,'r*,li, 1 ,'(,l|ililli (if

Ta})ll' 1 ELves t}l(' llrOl)(irii(_ti t_f uHiertaility (li._tril,liii(_ll.,, c_,lit=tilii|ie, Iii,. li'iii' Vitltii'

withill tli_' l()tll ali(l 9()ill l,i'rcctltil<'_. (}ii a,.'('rag(', tills lilltlil,_.r s|i(,_illl l,. itr()11i,<l
_('/. 113/2(! tilt tlw ('olltillu(,us-varialil_' silli_ilati,,ll a]_,,riil_li_.... "l'l_i..,. fr(,lll tl_<'L t# it , ()["

tld)h' we ('ali see tliat Lh(' l+r(,t,aliility ('(ii<ii+tit a.,,sitr,li,'(l iii Sl,.cili<.(l ilitt,rval.,, +il)lt('+lr_,
I() lit, <ici, tiP<it(' for liliCei'ihiliiV distt+il)uiioliS I_ii._<'<liii< c(,lilliti(,lilil Gitli_,_iitli-l)it_<'il

Idlorithlil+, t)tit iii<i)" l)<, t()() l'()v,' for ltlic('rtiiilil)' (lisirit,liti(,il> l_it)(liir,'_l USiliK till'
sequelliiit] iildi('iit(ir ltlKtiriitilii, or t()(i hi t4}l if uiir()il(lili(lillil 1.I" (h'<'(iliiltii.'iiti()ll ()i'
st'qii('iiti;i] GiLUSSiaii llil'ttiilrl', itr(' list,ii flip t)rol)lCili+ (,f til_, t Vltt' lli<,.,,t'iitt'(l lit,r!'.

Tilt' last tlirt,t, ct)li<Iii<is (,f Tilllh, 1 stii_w tti;li tilt' liliCt,i tiiilily (li.,,ii-il,tiiiitil.,. (_!,
i iiilled tisilil lh_' ulicoil(tit, i()iiltl (;iLtls.'+ilili +tlll.<_('<lsiliiuliili()ii illg,,i'it tiL<i+ ii;l'_ <' silliililr
vltltles f()r iii(' bills lli('il.',iiir(', lJut t}liit th()s(, olitliilit,<l iiSill K iii<' llliC(,ll(liti{,liiil tlii'iiili_ t

li<iii(Is ii<iii .'ie(llielitilil C..Jllli_.%i;lli illl()rithilis <lr(, iii()<°<, llr_,ci.,_l' iiillii ill(,._<' l,ll.,,(,(t (iii ilil.
unc()lidilioliill LU di,colill)o_itioli illK(Iritlilii. {'.llll_liii()iiili_ Ltir' :_iliilllllli(,ii r<.(l_lcl.,-,
l|ie ditt'(.rt,iic_'_ iii till, UliCt,riiiilii)" (listrit)uii()li._ l,io<l_lcl'(l !,3' iii<' vari_,li.., iii_,tli(!ll...,
i)lil, (ill itV(,lit_t,, ulicerlliiliiv (li.,4tril)litioli.', l/r_l(llic_'ll lr,)' lt<l, Giili_._iiili t,;l>l'(t _illiii-
iliti()Ii <litr,iiiit li<its <lr<' lii()rt, il_'cllrllll, t|lali ttl<_i, l)r(_(l_lr(,(t _isiiltL .'-'<t_l_'l_i_ll iii(li<'<!
t()r si,lilllllti(ili. Ttic_t. il,_lll_ (titt'_'r frf)iii tll(l_l, t)l<,,_t,iiit,(l t,y ,l_,lirilt,l iiit,l [)i,_li._,'ii
(1993) iii wtiicti l'('_ll<lll.'_l, ulic_,rt;liiit)" distrillliti(lli_ !,it._,.<l (iii liitc()lilliti(,il_ll rl.;lli/.il
ti()Ils g(_ll(,rati'(l I))" Iii(' _('(l'l<'iiti;ll (_;itii._'4iitli _illilllllli()ll ill<_(tl'ittllll wl'it' Ciilllliar<'¢i
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to those obtained using sequential indicator simulation. Based on one uncertainty
distribution that did not contain the true value, Journel and Deutsch (1993) con-
clude that Gaussian random field models may produce uncertainty distributions and
probability intervals that are too narrow. Clearly, the results of our study do not
support their contention. Although tile Gaussian realizations produced an inaccu-
rate response uncertainty distribution for the exhaustive-data-set/transfer function
scenario considered in Journel and Deutsch (1993), this may be due to the use of the
sequential Gaussian simulation algorithm, and conclusions based on this algorithm
cannot be extended to Gaussian-based methods in general.

Most of the response uncertainty distributions obtained using the categorical
simulation algorithms were also accurate. The primary exceptions are the results
for the Boolean exhaustive data set and the discrete path transfer function, where
none of the uncertainty distributions contain the true value. Of course, in prac-
tical applications, transfer functions are not computed on lithologic simulations
alone. Usually, the lithologic simulations are the first stage of a two-stage simula-
tion procedure designed to incorporate the large-scale geologic features of a region
as weil as capture the small-scale features of an associated parameter of inter-
est. Both the discrete path and cluster transfer functions reflect the ability of the
simulation methods to accurately portray lithologic features. This suggests that
perhaps other simulation methods that utilize different summary functions which
characterize shape and connectedness (such as Boolean and random set algorithms)
might be more appropriate for these transfer functions. For transfer functions such
as the discrete average cost function, both categorical simulation algorithms will
likely produce accurate response uncertainty distributions. Although uncertainty
distributions produced by the truncated Gaussian approach show about the same
variability as those produced by categorical sequential indicator simulation, the bias
and accuracy measures indicate that the truncated Gaussian approach has a higher
average bias. Realizations generated using the truncated Gaussian approach tend
to have a larger number of isolated points than those obtained using sequential indi-
cator simulation, and this adversely affects the uncertainty distributions produced
by the truncated Gaussian algorithm.

For a particular exhaustive data set, the realizations (taken as an ensemble)
produced by the LU decomposition and turning bands algorithms are very similar.
The exceptions are the realizations generated using the turning bands algorithim
with the Berea exhaustive data set. This particular data. set exhibits strong zonal
anisotropy that is not parallel to the coordinate axes, and the simplifications made to
semivariogram models for use with the turning bands software hindered its ability to
portray the banding characteristic of the Berea exhaustive data set. It is surprising
that even with several such simplifications, the turning bands algorithm gave fairly
accurate results. None of the realizations produced by the turning bands method

: showed artifacts due to tile lines necessary for the one-dimensional simulations.
There are notable visual differences between the realizations produced by the

LU decomposition and turning bands methods and those generated using the se-
quential simulation algorithms. The realizations provided by the sequential methods

: tend to exhibit more clustering of similar values than realizations produced by the
other methods. Figure 3 presents two typical realizations of the Reduced Walker
Lake data set; one generated using LU Decomposition, and the other generated
using sequential indicator simulation. The clustering is probably an artifact of the
kriging on which the sequential approaches are based and is discussed in Hansml
(1992) but was not anticipated here since simple kriging was used throughout.
Clustering of similar values is particularly pronounced in realizations produced by
sequential indicator simulation, and may be due in part to the nugget effect induced
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in the sequential indicator realizations caused by transformation ft'ore the class par-
titions to the real values. Deutsch and Journel (1992) acknowledge the extra nugget
component and suggest artificially reducing the nugget effect of the indicator semi-
variograms prior to simulation. This suggestion may alleviate part of the problem,
but would not affect the clustering problem because it would reduce within class
variability and not the extra variability resulting from the discrete partitioning. Fig-
ure 3 also illustrates another important difference between the realizations produced
by sequential indicator simulation and those obtained by Gausian-based methods.
The use of indicator semivariograms enables realizations of the Reduced Walker
Lake data set generated using sequential indicator simulation to capture the ridge
ol lngl_ values characteristic of this data set. Although the Gaussian-based methods
capture the large area of high values, the entire ridge is much less clearly defined in
these realizations, with no immediate "drop-off' as seen in the exhaustive data set.

LU Decomposition Sequential Indicator

] , m-: _ - .:,. - :.:--, ... -_'m i!;i; _t1__ m 'iI. ....I .,.--.." "--

. i._:_ . / 280

,::::m " ::_ := " = ::i:"}Jlli! J 2_

..::. .lt " " " x I D 225 .225

...._ .:. II"' 2'i" "'

Figure 3. Conditional Realizations of the Reduced Walker Lake Exhaustive Data Set.

The categorical realizations do not usually reflect the shape or position of key
features of the categorical exhaustive data sets, ovc_ after data-conditioning. Some
typical realizations are shown in Figure 4. As mentioned earlier, the conditional r(,al-
izations obtained using the truncated Gaussian approach have n_ore isolated points
than those produced using the categorical sequential indicator approach. This could
be due to the details of the implementation of the truncated Gaussim_ algorithm,
such _ the choice of an ammaling step used in generating the Gaussian realiza-
tions or the use of a golden section search algorithm in determining the Gaussian
covariance structure, and may not be artifacts of the truncated Gaussian approacl_
in general. At present, there does not. appear to be any theory or guidance in the
literature as to choices for specific details essential for software implementatio_ of
this algorithm or tl_e effect of these choices on tl_e get,crated realizations.
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Cate_orical Sequential Indicator Catecjorlcal Sequential Indicator (Boolean) l
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Figure 4. Conditional Realizations of the GCD and Boolean Exhaustive Data Sets.

Different components of the simulation methods api)ear to affect the shape of
the uncertainty distrbution of system response. An example is shown in Figure 5,
which gives the results of the LU decomposition and sequential Gaussian simula-
tion algorithms for the indicator-covariance specified exhaustive data set using tlle
geometric mean range transfer function. In this situation, the exhaustive data set,
transfer function, and summary functions are exactly tile same. The sole differeilce
lies with the particular algorithm used. Another example is given in Figure 6, whicll
shows the results of the turning bands and sequential indicator simulation algo-
rithms for the uniform exhaustive data set and tile geometric mean average transfer
function. It is not clear if the differences between these distributions are due to

method of generation (sequential vs. non-sequential), summm'y function specifica-
tion (semivariogram vs. indicator seinivariograms), or algorithm implementatioIl
details. A final example is given in Figure 7, which shows response distributioils for
the minimum cost transfer fuIlction and the Gaussian exhaustive data set obtained

using tile sequential Gaussian and turning bands algorithms. Here, the sl)read of
the two uncertainty distributions is quite different. These examples, and many oth-
ers not presented here, show that the uncertainty attributed to a system response
prediction can depend on the particular simtflation algorithm used and may differ
substantially even among methods that are b_ed on the same assumptiolls and use
the same available information.

In general, the effect of data conditioning oil the respoilse uncertainty dis-
tributions is clear: Conditioning decreases tile variability in the systc,ln resI_Ollst'
distribution. In particular, tile tails of the distributioIl are pulled toward th(' ceIl-
ter, the median is generally moved closer to the true value, and most outliers are
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Figure 5. Uncertainty Distributions for the Geometric Mean Range Transfer Function
Based on Unconditional Raalizations of the Indlcator-Covariance Specified Exhaustive
Data Set. The arrow denotes the true transfer function value.
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Figure 6. Uncertainty Distributions for the Geometric Mean Average Transfer
Function Obtained from Unconditional Realizations of the Uniform Exhaustive
Data Set. The arrow denotes the true transfer function value.
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Figure 7. Uncertainty Distributions for the Minimum Cost Transfer Function
Obtained from Unconditional Realizations of the Gaussian Exhaustive Data Set

The arrow denotes the true transfer function value
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eliIninated (see Figure 8 for a typical example). Conditionixlg the r¢'Mizatiolis will
also reduce Mgm.thmic effects but not diminate them. Ali example is given in Fig-
urc 9, which shows uncertainty distributions produced using conditional LU &,com.
position and sequential indicator sinmlation algorithms for the indicator-cowtriance
specified exhaustive data set mid the geometric mean range transfer function, titre,
the two uncertainty distributions are very different even after conditioning on l(}0
data points. In a few other situations, such as that depicted in Figure 10, it would
appear that the increase in precision due to data conditioning was obtained at the
expense of bias, since the conditioned distribution no longer contains the true re-
sponse. This example (and the three other cases observed in this study) support the
observations in Hansen (1992), where the tendency was termed "over-conditioning."

All of the simulation algorithms used in this study had the benefit of complete.
extlaustive information wherever possible. The exceptions were the tail extral_o-
lation choices in the sequential indicator algorithm necessary to extrapolate th¢,
conditional distribution estimated at the lowest (highest) threshold to a specified
minimum (maximum). As mentioned earlier, tim nature of the reslmnse distri-
butions produced by the sequential simulation methods can l_e greatly affected
by some parameters that are difficult to determine from the data. Tail extrap¢_-
lation choices coupled with tile choice of specified data minimum and maximmtl
are two such important parameters. In tMs study, linear extrapolatioxl to the ex-
haustive data minimum and maximum was used. Results ot,tailwd using lixwar
interpolation/extrapolation between exhmlstive quantiles (inforxllation provi_h.(l t¢_
the other techniques when transfornfing and back-transforming) produced ulwvv-
tainty ranges with tighter bounds. Consequently, results based oil this interlmla-
tion/extrapolation choice were less accurate than those presented lwre. In additioll.
a third set of realizations was generated using linear extratmlatioll to SlWCifie_l mix,i-
mum and maximum data values that were 10% beyond those givexl by the exhaustiv_
¢tata. This was done because, in practical applications, exhaustive information will
Ilot be available, and a researcher using simulation may decide to let the sim_l-
lated values fall slightly outside of the data rmlge in order to create the "tails" of
tile distribution. Based on this third set of realizations, the measures in Tat,h. 1
obtained for tile Gaussian-based methods did not change muctl, but some of the
illcasurvs for sequential indicator were very diflk, rent. Specifically, nl_,st mwertainty
_listrit,utioils lind niucll higlwr ranges (precision measures were 3.20 (llIlc.) and 1.43
(cmld.)), but were no more accurate than the previous distributic,xls (i,ias measur_'s
were 0.56 (unc.) and 0.30 (cmld.)). Clearly, the choice of suctl I,armlwters is ver_."
imI,ortant, and careful evaluation is required before using realizations generatecl t,v
ally simulation algorithm to assess the uncertainty of a systvxll r(.si,,,llsc,.

SUMMARY AND CONCLUSIONS

Several ver_' broa(l issues are illustrated by the results of tills st_,lv. Ttw firsl
iu tilt' effect of particular sinmlation algorithn_s on the resulti_g ut_certai_lty ¢tistri-
lmtion. Even for simulation algorithms that use tlm same sulnlll_l.ry fl_ctions, tl_,
shape and spread of the resulting uncertainty distributions based o_l a particular
transfer fmwtio_ can t)c quite different. This lack of cmlsist¢,ncy inlI_lies tl_at dif-
ft'rent algorithms may t)ro¢luce very ¢tiff,.rc_t preclictions of syst¢,_ r¢,sl,o_sc a_,t
poses a¢l¢litionM problerns for applications w'l_ose major interest lies i_ qua_tifyi_g
ttw mwertai_ty associated with particular eve_ts.

Seco_l_l, t lu,re are s_l_, transfer f_ctio_ls (like tlw discrete, lmtl_ tr_sf,'_ fl_,'
t,i_m) for wltich producing tlw distril,ution of systexll rt'sl_o_se t_asc¢l _ j_st tw_,
sun,mary fu_ct, ions (like tlw cdf m_d semivariogran_)n_ay not be al,l,r¢_t,rialc. W¢,
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Figure 8 Uncertainty Distributions for the Minimum Cost Transfer Function
Obtained from Realizations of the Gaussian Exhaustive Data Set Generated by

the Turning Bands Algorithm, The arrow denotes the true transfer funchon value
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olJservrd that for litholo_ir simulalion in whicll til(' shalw anti (,otltw('l('dlw._._ (,f
units are important, simtflatioI_ algorithms that utilize sltmlnary futlctiollS tlm! call
measure these properties might be more appropriate than those consider('(t irl tltis
study.

Tllird, coIl(litioniag on sample data will iml)rovc thr l)recision ass()('iat(,(I wit l,
thr system resI)Otlsr distribution and reduce, but tlot elimitmte, algoritllnlir rtt'(.cl.,<.
A firW cases of "over-co,uditionit_g" were observed but (lid not appear to b_, a rltr_,||ir
l)robh:nl.

Fix_all.v, our results indicate that, overall, Gaussian ba.sed simulatiozl |||()(h.ls
can in_-orl)orate the essential spatiM features of a spatially-varying para|||eter. AI-
tliougl_ L,_tttssiall models maximize spatial disorder, and Jour:Jel and Deutsrh (1993)
maintail_ that they couhl yield a response uncertainty space that is too llarrow.
our res_llls do not supl)ort this contention. We have found that the Gat|ssiatl-
based alqJroaches tend to produce uncertainty distributions that are |ro)r(. a_'('ll-
rate thall those obtained using the sequential indicator algorithm. F()r i_mgit_g
spatial uncertainty in a continuous variable, this study suggests that, h)r tlw va
riety of exlmustive-data-set/transfer-function scenarios cot_sidere(l, Gaussilt|_-I)as(.(l
apl)roaclms, and the sequential Gaussi_m simulatiota algorithm in l)artirt_lar, ar('
flexit)h, and accurate methods fi:_rstochastic simt|lation of rando_n fiehls.

Tlwx'c are tnany other intrrestit_g studies that foul(! ]|ave beet_ do,lr wit l_itl tt_i._
projr('t. ,,_rh as consideri_g the effects of sun,mary ftt_'ti_)t_ estimati_)t| f_,,_t_ li_t_il(.(l
ditta. _-(,tt(litionit_g sa_i)l(, size at_d locatio||, and trat_.,fi.r functicm apl)roxi||_ati(,t_.
For tlw l)racticio_er, these are real unknowns. To l()()k at these fact(n'.,, t)vrr ali _)f
tl,' vari()tt._ sitttulatiot_ algorithms would be tmlwcessarily t('dio_as and r('dut_(la_at.
Tills stu(ly provides additio_al information on th_, simulation algorittm_s tl_at al)-
|)('ar lo w(n'k w('l! it_ a variety of cxt_austive data set/transfer funrtio_ cond)it_atiotl._.
St_li,,-tl_t look at tl_e effects of other fltctors t_ot yet iuvestigatrd ca_ th(._ !,. (l(,-
sig_(.(l ar()_t_(l tiwi(, algorith_s. It_ particular, our results suggest that tl_('r(, is still
nmch w(,rk to br done in recoveri_g infornmtioa lost due to discrctizali()_ ()f val-
ues twc(.._sary for the sequential simulation algorithm and in developing sit|_tlali()_!
u_(,tl_)(t(,lg.v f_)r categorical variabh's. In particular, rcfi_w_xw_ts at_d i_al_r_w_'_v_lt._
t() t t,. _,1 l_(,(ls illustrale(I in tlxis pal,er so that they _aigl_t _(>re ad(.q_at(.ly ('Ii|li |1It'
('()_titt_ily att(l sisal)(', and tlw st_dy at_d e'.'aluatio_ ()f ll_(' l)rOl)('rti('s _)f ()tlt('r ('al('
._()ri,';tl <i_l;tti()_ al)t)roa('h(:s s_tcl_ as Boolean and ra|_(h)_|_ s(,t alg()ritl_,.._, t,,,r_.._)

l)r()vitit , it_t,,rsti_g and useful r('sear('t_ dir(:.ctio_,._.
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