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UNCERTAINTY: COMPARISON AND EVALUATION OF
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Abstract. Stochastic simulation has been suggested as a viable method for char-
acterizing the uncertainty associated with the prediction of a nonlinear function
of a spatially-varying parameter. Geostatistical simulation algorithms generate re-
alizations of a random field with specified statistical and geostatistical properties.
A nonlinear function (called a transfer function) is evaluated over each realization
to obtain an uncertainty distribution of a system response that reflects the spatial
variability and uncertainty in the parameter. Crucial management decisions, such
as potential regulatory compliance of proposed nuclear waste facilities and optimal
allocation of resources in environmental remediation, are based on the resulting
system response uncertainty distribution.

Many geostatistical simulation algorithms have been developed to generate the
random fields, and each algorithm will produce fields with different statistical prop-
erties. These different properties will result in different distributions for system
response, and potentially, different managerial decisions. The statistical proper-
ties of the resulting system response distributions are not completely understood,
nor is the ability of the various algorithms to generate response distributions that
adequately reflect the associated uncertainty.

This paper reviews several of the algorithms available for generating random
fields. Algorithms are compared in a designed experiment using seven exhaustive
data sets with different statistical and geostatistical properties. For each exhaustive
data set, a number of realizations (both unconditional and data-conditioned) are
generated using each simulation algorithm. The realizations are used with each of
several deterministic transfer functions to produce a cumulative uncertainty dis-
tribution function of a system response. The uncertainty distributions are then
compared to the single value obtained from the corresponding exhaustive data set.
The results of the study facilitate comparisons between the individual methods,
allow an assessment of the consistency of the simulation algorithms, and indicate
potential for bias or imprecision.

INTRODUCTION

Stochastic simulation provides a way to incorporate various types of uncertainty
into prediction of a complex system response. Usually, some information is available
on a parameter of interest (for example, the permeability of a sandstone formation).
but the transfer function Ea groundwater flow model, for example) may require a
detailed spatial map of this parameter. The exhaustive sampling necessary to obtain
such a map is usually not feasible. One alternative is to generate realizations of a
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random field that share the available information on the parameter of interest.
These realizations serve as input to the transfer function that computes a system
response for each. If the realizations characterize the spatial uncertainty of the
parameter of intcrest, the resulting distribution of predicted system response values
will reflect the uncertainty (see Figure 1). This approach, proposed in Journel
(1988) is widely used in hydrology, petroleum engineering, and the environmental
sciences. Crucial management decisions such, as potential regulatory compliance of
proposed nuclear waste sites and optimal allocation of resources in environmental
remediation, are based on the resulting system response uncertainty distribution.

Multiple Transfer Distribution of
Realizations Function System Reponse

F(x)
1

X

Figure 1. Schematic Illustration Of Stochastic Simulation.
Modified from Journel (1988).

Many different stochastic siriulation algorithms could be used to construct the
realizations and each may assign different statistical and spatial features to the
generated fields. These differenices may be duc to the order in which the simulated
values are obtained (the method of generation), the statistical and geostatistical
inputs to the algorithms (i.c., the summary functions such as the variogram), and
the degree to which the summary functions of the realizations match the specified
input summary functions. Consequently, the distribution of predicted response
values, and the resulting inferences drawn from this distribution, depend on the
particular simulation algorithm implemented. For the scientist using stochastic
simulation, the differences among the algorithms and the resulting effects on the
system response uncertainty distributions need to be understood so that appropriate
algorithms are used in each application.

To date, very little has been done to evaluate and compare these algorithins
as they are currently being used. Journel and Alabert (1989) use the Berea Sand-
stone exhaustive data sct to compare sequential indicator simulation to Gaussian
simulation. They recommend the use of indicator »methods when it is necessary
to characterize strong connectivity of extreme (high or low) values. Deutsch and
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Journel (1992bL) use the same data set to compare sequential indicator simulation,
sequential Gaussian sii :ulation, and simulated anncaling using petroleum industry-
based transfer functiors. Based on results from one set of simulated system response
distributions, they find all methods to be feasible, accurate, and precise. Hansen
(1992) uses several indicator-based synthetic exhaustive data sets to evaluate the
sequential indicator simulation algorithm. The results of this study indicate that
the sequential indicator simulation algorithm, when applied to problems where con-
ditioning data are available, may “over-condition” the data, causing the response
uncertainty distribution to be very precise but biased for the true response as ob-
tained from the exhaustive data sets. Clearly, much more work is needed to evaluate

the many geostatistical simulation algorithms over the range of applications consid-
ered in practice.

The purpose of this paper is to present the results of a comprehensive study
designed to evaluate and compare geostatistical simulation algorithms using a num-
ber of different exhaustive data sets that represent a variety of spatial phenomena.
The objective of the study, discussed in subsequent sections, is to obtain more
information on how the different simulation algorithms work in basic simulation
applications. Using them in a designed experiment with many exhaustive data sets
will facilitate comparison of realizations and response uncertainty distributions pro-
duced by the various simulation algorithms, allow an assessment of the robustness of
the methods to differences in underlying data distributions, and indicate potential
biases or imprecision due to a particular algorithm or method. Section II gives the
specifics of the design of this experiment, and Section III summarizes the results.
A discussion of the findings and recommendations for implementation and future
research are then given in Section IV.

DESIGN OF THE COMPARATIVE EXPERIMENT

The basic experiment is as follows. For each of seven exhaustive data sets, 200
realizations of a random field model are generated using the simulation algorithms
appropriate for that data set. Input to each simulation method is based on “truth”
as derived from the exhaustive data set. Truth will be quantified using appropriate
“summary functions,” i.e., functions that incorporate the statistical and geostatis-
tical features of the field, such as the semivariogram or indicator semivariogram.
One-hundred of the fields are conditioned on “data” randomly selected from the
original exhaustive data set. The remaining 100 fields are left unchanged as uncon-
ditional realizations. For each realization, several transfer functions are computed,
each giving one value of the system response. The results of the experiment pro-
vide several uncertainty distributions for every simulation algorithm, each of which
corresponds to one of the exhaustive-data-set/transfer-function scenarios. Half of
these distributions will be based on unconditional realizations, and the other half
will be data-conditioned.

A. Simulation Algorithms and Software

A brief description of all algorithms and software used in this st dy is provided
below. Because of time and space constraints, we have omitted several promising
simulation algorithms such as fractal simulation algorithms, spectral algorithms.
Boolean and random set algorithms, and nearest-neighbor approaches. These meth-
ods will be explored in subsequent studies.

1. LU Decomposition. The LU decomposition method is based on an LU or
Cholesky-type of decomposition of the covariance matrix between data locations
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and grid locations. Specifically, this covariance matrix can be decomposed as

Cn Cn'z) <L11 0 (Un U12>
C = = LU =
(021 Ca Ly, Ly 0 Ux)’

where '} is the covariance between data at data locations, Cy; is the covariance
between data at grid locations, aud (' is the covariance between data at data
locations and those at grid locations. A conditional Gaussian simulation is obtained
by simulating a vector € of independent normal random variables with mean zero
auu uiee vanance, and using the data vector z in the transformation

(L“ 0 Li'l‘z) _ z
Lyy Lo € T\ LnLjz+ Lage )’

Further details of this algorithm can be found in Davis (1987a), Cressie (1991).
and Dowd (1992). LU decomposition is relatively easy to implement, can handle
any type of covariance function and anisotropy, and can incorporate data condi-
tioning efficiently. However, the amount of storage required can limit the size of the
simulation grid that can be efficiently considered. Morecover, when the simulation
grid size is large and the covariance matrix is sparse, numerical inaccuracies may
result. To circumvent these difficulties, approximations that provide more eflicient
and stable calculations have been introduced by Quimby (1986) and Davis (1987h).

For the continuous-variable simulations required in this manuscript, the ba-
sic LU decomposition algorithm in Deutsch and Journel (1992a) was used for the
continuous-variable simulations. The random number generator provided in the
software was replaced with one found in Press, et al. (1986). In implementing the
simulations required for this study, we found storage space and run times to be
more of a nuisance than a limitation. Each conditional simulation took about 16
minutes on an IBM RS6000 workstation, which given the computational nature of
many environmental applications, is hardly a limitation.

2. Turning Bands. The turning bands method was developed to ease the computa-
tional burden in generating three dimensional ficlds. The method works by simulat-
ing one-dimensional processes on lines regularly spaced in two- or three-dimensions.
The one-dimensional simulations are then projected onto the spatial coordinates
and averaged to give the required two- or three-dimensional simulated value. The
turning bands algorithm is a fast and etficient method of random field generation,
but the use of a separate data-conditioning step based on kriging can reduce its
efficic .cy for generating conditional random fields. Perhaps the biggest drawback
of the method is the hinitation on the choice of covariance function that can be
specified. One list of possible choices is provided in Zimmerman and Wilson (1990),
and additional descriptions and properties of this algorithm can be found in Journel
(1974), and Mantoglou and Wilson (1982).

The turning bands computer code TUBA (Zimmerman and Wilson, 1990) was
used to generate the continuous-variable simulations since this code provides a high
degree of flexibility in the choice of turning bands parameters. To reduce banding
artifacts due to the one-dimensional line processes, 64 turning bands were used in
every simulation at the recommendation of the author of the TUBA code. The
software allows the user several choices for the covariance function, but it does not
generate ficlds with a specified nugget effect. It does not (nor does any other turning
bands code known to the authors) easily incorporate zonal anisotropy or anisotropy




that departs from the coordinate directions. To use the turning bands code in such
situations requires the addition of two or more realizations with simple covariance
structures. These additional computations were done for simulations in which a
nugget effect was required, but, in the cases where complex semivariogram models
were necessary, approximate models, compatible with the turning bands software,
were used.

3. Sequential Gaussian and 4. Sequential Indicator Simulation Algorithms. Both
of these methods are based on a sequential approach to simulation based on ap-
proximations to Bayes’ theorem, and are described in Journel and Alabert (1989),
Gomez-Hernandez and Srivastava (1990), and Deutsch and Journel (1992a). The
basic conditional sequential simulation algorithm is as follows: 1) Define a random
path through all grid nodes; 2) Draw a value from the conditional distribution of
the random variable at the first grid node given the (n) conditioning data; 3) Add
this new value to the conditioning data set; 4) Draw a value from the conditional
distribution of the variable at node two given the (n+1) conditioning data, and
5) Repeat until all nodes are simulated. In sequential Gaussian simulation, the
conditioning data are first transformed to standard Gaussian values and the semi-
variogram of the transformed data is specified. Simple kriging is used to obtain
estimates of the necessury conditional distributions. At cach node, the kriged value
obtained from simulaied and conditioning data, and the associated kriging variance
are used to specity the conditional Gaussian distribution. Realizations are then
drawn randomly from this distribution. Finally, the results of the Gaussian simu-
lation are transformed back to the original data space. In the sequential indicator
simulation approach, no assumptions are made about the parametric formm of the
conditional distributions. The conditioning data are transformed to indicators de-
fined by threshold values based on available data and other relevant information.
Estimates of the conditional distributions at each grid node are given by simple
indicator kriging using corresponding indicator semivariograims.

As discussed in Dowd (1992) these miethods have several advantages includ-
ing automatic handling of anisotropies and data conditioring, and fast computer
implementation since an efficient kriging algorithm with a moving neighborhood
search capability is all that is required. However, since sequential methods are rela-
tively new, their properties and limitations, if any, are unknown. Artifacts of these
algoithms could be present in the generated ficlds or in the system response uncer-
tainty distribution. In particular, the conditional distributions obtained from the
sequential indicator simulation algoritiim do not respect the properties of cumula-
tive distribution functions. It is possible to obtain probability estimates larger than
1, less than zero, and often the resulting conditional distributions are not mono-
tonic. Although an artificial correction is used to force the desired properties, it s
not clear what effect this correction may have on the realizations and the system
response distribution.

Both sequential algorithms were used for all continuous-variable simulations
using the software given i Deutsch and Journel (1992a). As with LU decompo:
sition, the random number generator was replaced by that given in Press, et al.,
(1986). Both algorithms were very flexible, efficient, and casy to use. However.
several user-specified parameters such as the use of simple kriging versus ordinary
kriging, the maximum number of simulated nodes retained for kriging, octant- search
parameters, and, in particular, upper and lower tail extrap lation choices  can af-
fect the efficiency of the algorithms, the nature of the realiz..tions, and the resulting
uncertainty distributions.




Sequential indicator simulation is especially straightforward when applied to
generating realizations of a categorical variable. Thus, this algorithin was also used
to produce realizations of the GCD and Boolcan exhaustive data sets (discussed

below).

5. Truncated Gaussian Random Function Approach This method, discussed in
Matheroun et al., (1987), Galli et al., (1990), and Dowd (1992) describes K lithofacies
or lithologic units by using one indicator function per facies. Indicator simulation
is accomplished by generating a Gaussian random field and then truncating the
Gaussian values to achieve the categorical simulation. Specifically, suppose Y (s) is
a stan-ard Gaussian random variable. The associated indicator transform is

Hsiy) = {1 TY()€ vl

0 otherwise

so that a point s belongs to category ¢ if Y(s) € (y.ﬁl,y.'l. The thresholds, y,, are
determined according to the proportion of values that fall into each category. Let
® be the standard Gaussian distribution function, and lev p, be the proportion of
values in category i. Then

pi = Pl—o0 <Y (5) < ] — oy = (I)“l(}’l ).

In general, ye—y = @7 Hp1 + 2 + ... 4 pr—1). After the Gaussian thresholds have
been determined, it is then necessary to determine the covariance structure of the
Gaussian random variables. This structure depends on the structure of the indicator
covariances which may be computed and modeled from the data. The relationship
between the two covariance functions can be specified using Hermite polynomial
expansions. in which case (Dowd, 1992)

KN KN o0

Hn—- x,Hn—v n
Crth) =YY ccolygly) + > ‘“’3 W) ey,

!

=1 )=1 n=|

where H, _ (r) are Hermite polynomials, g(y) is the standard Gaussian density,
¢, 1s a unique integer value assigned to each category, and C'j(h), and Cy(h) are
the covariance functions of the indicator variables and the Gaussian variables, re-
spectively. Conditioning data at locations {s, }, are replaced by standard Gaussian
random variables with covariance function Cy(h) such that y,_; < y(s,) < y,,
where j indexes the category to which s, belongs. Finally, a usual conditional
Gaussian simulation is performed and then back-transformed to obtain the associ
ated indicator values.

There are many ways to determine Cy(h) from the above equation. To the
authors’ knowledge, there is no published theory on an optimal solution for Cy (h) or
even an accepted methodolgy for obtaining any satisfactory solution. The approach
used in this study was to obtain values of Cy (k) that satisfy the above equation
using a Golden Section Search algorithin (Press, et al., 1980) for all relevant lags h,
rather than to use a specific parametric model. Onece Cy-(h) has been established,
Gaussian random fields were generated via simulated annealing (Kirkpatrick, et al..
1983; Deutsch and Journel 1992a, 1992b) to force each realization to matceh C'y (h).
The determination of Cy(h) is the most computationally intensive aspeet of this
algorithm, and the lack of a straightforward method for conditioning to indicator
data is also a limitation. For problems with more than two categories, consideration
of indicator cross covariances is required, and additional computations are required.
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Clearly, in this type of study, it is impossible to divorce the simulation method
or algorithm from the esmputer software used to implement the algorithm. In con-
structing the software, there are often various choices for the computational details
of algorithm implementation (e.g., the number of turning bands lines, cdf mterpo-
lation and extrapolation methods, search strategies) that are specificd by the user,
Every actempt was made to provide the most complete input to each simulation
code. The goal of this study is not to discredit any of the approaches or to determine
the best algorithmn, since no algorithm can be best for all applications. Instead, we
hope to obtain more information on how the algorithms work in simulation appli-
catinn= lile those illustrated in Figure 1 and to indicate new rescarch directions for
investigating the properties of the algorithms and developing new algorithms.

B. Date conditioning

For the conditional realizations, N=100 sects of r=100 data values were ran-
domly selected from cach exhaustive data sct. Each realization was then condi-
tioned on one of the N scts of 100 values. Although in practice all realizations
are conditioned to the same set of data values, in a study such as this, care must
be taken not to introduce bias into the experiment due to the particular data set
chosen. Since it is impossible to determine a “good™ data set apriort, multiple sets
of conditioning data were used.

C. Ezhaustive Data Sets

Seven exhaustive data sets were used in this comparative study. Three are real
exhaustive data sets taken from the authors’ project work and from the literature.
The advantage of these data sets is that they reflect real spatial phenomema and
the statistical and geostatistical properties of these data sets reflect what is actu
ally encountered in practice. However, results based on real exhaustive data sets
arc limited to the particular properties exhibited by the data. In order to broaden
the scope of inference of a study such as the one desceribed here, it is necessary to
consider exhaustive data sets with a variety of statistical and geostatistical proper-
ties. Thus, the remaining four exhaustive data sets were generated synthetically so
that their statistical and geostatistical features could be controlled and varied. A
brief deseription of cach exhaustive data set is provided helow and cortesponding
gray-scale maps are shown in Figure 2,

1. Multivariate Gaussian Exhaustive Data Set. This data set wes obtained by gen
erating 1600 independent standard Gaussian random variables on a 40 x 40 erid
of unit spacing. The covariance matiix was derived from a prespecified exponen
tial semivariogram model with a zero nugget, unit sill, and range 7. A Cholesky
decomposition algorithm from the IML procedure in SAS (Statistical Analyvsis Sys-
tem Version 6.01, 1992) was used to induce the desired covariance structure, The
ensemble average was then standardized to mean zero and unit variance to produee
the exhaustive data set.

2. Uniform Exhaustive. The uniform exhaustive data set consists of 1600 values
ot a 40 x 40 regular grid with unit spacing and was obtained by generating o set
of uniform random variables over the grid and then applying simulated annealing
to more closely match the desired spatial covariance. The simulated anncaling
algorithm given in GSLIB (Deutsch and Journel, 1992a) was used to foree the image
to match (to the extent permitted by this algorithm) two summary functions: 1)
the histogram of a uniform probability distribution on [~ vi.va) and 2) an isotropic
exponential semivariogram with zero nugget, unit sill, and range 10,
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3. Indicator-Covariance Specified Exhaustive. This exhaustive data set was ob
tained by modifying the simulated annealing algorithm given in Deutsch and Journel
(1992a) to anneal an initial image to specified indicator semivariograms. The result-
ing exhaustive data set was forced to have mean zero, unit variance, and indicator
semivariograms specified as

Cut-off -2: isotropic sph (¢, = 0.00, ¢, = 0.16,a = 7.00),

Cut-off -1: isotropic sph (¢, = 0.00, ¢, = 0.25,a = 5.00),

Cut-off 0. anisotropic sph (¢, = 0.00,¢, = 1.00,az = 7.00,ay = 3.50),

Cut-off 1: isotropic sph (¢, = 0.00, ¢, = 1.25,a = 10.0),

Cut-off 2: anisotropic sph (¢, = 0.00,¢, = 1.50, ar = 30.00, ay = 15.00).

It nocation ™ sph” refers to a spherical semivariogram model with nugget ¢,
sill ¢,, and range a. The notation “anisotropic sph™ specifies a model of geometric
anisotropy, where the parametric form is that of a spherical semivariogram model.
but with a range of az in the N 90° E dircction and a range of ay in the N 0° E
direction.

4. Reduced Walker Lake Exhaustive. To construct the exhaustive data set called
the “Reduced Walker Lake” exhaustive data set, an mitial exhaustive variable, U,
was sclected from a portion of the U variable of the original Walker Lake Data
Set (Isanks and Srivastava, 1989). The reduction was done in order to facilitate
comparisions with results obtained for other continuous-variable exhaustive data
sets that consist of 1600 data points on a regular 40 x 40 grid with unit spacing.
Following the approach of Desbarats and Srivistava (1991), the variable U was then
transformed to create a variable T which is similar to the log-normally distributed
transmissivity parameter common in hydrogeologic applications.

5. Beren Sandstone Exhaustive, The Berea sandstone data set consists of 1600 air
permeameter measurements (in millidarcies) taken from a 2 x 2 foot vertical slab
of Berea sandstone (Giordano, et al., 1985). The locations of these measurements
are cqually spaced over a 40 x 40 grid. The Berea sandstone has been used in many
comparative geostatistical studies such as Journel and Alabert (1989), Deutsch and
Journel (1992h), and Rossi and Posa (1992). Figure 2¢ shows the the banding i
the N 123°E direction that is characteristic of this exhaustive data set.

a coarser version of the one discussed in Gotrray, et al. (1993 ) obtained by digitizing
a photo-mosaic map of a trench wall at the Greater Confinement Disposal Facility
in Southern Nevada, Each node on the resulting grid is associated with one of two
hydrogeologic units and is assigned a value of 1 (for the black unit) or 0 (for the
white unit). For the purposes of this paper. the exact nature of cach unit is not
nportant.

6. GCD Exhanstive. The GCD exhaustive data set presented in this manuseript is

7. Boolean Exhan<tive. This exhaustive data set was obtained by Boolean simula
tiou of half-ellipses. Ellipses were horizontally onented with anisotropy ratios of 2
or 3 and minor axes lengths varying from 1-5 units. The target coverage percentage
wits speatiod at 20 pereent. Each node on the 80 x 23 grid was given a value of 14f
it was contained in at least one of the ellipses and the value 0if it was not contained
in any cllipse.

Summary functions necessary for input into the various sitnulation algorithms
were obtained direetly from the exhaustive data sets. For the Gaussian:based sim
ulation algorithis, the continuous, non-Gissian, exhaustive data sets were trans
formed to normality prior to simulation. Sewivariograms (N 0°FE, N 45"E, N O0'E,
and N 135°E and omnidirectional), were then determined from the transformed



Aale B

Gaussian

(b)

wndicator Specificd

}!< " P !

M Ye
5
& - b3

?ﬁd

(©)

Figure 2.

| NI N T8 Vv S S

_Reduced Walker Lake

er
»

Boolean

—

Fxhaustive Data Sets,

4

R L

LR



s

data and used to generate the realizations. For the real data sets where additional
information indicated the principal directions of anisotropy, semivariograms cor-
responding to these directions were used.  After simulation, the generated values
were back-transformed, if necessary, based on the original exhaustive distribution.
Indicator semivariograms were always obtained from the original exhaustive data
set and at least five indicator thresholds were used for each exhaustive data set. In
general, a collection of semivariogram models was used in modeling all of the in-
dicator semivariograms derived from the continuous-variable exhaustive data sets.
The exception concerns the Berea sandstone exhaustive data set where, (ollowing
Decraboand Journel (1992b), the median-indicator approximation (Journel, 1983)
was used,

All semivariograms were modeled using a combination of weighted-least
squares-regression fitting (Cressie, 1985) and visual fitting techniques. Anisotropic
models and nested structures were used where appropriate. Additional constraints
were placed on the choice of indicator semivariogram models in order to repect their
theoretical properties.

D. Transfer functions

Many important applications of stochastic simulation are flow related. Mea
sures of groundwater travel time, contaminant breakthrough time, and bed thick:
ness all rely on some quantitative notion of connectivity that reflects the degree to
which regions of high or low values are related. Many of the transfer functions used
here were selected to provide simple indicators of connectivity, They are used in
place of actual groundwater flow or transport codes sinee the complexities involved
in boundary condition determination and assumptions, potential errors introduced
by necessary grid-diseretization, and model calibration issues would only detract
from the ability to detect differences in statistical properties among the simulation
algorithius.

There are other important transfer functions that are not necessarily flow re-
lated. For example, the ability to accurately prediet the proportion of values above
a specitied threshold is important i mining and environmental restoration appli-
cations. In these and many other applications, incornoration of major geologie
features may also be a primary concern.

The transfer functions described below were selected to encompass a variety of
applications like those described above, For the categorical problems, the transfer
functions are called discrete path, cluster, and discrete average cost. These funce-
tions operate on binary data sets. For the continuous-variable problems, the transfer
functions are called minimunm cost path, geometric mean average and range, and
threshold proportion. The transfer functions are deseribed in the following para-
graphs.

Discrete Patli At cach x-node along the upper boundary of the data set, a particle
is released. The particle can move downward or diagonally downward, but if no path
is available it can move only herizontally. Barriers to movement are considered to
be the higher coded (black) materials in both problems considered here. The initial
direction of horizontal movement is left to right. The direction is changed whenever
a barner is encountered during an attempted horizontal move. The output from
the transfer function 1s the number of particles reaching the lower boundary.

barrict materials are considered to be part of the same cluster if they are connected
diagonally, horizontally, or vertically.

Cluster. Lhis algorithm couns the numbor of clusters of barrier material. The
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Discrete Avernge Cost. Particles are released from cach node on the left houndary
and travel horizontally through the region with unit penalty for each move within a
white region. Particles can move right or diagonally right to avoid the black regions
where movement costs are five times as great. Qutput is the average cost,

Minimum-Cost_Path. In this algorithmn, movement costs are based on the reciprocals
of the data values. The minimum cost path from the upper boundary to the low:r
boundary is computed using a dynamic programming algorithm allowing downward
and diagonally-downward movement. The output is the minimum cost.

Geometric Mean. The geometric mean is computed for cach interior gnid node as
the product of the 25 closest nodes. For data sets with negative measurements,
a constant was added to assure all values were positive. A second fixed coustant
was uscd to control the magnitude of the results. Two transfer funetions were
considered: the difference between the maximum and minimum of all the geometrnie
means; and the average of all geometric means,

Threshold Proportion. ‘tuis transfer function is the proportion of values that are
greater than the 90th percentile of the exhaustive data set.

Tue transfer functions are applied first to the exhanstive datia sets to obtain
the “true” value to be used as a basis for comparison, and then to cach realization.
Comparisons between these values are then used in Seetion TH to draw inferences
concerning the simulation technigies.

RESULTS

The results of this study reveal a number of differenees between the simuiation
algorithms. The differences can be seen in 1) the accuraey of the uneertainty dis
tributions, 2) the characteristics of the realizations input to the transfer funetions,
and 3) the shapes of the system response distributions. Results in cach of these
arcas are sutnmarized and discussed below.

To help assess the methods, each system response uneertainty distribution was
compared to the true value computed from the exhaustive data set. Table 1 gives
a summary of the overall results. Columns one and two provide the proportion
of system response distributions that 1) contained the true value within the range
of response values, and 2) coutained the true value within the 90th and 10th per-
centiles. The last three columns of Table 1 provide additional measures pertaining,
to the bias. precision, and accuracy of the response uncertainty distributions pro
duced by cach algorithm. The bias measure (column 3) is the absolute differencs
between the median of the uncertainty distribution and the true value, divided by
the true value, then averaged over all exhaustive-data set/transfer-function com-
binations. Precision (column 4) is measured as the difference between the 90th
and 10th percentiles of each uncertainty distribution divided by the corresponding,
percentile ditference for the uncertainty distributions obtained using the nneonds
tional LU decomposition simulation algorithm or the unconditional categorical s
quential indicator algorithin (as arbitrary references), averaged over all exhaustive
data-sct /transfer-function combinations.  Simulation algorithms that consistently
produce uncertainty distributions that are more precise than those obtained using
unconditional LU decomposition (or categorical sequential indicator) simulation will
have precision values less than 1.00. Column 5 combines the measures of bias and
precision into a measure of accuracy. Accuracy is measured as the weighted average
of the absolute differences between system response value and true value, where the
weights are the reciprocals of the across-simulation method average standard devia
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tion of the uncertainty distributions for cach exhanstive-data set/transfer function
secenario. The weights are used to account for differences in the magnitude of the
values in the different scenarios. Lower numbers for the accuracy measure are
dicative of uncertainty distributions whose values are consistently close to those
computed from the exhaustive data sets.
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Table 1. Sumimary of Uncertainty Distnbutions Cormbined Across All Lahaustive Data Set Transter Function Gcenavas The bias
precision, and accuracy measures are those tiscussed in the test

The first column of Table 1 shows that most of the uncertainty distributions
produced by the continuous-variable simulation algorithins did contain the true
value. The exceptions are the uncertainty distributions based on transfer funetions
used with the Reduced Walker Lake exhaustive datia set. The second column of
Table 1 gives the proportion of uncertainty distributions containing the true value
within the 10th and 90th percentiles. On average, this number should be around
80Y%, or 16/20, for the continuous-variable simulation algorithns. Thus, from the
table we can see that the probability content assigned to specitied intervids appears
to be aceurate for uncertainty distributions based on conditional Ganssian-based
algorithims, but may be too low for uncertainty distributions produced using the
sequential indicator algorithm, or too high if unconditional LU decomposition or
sequential Gaussian methods are used for problems of the type presented here.

The last three columns of Table 1 show that the uncertainty distributions ob
tained using the unconditional Gaussian-based simulation algorithims hive similar
alues for the bias measure, but that those obtained using the unconditional turning
bands and sequential Gaussian algorithms are more preeise than those based on the
unconditional LU decomposition algorithm.  Conditioning the simulation reduces
the differences in the uncertainty distributions produced by the various methods,
but, on average, uncertainty distributions produced by the Ganssian based simue
lation algorithms are more aceurate than those produced using sequential indica
tor simulation. These results differ from those presented by Journel and Deutsch
(1993) in which response uncertainty distributions based on unconditional realiza
tions generated by the sequential Gaussian simulation algorithin were compared
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to those obtained using sequential indicator simulation. Based on one uncertainty
distribution that did not contain the true value, Journel and Deutsch (1993) con-
clude that Gaussian random field models may produce uncertainty distributions and
probability intervals that are too narrow. Clearly, the results of our study do not
support their contention. Although the Gaussian realizations produced an inaccu-
rate response uncertainty distribution for the exhaustive-data-set/transfer function
scenario considered in Journel and Deutsch (1993), this may be due to the use of the
sequential Gaussian simulation algorithm, and conclusions based on this algorithm
cannot be extended to Gaussian-based methods in general.

Most of the response uncertainty distributions obtained using the categorical
simulation algorithms were also accurate. The primary exceptions are the results
for the Boolean exhaustive data set and the discrete path transfer function, where
none of the uncertainty distributions contain the true value. Of course, in prac-
tical applications, transfer functions are not computed on lithologic simulations
alone. Usually, the lithologic simulations are the first stage of a two-stage simula-
tion procedure designed to incorporate the large-scale geologic features of a region
as well as capture the small-scale features of an associated parameter of inter-
est. Both the discrete path and cluster transfer functions reflect the ability of the
simulation methods to accurately portray lithologic features. This suggests that
perhaps other simulation methods that utilize different summary functions which
characterize shape and connectedness (such as Boolean and random set algorithms)
might be more appropriate for these transfer functions. For transfer functions such
as the discrete average cost function, both categorical simulation algorithms will
likely produce accurate response uncertainty distributions. Although uncertainty
distributions produced by the truncated Gaussian approach show about the same
variability as those produced by categorical sequential indicator simulation, the bias
and accuracy measures indicate that the truncated Gaussian approach has a higher
average bias. Realizations generated using the truncated Gaussian approach tend
to have a larger number of isolated points than those obtained using sequential indi-
cator simulation, and this adversely affects the uncertainty distributions produced
by the truncated Gaussian algorithm.

For a particular exhaustive data set, the realizations (taken as an ensemble)
produced by the LU decomposition and turning bands algorithms are very similar.
The exceptions are the realizations generated using the turning bands algorithim
with the Berea exhaustive data set. This particular data set exhibits strong zonal
anisotropy that is not parallel to the coordinate axes, and the simplifications made to
semivariogram models for use with the turning bands software hindered its ability to
portray the banding characteristic of the Berea exhaustive data set. It is surprising
that even with several such simplifications, the turning bands algorithm gave fairly
accurate results. None of the realizations produced by the turning bands method
showed artifacts due to the lines necessary for the one-dimensional simulations.

There are notable visual differences between the realizations produced by the
LU decomposition and turning bands methods and those generated using the se-
quential simulation algorithms. The realizations provided by the sequential methods
tend to exhibit more clustering of similar values than realizations produced by the
other methods. Figure 3 prescnts two typical realizations of the Reduced Walker
Lake data set; one generated using LU Decomposition, and the other generated
using sequential indicator simulation. The clustering is probably an artifact of the
kriging on which the sequential approaches are based and is discussed in Hansen
(1992) but was not anticipated here since simple kriging was used throughout.
Clustering of similar values is particularly pronounced in realizations produced by
sequential indicator simulation, and may be due in part to the nugget effect induced
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in the sequential indicator realizations caused by transformation from the class par-
titions to the real values. Deutsch and Journel (1992) acknowledge the extra nugget
component and suggest artificially reducing the nugget effect of the indicator semi-
variograms prior to simulation. This suggestion may alleviate part of the problem,
but would not affect the clustering problem because it would reduce within class
variability and not the extra variability resulting from the discrete partitioning. Fig-
ure 3 also illustrates another important difference between the realizations produced
by sequential indicator simulation and those obtained by Gausian-based methods.-
The use of indicator semivariograms enables realizations of the Reduced Walker
Lake data set generated using sequential indicator simulation to capture the ridge
ot lugi vaiues characteristic of this data set. Although the Gaussian-based methods
capture the large arca of high values, the entire ridge is much less clearly defined in
these realizations, with no immediate “drop-off” as seen in the exhaustive data set.

LU Decomposition
% 3 IR v

Sequentlal Indicator

D ARl W e

Figure 3. Conditional Realizations of the Reduced Walker Lake Exhaustive Data Set.

The categorical realizations do not usually reflect the shape or position of key
features of the categorical exhaustive data sets, sven after data-conditioning. Some
typical realizations are shown in Figure 4. As mentioned earlier, the conditional real-
izations obtained using the truncated Gaussian approach have more isolated points
than those produced using the categorical sequential indicator approach. This could
be due to the details of the implementation of the truncated Gaussian algorithm,
such as the choice of an anncaling step used in generating the Gaussian realiza-
tions or the use of a golden section search algorithm in determining the Gaussian
covariance structure, and may not be artifacts of the truncated Gaussian approach
in general. At present, there does not appear to be any theory or guidance in the
literature as to choices for specific details essential for software implementation of
this algorithm or the effect of these choices on the gencrated realizations.
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orical Sequential Indicator (GCD, Categorical Sequential Indicator (Boolean)

Truncated Gausslan (GCD)

Truncated Gaussian (Boolean)

Figure 4. Conditional Realizations of the GCD and Boolean Exhaustive Data Sets.

Different components of the simulation methods appear to affect the shape of
the uncertainty distrbution of system response. An example is shown in Figure 5,
which gives the results of the LU decomposition and sequential Gaussian simula-
tion algorithms for the indicator-covariance specified exbaustive data set using the
geometric mean range transfer function. In this situation, the exhaustive data set,
transfer function, and summary functions are exactly the same. The sole difference
lies with the particular algorithm used. Another example is given in Figure 6, which
shows the results of the turning bands and scquential indicator simulation algo-
rithms for the uniform exhaustive data set and the geometric mean average transfer
function. It is not clear if the differences between these distributions are due to
method of generation (sequential vs. non-sequential), summary function specifica-
tion (semivariogram vs. indicator semivariograms), or algorithm implementation
details. A final example is given in Figure 7, which shows response distributions for
the minimum cost transfer function and the Gaussian exhaustive data set obtained
using the sequential Gaussian and turning bands algorithms. Here, the spread of
the two uncertainty distributions is quite different. These examples, and many oth-
ers not presented here, show that the uncertainty attributed to a system response
prediction can depend on the particular simulation algorithm used and may differ
substantially even among methods that are based on the same assumptions and use
the same available information.

In general, the effect of data conditioning on the response uncertainty dis-
tributions is clear: Conditioning decreases the variability in the system response
distribution. In particular, the tails of the distribution are pulled toward the cen-
ter, the median is generally moved closer to the true value, and most outliers are

15




LU Decomposition 201  Sequential Gaussian

.
s

R XKIR,

bt

percent

()

5

v
%!

)

e

A

SR

SESSon

ZeDZoReEees
XX

variable

(b)
Figure 5. Uncentainty Distributions for the Geometric Mean Range Transfer Function
Based on Unconditional Realizations of the indicator-Covariance Specified Exhaustive
Data Set. The arrow denotes the true transfer function value.

Turning Bands Sequential Indicator

. E'Ci " _‘
Yy -; o \.:
P 3
R R *
M@m_ . 171 _—
3 4 5 6 7 8 1} 2 3 4 5 6 7 8
variable variable

(a) (b)
Figure 6. Uncertainty Distributions for the Geometric Mean Average Transfer
Function Obtained from Unconditional Realizations of the Uniform Exhaustive
Data Set. The arrow denotes the true transfer function value.
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Figure 7. Uncertainty Distributions for the Minimum Cost Transfer Function
Obtained from Unconditional Realizations of the Gaussian Exhaustive Data Set
The arrow denotes the true transfer function value
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eliminated (sce Figure 8 for a typical example). Conditioning the realizations will
also reduce algor.thmic effects but not eliminate them. An example is given in Fig-
ure 9, which shows uncertainty distributions produced using conditional LU decom-
position and sequential indicator simulation algotithms for the indicator-covariance
specified exhaustive data set and the geometric mean range transfer function. Here,
the two uncertainty distributions are very different even after conditioning on 100
data points. In a few other situations, such as that depicted in Figure 10, it would
appear that the increase in precision due to data conditioning was obtained at the
expense of bias, since the conditioned distribution no longer contains the true re-
sponse. This example (and the taree other cases observed in this study) support the
observations in Hansen (1992), where the tendency was termed “over-conditioning.”

All of the simulation algorithms used in this study had the benefit of complete
exhaustive information wherever possible. The exceptions were the tail extrapo-
lation choices in the sequential indicator algorithm necessary to extrapolate the
conditional distribution estimated at the lowest (highest) threshold to a specified
minimum (maximum). As mentioned earlier, the nature of the response distri-
butions produced by the sequential simulation methods can be greatly affected
by some parameters that are difficult to determine from the data. Tail extrapo-
lation choices coupled with the choice of specified data minimum and maximum
are two such important parameters. In this study, linear extrapolation to the ex-
haustive data minimum and maximum was used. Results obtained using linear
interpolation/extrapolation between exhaustive quantiles (information provided to
the other techniques when transforming and back-transforming) produced uncer-
tainty ranges with tighter bounds. Consequently, results based on this interpola-
tion/extrapolation choice were less accurate than those presented here. In addition.
a third set of realizations was generated using linear extrapolation to specified mini-
mum and maximum data values that were 10% beyond those given by the exhaustive
data. This was done because, in practical applications, exhaustive information will
not be available, and a researcher using simulation may decide to let the simu-
lated values fall slightly outside of the data range in order to create the “tails™ of
the distribution. Based on this third set of realizations, the measures in Table 1
obtained for the Gaussian-based methods did not change much, but some of the
measures for sequential indicator were very difterent. Specifically, most uncertainty
distributions had much higher ranges (precision measures were 3.20 (unc.) and 1.43
(cond.)), but were no more accurate than the previous distributions (bias measures
were (L56 (unc.) and 0.30 (cond.)). Clearly, the choice of such parameters is very
important, and careful evaluation is required before using realizations generated by
any simulation algorithm to assess the uncertainty of a system response.

SUMMARY AND CONCLUSIONS

Several very broad issues are illustrated by the results of this study. The first
is the effect of particular simulation algorithms on the resulting uncertainty distri-
bution. Even for simulation algorithms that use the same summary functions, the
shape and spread of the resulting uncertainty distributions based on a particular
transfer function can be quite different. This lack of consistency implies that dif-
ferent algorithms may produce very different predictions of system response and
poses additional problems for applications whose major interest lies in quantifying
the uncertainty associated with particular events.

Second, there are some transfer functions (like the diserete path transfer fune
tion) for which producing the distribution of system response based on just two
summary functions (like the edf and semivariogram) may not be appropriate. We
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observed that for lithologic simulation in which the shape and connectedness of
units are important, simulation algorithms that utilize summary functions that can
measure these properties might be more appropriate than those considered in this
study.

Third, conditioning on sample data will improve the precision associated with
the system response distribution and reduce, but not eliminate, algorithmic etfeets,
A few cases of “over-conditioning” were observed but did not appear to be a chronice
problem.

Finally, our results indicate that, overall, Gaussian based simulation models
can incorporate the essential spatial features of a spatially-varying parameter. Al-
thougn Gaussian models maximize spatial disorder, and Journel and Deutsch (1993)
maintain that they could yield a response uncertainty space that is too narrow,
our results do not support this contention. We have found that the Gaussian-
based approaches tend to produce uncertainty distributions that are more aceu-
rate than those obtained using the scquential indicator algorithm. For imaging
spatial uncertainty in a continuous variable, this study suggests that, for the va
ricty of exhaustive-data-set/transfer-function scenarios considered, Gaussian-based
approaches, and the sequential Gaussian simulation algorithm in particular, are
flexible and accurate methods for stochastic simulation of random fields.

There are many other interesting studies that could have been done within this
project, such as considering the effects of summary function estimation from lunited
data, conditioning sample size and location, and transfer function approximations.
For the practicioner, these are real unknowns. To look at these factors over all of
the various simulation algorithms would be unnecessarily tedious and redundant.
This study provides additional information on the simulation algorithms that ap-
pear to work well in a variety of exhaustive data set /transfer function combinations.
Studies that look at the effects of other factors not yet investigated can then be de-
signed around these algorithis. In particular, our results suggest that there is still
much work to be done in recovering information lost due to discretization of val-
ues necessary for the sequential simulation algorithm and in developing simulation
methodolgy for categorical variables, In particular, refinements and improvements
to the methods illustrated in this paper so that they might more adequately capture
continuity aud shape, and the study and evaluation of the properties of other cate
gorical simulation approaches such as Boolean and random set algorithins, nearest
neighbor approaches, and further development of tractal simulation methods could
provide intersting and useful research directions.
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